The Department of Mathematics offers graduate studies leading to the MS and PhD degrees in mathematics. Many of the course offerings are also suitable for graduate students pursuing degrees in engineering, science, geosciences, business, economics and education.

At the MS level, a student can be enrolled either in the campus program or in the distance (or "on-line" program). For the distance MS program, three tracks are available: computational math, math teaching, and math leadership. For the campus MS program, five tracks are available: traditional (generally, preparation to continue with a PhD), math teaching, computational math, industrial math, and math biology. Students in the campus MS program can pursue either a thesis or non-thesis degree.

Satisfactory completion of the departmental qualifying exams is required of all students pursuing a PhD.

Admission to the Department’s graduate programs is decided by the Graduate Programs Committee. Among the factors considered in admission decisions are: GRE General Test, undergraduate and graduate GPR, undergraduate academic background and achievement, letters of recommendation, GRE Subject Test in Mathematics (encouraged but not required).

Detailed information concerning programs and financial assistance may be obtained by writing the Graduate Programs Office, Department of Mathematics.

Faculty

Anshelevich, Michael V, Professor
Mathematics
PHD, University of California, Berkeley, 2000

Baskin, Dean R, Assistant Professor
Mathematics
PHD, Stanford University, 2010

Battle, Guy A, Professor
Mathematics
PHD, Duke University, 1977

Baudier, Florent P, Visiting Assistant Professor
Mathematics
PHD, Universite De Besancon, 2010

Berkolaiko, Gregory, Professor
Mathematics
PHD, University of Bristol, United Kingdom, 1997

Boas, Harold P, Professor
Mathematics
PHD, Massachusetts Institute of Technology, 1980

Bonito, Andrea, Professor
Mathematics
PHD, Ecole Polytechnique Federale de Lausanne, France, 2006

Borosh, Itshak, Senior Professor
Mathematics
PHD, Weizmann Institute of Science, 1966

Brannan, Michael P, Assistant Professor
Mathematics
PHD, Queen's University, Canada, 2012

Bridy, Andrew D, Instructional Associate Professor
Mathematics
PHD, University of Wisconsin - Madison, 2014

Cai, Yue, Visiting Assistant Professor
Mathematics
PHD, University of Kentucky, 2016

Carter, Tamara A, Instructional Assistant Professor
Mathematics
PHD, Texas A&M University, 2005

Chen, Goong, Professor
Mathematics
PHD, University of Wisconsin - Madison, 1977

Comech, Andrew, Associate Professor
Mathematics
PHD, Columbia University, 1997

Daripa, Prabir, Associate Professor
Mathematics
PHD, Brown University, 1985

Demlow, Alan R, Professor
Mathematics
PHD, Cornell University, 2002

Devore, Ronald A, Distinguished Professor
Mathematics
PHD, The Ohio State University, 1967

Douglas, Ronald G, Distinguished Professor
Mathematics
PHD, Louisiana State University, 1962

Dykema, Kenneth J, Professor
Mathematics
PHD, University of California, Berkeley, 1993

Efendiev, Yalchin R, Professor
Mathematics
PHD, California Institute of Technology, 1999

Epstein, Janice L, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 1992

Erdelyi, Tamas, Professor
Mathematics
PHD, University of Southern Carolina, 1989

Foucart, Simon, Associate Professor
Mathematics
PHD, University of Cambridge, 2005
Fulling, Stephen A, Professor
Mathematics
PHD, Princeton University, 1972

Geller, Susan C, Professor
Mathematics
PHD, Cornell University, 1975

Grigorchuk, Rostislav, Distinguished Professor
Mathematics
PHD, Lomonosov Moscow State University, 1986

Guermond, Jean-Luc, Professor
Mathematics
PHD, Sorbonne Universites, 1995

Gustafson, Robert A, Associate Professor
Mathematics
PHD, Yale University, 1979

Hanin, Boris, Assistant Professor
Mathematics
PHD, Northwestern University, 2014

Harris, Isaac, Visiting Assistant Professor
Mathematics
PHD, University of Delaware, 2015

Hester, Yvette C, Instructional Assistant Professor
Mathematics
PHD, Texas A&M University, 2012

