Almost any technology that distinguishes the 20th and 21st centuries from previous history has the imprint of electrical and computer engineering - electric power, radio, television, radar, satellite communication, global positioning system, medical diagnostic and procedure systems, sophisticated domestic appliances, cell phones, computers and sophisticated sensors and control systems used in underwater, space exploration and national security. Electrical and computer engineering has advanced national and global prosperity through research, development and application of electrical and computer technologies and sciences for the benefit of humanity, and has helped create the global village. By choosing electrical or computer engineering our graduates embark on an exciting and productive career with endless opportunities and help in shaping a better future for mankind.

The curriculum is designed to prepare the undergraduate for work in the highly diverse electrical and computer engineering profession. A solid foundation in physics, chemistry and mathematics is used to support courses in the fundamentals of electrical and computer engineering. The use of computers is integrated throughout the curriculum, and basic studies in circuits, electronics, electromagnetic fields and digital logic lead to a flexible program of electives in the junior and senior year. Electives may be chosen from the broad fields of analog and mixed-signal electronics, biomedical imaging, sensing and genomic signal processing, computer engineering and systems, device science and nanotechnology, electric power systems and power electronics, electromagnetics and microwaves, and information science and systems. Laboratory work is structured to first familiarize the student with the basic concepts and then to apply these concepts to solve engineering problems.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Mission

Activities of the Electrical and Computer Engineering Department including research, teaching, and professional and community service revolve around the fourfold mission of the department:

- To create new knowledge and challenge young minds by participation in the process of discovery and invention
- To educate electrical and computer engineers with a solid background of fundamentals, stretching their imagination
- To prepare graduates for an exciting future
- To serve the society through research, education and outreach activities

Undergraduate education plays a major part in helping the department to achieve its mission. The Electrical and Computer Engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org. More information on these efforts can be found at the Department of Electrical and Computer Engineering (http://engineering.tamu.edu/electrical) website by clicking on the link for ABET Accreditation.

Majors

- Bachelor of Science in Computer Engineering, Electrical Engineering Track (http://catalog.tamu.edu/undergraduate/engineering/electrical-computer/computer-engineering-bs-electrical-engineering-track)
- Bachelor of Science in Electrical Engineering (http://catalog.tamu.edu/undergraduate/engineering/electrical-computer/electrical-bs)

Minors

- Electrical Engineering Minor (http://catalog.tamu.edu/undergraduate/engineering/electrical-computer/electrical-minor)

Courses

ECEN 214 Electrical Circuit Theory

Credits 4. 3 Lecture Hours. 3 Lab Hours.
Resistive circuits including circuit laws, network reduction, nodal analysis, mesh analysis; energy storage elements; sinusoidal steady state; AC energy systems; magnetically coupled circuits; the ideal transformer; resonance; introduction to computer applications in circuit analysis.

Prerequisites: PHYS 208, CHEM 107 and CHEM 117 with a grade of C or better; MATH 308 with a grade of C or better or concurrent enrollment.

ECEN 215 Principles of Electrical Engineering

Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamentals of electric circuit analysis and introduction to electronics for engineering majors other than electrical and computer engineering.

Prerequisites: MATH 251 and PHYS 208 with a grade of C or better.

ECEN 222/CSCE 222 Discrete Structures for Computing

Credits 3. 3 Lecture Hours.
Provide mathematical foundations from discrete mathematics for analyzing computer algorithms, for both correctness and performance; introduction to models of computation, including finite state machines and Turing machines.

Prerequisite: MATH 151.

Cross Listing: CSCE 222/ECEN 222.

ECEN 248 Introduction to Digital Systems Design

Credits 4. 3 Lecture Hours. 3 Lab Hours.
Combinational and sequential digital system design techniques; design of practical digital systems.

Prerequisite: MATH 152 and PHYS 208 with a grade of C or better.

ECEN 285 Directed Studies

Credits 0 to 4. 0 to 4 Other Hours.
Problems of limited scope approved on an individual basis intended to promote independent study.

Prerequisite: Approval of department head.

ECEN 289 Special Topics in...

Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of electrical engineering. May be repeated for credit.

Prerequisite: Approval of instructor.

ECEN 291 Research

Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in electrical engineering. May be repeated 3 times for credit.

