DEPARTMENT OF MARINE SCIENCES

The mission of the Department of Marine Sciences is to provide high quality undergraduate and graduate education and research in the physical sciences related to the coastal and marine environment as well as in management and policy decision-making for the utilization and preservation of marine resources. We recognize that today’s professional careers demand strong interdisciplinary as well as interpersonal skills and have designed our educational programs to provide a core education in the physical sciences and the necessary training for applying this knowledge to the maintenance and improvement of our marine resources. Our faculty are actively involved in research areas involving coastal marine geology, physical oceanography, marine geochemistry, and coastal resources management that emphasize and support our degrees and course curricula. Our strength is the diversity of our faculty who utilize their experience from private, governmental, and academic careers to create extraordinary learning opportunities for students through “hands on” and “on the water” field and laboratory research as well as internships that give our students a competitive advantage for employment after graduation.

We offer a variety of majors/minors/concentrations in the subjects related to coastal and marine environments. We offer the B.S. in Marine Sciences (MARS) or in Ocean and Coastal Resources (OCRE), as well as a B.S. in University Studies (USGA) with the concentration in Oceans and One Health (OOH). Students enrolled for the MARS degree will have the opportunity to select a track in physical, chemical, or geological marine sciences or an integrated track. The License Option Program (MARS/LO) is also available for the MARS majors to obtain a third mate’s license in the Merchant Marine upon graduation. This department offers a minor in OCRE, as well as minors in Chemistry, Geology, and Oceanography through the respective departments at TAMU. Our graduate program offers the Master of Marine Resources Management (MARM). We also have a 3+2 Program in which the student can achieve the B.S. OCRE with the MARM degree in 5 years. Our faculty advise students in diverse M.S. and Ph.D. graduate degrees on our campus such as the Interdisciplinary Program in Marine Biology (MARB IDP) and programs in conjunction with TAMU’s Departments such as Oceanography (OCNG) and Landscape Architecture & Urban Planning (LAUP).

Faculty

Alexander, Steve K, Lecturer
Marine Sciences
PHD, Louisiana State University, 1976

Amon, Rainer, Professor
Marine Sciences
PHD, The University of Texas at Austin, 1995

Anis, Ayal, Associate Professor
Marine Sciences
PHD, Oregon State University, 1993

Bodson, Bruce R, Lecturer
Marine Sciences
JD, South Texas College of Law, 1993

Boulahouache, Chaouki, Instructional Assistant Professor
Marine Sciences
PHD, Syracuse University, 2002

Brody, Samuel D, Professor
Marine Sciences
PHD, University of North Carolina at Chapel Hill, 2002

Coleman, Charles H, Instructional Assistant Professor
Marine Sciences
MS, University of Houston at Clear Lake, 1986

Davlasheridze, Meri, Assistant Professor
Marine Sciences
PHD, The Pennsylvania State University, 2013

Dellapenna, Timothy M, Associate Professor
Marine Sciences
PHD, The College of William & Mary, 1999

Folden, Charles, Instructional Assistant Professor Emeritus
Marine Sciences
MA, Governors State University, 1979

Galan, Jhenny F, Assistant Professor
Marine Sciences
PHD, University of Connecticut, 2006

Griffin, Lawrence L, Professor
Marine Sciences
PHD, The University of Texas at Austin, 1972

Highfield, Wesley E, Associate Professor
Marine Sciences
PHD, Texas A&M University, 2008

Jones, Glenn A, Professor
Marine Sciences
PHD, Columbia University, 1983

Kaiser, Karl, Assistant Professor
Marine Sciences
PHD, University of South Carolina, 2009

Klein, Douglas J, Professor
Marine Sciences
PHD, The University of Texas at Austin, 1969

Knock, Susan, Instructional Associate Professor Emerita
Marine Sciences
PHD, The University of Texas Medical Branch at Galveston, 1988

Kovacevich, John, Lecturer
Marine Sciences
MS, University of Houston at Clear Lake, 2015

Linton, Thomas L, Instructional Assistant Professor
Marine Sciences
PHD, University of Michigan, 1965

Louchouarn, Patrick, Professor
Marine Sciences
PHD, Universite du Quebec a Montreal, 1997
Merrell, William J, Professor
Marine Sciences
PHD, Texas A&M University, 1971

Mohler, Robert R, Senior Lecturer
Marine Sciences
PHD, Texas A&M University, 1994