Howard, Peter B, Professor
Mathematics
PHD, Indiana University, 1998

Johnson, William B, Distinguished Professor
Mathematics
PHD, Iowa State University, 1969

Jung, Junehyuk, Assistant Professor
Mathematics
PHD, Princeton University, 2013

Kerr, David G, Professor
Mathematics
PHD, University of Toronto, 2001

Kim, Jong Dong, Instructional Assistant Professor
Mathematics
PHD, State University of New York at Stony Brook, 2012

Kuchment, Peter, Distinguished Professor
Mathematics
PHD, Kharkov State University, Russia, 1973

Lahodny, Glenn E, Instructional Assistant Professor
Mathematics
PHD, Texas Tech University, 2012

Landsberg, Joseph M, Professor
Mathematics
PHD, Duke University, 1990

Larson, David R, Professor
Mathematics
PHD, University of California, Berkeley, 1976

Lazarov, Raytcho D, Professor
Mathematics
PHD, University of Moscow, Russia, 1972

Lee, Sang Rae, Lecturer
Mathematics
PHD, University of Oklahoma, 2012

Lewis, Jennifer L, Senior Lecturer
Mathematics
PHD, The Ohio State University, 1980

Liao, Benben, Visiting Assistant Professor
Mathematics
PHD, Institut de Mathematiques de Jussieu, 2014

Limafilho, Paulo C, Professor
Mathematics
PHD, State University of New York at Stony Brook, 1989

Lynch, Benjamin R, Lecturer
Mathematics
PHD, University of Tennessee, 2010

Lynch, Richard G, Visiting Assistant Professor
Mathematics
PHD, University of Missouri - Columbia, 2016

Masri, Mohamad R, Associate Professor
Mathematics
PHD, The University of Texas at Austin, 2005

Matusevich, Laura F, Professor
Mathematics
PHD, University of California, Berkeley, 2002

Mogilevsky, Mila, Instructional Associate Professor
Mathematics
PHD, Rostov State University USSR, 1976

Motakis, Pavlos, Visiting Assistant Professor
Mathematics
PHD, National Technical University of Athens, 2015

Narcowich, Francis J, Professor
Mathematics
PHD, Princeton University, 1972

Nekrashevych, Volodymyr, Professor
Mathematics
PHD, Taras Shevchenko National University, Russia, 1998

Onica, Constantin, Instructional Assistant Professor
Mathematics
PHD, Texas A&M University, 2005

Paouris, Grigoris, Professor
Mathematics
PHD, University of Crete, 2004
Papanikolas, Matthew A, Professor
Mathematics
PHD, Brown University, 1998

Pasciak, Joseph E, Professor
Mathematics
PHD, Cornell University, 1977

Pearlstein, Gregory J, Associate Professor
Mathematics
PHD, University of Massachusetts Amherst, 1999

Pearlstein, Rosanna, Lecturer
Mathematics
PHD, University of Massachusetts Amherst, 1998

Petrova, Guergana P, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Pitts, Jon T, Professor
Mathematics
PHD, Princeton University, 1974

Plavnik, Julia Y, Visiting Assistant Professor
Mathematics
PHD, Universidad Nacional de Cordoba, Argentina, 2013

Poltoratski, Alexei G, Professor
Mathematics
PHD, California Institute of Technology, 1995

Popov, Bojan D, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Procaccia, Eviatar B, Assistant Professor
Mathematics
PHD, Weizmann Institute of Science, 2013

Rahm, Robert, Visiting Assistant Professor
Mathematics
PHD, Washington University in St. Louis, 2017

Rehani, Kamran, Instructional Assistant Professor
Mathematics
PHD, Tarbiat Modares University, 2005

Rojas, Joseph M, Professor
Mathematics
PHD, University of California, Berkeley, 1995

Roque-Sol, Marco A, Lecturer
Mathematics
PHD, Texas A&M University, 2006

Rowell, Eric C, Professor
Mathematics
PHD, University of California, San Diego, 2003

Rundell, William, Professor
Mathematics
PHD, University of Glasgow, 1974

Schiellack, Vincent, Associate Professor
Mathematics
PHD, The University of Texas at Austin, 1982

Schlumprecht, Thomas B, Professor
Mathematics
PHD, Ludwig Maximilians Universitat, Germany, 1988