Prerequisites: Freshman or sophomore classification and approval of instructor.
ECEN 303 Random Signals and Systems
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Concepts of probability and random variables necessary for study of
signals and systems involving uncertainty; applications to elementary
problems in detection, signal processing and communication.
Prerequisites: Grade of C or better in MATH 308; junior or senior
classification.

ECEN 314 Signals and Systems
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Introduction to the continuous-time and discrete-time signals and
systems; time domain characterization of linear time-invariant systems;
Fourier analysis; filtering; sampling; modulation techniques for
communication systems.
Prerequisites: Grade of C or better in ECEN 214; MATH 308; junior or
senior classification.

ECEN 322 Electric and Magnetic Fields
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Vector analysis, Maxwell’s equations, wave propagation in unbounded
regions, reflection and refraction of waves, transmission line theory;
introduction to waveguides and antennas.
Prerequisites: ECEN 214, PHYS 208, and MATH 311 with a grade of C or
better; junior or senior classification.

ECEN 325 Electronics
Credits 4. 3 Lecture Hours. 4 Lab Hours.
Introduction to electronic systems; linear circuits; operational amplifiers
and applications; diodes, field effect transistors, bipolar transistors;
amplifiers and nonlinear circuits.
Prerequisite: MATH 311 with a grade of C or better; ECEN 314 with a
grade of C or better, or registration therein.

ECEN 326 Electronic Circuits
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Basic circuits used in electronic systems; differential and multistage
amplifiers; output stages and power amplifiers; frequency response,
feedback circuits, stability and oscillators, analog integrated circuits,
analytic filters.
Prerequisites: Grade of C or better in ECEN 314 and ECEN 325; junior or
senior classification.

ECEN 333 At the Interface of Engineering and Life Sciences
Credits 3. 3 Lecture Hours.
Broad overview of electrical and computer engineering principles applied
to various areas of life sciences; medical imaging and biomedical signal
processing; micro/nano devices and systems; computational biology and
genomic signal processing; recent trends in interfacing engineering and
life science that address emerging grand challenge problems in health,
bio-energy and bio-security; taught in a team approach.
Prerequisites: Junior or senior classification or approval of instructor.

ECEN 338 Electromechanical Energy Conversion
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to magnetic circuits, transformers, electromechanical energy
conversion devices such as dc, induction and synchronous motors;
equivalent circuits, performance characteristics and power electronic
control.
Prerequisite: ECEN 214.

ECEN 350/CSCE 350 Computer Architecture and Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Computer architecture and design; use of register transfer languages and
simulation tools to describe and simulate computer operation; central
processing unit organization, microprogramming, input/output and
memory system architectures.
Prerequisites: Grade of C or better in ECEN 248; junior or senior
classification.

ECEN 370 Electronic Properties of Materials
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Introduction to basic physical properties of solid materials; some
solid state physics employed, but major emphasis is on engineering
applications based on semiconducting, magnetic, dielectric and
superconducting phenomena.
Prerequisite: Grade of C or better in PHYS 222; junior or senior
classification.

ECEN 399 High Impact Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection
on professional outcomes from engineering body of knowledge;
documentation and self-assessment of learning experience at mid-
curriculum point.
Prerequisites: ECEN 214 and ECEN 248 with a grade of C or better; junior
or senior classification or approval of instructor.

ECEN 403 Electrical Design Laboratory I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application of design process and project engineering as practiced in
industry; team approach to the design process; development of a project
proposal; proposed project implemented in ECEN 404.
Prerequisites: COMM 205 or COMM 243 or ENGL 210; grade of C or
better in ECEN 314, ECEN 325, ECEN 350/CSCE 350; grade of C or better
in ECEN 303, ECEN 322, ECEN 370 or grade C or better in CSCE 315,
ECEN 449, STAT 211 or ECEN 303; senior classification.

ECEN 404 Electrical Design Laboratory II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Continuation of ECEN 403; application of the design process and project
engineering as practiced in industry; team approach to the design
process; completion of project based on proposal from ECEN 403;
includes testing, evaluation and report writing.
Prerequisites: Grade of C or better in ECEN 403; senior classification.

ECEN 405 Electrical Design Laboratory
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Continuation of ECEN 403; application of the design process and project
engineering as practiced in industry; student teams apply the design process by developing a
project from proposal through test and evaluation.
Prerequisites: ENGL 210 or 301, completion of selected major field
courses, senior classification and project approval.

