ICPE 601 Environmental Issues of Energy Systems
Credit 1.5. 1.5 Lecture Hour.
Introduction to energy-related engineering principles and energy conservation efficiency; basic processes and chemicals/materials used in the current and emerging energy systems; impact on the environment; approaches for minimizing contaminants released by usage of energy sources.
Prerequisite: Graduate classification.

ICPE 602 Reservoir Characterization and Modeling
Credit 1.5. 1.5 Lecture Hour.
Application of geostatistical techniques to build reservoir models through integration of geological core/well log, seismic and production data to generate a consistent reservoir description; background and insights to geostatistical modeling techniques and situation where the application of geostatistics could add value.
Prerequisite: Graduate classification.

ICPE 603 Bioenergy
Credit 1.5. 1.5 Lecture Hour.
Introduction to the fundamentals of biomass (biochemistry and resources); basics of important processing technologies for the pre-treatment and conversion of biomass to useful products.
Prerequisite: Graduate classification.

ICPE 604 Energy Systems Engineering I
Credit 1.5. 1.5 Lecture Hour.
State-of-the-art topics for energy systems engineering including modelling of energy systems, mixed integer and continuous optimization techniques for the analysis of energy systems, model based control, and interactions of design, control and scheduling of power and energy systems.
Prerequisite: Graduate classification.

ICPE 605 Energy Systems Engineering II
Credit 1.5. 1.5 Lecture Hour.
State-of-the-art topics for energy systems engineering including modeling of hybrid feedstock energy systems, energy supply chain networks, polygeneration systems, model predictive control, fuel cells and combined heat and power systems.
Prerequisite: ICPE 604.

ICPE 606 Introduction to Optimization
Credit 1.5. 1.5 Lecture Hour.
Basics of deterministic optimization with focus on modeling and computer solutions; practical examples to develop understanding of modeling and solution techniques that can be used to improve decision-making; linear, non-linear, mixed integer, combinatorial and network optimization problems.
Prerequisite: Graduate classification.

ICPE 607 Energy Accounting
Credit 1.5. 1.5 Lecture Hour.
Exploration of the financial aspects of the energy industry; emphasis on oil and gas with additional attention placed on all sources of power generation including alternatives; interactive with cases worked in each session; advanced preparation guided by the instructor.
Prerequisite: Graduate classification.

ICPE 608 Beyond Science and Technology: The Role of Policy in Future of Energy in the U.S.
Credit 1.5. 1.5 Lecture Hour.
Introduction to the history of U.S. science and technology policy with a specific emphasis on energy; focus on regulatory rules, the key government agencies at the national level, the role states and localities play, how government funds are allocated in research and technology transfer related to energy innovations, the role of universities, the threats and opportunities to energy-related educational success at all levels.
Prerequisite: Graduate classification.

ICPE 609 Introduction to U.S. Energy Law and Policy
Credit 1.5. 1.5 Lecture Hour.
Introduction to energy law and regulation in the United States; focus on the key sources of energy (both nonrenewable and renewable) driving the U.S. economy, and identifies the various challenges facing the industry in their production and distribution; key regulations and laws governing energy production as well as the jurisdictional and regulator divisions between federal and state governments.
Prerequisite: Graduate classification.

ICPE 610 The Global Energy Future
Credit 1.5. 1.5 Lecture Hour.
Global energy outlook including energy demand, population growth and humanitarian issues, environmental and climate concerns, and the energy/water nexus and water scarcity; evolution of the global oil and gas industry; controlling nations, laws and agencies (OPEC, IEA, etc.); international and domestic climate change laws and policies; global future of climate change adaptation and mitigation.
Prerequisite: Graduate classification.

ICPE 611 Economics of Energy
Credit 1.5. 1.5 Lecture Hour.
Basics of economics concepts as they relate to energy applications; how the government policies affect the energy economy; present the economics of energy and climate change; introduction to renewable technologies and their impact.
Prerequisite: Graduate classification.

ICPE 612 Entrepreneurship in Energy
Credit 1.5. 1.5 Lecture Hour.
Focus on developing an understanding of the techniques and issues for growing emerging organizations in the energy field; participants will be guided through a range of issues faced by a venture team in building and growing a new organization or pursuing innovative projects inside existing organizations.
Prerequisite: Graduate classification.

ICPE 613 Natural and Shale Gas Monetization: Technologies, Fundamentals, Economics and Applications
Credit 1.5. 1.5 Lecture Hour.
Focuses on important role played by natural and shale gas in energy market and the potentials to grow; major monetization processes including production, treatment, processing and conversion; key economic and technical aspects as they pertain to the processing technologies and the supply chains of natural and shale gas.
Prerequisite: Graduate classification.
ICPE 614 CO2 Sequestration
Credit 1.5. 1.5 Lecture Hour.
Introduction to the goals and methods of CO2 sequestration in the subsurface and of monitoring its effectiveness; discussion and explanation of current technological challenges and problems in monitoring CO2 in the subsurface and in implementing sequestration for mitigating climate change; addresses how carbon is transferred between atmosphere, hydrosphere, biosphere and geosphere by natural processes; basic geologic processes influencing sequestration programs.
Prerequisite: Graduate classification.

