TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose/Accreditation</td>
<td>12</td>
</tr>
<tr>
<td>Catalog Publication Statement</td>
<td>14</td>
</tr>
<tr>
<td>Academic Calendars</td>
<td>15</td>
</tr>
<tr>
<td>Board of Regents and Administrative Officers</td>
<td>22</td>
</tr>
<tr>
<td>General Information</td>
<td>24</td>
</tr>
<tr>
<td>History and Development</td>
<td>24</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td>25</td>
</tr>
<tr>
<td>Student Learning Outcomes</td>
<td>30</td>
</tr>
<tr>
<td>Degree and Program Information</td>
<td>31</td>
</tr>
<tr>
<td>Cultural Discourse Requirements</td>
<td>46</td>
</tr>
<tr>
<td>International and Cultural Diversity Requirements</td>
<td>47</td>
</tr>
<tr>
<td>Admission</td>
<td>50</td>
</tr>
<tr>
<td>Registration and Academic Status</td>
<td>78</td>
</tr>
<tr>
<td>Grading System</td>
<td>80</td>
</tr>
<tr>
<td>Housing</td>
<td>83</td>
</tr>
<tr>
<td>Orientation</td>
<td>83</td>
</tr>
<tr>
<td>Student Success</td>
<td>85</td>
</tr>
<tr>
<td>Services for Students</td>
<td>85</td>
</tr>
<tr>
<td>Campus Life</td>
<td>93</td>
</tr>
<tr>
<td>Tuition, Fees and Other Financial Information</td>
<td>98</td>
</tr>
<tr>
<td>Financial Assistance and Scholarships</td>
<td>106</td>
</tr>
<tr>
<td>University Policies</td>
<td>110</td>
</tr>
<tr>
<td>International Opportunities for Students</td>
<td>113</td>
</tr>
<tr>
<td>Honors and Undergraduate Research</td>
<td>115</td>
</tr>
<tr>
<td>Transition Academic Programs</td>
<td>119</td>
</tr>
<tr>
<td>University Studies Degrees</td>
<td>120</td>
</tr>
<tr>
<td>Interdisciplinary Programs</td>
<td>121</td>
</tr>
<tr>
<td>Entrepreneurship - Minor</td>
<td>121</td>
</tr>
<tr>
<td>Leadership - Minor</td>
<td>123</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>123</td>
</tr>
<tr>
<td>Neuroscience - Minor</td>
<td>123</td>
</tr>
<tr>
<td>Neuroscience - Certificate</td>
<td>124</td>
</tr>
<tr>
<td>College of Agriculture and Life Sciences</td>
<td>126</td>
</tr>
<tr>
<td>Interdepartmental Degree Programs</td>
<td>131</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>132</td>
</tr>
<tr>
<td>Agribusiness - BS</td>
<td>133</td>
</tr>
<tr>
<td>Agricultural Economics - BS, Finance and Real Estate Option</td>
<td>135</td>
</tr>
<tr>
<td>Agricultural Economics - BS, Food Marketing Systems Option</td>
<td>136</td>
</tr>
<tr>
<td>Agricultural Economics - BS, Policy and Economic Analysis Option</td>
<td>137</td>
</tr>
<tr>
<td>Agricultural Economics - BS, Rural Entrepreneurship Option</td>
<td>139</td>
</tr>
<tr>
<td>Agricultural Economics - BS/MPS, 3+2 Program</td>
<td>140</td>
</tr>
<tr>
<td>Agribusiness Entrepreneurship - Minor</td>
<td>142</td>
</tr>
<tr>
<td>Agricultural Economics - Minor</td>
<td>143</td>
</tr>
<tr>
<td>AgriFood Sales - Minor</td>
<td>143</td>
</tr>
<tr>
<td>Financial Planning - Minor</td>
<td>144</td>
</tr>
<tr>
<td>International Trade and Agriculture - Certificate</td>
<td>144</td>
</tr>
<tr>
<td>Agricultural Leadership, Education, and Communications</td>
<td>145</td>
</tr>
<tr>
<td>Agricultural Communications and Journalism - BS</td>
<td>146</td>
</tr>
<tr>
<td>Agricultural Leadership and Development - BS</td>
<td>148</td>
</tr>
<tr>
<td>Agricultural Science - BS</td>
<td>149</td>
</tr>
<tr>
<td>University Studies - BS, Leadership Studies Concentration</td>
<td>151</td>
</tr>
<tr>
<td>Agricultural Communications and Journalism - Minor</td>
<td>151</td>
</tr>
<tr>
<td>Extension Education - Minor</td>
<td>152</td>
</tr>
<tr>
<td>International Agricultural Development - Minor</td>
<td>152</td>
</tr>
<tr>
<td>Animal Science</td>
<td>153</td>
</tr>
<tr>
<td>Animal Science - BS, Production/Industry Option</td>
<td>155</td>
</tr>
<tr>
<td>Animal Science - BS, Science Option</td>
<td>157</td>
</tr>
<tr>
<td>Equine Science - Certificate</td>
<td>158</td>
</tr>
<tr>
<td>Meat Science - Certificate</td>
<td>158</td>
</tr>
<tr>
<td>Biochemistry and Biophysics</td>
<td>159</td>
</tr>
<tr>
<td>Biochemistry - BS</td>
<td>160</td>
</tr>
<tr>
<td>Genetics - BS</td>
<td>161</td>
</tr>
<tr>
<td>Biochemistry - Minor</td>
<td>162</td>
</tr>
<tr>
<td>Genetics - Minor</td>
<td>163</td>
</tr>
<tr>
<td>Biological and Agricultural Engineering</td>
<td>163</td>
</tr>
<tr>
<td>Agricultural Systems Management - BS</td>
<td>164</td>
</tr>
<tr>
<td>Biological and Agricultural Engineering - BS</td>
<td>165</td>
</tr>
<tr>
<td>Agricultural Systems Management - Minor</td>
<td>167</td>
</tr>
<tr>
<td>Ecology and Conservation Biology</td>
<td>168</td>
</tr>
<tr>
<td>Ecological Restoration - BS</td>
<td>169</td>
</tr>
<tr>
<td>Forestry - BS</td>
<td>170</td>
</tr>
<tr>
<td>Spatial Sciences - BS</td>
<td>171</td>
</tr>
<tr>
<td>Forestry - Minor</td>
<td>173</td>
</tr>
<tr>
<td>Spatial Sciences - Minor</td>
<td>173</td>
</tr>
<tr>
<td>Watershed - Certificate</td>
<td>173</td>
</tr>
<tr>
<td>Entomology</td>
<td>174</td>
</tr>
<tr>
<td>Entomology - BS</td>
<td>175</td>
</tr>
</tbody>
</table>
Forensic and Investigative Sciences - BS, Pre-Law Emphasis .. 177
Forensic and Investigative Sciences - BS, Science Emphasis .. 178
Entomology - Minor ... 180
Public Health Entomology - Certificate .. 181
Food Science and Technology .. 181
Food Science and Technology - BS, Food Industry Option ... 182
Food Science and Technology - BS, Food Science Option ... 184
Food Systems Industry Management - BS .. 186
Food Diversity - Certificate ... 187
Horticultural Sciences ... 187
Horticulture - BA .. 188
Horticulture - BS ... 190
Horticulture - Minor .. 191
Enology - Certificate ... 192
Nutrition .. 192
Nutrition - BS, Didactic Program in Dietetics Track ... 193
Nutrition - BS, General Nutrition Track .. 194
Nutrition - BS, Molecular and Experimental Track ... 196
Plant Pathology and Microbiology ... 197
Bioenvironmental Sciences - BS ... 198
Environmental Studies - BS ... 199
University Studies - BS, Environmental Business Concentration .. 200
Bioenvironmental Sciences - Minor ... 202
Poultry Science ... 203
Poultry Science - BS, Industry Emphasis ... 203
Poultry Science - BS, Technical Emphasis ... 204
Poultry Science - Minor ... 205
Rangeland, Wildlife and Fisheries Management ... 206
Rangeland Ecology and Management - BS, Ranch Management Option 206
Rangeland Ecology and Management - BS, Rangeland Resources Option 208
Wildlife and Fisheries Sciences - BS, Fisheries, Aquaculture and Aquatic Sciences Track 210
Wildlife and Fisheries Sciences - BS, Vertebrate Zoology Option .. 211
Wildlife and Fisheries Sciences - BS, Wildlife Ecology and Conservation Option 212
Wildlife and Fisheries Sciences - BS/MPS, 3+2 Program ... 214
Rangeland Ecology and Management - Minor ... 215
Wildlife and Fisheries Sciences - Minor ... 215
Recreation, Park and Tourism Sciences .. 216
Recreation, Park and Tourism Sciences - BS with Certificate ... 217
Renewable Natural Resources - BS ... 219
Park and Natural Resource Management - Minor .. 221
Recreation, Park and Tourism Sciences - Minor ... 222
Tourism Management - Minor ... 222
Youth Development - Minor .. 222
Community Recreation and Park Administration - Certificate .. 223
Hospitality Management - Certificate ... 223
Parks and Conservation - Certificate ... 224
Professional Event Manager - Certificate ... 224
Tourism Management - Certificate ... 225
Youth Development - Certificate .. 225
Soil and Crop Sciences ... 226
Plant and Environmental Soil Science - BS, Crops Emphasis ... 227
Plant and Environmental Soil Science - BS, Soil and Water Emphasis ... 228
Turfgrass Science - BS ... 229
Agronomy - Minor ... 230
Environmental Soil Science - Minor ... 231
Plant Breeding - Minor .. 231
University Studies Programs .. 231
University Studies - BS, Environmental Business Concentration ... 200
University Studies - BS, Leadership Studies Concentration ... 151
Global Culture and Society - Minor ... 237
Diversity - Certificate ... 237
Architecture .. 237
Environmental Design Architectural Studies - BED .. 240
Architectural Fabrication and Product Design - Minor ... 241
Architectural Heritage Conservation - Minor .. 242
Art and Architecture History - Minor ... 242
Global Art Design and Construction - Minor .. 243
Sustainable Architecture and Planning - Minor ... 243
Construction Science ... 244
Construction Science - BS ... 246
Facility Management - Minor .. 247
Leadership in the Design and Construction Professions - Minor .. 248
Landscape Architecture and Urban Planning ... 248
<table>
<thead>
<tr>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape Architecture - BLA</td>
<td>250</td>
</tr>
<tr>
<td>Urban and Regional Planning - BS, Urban Design Track</td>
<td>251</td>
</tr>
<tr>
<td>Urban and Regional Planning - BS, Urban Policy Track</td>
<td>252</td>
</tr>
<tr>
<td>Urban and Regional Planning - BS/MLP, 3+2 Program</td>
<td>254</td>
</tr>
<tr>
<td>Urban and Regional Planning - BS/MUP, 3+2 Program</td>
<td>255</td>
</tr>
<tr>
<td>Urban and Regional Planning - Minor</td>
<td>256</td>
</tr>
<tr>
<td>University Studies Programs</td>
<td>257</td>
</tr>
<tr>
<td>University Studies - BS, Global Arts, Planning, Design and</td>
<td>257</td>
</tr>
<tr>
<td>Construction Concentration</td>
<td></td>
</tr>
<tr>
<td>Visualization</td>
<td>258</td>
</tr>
<tr>
<td>Visualization - BS</td>
<td>259</td>
</tr>
<tr>
<td>Art - Minor</td>
<td>260</td>
</tr>
<tr>
<td>Game Design and Development - Minor</td>
<td>261</td>
</tr>
<tr>
<td>Mays Business School</td>
<td>262</td>
</tr>
<tr>
<td>Business Honors - BBA</td>
<td>266</td>
</tr>
<tr>
<td>Business - Minor</td>
<td>267</td>
</tr>
<tr>
<td>European Union Business - Certificate</td>
<td>268</td>
</tr>
<tr>
<td>International Business Studies - Certificate</td>
<td>269</td>
</tr>
<tr>
<td>Latin American Business - Certificate</td>
<td>270</td>
</tr>
<tr>
<td>Nonprofit and Social Innovation - Certificate</td>
<td>271</td>
</tr>
<tr>
<td>Accounting</td>
<td>271</td>
</tr>
<tr>
<td>Accounting - BBA</td>
<td>273</td>
</tr>
<tr>
<td>Accounting - BBA/MFM, 3+2 Program</td>
<td>275</td>
</tr>
<tr>
<td>Accounting - BBA/MS, 3+2 Program</td>
<td>277</td>
</tr>
<tr>
<td>Energy Accounting - Certificate</td>
<td>278</td>
</tr>
<tr>
<td>Internal Audit - Certificate</td>
<td>279</td>
</tr>
<tr>
<td>Finance</td>
<td>279</td>
</tr>
<tr>
<td>Finance - BBA</td>
<td>281</td>
</tr>
<tr>
<td>Capital Markets and Investments - Certificate</td>
<td>282</td>
</tr>
<tr>
<td>Commercial Banking - Certificate</td>
<td>282</td>
</tr>
<tr>
<td>Corporate Finance - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Investment Banking - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Investment Banking and Private Equity - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Trading, Risk and Investments - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Information and Operations Management</td>
<td>284</td>
</tr>
<tr>
<td>Management Information Systems - BBA</td>
<td>285</td>
</tr>
<tr>
<td>Supply Chain Management - BBA</td>
<td>287</td>
</tr>
<tr>
<td>Management</td>
<td>288</td>
</tr>
<tr>
<td>Management - BBA, Consulting/General Management Track</td>
<td>290</td>
</tr>
<tr>
<td>Management - BBA, Entrepreneurial Leadership Track</td>
<td>291</td>
</tr>
<tr>
<td>Management - BBA, Human Resource Management Track</td>
<td>293</td>
</tr>
<tr>
<td>Management - BBA, Pre-Law Track</td>
<td>294</td>
</tr>
<tr>
<td>Marketing</td>
<td>296</td>
</tr>
<tr>
<td>Marketing - BBA, Advertising Strategy Track</td>
<td>296</td>
</tr>
<tr>
<td>Marketing - BBA, Analytics and Consulting Track</td>
<td>297</td>
</tr>
<tr>
<td>Marketing - BBA, Healthcare Marketing Track</td>
<td>298</td>
</tr>
<tr>
<td>Marketing - BBA, Professional Selling and Sales Management Track</td>
<td>300</td>
</tr>
<tr>
<td>Marketing - BBA, Strategic Retailing Track</td>
<td>301</td>
</tr>
<tr>
<td>University Studies Programs</td>
<td>303</td>
</tr>
<tr>
<td>University Studies - BS, Business Concentration</td>
<td>303</td>
</tr>
<tr>
<td>College of Dentistry</td>
<td>305</td>
</tr>
<tr>
<td>Caruth School of Dental Hygiene</td>
<td>305</td>
</tr>
<tr>
<td>Dental Hygiene - BS</td>
<td>306</td>
</tr>
<tr>
<td>College of Education and Human Development</td>
<td>308</td>
</tr>
<tr>
<td>Educational Administration and Human Resource Development</td>
<td>310</td>
</tr>
<tr>
<td>Human Resource Development - BS</td>
<td>311</td>
</tr>
<tr>
<td>Technology Management - BS</td>
<td>312</td>
</tr>
<tr>
<td>Human Resource Development - Minor</td>
<td>314</td>
</tr>
<tr>
<td>Technology Management - Minor</td>
<td>314</td>
</tr>
<tr>
<td>Educational Psychology</td>
<td>314</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, Bilingual Education EC-6</td>
<td>317</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, Special Education EC-12</td>
<td>318</td>
</tr>
<tr>
<td>University Studies - BS, Child Professional Services Concentration</td>
<td>320</td>
</tr>
<tr>
<td>Creative Studies - Minor</td>
<td>321</td>
</tr>
<tr>
<td>Interdisciplinary Studies - Certificate</td>
<td>321</td>
</tr>
<tr>
<td>Health and Kinesiology</td>
<td>321</td>
</tr>
<tr>
<td>Community Health - BS</td>
<td>326</td>
</tr>
<tr>
<td>Health - BS, Allied Health Track</td>
<td>327</td>
</tr>
<tr>
<td>Health - BS, School Health Track</td>
<td>328</td>
</tr>
<tr>
<td>Kinesiology - BS, All-Level Physical Education Teacher Certification Track</td>
<td>329</td>
</tr>
<tr>
<td>Kinesiology - BS, Dance Science Track</td>
<td>331</td>
</tr>
<tr>
<td>Kinesiology - BS, Exercise and Sport Science Track</td>
<td>332</td>
</tr>
<tr>
<td>Kinesiology - BS, Exercise Science Track, Applied Exercise Physiology Concentration</td>
<td>334</td>
</tr>
<tr>
<td>Kinesiology - BS, Exercise Science Track, Basic Exercise Physiology Concentration</td>
<td>335</td>
</tr>
<tr>
<td>Kinesiology - BS, Exercise Science Track, Motor Behavior Concentration</td>
<td>336</td>
</tr>
<tr>
<td>Kinesiology - BS/MS, 3+2 Program</td>
<td>337</td>
</tr>
<tr>
<td>Sport Management - BS</td>
<td>339</td>
</tr>
<tr>
<td>Sport Management - BS, Internship Track</td>
<td>340</td>
</tr>
</tbody>
</table>
College of Engineering

Quality Engineering for Regulated Medical Technologies - Certificate .. 389

Chemical Engineering .. 390

Chemical Engineering - BS .. 391

Chemical Engineering - Minor .. 393

Engineering Therapeutics Manufacturing - Certificate .. 393

Civil and Environmental Engineering .. 394

Civil Engineering - BS, Coastal and Ocean Engineering Track .. 397

Civil Engineering - BS, Construction Engineering and Management Track .. 399

Civil Engineering - BS, Environmental Engineering Track .. 401

Civil Engineering - BS, General Civil Engineering Track .. 404

Civil Engineering - BS, Geotechnical Engineering Track .. 406

Civil Engineering - BS, Structural Engineering Track .. 408

Civil Engineering - BS, Transportation Engineering Track .. 410

Civil Engineering - BS, Water Resources Engineering Track .. 412

Environmental Engineering - BS .. 415

Computer Science and Engineering .. 417

Computer Engineering - BS, Computer Science Track .. 419

Computer Science - BS .. 421

Computing - BA .. 423

Computer Science - Minor .. 424

Game Design and Development - Minor .. 424

Electrical and Computer Engineering .. 425

Computer Engineering - BS, Electrical Engineering Track .. 428

Electrical Engineering - BS .. 430

Electrical Engineering - Minor .. 431

Engineering Technology and Industrial Distribution .. 431

Electronic Systems Engineering Technology - BS .. 435

Industrial Distribution - BS .. 437

Manufacturing and Mechanical Engineering Technology - BS .. 439

Multidisciplinary Engineering Technology - BS, Electro Marine Engineering Technology Track .. 440

Multidisciplinary Engineering Technology - BS, Mechatronics Track .. 442

Multidisciplinary Engineering Technology - BS, STEM Education Track .. 444

Embedded Systems Integration - Minor .. 446

Industrial and Systems Engineering .. 447

Industrial Engineering - BS .. 449

Industrial Engineering - BS/MS, 3+2 Program .. 450

Industrial Engineering - BS/MS, 3+2 Program .. 452

Sport Management - BS, Non-internship Track .. 342

University Studies - BS, Dance Concentration .. 343

Coaching - Minor .. 344

Dance - Minor .. 345

Health - Minor .. 345

Sport Management - Minor .. 345

Teaching, Learning and Culture .. 346

Interdisciplinary Studies - BS, English Language Arts/Social Studies, Middle Grades Certification .. 349

Interdisciplinary Studies - BS, Math/Science, Middle Grades Certification .. 350

Interdisciplinary Studies - BS, PreK-6, Generalist Certification .. 351

Secondary Graduate Certification Program .. 352

Applied Learning in Science, Technology, Engineering and Mathematics (STEM) Minor .. 353