Sengupta, Sinjini, Senior Lecturer
Mathematics
PHD, Florida State University, 2006

Shatalov, Oksana, Instructional Associate Professor
Mathematics
PHD, Technion - Israel Institute of Technology, 2001

Shiu, Anne J, Assistant Professor
Mathematics
PHD, University of California, Berkeley, 2010

Sivakumar, Natarajan, Associate Professor
Mathematics
PHD, University of Alberta, 1990

Smith, Roger R, Professor
Mathematics
PHD, University of Oxford, 1976

Sottile, Frank J, Professor
Mathematics
PHD, University of Chicago, 1994

Stiller, Peter F, Professor
Mathematics
PHD, Princeton University, 1977

Straube, Emil J, Professor
Mathematics
PHD, Swiss Federal Institute of Technology Zurich, 1983

Sunik, Zoran, Professor
Mathematics
PHD, State University of New York at Binghamton, 2000

Taliaferro, Steven D, Associate Professor
Mathematics
PHD, Stanford University, 1976

Tang, Xiaoxian, Visiting Assistant Professor
Mathematics
PHD, Peking University, China, 2014

Titi, Edriss S, Professor
Mathematics
PHD, Indiana University, 1986

Tomas, Ignacio, Visiting Assistant Professor
Mathematics
PHD, University of Maryland, 2015

Tretkoff, Paula, Professor
Mathematics
PHD, University of Nottingham, 1985
Masters

- Master of Science in Mathematics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/mathematics/ms)

Doctoral

- Doctor of Philosophy in Mathematics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/mathematics/phd)

Courses

MATH 5315
Credits 3.3 Lecture Hours.

MATH 5316
Credits 3.3 Lecture Hours.

MATH 601 Methods of Applied Mathematics I
Credits 3.3 Lecture Hours.
Methods of linear algebra, vector analysis and complex variables.
Prerequisite: MATH 308 or equivalent.

MATH 602 Methods and Applications of Partial Differential Equations
Credits 3.3 Lecture Hours.
Classification of linear partial differential equations of the second order; Fourier series, orthogonal functions, applications to partial differential equations; special functions, Sturm-Liouville theory, application to boundary value problems; introduction to Green's functions; finite Fourier transforms.
Prerequisites: MATH 601 or MATH 308 and MATH 407.

MATH 603 Methods of Applied Mathematics II
Credits 3.3 Lecture Hours.
Tensor algebra and analysis; partial differential equations and boundary value problems; Laplace and Fourier transform methods for partial differential equations.
Prerequisite: MATH 601 or MATH 311.

MATH 604 Mathematical Foundations of Continuum Mechanics
Credits 3.3 Lecture Hours.
Mathematical description of continuum mechanics principles, including: tensor analysis, generalized description of kinematics and motion, conservation laws for mass and momentum; invariance and symmetry principles; application to generalized formulation of constitutive expressions for various fluids and solids.
Prerequisites: MATH 410; MATH 451 or equivalent.

MATH 605 Mathematical Fluid Dynamics
Credits 3.3 Lecture Hours.
Derivation of basic equations of motion; Navier-Stokes equations; potential equations; some exact solutions in two and three dimensions; equations of boundary layer theory; vorticity-stream function formulation and vortex dynamics; introduction to hydrodynamic stability; introduction to equations of turbulence.
Prerequisite: MATH 601 or equivalent.
MATH 606 Theory of Probability I
Credits 3. 3 Lecture Hours.
Measure and integration, convergence concepts, random variables,
independence and conditional expectation, laws of large numbers, central
limit theorems, applications.
Prerequisite: MATH 607 or approval of instructor.

MATH 607 Real Variables I
Credits 3. 3 Lecture Hours.
Lebesgue measure and integration theory, differentiation, Lp-spaces,
abstract integration, signed measures; Radon-Nikodym theorem, Riesz
representation theorem, integration on product spaces.
Prerequisite: MATH 607.

MATH 608 Real Variables II
Credits 3. 3 Lecture Hours.
Banach spaces, theorems of Hahn-Banach and Banach-Steinhaus, the
closed graph and open mapping theorems, Hilbert spaces, topological
vector spaces and weak topologies.
Prerequisite: MATH 607.

