DEPARTMENT OF OCEANOGRAPHY

http://ocean.tamu.edu/

Head: S. Yvon-Lewis

Graduate Advisor: B. Dennis

Degrees

Degrees of Master of Science and Doctor of Philosophy are offered in oceanography. The department also offers the Master of Ocean Science and Technology (MOST) non-thesis professional degree. The Department of Oceanography can also serve as the "home" department for the Master of Geoscience degree. The MGsc is a non-thesis degree that provides a multidisciplinary background in the geosciences, appropriate for science teachers in public schools, or for individuals interested in environmental issues, for example. The department also offers a certificate in Ocean Observing, usually taken in addition to an MS or PhD degree.

The Department of Oceanography has Fast Track 5 year Bachelor’s/MOST Programs in conjunction with Environmental Geosciences, Atmospheric Sciences and Geology. These Fast Track Programs offer motivated and exceptional students the opportunity to achieve aspirations in an efficient program at Texas A&M, completing a Bachelor’s degree in one of these majors: Environmental Geosciences (B.S.), Meteorology (B.S.), Geology (B.S. or B.A.) and the Master of Ocean Science and Technology degree in 5 years. There are only two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program enables these motivated students to coordinate the required B.S coursework (114 undergraduate credit hours plus 6 dual credit graduate courses) and MOST coursework (36 credit hours including the 6 dual credit graduate courses) to complete the required credit hours for each degree without diminishing scope or quality of work within 5 years.

Oceanography

Oceanography is the interdisciplinary science that focuses on the ocean, its contents and its boundaries. Whereas typical graduate programs lead to progressively greater amounts of specialization, oceanography as an interdisciplinary field admits graduates of specialized areas such as biology, chemistry, geology, geophysics, mathematics, physics or engineering and initially generalizes and broadens their education with a core of required courses. These core courses include the four specializations of the oceanography program—biological, chemical, geological/geophysical and physical oceanography—as well as a seminar covering the state of the science. After this exposure to the interdisciplinary nature of oceanography, the graduate student refocuses in his or her particular subject area to pursue research at the leading edge of the science.

Required prerequisites are the equivalent of a BS degree and basic courses in the fields mentioned above. All students are expected to have had mathematics through integral calculus, at least one year each of physics and chemistry, and at least one survey course in biology and geology. These are in addition to the usual amount of coursework in their major field of science or engineering.

To qualify for an advanced degree in oceanography, the student must demonstrate an ability to apply basic science to the marine environment. This capability requires a combination of principles and methods and

Facilities and Participation in Research

Facilities include office, laboratory and classroom space in the 15-story David G. Eller Building for Oceanography and Meteorology on the College Station campus; the Geochemical and Environmental Research Group, which occupies 20,000 square feet of laboratory and office space and a warehouse-shop area of 8,000 square feet; space at the Texas A&M University Riverside Campus; office and dock facilities on Pelican Island in Galveston, Texas. The department maintains a network of high performance workstations, personal computers and data storage facilities for use in the collection and analysis of data and for ocean modeling and marine geophysical studies. High speed internet connections allow faculty and students to connect to outside supercomputer centers such as those at NCAR. Graduate students pursuing M.S. or PhD degrees usually take an active part in research grants and contracts awarded to individual professors or research teams by federal and state agencies, industry and private foundations.

Faculty

Baldauf, Jack G, Professor
Oceanography
PHD, University of California, Berkeley, 1985

Brooks, David A, Professor
Oceanography
PHD, University of Miami, 1975

Campbell, Lisa, Professor
Oceanography
PHD, State University of New York at Stony Brook, 1985

Chang, Ping, Professor
Oceanography
PHD, Princeton University, 1988

Chapman, Piers, Professor
Oceanography
PHD, University of Wales, UK, 1983

Dimarco, Steven F, Professor
Oceanography
PHD, The University of Texas at Dallas, 1991

Fitzsimmons, Jessica N, Assistant Professor
Oceanography
PHD, Massachusetts Institute of Technology, 2013

Gardner, Wilford D, Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1978

Giese, Benjamin S, Professor
Oceanography
PHD, University of Washington, 1989

Gold Bouchot, Gerardo, Professor
Oceanography
PHD, CINVESTAV Merida, 1991
Hetland, Robert D, Professor
Oceanography
PHD, Florida State University, 1999