University Studies Programs .. 353

University Studies - BS, Child Professional Services Concentration .. 320

University Studies - BS, Dance Concentration .. 343

College of Engineering .. 357

Architectural Engineering - BS, Mechanical Systems for Buildings Track .. 364

Architectural Engineering - BS, Structural Systems for Buildings Track .. 366

Biological and Agricultural Engineering - BS .. 367

Interdisciplinary Engineering - BS .. 369

Interdisciplinary Engineering - BS/JD, 3+3 Program .. 371

Interdisciplinary Engineering - BS/MPH, 3+2 Program .. 373

Cybersecurity - Minor .. 374

Engineering Concepts - Minor .. 376

Engineering Project Management - Minor .. 376

Engineering Concept, Creation, and Commercialization - Certificate .. 377

Holistic Leadership in Engineering - Certificate .. 377

International Engineering - Certificate .. 377

Polymer Specialty - Certificate .. 378

Safety Engineering - Certificate .. 379

Aerospace Engineering .. 379

Aerospace Engineering - BS .. 382

Aerospace Engineering - Minor .. 383

Biomedical Engineering .. 384

Biomedical Engineering - BS .. 386

Biomedical Engineering - Minor .. 388
<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Engineering - Minor</td>
<td>454</td>
</tr>
<tr>
<td>Data Center Operations Engineering - Certificate</td>
<td>454</td>
</tr>
<tr>
<td>Engineering Systems Management - Certificate</td>
<td>455</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>455</td>
</tr>
<tr>
<td>Materials Science and Engineering - BS</td>
<td>459</td>
</tr>
<tr>
<td>Materials Science and Engineering - Minor</td>
<td>460</td>
</tr>
<tr>
<td>Corrosion Science and Engineering - Certificate</td>
<td>461</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>462</td>
</tr>
<tr>
<td>Mechanical Engineering - BS</td>
<td>466</td>
</tr>
<tr>
<td>Analysis, Design and Management of Energy Conversion Systems - Minor</td>
<td>468</td>
</tr>
<tr>
<td>Control of Mechanical Systems - Minor</td>
<td>468</td>
</tr>
<tr>
<td>Design and Simulation of Mechanical Systems - Minor</td>
<td>468</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>469</td>
</tr>
<tr>
<td>Nuclear Engineering - BS</td>
<td>470</td>
</tr>
<tr>
<td>Nuclear Engineering - Minor</td>
<td>472</td>
</tr>
<tr>
<td>Radiological Health Engineering - Minor</td>
<td>472</td>
</tr>
<tr>
<td>Ocean Engineering</td>
<td>472</td>
</tr>
<tr>
<td>Ocean Engineering - BS</td>
<td>474</td>
</tr>
<tr>
<td>Petroleum Engineering</td>
<td>475</td>
</tr>
<tr>
<td>Petroleum Engineering - BS</td>
<td>477</td>
</tr>
<tr>
<td>Petroleum Engineering - Minor</td>
<td>479</td>
</tr>
<tr>
<td>Energy Engineering - Certificate</td>
<td>479</td>
</tr>
<tr>
<td>Petroleum Ventures - Certificate</td>
<td>479</td>
</tr>
<tr>
<td>Environmental Geoscience</td>
<td>481</td>
</tr>
<tr>
<td>Environmental Geoscience - BS</td>
<td>483</td>
</tr>
<tr>
<td>Environmental Geoscience - BS/MOST, 3+2 Program</td>
<td>487</td>
</tr>
<tr>
<td>Environmental Studies - BS</td>
<td>488</td>
</tr>
<tr>
<td>Climate Change - Minor</td>
<td>491</td>
</tr>
<tr>
<td>Earth Sciences - Minor</td>
<td>491</td>
</tr>
<tr>
<td>Environmental Geosciences - Minor</td>
<td>492</td>
</tr>
<tr>
<td>Atmospheric Sciences</td>
<td>492</td>
</tr>
<tr>
<td>Meteorology - BS</td>
<td>493</td>
</tr>
<tr>
<td>Meteorology - BS/MOST, 3+2 Program</td>
<td>495</td>
</tr>
<tr>
<td>Meteorology - Minor</td>
<td>496</td>
</tr>
<tr>
<td>Geography</td>
<td>497</td>
</tr>
<tr>
<td>Geographic Information Science and Technology - BS, Computation,</td>
<td>498</td>
</tr>
<tr>
<td>Design and Analysis Track</td>
<td></td>
</tr>
<tr>
<td>Geographic Information Science and Technology - BS, Earth Systems and</td>
<td>499</td>
</tr>
<tr>
<td>Analysis Track</td>
<td></td>
</tr>
<tr>
<td>Geographic Information Science and Technology - BS, Human Systems and</td>
<td>502</td>
</tr>
<tr>
<td>Society Track</td>
<td></td>
</tr>
<tr>
<td>Geography - BS</td>
<td>504</td>
</tr>
<tr>
<td>University Studies - BS, Geographic Information Science and</td>
<td>505</td>
</tr>
<tr>
<td>Technology Concentration</td>
<td></td>
</tr>
<tr>
<td>University Studies - BS, Geography Concentration</td>
<td>506</td>
</tr>
<tr>
<td>Geographic Information Science and Technology - Minor</td>
<td>508</td>
</tr>
<tr>
<td>Geography - Minor</td>
<td>508</td>
</tr>
<tr>
<td>Geology and Geophysics</td>
<td>509</td>
</tr>
<tr>
<td>Geology - BA</td>
<td>510</td>
</tr>
<tr>
<td>Geology - BA/MOST, 3+2 Program</td>
<td>511</td>
</tr>
<tr>
<td>Geology - BS</td>
<td>513</td>
</tr>
<tr>
<td>Geology - BS/MOST, 3+2 Program</td>
<td>514</td>
</tr>
<tr>
<td>Geology - BS/MS, 3+2 Program</td>
<td>516</td>
</tr>
<tr>
<td>Geophysics - BS</td>
<td>517</td>
</tr>
<tr>
<td>Geophysics - BS/MOST, 3+2 Program</td>
<td>518</td>
</tr>
<tr>
<td>Geology - Minor</td>
<td>519</td>
</tr>
<tr>
<td>Geophysics - Minor</td>
<td>520</td>
</tr>
<tr>
<td>Oceanography</td>
<td>520</td>
</tr>
<tr>
<td>Oceanography - BS, Marine Ecosystem Science and Health Track</td>
<td>521</td>
</tr>
<tr>
<td>Oceanography - BS, Ocean Climate Track</td>
<td>522</td>
</tr>
<tr>
<td>Oceanography - BS, Ocean Observing Science and Technology Track</td>
<td>523</td>
</tr>
<tr>
<td>Oceanography - BS/MOST, Marine Ecosystem Science and Health Track 3+</td>
<td>524</td>
</tr>
<tr>
<td>Oceanography - BS/MOST, Ocean Climate Track 3+2 Program</td>
<td>526</td>
</tr>
<tr>
<td>Oceanography - BS/MOST, Ocean Observing Science and Technology Track 3+</td>
<td>527</td>
</tr>
<tr>
<td>Oceanography - Minor</td>
<td>528</td>
</tr>
<tr>
<td>University Studies Programs</td>
<td>528</td>
</tr>
<tr>
<td>University Studies - BS, Geographic Information Science and</td>
<td>505</td>
</tr>
<tr>
<td>Technology Concentration</td>
<td></td>
</tr>
<tr>
<td>University Studies - BS, Geography Concentration</td>
<td>506</td>
</tr>
<tr>
<td>College of Liberal Arts</td>
<td>532</td>
</tr>
<tr>
<td>Women's and Gender Studies - BA</td>
<td>541</td>
</tr>
<tr>
<td>Women's and Gender Studies - BS</td>
<td>542</td>
</tr>
<tr>
<td>Africana Studies - Minor</td>
<td>543</td>
</tr>
<tr>
<td>Comparative Cultural Studies International - Minor</td>
<td>544</td>
</tr>
<tr>
<td>Comparative Cultural Studies U.S. - Minor</td>
<td>546</td>
</tr>
<tr>
<td>Film Studies - Minor</td>
<td>546</td>
</tr>
<tr>
<td>Global Culture and Society - Minor</td>
<td>547</td>
</tr>
<tr>
<td>Latino/a and Mexican-American Studies - Minor</td>
<td>547</td>
</tr>
<tr>
<td>Religious Studies - Minor</td>
<td>548</td>
</tr>
<tr>
<td>Women's and Gender Studies - Minor</td>
<td>548</td>
</tr>
<tr>
<td>Diversity - Certificate</td>
<td>549</td>
</tr>
<tr>
<td>Program</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Neuroscience - BS, Behavioral and Cognitive Neuroscience</td>
<td>639</td>
</tr>
<tr>
<td>Track</td>
<td></td>
</tr>
<tr>
<td>Psychology - BA</td>
<td>640</td>
</tr>
<tr>
<td>Psychology - BS</td>
<td>642</td>
</tr>
<tr>
<td>Psychology - Minor</td>
<td>644</td>
</tr>
<tr>
<td>Applied Behavioral Health - Certificate</td>
<td>644</td>
</tr>
<tr>
<td>Healthy Development - Certificate</td>
<td>644</td>
</tr>
<tr>
<td>Psychology of Diversity - Certificate</td>
<td>645</td>
</tr>
<tr>
<td>Work and Organizations - Certificate</td>
<td>645</td>
</tr>
<tr>
<td>Sociology</td>
<td>645</td>
</tr>
<tr>
<td>Sociology - BA</td>
<td>647</td>
</tr>
<tr>
<td>Sociology - BA/MPSA, 3+2 Program</td>
<td>649</td>
</tr>
<tr>
<td>Sociology - BS</td>
<td>650</td>
</tr>
<tr>
<td>Sociology - BS/MPSA, 3+2 Program</td>
<td>652</td>
</tr>
<tr>
<td>Sociology - Minor</td>
<td>654</td>
</tr>
<tr>
<td>University Studies Programs</td>
<td>654</td>
</tr>
<tr>
<td>University Studies - BA, Race, Gender, Ethnicity Concentration</td>
<td>655</td>
</tr>
<tr>
<td>University Studies - BA, Religious Thought, Practices and Cultures Concentration</td>
<td>656</td>
</tr>
<tr>
<td>University Studies - BA, Society, Ethics and Law Concentration</td>
<td>657</td>
</tr>
<tr>
<td>University Studies - BS, Health Humanities Concentration</td>
<td>659</td>
</tr>
<tr>
<td>University Studies - BS, Liberal Arts Concentration</td>
<td>660</td>
</tr>
<tr>
<td>University Studies - BS, Race, Gender, Ethnicity Concentration</td>
<td>661</td>
</tr>
<tr>
<td>College of Nursing</td>
<td>664</td>
</tr>
<tr>
<td>Nursing - BSN, RN to BSN Track</td>
<td>668</td>
</tr>
<tr>
<td>Nursing - BSN, Second Degree BSN Track</td>
<td>669</td>
</tr>
<tr>
<td>Nursing - BSN, Traditional BSN</td>
<td>670</td>
</tr>
<tr>
<td>School of Public Health</td>
<td>672</td>
</tr>
<tr>
<td>Public Health - BS</td>
<td>673</td>
</tr>
<tr>
<td>Public Health - BS/MPH, 3+2 Program</td>
<td>676</td>
</tr>
<tr>
<td>Global Health - Minor</td>
<td>677</td>
</tr>
<tr>
<td>Occupational Health and Safety - Minor</td>
<td>678</td>
</tr>
<tr>
<td>Public Health Studies - Minor</td>
<td>678</td>
</tr>
<tr>
<td>College of Science</td>
<td>679</td>
</tr>
<tr>
<td>Biology</td>
<td>682</td>
</tr>
<tr>
<td>Biology - BA</td>
<td>688</td>
</tr>
<tr>
<td>Biology - BS</td>
<td>689</td>
</tr>
<tr>
<td>Microbiology - BS</td>
<td>690</td>
</tr>
<tr>
<td>Molecular and Cell Biology - BS</td>
<td>692</td>
</tr>
<tr>
<td>Neuroscience - BS, Molecular and Cellular Neuroscience Track</td>
<td>693</td>
</tr>
<tr>
<td>Zoology - BS</td>
<td>694</td>
</tr>
<tr>
<td>Bioinformatics - Minor</td>
<td>696</td>
</tr>
<tr>
<td>Biology - Minor</td>
<td>696</td>
</tr>
<tr>
<td>Pre-Medicine - Minor</td>
<td>696</td>
</tr>
<tr>
<td>Chemistry</td>
<td>697</td>
</tr>
<tr>
<td>Chemistry - BA</td>
<td>700</td>
</tr>
<tr>
<td>Chemistry - BA, Biological Chemistry or Medical, Dental, Pharmacy School Track</td>
<td>702</td>
</tr>
<tr>
<td>Chemistry - BA, Chemical Education Track</td>
<td>703</td>
</tr>
<tr>
<td>Chemistry - BA, Environmental Chemistry Track</td>
<td>705</td>
</tr>
<tr>
<td>Chemistry - BS</td>
<td>707</td>
</tr>
<tr>
<td>Chemistry - BS, Biological-Chemistry Track</td>
<td>709</td>
</tr>
<tr>
<td>Chemistry - BS, Environmental Chemistry Track</td>
<td>710</td>
</tr>
<tr>
<td>Chemistry - BS, Materials Chemistry Track</td>
<td>712</td>
</tr>
<tr>
<td>Chemistry - Minor</td>
<td>713</td>
</tr>
<tr>
<td>Mathematics</td>
<td>714</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Actuarial Science Emphasis</td>
<td>718</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Biological Science Emphasis</td>
<td>720</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Computational Science Emphasis</td>
<td>721</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Cryptography Emphasis</td>
<td>722</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Economics Emphasis</td>
<td>724</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Math Emphasis</td>
<td>725</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS, Statistics Emphasis</td>
<td>727</td>
</tr>
<tr>
<td>Applied Mathematical Sciences - BS/MS, 3+2 Program</td>
<td>728</td>
</tr>
<tr>
<td>Mathematics - BA</td>
<td>730</td>
</tr>
<tr>
<td>Mathematics - BA/MS, 3+2 Program</td>
<td>732</td>
</tr>
<tr>
<td>Mathematics - BS</td>
<td>733</td>
</tr>
<tr>
<td>Mathematics - BS/MS, 3+2 Program</td>
<td>735</td>
</tr>
<tr>
<td>Mathematics - Minor</td>
<td>737</td>
</tr>
<tr>
<td>Physics and Astronomy</td>
<td>737</td>
</tr>
<tr>
<td>Physics - BA</td>
<td>740</td>
</tr>
<tr>
<td>Physics - BS</td>
<td>741</td>
</tr>
<tr>
<td>Physics - BS, Astrophysics Track</td>
<td>742</td>
</tr>
<tr>
<td>Physics - BS, Business Track</td>
<td>743</td>
</tr>
<tr>
<td>Physics - BS, Computational Science Track</td>
<td>744</td>
</tr>
<tr>
<td>Astrophysics - Minor</td>
<td>745</td>
</tr>
<tr>
<td>Physics - Minor</td>
<td>746</td>
</tr>
<tr>
<td>Statistics</td>
<td>746</td>
</tr>
<tr>
<td>Statistics - BS</td>
<td>748</td>
</tr>
</tbody>
</table>
Statistics - BS/MS, 3+2 Program ... 749
Statistics - Minor ... 750
University Studies Programs ... 751
University Studies - BS, Arts and Sciences Concentration 751
University Studies - BS, Bioinformatics Concentration 752
University Studies - BS, Mathematics for Business Concentration ... 753
University Studies - BS, Mathematics for Pre-Professionals Concentration ... 753
University Studies - BS, Mathematics for Teaching Concentration ... 754
University Studies - BS, Science for Secondary Teaching Concentration ... 755
College of Veterinary Medicine and Biomedical Sciences ... 756
Biomedical Sciences - BS ... 757
Neuroscience - BS, Translational and Preclinical Neuroscience Track ... 760
Biomedical Sciences - Minor ... 761
International Certificate in Cultural Competency and Communications in Spanish ... 762
Small Animal Clinical Sciences ... 762
Veterinary Integrative Biosciences ... 764
Veterinary Large Animal Clinical Sciences 766
Veterinary Pathobiology ... 767
Veterinary Physiology and Pharmacology 769
Biomedical Research and Development - Certificate 770
University Studies Programs ... 770
University Studies - BS, Biomedical Sciences Concentration ... 771
School of Military Science ... 773
Military Studies - Minor ... 773
Leadership Study and Development - Certificate 774
Aerospace Studies ... 775
Military Science ... 775
Naval Science ... 776
Texas A&M University at Galveston ... 778
General Information ... 780
Foundational Sciences ... 807
University Studies - BS, Oceans and One Health Concentration ... 808
Liberal Studies ... 808
Maritime Studies - BA ... 810
University Studies - BS, Marine Environmental Law and Policy Concentration ... 811
University Studies - BS, Tourism and Coastal Community Development Concentration ... 812
Diving Technology and Methods - Minor ... 813
Maritime Studies - Minor ... 814
Marine and Coastal Environmental Science ... 814
Coastal Environmental Science and Society - BS ... 815
Coastal Environmental Science and Society - BS/MARM, 3+2 Program ... 817
Marine Sciences - BS ... 818
Marine Sciences - BS, License Option ... 820
Clinical Laboratory Sciences - Minor ... 822
Coastal Environmental Science and Society - Minor ... 822
Marine Biology ... 823
Marine Biology - BS ... 824
Marine Biology - BS, License Option ... 825
Marine Fisheries - BS ... 827
Marine Biology - Minor ... 828
Marine Engineering Technology ... 828
Marine Engineering Technology - BS ... 829
Marine Engineering Technology - BS, License Option ... 830
Maritime Business Administration ... 832
Maritime Business Administration - BS ... 832
Maritime Business Administration - BS/MMB, 3+2 Program ... 834
Maritime Business Administration - Minor ... 836
Maritime Transportation ... 837
Marine Transportation - BS ... 837
Texas A&M University at Qatar ... 840
Political Science - Minor ... 844
General Information ... 844
Chemical Engineering Program ... 861
Chemical Engineering - BS ... 862
Electrical and Computer Engineering Program ... 863
Electrical Engineering - BS ... 863
Mechanical Engineering Program ... 865
Mechanical Engineering - BS ... 866
Petroleum Engineering Program ... 867
Petroleum Engineering - BS ... 867
Supporting Academic Programs ... 869
Course Descriptions ... 871
AALO - Arabic & Asian Language (AALO) ... 871
ACCT - Accounting (ACCT) ... 871
AERO - Aerospace Engineering (AERO) ... 873
<table>
<thead>
<tr>
<th>Code</th>
<th>Department</th>
<th>Code</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERS</td>
<td>Aerospace Studies (AERS)</td>
<td>DDHS</td>
<td>Dental Hygiene (DDHS)</td>
</tr>
<tr>
<td>AFST</td>
<td>Africana Studies (AFST)</td>
<td>DIVE</td>
<td>Diving Tech and Methods (DIVE)</td>
</tr>
<tr>
<td>AGCJ</td>
<td>Ag Comm & Journalism (AGCJ)</td>
<td>ECEN</td>
<td>Electrical & Comp Engr (ECEN)</td>
</tr>
<tr>
<td>AGEC</td>
<td>Agricultural Economics (AGEC)</td>
<td>ECHE</td>
<td>Early Chldhd Ed Fld Based (ECHE)</td>
</tr>
<tr>
<td>AGLS</td>
<td>Ag & Life Sciences (AGLS)</td>
<td>ECMT</td>
<td>Econometrics (ECMT)</td>
</tr>
<tr>
<td>AGSC</td>
<td>Agricultural Science (AGSC)</td>
<td>ECON</td>
<td>Economics (ECON)</td>
</tr>
<tr>
<td>AGSM</td>
<td>Agrictrl Systems Mgmt (AGSM)</td>
<td>EDCI</td>
<td>Educ Curriculum & Dev (EDCI)</td>
</tr>
<tr>
<td>ALEC</td>
<td>Ag Leadership, Ed & Comm (ALEC)</td>
<td>EDTC</td>
<td>Educational Technology (EDTC)</td>
</tr>
<tr>
<td>ALED</td>
<td>Ag Leadership & Dev (ALED)</td>
<td>EHRD</td>
<td>Ed Human Res Develop (EHRD)</td>
</tr>
<tr>
<td>ANSC</td>
<td>Animal Science (ANSC)</td>
<td>ENDG</td>
<td>Engr Design Graphics (ENDG)</td>
</tr>
<tr>
<td>ANTH</td>
<td>Anthropology (ANTH)</td>
<td>ENDS</td>
<td>Environmental Design (ENDS)</td>
</tr>
<tr>
<td>ARAB</td>
<td>Arabic (ARAB)</td>
<td>ENGL</td>
<td>English (ENGL)</td>
</tr>
<tr>
<td>ARCH</td>
<td>Architecture (ARCH)</td>
<td>ENGR</td>
<td>Engineering (ENGR)</td>
</tr>
<tr>
<td>AREN</td>
<td>Architectural Engr (AREN)</td>
<td>ENST</td>
<td>Environmental Studies (ENST)</td>
</tr>
<tr>
<td>ARTS</td>
<td>Art (ARTS)</td>
<td>ENTC</td>
<td>Engineering Technology (ENTC)</td>
</tr>
<tr>
<td>ASCC</td>
<td>Academic Success Center (ASCC)</td>
<td>ENTO</td>
<td>Entomology (ENTO)</td>
</tr>
<tr>
<td>ASIA</td>
<td>Asian Studies (ASIA)</td>
<td>EPFB</td>
<td>Educ Psyc Field Based (EPFB)</td>
</tr>
<tr>
<td>ASTR</td>
<td>Astronomy (ASTR)</td>
<td>EPSY</td>
<td>Educational Psychology (EPSY)</td>
</tr>
<tr>
<td>ATMO</td>
<td>Atmospheric Sciences (ATMO)</td>
<td>ESET</td>
<td>Electronic Sys Eng Tech (ESET)</td>
</tr>
<tr>
<td>ATTR</td>
<td>Athletic Training (ATTR)</td>
<td>ESSM</td>
<td>Ecosystem Science & Mgmt (ESSM)</td>
</tr>
<tr>
<td>BAEN</td>
<td>Biological & Ag Engr (BAEN)</td>
<td>EURO</td>
<td>European Studies (EURO)</td>
</tr>
<tr>
<td>BEFB</td>
<td>Bilingual Ed Field Based (BEFB)</td>
<td>EVEN</td>
<td>Environmental Engr (EVEN)</td>
</tr>
<tr>
<td>BESC</td>
<td>Bioenvironmental Sci (BESC)</td>
<td>FILM</td>
<td>Film Studies (FILM)</td>
</tr>
<tr>
<td>BICH</td>
<td>Biochemistry (BICH)</td>
<td>FINC</td>
<td>Finance (FINC)</td>
</tr>
<tr>
<td>BIMS</td>
<td>Biomedical Science (BIMS)</td>
<td>FIVS</td>
<td>Forensic & Inv Science (FIVS)</td>
</tr>
<tr>
<td>BIOL</td>
<td>Biology (BIOL)</td>
<td>FREN</td>
<td>French (FREN)</td>
</tr>
<tr>
<td>BMEN</td>
<td>Biomedical Engineering (BMEN)</td>
<td>FRSC</td>
<td>Forest Science (FRSC)</td>
</tr>
<tr>
<td>BOTN</td>
<td>Botany (BOTN)</td>
<td>FSTC</td>
<td>Food Science & Tech (FSTC)</td>
</tr>
<tr>
<td>BUSN</td>
<td>Mays Business School (BUSN)</td>
<td>GALV</td>
<td>TAMUG Study Abroad (GALV)</td>
</tr>
<tr>
<td>CARC</td>
<td>College of Architecture (CARC)</td>
<td>GENE</td>
<td>Genetics (GENE)</td>
</tr>
<tr>
<td>CEHD</td>
<td>Coll of Ed & Human Dev (CEHD)</td>
<td>GEOG</td>
<td>Geography (GEOG)</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry (CHEM)</td>
<td>GEOL</td>
<td>Geology (GEOL)</td>
</tr>
<tr>
<td>CHEN</td>
<td>Chemical Engineering (CHEN)</td>
<td>GEOP</td>
<td>Geophysics (GEOP)</td>
</tr>
<tr>
<td>CHIN</td>
<td>Chinese (CHIN)</td>
<td>GEOS</td>
<td>Geosciences (GEOS)</td>
</tr>
<tr>
<td>CLAS</td>
<td>Classics (CLAS)</td>
<td>GERM</td>
<td>German (GERM)</td>
</tr>
<tr>
<td>COMM</td>
<td>Communication (COMM)</td>
<td>HBRW</td>
<td>Hebrew (HBRW)</td>
</tr>
<tr>
<td>COSC</td>
<td>Construction Science (COSC)</td>
<td>HEBF</td>
<td>Health Ed Field Based (HEBF)</td>
</tr>
<tr>
<td>CSCE</td>
<td>Computer Sci & Engr (CSCE)</td>
<td>HHUM</td>
<td>Health Humanities (HHUM)</td>
</tr>
<tr>
<td>CVEN</td>
<td>Civil Engineering (CVEN)</td>
<td>HISP</td>
<td>Hispanic Studies (HISP)</td>
</tr>
<tr>
<td>CYBR</td>
<td>Cybersecurity (CYBR)</td>
<td>HIST</td>
<td>History (HIST)</td>
</tr>
<tr>
<td>DASC</td>
<td>Dairy Science (DASC)</td>
<td>HLTH</td>
<td>Health (HLTH)</td>
</tr>
<tr>
<td>DCED</td>
<td>Dance Education (DCED)</td>
<td>HORT</td>
<td>Horticultural Sciences (HORT)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>HUMA</td>
<td>Humanities (HUMA)</td>
<td>1027</td>
<td></td>
</tr>
<tr>
<td>IBUS</td>
<td>International Business (IBUS)</td>
<td>1027</td>
<td></td>
</tr>
<tr>
<td>IDIS</td>
<td>Industrial Distribution (IDIS)</td>
<td>1028</td>
<td></td>
</tr>
<tr>
<td>INST</td>
<td>Interdisciplinary Studies (INST)</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>INTS</td>
<td>International Studies (INTS)</td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>ISEN</td>
<td>Indust & Systems Engr (ISEN)</td>
<td>1032</td>
<td></td>
</tr>
<tr>
<td>ISTM</td>
<td>Mgmt Info Systems (ISTM)</td>
<td>1034</td>
<td></td>
</tr>
<tr>
<td>ITAL</td>
<td>Italian (ITAL)</td>
<td>1037</td>
<td></td>
</tr>
<tr>
<td>ITDE</td>
<td>Interdisciplinary Engr (ITDE)</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>JAPN</td>
<td>Japanese (JAPN)</td>
<td>1038</td>
<td></td>
</tr>
<tr>
<td>JOUR</td>
<td>Journalism (JOUR)</td>
<td>1039</td>
<td></td>
</tr>
<tr>
<td>KINE</td>
<td>Kinesiology (KINE)</td>
<td>1041</td>
<td></td>
</tr>
<tr>
<td>KNFB</td>
<td>Kinesiology Field Based (KNFB)</td>
<td>1045</td>
<td></td>
</tr>
<tr>
<td>LAND</td>
<td>Landscape Architecture (LAND)</td>
<td>1045</td>
<td></td>
</tr>
<tr>
<td>LBAR</td>
<td>College of Liberal Arts (LBAR)</td>
<td>1047</td>
<td></td>
</tr>
<tr>
<td>LDEV</td>
<td>Land Development (LDEV)</td>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>LING</td>
<td>Linguistics (LING)</td>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>LMAS</td>
<td>Latino/Mex Amer Studies (LMAS)</td>
<td>1048</td>
<td></td>
</tr>
<tr>
<td>MARA</td>
<td>Maritime Administration (MARA)</td>
<td>1049</td>
<td></td>
</tr>
<tr>
<td>MARB</td>
<td>Marine Biology (MARB)</td>
<td>1051</td>
<td></td>
</tr>
<tr>
<td>MARE</td>
<td>Marine Engr Technology (MARE)</td>
<td>1054</td>
<td></td>
</tr>
<tr>
<td>MARR</td>
<td>Marine Engr Technology (MARR)</td>
<td>1057</td>
<td></td>
</tr>
<tr>
<td>MARS</td>
<td>Marine Science (MARS)</td>
<td>1057</td>
<td></td>
</tr>
<tr>
<td>MART</td>
<td>Marine Transportation (MART)</td>
<td>1060</td>
<td></td>
</tr>
<tr>
<td>MASC</td>
<td>Integrated Math & Sci (MASC)</td>
<td>1063</td>
<td></td>
</tr>
<tr>
<td>MASE</td>
<td>Maritime Systems Engr (MASE)</td>
<td>1064</td>
<td></td>
</tr>
<tr>
<td>MAST</td>
<td>Maritime Studies (MAST)</td>
<td>1064</td>
<td></td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics (MATH)</td>
<td>1066</td>
<td></td>
</tr>
<tr>
<td>MEEN</td>
<td>Mechanical Engineering (MEEN)</td>
<td>1071</td>
<td></td>
</tr>
<tr>
<td>MEBF</td>
<td>Mid Grds Ed Field Based (MEBF)</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>MEPS</td>
<td>Molecular & Env Plant Sci (MEPS)</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>METR</td>
<td>Meteorology (METR)</td>
<td>1076</td>
<td></td>
</tr>
<tr>
<td>MGMT</td>
<td>Management (MGMT)</td>
<td>1076</td>
<td></td>
</tr>
<tr>
<td>MICR</td>
<td>Microbiology (MICR)</td>
<td>1079</td>
<td></td>
</tr>
<tr>
<td>MKTG</td>
<td>Marketing (MKTG)</td>
<td>1079</td>
<td></td>
</tr>
<tr>
<td>MLSC</td>
<td>Military Science (MLSC)</td>
<td>1081</td>
<td></td>
</tr>
<tr>
<td>MMET</td>
<td>Mfg & Mech Engr Tech (MMET)</td>
<td>1082</td>
<td></td>
</tr>
<tr>
<td>MODL</td>
<td>Modern Languages (MODL)</td>
<td>1084</td>
<td></td>
</tr>
<tr>
<td>MSEN</td>
<td>Materials Science & Engr (MSEN)</td>
<td>1085</td>
<td></td>
</tr>
<tr>
<td>MUSC</td>
<td>Music (MUSC)</td>
<td>1087</td>
<td></td>
</tr>
<tr>
<td>MUST</td>
<td>Museum Studies (MUST)</td>
<td>1089</td>
<td></td>
</tr>
<tr>
<td>MXET</td>
<td>Multidiscip Engr Tech (MXET)</td>
<td>1089</td>
<td></td>
</tr>
<tr>
<td>NAUT</td>
<td>Nautical Science (NAUT)</td>
<td>1090</td>
<td></td>
</tr>
<tr>
<td>NFSC</td>
<td>Nutrition and Food Science (NFSC)</td>
<td>1090</td>
<td></td>
</tr>
<tr>
<td>NRSC</td>
<td>Neuroscience (NRSC)</td>
<td>1093</td>
<td></td>
</tr>
<tr>
<td>NUEN</td>
<td>Nuclear Engineering (NUEN)</td>
<td>1095</td>
<td></td>
</tr>
<tr>
<td>NURS</td>
<td>Nursing (NURS)</td>
<td>1097</td>
<td></td>
</tr>
<tr>
<td>NVSC</td>
<td>Naval Science (NVSC)</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>OCEN</td>
<td>Ocean Engineering (OCEN)</td>
<td>1101</td>
<td></td>
</tr>
<tr>
<td>OCNG</td>
<td>Oceanography (OCNG)</td>
<td>1104</td>
<td></td>
</tr>
<tr>
<td>OCRE</td>
<td>Ocean & Coastal Resources (OCRE)</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>PERF</td>
<td>Performance Studies (PERF)</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>PETER</td>
<td>Petroleum Engineering (PETE)</td>
<td>1107</td>
<td></td>
</tr>
<tr>
<td>PHIL</td>
<td>Philosophy (PHIL)</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>PHLT</td>
<td>Public Health (PHLT)</td>
<td>1113</td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td>Physics (PHYS)</td>
<td>1115</td>
<td></td>
</tr>
<tr>
<td>PLPA</td>
<td>Plant Pathology (PLPA)</td>
<td>1118</td>
<td></td>
</tr>
<tr>
<td>POLS</td>
<td>Political Science (POLS)</td>
<td>1118</td>
<td></td>
</tr>
<tr>
<td>PORT</td>
<td>Portuguese (PORT)</td>
<td>1123</td>
<td></td>
</tr>
<tr>
<td>POSC</td>
<td>Poultry Science (POSC)</td>
<td>1123</td>
<td></td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychology (PSYC)</td>
<td>1125</td>
<td></td>
</tr>
<tr>
<td>RENG</td>
<td>Reading (RENG)</td>
<td>1128</td>
<td></td>
</tr>
<tr>
<td>RELS</td>
<td>Religious Studies (RELS)</td>
<td>1129</td>
<td></td>
</tr>
<tr>
<td>RENR</td>
<td>Renewable Natural Rescres (RENR)</td>
<td>1132</td>
<td></td>
</tr>
<tr>
<td>RLEM</td>
<td>Rangeland Ecology & Mgmt (RLEM)</td>
<td>1132</td>
<td></td>
</tr>
<tr>
<td>RPTS</td>
<td>Rec, Park & Tourism Sci (RPTS)</td>
<td>1133</td>
<td></td>
</tr>
<tr>
<td>RUSS</td>
<td>Russian (RUSS)</td>
<td>1136</td>
<td></td>
</tr>
<tr>
<td>SCEN</td>
<td>College of Science (SCEN)</td>
<td>1137</td>
<td></td>
</tr>
<tr>
<td>SCMT</td>
<td>Supply Chain Mgmt (SCMT)</td>
<td>1137</td>
<td></td>
</tr>
<tr>
<td>SCSC</td>
<td>Soil and Crop Sciences (SCSC)</td>
<td>1139</td>
<td></td>
</tr>
<tr>
<td>SEFB</td>
<td>Special Ed Field Based (SEFB)</td>
<td>1141</td>
<td></td>
</tr>
<tr>
<td>SENG</td>
<td>Safety Engineering (SENG)</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>SOCI</td>
<td>Sociology (SOCI)</td>
<td>1142</td>
<td></td>
</tr>
<tr>
<td>SOMS</td>
<td>Schl of Military Sciences (SOMS)</td>
<td>1146</td>
<td></td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish (SPAN)</td>
<td>1147</td>
<td></td>
</tr>
<tr>
<td>SPED</td>
<td>Special Education (SPED)</td>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>SPMT</td>
<td>Sport Management (SPMT)</td>
<td>1151</td>
<td></td>
</tr>
<tr>
<td>SPSC</td>
<td>Spatial Sciences (SPSC)</td>
<td>1154</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics (STAT)</td>
<td>1154</td>
<td></td>
</tr>
<tr>
<td>TCMG</td>
<td>Technology Management (TCMG)</td>
<td>1156</td>
<td></td>
</tr>
<tr>
<td>TEED</td>
<td>Teacher Education (TEED)</td>
<td>1157</td>
<td></td>
</tr>
<tr>
<td>TEBF</td>
<td>Teacher Ed Field Based (TEBF)</td>
<td>1157</td>
<td></td>
</tr>
<tr>
<td>THAR</td>
<td>Theatre Arts (THAR)</td>
<td>1158</td>
<td></td>
</tr>
<tr>
<td>UGST</td>
<td>Undergraduate Studies (UGST)</td>
<td>1159</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Description</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>URPN</td>
<td>Urban & Reg Planning (URPN)</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td>VIBS</td>
<td>Vet Integrative Biosci (VIBS)</td>
<td>1162</td>
<td></td>
</tr>
<tr>
<td>VIST</td>
<td>Visual Studies (VIST)</td>
<td>1164</td>
<td></td>
</tr>
<tr>
<td>VLCS</td>
<td>Vet Large Animal Clin Sc (VLCS)</td>
<td>1167</td>
<td></td>
</tr>
<tr>
<td>VSCS</td>
<td>Vet Small Animal Clin Sc (VSCS)</td>
<td>1167</td>
<td></td>
</tr>
<tr>
<td>VTPB</td>
<td>Veterinary Pathobiology (VTPB)</td>
<td>1167</td>
<td></td>
</tr>
<tr>
<td>VTPP</td>
<td>Vet Physiology & Pharm (VTPP)</td>
<td>1168</td>
<td></td>
</tr>
<tr>
<td>WFSC</td>
<td>Wildlife & Fisheries Sci (WFSC)</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>WGST</td>
<td>Women's & Gender Studies (WGST)</td>
<td>1173</td>
<td></td>
</tr>
<tr>
<td>ZOOL</td>
<td>Zoology (ZOOL)</td>
<td>1177</td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td></td>
<td>1178</td>
<td></td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>1299</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Family Educational Rights and Privacy Act</td>
<td>1299</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazing Law Summary (Education Code)</td>
<td>1300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Agreements</td>
<td>1301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jeanne Clery Disclosure of Campus Security Policy</td>
<td>1304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crime Statistics Act (Clery Act)</td>
<td>1304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notification for Students Pursuing an Occupational</td>
<td>1304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>License</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oak Ridge Associated Universities (ORAU)</td>
<td>1305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules and Regulations for Determining Residence</td>
<td>1305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scholastic Honor Societies</td>
<td>1305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas Common Course Numbering System</td>
<td>1306</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>1310</td>
<td></td>
</tr>
</tbody>
</table>
UNDERGRADUATE CATALOG

Purpose of Catalogs

The Undergraduate and Graduate and Professional catalogs provide information about the academic programs of Texas A&M University to students, prospective students, faculty and staff of the University. Included is information concerning admissions, academic regulations and requirements, services available to students, academic offerings and a list of the administrative officers and faculty of the University. While every effort has been made to make this catalog as complete and accurate as possible, changes may occur at any time in requirements, deadlines, fees, curricula and courses listed in these catalogs.