ECEN 410 Medical Imaging
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fundamentals of physics and the engineering principles of medical
imaging systems; focus on magnetic resonance imaging, x-ray computer
tomography, ultrasonography, optical imaging and nuclear medicine;
includes systems, sources, energy tissue interaction, image formation
and clinical examples; virtual labs, on- and off-campus lab tours.
Prerequisites: Grade of C or better in MATH 222 or MATH 251 or
MATH 253; ECEN 444 or grade of C or better in ECEN 314; junior or senior
classification.
ECEN 411 Introduction to Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the basic physics of magnetic resonance, the principles of MR imaging and spectroscopy, the major contrast mechanisms in MRI and MR imaging system hardware; development of pulse sequences for different imaging methods, including flow and spectroscopic imaging; will build RF coils.
Prerequisites: Grade of C or better in MATH 251 and PHYS 208; junior or senior classification.

ECEN 412 Ultrasound Imaging
Credits 3. 3 Lecture Hours.
Mathematical analysis of wave propagation, scattering of ultrasound in biological tissues, electronic transducer arrays for the beam forming, models of the received signals and signal processing methods for medical ultrasound imaging of tissues; includes discussions of research related to fundamental ultrasound imaging concepts.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 414 Biosensors
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Hands-on lab experience in the development of miniaturized biosensors; includes microfluidic devices for biosensing.
Prerequisite: Senior classification or approval of instructor.

ECEN 415 Physical and Economical Operations of Sustainable Energy Systems
Credits 3. 3 Lecture Hours.
Operational issues for sustainable electric energy systems; basic relevant topics in engineering, optimization and economic concepts; modular view of individual electric energy processing components; physical and market operations in electricity industry in support of sustainable energy integration; computer simulations and demonstrations to create and evaluate examples of power systems.
Prerequisites: ECEN 420 or ECEN 460; junior or senior classification.

ECEN 419 Genomic Signal Processing
Credits 3. 3 Lecture Hours.
Fundamentals of molecular biology; application of engineering principles to systems biology; topics include unearthing intergene relationships, carrying out gene-based classification of disease, modeling genetic regulatory networks, and altering their dynamic behavior.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 420 Linear Control Systems
Credits 3. 3 Lecture Hours.
Application of state variable and frequency domain techniques to modeling, analysis and synthesis of single input, single output linear control systems.
Prerequisites: Grade of C or better in ECEN 314 and MATH 308; junior or senior classification.

ECEN 421 Digital Control Systems
Credits 3. 3 Lecture Hours.
Feedback systems in which a digital computer is used to implement the control law; Z-transform and time domain methods serve as a basis for control systems design. Effects of computer word length and sampling rate.
Prerequisite: ECEN 420 or equivalent.

ECEN 422 Control Engineering and Design Methodology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Modeling, specifications, rating and operating principles of sensors, actuators and other control system components; experiments on conceptual design, simulation and physical implementation of control systems.
Prerequisite: ECEN 420 or equivalent.

ECEN 423 Computer and Wireless Networks
Credits 3. 3 Lecture Hours.
Prerequisite: Grade of C or better in MATH 311; junior or senior classification.

ECEN 424 Fundamentals of Networking
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Foundations of computer networking; layered architecture of the Internet, analysis of protocols, new-age networks such as the Web and social networks; computer network programming and offline analysis of real network data.
Prerequisites: Grade of C or better in ECEN 303 or STAT 211; junior or senior classification.

ECEN 425 Radio Frequency and Microwave Engineering
Credits 3. 3 Lecture Hours.
Fundamental Radio Frequency (RF) and microwave circuit analysis including scattering and ABCD matrices, return loss, insertion loss; transmission lines, lumped elements, impedance matching; theory, analysis and design of basic RF and microwave passive circuits; use of commercial CAD programs for RF and microwave circuit design and simulation.
Prerequisites: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 434 Optimization for Electrical and Computer Engineering Applications
Credits 3. 3 Lecture Hours.
Principles of optimization including linear and nonlinear optimization as well as electrical and computer engineering applications in signal estimation, routing in communication networks, flows in wireless networks, wafer fabrication plants, and economic dispatch in power systems.
Prerequisites: Grade of C or better in MATH 304 or MATH 309 or MATH 311; grade of C or better in MATH 251; junior or senior classification.