ICPE 615 Smart Grid Fundamentals
Credit 1.5. 1.5 Lecture Hour.
Fundamentals of electricity grid development; monitoring, control and protection; renewable generation; microgrids and grid integration; electricity markets; long term planning and associated risk, and grid robustness.
Prerequisite: Graduate classification.

ICPE 616 Multi-functional Materials for Energy Conversion
Credit 1.5. 1.5 Lecture Hour.
Focus on the two most important multi-functional materials (MFMs): piezoelectric materials and shape memory alloys (SMA); understanding the materials and how devices are designed using these materials; study of energy conversion via: (1) actuators that convert electrical or thermal energy into mechanical work; and (2) energy harvesting, in which mechanical work is converted into electrical energy.
Prerequisite: Graduate classification.

ICPE 617 Gas Separations for Energy: Fundamentals, Applications and New Directions
Credit 1.5. 1.5 Lecture Hour.
Robust foundation of advanced expertise in gas separation technologies including (i) solid-phase absorbent technologies, (ii) liquid amine-based adsorption technologies, (iii) polymeric and inorganic membrane technologies, and (iv) emerging reactive separation for process intensification.
Prerequisite: Graduate classification.

ICPE 618 Carbon Capture, Utilization and Storage, CCUS
Credit 1.5. 1.5 Lecture Hour.
Introduction to technologies for carbon capture, modeling and technoeconomic analysis and comparison of different carbon capture technologies, and economics of carbon capture, utilization, and storage statewide and nationwide.
Prerequisite: Graduate classification.

ICPE 619 Nanomaterials Engineering and Energy Storage
Credit 1.5. 1.5 Lecture Hour.
Nanomaterial synthesis and processing with an emphasis on the creation of materials relevant to energy storage (batteries, capacitors, etc.).
Prerequisite: Graduate classification; prior knowledge of an undergraduate engineering level of familiarity of chemistry and physics is desirable.

ICPE 620 Thermoelectric Materials and Devices
Credit 1.5. 1.5 Lecture Hour.
Methods useful for the synthesis of both bulk crystals and nanomaterials (nanoparticles and nanowires); focus on the underlying thermodynamics and kinetic principles involved in the synthesis of these materials; pathways useful for the integration of nanomaterials into functional thermoelectric devices, methods used for ascertaining the thermoelectric performance of materials and devices.
Prerequisite: Graduate classification.

ICPE 621 Thermoelectrics: Fundamentals of Electronic and Thermal Transport
Credit 1.5. 1.5 Lecture Hour.
Fundamentals of electronic and phononic transport phenomena; understanding of thermodynamics and transport properties from a microscopic viewpoint; thermal transport theories for analyzing and designing energy conversion devices, nanomaterials, microelectronics and nano/micro-electromechanical systems (NEMS/MEMS).
Prerequisite: Graduate classification.

ICPE 622 Energy Efficiency in Buildings
Credit 1.5. 1.5 Lecture Hour.
Introduction to energy efficiency in buildings; understanding the energy use in buildings, the heating and cooling requirements, the role of renewable energy resources, the impact of lighting, the role of optimal control measures in existing and new buildings, the verification of energy savings, and the building energy simulation.
Prerequisite: Graduate classification.

ICPE 623 Water-Energy-Food Nexus: Towards Sustainable Resource Allocation
Credit 1.5. 1.5 Lecture Hour.
Securing energy, clean water and greening agriculture; principles of the Water-Energy-Food nexus and its application to the corresponding three themes; includes hands on laboratory.
Prerequisite: Graduate classification.

ICPE 624 Energy-Water-Nexus
Credit 1.5. 1.5 Lecture Hour.
Various aspects of energy-water nexus including the fundamentals, technologies, applications and economics; focus on energy production, conversion and utilization; connection with water production, treatment, delivery and usage.
Prerequisite: Graduate classification.

ICPE 625 Integrated Risk Management for Exploration and Production Projects
Credit 1.5. 1.5 Lecture Hour.
Structured introduction to project systems and advance analysis of integrated project risks to practicing engineers and decision makers in the energy sector; emphasis on risks in context of a) project phase-gate process, b) systems representation, and c) flow across different functional and design requirements, areas of expertise /specialization and construction/installation methods.
Prerequisite: Graduate classification.

ICPE 626 Safety in Energy Systems
Credit 1.5. 1.5 Lecture Hour.
Role of leadership and development of management systems to ensure safety performance in energy systems, a systems approach to safety management for energy systems, lifecycle analysis and the energy supply chain, and applications of engineering principles of process safety and hazards analysis.
Prerequisite: Graduate classification.