Students should refer to Howdy, for course offerings in any given semester. For administrative reasons, because of insufficient enrollment or because of limited resources, any given course might not be offered in the announced semester.

This catalog was prepared in advance of its effective date; therefore, the course descriptions may vary from actual course content. The provisions of the catalogs do not constitute a contract, express or implied, between any applicant, student, faculty or staff member of Texas A&M University or The Texas A&M University System. These catalogs are for informational purposes only. The University reserves the right to change or alter any statement herein without prior notice. Neither catalog should be interpreted to allow a student who begins his or her education under either catalog to continue the program under the provisions in that catalog.

Accreditation

Texas A&M University is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award degrees at the bachelors’, masters’, doctoral and professional levels. Contact the Southern Association of Colleges and Schools Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4500 for questions about the accreditation of Texas A&M University.

College of Agriculture and Life Sciences

Agricultural Systems Management curriculum is recognized by the American Society of Agricultural and Biological Engineers (ASABE) (http://www.asabe.org/).

Biological and Agricultural Engineering is accredited by the Accreditation Board for Engineering and Technology (ABET (http://main.abet.org/aps/Accreditedprogramsearch.aspx)).

Biochemistry and Biophysics curriculum is accredited by the American Society for Biochemistry and Molecular Biology (ASBMB) (http://www.asmb.org/).

Didactic Program in Dietetics is accredited by the Commission on Accreditation for Dietetics Education (https://www.cdrnet.org/).

Forestry curriculum is accredited by the Society of American Foresters (SAF) (http://www.eforester.org/).

Food Science and Technology curriculum is approved by the Institute of Food Technologists (IFT) (https://www.ift.org/).

Forensics and Investigative Sciences program is accredited by the Forensic Science Education Programs Accreditation Commission (FEPAC) (http://fepac-edu.org/).

Rangeland Ecology and Management curriculum is accredited by the Society for Range Management (SRM).

Recreation, Park and Tourism Sciences undergraduate curriculum is accredited by the National Recreation and Park Association (NRPA) (http://www.nrpa.org/).

College of Architecture

Architecture is accredited by the National Architectural Accrediting Board (NAAB) (http://www.naab.org/).

Construction Science curriculum is accredited by the American Council for Construction Education (ACCE) (http://www.acce-hq.org/).

Landscape Architecture curriculum is accredited by the Landscape Architectural Accreditation Board (LAAB) (https://www.asla.org/accreditationlaab.aspx).

Urban and Regional Planning curriculum is accredited by the Planning Accreditation Board (PAB) (http://www.planningaccreditationboard.org/).

Mays Business School

The baccalaureate and master’s curricula in Mays Business School are accredited by the Association to Advance Collegiate Schools of Business (AACSB) (http://www.aacsb.edu/).

College of Dentistry

Dentistry degree program is accredited by the Commission on Dental Accreditation (CODA) (http://www.ada.org/).

College of Education and Human Development

Programs in professional education at Texas A&M University are approved and fully accredited by the State Board of Educator Certification and the Texas Education Agency (https://tea.texas.gov/About_TEA/Leadership/State_Board_for_Educator_Certification/).

Counseling Psychology and School Psychology are accredited by the American Psychological Association (APA) (http://www.apa.org/).

Athletic Training is accredited by the Commission on Accreditation of Athletic Training Education (CaATE) (http://caate.net/).

College of Engineering

Undergraduate programs in Aerospace, Biomedical, Chemical, Civil, Computer, Electrical, Industrial, Mechanical, Nuclear, Ocean, Petroleum, and Radiological Health Engineering are accredited by the Engineering Accreditation Commission of ABET (http://main.abet.org/aps/Accreditedprogramsearch.aspx).

The undergraduate program in Computer Science Program is accredited by the Computing Accreditation Commission of ABET (http://main.abet.org/aps/Accreditedprogramsearch.aspx).

Bush School of Government and Public Service
The Master of Public Service and Administration degree in the Bush School of Government and Public Service is accredited by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA) (https://accreditation.naspaa.org/)

The School of Law
The curriculum in the School of Law is accredited by the American Bar Association (ABA) (http://www.americanbar.org/aba.html).

College of Liberal Arts
Clinical Psychology is accredited by the American Psychological Association (APA) (http://www.apa.org/).

College of Medicine
Medical Education degree program is accredited by the Liaison Committee on Medical Education (LCME) (http://lcme.org/).

College of Nursing
The baccalaureate and master’s degree programs in nursing at Texas A&M University College of Nursing are accredited by the Commission on Collegiate Nursing Education (http://www.ccneaccreditation.org), 655 K Street, NW, Suite 750, Washington, DC 20001, 202-887-6791.

Irma Lerma Rangel College of Pharmacology
The curriculum in the Irma Lerma Rangel College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education (ACPE). (https://www.acpe-accredit.org/)

School of Public Health
Public Health degree program is accredited by the Council on Education for Public Health (CEPH) (https://ceph.org/).

The Master of Health Administration is accredited by the Commission on Accreditation of Healthcare Management Education (CAHME) (https://cahme.org/healthcare-management-education-accreditation/students/search-for-an-accredited-program/).

College of Science
The undergraduate program in Chemistry is accredited by the American Chemical Society (ACS) (https://www.acs.org/content/acs/en.html).

College of Veterinary Medicine and Biomedical Sciences
Veterinary Medicine degree program is accredited by the American Veterinary Medical Association Council on Education (AVMA) (https://www.avma.org/Pages/home.aspx).

Texas A&M University at Galveston
The undergraduate program in Offshore and Coastal Systems Engineering is accredited by the Engineering Accreditation Commission of ABET (http://main.abet.org/aps/Accreditedprogramsearch.aspx).

The undergraduate program in Marine Engineering Technology is accredited by the Engineering Technology Accreditation Commission of ABET (http://main.abet.org/aps/Accreditedprogramsearch.aspx).
UNDERGRADUATE CATALOG

The Texas A&M University Undergraduate Catalog, published annually, provides information about the undergraduate programs of Texas A&M University to students, prospective students, and faculty and staff of the University. Included is information concerning requirements for admission, services available to students, course offerings and listings of the administrative officers.

Publication

Publication Statement

The Texas A&M University Undergraduate Catalog is published each spring and the provisions for this volume are applicable during the 2020-2021 academic year. A student who registers for the first time at the University during a summer session is subject to the degree requirements set forth in the catalog effective for the fall semester immediately following his or her initial enrollment.

Texas A&M University Undergraduate Catalog, Edition 143, is published online by the Office of the Registrar, Texas A&M University, College Station, Texas 77843-0200
2020 Summer I

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 22</td>
<td>Friday, 5 p.m. Last day to register for first term classes. Refer to https://sbs.tamu.edu/billing-payments/due-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>May 26</td>
<td>Tuesday. First day of first term classes.</td>
</tr>
<tr>
<td>May 29</td>
<td>Friday, 5 p.m. Last day for adding/dropping courses for the first term. Official census date for first term.</td>
</tr>
<tr>
<td>June 15</td>
<td>Monday, 5 p.m. Last day for all students to drop courses with no penalty for the first term (Q-drop). 5 p.m. Last day to change Kinesiology 198/199 grade type for first term. 5 p.m. Last day to officially withdraw from the University for first term.</td>
</tr>
<tr>
<td>June 26</td>
<td>Friday. Last day of first term classes.</td>
</tr>
<tr>
<td>June 29</td>
<td>Monday. First term final examinations.</td>
</tr>
<tr>
<td>July 3</td>
<td>Friday, noon. First term final grades due. Last day to apply for degrees to be awarded in summer 2020 without a late fee.</td>
</tr>
<tr>
<td>July 20</td>
<td>Monday, 5 p.m. Last day to apply for summer 2020 graduation online. 5 p.m. Summer 2020 Degree Candidates: Degree Requirement Verification (http://registrar.tamu.edu/Graduation-Degree-Programs/Graduation-Diplomas/Degree-Requirement-Verification) deadline per Student Rule 14.2</td>
</tr>
</tbody>
</table>

2020 Summer II

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>June 29</td>
<td>Monday, 5 p.m. Last day to register for second term classes. Refer to https://sbs.tamu.edu/billing-payments/due-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>June 30</td>
<td>Tuesday. First day of second term classes.</td>
</tr>
<tr>
<td>July 3</td>
<td>Friday, 5 p.m. Last day for adding/dropping courses for the second term. 5 p.m. Official census date for second term.</td>
</tr>
</tbody>
</table>

2020 Summer 10 Week Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 22</td>
<td>Friday, 5 p.m. Last day to register for 10-week semester classes. Refer to https://sbs.tamu.edu/billing-payments/due-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>May 26</td>
<td>Tuesday. First day of 10-week semester classes.</td>
</tr>
<tr>
<td>May 29</td>
<td>Friday, 5 p.m. Last day for adding/dropping for the 10-week semester. Official census date for 10-week semester.</td>
</tr>
<tr>
<td>June 29</td>
<td>Monday, 5 p.m. No 10-week semester classes.</td>
</tr>
<tr>
<td>July 3</td>
<td>Friday. Last day to apply for degrees to be awarded in summer 2020 without a late fee.</td>
</tr>
</tbody>
</table>
2020 Fall Semester

August 12 Wednesday. Graduation application opens for all students planning to graduate in December 2020.

August 18 Tuesday, 5 p.m. Last day to register for fall semester classes. Refer to http://finance.tamu.edu/sbs (http://finance.tamu.edu/sbs/) for tuition and fee due dates.

August 19 Wednesday. First day of fall semester classes.

*Courses offered at the Higher Education Center at McAllen begin remotely.

August 24 Monday. All Galveston campus courses held remotely in preparation for campus response to tropical weather activity in the Gulf of Mexico.

August 25-26** Tuesday-Wednesday. All Galveston campus courses cancelled due to weather emergency and campus evacuation.

August 27-28 Thursday-Friday. Galveston campus courses resume remotely.

August 28 Friday, 5 p.m. Last day for adding/dropping courses for the fall semester, except for courses offered on the Galveston campus.

August 31 Monday. Galveston campus courses resume in person.

September 3 Thursday. Fall official census date.

September 5 Tuesday. Undergraduate deadline to submit a request for change of curriculum.

September 17 Thursday. Higher Education Center at McAllen courses begin face-to-face instruction.

September 18 Friday. Last day to apply for all degrees to be awarded in fall 2020 without a late fee.

September 30 Wednesday. Undergraduate degree plan approval deadline.

October 5 Monday, noon. Mid-semester grades due.

November 5-18 Thursday-Wednesday. Preregistration for 2021 spring semester.

November 10 Tuesday, 5 p.m. Last day for all students to drop courses with no penalty (Q-drop).

November 15 Tuesday. Undergraduate deadline to submit a request for change of curriculum.

November 23 Monday. Pursuant to Student Rule 8.3 (http://student-rules.tamu.edu/rule08 (http://student-rules.tamu.edu/rule08/)), no regular course examinations (except for laboratory and one-hour courses) shall be given during the 15th week of classes.

November 24 Tuesday. Last day of fall semester classes. Last day for face-to-face meetings to be held. All assignments and projects that require face-to-face interaction must be completed at this time. The only remaining graded activities that are permissible are those which may be accomplished remotely and final exams. Pursuant to Student Rule 8.3 (http://student-rules.tamu.edu/rule08 (http://student-rules.tamu.edu/rule08/)), no regular course examinations (except for laboratory and one-hour courses) shall be given during the 15th week of classes.

November 25 Wednesday. Final exam preparation day (Reading day), no classes.

November 26-27 Thursday-Friday. Thanksgiving Holiday.

November 30 Monday. Final exam preparation day (Reading day), no classes.
Locations.

Does not impact courses taught at any other Texas A&M University.

Remote Instruction.

Arranged delivery instruction September 17, 2020. This four-week period began on August 19, 2020 and returning for face-to-face or other previously arranged instruction.

In response to regional coronavirus conditions, all courses offered at the Texas A&M University Higher Education Center at McAllen will be delivered remotely for the first four weeks of the fall 2020 term starting on August 19, 2020 and returning for face-to-face or other previously arranged delivery instruction September 17, 2020. This four-week period of remote instruction applies only to courses offered at the HECM and does not impact courses taught at any other Texas A&M University locations.

Texas A&M University at Galveston – Modified for Hurricane Laura.

2021 Spring Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 6</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in May 2021.</td>
</tr>
<tr>
<td>January 7</td>
<td>Thursday. Undergraduate change of curriculum period begins. See Student Rule 5.1, https://student-rules.tamu.edu/rule05/.</td>
</tr>
<tr>
<td>January 15</td>
<td>Friday. 5 p.m. Last day to register for spring semester classes. Refer to https://sbs.tamu.edu/resources/important-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>January 18</td>
<td>Monday. Martin Luther King, Jr. Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>January 19</td>
<td>Tuesday. First day of spring semester classes.</td>
</tr>
<tr>
<td>January 25</td>
<td>Monday. 5 p.m. Last day for adding/dropping courses for the spring semester.</td>
</tr>
<tr>
<td>February 3</td>
<td>Wednesday. Spring official census date.</td>
</tr>
<tr>
<td>February 15</td>
<td>Monday. Undergraduate deadline to submit a request for change of curriculum.</td>
</tr>
<tr>
<td>February 19</td>
<td>Friday. Last day to apply for all degrees to be awarded in spring 2021 without a late fee.</td>
</tr>
<tr>
<td>March 8</td>
<td>Monday, noon. Mid-semester grades due.</td>
</tr>
<tr>
<td>March 15-19</td>
<td>Monday-Friday. Spring break.</td>
</tr>
<tr>
<td>March 17-19</td>
<td>Wednesday-Friday. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>April 1-16</td>
<td>Thursday-Friday. Preregistration for the 2021 first term, second term, 10-week summer semester and fall semester.</td>
</tr>
<tr>
<td>April 2</td>
<td>Friday. Reading day, no classes.</td>
</tr>
<tr>
<td>April 20</td>
<td>Tuesday. 5 p.m. Last day for all students to drop courses with no penalty (Q-drop).</td>
</tr>
</tbody>
</table>

2021 Summer Term I

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 19</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2021.</td>
</tr>
<tr>
<td>May 28</td>
<td>Friday, 5 p.m. Last day to register for first term classes. Refer to https://sbs.tamu.edu/resources/important-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 31</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>June 1</td>
<td>Tuesday. First day of first term classes.</td>
</tr>
</tbody>
</table>
June 4
Friday, 5 p.m. Last day for adding/dropping first term classes.

Official census date for first term classes.

June 21
Monday, 5 p.m. Last day for all students to drop courses with no penalty for the first term (Q-drop).

5 p.m. Last day to change Kinesiology 198/199 grade type for the first term.

5 p.m. Last day to officially withdraw from the University for the first term.

June 28
Monday. Undergraduate deadline to submit a request for change of curriculum.

July 2
Friday. Last day of first term classes.

July 5
Monday. First term final examinations.

5 p.m. Last day to register for second term classes. Refer to https://sbs.tamu.edu/resources/important-dates/

July 9
Friday. First term final grades due at noon.

Last day to apply for degrees to be awarded in summer 2021 without a late fee.

July 26
Monday, 5 p.m. Last day to apply for summer 2021 graduation online.

5 p.m. Summer 2021 Degree Candidates: Degree Requirement Verification deadline per Student Rule 14.2

May 19
Wednesday. Graduation application opens for all students planning to graduate in August 2021.

May 31
Monday. Memorial Day. Faculty and Staff holiday.

June 1

June 28
Monday. Undergraduate deadline to submit a request for change of curriculum.

July 5
Monday, 5 p.m. Last day to register for second term classes. Refer to https://sbs.tamu.edu/resources/important-dates/ for tuition and fee due dates.

July 6
Tuesday. First day of second term classes.

July 9
Friday, 5 p.m. Last day for adding/dropping courses for the second term.

5 p.m. Official census date for the second term.

Last day to apply for degrees to be awarded in summer 2021 without a late fee.

July 26
Monday, 5 p.m. Last day for all students to drop courses with no penalty (Q-drop) for the second term.

5 p.m. Last day to change Kinesiology 198/199 grade type for the second term.

5 p.m. Last day to officially withdraw from the University for the second term.

5 p.m. Last day to apply for summer 2021 graduation online.

5 p.m. Summer 2021 Degree Candidates: Degree Requirement Verification deadline per Student Rule 14.2

2021 Summer Term II

May 19
Wednesday. Graduation application opens for all students planning to graduate in August 2021.

May 31
Monday. Memorial Day. Faculty and Staff holiday.

June 1

June 28
Monday. Undergraduate deadline to submit a request for change of curriculum.

July 5
Monday, 5 p.m. Last day to register for second term classes. Refer to https://sbs.tamu.edu/resources/important-dates/ for tuition and fee due dates.

July 6
Tuesday. First day of second term classes.

July 9
Friday, 5 p.m. Last day for adding/dropping courses for the second term.

5 p.m. Official census date for the second term.

Last day to apply for degrees to be awarded in summer 2021 without a late fee.

July 26
Monday, 5 p.m. Last day for all students to drop courses with no penalty (Q-drop) for the second term.

5 p.m. Last day to change Kinesiology 198/199 grade type for the second term.
5 p.m. Summer 2021 Degree Candidates: Degree Requirement Verification (http://registrar.tamu.edu/Graduation-Degree-Programs/Graduation-Diplomas/Degree-Requirement-Verification/) deadline per Student Rule 14.2

August 7 Saturday, 10 a.m. Doctoral Commencement and Hooding Ceremony in College Station.
August 9 Monday. Last day of 10-week classes.
August 10-11 Tuesday-Wednesday. 10-week final examinations for all students.
August 12 Thursday, noon. Grades due for degree candidates.
August 13 Friday, 5 p.m. Last day for August undergraduate degree candidates to apply for Tuition Rebate in Howdy.
August 14 Saturday. Commencement and Commissioning - Bachelor and Master’s Degrees in College Station.
August 16 Monday, noon. Final grades for 10-week classes due.

All dates and times are subject to change.

Dentistry

College of Dentistry (Dental Hygiene) Calendar

All dates and times are subject to change.

2020

June 1 Monday. SUMMER SESSION BEGINS (DH Sr.).
June 2 Tuesday. QA/RM Program (DH Sr.) - Clinics Closed From 1:00-4:00 p.m.
July 6 Monday. Independence Day Holiday.
July 24 Friday. SUMMER SESSION ENDS (DH Sr.).
July 28 Tuesday. Summer Session Grades Due By 12:00 p.m., NOON - Dental Hygiene courses.
August 3-5 Monday-Wednesday, 8:30 a.m. Orientation, Fall Semester,First Year Dental Hygiene Students
August 10 Monday. 8:00 a.m., FALL SEMESTER BEGINS (All students).
September 7 Monday. Labor Day Holiday.
November 23-27 Monday-Friday. Fall Semester Recess.
November 26 Thursday. Thanksgiving Day Holiday.
December 4 Friday. FALL SEMESTER INSTRUCTION ENDS (DH Jr., DH Sr.).
December 7-11 Monday-Friday. Fall Semester Examination Period (DH Jr., DH Sr.).
December 11 Friday. 5:00 p.m. Holiday Recess Begins.
December 25 Friday. Christmas Day Holiday.

2021

January 1 Friday. New Year’s Day Holiday.
January 4 Monday. 8:00 a.m. SPRING SEMESTER BEGINS (All Students).
January 6 Wednesday. Fall Semester Grades Due by 12:00 p.m., NOON.
January TBD Faculty Retreat.
January 18 Monday. Martin Luther King, Jr. Day Holiday.
March 15-19 Monday-Friday. Spring Semester Recess.
April TBD Scholars Day - Clinic closed for DH.
April-May TBD WREB EXAM – Senior Dental Hygiene.
May 7 Friday. Grades due for graduating students by 12:00 p.m., NOON.
May 10-14 Monday-Friday. Spring Semester Examination Period (Except graduating students).
May 18 Tuesday. Spring Semester Grades Due.
May TBD AWARDS CEREMONY.
May TBD GRADUATION EXERCISE.
May 31 Monday. Memorial Day Holiday.
June 1 Tuesday. SUMMER SESSION BEGINS (DH Sr.).
June 2 QA/RM Program (DH Sr.) - Clinics Closed From 1:00-4:00 p.m.
July 5 Monday. Independence Day Holiday.
July 23 Friday. SUMMER SESSION ENDS (DH Sr.).
July 27 Tuesday. Summer Session Grades Due By 12:00 p.m., NOON - Dental Hygiene Courses.
August 2-4 Monday-Wednesday, 8:00 a.m. Orientation, Fall Semester, First-Year Dental Hygiene Students.

Qatar

Texas A&M University at Qatar Calendar

All dates and times are subject to change.

Fall Semester 2020*

August 18-20 Tuesday-Thursday. AGGIE LIFE 101 (required for all new students).
August 23 Sunday. First day of fall classes. All courses to be held online/remote only.

First day to apply for December graduation.
Undergraduate change of curriculum period begins.

September 1 Tuesday. Last day for adding/dropping courses with no record for the fall semester, 4:30 p.m.
In person (face-to-face) courses resume on campus.
September 7 Monday. Official census date (12th class day).
September 17 Thursday. Undergraduate change of curriculum period ends, 4:30 p.m.
September 24 Thursday. Last day to apply for December graduation, 4:30 p.m.
Spring Semester 2021*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 30</td>
<td>Wednesday. Undergraduate degree plan approval deadline.</td>
</tr>
<tr>
<td>October 11-15</td>
<td>Sunday-Thursday. Fall Break (No classes. Offices remain open).</td>
</tr>
<tr>
<td>October 22</td>
<td>Thursday. Mid-semester grades due by noon, Office of Records.</td>
</tr>
<tr>
<td>November 19</td>
<td>Thursday. Last day for all students to drop courses with no academic penalty (Q-drop), 4:30 p.m. Last day to officially withdraw from the University, 4:30 p.m.</td>
</tr>
<tr>
<td>November 26</td>
<td>Thursday. Reading Day (no classes. Offices remain open).</td>
</tr>
<tr>
<td>December 3</td>
<td>Thursday. Last day for face-to-face meetings to be held. All assignments and projects that require face-to-face interaction must be completed at this time. The only remaining graded activities that are permissible are those which may be accomplished remotely and final exams.</td>
</tr>
<tr>
<td>December 6</td>
<td>Sunday. Last day of fall semester classes. All courses to be held online/remote only. Redefined day - Students attend their Thursday classes. Pursuant to Student Rule 8.3 (http://student-rules.tamu.edu/rule08), no regular course examinations (except for laboratory and one-hour courses) shall be given during the 15th week of classes.</td>
</tr>
<tr>
<td>December 7</td>
<td>Monday. Reading day (no classes or finals).</td>
</tr>
<tr>
<td>December 8-10</td>
<td>Tuesday-Thursday. Fall semester final examinations for all students. All final exams to be held online/remote only.</td>
</tr>
<tr>
<td>December 13</td>
<td>Sunday. Fall semester final examinations for all students. All final exams to be held online/remote only.</td>
</tr>
<tr>
<td>December 14</td>
<td>Monday. Final grades due for all students by 6:00 p.m., Office of Records.</td>
</tr>
<tr>
<td>December 17</td>
<td>Thursday. Undergraduate degree plan approval deadline.</td>
</tr>
<tr>
<td>December 18</td>
<td>Friday. Qatar National Day Observed (offices closed).</td>
</tr>
<tr>
<td>December 20-24</td>
<td>Sunday-Thursday. Semester break (offices closed).*</td>
</tr>
</tbody>
</table>

*All dates are subject to change.

*Dates for the Eid holidays are subject to change; however, the University will be closed for a three-day period during each Eid.

Summer Semester 2021*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Thursday. Projected first day of Eid Al-Fitr (offices expected to be closed).**</td>
</tr>
<tr>
<td>May 16-17</td>
<td>Sunday-Monday. Eid Al-Fitr (offices expected to be closed).**</td>
</tr>
<tr>
<td>May 23</td>
<td>Sunday. First day of summer classes. First day to apply for summer graduation.</td>
</tr>
<tr>
<td>May 26</td>
<td>Wednesday. Official census date (4th class day).</td>
</tr>
<tr>
<td>June 10</td>
<td>Thursday. Last day to apply for summer graduation, 4:30 p.m.</td>
</tr>
<tr>
<td>June 24</td>
<td>Thursday. Last day for all students to drop courses with no academic penalty (Q-drop), 4:30 p.m. Last day to officially withdraw from the University, 4:30 p.m.</td>
</tr>
<tr>
<td>July 8</td>
<td>Thursday. Last day of summer classes.</td>
</tr>
<tr>
<td>July 11-12</td>
<td>Sunday-Monday. Final examinations for summer term.</td>
</tr>
</tbody>
</table>

Dates for the Eid holidays are subject to change; however, the University will be closed for a three-day period during each Eid.
July 14 Wednesday. Final grades due for summer term by noon, Office of Records.