Moser, Melanie J, Instructional Professor
Marine Sciences
PHD, University of Houston, 1977

Nair, Radhika P, Instructional Assistant Professor
Marine Sciences
PHD, University of Nevada, 2009

Park, Kyeong, Professor
Marine Sciences
PHD, The College of William and Mary, 1993

Perrigo, James B, Instructional Assistant Professor
Marine Sciences
MS, Texas A&M University, 2004

Rantschler, James O, Instructional Assistant Professor
Marine Sciences
PHD, The University of Alabama, 2003

Retchless, David P, Assistant Professor
Marine Sciences
PHD, The Pennsylvania State University, 2015

Ross-Wootton, Ashley D, Assistant Professor
Marine Sciences
PHD, Texas A&M University, 2010

Santschi, Peter H, Professor
Marine Sciences
PHD, Universitat Bern, 1975

Seitz, William A, Senior Professor
Marine Sciences
PHD, The University of Texas at Austin, 1973

Townsend, Grace L, Instructional Assistant Professor
Marine Sciences
MS, University of Houston at Clear Lake, 1983

Van Hengstum, Peter J, Assistant Professor
Marine Sciences
PHD, Dalhousie University, Canada, 2011

von Zharen, Wyndvlyn, Senior Professor
Marine Sciences
DED, University of Florida, 1976

Minors

• Bachelor of Science in Ocean and Coastal Resources Minor (http://catalog.tamu.edu/undergraduate/galveston/marine-sciences/ocean-coastal-resources-bs)
• Bachelor of Science in Ocean and Coastal Resources and Master of Marine Resources Management, 5-Year Degree Program (http://catalog.tamu.edu/undergraduate/galveston/marine-sciences/bs-ocean-coastal-resources-mmr-marine-resources-management)
• Bachelor of Science in University Studies, Oceans and One Health Concentration (http://catalog.tamu.edu/undergraduate/galveston/liberal-studies/oceans-one-health-university-studies-bs)

Courses

MARS 101 Marine Science Matters
Credit 1. 1 Lecture Hour.
A non-technical introduction to the field of marine sciences, including biology, ocean activities, and marine industries. Course includes lectures, seminars, outside speakers, and industrial contacts.

MARS 210 Marine Geography
Credits 3. 3 Lecture Hours.
Introduction to the physical and cultural patterns of the coastal zones of the world. Interrelationships between the physical forms and processes and the cultural patterns are used to analyze human use and abuse of the sea.

MARS 280 Coastal and Ocean Resources
Credits 3. 3 Lecture Hours.
Coastal and Ocean Resources. Resources from the ocean including food, minerals, transportation and recreation. Methods of recovery and utilization of resources from the ocean, efficiency and cost effectiveness. Provides a foundation for understanding the wealth of resources available from the ocean and its margins, to include the impact of human activity on these resources.

MARS 281 Sophomore Seminar in Marine Sciences
Credit 1. 1 Lecture Hour.
Compilation and discussions of literature pertaining to topics in marine sciences. Emphasis placed upon preparation and presentation of a written report.
Prerequisite: OCNG 251 or concurrent enrollment.

MARS 285 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special topics and problems suited to analysis by individuals or small groups concerning special aspects of marine sciences.
Prerequisite: Approval of department head.

MARS 289 Special Topics in Marine Sciences
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of marine sciences.
Prerequisite: Approval of instructor.
MARS 303 Computing and Data Display
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elements of programming and data display primarily through the MATLAB computing environment; includes an introduction to statistics and hypothesis testing with MATLAB.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 305 Environmental Micropaleontology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Environmental Micropaleontology. Major animal, plant and protist microfossils groups, ecology, biostratigraphy, paleoenvironmental and paleoclimatic utility, primary preparation techniques, basic microscopy, research design and dissemination. Coastal foraminifera, thecamoebians and ostracods emphasized. Field trips required.
Prerequisites: GEOL 104. Junior or senior classification or approval of instructor.

MARS 306 Coastal Sedimentary Geology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
A survey of modern coastal sedimentary systems, including principles of sedimentology and sediment analysis. The laboratory includes a large group field projects. Local field trips required.
Prerequisites: GEOL 104. Junior or senior classification or approval of instructor.