ECEN 438 Power Electronics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Electric power conditioning and control; characteristics of solid state power switches; analysis and experiments with AC power controllers, controlled rectifiers, DC choppers and DC-AC converters; applications to power supplies, airborne and spaceborne power systems.
Prerequisite: Junior or senior classification in electrical engineering or approval of instructor.
ECEN 440 Introduction to Thin Film Science and Technology
Credits 3. 3 Lecture Hours. 1 Lab Hour.
The course focuses on the thin film technology in semiconductor industry; topics include the basic growth mechanisms for thin films (growth models, lattice matching epitaxy and domain matching epitaxy), the instrumental aspects of different growth techniques and advanced topics related to various applications.
Prerequisites: Junior or senior classification.

ECEN 441 Electronic Motor Drives
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Application of semiconductor switching power converters to adjustable speed DC and AC motor drives; steady state theory and analysis of electric motion control in industrial, robotic and traction systems; laboratory experiments in power electronic motor drives and their control.
Prerequisite: Junior or senior classification in electrical engineering.

ECEN 442 DSP Based Electromechanical Motion Control
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Overview of energy conversion and basic concepts on electromechanical motion devices; different control strategies including the solid-state drive topologies; for every electromechanical motion device, its DSP control implementation discussed and implemented in the lab.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 444 Digital Signal Processing
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Digital signal processing; discrete-time signals and systems, linear shift-invariant systems, the discrete Fourier transform and fast Fourier transform algorithm, and design of finite impulse response and infinite impulse response digital filters.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 445 Applied Electromagnetic Theory
Credits 3. 3 Lecture Hours.
Guided wave and wireless methods; applications of Maxwell’s equations and electromagnetic wave phenomena to radiation, antennas and microwave circuit design; digital transmission line analysis and design.
Prerequisites: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 447 Digital Image Processing
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Improvement of pictorial information using spatial and frequency domain techniques; two-dimensional discrete Fourier transform; image filtering, enhancement, restoration, compression; image processing project.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 448 Real-Time Digital Signal Processing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Features and architectures of digital signal processing (DSP) chips; fundamental compromises amongst computational accuracy, speed and cost; real-time implementation of filtering, audio, image and video processing algorithms; rapid prototyping via MATLAB/Simulink.
Prerequisites: ECEN 444; junior or senior classification.

ECEN 449 Microprocessor Systems Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to microprocessors; 16/32 bit single board computer hardware and software designs; chip select equations for memory board design, serial and parallel I/O interfacing; ROM, static and dynamic RAM circuits for no wait-state design; assembly language programming, stack models, subroutines and I/O processing.
Prerequisites: Grade of C or better in ECEN 248; junior or senior classification.

ECEN 451 Antenna Engineering
Credits 3. 3 Lecture Hours.
Introduction to antenna theory and design; includes antenna performance parameters, analysis of radiation from sources using Maxwell’s equations, theory and design of wire antennas, arrays and frequency independent antennas; computer methods for antenna design.
Prerequisite: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 452 Ultra High Frequency Techniques
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to theory and practice of ultra high frequency radio wave generation, transmission and radiation; application of Maxwell’s equations to transmission of electrical energy in wave guides.
Prerequisites: ECEN 322 with a grade of C or better; junior or senior classification.

ECEN 453 Microwave Solid-State Circuits and Systems
Credits 3. 3 Lecture Hours.
Microwave solid-state devices and circuits; theory and design of various types of active circuits; applications of these devices and circuits in radar, communication and surveillance systems.
Prerequisites: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 454 Digital Integrated Circuit Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Analysis and design of digital devices and integrated circuits using MOS and bipolar technologies and computer aided simulation.
Prerequisites: Grade of C or better in ECEN 214 and ECEN 248; junior or senior classification.

ECEN 455 Digital Communications
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Digital transmission of information through stochastic channels; analog-to-dialog conversion, entropy and information, Huffman coding; signal detection, the matched-filter receiver, probability of error; baseband and passband modulation, signal space representation of signals, PAM, QAM, PSK, FSK; block coding, convolutional coding; synchronization; communication through fading channels; spread-spectrum signaling; simulation of digital communication systems.
Prerequisites: Grade of C or better in ECEN 314 and ECEN 303 or STAT 211; junior or senior classification.