MATH 609 Numerical Analysis
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Interpolation, numerical evaluation of definite integrals and solution of
ordinary differential equations; stability and convergence of methods and
error estimates.
Prerequisite: Knowledge of computer programming (C or FORTRAN).

MATH 610 Numerical Methods in Partial Differential Equations
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to finite difference and finite element methods for solving
partial differential equations; stability and convergence of methods and
error bounds.
Prerequisite: MATH 417 or MATH 609 or equivalent; knowledge of
computer programming.

MATH 611 Introduction to Ordinary and Partial Differential Equations
Credits 3. 3 Lecture Hours.
Basic theory of ordinary differential equations; existence and uniqueness,
dependence on parameters, phase portraits, vector fields. Partial
differential equations of first order, method of characteristics. Basic
linear partial differential equations: Laplace equation, heat (diffusion)
equation, wave equation and transport equation. Solution techniques and
qualitative properties.
Prerequisite: MATH 410 or equivalent or instructor’s approval.

MATH 612 Partial Differential Equations
Credits 3. 3 Lecture Hours.
Theory of linear partial differential equations; Sobolev spaces; elliptic
equations (including boundary value problems and spectral theory); linear
evolution equations of parabolic and hyperbolic types (including initial
and boundary value problems). As time permits, additional topics might
be included.
Prerequisite: MATH 611 and MATH 607 or MATH 641, or approval of
instructor.

MATH 613 Graph Theory
Credits 3. 3 Lecture Hours.
One or more broad areas of graph theory or network theory, such as
planarity, connectivity, Hamiltonian graphs, colorings of graphs,
automorphisms of graphs, or network theory.
Prerequisite: MATH 431 or equivalent or approval of instructor.

MATH 614 Dynamical Systems and Chaos
Credits 3. 3 Lecture Hours.
Discrete maps; continuous flows; dynamical systems; Poincaré maps;
symbolic dynamics; chaos, strange attractors; fractals; computer
simulation of dynamical systems.
Prerequisites: MATH 308; MATH 601 or equivalent.

MATH 615 Introduction to Classical Analysis
Credits 3. 3 Lecture Hours.
Set-theoretic preliminaries; Cantor-Schröder-Bernstein Theorem;
review of sequences; limit inferior and limit superior; infinite products;
metric spaces; convergence of functions; Dini's Theorem, Weierstrass
Approximation Theorem; Monotone functions; bounded variation;
Helly's Selection Theorem; Riemann-Stieltjes integration; Fourier series;
Fejer’s Theorem; Parseval’s Identify; Bernstein's Theorem on absolutely
convergent Fourier series.
Prerequisite: MATH 409 or equivalent.

MATH 616 Theory of Functions of a Complex Variable I
Credits 3. 3 Lecture Hours.
Holomorphic functions, complex integral theorems, Runge’s theorem,
residue theorem, Laurent series, conformal mapping, harmonic functions.
Prerequisite: MATH 410.

MATH 617 Theory of Functions of a Complex Variable II
Credits 3. 3 Lecture Hours.
Infinite products, Weierstrass factorization theorem, Mittag-Leffler’s
theorem, normal families, Riemann mapping theorem, analytic
continuation, Picard’s theorems and selected topics.
Prerequisite: MATH 617.

MATH 618 Applied Probability
Credits 3. 3 Lecture Hours.
Measure Theory; Lebesgue integration; random variables; expectation;
conditional expectation martingales and random walks; designed for
beginning graduate students in mathematics, statistics, the sciences
and engineering and students in economics and finance with a strong
mathematical background.
Prerequisites: MATH 409 and MATH 411.

MATH 619 Algebraic Geometry I
Credits 3. 3 Lecture Hours.
Affine and projective varieties; sheaves; cohomology; Riemann-Roch
Theorem for curves.
Prerequisite: MATH 653 or approval of instructor.

MATH 620 Algebraic Geometry II
Credits 3. 3 Lecture Hours.
Curvature of Riemannian manifolds; vector bundles; connections; Maurer-
Cartan Form; Laplacian; geodesics; Chern-Gauss-Bonnet theorem;
additional topics to be selected by the instructor.
Prerequisites: MATH 622 or approval of instructor.