July 19-22 Monday-Thursday. Eid Al-Adha (offices expected to be closed).**

July 20 Tuesday. Projected first day of Eid Al-Adha.**

*All dates are subject to change.
**Dates for the Eid holidays are subject to change; however, the University will be closed for a three-day period during each Eid.
BOARD OF REGENTS AND ADMINISTRATIVE OFFICERS

Board of Regents
Elaine Mendoza, Chairman - San Antonio
Tim Leach, Vice Chairman - Midland
Phil Adams - Bryan/College Station
Robert L. 'Bob' Albritton - Fort Worth
Jay Graham - Houston
Michael A. 'Mike' Hernandez III - Fort Worth
William 'Bill' Mahomes, Jr. - Dallas
Michael J. Plank - Houston
Cliff Thomas - Victoria
Levi McClenny (Student Regent) - College Station

Jackie Bell - Assistant to the Board of Regents

Chancellor - John Sharp

Texas A&M University Administrative Officers
President - Michael K. Young
Provost and Executive Vice President - Carol A. Fierke

Dean, College of Agriculture and Life Sciences - Patrick J. Stover
Dean, College of Architecture - Jorge A. Vanegas
Dean, Mays Business School - Eli Jones
Dean, College of Dentistry - Lawrence E. Wolinsky
Dean, College of Education and Human Development - Joyce M. Alexander
Dean, College of Engineering - M. Katherine Banks
Dean, College of Geosciences - Debbie Thomas
Dean, Bush School of Government and Public Service - General Mark A. Welch III (Ret.)
Dean, School of Innovation - Andrew P. Morriss
Dean, School of Law - Robert B. Ahdieh
Dean, College of Liberal Arts - Pamela R. Matthews
Dean, College of Medicine - Amy L. Waer (interim)
Dean, College of Nursing - Nancy L. Fahrenwald
Dean, Irma Lerma Rangel College of Pharmacy - Indra K. Reddy
Dean, School of Public Health - Shawn Gibbs
Dean, College of Science - Valen E. Johnson
Dean, College of Veterinary Medicine and Biomedical Sciences - Eleanor M. Green
Dean, Texas A&M University Libraries - David H. Carlson
Dean and COO, Texas A&M University at Qatar - César O. Malavé

Executive Vice President for Finance and Operations and Chief Financial Officer - Jerry R. Strawser
Senior Vice President, Texas A&M University Health Science Center - Greg Hartman
Senior Vice President and Chief Marketing and Communications Officer - Amy B. Smith
Vice Provost and Chief International Officer - Michael J. Benedik
Vice President and Associate Provost for Diversity - Robin R. Means Coleman
Vice President for Brand Development - Shane Hinckley
Vice President for Economic Development - Andrew P. Morriss II
Vice President for Enrollment and Academic Services - Joseph P. Pettibon
Vice President for Government Relations - Michael G. O'Quinn
Vice President for Human Resources and Organizational Effectiveness - Jeffrey A. Risinger
Vice President for Information Technology and Chief Information Officer - M. Dee Childs
Vice President for Research - Mark Barteau
Vice President for Student Affairs - Daniel J. Pugh, Sr.
Chief Compliance Officer - Kevin McGinnis
Vice President and COO, Texas A&M University at Galveston - Colonel Michael E. Fossum (Ret.)
Commandant of the Corps of Cadets - Brigadier General Joe E. Ramirez, Jr. (Ret.)
Dean of Faculties and Associate Provost - Blanca Lupiani
Vice Provost for Academic Affairs and Strategic Initiatives - Michael T. Stephenson
Associate Provost for Graduate and Professional Studies - Karen L. Butler-Purry
Associate Provost for Undergraduate Studies - Ann L. Kenimer
Associate Vice President for Administration and Academic Affairs - Deena J. McConnell

Associate Vice President for External Relations - Chad E. Wootton
GENERAL INFORMATION

The following types of information can be found within the General Information section of the catalog:

History and Development (p. 24)
Mission Statement; History and Development

Student Success (p. 85)
Student Services (p. 85)

Academic Advising; Academic Success Center; The Association of Former Students; Career Center; Counseling and Psychological Services; Disability Resources; Gay, Lesbian, Bisexual, Transgender (GLBT) Resource Center; George Bush Presidential Library and Museum; Health Promotion; International Student Services; Math Learning Center; Memorial Student Center; Department of Multicultural Services; Ombuds Services; Professional School Advising; Recreational Sports; Department of Residence Life; Student Activities; Student Assistance Services; Student Conduct Office; Student Health Services; Student Legal Services; Student Life; Student Media; Technology Resources; Transportation Resources; University Center and Special Events' University Libraries; University Police; University Writing Center; Veteran Resource and Support Center (VRSC); Veteran Services Office (Scholarships & Financial Aid); Women's Resource Center (WRC)

Campus Life (p. 93)
The Corps Experience; Department of Multicultural Services; Office of Fraternity and Sorority Life; Intercollegiate Athletics; Memorial Student Center (MSC); Musical Activities; Recreational Sports; Speech and Debate Team; Student Activities; Student Government (SGA); Student Life; Student Life Studies; Student Media; University Art Galleries; University Center and Special Events (UCEN); Vice President for Student Affairs

History and Development

Mission Statement
Texas A&M is dedicated to the discovery, development, communication and application of knowledge in a wide range of academic and professional fields. Our mission of providing the highest quality undergraduate and graduate programs emerges from our mission of developing new understandings through research and creativity.

We prepare students to assume roles of leadership, responsibility and service to the greater good. We assume as our historic trust the maintenance of freedom of inquiry and an intellectual environment that nurtures the human mind and spirit.

We welcome and seek to serve citizens of all racial, ethnic and geographic backgrounds, in keeping with our land-grant mission of educating a broad cross-section of the state’s population while meeting the challenges of our increasingly diverse, global economy.

History and Development

Texas A&M is the state’s first public institution of higher education. With a student body of more than 69,400 and more than 5,200 acres on the College Station campus alone, Texas A&M is also among the nation’s largest universities.

Our origins, however, are much humbler. We owe our existence to the Morrill Act, approved by the U.S. Congress on July 2, 1862, which provided for donation of public land to the states. The land was to be sold at auction, with the proceeds set aside in a perpetual fund, and the interest generated supporting a college “to teach such branches of learning as are related to agriculture and mechanical arts . . . in order to promote the liberal and practical education of the industrial classes in the several pursuits and professions in life.”
In November 1866, the Texas Legislature agreed to provide for the state's land-grant college. Five years later, the Agricultural and Mechanical College of Texas was established through an act that appropriated $75,000 for the construction of buildings and that bound the state to defray all expenses of the college exceeding the annual interest from the endowment. Proceeds from the sale of the 180,000 acres of land scrip received under the Land Grant College Act were invested in $174,000 of Texas gold frontier defense bonds, forming a perpetual endowment for the institution. A commission created to identify a location for the college accepted the offer of 2,416 acres of land from the citizens of Brazos County in 1871, and the College opened its doors five years later.

In 1888, the faculty initiated programs of instruction at the graduate level, and in 1890, two Master of Science degrees were conferred. Initially, the Agricultural and Mechanical College of Texas emphasized graduate programs in agriculture and engineering, which were administered by a faculty committee for graduate studies. In 1898, a single Master of Science degree in horticulture was awarded, followed by a scattering of Master of Science degrees in agriculture over the next 22 years. The acceleration in the awarding of Master of Science degrees after 1920 prompted the College to establish the Graduate School in 1924, with the dean of the college serving as graduate dean.

In 1936, the Board of Directors approved "certain programs of study and research leading to the doctorate." That same year, the Academic Council established the graduate faculty, and in 1940, the first Ph.D. was awarded. In the 1960s, the Board of Regents created programs of graduate instruction in each of the academic colleges.

In 1963, the Texas state legislature officially changed the College's name to Texas A&M University, with the 'A' and 'M' being a symbolic link to the school's past but no longer officially standing for 'Agricultural and Mechanical.'

Texas A&M underwent many other significant changes in the '60s, as well. Under Gen. Earl Rudder's administration, Texas A&M also opened its doors to African American students and formally admitted women students. Participation in the Corps of Cadets was made voluntary.

Since then, Texas A&M has become an academic powerhouse. It is one of only three Tier 1 universities in the state (along with Rice University and the University of Texas at Austin). Texas A&M was designated a sea-grant institution in 1971 and a space-grant institution in 1989, making it among the first four universities to hold this triple distinction, and one of only 17 nationwide.

In 2001, Texas A&M became a member of the Association of American Universities, which is restricted to the 62 top public and private institutions of higher learning in the United States and Canada. In 2004, the Kappa of Texas Chapter of Phi Beta Kappa was installed at Texas A&M.

As the State of Texas has grown, so has the University. Today, women constitute nearly half of the student body, and membership in the Corps of Cadets is more than 2,300. Historically, the Corps of Cadets has produced more officers than any other institution outside the military academies. The George Bush Presidential Library and Museum opened in 1997, making Texas A&M one of only a few universities to host a presidential library.

Texas A&M has a presence in 250 of the state's 252 counties through its extension agencies, and also has two branch campuses: a marine campus in Galveston, and an engineering campus in the Middle Eastern country of Qatar (fully funded by the Qatar Foundation). The university has annual research expenditures of more than $922 million, ranking it among top 20 nationally by the National Science Foundation.

Classified by the Carnegie Foundation as a Research Intensive University, Texas A&M embraces its mission of advancing knowledge and human achievement, helping to drive the economic engine of the state and nation, and preparing students to be life-long learners and leaders in today's knowledge-based, global society.

Texas A&M's focus on excellence and innovation in teaching, research and service has led to rankings among the nation's top universities. Texas A&M today seeks even greater preeminence among the nation's top public universities, while continuing to respect the history and traditions that set us apart.

University Core Curriculum

The Texas A&M Core Curriculum, in compliance with the Texas Core Curriculum, provides students with a foundation of knowledge of human cultures and the physical and natural world, develops principles of personal and social responsibility for living in a diverse world, and advances intellectual and practical skills that are essential for all learning. The Core Curriculum enhances the individual degree program and university graduation requirements, and all three areas must be met by every student.

Given the rapid evolution of necessary knowledge and skills and the need to take into account global, national, state, and local cultures, the core curriculum ensures that students will develop the essential knowledge and skills they need to be successful in college, in a career, in their communities, and in life. The core curriculum acts to enrich and broaden the University's tradition of providing thorough preparation in each student's academic major and preparing students for a lifetime of learning.

The University Core Curriculum requirements are described in the section that follows. These requirements must be met by every student entering Texas A&M University on or after the 2014 fall semester. Students entering earlier will be guided by the core curriculum in the catalog upon which they entered the university. Individual degree programs may require that specific courses from the core curriculum be used to satisfy core curriculum requirements. Please check with individual program advisors for details. Students transferring course credit to satisfy the Core Curriculum requirements should refer to the Texas Common Course Numbering System (p. 1306).

Texas A&M University branch campuses in Galveston and Qatar do not offer all of the courses included in the Texas A&M core curriculum. All campuses offer courses in each Foundational Component Area so that students can complete the core curriculum at their home campus. However, the Galveston and Qatar campuses have a limited number of courses in each Foundational Component Area. Students should consult their academic advisors for information on core curriculum courses available at their specific campus.

The core curriculum focuses on the development of six skills that have been shown to be effective in preparing students for the job market and their role in a diverse world and democratic society.

- **Critical Thinking Skills** – to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.

• Communication Skills – to include effective development, interpretation and expression of ideas through written, oral and visual communication.

• Empirical and Quantitative Skills – to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

• Teamwork – to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

• Personal Responsibility – to include the ability to connect choices, actions and consequences to ethical decision-making.

• Social Responsibility – to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities.

Students develop and practice these skills in the context of 42 semester credit hours assigned to eight Foundational Component Areas, each made up of a selection of courses that meet the definition provided by the Texas Core Curriculum. For additional information, please reference http://core.tamu.edu.

Communication - 6 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature.</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on developing ideas and expressing them clearly, considering the effective of the message, fostering understanding, and building the skills needed to communicate persuasively. Courses involve the command of oral, aural, written, and visual literacy skills that enable people to exchange messages appropriate to the subject, occasion, and audience. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, team work, and personal responsibility.

Mathematics – 6 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear Systems</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 167</td>
<td>Explorations in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on quantitative literacy in logic, patterns, and relationships. Courses involve the understanding of key mathematical concepts and the application of appropriate quantitative tools to everyday experiences. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, and empirical and quantitative.

Life and Physical Sciences – 9 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 225</td>
<td>Introduction to Biological Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 226</td>
<td>Introduction to Biological Anthropology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ASTR 101</td>
<td>Basic Astronomy</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 102</td>
<td>Observational Astronomy</td>
<td>1</td>
</tr>
<tr>
<td>ASTR 103</td>
<td>Introduction to Stars and Exoplanets</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 104</td>
<td>Introduction to Galaxies and Cosmology</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 109/PHYS 109</td>
<td>Big Bang and Black Holes</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 111</td>
<td>Overview of Modern Astronomy</td>
<td>4</td>
</tr>
<tr>
<td>ASTR 119/PHYS 119</td>
<td>Big Bang and Black Holes Laboratory Methods</td>
<td>1</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 202</td>
<td>Weather and Climate Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 106</td>
<td>Molecular Science for Citizens</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 116</td>
<td>Molecular Science for Citizens Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>Energy: Resources, Utilization and Importance to Society</td>
<td>4</td>
</tr>
</tbody>
</table>
Texas A&M University

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 322</td>
<td>Insects and Human Society</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 309</td>
<td>Forest Ecology</td>
<td>3</td>
</tr>
<tr>
<td>FVIS 123</td>
<td>Forensic Investigations</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>Environmental Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 102</td>
<td>Principles of Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 207</td>
<td>Dinosaur World</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 208</td>
<td>Life on a Dynamic Planet</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 210</td>
<td>Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td>3</td>
</tr>
<tr>
<td>HORT 202</td>
<td>Horticultural Science and Practices Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td>KINE 223</td>
<td>Introduction to the Science of Health and Fitness</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 222</td>
<td>Nutrition for Health and Health Care</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 252</td>
<td>Oceanography Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 109/ASTR 109</td>
<td>Big Bang and Black Holes: Laboratory Methods</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 123</td>
<td>Physics for Future Presidents</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 125</td>
<td>Soft Matter Physics for Non-physicists</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>POSC 201</td>
<td>General Avian Science</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology–Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>SCEN 101</td>
<td>Contemporary Issues in Science - Cosmos, Earth and Humanity</td>
<td>3</td>
</tr>
<tr>
<td>SCEN 102</td>
<td>Contemporary Issues in Science - The Environment</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 105</td>
<td>World Food and Fiber Crops</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
</tbody>
</table>

Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method. Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, empirical and quantitative, and team work.

Language, Philosophy and Culture – 3 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 201</td>
<td>Introduction to Africana Studies</td>
<td>3</td>
</tr>
<tr>
<td>AFST 204/ENGL 204</td>
<td>Introduction to African-American Literature</td>
<td>3</td>
</tr>
<tr>
<td>AFST 345/HIST 345</td>
<td>Modern Africa</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 204</td>
<td>The Prehistoric World</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 205</td>
<td>Peoples and Cultures of the World</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 210</td>
<td>Social and Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 316</td>
<td>Nautical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 317/RELS 317</td>
<td>Introduction to Biblical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 201</td>
<td>Intermediate Arabic I</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 202</td>
<td>Intermediate Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 213</td>
<td>Sustainable Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 346</td>
<td>Architecture, Heritage and Culture</td>
<td>3</td>
</tr>
<tr>
<td>CARC 331</td>
<td>Field Studies in Design Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 201</td>
<td>Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 202</td>
<td>Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 220</td>
<td>History of Christianity: Origins to the Reformation</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 221</td>
<td>Intermediate Latin I</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 222</td>
<td>Intermediate Latin II</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 250</td>
<td>Greek and Roman Civilization</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 251/RELS 251</td>
<td>Classical Mythology</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 261</td>
<td>Great Books of the Classical Tradition</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 262</td>
<td>Great Books of Christian Antiquity and the Latin Middle Ages</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 429/HIST 429</td>
<td>The Roman Empire: Transformations</td>
<td>3</td>
</tr>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 327</td>
<td>American Oratory</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 202</td>
<td>Environmental Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 204/AFST 204</td>
<td>Introduction to African-American Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 206</td>
<td>Twenty-first Century Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 207</td>
<td>Human Thinking and Digital Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 221/ MODL 221</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 222/MODL 222</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 227</td>
<td>American Literature: The Beginnings to Civil War</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 228</td>
<td>American Literature: Civil War to Present</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>ENGL 231</td>
<td>Survey of English Literature I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 232</td>
<td>Survey of English Literature II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 253</td>
<td>Introduction to Cultural Studies and Popular Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 292</td>
<td>Introduction To Literature And Medicine</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 306</td>
<td>Transnational Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 330</td>
<td>Arthurian Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 333/</td>
<td>Lesbian, Gay, Bisexual, Transgender and Queer Literatures</td>
<td>3</td>
</tr>
<tr>
<td>WGST 333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 334</td>
<td>Science Fiction Present and Past</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 335</td>
<td>Literature of the Sea</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 338</td>
<td>American Ethnic Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 350</td>
<td>Twentieth-Century Literature to World War II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 352</td>
<td>Literature, World War II to Present</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 360</td>
<td>Literature for Children</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 362/</td>
<td>Latino/a Literature</td>
<td>3</td>
</tr>
<tr>
<td>HISP 362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 365/</td>
<td>The Bible as Literature</td>
<td>3</td>
</tr>
<tr>
<td>RELS 360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 374/</td>
<td>Women Writers</td>
<td>3</td>
</tr>
<tr>
<td>WGST 374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 376</td>
<td>The American Novel Since 1900</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 482/</td>
<td>Ethics and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREN 201</td>
<td>Intermediate French I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 202</td>
<td>Intermediate French II</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 301</td>
<td>Geography of the United States</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 305</td>
<td>Geography of Texas</td>
<td>3</td>
</tr>
<tr>
<td>GERM 201</td>
<td>Intermediate German I</td>
<td>3</td>
</tr>
<tr>
<td>GERM 202</td>
<td>Intermediate German II</td>
<td>3</td>
</tr>
<tr>
<td>HISP 206</td>
<td>Food in the Hispanic World</td>
<td>3</td>
</tr>
<tr>
<td>HISP 362/</td>
<td>Latino/a Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 101</td>
<td>Western Civilization to 1660</td>
<td>3</td>
</tr>
<tr>
<td>HIST 102</td>
<td>Western Civilization Since 1660</td>
<td>3</td>
</tr>
<tr>
<td>HIST 103</td>
<td>World History to 1500</td>
<td>3</td>
</tr>
<tr>
<td>HIST 104</td>
<td>World History Since 1500</td>
<td>3</td>
</tr>
<tr>
<td>HIST 210</td>
<td>Russian Civilization</td>
<td>3</td>
</tr>
<tr>
<td>HIST 213</td>
<td>History of England</td>
<td>3</td>
</tr>
<tr>
<td>HIST 214</td>
<td>History of England</td>
<td>3</td>
</tr>
<tr>
<td>HIST 220</td>
<td>History of Christianity, Origins to the Reformation</td>
<td>3</td>
</tr>
<tr>
<td>HIST 221/</td>
<td>History of Islam</td>
<td>3</td>
</tr>
<tr>
<td>RELS 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 222/</td>
<td>History of Christianity, Reformation to Present</td>
<td>3</td>
</tr>
<tr>
<td>RELS 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 234</td>
<td>European Military History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 242</td>
<td>United States Maritime History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 345/</td>
<td>Modern Africa</td>
<td>3</td>
</tr>
<tr>
<td>AFST 345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 347/</td>
<td>Rise of Islam, 600-1258</td>
<td>3</td>
</tr>
<tr>
<td>RELS 347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 429/</td>
<td>The Roman Empire: Transformations</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 251</td>
<td>Contemporary Issues in the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 201</td>
<td>Intermediate Italian I</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 202</td>
<td>Intermediate Italian II</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 201</td>
<td>Intermediate Japanese I</td>
<td>4</td>
</tr>
<tr>
<td>JAPN 202</td>
<td>Intermediate Japanese II</td>
<td>4</td>
</tr>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>MAST 270</td>
<td>Historic Seafaring and Maritime Heritage</td>
<td>3</td>
</tr>
<tr>
<td>MODL 221/</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODL 222/</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSC 227</td>
<td>Popular Music of India</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td>3</td>
</tr>
<tr>
<td>PERF 325</td>
<td>Dance and World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>PERF 326</td>
<td>Dance and Identity in the United States</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 111</td>
<td>Contemporary Moral Issues</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 251</td>
<td>Introduction to Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 482/</td>
<td>Ethics and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 200</td>
<td>Religions of the World</td>
<td>3</td>
</tr>
<tr>
<td>RELS 202</td>
<td>Religion in America</td>
<td>3</td>
</tr>
<tr>
<td>RELS 209</td>
<td>Religions of the Ancient World</td>
<td>3</td>
</tr>
<tr>
<td>RELS 220</td>
<td>History of Christianity: Origins to the Reformation</td>
<td>3</td>
</tr>
<tr>
<td>RELS 221/</td>
<td>History of Islam</td>
<td>3</td>
</tr>
<tr>
<td>HIST 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 222/</td>
<td>History of Christianity, Reformation to Present</td>
<td>3</td>
</tr>
<tr>
<td>HIST 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 251/</td>
<td>Classical Mythology</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 312</td>
<td>Contemplation in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>RELS 317/</td>
<td>Introduction to Biblical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 347/</td>
<td>Rise of Islam, 600-1258</td>
<td>3</td>
</tr>
<tr>
<td>HIST 347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 360/</td>
<td>The Bible as Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUSS 201</td>
<td>Intermediate Russian I</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 202</td>
<td>Intermediate Russian II</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 201</td>
<td>Intermediate Spanish I</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 202</td>
<td>Intermediate Spanish II</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 220</td>
<td>Olympic Studies</td>
<td>3</td>
</tr>
<tr>
<td>THAR 155</td>
<td>History of Western Dress</td>
<td>3</td>
</tr>
<tr>
<td>THAR 156</td>
<td>Dress in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>WGST 200</td>
<td>Introduction to Women's and Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td>WGST 333/</td>
<td>Lesbian, Gay, Bisexual, Transgender and Queer Literatures</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 333</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Courses in this category focus on how ideas, values, beliefs, and other aspects of culture express and affect human experience. Courses involve the exploration of ideas that foster aesthetic and intellectual creation in order to understand the human condition across cultures. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, social responsibility, and personal responsibility.

Creative Arts – 3 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 327/PERF 327</td>
<td>Popular Musics in the African Diaspora</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 324/MUSC 324</td>
<td>Music in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 149</td>
<td>Art History Survey I</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 150</td>
<td>Art History Survey II</td>
<td>3</td>
</tr>
<tr>
<td>CARC 311</td>
<td>Field Studies in Design Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 257/RELS 257</td>
<td>Communication, Religion and the Arts</td>
<td>3</td>
</tr>
<tr>
<td>COMM 340</td>
<td>Communication and Popular Culture</td>
<td>3</td>
</tr>
<tr>
<td>DCED 202</td>
<td>Dance Appreciation</td>
<td>3</td>
</tr>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td>3</td>
</tr>
<tr>
<td>ENDS 115</td>
<td>Design Communication Foundations</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 212</td>
<td>Shakespeare</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 219</td>
<td>Literature and the Other Arts</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 251/FILM 251</td>
<td>Introduction to Film Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FILM 215/INTS 215</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>FILM 251/ENGL 251</td>
<td>Introduction to Film Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FILM 299</td>
<td>History of Film</td>
<td>3</td>
</tr>
<tr>
<td>FILM 425/ FREN 425</td>
<td>French Film</td>
<td>3</td>
</tr>
<tr>
<td>FREN 425/ FILM 425</td>
<td>French Film</td>
<td>3</td>
</tr>
<tr>
<td>HISP 204</td>
<td>Spanish and Spanish American Literature in Translation</td>
<td>3</td>
</tr>
<tr>
<td>HORT 203</td>
<td>Floral Design</td>
<td>3</td>
</tr>
<tr>
<td>INTS 215/ FILM 215</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>KINE 210</td>
<td>The Art of Movement</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 201</td>
<td>Music and the Human Experience</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 221</td>
<td>Guitar Heroes</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 222</td>
<td>Music of the Americas</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 225</td>
<td>History of Jazz</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 226</td>
<td>History of Rock</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 228</td>
<td>History of Electronic Music</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 324/ANTH 324</td>
<td>Music in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>PERF 223</td>
<td>Aesthetics of Activism</td>
<td>3</td>
</tr>
<tr>
<td>PERF 301</td>
<td>Performance in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>PERF 327/AFST 327</td>
<td>Popular Musics in the African Diaspora</td>
<td>3</td>
</tr>
<tr>
<td>PERF 328</td>
<td>Japanese Traditional Performing Arts</td>
<td>3</td>
</tr>
<tr>
<td>PERF 386</td>
<td>Evolution of the American Musical</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 330</td>
<td>Philosophy of Art</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 375</td>
<td>Philosophy of the Visual Media</td>
<td>3</td>
</tr>
<tr>
<td>RELS 257/COMM 257</td>
<td>Communication, Religion and the Arts</td>
<td>3</td>
</tr>
<tr>
<td>THAR 201</td>
<td>Introduction to World Theatre</td>
<td>3</td>
</tr>
<tr>
<td>THAR 281</td>
<td>History of the Theatre II</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on the appreciation and analysis of creative artifacts and works of the human imagination. Courses involve the synthesis and interpretation of artistic expression and enable critical, creative, and innovative communication about works of art. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, team work, and social responsibility.

American History – 6 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 300/HIST 300</td>
<td>Blacks in the United States, 1607-1877</td>
<td>3</td>
</tr>
<tr>
<td>AFST 301/HIST 301</td>
<td>Blacks in the United States Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>HIST 226</td>
<td>History of Texas</td>
<td>3</td>
</tr>
<tr>
<td>HIST 230</td>
<td>American Military History, 1609 to Present</td>
<td>3</td>
</tr>
<tr>
<td>HIST 232</td>
<td>History of American Sea Power</td>
<td>3</td>
</tr>
<tr>
<td>HIST 258</td>
<td>American Indian History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 300/AFST 300</td>
<td>Blacks in the United States, 1607-1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 301/AFST 301</td>
<td>Blacks in the United States Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 304</td>
<td>Southwest Borderlands</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on the consideration of past events and ideas relative to the United States, with the option of including Texas History for a portion of this component area. Courses involve the interaction among individuals, communities, states, the nation, and the world, considering how these interactions have contributed to the development of the United States and its global role. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, social responsibility, and personal responsibility.
Government/Political Science – 6 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on consideration of the Constitution of the United States and the constitutions of the states, with special emphasis on that of Texas. Courses involve the analysis of governmental institutions, political behavior, civic engagement, and their political and philosophical foundations. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, social responsibility, and personal responsibility.

Social and Behavioral Sciences – 3 SCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 235</td>
<td>Foundations of Money Education</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 450</td>
<td>Global Social Justice Issues in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 201</td>
<td>Introduction to Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 202</td>
<td>Introduction to Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>Social and Behavioral Factors in Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 458</td>
<td>Cultural and Ethical Considerations for Global Practice</td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 320</td>
<td>Organizational Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 325</td>
<td>Persuasion</td>
<td>3</td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 365/</td>
<td>International Communication</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>EPSY 320</td>
<td>Child Development</td>
<td>3</td>
</tr>
<tr>
<td>EPSY 321</td>
<td>Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 236</td>
<td>Introduction to Health Disparities and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>HORT 335</td>
<td>Sociohorticulture</td>
<td>3</td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td>INST 301</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 102</td>
<td>American Mass Media</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 365/</td>
<td>International Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 365</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>KINE 282</td>
<td>Culture of Wellness</td>
<td>3</td>
</tr>
<tr>
<td>MARS 210</td>
<td>Marine Geography</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 206</td>
<td>Global Social Trends</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 207/</td>
<td>Introduction to Gender and Society</td>
<td>3</td>
</tr>
<tr>
<td>WGST 315</td>
<td>The Marriage Institution</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in this category focus on the application of empirical and scientific methods that contribute to the understanding of what makes us human. Courses involve the exploration of behavior and interactions among individuals, groups, institutions, and events, examining their impact on the individual, society, and culture. The following skills will be addressed in the courses that comprise this area: critical thinking, communication, empirical and quantitative, and social responsibility.

Student Learning Outcomes

Student learning outcomes articulate the knowledge and skills we expect students to gain during their educational experiences. These learning outcomes ask students to connect their course- and degree-level learning to overall goals determined to be critically important to a university's
graduates as they make their way in the world after graduation and prepared to engage in learning for a lifetime.

First and foremost, of course, we expect students to have learned the material presented in their individual courses. From entry-level general education courses required of all undergraduates to capstone courses restricted to seniors in a major to specialized graduate seminars, by the time of graduation students are expected to have learned the material assigned in all of their courses. We call this “content knowledge.”