MARS 310 Field Methods in Marine Sciences
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Techniques of documenting collected materials, the methods of reconnaissance and the mapping of traverses in the major coastal environments. Sampling and recording techniques, interview procedures, and the use of maps and remotely sensed imagery will be introduced.
Prerequisites: CHEM 102, PHYS 202 or PHYS 208, GEOL 104. Junior or senior classification or approval of instructor.

MARS 325 Introduction to GIS for Marine Sciences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geographic Information Systems (GIS) are introduced for marine sciences and management. Basic use of software including creation of GIS models is covered. Creating, editing and querying GIS shape files is treated utilizing one of the standard GIS software packages such as ArcGis.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 330 Petroleum Geology
Credits 3. 3 Lecture Hours.
Origin, migration and accumulation of petroleum. Reservoir rock, traps, accumulation and conditions, and subsurface methods.
Prerequisites: GEOL 104. Junior or senior classification or approval of instructor.

MARS 340 Geochemistry
Credits 3. 3 Lecture Hours.
Chemical principles and processes that govern the behavior of geologic materials. Silica and carbonate low temperature equilibrium and kinetics.
Prerequisites: CHEM 102, GEOL 104. Junior or senior classification or approval of instructor.

MARS 350 Advanced Computer Applications
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Data manipulation, merging, selection, filtering and querying in Microsoft Office primarily using large real data sets. Introduction to GIS, MatLab and other software relevant to science and/or business applications. Discussion of algorithm development in structured and object oriented programming languages.

MARS 360 Biochemistry
Credits 4. 4 Lecture Hours.
General introductory biochemistry; structures of the four classes of biologically important molecules (proteins, carbohydrates, lipids and nucleotides); how these biomolecules are generated from molecular building blocks; relationship of biomolecule structure to biochemical reactivity such as kinetics and enzyme regulation; membrane phospholipids and glycoproteins and the structure and function of membranes; catabolic reaction path ways of monosaccharides and fatty acids; oxidative phosphorylation and photosynthesis.
Prerequisites: BIOL 111, BIOL 112, CHEM 228. Junior or senior classification or approval of instructor.

MARS 361 Marine Biochemistry Laboratory
Credit 1. 3 Lab Hours.
Selected methods used to characterize, purify, identify and isolate biomolecules. The laboratory is designed to complement the MARS 360 lecture.
Prerequisite: MARS 360 or concurrent enrollment.

MARS 365 Integrated Marine Sciences Laboratory
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Integrated lectures, field and laboratory exercises for data collection and analysis of physical, chemical, biological and geological measurements in ocean, coastal and estuarine environments.
Prerequisites: MATH 142 or 152, PHYS 202 or PHYS 208, OCNG 251, MARS 252, CHEM 102 and CHEM 112, BIOL 112 and GEOL 101 and GEOL 102, junior or senior classification or approval of instructor.

MARS 370/GEOG 370 Coastal Processes
Credits 3. 3 Lecture Hours.
Introduction to the coastal system, waves and wave dominated coasts, shoreline morphodynamics, tidal and lake coasts, long term coastal development, sea level changes, subtidal and beach ecosystems, coastal dunes and wetlands, structures and organizations, coastal management and coastal hazards.
Cross Listing: GEOG 370/MARS 370.

MARS 380 Introduction to Physical Chemistry
Credits 3. 3 Lecture Hours.
Prerequisites: CHEM 102, MATH 151. Junior or senior classification or approval of instructor.

MARS 408 Estuarine and Coastal Hydrodynamics
Credits 3. 3 Lecture Hours.
Physical processes in estuarine and coastal environments in various time scales: turbulent, tidal and residual (subtidal); study of salts, suspended solids, nutrients and heat affected by water movement; physical, biogeochemical processes and mass transport.
Prerequisites: MATH 251, PHYS 218, junior or senior classification or approval of instructor.

MARS 410 Physical Oceanography
Credits 3. 3 Lecture Hours.
Elements of the physics of the ocean; descriptive aspects and theoretical explanations of circulation, characteristic structure and waves.
Prerequisites: OCNG 251, MARS 252, MATH 152, PHYS 208, junior or senior classification or approval of instructor.
MARS 412 Remote Field Investigations in Marine Sciences  
Credits 1 to 6. 1 to 6 Lecture Hours.  
An overview of marine sciences in remote locations varying by instructor and selected topics; lectures on recent scientific papers, methods and concepts related to field area; individual projects; data collection; data analysis and presentation.  
Prerequisite: Junior or senior classification or approval of instructor.