MATH 622 Differential Geometry I
Credits 3. 3 Lecture Hours.
Surfaces in 3-D space and generalizations to submanifolds of Euclidean
space; smooth manifolds and mappings; tensors; differential forms; Lie
groups and algebras; Stokes’ theorem; deRham cohomology; Frobenius
theorem; Riemannian manifolds.
Prerequisites: MATH 304; MATH 601 or equivalent.

MATH 623 Differential Geometry II
Credits 3. 3 Lecture Hours.
Stochastic integration, Ito Calculus and applications of stochastic
differential equations to finance and engineering.
Prerequisite: MATH 619.
MATH 626 Analytic Number Theory
Credits 3. 3 Lecture Hours.
Analytic properties of the Riemann zeta function and Dirichlet L-functions; Dirichlet characters; prime number theorem; distribution of primes in arithmetic progressions; Siegel's theorem; the large sieve inequalities; Bombieri-Vinogradov theorem.
Prerequisite: MATH 617.
MATH 627 Algebraic Number Theory
Credits 3. 3 Lecture Hours.
Algebraic number fields and rings of algebraic integers; arithmetic in algebraic number fields; ideals; unique factorization of ideals; ideal classes and the class group; finiteness of the class number; Minkowski's theorem; Dirichlet's unit theorem; quadratic and cyclotomic number fields; splitting of primes in extension fields.
Prerequisite: MATH 653 or approval of instructor.
MATH 628 Mathematics of Finance
Credits 3. 3 Lecture Hours.
Pricing of financial derivatives in different market models; discrete models: Arrow-Debreu, Binomial model, Hedging; Stochastic calculus; Brownian Motion, stochastic integrals, Ito formula; continuous model: Black-Scholes formula for pricing European and American options; equivalent Martingale Measures, pricing of exotic options.
Prerequisite: MATH 606 or MATH 619 or approval of instructor.
MATH 629 History of Mathematics
Credits 3. 3 Lecture Hours.
Major events in the evolution of mathematical thought from ancient times to the present, the development of various important branches of mathematics, including numeration, geometry, algebra, analysis, number theory, probability, and applied mathematics.
Prerequisite: MATH 304 or equivalent.
MATH 630 Combinatorics
Credits 3. 3 Lecture Hours.
This is an introduction at the graduate level to the fundamental ideas and results of combinatorics, including enumerative techniques, sieve methods, partially ordered sets and generating functions.
Prerequisite: undergraduate discrete math course or permission of instructor.
MATH 6316
Credits 3. 3 Lecture Hours.
MATH 636 Topology I
Credits 3. 3 Lecture Hours.
Set theory, topological spaces, generalized convergence, compactness, metrization, connectedness, uniform spaces, function spaces.
Prerequisite: Approval of instructor.
MATH 637 Topology II
Credits 3. 3 Lecture Hours.
Continuation of MATH 636.
Prerequisite: MATH 636 or approval of instructor.
MATH 638 Hyperbolic Conservation Laws
Credits 3. 3 Lecture Hours.
Introduction to basic theory and numerical methods for first order nonlinear partial differential equations; basic existence-uniqueness theory for scalar conservation laws; special equations and systems of interest in various applications and Riemann problem solutions for such systems; design of numerical methods for general hyperbolic systems; stability and convergence properties of numerical methods.
Prerequisite: MATH 610 or MATH 612 or approval of instructor.
MATH 639 Iterative Techniques
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Numerical methods for solving linear and nonlinear equations and systems of equations; eigenvalue problems.
Prerequisites: Elementary linear algebra and knowledge of computer programming (C or FORTRAN).
MATH 640 Linear Algebra for Applications
Credits 3. 3 Lecture Hours.
Review of linear algebra; spectral theory in inner product spaces; decomposition theorems; duality theory and multilinear algebra; tensor products; applications. May be taken concurrently with MATH 641.
Prerequisite: MATH 304 or equivalent.
MATH 641 Analysis for Applications I
Credits 3. 3 Lecture Hours.
Review of preliminary concepts; sequence and function spaces; normed linear spaces, inner product spaces; spectral theory for compact operators; fixed point theorems; applications to integral equations and the calculus of variations.
Prerequisites: MATH 447 and MATH 640 or approval of instructor.
MATH 642 Analysis for Applications II
Credits 3. 3 Lecture Hours.
Distributions and differential operators; transform theory; spectral theory for unbounded self-adjoint operators; applications to partial differential equations; asymptotics and perturbation theory.
Prerequisite: MATH 641.
MATH 643 Algebraic Topology I
Credits 3. 3 Lecture Hours.
Fundamental ideas of algebraic topology, homotopy and fundamental group, covering spaces, polyhedra.
Prerequisite: Approval of instructor.
MATH 644 Algebraic Topology II
Credits 3. 3 Lecture Hours.
Homology and cohomology theory.
Prerequisite: MATH 643.
MATH 645 A Survey of Mathematical Problems I
Credits 3. 3 Lecture Hours.
A survey of problems in various branches of mathematics, such as logic, probability, graph theory, number theory, algebra and geometry.
Prerequisites: MATH 409, MATH 415, MATH 423 or approval of instructor.
MATH 646 A Survey of Mathematical Problems II
Credits 3. 3 Lecture Hours.
A survey of problems in various branches of mathematics such as algebra, geometry, differential equations, real analysis, complex analysis, calculus of variations.
Prerequisite: MATH 645 or approval of instructor.
MATH 647 Mathematical Modeling
Credits 3. 3 Lecture Hours.
The process and techniques of mathematical modeling; covers a variety of application areas and models such as ordinary and partial differential equations, stochastic models, discrete models and problems involving optimization.
Prerequisite: MATH 442 or approval of instructor.
MATH 648 Computational Algebraic Geometry
Credits 3. 3 Lecture Hours.
Broad introduction to algorithmic algebraic geometry, including numerical and complexity theoretic aspects; theory behind the most efficient modern algorithms for polynomial system solving and the best current quantitative/geometric estimates on algebraic sets over various rings is derived.
Prerequisite: MATH 653 or approval of instructor.