Knap, Anthony H, Professor
Oceanography
PHD, University of South Hampton, 1978

Orsi, Alejandro H, Professor
Oceanography
PHD, Texas A&M University, 1993

Potter, Henry, Visiting Assistant Professor
Oceanography
PHD, University of Miami, 2014

Richardson, Mary J, Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1980

Shamberger, Kathryn E, Assistant Professor
Oceanography
PHD, University of Washington, 2011

Slowey, Niall C, Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1991

Stoessel, Achim, Associate Professor
Oceanography
PHD, Universitat Hamburg, 1990

Sylvan, Jason B, Assistant Professor
Oceanography
PHD, Rutgers, The State University of New Jersey, 2008

Thomas, Deborah J, Professor
Oceanography
PHD, University of North Carolina at Chapel Hill, 2002

Thornton, Daniel C, Associate Professor
Oceanography
PHD, Queen Mary Westfield College, University of London, 1996

Thyng, Kristen M, Research Assistant Professor
Oceanography
PHD, University of Washington, 2012

Zhang, Yige, Assistant Professor
Oceanography
PHD, Yale University, 2015

Masters

- Master of Science in Oceanography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/ms)

Doctoral

- Doctor of Philosophy in Oceanography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/phd)

Certificates

- Ocean Observing Systems Certificate (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/ocean-observing-systems-certificate)

Courses

OCNG 600 Survey of Oceanography
Credits 3.3 Lecture Hours.
General survey of the scientific framework of oceanographic study; applications of ocean research to social and economic problems; interrelations between the ocean disciplines and other fields of study. **Prerequisite:** Approval of instructor.

OCNG 603 Communicating Ocean Science
Credits 3.3 Lecture Hours.
Instruction and practice with presenting scientific information on the ocean to a variety of audiences under different time constraints; critical components for any presentation; knowing your audience; designing effective visual aids and graphics; leading your audience through complex concepts; and communication with non-scientists.

OCNG 604 Ocean Observing Systems
Credits 3.3 Other Hours.
Investigate the rationale behind ocean observing systems; familiarize with the relevant social, scientific design, technology, and policy issues associated with observing systems. **Prerequisite:** Approval of instructor.

OCNG 605 Oceanography Cruise
Credits 2.2 Other Hours.
Specialized experience in research methods and analysis in oceanography via preparation for and participation in a research cruise of at least two weeks duration under the supervision of a Texas A&M oceanography faculty member. May be taken up to two times for MS candidates and four times for PhD candidates. **Prerequisite:** Approval of instructor.

OCNG 608 Physical Oceanography
Credits 3.3 Lecture Hours.
Observations, instruments; physical properties of seawater; property distributions; characteristics of water masses; heat budget; kinematics; gravity, pressure, hydrostatics, stability; horizontal flow; Coriolis force, geostrophy; friction, wind drift; general circulation; wave motions; tides. **Prerequisite:** MATH 172 or equivalent; PHYS 219.

OCNG 609 Dynamical Oceanography
Credits 3.3 Lecture Hours.
Systematic treatment of the kinematics, dynamics and thermodynamics of the ocean; integral conservation relations; solenoidal versus conservative vector fields; potential vorticity; geostrophic adjustment; inertial and buoyancy modes; Bernoulli-Montgomery potential; energetics in a rotating system; available potential energy; natural temporal and spatial scales. **Prerequisites:** OCNG 608 or ATMO 435; MATH 601.
OCNG 610 Mathematical Modeling of Marine Ecosystems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Theory and technique of model development for marine ecosystems; mathematical representation of interactions among nutrients, phytoplankton, zooplankton, fish and the physical environment; scrutiny of biological concepts and mathematical structure of existing models; laboratory segment to focus on computational techniques applicable to classroom problems.
Prerequisites: OCNG 608 and OCNG 620, calculus or approval of instructor.

OCNG 611 Global Scale Oceanography
Credits 3. 3 Lecture Hours.
A balanced description of the ocean's large-scale circulation and water mass structure based on the interpretation of modern observations, with emphasis on the ocean's role in global climate, and physical-chemical property fluxes in basin to global scale budgets.