MARS 415 Remote Sensing Technology  
Credits 3. 3 Lecture Hours.  
An introduction to the uses of remote sensing technology in the marine sciences, including electromagnetic, acoustic, and seismic methods. Generation, transmission, and reception methods. Active and passive systems, multispectral techniques, and signal analysis systems.  
Prerequisites: PHYS 202 or 208, BIOL 112. Junior or senior classification or approval of instructor.

MARS 423 Ecological Economics  
Credits 3. 3 Lecture Hours.  
An integrated study of management of ecology and economics; conceptual and professional economic and environmental policies; ethical concerns and economic benefits of nature to humans, human and nature's economies, and the complex connections between humans and nature with the valuing of ecosystems integrity.  
Prerequisite: Junior or senior classification.

MARS 425 Coastal Wetlands Management  
Credits 3. 3 Lecture Hours.  
Wetlands management laws, regulations, wetland delineation and applications of Geographic Information System (GIS) to wetlands management. Biological species in wetlands delineation. Basic biogeochemical cycles and interactions in wetlands.  
Prerequisites: BIOL 112, GEOL 104 and concurrent enrollment in MARS 426 or approval of instructor.

MARS 426 Coastal Wetlands Delineation Laboratory  
Credit 1. 3 Lab Hours.  
Coastal wetlands delineation, including mapping techniques, Geographic Information System (GIS) and theodolite. Biological species and biogeochemical factors in wetlands delineation.  
Prerequisites: BIOL 112, GEOL 104 and concurrent registration in MARS 425 or approval of instructor.

MARS 428 Coastal Development and Human Health  
Credits 3. 2 Lecture Hours. 2 Lab Hours.  
Exploration of public environmental health issues associated with urbanization in coastal areas. Topics address population pressures on coasts, infectious and chronic disease, the natural and built environment, toxicology, sanitation, forms and media of pollution, and the application of environmental health science to coastal zone management. Prerequisites: CHEM 102 or equivalent; MARS 210 or equivalent. Junior or senior classification or approval of instructor.  
CHEM 383 and MARS 325 are recommended but no required.

MARS 430 Geological Oceanography-Plate Tectonics  
Credits 3. 3 Lecture Hours.  
Geological Oceanography-Plate Tectonics. Understanding the complex interactions of the earth system and the critical role that geological oceanography plays in these interactions, specifically the plate tectonic aspects of geological oceanography. Prerequisites: GEOL 101, OCNG 251, junior or senior classification or approval of instructor.

MARS 431 Geological Oceanography-Earth's Climate  
Credits 3. 3 Lecture Hours.  
Geological Oceanography - Earth's Climate. Understanding the complex interactions of the earth system and the critical role that geological oceanography plays in these interactions, specifically the paleoceanographic/climate change aspects of geological oceanography.  
Prerequisites: GEOL 101, OCNG 251, junior or senior classification or approval of instructor.

MARS 432 Peak Oil, Global Warming and Resource Scarcity  
Credits 3. 3 Lecture Hours.  
The concept of peak oil, resource depletion, and human-induced climate change and the broad consequences for food and water supplies, mortality rates, conflict, migration, and political stability; scientific/social/political debates surrounding these issues, and the individual/local/national/global options for living in a globally-warmed world with declining natural resources.  
Prerequisites: Any two from GEOL 104, OCNG 251, MARS 280 or approval of instructor. Junior or senior classification.

MARS 435 Exploration Geophysics  
Credits 3. 3 Lecture Hours.  
Physiomechanical properties of rocks and sediments. Seismic reflection and refraction principles applicable to offshore, coastal and onshore exploration. Determination of media velocity and stratigraphy from reflection and refraction studies in both marine and non-marine systems.  
Prerequisites: PHYS 202 or PHYS 208, GEOL 104, MATH 151. Junior or senior classification or approval of instructor.

MARS 440 Chemical Oceanography  
Credits 3. 3 Lecture Hours.  
Composition of sea salt and dissolved material in the ocean; biogeochemistry and measurements of oxygen, nutrient and other major elements, trace metals and radioisotopes; formation, composition and alterations of detrital material and marine sediments and other chemical processes; simple models relating ocean chemistry to the circulation of masses of water.  
Prerequisites: CHEM 102, OCNG 251, junior or senior classification or approval of instructor.