The broader institutional student learning outcomes ask students to connect the pieces of their education into a whole that synthesizes what they have learned. Students graduate not only knowing facts and understanding basic concepts but also demonstrating an ability to apply and explain those facts and concepts creatively in new situations. Students gain the skills and knowledge that allows them to thrive in a complex world.

Baccalaureate

A student who graduates from Texas A&M with a baccalaureate degree will have acquired the knowledge and skills necessary to:

Master the depth of knowledge required for a degree, including the ability to:

- Articulate disciplinary and interdisciplinary theories, concepts, principles, skills, and practices;
- Synthesize knowledge across courses and other experiences; and
- Apply knowledge from core curriculum courses, discipline-based courses, and other experiences in a range of contexts to solve problems and make decisions.

Demonstrate critical thinking, including the ability to:

- Evaluate, analyze, and integrate information from a variety of sources;
- Use appropriate strategies and tools to represent, analyze, and integrate information; and
- Develop critical, reasoned positions.

Communicate effectively, including the ability to:

- Demonstrate effective oral communication skills (which could include the use of languages such as American Sign language for those who do not communicate orally);
- Demonstrate effective writing skills;
- Demonstrate effective nonverbal communication skills (which could include appropriate use of performance, design, or representations such as maps, tables, and graphs);
- Listen actively and critically;
- Present work effectively to a range of audiences; and
- Effectively communicate original and creative ideas.

Practice personal and social responsibility, including the ability to:

- Practice ethical leadership;
- Recognize an ethical dilemma and apply rational decision-making in order to address it;
- Choose ethical courses of action in research and practice;
- Acknowledge and address the consequences of one’s own actions; and
- Engage in local and global civic activities.

Demonstrate social, cultural, and global competence, including the ability to:

- Live and work effectively in a diverse and global society;
- Articulate the value of a diverse and global perspective; and
- Recognize diverse economic, political, cultural, and religious opinions and practices.

Prepare to engage in lifelong learning, including the ability to:

- Exhibit the skills necessary to acquire, organize, reorganize, and interpret new knowledge;
- Show proficiency in current technologies and the ability to adapt to emerging technologies;
- Recognize and participate in activities that enhance wellness of body, mind, and spirit;
- Formulate a plan of personal goals for continued professional growth; and
- Demonstrate intellectual curiosity.

Work collaboratively, including the ability to:

- Participate effectively in teams;
- Consider different points of view; and
- Work with others to support a shared purpose or goal.

Degree and Program Information

Which Catalog to Follow

In meeting the requirements for a baccalaureate degree, a student is expected to complete the course and hour requirements as outlined in the catalog in effect at the time he or she first enrolls at Texas A&M. Normally, a student will not be granted a degree based upon completion of the requirements set forth in a catalog more than seven years old. Before changing catalogs, the student must consult his or her academic advisor. A student changes catalogs by filing a written notification with his or her dean, or designee. It is incumbent on the student to verify that the change has been made. Texas A&M University Student Rules (including periodic revisions) is the governing document in case of conflict between this catalog and Texas A&M University Student Rules. It is the responsibility of the individual student to read this information carefully and to use it as a reference. Please refer to the Student Rules for this information.

Whereas each college must retain the flexibility to improve its curriculum, course offerings may be changed during the student’s education. If a course required under a previous catalog is no longer offered, a student eligible to graduate according to that catalog should consult his or her academic advisor or dean to identify another course that may be used to fulfill the requirement. Course adjustments in the degree program are permitted only with the approval of the dean through the department head or program director. Furthermore, the University reserves the right to make any changes in requirements it may consider necessary and desirable by due notice in the catalog.

Students are required to take the courses listed in a curriculum; however, the display of a curriculum does not in any way indicate the length of time required to finish degree requirements. Rather, this display is intended as a guide to indicate the preferred order for completion of degree requirements. Exceptions to certain requirements may be petitioned through the department head to the dean of the college.
Degrees Offered

The following degrees are offered for the satisfactory completion of resident study in the appropriate curriculum:

- Bachelor of Arts (BA)
- Bachelor of Business Administration (BBA)
- Bachelor of Environmental Design (BED)
- Bachelor of Landscape Architecture (BLA)
- Bachelor of Science (BS)
- Bachelor of Science in Nursing (BSN)
- Master of Agribusiness (MAB)
- Master of Agriculture (MAGR)
- Master of Architecture (MARCH)
- Master of Arts (MA)
- Master of Biotechnology (MBIOT)
- Master of Business Administration (MBA)
- Master of Clinical Nutrition (MCN)
- Master of Computer Science (MCS)
- Master of Education (MED)
- Master of Engineering (MENG)
- Master of Engineering Technical Management (METM)
- Master of Equine Industry Management (MEIM)
- Master of Financial Management (MFM)
- Master of Fine Arts (MFA)
- Master of Geoscience (MGSC)
- Master of Health Administration (MHA)
- Master of Industrial Distribution (MID)
- Master of International Affairs (MIA)
- Master of International Policy (MIP)
- Master of Jurisprudence (MJUR)
- Master of Land and Property Development (MLPD)
- Master of Landscape Architecture (MLA)
- Master of Laws (LLM)
- Master of Marine Resources Management (MMRM)
- Master of Maritime Business Administration and Logistics (MMAL)
- Master of Natural Resources Development (MNRD)
- Master of Ocean Science and Technology (MOST)
- Master of Public Health (MPH)
- Master of Public Service and Administration (MPSA)
- Master of Real Estate (MRE)
- Master of Recreation and Youth Development (MRYD)
- Master of Science (MS)
- Master of Science in Nursing (MSN)
- Master of Science in Public Health (MSPH)
- Master of Urban Planning (MUP)
- Master of Water Management and Hydrological Science (MWM)
- Master of Wildlife Science (MWSC)
- Doctor of Dental Surgery (DDS)
- Doctor of Education (EdD)
- Doctor of Engineering (DEng)
- Doctor of Medicine (MD)
- Doctor of Pharmacy (PharmD)
- Doctor of Philosophy (PhD)
- Doctor of Public Health (DrPH)
- Doctor of Veterinary Medicine (DVM)
- Juris Doctor (JD)

The buying, selling, creating, duplicating, altering, giving or obtaining the Texas A&M diploma or other academic record is prohibited by state law. A person who violates this statute or who aids another person in violation is guilty of a misdemeanor and is subject to a fine and/or confinement if convicted.

The University has the right to rescind a previously granted degree if the University becomes aware of information indicating that the degree never should have been granted.

Tuition Charged for Excess Credit Hours

The State of Texas will not provide funds to state institutions of higher education for excess semester credit hours earned by a resident student. Because funding will not be provided by the State, and as permitted by State law, Texas A&M will charge tuition at the non-resident rate to all students who exceed the semester credit hour limit for their program. Excess semester credit hours are those which accrue after the student attempts more than 30 hours beyond the number of semester credit hours required for the completion of the degree program in which the student is enrolled. Thus, the student may accumulate up to 30 hours beyond those required for the chosen degree program and not exceed the limitation. The limitation on excess credit hours applies only to those undergraduate students who first enter higher education in the fall 1999 and thereafter. The semester credit hours counted toward the limitation include all hours attempted by the student except:

- Semester credit hours earned by the student before receiving a baccalaureate degree that has been previously awarded.
- Semester credit hours earned by the student by examination or other procedure by which credit is earned without registering for a course for which tuition is charged.
- Credit for remedial education courses, technical courses, workforce education courses funded according to contact hours, or other courses that would not generate academic credit that could be applied toward a degree program at Texas A&M.
- Semester credit hours earned by the student at a private or an out-of-state institution.
- Semester credit hours earned by the student before graduating from high school and used to satisfy high school graduation requirements (Effective June 2009).
- Hours not eligible for formula funding.
- Semester credit hours earned 10 or more years before the student began his or her degree program that have been excluded from the student record due to an election of admission under the Academic Fresh Start program.

Supplementary Fee for Courses Attempted More than Twice

Certain courses that are attempted by a student more than twice at a public institution of higher education in Texas may not be reported for state funding. As a result, the institution must either pass the non-funded portion to all students, or charge a supplementary fee to the student who is repeating the course. Texas A&M has chosen to assess
Requirements for a Baccalaureate Degree

Requirements for a Baccalaureate Degree

To be a candidate for a degree at the end of the semester, a student must:

1. Be enrolled in or have completed all degree requirements by the 60th class day of the fall or spring semester, or the 15th class day of the second summer term either in residence or at another college or university. Proof of enrollment in any courses taken at another college or university must be provided to the Office of the Registrar, Degree Audit, by the above deadlines. A student must be enrolled in his or her degree-granting college(s) and major(s) at the beginning of the student's last semester at Texas A&M to be a candidate for a degree from that college.

2. Complete a minimum of 120 credit hours.

3. Complete, with at least a 2.0 grade point average, all undergraduate coursework attempted at Texas A&M.

4. Complete, with a 2.0 grade point average, all courses included in the major field of study.

5. Meet the Residence Requirement. A minimum of 25% of coursework applying to a degree must be completed in residence at Texas A&M University. Upper-level Residence Requirement: A minimum of 36 semester hours of 300- and/or 400-level coursework must be successfully completed in residence at Texas A&M to obtain a baccalaureate degree. A minimum of 12 of these 36 semester hours must be in the major. A student participating in Texas A&M off-campus study programs approved by the student's college may apply upper division credits earned in the programs toward the residence requirement up to a maximum of 18 semester hours, including hours transferred from another institution as part of one of these programs. These Texas A&M off-campus study programs may involve domestic or international institutions and may be taught by Texas A&M faculty or faculty from other institutions. Students choosing to participate in such programs and wishing to apply credits earned from the programs toward the residence requirement must receive college approval prior to the student's participation in the off-campus study program. Students participating in international programs must contact the Education Abroad Programs Office for details on how to obtain approval for courses taken outside the United States. Students participating in domestic off-campus programs must contact the dean's office of their college for approval procedures.

6. Complete the University Core Curriculum. Core Curriculum courses are listed on the University Core Curriculum (p. 25) page. For additional information, please reference http://core.tamu.edu.

7. Complete the citizenship requirement, which includes at least 6 credit hours in government/political science and at least 6 credit hours in American history. American National Government (POLS 206) and State and Local Government (POLS 207) fulfill the government/political science requirement.

8. Complete the Foreign Language requirement. A minimum of one year of foreign language is required for all baccalaureate degree programs at Texas A&M. For many programs, this degree requirement can be satisfied by the satisfactory completion of two units of the same foreign language at the high school level or one year of the same language at the college level.

a. International students whose native language is not English are exempt from satisfying the university foreign language requirement. These students may not register for the beginning and intermediate level courses in their native language (course numbers 101, 102, 201, and 202) which are used to fulfill the foreign language requirement.

b. Many Bachelor of Arts degrees require at least 6 additional semester credit hours of foreign language at the 200-level. Students should consult with an academic advisor about specific language requirements for their degree program.

c. Students who wish to demonstrate foreign language proficiency without taking acceptable high school or college courses may do so through the existing credit by examination process. In cases where students wish to demonstrate proficiency in a language not taught at Texas A&M, the following procedures shall apply. The student shall request an examination from the Head of the Department of Hispanic Studies or the Head of the Department of International Studies. This department will coordinate the administration of special examinations to demonstrate foreign language proficiency. This will include finding an appropriate examination to test the student's proficiency, informing the student how to arrange to take the examination and certifying the results to the student's advisor. All arrangements shall be made and fees paid by the student.

d. American Sign Language (ASL) may be used to fulfill the foreign language degree requirement unless otherwise specified by the student's college or department. Students may either transfer ASL credits or arrange to be tested at another institution. (Texas A&M does not offer courses in ASL.)

9. Complete the Writing requirement. The requirement may be met by passing two writing (W) courses or one writing (W) course and one oral communication (C) course in the student's major. The requirement may not be met by any course listed as a University Core Curriculum communication requirement, nor may it be met through credit by examination. It may be met by a course transferred from another institution of higher learning, with the approval of the dean of the student's college and the Associate Provost for Undergraduate Studies. Upon request, students will provide their dean with a course description, syllabus or writing sample from the course being transferred.
10. Complete the International and Cultural Diversity and Cultural Discourse requirements (6 credit hours).
 a. The International and Cultural Diversity (ICD) requirement will preparing graduates for a diverse, global society and addresses the following University Baccalaureate Learning Outcomes:
 1) Live and work effectively in a diverse and global society;
 2) Articulate the value of a diverse and global perspective;
 3) Recognize diverse opinions and practices and consider different points of view (including but not limited to economic, political, cultural, gender, and religious opinions).

 Students must take one course (3 credit hours) from the list available on the International and Cultural Diversity Requirement (http://catalog.tamu.edu/undergraduate/general-information/degree-information/international-cultural-diversity-requirements/) page. For additional information, please reference http://icd.tamu.edu.

 b. The Cultural Discourse (CD) requirement will prepare graduates to be leaders in an increasingly diverse world and act in a multicultural and global society and will address the following:
 1) Hold respectful discussions on difficult topics (controversial topics or topics that involve conflict)
 2) The ability to understand conflict from multiple viewpoints
 3) Recognize aspects of personal and society interactions including but not limited to power and authority structures, tolerance and intolerance, and promoting informed dialog

 Students must take one course (3 credit hours) from the list available on the Culture Discourse Requirement page. For additional information, please reference http://icd.tamu.edu.

 c. If a course listed as ICD or CD, but it also satisfies a Core Curriculum requirement, then the course may be used to satisfy both requirements.

Undergraduate Minor Programs

A minor is a selection of courses that focus on a single area or an interdisciplinary perspective as developed by the department or program that offers the minor. The department or program offering the minor is responsible for setting enrollment limits and deciding which courses are used to meet the minor. Coursework consists of 15-18 hours with a minimum of 6 in residence at the 300-400 level.

If a minor is offered by a department or academic unit, then the minor is considered to be available to all students as resources permit. Students must declare a minor no later than the date on which they apply for graduation. A maximum of two minors per degree can be completed by students. A minor is displayed on the transcript after graduation but not displayed on the diploma.

Two Degrees

A student pursuing a second baccalaureate degree must complete all university, college, and department/curricular requirements for the second degree not covered in the first. All essential work required for a second degree must be defined in advance in writing by the Dean or designee of the college granting the second degree. In all such cases, the total semester hours required must be at least 30 hours additional to the greater number required for either degree. At least 12 hours of 300- and 400-level course work must be completed in each field of study.

A student who has previously not been enrolled at Texas A&M and who is seeking a second degree must have a minimum of 36 hours of 300- and 400-level courses, 12 hours of which must be in the major field of study, in residence at Texas A&M. The student must also meet the citizenship requirements for American history and government/political science.

Baccalaureate Degree Option for Students Granted Early Admission to Professional Programs

A minimum of 120 hours is required for a Texas A&M undergraduate degree. Some degree programs require additional hours (see specific degree requirements for each major in this catalog). Students from undergraduate programs who are selected early into participating programs in medicine, dentistry, optometry, pharmacy, law, or veterinary medicine must have satisfied all University Core Curriculum requirements as specified in this catalog. A student intending to use this baccalaureate degree option must coordinate early in his or her program with the appropriate undergraduate advisor in order to ensure that degree requirements are met. The degree candidate must complete at least half of the total hours required for the baccalaureate degree while in residence at Texas A&M. This requirement includes a minimum of 24 hours of upper division courses in residence, of which a minimum of 12 must be in the major. A student will become eligible for the Texas A&M degree upon completion of the total credit hours required by his or her undergraduate degree plan. Each undergraduate major specifies those professional courses that may be used to satisfy its degree plan.

A student then selected into an approved professional program will be required to successfully complete a minimum of one full year of acceptable work at an accredited school of medicine, dentistry, optometry, pharmacy, law, or veterinary medicine in the United States. The student will be responsible for submitting official transcripts to the Office of Admissions to verify completion of agreement requirements. The participating undergraduate department or program will complete the required degree audit, approve the necessary substitutions and clear the student to graduate.

Baccalaureate degrees will be awarded in May, August, and December after the completion of the first year of the approved professional program or the necessary hours for the desired baccalaureate degree. Students must apply for graduation at Howdy. Check the academic calendar for deadlines and for commencement dates. Questions may be emailed to degree-audit@tamu.edu or call (979) 845-1089. For additional information about graduation, visit the graduation (http://graduation.tamu.edu) website.

Students who have received a baccalaureate degree are not eligible to participate in commencement. Individuals who would have been eligible to participate in this program had it been in effect when they were students at Texas A&M may request the conferral of a baccalaureate degree. Although this is a University-wide policy, not all colleges choose to participate. The use of this baccalaureate option will remain a college initiative in that each individual college and/or program must clear each candidate for graduation.
Graduation with Honors

Undergraduate Students

To be eligible for graduation with Latin honors, a student seeking a baccalaureate degree must enroll in and complete a minimum of 60 semester hours at Texas A&M University, Texas A&M University Galveston campus, or Texas A&M University Qatar campus preceding graduation and have an institutional grade point average equal to or greater than that required for the appropriate category of honors. Course credit received by examination, and courses reserved for graduate credit only, are excluded from the calculation of the number of hours and the grade point average for graduation with Latin honors.

Categories for Latin honors shall be designated as follows:

- **Summa Cum Laude**: A student may be graduated Summa Cum Laude with a grade point average of 3.90 or above.
- **Magna Cum Laude**: A student may be graduated Magna Cum Laude with a grade point average range of 3.70 through 3.899.
- **Cum Laude**: A student may be graduated Cum Laude with a grade point average range of 3.50 through 3.699.

Grade point averages used to determine Latin honors designations are calculated during the final degree audit the day before the ceremonies and include hours and final grades in courses taken during the graduation semester. Latin honors designations will not be changed after the final graduation clearance deadline.

Information regarding other honors designations may be found on the Honors and Undergraduate Research (p. 115) page.

Please note:

- Students are not required to enroll in honors courses to graduate with Latin honors.
- Taking designated honors courses does not mean students will graduate with Latin honors.

No Upper Division student found guilty of academic misconduct may receive Cum Laude, Magna Cum Laude, or Summa Cum Laude honors at graduation. Upper Division status is defined as having earned 60 or more credit hours, including transfer hours, prior to the date of the violation. This sanction is automatic upon a finding of academic misconduct, and is imposed without regard to the severity of other sanctions imposed by the instructor or Honor Council.

For more information, please see the Aggie Honor System Office (p. 83) section in the catalog.

First-Professional Students

- Students who complete their entire course of study at Texas A&M University in the College of Medicine are eligible for academic honors. In the College of Medicine, students must obtain a grade point average of 3.50 or greater to graduate with honors.
- In the Irma Lerma Rangel College of Pharmacy, students are eligible for Latin Honors as follows: Summa Cum Laude (4.0-3.90), Magna Cum Laude (3.89-3.75), and Cum Laude (3.74-3.50).
- In the School of Law, JD students may qualify to graduate Summa Cum Laude by holding a final cumulative grade point average of 3.80 or above, Magna Cum Laude with a final cumulative grade point average of 3.60-3.79, and Cum Laude with a final cumulative grade point average of 3.40 through 3.59.

- A first-professional student in the College of Veterinary Medicine may qualify to graduate Summa Cum Laude by holding a final grade point average of 3.90 or above, Magna Cum Laude with a grade point average of 3.70 through 3.899 and Cum Laude with a grade point average of 3.50 through 3.699.

Graduation Application, Diploma and Commencement

Formal application for degrees must be submitted online in Howdy by the deadline stated in the academic calendar.

The diploma of the University, with the appropriate degree, will be granted to the student who has made formal application for the degree by the published official deadline, has all grades on record in the Office of the Registrar, including grades pertaining to graduation with honors, and has satisfied all degree requirements by no later than 5 p.m., Friday, the first week of classes of the succeeding semester or summer term following commencement.

Students must have settled all financial obligations to the university prior to receiving a diploma.

Graduate and undergraduate students who plan to attend a commencement ceremony must do so the semester they apply for graduation and complete their degree requirements.

Formal application for degrees at Texas A&M University at Qatar is a two-step process. An online application must be submitted via the Howdy portal, as well as a supplemental application to the Office of Records, by the deadline stated in the Texas A&M University at Qatar academic calendar. Under unusual circumstances, an application for a degree may be accepted after the stated deadline.

All students must have settled all financial obligations to the university and Qatar Foundation prior to receiving a diploma.

Graduate and undergraduate students completing their degree in July or December will have the opportunity to participate in the commencement ceremony in May, following the completion of their degree. Students must participate in the commencement ceremony of their home campus.

Requirements for a Certificate

Requirements for a Certificate

A student must receive permission from the department offering the certificate and their primary academic advisor in order to pursue a certificate. All requirements outlined in the catalog and degree evaluation for the specific certificate program must be met in order for a certificate to be awarded.

Certificate types:

- **Major-dependent** - A student is admitted to the program through the offering department. Admission to the program requires the student to pursue a specific degree/major at Texas A&M University. This type of certificate program typically serves as a track within a degree program. The certificate and degree are awarded simultaneously.
- **Degree-dependent** - A student is admitted to the program through the offering department. Admission to the program simply requires that the student pursue a degree at Texas A&M University. The certificate may or may not be related to their specific degree/major. The certificate is awarded upon completion of the requirements independent of a degree.
• **Stand-alone** - A student is admitted to the program through the Office of Admissions. The student may pursue the certificate without being enrolled in a degree program. The certificate may be awarded upon completion of requirements.

Graduation Application, Certificate and Commencement

Beginning fall 2017, formal application for certificates to be awarded must be submitted online in Howdy (http://howdy.tamu.edu/) by the deadline stated in the academic calendar.

Certificates are granted to students who make formal application for the certificate to be awarded, have all grades on record in the Office of the Registrar, and have satisfied all certificate requirements. Certificates are awarded no more frequently than the last calendar day of each month; with the exception of major-dependent certificates which are awarded at the end of each term, along with the student’s associated degree. In months where a commencement ceremony is held, degree-dependent and stand-alone certificates will be awarded with the conferral date for that term’s commencement.

Students must have settled all financial obligations to the university prior to receiving a certificate.

University certificates will either be mailed directly to the student or issued to the college for formal presentation.

Certificate/Graduation Fee

At this time, there is not a fee associated with the awarding of a certificate from Texas A&M University.

For additional information regarding certificate tracking and awarding, please visit the Office of the Registrar website (http://registrar.tamu.edu/Graduation-Degree-Programs/Certificate-Tracking-Awarding/).

Combination Programs

Combination programs represent two degrees of different academic levels that are pursued and awarded simultaneously. Combination programs may allow a shorter time for completion due to the “double-counting” of some coursework. Even though the programs are combined, students must satisfy the required hours of both programs. See the specific program for more details.

Texas A&M University currently offers the following undergraduate programs combined with graduate and professional programs:

Undergraduate and Graduate Programs

- Bachelor of Arts in Economics and Master of International Affairs, 5-Year Degree Program (p. 572)
- Bachelor of Arts in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 574)
- Bachelor of Arts in English and Master of Arts in English, 5-Year Degree Program (p. 587)
- Bachelor of Arts in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 511)
- Bachelor of Arts in International Studies and Master of Public International Affairs, 5-Year Degree Program (p. 613)
- Bachelor of Arts in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 732)
- Bachelor of Arts in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 649)
- Bachelor of Arts in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 633)
- Bachelor of Business Administration in Accounting and Master of Financial Management, 5-Year Degree Program (p. 275)
- Bachelor of Business Administration in Accounting and Master of Science, 5-Year Degree Program (p. 277)
- Bachelor of Science in Agricultural Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 140)
- Bachelor of Science in Applied Mathematical Sciences and Master of Science in Mathematics, 5-Year Degree Program (p. 728)
- Bachelor of Science in (p. 817)Coastal Environmental Science and Society and Master of Marine Resources Management, 5-Year Degree Program
- Bachelor of Science in Economics and Master of International Affairs, 5-Year Degree Program (p. 576)
- Bachelor of Science in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 578)
- Bachelor of Science in Economics and Master of Science in Economics, 5-Year Degree Program (p. 579)
- Bachelor of Science in Environmental Geoscience and Master of Ocean Science and Technology, 5-Year Degree Program (p. 487)
- Bachelor of Science in Geology and Master of Science in Geology, 5-Year Degree Program (p. 516)
- Bachelor of Science in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 514)
- Bachelor of Science in Geophysics and Master of Science in Geophysics, 5-Year Degree Program (p. 518)
- Bachelor of Science in Industrial Engineering and Master of Science in Finance, 5-Year Degree Program (p. 452)
- Bachelor of Science in Industrial Engineering and Master of Public Health in Occupational Safety and Health, 5-Year Degree Program (p. 450)
- Bachelor of Science in Interdisciplinary Engineering and Master of Public Health in Occupational Safety and Health, 5-Year Degree Program (p. 373)
- Bachelor of Science in Kinesiology and Master of Science in Athletic Training, 5-Year Degree Program (p. 337)
- Bachelor of Science in Maritime Business Administration and Master of Maritime Business Administration and Logistics, 5-Year Degree Program (p. 834)
- Bachelor of Science in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 735)
- Bachelor of Science in Meteorology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 495)
- Bachelor of Science in Oceanography, Marine Ecosystem Science and Health Track and Master of Ocean Science and Technology, 5-Year Degree Program (p. 524)
- Bachelor of Science in Oceanography, Ocean Climate Track and Master of Ocean Science and Technology, 5-Year Degree Program (p. 527)
- Bachelor of Science in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 636)
• Bachelor of Science in Public Health and Master of Public Health in Epidemiology, 5-Year Degree Program (p. 676)
• Bachelor of Science in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 652)
• Bachelor of Science in Statistics and Master of Science in Statistics, 5-Year Degree Program (p. 749)
• Bachelor of Science in Urban and Regional Planning and Master of Land and Property Development, 5-Year Degree Program (p. 254)
• Bachelor of Science in Urban and Regional Planning and Master of Urban Planning, 5-Year Degree Program (p. 255)
• Bachelor of Science in Wildlife and Fisheries Sciences and Master of Public Service Administration, 5-Year Degree Program (p. 214)

Undergraduate and Professional Programs
• Bachelor of Science in Interdisciplinary Engineering and Juris Doctor, 6-Year Degree Program (p. 371)

Degree Programs Tables

Undergraduate, Graduate and Professional Degree Programs
Approved by the Texas Higher Education Coordinating Board

Interdisciplinary Degree Programs

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agribusiness</td>
<td>MAB</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Agribusiness and Managerial Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotechnology</td>
<td>MBIOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecology and Evolutionary Biology</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Marine Biology</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Molecular and Environmental Plant Sciences</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Neuroscience</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Spatial Sciences</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicology</td>
<td>MS</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>University Studies</td>
<td>BA, BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Management and Hydrological Science</td>
<td>MS, MWM</td>
<td></td>
<td>PhD</td>
<td></td>
</tr>
</tbody>
</table>

1 Joint program with Texas A&M University, Texas A&M University at Galveston and Texas A&M University–Corpus Christi.

College of Agriculture and Life Sciences

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Natural Resources</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Department of Agricultural Economics

Agribusiness BS
Agricultural Economics BS MS, MAg PhD

Department of Agricultural Leadership, Education and Communications

Agricultural Communication and Journalism BS
Agricultural Development MAgr
Agricultural Education EdD
Agricultural Leadership and Development BS
Agricultural Leadership, Education, and Communication MS, MEd PhD

Department of Animal Science

Animal Breeding MS PhD
Animal Science BS MS, MAg PhD
Equine Industry Management MEIM
Physiology of Reproduction MS PhD

Department of Biochemistry and Biophysics

Biochemistry BS MS PhD
Genetics BS

Department of Biological and Agricultural Engineering

Agricultural Systems Management BS MS, MAg PhD
Biological and Agricultural Engineering BS MS, MEngr PhD

Department of Ecology and Conservation Biology

Ecological Restoration BS MS, MAg PhD
Ecosystem Science and Management MS, MAg PhD
Forestry BS

Department of Entomology

Entomology BS MS PhD
Forensic and Investigative Sciences BS
Department of Food Science and Technology
- **Food Science and Technology**
 - **Degree Programs:** BS, MS, MAgr, PhD
- **Programs:**
 - Food Systems Management

Department of Horticultural Sciences
- **Horticulture**
 - BA, BS, MS, MAgr
- **Plant Pathology and Microbiology**
 - Bioenvironmental Sciences
 - Plant Pathology

Department of Nutrition
- **Nutrition**
 - MS, PhD

Department of Plant Pathology and Microbiology
- **Bioenvironmental Sciences**
- **Plant Pathology**

Department of Poultry Science
- **Poultry Science**
 - BS, MS, MAgr, PhD

Department of Rangeland, Wildlife, and Fisheries Management
- **Natural Resources Development**
- **Rangeland Ecology and Management**
- **Wildlife and Fisheries Sciences**
 - BS, MS, PhD

Department of Recreation, Park and Tourism Sciences
- **Natural Resources Development**
- **Recreation, Park and Tourism Sciences**
- **Recreation and Youth Development**

Department of Soil and Crop Sciences
- **Agronomy**
 - MS, PhD
- **Plant Breeding**
 - MS, PhD
- **Plant and Environmental Soil Science**

Turfgrass Science
- BS

1. Also offered as joint program with Texas Tech University when offered by Distance Education.
2. Also offered in cooperation with Texas A&M University–Kingsville.