OCNG 612 Elements of Ocean Wave Theory
Credits 3. 3 Lecture Hours.
Theories of simple harmonic surface gravity, capillary and internal waves. Wave propagation, dispersion and energy; modifications due to rotation, variable depth and finite amplitude.
Prerequisites: OCNG 608 and MATH 601 or approval of instructor.

OCNG 616 Numerical Modeling of Ocean Circulation
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Quasigeostrophic ocean circulation models; Arakawa's energy and enstrophy conserving scheme; spectral barotropic vorticity model on sphere; shallow water primitive equation models; geostrophic adjustment on different numerical grids; boundary conditions in numerical models; introduction to ocean general circulation models; mixed models and sub-gridscale parameterization; oceanic data assimilation.
Prerequisite: OCNG 618.

OCNG 617 Theories of Ocean Circulation
Credits 3. 3 Lecture Hours.
Theories of wind-driven circulation, Sverdrup solution, frictional and inertial boundary regimes; instabilities, meanders and mesoscale features; role of stratification, topography and time dependence; Thermohaline circulation.
Prerequisite: Graduate classification.

OCNG 618 Numerical Methods for the Geosciences
Credits 3. 3 Lecture Hours.
Mathematical theory and numerical techniques for modeling physical systems and processes in the Geosciences; discretization of continuum equations for solids and fluids; finite difference methods, convergence, consistency, and stability; finite element and spectral methods in fluid dynamics and seismology; iterative solvers; implicit and explicit methods for diffusion and advection.
Prerequisite: Graduate classification or approval of instructor.
Cross Listing: ATMO 618 and GEOP 618.

OCNG 620 Biological Oceanography
Credits 3. 3 Lecture Hours.
Critical analysis of contribution of biological science to our understanding of sea; discernible interrelationships between organisms and physiochemical parameters.
Prerequisites: General prerequisites for oceanography.

OCNG 625 Current Topics in Biological Oceanography
Credit 1. 1 Lecture Hour.
Areas of current research; plankton processes; microbial food web; benthic communities; fisheries; global change. May be taken up to three times.
Prerequisite: OCNG 620 or approval of instructor.

OCNG 627 Ecology of the Continental Shelf
Credits 3. 3 Lecture Hours.
Environments, populations and communities of the continental shelf. Interactions of the shelf with the estuaries and the deep sea; man's impact on the shelf ecosystems.
Prerequisite: Approval of instructor.

OCNG 630 Geological Oceanography
Credits 3. 3 Lecture Hours.
Survey of marine geology, structure and composition of ocean basins and continental margins, properties of marine sediments.
Prerequisites: General prerequisites for oceanography.

OCNG 632 Sea-Level Change
Credits 3. 3 Lecture Hours.
Modern sea level; topography, measurement, meteorologic and oceanographic contributions, periodic and non-periodic changes; long-term changes: determination, Cenozoic history, Quaternary glacial-interglacial fluctuations; changes during the past century and decade; observations, natural and anthropogenic influences; estimates of future changes and societal implications.
Prerequisite: Graduate classification; approval of instructor.

OCNG 640 Chemical Oceanography
Credits 3. 3 Lecture Hours.
Prerequisites: General prerequisites for oceanography.

OCNG 641 Inorganic Aquatic Geochemistry
Credits 3. 3 Lecture Hours.
Chemical composition and properties of waters in the near Earth surface environment and their interactions with sedimentary minerals; major topics: thermochemical properties of natural waters, equilibrium and kinetic controlling ion speciation; geochemical processes at mineral surfaces; kinetics of mineral-water interactions; applications to modeling early diagenesis.
Prerequisite: Approval of instructor.

OCNG 644 Isotope Geochemistry
Credits 3. 3 Lecture Hours.
Stable and radioactive isotope variations in natural materials; applications to geochronometric, geothermometric and paleoclimatologic studies of the marine environment.
Prerequisite: Approval of instructor.