MATH 650 Several Complex Variables
Credits 3. 3 Lecture Hours.
Introduction to function theory in several complex variables with an emphasis on the analytic and partial differential equations aspects of the subject.
Prerequisites: MATH 608 and MATH 618 or equivalents.

MATH 651 Optimization I
Credits 3. 3 Lecture Hours.
Fundamentals of mathematical analysis underlying theory of constrained optimizations for a finite number of variables, necessary and sufficient conditions for constrained extrema of equality constraint problems, sufficient conditions for fulfillment of constraint qualification, computational methods for concave programming problems and applications.
Prerequisite: MATH 410 or approval of instructor.

MATH 652 Optimization II
Credits 3. 3 Lecture Hours.
Necessary conditions of calculus of variations, elementary theory of games, formulation of basic control problem, Hestenes’ necessary conditions for optimal control, transformations, methods of computation and applications.
Prerequisite: MATH 651.

MATH 653 Algebra I
Credits 3. 3 Lecture Hours.
Survey of groups, rings, ideals.
Prerequisite: MATH 415 or approval of instructor.

MATH 654 Algebra II
Credits 3. 3 Lecture Hours.
Survey of modules, field extensions, Galois theory.
Prerequisite: MATH 653 or approval of instructor.

MATH 655 Functional Analysis I
Credits 3. 3 Lecture Hours.
Normed linear spaces, duality theory, reflexivity, operator theory. Banach algebras, spectral theory, representation theory.
Prerequisite: MATH 608.

MATH 656 Functional Analysis II
Credits 3. 3 Lecture Hours.
Topological linear spaces, locally convex spaces, duality in locally convex spaces, ordered topological vector spaces, distribution theory, applications to analysis.
Prerequisite: MATH 655.

MATH 658 Applied Harmonic Analysis
Credits 3. 3 Lecture Hours.
Fourier series and Fourier Transform; discrete (fast) Fourier transform; discrete cosine transform; local cosine transform; Radon transform; filters; harmonic analysis on the sphere; radial, periodic and spherical basis functions; applications.
Prerequisites: MATH 304; MATH 308 or equivalent.

MATH 660/CSCE 660 Computational Linear Algebra
Credits 3. 3 Lecture Hours.
Techniques in matrix computation: elimination methods, matrix decomposition, generalized inverses, orthogonalization and least-squares, eigenvalue problems and singular value decomposition, iterative methods and error analysis.
Prerequisite: MATH 417 or equivalent or CSCE 442 or equivalent.
Cross Listing: CSCE 660/MATH 660.