College of Architecture

Department of Architecture
- **Architecture**
 - MS, MArch, PhD
- **Environmental Design**
 - Architectural Studies

Department of Construction Science
- **Construction Science**
 - BS, MS, PhD

Department of Landscape Architecture and Urban Planning
- **Landscape Architecture**
 - BLA, MLA
- **Land and Property Development**
 - MLPD
- **Urban and Regional Planning**
 - BS, MUP
- **Urban and Regional Science**

Department of Visualization
- **Visualization**
 - BS, MS, MFA

Institute of Biosciences and Technology
Mays Business School

Department of Accounting
- **Accounting**
 - BBA, MBA, PhD

Department of Finance
- **Finance**
 - BBA, MS
- **Financial Management**
 - MFM
- **Land Economics and Real Estate**
 - MRE

Department of Information and Operations Management
Department of Management

- Entrepreneurial Leadership: MS
- Human Resource Management: MS
- Management: BBA, PhD

Department of Marketing

- Marketing: BBA, MS

College of Dentistry

Degree Program	Baccalaureate	Masters	Doctorate	Professional
Dentistry | DDS | | |
Oral Biology | MS | | PhD |

Department of Biomedical Sciences

- Caruth School of Dental Hygiene
 - Dental Hygiene BS

Department of Comprehensive Dentistry

Department of Diagnostic Sciences

Department of Endodontics

Department of Oral and Maxillofacial Surgery

Department of Orthodontics

Department of Pediatric Dentistry

Department of Periodontics

Department of Public Health Sciences

College of Education and Human Development

Degree Program	Baccalaureate	Masters	Doctorate	Professional
Department of Educational Psychology
- Bilingual Education: MS, MEd
- Counseling Psychology: PhD
- Educational Psychology: MS, MEd, PhD
- Educational Technology: MEd
- School Psychology: PhD
- Special Education: MS, MEd

Department of Health and Kinesiology

- Athletic Training: MS
- Community Health: BS
- Health: BS, MS, PhD
- Education: MS, MEd
- Kinesiology: BS, MS, PhD
- Sport Management: BS, MS

Department of Teaching, Learning, and Culture

- Curriculum and Instruction: MS, MEd, PhD, EdD
- Interdisciplinary Studies:

College of Engineering

Degree Program	Baccalaureate	Masters	Doctorate	Professional
Department of Educational Administration and Human Resource Development
- Educational Administration: MS, MEd, PhD, EdD
- Educational Human Resource Development: MS, PhD
- Human Resource Development: BS
- Technology Management: BS
<table>
<thead>
<tr>
<th>Department</th>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering</td>
<td>Environmental Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>Computer Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computing</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Electrical and Computer Engineering</td>
<td>Computer Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Engineering Technology and Industrial Distribution</td>
<td>Electronic Systems Engineering Technology</td>
<td>BS</td>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Technology</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Distribution</td>
<td>BS</td>
<td>MID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing BS and Mechanical Engineering Technology</td>
<td>Multidisciplinary BS Engineering Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Management</td>
<td>METM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Industrial and Systems Engineering</td>
<td>Engineering Management</td>
<td>BS</td>
<td>MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Materials Science and Engineering</td>
<td>Materials Science and Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of Mechanical Engineering</td>
<td>Mechanical Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Ocean Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Engineering</td>
<td>Ocean Science and Technology</td>
<td>MOST</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Harold Vance</td>
<td>Petroleum Engineering</td>
<td>BS</td>
<td>MS, MEngr</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>College of Geosciences</td>
<td>Environmental Geoscience</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geoscience</td>
<td>MS</td>
<td>PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Atmospheric Sciences</td>
<td>Atmospheric Sciences</td>
<td>MS</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorology</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Geography</td>
<td>Geographic Information Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Geology and Geophysics</td>
<td>Geology</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Oceanography</td>
<td>Ocean Science and Technology</td>
<td>MOST</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>The Bush School of Government and Public Service</td>
<td>International Affairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of International Affairs</td>
<td>International Affairs</td>
<td>MIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Policy</td>
<td>MIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Public Service and Administration</td>
<td>Public Service and Administration</td>
<td>MPSA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Law</td>
<td>Health Care Law</td>
<td>JM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intellectual Property</td>
<td>LLM, MJur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jurisprudence</td>
<td>MJur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>JD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laws</td>
<td>LLM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Also offered as a dual degree program with the MBA in Business Administration or the MS in Taxation at The University of Texas at Arlington.

College of Liberal Arts

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women’s and Gender Studies</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Anthropology</td>
<td>BA, BS</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Maritime Archaeology and Conservation</td>
<td>MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Communication</td>
<td>BA, BS</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of Economics</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of English</td>
<td>BA</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of Hispanic Studies</td>
<td>MA, PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of History</td>
<td>BA, MA</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of International Studies</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classics</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Studies</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Languages</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Performance Studies</td>
<td>BA</td>
<td>MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Philosophy and Humanities</td>
<td>BA</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Political Science</td>
<td>BA, BS</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of Psychological and Brain Sciences</td>
<td>BA, BS</td>
<td>MA</td>
<td>PhD</td>
<td></td>
</tr>
</tbody>
</table>
College of Science

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Molecular and Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoology</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Department of Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Mathematical Sciences</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative Finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Physics and Astronomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astronomy</td>
<td>MS</td>
<td>PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>BA, BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Applied Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
</tbody>
</table>

<p>| College of Veterinary Medicine and Biomedical Sciences |</p>
<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Sciences</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Science and Technology Journalism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veterinary Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Veterinary Integrative Biosciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Texas A&M University at Galveston

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Studies</td>
<td>BA, BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Liberal Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime Studies</td>
<td>BA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Marine Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Biology</td>
<td>BS</td>
<td>MS</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Marine Fisheries</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Marine Engineering Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Marine and Coastal Environmental Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science and Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine and Coastal Management and Science</td>
<td>PhD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Resources Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Maritime Business Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime Business Administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime Business Administration and Logistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Maritime Systems Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graduate Degree Programs

Texas A&M University currently offers the following programs by distance education.

Degree Programs Via Distance Education

Texas A&M University at Qatar

<table>
<thead>
<tr>
<th>College of Engineering</th>
<th>Baccalaureate</th>
<th>Masters</th>
<th>Doctorate</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>BS</td>
<td>MS, MEng</td>
<td>PhD</td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum Engineering</td>
<td>BS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Joint program between Texas A&M University, Texas A&M University at Galveston and Texas A&M University–Corpus Christi.

Undergraduate Degree Program

- Bachelor of Science in Nursing (BSN) in Nursing

Graduate Degree Programs

- Doctor of Education (EdD) in Agricultural Education
- Doctor of Education (EdD) in Curriculum and Instruction
- Doctor of Philosophy (PhD) in Plant Breeding
- Doctor of Philosophy (PhD) in Interdisciplinary Engineering
- Master of Agriculture (MAgr) in Agricultural Development
- Master of Agriculture (MAgr) in Poultry Science
- Master of Education (MEd) in Bilingual Education
- Master of Education (MEd) in Curriculum and Instruction
- Master of Education (MEd) in Educational Administration
- Master of Education (MEd) in Educational Psychology
- Master of Education (MEd) in Educational Technology
- Master of Education (MEd) in Special Education
- Master of Engineering (MEng) in Aerospace Engineering
- Master of Engineering (MEng) in Biological and Agricultural Engineering
- Master of Engineering (MEng) in Computer Engineering
- Master of Engineering (MEng) in Electrical Engineering
- Master of Engineering (MEng) in Engineering
- Master of Engineering (MEng) in Industrial Engineering
- Master of Engineering (MEng) in Mechanical Engineering
- Master of Engineering (MEng) in Petroleum Engineering
- Master of Engineering Technical Management (METM) in Technical Management
- Master of Geoscience (MGSC) in Geoscience
- Master of Industrial Distribution (MID) in Industrial Distribution
- Master of Jurisprudence (MJur) in Jurisprudence
- Master of Laws (LLM) in Laws
- Master of Maritime Business Administration and Logistics (MMAL) in Maritime Business Administration and Logistics
- Master of Natural Resource Development (MNRD) in Natural Resource Development
- Master of Public Health (MPH) in Epidemiology
- Master of Public Service and Administration (MPSA) in Public Service and Administration
- Master of Recreation and Youth Development (MRYD) in Recreation and Youth Development
- Master of Science (MS) in Agricultural Systems Management
- Master of Science (MS) in Analytics
- Master of Science (MS) in Bilingual Education
- Master of Science (MS) in Education for Health Care Professionals
- Master of Science (MS) in Educational Human Resource Development
- Master of Science (MS) in Electrical Engineering
- Master of Science (MS) in Energy
- Master of Science (MS) in Engineering Management
- Master of Science (MS) in Health Education
- Master of Science (MS) in Mathematics
- Master of Science (MS) in Plant Breeding
- Master of Science (MS) in Safety Engineering
- Master of Science (MS) in Special Education
- Master of Science (MS) in Sport Management
- Master of Science (MS) in Statistics
- Master of Science in Nursing (MSN) in Family Nurse Practitioner
- Master of Science in Nursing (MSN) in Forensic Nursing
- Master of Science in Nursing (MSN) in Nursing Education
- Master of Wildlife Science (MWSC) in Wildlife Science

A limited number of graduate certificate programs are available by distance education. Please review them here (http://catalog.tamu.edu/graduate/degrees-programs/#graduatecertificateprogramstext).

The delivery platform differs among these programs. Most are available 100% online, some are web-supported with interactive video and others require periodic campus visits. The delivery platform in most programs changes depending on the course/program content, needs of the students and their geographic locations. Students should carefully consider distance education and address any specific questions to the department offering the program of interest.

Only a student who is admitted to Texas A&M University may enroll in these distance education programs and the associated courses. A student wishing to enroll in any of the distance education programs must be admitted as a degree-seeking graduate student or as a post-baccalaureate non-degree seeking student. Please see http://admissions.tamu.edu for graduate admissions information.

A student may take up to 12 hours in non-degree-seeking post-baccalaureate status and apply these hours to a master's program with the approval of the student's advisory committee, the head of the department (or Chair of the Intercollegiate Faculty, if appropriate), and the Office of Graduate and Professional Studies if all admission requirements to the selected master's program are fulfilled. Courses offered for extension credit may not be used on the student's degree plan.
Post-baccalaureate non-degree status does not establish eligibility for admission to degree-seeking status.

Students who are not enrolled in an approved distance education program cannot take more than 50% of their required courses online. The Texas Higher Education Coordinating Board (THECB) [http://www.highered.texas.gov/institutional-resources-programs/public-universities-health-related-institutions/academic-program-development-modifications/distance-education-resources/distance-education-modifications-requests/] rules that no more than 50% of courses can be taken online if the program is not approved to be offered online as a distance education program.

Texas A&M University provides students pursuing a graduate degree by distance a wide variety of student support services, including access to library resources, advising, technology support and course materials acquisition through the online bookstore. A complete listing of services, degree program descriptions, appropriate points of contact within each program, and costs are available through the distance education website at http://distance.tamu.edu. Additional distance education programs are in development. Interested students should check the website periodically for updates. Students should contact the department offering the program for any questions.

State Authorization

State authorization allows Texas A&M University to offer educational opportunities to students among other states and nationwide.

National Council for State Authorization Reciprocity Agreements (NC-SARA)

Texas was approved as a SARA state in 2015, and is administered by the Southern https://www.sreb.org/ Regional Education Board (SREB.) [https://www.sreb.org/] ‘The State Authorization Reciprocity Agreement (http://nc-sara.org/) is a voluntary agreement among its member states and U.S. territories that establishes comparable national standards for interstate offering of postsecondary distance-education courses and programs. It is intended to make it easier for students to take online courses offered by postsecondary institutions based in another state.’ - NC-SARA

Approved Minors

Minors

Interdisciplinary
- Entrepreneurship (p. 121)
- Leadership (p. 152)
- Neuroscience (p. 123)

College of Agriculture and Life Sciences
- Agribusiness Entrepreneurship (p. 142)
- Agricultural Communications and Journalism (p. 151)
- Agricultural Economics (p. 143)
- Agricultural Systems Management (p. 167)
- AgriFood Sales (p. 143)
- Agronomy (p. 230)
- Biochemistry (p. 162)
- Bioenvironmental Sciences (p. 202)
- Entomology (p. 180)
- Environmental Soil Science (p. 231)
- Extension Education (p. 152)
- Financial Planning (p. 144)

- Forestry (p. 173)
- Genetics (p. 163)
- Horticulture (p. 191)
- International Agricultural Development (p. 152)
- Leadership (p. 123)
- Park and Natural Resource Management (p. 221)
- Plant Breeding (p. 231)
- Poultry Science (p. 205)
- Rangeland Ecology and Management (p. 215)
- Recreation, Park and Tourism Sciences (p. 222)
- Spatial Sciences (p. 173)
- Tourism Management (p. 222)
- Wildlife and Fisheries Sciences (p. 215)
- Youth Development (p. 222)

College of Architecture

- Architectural Fabrication and Product Design (p. 241)
- Architectural Heritage Conservation (p. 242)
- Art and Architecture History (p. 242)
- Art (p. 260)
- Facility Management (p. 247)
- Game Design and Development (p. 261)
- Global Art, Design and Construction (p. 243)
- Global Culture and Society (p. 243)
- Leadership in the Design and Construction Professions (p. 248)
- Sustainable Architecture and Planning (p. 243)
- Urban and Regional Planning (p. 256)

Mays Business School

- Business (p. 267)

College of Education and Human Development

- Applied Learning in Science, Technology, Engineering and Mathematics (STEM) (p. 353)
- Coaching (p. 344)
- Creative Studies (p. 321)
- Dance (p. 345)
- Health (p. 345)
- Human Resource Development (p. 314)
- Sport Management (p. 345)
- Technology Management (p. 314)

College of Engineering

- Aerospace Engineering (p. 383)
- Analysis, Design and Management of Energy Conversion Systems (p. 468)
- Biomedical Engineering (p. 388)
- Chemical Engineering (p. 393)
- Computer Science (p. 424)
- Control of Mechanical Systems (p. 468)
- Cybersecurity (p. 374)
- Design and Simulation of Mechanical Systems (p. 468)
- Electrical Engineering (p. 431)
- Embedded Systems Integration (p. 376)
- Engineering Concepts
- Engineering Project Management (p. 376)
- Game Design and Development (p. 424)
- Industrial Engineering (p. 454)
- Materials Science and Engineering (p. 460)
- Nuclear Engineering (p. 472)
- Petroleum Engineering (p. 479)
Radiological Health Engineering (p. 472)

College of Geosciences
- Climate Change (p. 491)
- Earth Sciences (p. 491)
- Environmental Geosciences (p. 492)
- Geographic Information Science and Technology (GIST) (p. 508)
- Geography (p. 508)
- Geology (p. 519)
- Geophysics (p. 520)
- Meteorology (p. 496)
- Oceanography (p. 528)

College of Liberal Arts
- Africana Studies (p. 543)
- Anthropology (p. 555)
- Arabic Studies (p. 619)
- Asian Studies (p. 620)
- Chinese (p. 621)
- Classical Studies (p. 621)
- Communication (p. 566)
- Comparative Cultural Studies - International (p. 544)
- Comparative Cultural Studies - United States (p. 546)
- Economics (p. 580)
- English (p. 589)
- Film Studies (p. 546)
- French (p. 621)
- German (p. 622)
- Global Culture and Society (p. 547)
- Hispanic Studies for Community Engagement (p. 593)
- History (p. 597)
- Italian (p. 622)
- Japanese (p. 622)
- Journalism (p. 566)
- Latina/o and Mexican-American Studies (p. 547)
- Museum Studies (p. 555)
- Performance Studies (p. 626)
- Philosophy (p. 629)
- Psychology (p. 644)
- Religious Studies (p. 548)
- Russian (p. 623)
- Sociology (p. 654)
- Spanish (p. 594)
- Women's and Gender Studies (p. 548)

School of Military Science
- Military Studies (p. 773)

School of Public Health
- Global Health (p. 677)
- Occupational Health and Safety (p. 678)
- Public Health Studies (p. 678)

College of Science
- Astrophysics (p. 745)
- Bioinformatics (p. 696)
- Biology (p. 696)
- Chemistry (p. 713)
- Mathematics (p. 737)
- Pre-Medicine (p. 696)
- Physics (p. 746)

Statistics (p. 750)

College of Veterinary Medicine and Biomedical Sciences
- Biomedical Sciences (p. 761)

Texas A&M University at Galveston
- Clinical Laboratory Sciences (p. 822)
- Coastal Environmental Science and Society (p. 822)
- Diving Technology and Methods (p. 813)
- Marine Biology (p. 828)
- Maritime Business Administration (p. 836)
- Maritime Studies (p. 814)

Texas A&M University at Qatar
- Analysis, Design and Management of Energy Conversion Systems (p. 468)
- Chemical Engineering (p. 393)
- Chemistry (p. 713)
- Control of Mechanical Systems (p. 468)
- Design and Simulation of Mechanical Systems (p. 468)
- Electrical Engineering (p. 431)
- Geology (p. 519)
- Mathematics (p. 737)
- Petroleum Engineering (p. 479)
- Physics (p. 746)
- Political Science (p. 844)

Approved Certificates

Certificates

Interdisciplinary
- Neuroscience (p. 124)

College of Agriculture and Life Sciences
- Community Recreation and Park Administration (p. 223)
- Enology (p. 192)
- Equine Science (p. 158)
- Food Diversity (p. 187)
- Hospitality Management (p. 223) ¹
- International Trade and Agriculture (p. 144)
- Meat Science (p. 158)
- Parks and Conservation (p. 224)
- Professional Event Manager (p. 224)
- Public Health Entomology (p. 181)
- Tourism Management (p. 225) ¹
- Watershed (p. 173)
- Youth Development (p. 225)

College of Architecture
- Diversity (p. 237)

Mays Business School
- Capital Markets and Investments (p. 282)
- Commercial Banking (p. 282)
- Corporate Finance (p. 283)
- Energy Accounting (p. 278)
- European Union Business (p. 268)
- Internal Audit (p. 279)
- International Business Studies (p. 269)
- Investment Banking (p. 283)
Investment Banking and Private Equity (p. 283)
Latin American Business (p. 270)
Nonprofit and Social Innovation (p. 271)
Trading, Risk and Investments (p. 283)

College of Education
Interdisciplinary Studies (p. 321)

College of Engineering
Corrosion Science and Engineering
Data Center Operations Engineering (p. 454)
Energy Engineering (p. 479)
Engineering Concept, Creation, and Commercialization (p. 377)
Engineering Systems Management (p. 455)
Engineering Therapeutics Manufacturing (p. 393)
Holistic Leadership in Engineering (p. 377)
International Engineering (p. 377)
Petroleum Ventures (p. 479)
Polymer Specialty (p. 378)
Quality Engineering for Regulated Medical Technologies (p. 389)
Safety Engineering (p. 379)

College of Liberal Arts
Applied Behavioral Health (p. 644)
Business Economics (p. 581)
Communication and Global Media (p. 567)
Communication Leadership and Conflict Management (p. 568)
Diversity (p. 549)
Health Communication (p. 568)
Healthy Development (p. 644)
Philosophy Pre-Law (p. 629)
Proficiency in Arabic (p. 623)
Psychology of Diversity (p. 645)
Quantitative Economic Methods (p. 581)
Social Media (p. 568)
Strategic Communication (p. 569)
Work and Organizations (p. 645)

College of Veterinary Medicine and Biomedical Sciences
Biomedical Research and Development (p. 770)
Cultural Competency and Communications in Spanish (p. 762)

School of Military Science
Leadership Study and Development (p. 774)

1 Offered via online Distance Education.

For more information on undergraduate certificate programs, please visit the Office of the Registrar (http://registrar.tamu.edu/Our-Services/ Curricular-Services/Curricular-Approvals/Program-Approvals/Approved-Certificate-Programs/ website).

Cultural Discourse Requirements

Students are required to complete three (3) semester credit hours from the courses listed.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 201</td>
<td>Introduction to Africana Studies</td>
<td>3</td>
</tr>
<tr>
<td>AFST 327/PERF 327</td>
<td>Popular Musics in the African Diaspora</td>
<td>3</td>
</tr>
<tr>
<td>AFST 338/COMM 338</td>
<td>Critical Race Discourse</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 210</td>
<td>Social and Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 301</td>
<td>Indians of North America</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 324/MUSC 324</td>
<td>Music in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 404/WGST 404</td>
<td>Women and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 234</td>
<td>Body Art of Tattoos</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 339</td>
<td>Themes in Contemporary Art</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 349</td>
<td>The History of Modern Art</td>
<td>3</td>
</tr>
<tr>
<td>CARC 101</td>
<td>Cultural and Social Issues in the Natural, Built and Virtual Environment</td>
<td>3</td>
</tr>
<tr>
<td>COMM 257/RELS 257</td>
<td>Communication, Religion and the Arts</td>
<td>3</td>
</tr>
<tr>
<td>COMM 338/AFST 338</td>
<td>Critical Race Discourse</td>
<td>3</td>
</tr>
<tr>
<td>COMM 343</td>
<td>Communication and Cultural Discourse</td>
<td>3</td>
</tr>
<tr>
<td>COMM 346</td>
<td>Media, Culture and Identity</td>
<td>3</td>
</tr>
<tr>
<td>DCED 301</td>
<td>Dance History</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 211/INTS 211</td>
<td>Foundations in Cultural Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 350</td>
<td>Twentieth-Century Literature to World War II</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 378</td>
<td>The British Novel, 1870 to Present.</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 482/PHIL 482</td>
<td>Ethics and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>FILM 215/INTS 215</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>FILM 376/PHIL 376</td>
<td>Philosophy, Film and Evil</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>Environmental Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 110</td>
<td>Disasters and Society</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 342</td>
<td>Human Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td>INTS 211/ENGL 211</td>
<td>Foundations in Cultural Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 215/ENGR 482</td>
<td>Ethical and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>FILM 215</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>LMAS 201</td>
<td>Introduction to Latino/Mexican American Studies</td>
<td>3</td>
</tr>
<tr>
<td>MARA 373</td>
<td>Personnel Management</td>
<td>3</td>
</tr>
<tr>
<td>MAST 226</td>
<td>Museums, Law and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>MAST 340</td>
<td>Museums and the Construction of Identities</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 222</td>
<td>Music of the Americas</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ACCT 430/</td>
<td>Global Immersion in Accounting</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 445/</td>
<td>International Accounting</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 204/</td>
<td>Introduction to African-American Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 206/</td>
<td>Black Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 209/</td>
<td>Psychology of Culture and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 301/</td>
<td>Blacks in the United States Since 1877</td>
<td>3</td>
</tr>
<tr>
<td>HIST 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 303</td>
<td>Psychology of Women of Color</td>
<td>3</td>
</tr>
<tr>
<td>AFST 339/</td>
<td>African-American Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 339</td>
<td>Post-1930</td>
<td></td>
</tr>
<tr>
<td>AFST 393/</td>
<td>Studies in Africana Literature and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGE 452</td>
<td>International Trade and Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>AGE 453</td>
<td>International Agribusiness Marketing</td>
<td>3</td>
</tr>
<tr>
<td>AGE 458</td>
<td>Global Agricultural Issues</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 201</td>
<td>Introduction to Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 205</td>
<td>Peoples and Cultures of the World</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 229</td>
<td>Introduction to Folklore</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 317/</td>
<td>Introduction to Biblical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>RELS 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 335</td>
<td>Cultures of Central Asia</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 370</td>
<td>Cultural Diversity and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 403/</td>
<td>Anthropology of Religion</td>
<td>3</td>
</tr>
<tr>
<td>RELS 403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 426</td>
<td>Anthropology of Food and Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 427</td>
<td>Human Biological Variation</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 435</td>
<td>Medical Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 201</td>
<td>Intermediate Arabic I</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 202</td>
<td>Intermediate Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 475</td>
<td>Media and the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>Social and Behavioral Factors in Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 246</td>
<td>Foundations of Historic Preservation</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 346</td>
<td>Architecture, Heritage and Culture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 438</td>
<td>History and Design of Sacred Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 458</td>
<td>Cultural and Ethical Considerations for Global Practice</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 149</td>
<td>Art History Survey I</td>
<td>3</td>
</tr>
<tr>
<td>ARTS 150</td>
<td>Art History Survey II</td>
<td>3</td>
</tr>
</tbody>
</table>

Undergraduate Studies' units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