OCNG 645 Marine Organic Geochemistry
Credits 3. 3 Lecture Hours.
Origins, fates and distribution of organic compounds in contemporary marine environments and in recent and ancient sediments. Specific analytical techniques.
Prerequisite: Approval of instructor.
OCNG 646 Dynamics of Colloids in the Environment
Credits 3. 3 Lecture Hours.
Equilibrium and dynamic aspects of the physics and chemistry of such colloidal particles and macromolecules and the implications for environmental systems, relevant for organic carbon flux and cycling, fate and transport of pollutants, bioavailability of pollutants, or mobility of pollutants in groundwater.
Prerequisites: Physical Chemistry, Thermodynamics, Aquatic and Organic Chemistry.

OCNG 649 Estuarine Biogeochemistry
Credits 3. 3 Lecture Hours.
Geomorphology; physical oceanography and sedimentation dynamics of estuaries; chemistry of nutrients; trace metals and organic matter; major controls in estuarine productivity and interactions among estuaries, marshes and coastal waters.
Prerequisites: OCNG 620 and OCNG 640.

OCNG 650 Aquatic Microbial Ecology
Credits 3. 3 Lecture Hours.
Microbes in natural environments, including both water and sediment habitats in marine, fresh and ground water systems; process studies of microbial foodwebs and biogeochemical cycling; current methods and research directions.
Prerequisites: OCNG 620 and WFSC 414 or approval of instructor.

OCNG 651 Meteorological Oceanography
Credits 3. 3 Lecture Hours.
Interaction between the ocean and atmosphere; major features of the two systems; heat budget, teleconnections between ocean and atmosphere, El Niño and related phenomena.
Prerequisite: OCNG 608.

OCNG 652 Sedimentary Biogeochemistry
Credits 3. 3 Lecture Hours.
An interdisciplinary approach to understanding complex processes that occur near the marine sediment-water interface in marine and estuarine environments. Composition of marine sediments, pore water chemistry, role of organisms in chemical transformations and pelagic-benthic coupling. Carbon, nitrogen and sulfur cycling in sediments. Modeling biogeochemical processes at the sediment-water interface and during early burial diagenesis.
Prerequisites: OCNG 620 and OCNG 640 or approval of instructor.

OCNG 654 Plankton Ecology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elective course, overview of phytoplankton and zooplankton; taxonomy; physiology; ecology; sampling design; current methods of investigation.
Prerequisite: OCNG 620.

OCNG 655 Experimental Design and Analysis in Oceanography
Credits 3. 3 Lecture Hours.
Elements of experimental design in oceanography; logistics of data collection; critical evaluation of field sampling strategies; formulation of field studies suitable for hypothesis-based inquiries using the standard linear regression mode; analysis of variance and principal component analysis.
Prerequisite: Approval of instructor.

OCNG 656 MATLAB Programming for Ocean Sciences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Computation techniques for oceanographic data processing using MATLAB; focus on the analysis of oceanographic-related data sets and real-world oceanographic applications; individual data sets analyzed.
Prerequisite: Graduate classification.

OCNG 657 Data Methods and Graphical Representation in Oceanography
Credits 3. 3 Lecture Hours.
Application of advanced statistical, quantitative and computational methods to oceanographic observational data; methodologies emphasized include spectral analysis and representations of time series data, optimal interpolation of irregular data fields, analysis of multiple variables using Empirical Orthogonal Functions and scientific interpretation of statistical quantities.
Prerequisite: OCNG 655 or equivalent or instructor approval.

OCNG 658 Ocean Computational Analysis Lab
Credit 1. 4 Lab Hours.
Laboratory course designed to train in computational techniques using modern (Python) and classic (FORTRAN) programming languages and scientific software packages (Generic Mapping Tools and MATLAB); labs focus on real oceanographic applications.
Prerequisites: Encourage concurrent with OCNG 657.

OCNG 659 Ocean Observing Applications
Credits 3. 3 Lecture Hours.
Conceptualization, design, and construction of oceanographic observing systems; practical experience with the Texas Automated Buoy System including system design, instrumentation setup and calibration, telecommunication systems, and data management.
Prerequisites: Master or doctoral classification in OCNG or related field by approval of instructor.

OCNG 661 Advanced Oceanographic Data Analysis and Communication
Credits 3. 3 Lecture Hours.
Project design and planning for oceanographers; oceanographic data organization and analysis; synthesis and interpretation of data analysis; technical report writing and presentation.
Prerequisites: OCNG 603, OCNG 604, OCNG 608 and OCNG 657, or instructor approval.