ECEN 457 Operational Amplifiers
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Analysis of basic operational amplifier and operational transconductance amplifier (OTA) circuits; noise analysis in Op amp and OTA circuits; nonlinear OTA and Op amp circuits; instrumentation amplifiers; transducer circuits; function generators; oscillators and D/A converters and basics of switched-capacitor circuits.
Prerequisite: Grade of C or better in ECEN 325; junior or senior classification.
ECEN 458 Active Filter Analysis and Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Systematic analysis and design for active RC filters; continuous-time; switched-capacitor circuits; filter approximations; synthesis techniques; sensitivity; practical considerations for monolithic integrated filters; experimental and computer-simulation verification.
Prerequisite: Grade of C or better in ECEN 325; junior or senior classification.

ECEN 459 Power System Fault Analysis and Protection
Credits 4. 3 Lecture Hours. 2 Lab Hours.
General considerations in transmission and distribution of electrical energy as related to power systems; calculation of electric transmission line constants; general theory of symmetrical components and application to analysis of power systems during fault conditions.
Prerequisite: Grade of C or better in ECEN 215 or ECEN 314; junior or senior classification.

ECEN 460 Power System Operation and Control
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Load flow studies; power system transient stability studies; economic system loading and automatic load flow control.
Prerequisite: Grade of C or better in ECEN 215 or ECEN 314; junior or senior classification.

ECEN 462 Optical Communication Systems
Credits 3. 3 Lecture Hours.
Principles of optical communication systems; characteristics of optical fibers, lasers and photodetectors for use in communication systems; design of fiber-optic digital systems and other optical communication systems.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 463/BMEN 427 Magnetic Resonance Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Design, construction and application of instrumentation for MR imaging; fundamentals of the architecture of an MR spectrometer and the gradient subsystem used for image localization; emphasis on the radiofrequency sensors and systems used for signal generation and reception.
Prerequisites: BMEN 420 or ECEN 410 or ECEN 411 or approval of instructor; junior or senior classification.
Cross Listing: BMEN 427.

ECEN 464 Optical Engineering
Credits 3. 3 Lecture Hours.
Ray optics; wave optics; propagation, reflection, refraction and diffraction of light; passive optical components, polarization, optical modulators, interferometers and lasers.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 465 Experimental Optics
Credits 4. 2 Lecture Hours. 7 Lab Hours.
In-depth study of experimental optic techniques; opto-mechanical assemblies; passive optics; interferometers; opto-electronics; basic op-amp circuits; feedback and control of optics with electronics.
Prerequisite: Junior or senior classification or approval of instructor.

ECEN 466/CSCE 466 Digital Design and Computer Architecture
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to design and fabrication of microelectronic circuits; emphasis on very large scale integration (VLSI) digital systems; use of state-of-the-art design methodologies and tools; design of small to medium scale integrated circuits for fabrication.
Prerequisites: Grade of C or better in ECEN 324 and ECEN 325; junior or senior classification.
ECEN 477 Photonics: Fiber and Integrated Optics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Photonics lab including optical power and spectral measurements of singlemode and multimode optical fibers, hands-on arc fusion splicing, lasers, amplifiers, interferometers, photodetectors, integrated optics, fiber-optic devices, optical modulators.
Prerequisite: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 478 Wireless Communications
Credits 3. 3 Lecture Hours.
Overview of wireless applications, models for wireless communication channels, modulation formats for wireless communications, multiple access techniques, wireless standards.
Prerequisites: ECEN 455; junior or senior classification.

ECEN 480 RF and Microwave Wireless Systems
Credits 3. 3 Lecture Hours.
Introduction to various RF and microwave system parameters, architectures and applications; theory, implementation, and design of RF and microwave systems for communications, radar, sensor, surveillance, navigation, medical and optical applications.
Prerequisite: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 484 Professional Internship
Credits 0-1. 0-1 Lecture Hours.
Professional internship in a private company, government agency or laboratory, university or organization to provide work and/or research experience related to the student’s major and career objectives. May be taken three times for credit.
Prerequisites: Grade of C or better in ECEN 214 or ECEN 248; junior or senior classification; approval of instructor and internship agency.

ECEN 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Problems of limited scope approved on an individual basis intended to promote independent study.
Prerequisites: Senior classification; approval of department head.

ECEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 7 Lab Hours.
Selected topics in an identified area of electrical engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

ECEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in electrical engineering. May be repeated 3 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.