International and Cultural Diversity Requirements

Students are required to complete three (3) semester credit hours from the courses listed.
ASIA 352/ HIST 352: Modern East Asia 3
BESC 311: International Perspectives on Environmental Issues 3
COMM 335: Intercultural Communication 3
COMM 340: Communication and Popular Culture 3
COMM 407/ WGST 407: Gender, Race and Media 3
DCEG 202: Dance Appreciation 3
ECON 312: Poverty, Inequality and Social Policy 3
ECON 318/ WGST 318: The Economics of Gender and Race 3
ENDS 101: Design Process 3
ENGL 204/ AFST 204: Introduction to African-American Literature 3
ENGL 206: Twenty-first Century Literature and Culture 3
ENGL 211/ INTS 211: Foundations in Cultural Studies 3
ENGL 219: Literature and the Other Arts 3
ENGL 221/ MODL 221: World Literature 3
ENGL 232: Survey of English Literature II 3
ENGL 251/ FILM 251: Introduction to Film Analysis 3
ENGL 306: Transnational Literature and Culture 3
ENGL 308: History of Literary Criticism 3
ENGL 333/ WGST 333: Lesbian, Gay, Bisexual, Transgender and Queer Literatures 3
ENGL 338: American Ethnic Literature 3
ENGL 339/ AFST 339: African-American Literature 3
ENGL 340: Modern and Contemporary Drama 3
ENGL 352: Literature, World War II to Present. 3
ENGL 374/ WGST 374: Women Writers 3
ENGL 376: The American Novel Since 1900 3
ENGL 393/ AFST 393: Studies in Africana Literature and Culture 3
ENGL 401: Contemporary Literary Theory 3
ENGL 474/ WGST 474: Studies in Women Writers 3
ENTO 210: Global Public Health Entomology 3
ESSM 308: Fundamentals of Environmental Decision-Making 3
ESSM 314: Principles of Rangeland Management Around the World 3
EURO 456/ ITAL 456: Contemporary Italy 3
FILM 215/ INTS 215: Global Cinema 3
FILM 251/ ENGL 251: Introduction to Film Analysis 3
FILM 299: History of Film 3
FILM 435/ GERM 435: German Film 3
FILM 455/ ITAL 455: Italian Cinema 3
FREN 202: Intermediate French II 3
FREN 301: French Society and Culture in Evolution 3
FREN 322: French Literature II 3
FREN 336: Politics, Culture and Society in Contemporary France 3
GEOG 201: Introduction to Human Geography 3
GEOG 202: Geography of the Global Village 3
GEOG 301: Geography of the United States 3
GEOG 306: Introduction to Urban Geography 3
GEOG 323: Geography of Latin America 3
GEOG 325: Geography of Europe 3
GEOG 327: Geography of South Asia 3
GERM 201: Intermediate German I 3
GERM 202: Intermediate German II 3
GERM 322: German Culture and Civilization II 3
GERM 435/ FILM 435: German Film 3
HIST 221/ RELS 221: History of Islam 3
HIST 222/ RELS 222: History of Christianity, Reformation to Present 3
HIST 301/ AFST 301: Blacks in the United States Since 1877 3
HIST 336: Europe Since 1919 3
HIST 347/ RELS 347: Rise of Islam, 600-1258 3
HIST 352/ ASIA 352: Modern East Asia 3
HIST 412: Soviet Union 1917-1991 3
HIST 477/ WGST 477: European History 3
HLTH 236: Introduction to Health Disparities and Diversity 3
HLTH 333: Spirituality and Health 3
HLTH 334: Women's Health 3
HORT 335: Sociohorticulture 3
HUMA 321: Political Islam and Jihad 3
IBUS 402/ MKTG 402: International Marketing: Study Abroad 3
IBUS 403/ MKTG 403: International Market Entry Strategies 3
IBUS 430/ ACCT 430: Global Immersion in Accounting 3
IBUS 445/ ACCT 445: International Accounting 3
IBUS 450/ MGMT 450: International Environment of Business 3
IBUS 452/ MGMT 452: International Management 3
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBUS 453</td>
<td>Emerging Economies: Brazil, Russia, India, China</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBUS 455</td>
<td>Asian Business Environment</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 456</td>
<td>European Integration and Business</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 457</td>
<td>Global Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBUS 459</td>
<td>Latin American Markets</td>
<td>3</td>
</tr>
<tr>
<td>INST 301</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>INTS 201</td>
<td>Introduction to International Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 211/</td>
<td>Foundations in Cultural Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 215/</td>
<td>Global Cinema</td>
<td>3</td>
</tr>
<tr>
<td>FILM 215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 301</td>
<td>Theories of Globalization</td>
<td>3</td>
</tr>
<tr>
<td>INTS 321</td>
<td>Political Islam and Jihad</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 201</td>
<td>Intermediate Italian I</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 202</td>
<td>Intermediate Italian II</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 452</td>
<td>Women and Gender in Italy</td>
<td>3</td>
</tr>
<tr>
<td>WGST 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAL 455/</td>
<td>Italian Cinema</td>
<td>3</td>
</tr>
<tr>
<td>FILM 455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITAL 456/</td>
<td>Contemporary Italy</td>
<td>3</td>
</tr>
<tr>
<td>EURO 456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPN 201</td>
<td>Intermediate Japanese I</td>
<td>4</td>
</tr>
<tr>
<td>JAPN 202</td>
<td>Intermediate Japanese II</td>
<td>4</td>
</tr>
<tr>
<td>KINE 282</td>
<td>Culture of Wellness</td>
<td>3</td>
</tr>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>MARA 440</td>
<td>Global Economy and Enterprise Management</td>
<td>3</td>
</tr>
<tr>
<td>MARB 340</td>
<td>Tropical Marine Ecology</td>
<td>4</td>
</tr>
<tr>
<td>MARB 407</td>
<td>Research and Conservation in Greece-Dolphins, Fisheries</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>and Cultural Heritage</td>
<td></td>
</tr>
<tr>
<td>MARS 210</td>
<td>Marine Geography</td>
<td>3</td>
</tr>
<tr>
<td>MAST 411</td>
<td>International Maritime Culture</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 450/</td>
<td>International Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGMT 452/</td>
<td>International Management</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGMT 453/</td>
<td>Emerging Economies: Brazil, Russia, India, China</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGMT 457/</td>
<td>Global Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTG 402/</td>
<td>International Marketing: Study</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 402</td>
<td>Abroad</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 403/</td>
<td>International Market Entry</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 403</td>
<td>Strategies</td>
<td>3</td>
</tr>
<tr>
<td>MODL 221/</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSC 201</td>
<td>Music and the Human Experience</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 221</td>
<td>Guitar Heroes</td>
<td>3</td>
</tr>
<tr>
<td>MUSC 226</td>
<td>History of Rock</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td>3</td>
</tr>
<tr>
<td>NURS 424</td>
<td>Professional Issues</td>
<td>2</td>
</tr>
<tr>
<td>NURS 466</td>
<td>Community Health for the RN</td>
<td>5</td>
</tr>
<tr>
<td>PERF 325</td>
<td>Dance and World Cultures</td>
<td>3</td>
</tr>
<tr>
<td>PERF 328</td>
<td>Japanese Traditional Performing Arts</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 283</td>
<td>Latin American Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>POLS 366</td>
<td>Political Conflicts of the Middle East</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 206/</td>
<td>Black Psychology</td>
<td>3</td>
</tr>
<tr>
<td>AFST 206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 208</td>
<td>Stereotypes, Prejudice, and Minority Experience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 209/</td>
<td>Psychology of Culture and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>AFST 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 210/</td>
<td>Psychological Aspects of Human Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>WGST 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Psychology of Women of Color</td>
<td>3</td>
</tr>
<tr>
<td>RELS 200</td>
<td>Religions of the World</td>
<td>3</td>
</tr>
<tr>
<td>RELS 221/</td>
<td>History of Islam</td>
<td>3</td>
</tr>
<tr>
<td>HIST 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 222/</td>
<td>History of Christianity, Reformation to Present</td>
<td>3</td>
</tr>
<tr>
<td>HIST 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 312</td>
<td>Contemplation in the Modern World</td>
<td>3</td>
</tr>
<tr>
<td>RELS 317/</td>
<td>Introduction to Biblical Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 321</td>
<td>Political Islam and Jihad</td>
<td>3</td>
</tr>
<tr>
<td>RELS 347/</td>
<td>Rise of Islam, 600-1258</td>
<td>3</td>
</tr>
<tr>
<td>HIST 347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RELS 403/</td>
<td>Anthropology of Religion</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPTS 411</td>
<td>Cruise Tourism</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 340</td>
<td>Global Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 420</td>
<td>Brazilian Agriculture and Food Production Systems</td>
<td>3-6</td>
</tr>
<tr>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 206</td>
<td>Global Social Trends</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 201</td>
<td>Intermediate Spanish I</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 202</td>
<td>Intermediate Spanish II</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 304</td>
<td>Advanced Grammar for Heritage Speakers</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 412</td>
<td>U.S. Hispanic Writers</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 220</td>
<td>Olympic Studies</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 336</td>
<td>Diversity in Sport Organizations</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 337</td>
<td>International Sport Business</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 273</td>
<td>Introduction to Culture, Community, Society and Schools</td>
<td>3</td>
</tr>
<tr>
<td>THAR 201</td>
<td>Introduction to World Theatre</td>
<td>3</td>
</tr>
<tr>
<td>THAR 281</td>
<td>History of the Theatre II</td>
<td>3</td>
</tr>
<tr>
<td>URPN 203</td>
<td>Smart Cities - Bit, Bots and Beyond</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 411</td>
<td>One Health and Tropical Ecology</td>
<td>3</td>
</tr>
<tr>
<td>WGST 210/</td>
<td>Psychological Aspects of Human Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Psychology of Women of Color</td>
<td>3</td>
</tr>
<tr>
<td>WGST 318/</td>
<td>The Economics of Gender and Race</td>
<td>3</td>
</tr>
<tr>
<td>ECON 318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 333/</td>
<td>Lesbian, Gay, Bisexual, Transgender and Queer Literatures</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 333</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Undergraduate Studies' units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Admission

General Application Information

Application Information

Students can apply for undergraduate admission to Texas A&M University by using the ApplyTexas Application or Coalition Application.

You may access the appropriate undergraduate application from the ApplyTexas Application website (www.applytexas.org), the Coalition Application website (http://www.coalitionforcollegeaccess.org/), or the Texas A&M University website (http://admissions.tamu.edu).

Texas A&M University has several conveniently located Prospective Student Centers throughout the state, staffed with regional advisors ready to serve you. Please contact the center nearest you to learn more about admissions, financial aid, academic programs and student services. Texas A&M also has regional advisors who serve the Brazos Valley, Central Texas and El Paso areas as well as regional advisors throughout the U.S. to assist out-of-state applicants. Visit the website admissions.tamu.edu/psc (http://admissions.tamu.edu/psc/) for more details.

Aggieland Prospective Student Center

Texas A&M University
109 John J. Koldus Building
1265 TAMU
College Station, TX 77843-1265
(979) 458-0950

Corpus Christi Regional Prospective Student Center

5350 South Staples, Suite 442
Corpus Christi, TX 78411
(361) 289-7905

Dallas/Fort Worth Regional Prospective Student Center

3900 Arlington Highlands Blvd., Suite 273
Arlington, TX 76018
(817) 375-0960

Houston Regional Prospective Student Center

1225 North Loop West, Suite 200
Houston, TX 77008
(713) 454-1990

1 Se habla español.

The admission guidelines presented here are for admission to the Spring, Summer or Fall 2021 semester. While they are the best guide available, admission criteria are subject to change. The Office of Admissions website (http://admissions.tamu.edu) contains the admission policies and procedures in effect for 2021 admission.

Types of Admission and Application Calendars

<table>
<thead>
<tr>
<th>At the Time of Application</th>
<th>Term</th>
<th>Opening Date</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An applicant who:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is a citizen or permanent resident of the United States or qualifies for Texas residency based on Senate Bill 1528</td>
<td>Spring 2021 Fall 2021</td>
<td>Aug. 1, 2020</td>
<td>Oct. 15, 2020</td>
</tr>
<tr>
<td>or is still in high school, with or without college credit</td>
<td></td>
<td>Aug. 1, 2020</td>
<td></td>
</tr>
</tbody>
</table>

Laredo Regional Prospective Student Center

6401 Arena Road, Suite 5A
Laredo, TX 78041
(956) 795-0412

Rio Grande Valley Regional Prospective Student Center

5277 North 23rd St.
McAllen, TX 78504
(956) 683-8647

San Antonio Regional Prospective Student Centers

40 NE Loop 410, Suite 605
San Antonio, TX 78216
(210) 212-7016

Office of Admissions

217 John J. Koldus Building
Texas A&M University
1265 TAMU
College Station, TX 77843-1265
(979) 845-1060
admissions@tamu.edu
http://admissions.tamu.edu

Se habla español.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An applicant who:</td>
<td>Summer/Fall 2021</td>
<td>Jan. 1, 2021</td>
<td>Mar. 1, 2021</td>
</tr>
<tr>
<td>• is a citizen or permanent resident of the United States or qualifies for Texas residency based on Senate Bill 1528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is a degree-seeking applicant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has graduated from high school or equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has enrolled in a post-secondary institution after graduation from high school</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not have a bachelor’s degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not qualify for readmission</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An applicant who:</td>
<td>Summer/Fall 2021</td>
<td>Jan. 1, 2021</td>
<td>Mar. 1, 2021</td>
</tr>
<tr>
<td>• is not a citizen or permanent resident of the United States (or applicant for permanent residency) and does not qualify for Texas residency based on Senate Bill 1528</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is an applicant seeking a bachelor’s degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has graduated from high-school or equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has enrolled in a post-secondary institution, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is not eligible for readmission (has never enrolled at Texas A&M University as an undergraduate degree-seeking student).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• is a former degree-seeking Texas A&M undergraduate student (including an international student)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not have a bachelor’s degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• did not officially register for the previous semester (excluding summer sessions) at Texas A&M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmission does not include applicants whose only previous enrollment at Texas A&M has been as a non-degree student.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Postbaccalaureate Undergraduate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• has a bachelor's degree</td>
<td>Summer/Fall 2021</td>
<td>Jan. 1, 2021</td>
<td>March 1, 2021</td>
</tr>
<tr>
<td>• wishes to pursue a second undergraduate degree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-degree Undergraduate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• does not wish to pursue a degree at Texas A&M</td>
<td>Summer/Fall 2021</td>
<td>Jan. 1, 2021</td>
<td>March 1, 2021</td>
</tr>
<tr>
<td>• wishes to take specific undergraduate coursework</td>
<td>Summer 2021 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>April 1, 2021</td>
<td></td>
</tr>
</tbody>
</table>

High School Enrichment Program

<table>
<thead>
<tr>
<th>An applicant who:</th>
<th>Spring 2021</th>
<th>Aug. 1, 2020</th>
<th>Nov. 1, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>• is a high school junior or senior in the Bryan/College Station area</td>
<td>Fall 2021</td>
<td>Jan. 1, 2021</td>
<td>July 1, 2021</td>
</tr>
<tr>
<td>• has a new SAT score of 1270, or an ACT score of 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has completed all levels of related coursework offered at their high school</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each student is eligible to take 1 (one) course per fall or spring semester, and course registration will be completed by the TAMU advisor. No summer classes are offered at this time. Classes will be held on the Texas A&M University campus.

Students and their parents/guardians will be responsible for any lodging or transportation considerations. Admission for this program is on a space-available basis. The applicant pool is competitive, and admission into this program is not guaranteed.

1 An applicant who has enrolled in a post-secondary institution since high school graduation, with or without credit earned, must apply as a transfer applicant.

Items Necessary to Complete an Application File

Please see the Readmission, Post-baccalaureate or Non-degree sections for other items required to complete the transfer application for those types of admission. U.S. citizens completing a non-U.S. high
school program should refer to International Admissions for questions concerning transcripts, examination results, and foreign credentials.

An application is reviewed to make a decision about admission after all items listed below have been received. The items must be received by the appropriate closing date to qualify for consideration for admission.

In addition, freshman applicants must show proof of meeting the State of Texas Uniform Admission Policy to qualify for review. If you attend an out-of-state high school or are a home schooled student, you are exempt from the Uniform Admission Policy.

Application submitted electronically via ApplyTexas or the Coalition Application

Application Fee (check, money order, Visa, MasterCard, Discover or American Express)—All fees are nonrefundable

- Domestic Undergraduate - $75
- Domestic Graduate - $65
- International - $90

Guidelines for requesting application fee waivers:

- Fee waivers are not available for international students.

Freshman Waivers

Applicants who qualify for federally funded free/reduced lunch programs may qualify for a fee waiver. Students must certify their eligibility on the application. Please see our admissions website, http://admissions.tamu.edu/freshman/apply, for additional instructions for requesting a waiver.

Transfer or Readmit Waivers

To request a fee waiver, please provide your Student Aid Report (SAR), which you will find within your current FAFSA, or a copy of an award letter from your current institution. The Office of Admissions does not have access to your FAFSA or SAR, you must provide a copy as part of your application file. Checking the fee waiver box on the application will not satisfy the fee waiver requirement.

Please see our admissions website, http://admissions.tamu.edu/transfer/apply, for additional information.

Essays

- Freshman applicants are required to complete Essay Topic A.
- Transfer applicants are required to complete Essay Topic A.

SAT or ACT Scores

- Required of all freshman applicants, including all international freshman applicants.
- Scores should be sent directly from the testing agency and must be received by the posted deadline to be considered.
- The SAT code is 6003; the ACT code is 4198.
- Test scores must be from a test date within five years of the date of planned enrollment.
- The highest test score from one test date will be used in our review for admission. Texas A&M does not combine test scores from different test dates.

Self-Reported Academic Record (SRAR)

- Domestic freshman applicants who have not graduated from high school at the time of application must fill out and submit the Self-Reported Academic Record (SRAR) indicating coursework, credits earned, grades, graduation plan/diploma type, grade point average and a numerical class rank (if available) at least through their junior year. Students should have a copy of their high school transcript available to use as a reference when filling out the SRAR. If admitted, the applicant will be required to submit a final transcript with graduation date by August 15. Discrepancies between a student’s SRAR and official final transcript will be thoroughly reviewed; depending on results, this could result in a student’s admission being rescinded.
- Access to the SRAR will be available on our admissions website when the application opens.
- Domestic applicants attending an international school which follows an academic curriculum patterned after the U.S. education system may fill out the SRAR.
- International students studying in the U.S. may fill out the SRAR.
- International students studying outside the U.S. must provide official academic records, see International Admission Criteria for details.
- The Office of Admissions reserves the right to require official transcripts from any student; students should check the Applicant Information System to ensure completion of their file.
- Freshman and transfer applicants who have graduated from high school at the time of application should submit an official high school transcript that includes grades and credits for all completed coursework, a numerical class rank (if available), date of graduation and graduation plan completed, or a certificate verifying completion of a GED program.
- Post-baccalaureate applicants are not required to submit a high school transcript as part of the application file. Readmit applicants may be required to submit a final high school transcript if one is not currently on file with the university.
- To be considered official, a transcript must bear an original signature of a school official or an original school seal.
- Applicants who have attended high school both in the U.S. and out of the U.S. may complete the SRAR provided the courses and grades are present on the U.S. transcript; otherwise, official transcripts are required. Details for providing international transcripts can be found under International Admission Criteria.
- For students enrolled in the U.S., copies of official transcripts from other countries will be accepted provided the copies are on file and verified by the U.S. institution.
- Faxed or emailed copies are not official and will not be accepted.

Class Rank

- Students graduating from a Texas high school who rank in the top ten percent must provide verification of ranking by submitting a high school transcript noting the student’s relative numeric rank or a transcript with a letter from the school on school letterhead signed by a school official noting the student’s relative numeric ranking. Documents may be uploaded in the Applicant Information System for processing.

Official College Transcripts

- An official transcript is required from every post-secondary institution attended even if the applicant did not earn credit, receive a course grade or the course is not transferable. Coursework from one
For the Office of Admissions to notify applicants. All items necessary to complete an admission file must be received by the Office of Admissions within one month of the closing date, there may not be sufficient time to process credentials. Please allow at least two weeks to process credentials.

Lawful Permanent Residents of the United States
An applicant who has applied for or been granted Lawful Permanent Resident (LPR) status in the United States by the Department of Homeland Security (DHS) is eligible to submit an application as a Domestic Applicant. To qualify, you must include one of the following with the application:

- a copy of both sides of the DHS-issued Permanent Resident Card, or
- the I-551 Entry Stamp and Immigrant Visa in the passport, or
- an approved I-797 Notice of Action or I-797C Notice of Receipt.

If your parent is also a permanent resident, a copy of the parent’s proof of LPR status will be necessary to determine in-state residency for tuition purposes.

Note: If you have applied for adjustment of status to Lawful Permanent Residency and have not received your LPR card or Notice of Action that says Notice Type: Approval Notice, you are considered an international student once you are admitted to the University. There are certain requirements that international students must fulfill upon enrollment. Please contact International Student Services at iss@tamu.edu for more information about these requirements.

Required Coursework
Applicants who graduate from an accredited Texas public or private high school applying to Texas A&M University must have completed the Foundation High School Program preferably with the Distinguished Level of Achievement with at least one endorsement. The high school curriculum should be noted on the official high school transcript. Please visit http://admissions.tamu.edu/freshman/coursework (http://admissions.tamu.edu/freshman/coursework/) for a complete description of coursework including information for home-schooled and out-of-state applicants.

State of Texas Uniform Admission Policy
Texas Education Code (TEC) 51.803-51.809 (State of Texas Uniform Admission Policy (http://admissions.tamu.edu/freshman/TexasUAP/)) requires that all freshman applicants meet one of the following college readiness standards in order to be eligible to be considered for admission at a Texas four-year public institution.

- Satisfy the College Readiness Benchmarks on the SAT or ACT assessment; or
 - SAT – 480 EBRW and 530 Math for tests taken after February 2016
 - ACT – 18 English, 22 Reading, 22 Mathematics and 23 Science
- Successfully complete the State of Texas foundation, recommended or advanced/distinguished high school program or complete the portion of the program that was available to them; or
- Successfully complete a curriculum that is equivalent in content and rigor to the foundation, recommended or advanced/distinguished high school program at a high school that is exempt from offering such programs.

Students attending an out-of-state/out-of-country high school or home school are exempt from the Uniform Admission Policy.

Freshman Admissions
Additional Information for Freshman Applicants

1. Information Presented in the Application
 - Extracurricular activities including time commitment and duration of involvement
 - Leadership and/or exceptional talent as shown in extracurricular activities and/or work
 - Community/volunteer work including time commitment and duration of involvement
 - Awards and achievements earned while in high school
 - Employment and/or internships including dates of work and hours per week
 - Family educational background and household income
 - Number of people in household

2. Essay Topic A
 Topic A on the application is required. Applicants to the College of Engineering will be asked to answer an additional essay question as part of the application.
Freshman Admissions
When all credentials necessary to complete a freshman applicant’s file are received during the admission application period, one of the following criteria will be used to determine who will be offered admission:

1. Top 10% Applicants from Texas High Schools
 Applicants who are Texas residents or who are enrolled in recognized public or private high schools in Texas with a rank in the top 10% of their high school graduating class, on or before the admissions deadline, will be automatically admitted to Texas A&M University if they have successfully met the State of Texas Uniform Admissions Policy and have successfully completed the recommended or distinguished graduation plan or the foundation distinguished plan. Choice of major is not guaranteed. Applicants must submit all required credentials by the closing date in order to qualify for automatic admission.

2. Review Applicants
 Applicants not meeting the above requirements for automatic admission but who have met the state of Texas Uniform Admission Policy will be considered for admission by holistic review of their application file.

Information for all Freshman Applicants
• All applicants should use the application questions and the essays to present their academic background and personal strengths as well as personal circumstances.
• Letters of recommendation are optional. If an applicant chooses to submit letters of recommendation, only the first two received will be considered. The most helpful letters are from individuals who know the applicant well and who can write about what distinguishes the individual from other applicants in the areas of leadership, exceptional talent or special circumstances. Photocopies are acceptable.
• A competitive applicant who cannot be admitted to a major with restricted enrollment (Colleges of Architecture, Business, Education, Engineering, Liberal Arts, and Public Health) will be offered admission to their second major choice. If the second major choice is full, then an alternate major must be chosen after admission to the university.

Admission Decisions
Notice of Admission Decision
Texas A&M University receives many more academically prepared applicants for admission than we can accommodate. Admission decisions are made beginning September 1 and continue throughout the application period. A final decision may not be announced until early December for spring admission or late March for summer or fall admission. A limited number of applicants may be offered provisional admission that requires the successful completion of a summer school program at Texas A&M. In addition, some applicants may be considered for the Texas A&M Higher Education Center at McAllen (http://admissions.tamu.edu/HECM/), Texas A&M Blinn TEAM Program (http://blinnteam.tamu.edu), Texas A&M Engineering Academy at Blinn-Bryan (http://engineering.tamu.edu/academies/blinn-bryan/), Texas A&M Engineering at Galveston (http://engineering.tamu.edu/academics/engineering-at-galveston/), Texas A&M Engineering at McAllen (https://engineering.tamu.edu/admissions-and-aid/engineering-at-mcallen/), or the Program for System Admission (http://admissions.tamu.edu/PSA/).

Suspected Fraudulent Admission Applications
Applicants for admission to Texas A&M University should be aware that the information submitted as part of the application process will be relied upon by University officials to determine their status for admission and residency for tuition purposes. By signing and submitting an admission application, the applicant certifies that the information in, and submitted with, the application is complete and correct and may be verified by Texas A&M University.

All students applying to Texas A&M University are expected to follow the Aggie Code of Honor which states “An Aggie does not lie, cheat or steal nor tolerate those who do.” Applicants found to have misrepresented themselves or submitted false information on the application will receive appropriate disciplinary action which may include rejection of the application, withdrawal of any offer of acceptance, cancellation of enrollment or any other appropriate disciplinary action. In all instances of disciplinary action, the application fee is non-refundable.

Pursuant to Texas A&M Student Rule 24.4.1 (http://student-rules.tamu.edu/rule24/), acts of dishonesty include but are not limited to:
• Withholding material information from the University, misrepresenting the truth during a University investigation or student conduct conference, and/or making false statements to any University officials or law enforcement officers in the course of their duties.
• Furnishing false information to and/or withholding information from any University official, faculty member, office, or law enforcement officers in the course of their duties.
• Forgery, alteration, possession, or misuse of any University document, record, or instrument of identification.
• The submission of false information at the time of admission or readmission is grounds for rejection of the application, withdrawal of any offer of acceptance, cancellation of enrollment, dismissal or other appropriate disciplinary action.

For prospective undergraduate students (admitted but not enrolled), the initial determination of whether an individual has submitted a fraudulent application will be made by the Director of Admissions Operations, with a right of appeal to the Executive Director of Admissions. All appeals will be considered by the Admissions Decisions Appeals Committee and a recommendation made to the Executive Director of Admissions. For prospective graduate students, initial appeals will be made to the Dean of Graduate and Professional Studies.

Enrolled students suspected of violating Student Rules will be reported to the Student Conduct Office.

Any University official who suspects that a prospective student or enrolled student has submitted a fraudulent admission application must notify the Executive Director of Admissions.

Residence Requirement for Baccalaureate Degree
A student must complete at least 25% of semester credit hours applied to a baccalaureate degree in residence at Texas A&M University. Upper-level Residence Requirement: A minimum of 36 semester credit hours of 300-level and higher coursework must be successfully completed in residence at Texas A&M University to obtain a baccalaureate degree. For the Bachelor of Science in Nursing - RN to BSN Track, a minimum of 30 semester credit hours of 300-level and higher coursework must be successfully completed in residence at Texas A&M University. In all
cases, a minimum of 12 of these 300-level and higher semester hours must be in the major.