MARS 450 Principles of Marine Instrumental Analysis  
Credits 3. 2 Lecture Hours. 3 Lab Hours.  
Fundamental principles and practical applications for state-of-the-art analytical instrumentation applied to marine and environmental science. Topics include atomic and molecular spectroscopy, gas and liquid chromatography, radiochemistry, x-ray spectroscopy, mass spectrometry and field instrumentation. Students work with instruments and make presentation on them to the class.  
Prerequisites: CHEM 102 and 228, PHYS 202, MATH 131 or 151. Junior or senior classification or approval of instructor.

MARS 456 Coastal Water Policy  
Credits 3. 3 Lecture Hours.  
History, past and present legislation, the government entities and agencies molding the policies affecting coastal water policy in Texas.  
Prerequisite: Junior or senior classification or approval of instructor.

MARS 460 Capstone Undergraduate Research Experience I  
Credit 1. 1 Lecture Hour.  
Methodology for research outlines, organization and strategies; research ethics, writing and presentation of results.  
Prerequisites: MARS 491 or concurrent enrollment, senior classification or approval of instructor.
MARS 461 Capstone Undergraduate Research Experience II  
Credit 1. 1 Lecture Hour.  
Research and scientific communications; development of a scientific  
abstract, poster presentation, oral presentation or written scientific paper.  
Prerequisites: MARS 491 or concurrent enrollment, senior classification  
or approval of instructor.

MARS 470 Eco-Environmental Modeling  
Credits 3. 3 Lecture Hours.  
Biological components are in chemical and physical environments which  
are influenced by the bio-system and flows of energy, water and chemical  
especies. Coupling to the complex atmospheric, aquatic and terrestrial  
systems is important. Modeling entails mathematical tools and the  
underlying science, focusing on scientific models, from the simplest to  
the elaborate.  
Prerequisites: CHEM 102, BIOL 112 and MATH 151 or approval of  
instructor.

MARS 481 Seminar  
Credit 1. 1 Lecture Hour.  
Problem-oriented discussion session. Topics and reports selected for  
current relevance. May be repeated once only for credit.  
Prerequisite: Junior or senior classification or approval of instructor.

MARS 484 Undergraduate Internship  
Credits 0 to 6. 0 to 6 Other Hours.  
Supervised study in a research or teaching laboratory within or outside of  
the Texas A&M University System. Student involvement is to consist of  
real-life learning or marine sciences research, teaching, management or a  
combination of these.  
Prerequisites: Junior or senior classification or approval of instructor.  
Approval of the department head.

MARS 485 Directed Studies  
Credits 1 to 6. 1 to 6 Other Hours.  
Special topics and problems suited to analysis by individuals or small  
groups concerning special aspects of marine sciences.  
Prerequisites: Junior or senior classification or approval of instructor.  
Approval of department head.

MARS 488 Writing Intensive Directed Studies in Marine Sciences  
Credits 1 to 6. 1 to 6 Other Hours.  
A writing-intensive course leading to the equivalent of a mini thesis in  
an area of interest to the faculty and student; introduces students to the  
rigors of writing for publication in professional journals in their major.  
Prerequisite: Junior or senior classification.

MARS 489 Special Topics in Marine Sciences  
Credits 1 to 4. 1 to 4 Lecture Hours.  
Study of selected topics in an identified area of marine sciences.  
Prerequisite: Junior or senior classification or approval of instructor.

MARS 491 Research in Marine Sciences  
Credits 0 to 4. 0 to 4 Other Hours.  
Research conducted under the direction of faculty member in Marine  
Sciences. May be repeated 2 times for credit. Please see academic  
advisor in department. Registration in multiple sections of this course is  
possible within a given semester provided that the per semester credit  
hour limit is not exceeded.  
Prerequisites: Junior or senior classification and approval of instructor.

OCRE 491 Research in Ocean and Coastal Resources  
Credits 1 to 4. 1 to 4 Other Hours.  
Research conducted under the direction of faculty member in Ocean  
and Coastal Resources. May be repeated 2 times for credit. Please see  
academic advisor in department. Registration in multiple sections of this  
course is possible within a given semester provided that the per semester  
credit hour limit is not exceeded.  
Prerequisites: Junior or senior classification and approval of instructor.