ICPE 627 Interfacial Phenomena of Energy Systems
Credit 1.5. 1.5 Lecture Hour.
Fundamentals of interfacial phenomena, energy related interfacial materials and interfacial issues of energy systems; specific energy-related applications include oil recovery, lubrication, thermal management, photovoltaics, battery, fuel cells and supercapacitors.
Prerequisite: Graduate classification.
ICPE 628 Multi-physics Geomechanisms for Energy Applications
Credit 1.5. 1.5 Lecture Hour.
Focuses on main physical phenomena and processes that control the
behavior of porous media; formulation for non-isothermal multiphase
flow and transport problems in deformable porous media; problems
of practical interest in the broad field of geo-engineering and geo-
mechanics.
Prerequisite: Graduate classification.

ICPE 629 International Energy Law
Credit 1.5. 1.5 Lecture Hour.
Overview of energy-related international law policies and practices,
including detailed case studies and discussions of legal frameworks
for trade and investment in the energy sector, as well as rules governing
energy development, the climate, and the environment; corporate
responsibility and human rights consequences of energy activities.
Prerequisite: Graduate classification; enrollment in the MS Energy
program.

ICPE 631 Sustainability Considerations in Energy
Credit 1.5. 1.5 Lecture Hour.
Introduction to the principles of sustainability within energy systems;
examination of economic, environmental and societal aspects using
quantitative assessments; promotion of informed decision-making
through explanations of available assessment tools, the boundaries of
analysis and process integration considerations.
Prerequisite: Graduate classification.

ICPE 632 Renewable Abiotic Energy Resources and Conversion
Credit 1.5. 1.5 Lecture Hour.
Study of the rapid development and progress of renewable abiotic
energy resources and conversion technologies - renewable energy and
resources; direct power conversion photovoltaics, thermal conversion
via concentrating solar and geothermal power strategies; chemical
conversion via photon energy systems; energy from the wind; blue energy
from oceans, rivers and lakes; overview of fundamentals of renewable
energy storage and distribution.
Prerequisite: Graduate classification; enrollment in the MS Energy
program.

ICPE 633 Management of Energy Projects
Credit 1.5. 1.5 Lecture Hour.
Application of management processes to complex interdisciplinary
organizational environments through the study of program and project
management; adoptions of traditional management theories to the
project environment; master typical project management microcomputer
software for project planning; resource allocation; project budgeting; and
control of project cost, schedule and performance.
Prerequisite: Graduate classification; enrollment in the MS Energy
program.

ICPE 634 Energy Policy, Regulation, and Non-Market Strategy
Credit 1.5. 1.5 Lecture Hour.
Exploration of how political incentives lead politicians to create and
dismantle rules and the role that firms and industry associations play in
shaping regulatory environments and social outcomes; emphasis on how
non-market strategies such as lobbying, political campaign contributions,
coalition building, social media campaigns, (mis)information campaigns,
self-regulation and others, can shape the regulatory process and
outcomes.
Prerequisite: Graduate classification.

ICPE 635 Renewable Energy Law
Credit 1.5. 1.5 Lecture Hour.
Overview of domestic renewable energy law policies and practices;
exploration and analysis of laws that allocate interests in energy
resources and that regulate energy production and delivery strategies so
as to promote economic efficiency and to mitigate adverse impacts on
the natural environment; cases studies worked in each session; advanced
preparation required, which will be guided by the instructor.
Prerequisite: Graduate classification.

ICPE 636 Energy Industry Project Portfolio Management
Credit 1.5. 1.5 Lecture Hour.
Overview of project portfolio management (PPM) especially regarding
the energy industry; PPM is the highest level of the project organizational
hierarchy; appreciation for the elements of portfolio planning and
optimizing, focus on portfolio management including selecting projects
that align with strategy and monitoring to ensure they continue to add
value.
Prerequisite: Graduate classification.

ICPE 637 Data Science for Power Systems
Credit 1.5. 1.5 Lecture Hour.
Basic concepts and methods of data science with an emphasis on
energy-related applications; discussion of probability theory, data-based
statistical modeling and inference, linear and non-linear regression and
predictive models, dimensionality reduction, introduction to machine
learning and statistical modeling of dependent data.
Prerequisite: Graduate classification.

ICPE 638 Data Science Fundamentals for Energy I
Credit 1.5. 1.5 Lecture Hour.
Discussion of basic concepts and methods used in data science with an
emphasis on applications in energy; topics include concepts of
probability theory, probability distributions, statistical data modeling and
inference, linear and non-linear regression and predictive models, dimension reduction, introduction to machine learning and statistical modeling of dependent data.
Prerequisite: Graduate classification.

ICPE 639 Introduction to Machine Learning for Energy
Credit 1.5. 1.5 Lecture Hour.
Discussion of machine learning methods commonly seen in data science
with an emphasis to applications in energy; topics include supervised
Prerequisite: Graduate classification.

ICPE 681 Seminar
Credits 2. 2 Other Hours.
Seminars and presentations on important developments and current
research in energy; delivered by distinguished energy experts from
academia, industry and government.
Prerequisite: Graduate classification.

ICPE 689 Special Topics In...
Credits 1 to 4. 1 to 4 Other Hours.
ICPE 691 Research
Credits 1 to 18. 1 to 18 Other Hours.
Research for thesis or dissertation.