OCNG 662 Coastal and Marine Sedimentary Processes
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Sedimentary processes (erosion, transport and deposition) from the coastline to the deep sea; development of estuaries, deltas, continental shelves, submarine canyons, fans; behavior of fluids and particles in boundary layers. Lab: recirculating flume, field and lab instrumentation.
Prerequisite: Approval of instructor.

OCNG 666 Principles of Geodynamics
Credits 4. 4 Lecture Hours.
Geological and geophysical methods and phenomena pertinent to geodynamics; plate tectonics; seismicity and seismology; magnetics; gravity; heat flow; igneous, metamorphic and sedimentary petrology; paleontology; and rock mechanics.
Prerequisite: Approval of instructor.

OCNG 668 Geology and Geophysics of Small Ocean Basins
Credits 3. 3 Lecture Hours.
Geology and geophysics of the Gulf of Mexico, Caribbean, Mediterranean, Arctic Ocean, Red Sea and Philippine Sea; the regional geology, sediment distribution, general structure and origin of each basin.
Prerequisite: OCNG 630.

OCNG 669 Python for Geosciences
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Core language Python programming; scientific programing analysis methods; analysis of large geophysical data sets; plotting geophysical data; interpolation.
Prerequisite: Graduate classification.
OCNG 670 Deep Sea Sediments
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Formation process, core description, physical properties, lithostratigraphy, seismic stratigraphy and paleoceanographic significance of deep marine sediments.

OCNG 673 High-Resolution Marine Geophysics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to the geophysical nature of the seafloor and marine subbottom to 1.5 seconds two-way travel time; generation, use and interpretation of reflection and side-scan sonar records and magnetic anomalies of various marine environments and seafloor features.
Prerequisite: Approval of instructor.

OCNG 674 Paleooceanography
Credits 3. 3 Lecture Hours.
History of oceans through geologic time; marine paleontological, geochemical, sedimentological and geophysical evidence; inferred changes in seawater properties, ocean circulation and sea level; relation to climate, tectonic processes, atmospheric chemistry and evolution of life.
Prerequisite: OCNG 630 or approval of instructor.

OCNG 677/ATMO 677 Geophysical Data Assimilation
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Modern data assimilation methods applied to oceanic and atmospheric circulation models, as well as in other simple models; methods to interpolate one-, two- and three-dimensional randomly spaced data to regular grids for use in numerical models of atmospheric and oceanic circulation.
Prerequisites: OCNG 657, ATMO 632, STAT 601.
Cross Listing: ATMO 677/OCNG 677.

OCNG 678 Coastal Dynamics
Credits 3. 3 Lecture Hours.
Survey dynamical processes that determine estuarine and continental shelf circulation; geophysical scale flow where Earth’s rotation and buoyancy effects are important; analytical and numerical methods used to isolate and study these processes.
Prerequisite: OCNG 609.

OCNG 679 Proxy Reconstruction of Late Cenozoic Climate: Calibrations and Applications
Credits 3. 3 Lecture Hours.
Paleo-proxy calibration and application in reconstructing Late Cenozoic climate history; issues related to geochemical and sedimentological proxies used in the field of paleoclimatology/ paleoceanography.
Prerequisite: Graduate classification.

OCNG 681 Seminar
Credit 1. 1 Lecture Hour.
Presented by faculty, students, staff and visiting scientists; based on recent scientific research.
Cross Listing: MARB 681 and MARS 681.

OCNG 684 Professional Internship
Credits 1 to 6. 1 to 6 Other Hours.
A directed internship in a professional setting to provide on-the-job training in ocean observing systems skills appropriate to the student’s professional objectives.
Prerequisites: Approval of student’s committee chair; OCNG 684, OCNG 657.

OCNG 685 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special topics to suit small group requirements. Problems not within thesis research and not covered by any other course in established curriculum.
Prerequisites: General prerequisites for oceanography.

OCNG 689 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of oceanography. May be repeated for credit.
Prerequisite: Approval of instructor.

OCNG 691 Research
Credits 1 to 23. 1 to 23 Other Hours.
For thesis or dissertation.