MATH 661 Mathematical Theory of Finite Element Methods
Credits 3. 3 Lecture Hours.
Will develop basic mathematical theory of finite element method; construction of finite element spaces and piece-wise polynomial approximation; Ritz-Galerkin methods and variational crimes; energy and maximum norm estimates; mixed finite element method; applications to diffusion-reaction problems.

MATH 662 Seminar in Algebra
Credits 3. 3 Lecture Hours.
Problems, methods and recent developments in algebra. May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 663 Seminar in Analysis
Credits 3. 3 Lecture Hours.
Problems, methods and recent developments in analysis. May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 664 Seminar in Applied Mathematics
Credits 3. 3 Lecture Hours.
Problems, methods and recent developments in applied mathematics.
May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 665 Seminar in Geometry
Credits 3. 3 Lecture Hours.
Problems, methods and recent developments in geometry. May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 667 Foundations and Methods of Approximation
Credits 3. 3 Lecture Hours.
Existence, uniqueness and characterization of best approximations; polynomial and rational approximants; Bernstein polynomials; Bernstein and Markov inequalities; ridge functions; approximation from shift-invariant subspaces; orthogonal polynomials; neural networks, radial basis functions, scattered-data surface fitting; subdivision analysis.
Prerequisites: MATH 407 and MATH 409.

MATH 669 Seminar in Mathematical Biology
Credits 3. 3 Lecture Hours.
Problems, methods and recent developments in Mathematical Biology.
May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 670 Applied Mathematics I
Credits 3. 3 Lecture Hours.
Mathematical tools of applied mathematics; Fredholm alternative; integral operators; Green’s functions; unbounded operators; Stone’s theorem; distributions; convolutions; Fourier transforms; applications.
Prerequisite: MATH 642 or equivalent.
MATH 672 Hydrodynamic Stability
Credits 3. 3 Lecture Hours.
Instability mechanisms; instability of interfacial and free surface flows;
thermal instability, centrifugal instability, instability of inviscid and
viscous parallel shear flows; fundamental concepts and applications
of nonlinear instability; the onset of turbulence; various transitions to
turbulence.
Prerequisites: MATH 601 or equivalent; MATH 605 or equivalent.

MATH 673 Information, Secrecy and Authentication I
Credits 3. 3 Lecture Hours.
Preliminaries; probability, information, entropy, signals, channels: group-
theoretic view of messages: contemporary secrecy and digital signature
systems; one-time pads, DES, RSA, DSS, wheels, LFSR-based systems;
analog scramblers; key exchange, key management, secret sharing,
access structures; measures of security.
Prerequisites: Graduate classification and approval of instructor.

MATH 676 Finite Element Methods in Scientific Computing
Credits 3. 3 Lecture Hours.
Basic finite element methods; structure of finite element codes;
assembling linear systems of equations and algorithmic aspects; linear
iterative solvers; adaptive mesh refinement; vector-valued and mixed
problems; nonlinear problems; visualization; parallelization aspects.
Additional topics may be chosen by instructor.
Prerequisites: MATH 610; ENGR finite element class on MATH 419 or
MATH 609; approval of instructor. Knowledge of C++.

MATH 684 Professional Internship
Credits 1 to 6. 1 to 6 Other Hours.
Directed internship in an organization to provide students with
professional experience in organization settings appropriate to the
student's career objectives.
Prerequisite: Approval of department head.

MATH 685 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Offered to enable students to undertake and complete, with credit, limited
investigations not within their thesis research and not covered by any
other courses in the curriculum.
Prerequisite: Approval of instructor.

MATH 689 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of mathematics. May be repeated for
credit.
Prerequisite: Approval of instructor.

MATH 691 Research
Credits 1 to 23. 1 to 23 Other Hours.
Research for thesis or dissertation.

MATH 696 Mathematical Communication and Technology
Credits 3. 3 Lecture Hours.
Techniques of oral, written and electronic communication of
mathematics; effective classroom and seminar presentation; LATEX,
HTML and Javascript; developing Internet applications; Maple and
Matlab; classroom use of computer graphics.
Prerequisite: Approval of instructor.