Abbreviations for Texas A&M Colleges and Majors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Agriculture and Life Sciences</td>
<td>AG</td>
<td>Agriculture</td>
</tr>
<tr>
<td>Agribusiness</td>
<td>AGBL</td>
<td>Agribusiness</td>
</tr>
<tr>
<td>Agricultural Communications and Journalism</td>
<td>AGCJ</td>
<td>Agricultural Communications and Journalism</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>AGEC</td>
<td>Agricultural Economics</td>
</tr>
<tr>
<td>Agricultural Leadership and Development</td>
<td>ALED</td>
<td>Agricultural Leadership and Development</td>
</tr>
<tr>
<td>Agricultural Science</td>
<td>AGSC</td>
<td>Agricultural Science</td>
</tr>
<tr>
<td>Agricultural Systems Management</td>
<td>AGSM</td>
<td>Agricultural Systems Management</td>
</tr>
<tr>
<td>Agriculture and Life Sciences</td>
<td>AGLS</td>
<td>Agriculture and Life Sciences</td>
</tr>
<tr>
<td>Animal Science</td>
<td>ANSC</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>BICH</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Bioenvironmental Sciences</td>
<td>BESC</td>
<td>Bioenvironmental Sciences</td>
</tr>
<tr>
<td>Biological and Agricultural Engineering</td>
<td>BAEN</td>
<td>Biological and Agricultural Engineering</td>
</tr>
<tr>
<td>Ecological Restoration</td>
<td>ECOR</td>
<td>Ecological Restoration</td>
</tr>
<tr>
<td>Entomology</td>
<td>ENTO</td>
<td>Entomology</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>ENST</td>
<td>Environmental Studies</td>
</tr>
<tr>
<td>Food Science and Technology</td>
<td>FSTC</td>
<td>Food Science and Technology</td>
</tr>
<tr>
<td>Forestry</td>
<td>FORS</td>
<td>Forestry</td>
</tr>
<tr>
<td>Genetics</td>
<td>GENE</td>
<td>Genetics</td>
</tr>
<tr>
<td>Horticulture</td>
<td>HORT</td>
<td>Horticulture</td>
</tr>
<tr>
<td>Nutrition</td>
<td>NUTR</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Plant and Environmental Soil Sciences</td>
<td>PSSC</td>
<td>Plant and Environmental Soil Sciences</td>
</tr>
<tr>
<td>Poultry Science</td>
<td>POSC</td>
<td>Poultry Science</td>
</tr>
<tr>
<td>Rangeland Ecology and Management</td>
<td>RLEM</td>
<td>Rangeland Ecology and Management</td>
</tr>
<tr>
<td>Recreation, Park and Tourism Sciences</td>
<td>RPTS</td>
<td>Recreation, Park and Tourism Sciences</td>
</tr>
<tr>
<td>Renewable Natural Resources</td>
<td>RENR</td>
<td>Renewable Natural Resources</td>
</tr>
<tr>
<td>Spatial Sciences</td>
<td>SPSA</td>
<td>Spatial Sciences</td>
</tr>
<tr>
<td>Turfgrass Science</td>
<td>TGSC</td>
<td>Turfgrass Science</td>
</tr>
<tr>
<td>University Studies</td>
<td>USAL</td>
<td>University Studies</td>
</tr>
<tr>
<td>Wildlife and Fisheries Sciences</td>
<td>WFSC</td>
<td>Wildlife and Fisheries Sciences</td>
</tr>
<tr>
<td>College of Architecture</td>
<td>AR</td>
<td>College of Architecture</td>
</tr>
<tr>
<td>Construction Science</td>
<td>COSL</td>
<td>Construction Science</td>
</tr>
<tr>
<td>Environmental Design Architectural Studies</td>
<td>EDAL</td>
<td>Environmental Design Architectural Studies</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>LANL</td>
<td>Landscape Architecture</td>
</tr>
<tr>
<td>University Studies</td>
<td>USAR</td>
<td>University Studies</td>
</tr>
<tr>
<td>Urban and Regional Planning</td>
<td>URPN</td>
<td>Urban and Regional Planning</td>
</tr>
<tr>
<td>Visualization</td>
<td>VISL</td>
<td>Visualization</td>
</tr>
<tr>
<td>Mays Business School</td>
<td>BA</td>
<td>Mays Business School</td>
</tr>
<tr>
<td>Business Administration</td>
<td>BUAD</td>
<td>Business Administration</td>
</tr>
<tr>
<td>(Accounting, Business Honors, Finance, Management, Management Information Systems, Marketing, Supply Chain Management)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Studies</td>
<td>USBU</td>
<td>University Studies</td>
</tr>
<tr>
<td>College of Dentistry (Dallas campus)</td>
<td>DN</td>
<td>College of Dentistry</td>
</tr>
<tr>
<td>Dental Hygiene</td>
<td>DDHS</td>
<td>Dental Hygiene</td>
</tr>
<tr>
<td>College of Education and Human Development</td>
<td>ED</td>
<td>College of Education and Human Development</td>
</tr>
<tr>
<td>Community Health</td>
<td>CHLL</td>
<td>Community Health</td>
</tr>
<tr>
<td>Health (Health Education, Allied Health, School Health)</td>
<td>EDHL</td>
<td>Health (Health Education, Allied Health, School Health)</td>
</tr>
<tr>
<td>Human Resource Development</td>
<td>HRDL</td>
<td>Human Resource Development</td>
</tr>
<tr>
<td>Interdisciplinary Studies (Early Childhood-6; Middle School)</td>
<td>EDIS</td>
<td>Interdisciplinary Studies (Early Childhood-6; Middle School)</td>
</tr>
<tr>
<td>Interdisciplinary Studies (Special Education, Bilingual)</td>
<td>INST</td>
<td>Interdisciplinary Studies (Special Education, Bilingual)</td>
</tr>
<tr>
<td>Kinesiology (Physical Activity, Dance Science)</td>
<td>EDKI</td>
<td>Kinesiology (Physical Activity, Dance Science)</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>EDSM</td>
<td>Secondary Education</td>
</tr>
<tr>
<td>Sport Management</td>
<td>CVEN</td>
<td>Sport Management</td>
</tr>
<tr>
<td>Technology Management</td>
<td>CEEN</td>
<td>Technology Management</td>
</tr>
<tr>
<td>University Studies</td>
<td>USEH</td>
<td>University Studies</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>EN</td>
<td>College of Engineering</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>AERO</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>AREN</td>
<td>Architectural Engineering</td>
</tr>
<tr>
<td>Biological and Agricultural Engineering</td>
<td>BAEN</td>
<td>Biological and Agricultural Engineering</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>BMEN</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>CHEN</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>CVEN</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>Computer Engineering (Computer Science track)</td>
<td>CECN</td>
<td>Computer Engineering (Computer Science track)</td>
</tr>
<tr>
<td>Computer Engineering (Electrical Engineering track)</td>
<td>CEEN</td>
<td>Computer Engineering (Electrical Engineering track)</td>
</tr>
<tr>
<td>Computer Science</td>
<td>CPSC</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Computing</td>
<td>COMP</td>
<td>Computing</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>ELEN</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Electronic Systems Engineering Technology</td>
<td>ESET</td>
<td>Electronic Systems Engineering Technology</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>EVEN</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>Industrial Distribution</td>
<td>IDIS</td>
<td>Industrial Distribution</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>INEN</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>Interdisciplinary Engineering</td>
<td>ITDE</td>
<td>Interdisciplinary Engineering</td>
</tr>
<tr>
<td>Manufacturing & Mechanical Engineering Technology</td>
<td>MMET</td>
<td>Manufacturing & Mechanical Engineering Technology</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>MSEN</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>MEEN</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Multidisciplinary Engineering Technology</td>
<td>MXET</td>
<td>Multidisciplinary Engineering Technology</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>NUEN</td>
<td>Nuclear Engineering</td>
</tr>
</tbody>
</table>
Ocean Engineering OCEN
Petroleum Engineering PETE
College of Geosciences GE
Environmental Geosciences ENGS
Environmental Studies ENST
Geographic Information Science and Technology GIST
Geography GEOG
Geology GEOL
Geophysics GEOP
Meteorology METL
Oceanography OCNG
University Studies USGE
College of Liberal Arts LA
Anthropology ANTH
Classics CLSS
Communication COMM
Economics ECON
English ENGL
History HIST
International Studies INTS
Modern Languages (French, German, Russian) MODL
Neuroscience-Behavioral and Cognitive NRSC
Performance Studies PERF
Philosophy PHIL
Political Science POLS
Psychology PSYC
Sociology SOCI
Spanish SPAN
Telecommunication Media Studies TCMS
University Studies USLA
Women's and Gender Studies WGST
College of Nursing NU
Nursing NURS
School of Public Health PH
Public Health PHTL
College of Science SC
Applied Mathematical Sciences APMS
Biology BIOL
Chemistry CHEM
Mathematics MATH
Microbiology MBIO
Molecular and Cell Biology BMCB
Neuroscience-Molecular and Cellular NRSC
Physics PHYS
Statistics STAT
University Studies USSC
Zoology ZOOL
College of Veterinary Medicine and Biomedical Sciences VM

<table>
<thead>
<tr>
<th>Biomedical Sciences</th>
<th>BIMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroscience-Translational and Preclinical</td>
<td>NRSC</td>
</tr>
<tr>
<td>University Studies</td>
<td>USVM</td>
</tr>
</tbody>
</table>

1. See this catalog pertaining to your major for the specific science.
2. Choice available for transfer applicants only. Nursing and Dental Hygiene applicants must have completed or be enrolled in prerequisite courses at the time of application. Courses may be completed at any accredited college or university.
3. All new students to the Colleges of Architecture, Business, and Public Health enter the lower level.
4. Requires CHEM 120; MATH 168, MATH 151.
5. The curriculum leading to a professional degree in Architecture begins in the four-year undergraduate Environmental Design Architectural Studies degree program. This degree provides entry to the Master of Architecture program.
6. No spring transfer admission.
7. Choice not available for transfer applicants.
8. All students seeking elementary teacher certification will complete a baccalaureate degree in Interdisciplinary Studies. There is no major in Secondary Teacher Education. All students seeking secondary certification (except those preparing to teach physical education or health) will major in an academic discipline other than education (i.e., mathematics, English, computer science, biology, etc.) and take appropriate coursework for teacher certification in the College of Education and Human Development.
9. Apply through College of Agriculture and Life Sciences.
10. Pre-veterinary medicine is not offered at Texas A&M. If you plan to apply to the Doctor of Veterinary Medicine (DVM) program, you should select a major that would be a good vocational choice if you do not later enter the DVM program. Any major may be selected; however, some curricula more closely parallel courses that must be completed before applying to the DVM program than others.

Change of Curriculum to Another Campus
In addition to main campus, Texas A&M offers certain undergraduate degrees at its two branch campuses, Galveston and Qatar, and the Higher Education Center at McAllen. While enrolled as a student in residence at any one of the Texas A&M locations, students may apply for a change of curriculum to another site for a future semester. Students must comply with the established change of curriculum procedures and requirements of their desired major, department, and college, and space must be available. Final approval is granted by the academic dean or departmental advisor for that major.

Transfer Admissions

Transfer applicants will be reviewed and receive a decision from the college/major to which they have applied.

Recommended/required coursework for all majors is available on the **Transfer Course Sheets** at http://admissions.tamu.edu/transfer/majors. Students are strongly encouraged to follow the guidelines and complete both the required and recommended courses as outlined on the Transfer Course Sheets and in the catalog. Applicants who begin a set of courses which have a two-semester sequence are encouraged to complete both courses in the sequence before planning to transfer to Texas A&M.
Admission Criteria

- Transfer applicants must have at least a 2.5 grade point average (GPA) on at least 24 graded semester hours of transferable coursework at the time of application to be reviewed for admission.
- Students with less than a 2.5 GPA and/or less than 24 graded transferable hours will be denied admission and will not be sent to the academic college for review.
- Transfer admission decisions are made by each college or major and are competitive; thus, admission standards may change from one semester to another. Preference is given to the applicant with the highest grade point average (GPA) and the most courses completed for the major designated on the application.
- Applicants who drop or withdraw from courses frequently and who do not routinely achieve satisfactory grades will be at a disadvantage in the review for admission.
- Spring grades may be used in the fall admission decision if requested by the Academic College or in instances where the student did not meet the university requirements for review. Spring transcripts must be received by June 1 for review with spring grades. A complete application must be on file by March 1 to be considered for fall admission and to qualify for spring grade review. Spring grade review is not available for all applicants and is not an option for students studying outside the U.S.
- The entire application, including essay topic A, is considered in the review process.
- Some colleges consider second choice majors and some do not consider second choice majors. This is noted on the Transfer Course Sheets. The admission decisions follow the guidelines presented in the Transfer Course Sheets and the College Specific Information provided in the catalog. Space may be limited for those being reviewed for their second choice.

Automatic Transfer Admission through SB 175

A transfer applicant who graduated from a Texas high school and ranked in the top 10% of the student’s high school qualifies for automatic transfer admission to a 4-year university under the provisions of SB 175 if they meet the following guidelines:

1. The applicant must have graduated in the top 10% of his or her high school graduating class from a Texas high school not more than 4 years prior to the semester for which the student is applying. The top 10% ranking must be stated on the final high school transcript, or the applicant must have been previously offered admission under the top 10% rule to the institution to which the applicant seeks admission as a transfer student.
2. The applicant must complete the core curriculum at a public junior college or other public or private lower-division institution with a 2.5 GPA on a four-point scale or equivalent.
3. Transcript should note core completion.
4. The applicant must expressly and clearly claim in the application that he or she is seeking admission under the transfer top 10% rule (SB 175).
5. The applicant must provide all of the documents required for transfer admission to Texas A&M by the posted deadline. Transfer requirements can be found at http://admissions.tamu.edu/transfer.

Applicants qualifying for transfer top 10% admission under SB 175 will be admitted to Texas A&M but the choice of major is not guaranteed. Students desiring admission to Business or Engineering are encouraged to select a second choice major of interest due to the limited enrollment capacity in these colleges.

For information concerning the Transfer Top 10% Admission, please see www.legis.state.tx.us/tlodocs/81R/billtext/doc/SB00175F.doc.

College Specific Information

College of Agriculture and Life Sciences

Transfer admission requirements vary for the different academic programs offered by the College. Admission decisions are made by major and are competitive. Most majors have required and recommended coursework to be completed by the student prior to application. It is highly recommended that prospective students contact the academic advisor for the major of interest to inquire about specific transfer admission requirements. Students should also refer to the Texas A&M University Admissions (http://admissions.tamu.edu/transfer/apply/) website to review the Transfer Course Sheets for each major. Also, note that transfer admission GPA requirements vary by major and several exceed the minimum 2.5 GPA. Completion of the essay indicating why the major was selected and how a degree in this major will help meet career goals is required. For more information on transfer guidelines, coursework and contact information for all academic advisors, refer to the College of Agriculture and Life Sciences (http://aglifesciences.tamu.edu) website.

College of Architecture

Applicants must have completed 24 hours of transferable coursework at the time of application, and it is recommended that these courses be selected from the degree program electives described elsewhere in this catalog. The essay is an important component in the review process and should explain why the applicant is interested in either the Construction Science, Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning or Visualization program. Depending on the program of interest, applicants with less than a 3.0 GPA are rarely admitted. For more information, visit the College of Architecture (http://www.arch.tamu.edu) website.

Enrollment in Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning, and Visualization is driven by available studio space. Additionally, there are eight sequential studios in those degree programs which make it difficult for students that transfer with more than 36 hours.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Applicable Majors</th>
<th>Courses</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban and Regional</td>
<td>Landscape Architecture</td>
<td>ENGL 104, MATH 140</td>
<td>ENGL 1302, MATH 1324</td>
</tr>
<tr>
<td>Planning</td>
<td>Landscape Architecture</td>
<td>ENGL 104, MATH 140</td>
<td>ENGL 1302, MATH 1324</td>
</tr>
<tr>
<td>Landscape Architecture</td>
<td>Regional Planning</td>
<td>ENGL 104, MATH 140</td>
<td>ENGL 1302, MATH 1324</td>
</tr>
<tr>
<td>Environmental Design</td>
<td>Environmental Design</td>
<td>ENGL 104, MATH 140</td>
<td>ENGL 1302, MATH 1324</td>
</tr>
<tr>
<td>Architectural Studies</td>
<td>Architectural Studies</td>
<td>ENGL 104, MATH 140</td>
<td>ENGL 1302, MATH 1324</td>
</tr>
<tr>
<td>Visualization</td>
<td>Visualization</td>
<td>ENGL 104, MATH 151</td>
<td>ENGL 1302, MATH 2413</td>
</tr>
<tr>
<td>University Studies</td>
<td>University Studies</td>
<td>ENGL 104, One TAMU Core</td>
<td>ENGL 1302, MATH 1324, PHYS 1401, GEOL 1403, CHEM 1411</td>
</tr>
<tr>
<td>- Global Arts, Planning, Design and Construction</td>
<td>Architecture (USAR)</td>
<td>ENGL 104, TAMU Core</td>
<td>ENGL 1302, MATH 1324, PHYS 1401, GEOL 1403, CHEM 1411</td>
</tr>
</tbody>
</table>
REQUIRED COURSEWORK FOR ADMISSION: Priority courses to be appropriate documentation, in their essay(s). To have considered are urged to share all pertinent information, with after graduation. Applicants who have special circumstances they wish their undergraduate business education will help them meet goals essay as an opportunity identify their past accomplishments, discuss advanced writing style. Applicants are encouraged to use the required written essays that demonstrate clarity of purpose, creativity, and an The entire application is reviewed. Successful applicants include carefully written essays that demonstrate clarity of purpose, creativity, and an advanced writing style. Applicants are encouraged to use the required essay as an opportunity identify their past accomplishments, discuss what they hope to study at Texas A&M University, and describe how their undergraduate business education will help them meet goals after graduation. Applicants who have special circumstances they wish to have considered are urged to share all pertinent information, with appropriate documentation, in their essay(s).

REQUIRED COURSEWORK FOR ADMISSION: Priority courses to be completed before transfer application to Mays Business School are:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting - Financial</td>
<td>ACCT 2301, ACCT 2401</td>
</tr>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting - Managerial</td>
<td>ACCT 2302, ACCT 2402</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics - Microeconomics</td>
<td>ECON 2302</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics - Macroeconomics</td>
<td>ECON 2301</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>SPCH 1315</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>MATH 140¹</td>
<td>Mathematics for Business and Social Sciences</td>
<td>MATH 1324</td>
</tr>
<tr>
<td>MATH 142¹</td>
<td>Business - Calculus</td>
<td>MATH 1325</td>
</tr>
</tbody>
</table>

¹ MATH 1324 from some colleges will not be a direct equivalent to MATH 140 at Texas A&M University but will satisfy the core math requirement for this major.

Mays Business School
Mays Business School offers transfer admission to the most competitive applicants. The transfer admission process identifies applications that evidence outstanding accomplishments, including academic credentials using the following guidelines.

Transfer admission to Mays generally requires excellence in the following set of eight specific courses. Applicants desiring to major in business are encouraged to plan early, and incorporate this entire body of coursework into their curriculum prior to applying. It is especially important to have credit for both required math courses before applying.

Mays admits transfer applicants for summer or fall admission. No spring transfer admission is available. Applicants are expected to have completed and excelled in substantially all of the 24 semester hours of Required Coursework. Applicants need a grade of A in most courses and a high overall GPA to be competitive.

The entire application is reviewed. Successful applicants include carefully written essays that demonstrate clarity of purpose, creativity, and an advanced writing style. Applicants are encouraged to use the required essay as an opportunity identify their past accomplishments, discuss what they hope to study at Texas A&M University, and describe how their undergraduate business education will help them meet goals after graduation. Applicants who have special circumstances they wish to have considered are urged to share all pertinent information, with appropriate documentation, in their essay(s).

The college has identified the following 31 hours of coursework as transferable for all CEHD majors:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Intro. to Biology</td>
<td>BIOL 1406</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Intro. to Rhetoric and Composition</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>HIST 105 or HIST 106</td>
<td>American History</td>
<td>HIST 1301 or HIST 1302</td>
</tr>
<tr>
<td>HIST 226</td>
<td>Texas History</td>
<td>HIST 2301</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Math for Business and Social Sciences</td>
<td>MATH 1324</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>MATH 1325</td>
</tr>
<tr>
<td>THAR 101</td>
<td>Intro. to Western Theatre and Drama</td>
<td>DRAM 1310</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American Government</td>
<td>GOVT 2305</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>GOVT 2306</td>
</tr>
</tbody>
</table>

¹ In lieu of MATH 1324 and MATH 1325, Mays accepts MATH 2414 and MATH 2413, respectively.

College of Education and Human Development
The College of Education and Human Development (CEHD) is actively seeking qualified transfer students who are interested in teacher certification. There is a nationwide demand for teachers. In particular, the College is seeking students interested in high-need teaching fields: math, science, special education, bilingual, English as a Second Language, and foreign language. The College also offers a variety of non-certification programs.

To be competitive for admission, an applicant should, at the time of application, have a minimum 2.75 GPA on at least 24 hours of graded transferable coursework. It is preferred that MATH 140/MATH 1324, MATH 142/MATH 1325 and two science courses from the desired major be taken prior to application. Students specifically interested in Allied Health or Kinesiology Exercise Science should complete both math and both science courses with a grade of B or better and maintain a cumulative 3.0 GPA across all transferable coursework in order to be competitive in the applicant pool.

Students interested in certification at grades 8–12 should complete a baccalaureate degree in a discipline area and contact the College regarding certification. The College of Education and Human Development does not consider second-choice majors.

Recommended Courses. Prospective transfer students should refer to the College of Education and Human Development (http://education.tamu.edu) website to identify additional courses that will satisfy degree requirements. Any student applying for a degree in Allied Health or Kinesiology is encouraged to apply with under 60 total hours of transfer credit. Applicants should refer to the College website for more information.

The College of Education and Human Development evaluates performances in all courses and considers all parts of the application. If you have repeatedly dropped or withdrawn from courses or if you are taking courses that do not apply to the Core Curriculum or your major, they may have a negative impact when the application is reviewed. A well-written essay is a student's opportunity to share information and experiences that could indicate success in a particular major.

The college has identified the following 31 hours of coursework as transferable for all CEHD majors:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Intro. to Biology</td>
<td>BIOL 1406</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Intro. to Rhetoric and Composition</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>HIST 105 or HIST 106</td>
<td>American History</td>
<td>HIST 1301 or HIST 1302</td>
</tr>
<tr>
<td>HIST 226</td>
<td>Texas History</td>
<td>HIST 2301</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Math for Business and Social Sciences</td>
<td>MATH 1324</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>MATH 1325</td>
</tr>
<tr>
<td>THAR 101</td>
<td>Intro. to Western Theatre and Drama</td>
<td>DRAM 1310</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American Government</td>
<td>GOVT 2305</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>GOVT 2306</td>
</tr>
</tbody>
</table>
Guidelines for Transfer Applicants by Program

Health. Applicants who are seeking transfer admission to this program should complete BIOL 1406, CHEM 1411, MATH 1324 and MATH 1325 for admission. Other prerequisite coursework that is recommended is SPCH 1315; and PHED 1304. Students may also take BIOL 2401 and BIOL 2402 to substitute for BIOL 319 and BIOL 320 for this option. Students specifically interested in Allied Health should complete both math courses with grades of B or better and at least two of the available science courses listed with grades of B or better. It is preferred that these students also maintain a minimum 3.0 cumulative GPA across all courses that transfer to Texas A&M University.

Kinesiology–Exercise Science. Students in this program are encouraged to complete at least 24 hours of the science coursework prior to the 60 completed hours. The Texas Common Course Numbers for the required science coursework on the exercise science degree plan (Applied Exercise Physiology, Basic Exercise Physiology and Motor Behavior options in the Kinesiology degree) are BIOL 1406, BIOL 1407, CHEM 1411, CHEM 1412, PHYS 1401 and PHYS 1402. The remaining 8 hours (Anatomy and Physiology I and II) must be taken at Texas A&M. Other coursework that students could complete include MATH 1324 and MATH 1325 (required for transfer); ENGL 2311 or SPCH 1315; and PHED 1301. Students should complete both math courses with grades of B or better and at least two of the available science courses listed with grades of B or better. It is preferred that these students also maintain a minimum 3.0 cumulative GPA across all courses that transfer to Texas A&M University.

Kinesiology–Physical Education Teacher Certification. Applicants who are seeking transfer admission to this program should complete BIOL 1406, PHYS 1401, MATH 1324 and MATH 1325. Other prerequisite coursework that can be taken prior to admission to Texas A&M and the program and is recommended is ENGL 1301 or ENGL 2311; and PHED 1301. Students may also take BIOL 2401 and BIOL 2402 to substitute for BIOL 319 and BIOL 320 for this option.

Sport Management. Applicants who are seeking transfer admission to this program should complete two lab sciences that meet TAMU Core Curriculum which could consist of the following science courses: BIOL 1406, GEOI 1403, CHEM 1411 or PHYS 1401. Check with the Office of Admissions for specific courses that may meet this requirement. MATH 1324 and MATH 1325 are also required for admission. Other recommended coursework includes ENGL 1301 or ENGL 2311 and SPCH 1315; and ECON 2302.

For more information about admission to the College of Education and Human Development, please contact Casey Ricketts at cricketts@tamu.edu.

College of Engineering

Applicants should complete at least 24 hours of graded, transferable coursework at the time of submitting their application, all with a grade of C or better. Transfer admission GPA requirements vary by major, with the majority exceeding the minimum requirements for transfer admission consideration to Texas A&M. Transfer admission course requirements also vary by major. Successful applicants for undergraduate engineering degree programs in the College of Engineering will have completed all or most of the coursework listed before applying for transfer admission. Prospective transfer students should review prospective student information accessed through the College of Engineering (http://engineering.tamu.edu) website for more information and details specific to each major. Transfer Course Sheets (http://admissions.tamu.edu/transfer/majors/) are available for each engineering major to provide guidance on specific transfer admission requirements.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Comp. and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Math II</td>
<td>MATH 2414</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Math III</td>
<td>MATH 2415</td>
</tr>
<tr>
<td>CHEM 107/117</td>
<td>Chemistry for Engineering with lab</td>
<td></td>
</tr>
<tr>
<td>PHYS 218</td>
<td>Mechanics</td>
<td>PHYS 2425</td>
</tr>
<tr>
<td>PHYS 208</td>
<td>Electricity and Optics</td>
<td>PHYS 2426</td>
</tr>
</tbody>
</table>

1. IDIS will accept an equivalent to Introduction to Composition and Rhetoric (ENGL 103 – ENGL 1301) to fulfill the composition requirement.
2. The MATH 151, MATH 152 and MATH 251 sequence can also be satisfied by completing the TCCNS sequence of four 3-hour courses (MATH 2313, MATH 2314, MATH 2315, MATH 2316). It is intended that applicants finish their calculus sequence, and not intended that applicants mix courses between two different calculus sequences.
3. Applicants are often admitted without this course, but it is recommended.
4. Biomedical Engineering and Chemical Engineering require Fundamentals of Chemistry I (CHEM 119 – TCCNS CHEM 1411) and Fundamentals of Chemistry II (CHEM 120 – TCCNS CHEM 1412). All other majors in the College, except computer science, require CHEM 107/CHEM 117. Students attending an institution without an equivalent to CHEM 107/CHEM 117 can transfer an equivalent to CHEM 120 to fulfill the CHEM 107/CHEM 117 requirement. Computer Science does not require CHEM for their degree plan but CHEM 119 and CHEM 120 can be used toward an approved science requirement.

College of Geosciences

Prospective freshman and transfer applicants are encouraged to refer to the College of Geosciences (http://geosciences.tamu.edu) website for details on appropriate coursework for their intended major. Special attention is paid to performance on required math and science courses and to the essay portion of the application. Fall and spring admission preferred. The College of Geosciences will consider second-choice majors.

Overall, the College of Geosciences requires prospective transfer students to be in the process of completing a minimum of 24 hours from the list of courses provided here with a minimum overall GPA of 2.5. Applicants are expected to have demonstrated successful completion of this body of coursework, to present evidence of success in a course in their selected major, and in the mathematics and science courses specified.

The entire application submitted by transfer students is reviewed. Successful applicants include carefully written essays that demonstrate clarity of purpose and an advanced writing style. In the essay, applicants are advised to identify their intended major within the College of Geosciences and to describe why they are committing to study that subject. Applicants who have special circumstances they wish to share are encouraged to address these within the body of the essay(s), which are held in strict confidence.
Each major requires the courses as listed below:

<table>
<thead>
<tr>
<th>Applicable Majors</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Studies (ENST) B.S.</td>
<td>At least one course selected from: GEOG 1302, 1303, GEOG 1303 and 1103, 1403 or other introductory courses in the Geosciences (Geography, Geology, Atmospheric Science, Oceanography) Two Math courses: MATH 1324 and 1325 One Science course selected from: BIOL 1306 and 1106, 1406 CHEM 1311 and 1111, 1411</td>
</tr>
<tr>
<td>Environmental Geosciences (ENGS) B.S.</td>
<td>At least one course selected from: GEOG 1302, 1303, GEOG 1303 and 1103, 1403 or other introductory courses in the Geosciences (Geography, Geology, Atmospheric Science, Oceanography) Two Math courses: MATH 2413 and 2414 One Science course selected from: BIOL 1306 and 1106, 1406 CHEM 1311 and 1111, 1411 PHYS 1301 and 1101, 1401</td>
</tr>
<tr>
<td>Geography (GEOG) B.S. University Studies - Geography (USGE) B.S.</td>
<td>One course selected from: GEOG 1301, 1302 or 1303, or the equivalent to GEOG 203 (Earth System Science) Two Math courses: MATH 1324 and 1325 One Science course selected from: BIOL 1306 and 1106, 1406 GEOL 1403 CHEM 1311 and 1111, 1411 PHYS 1301 and 1101, 1401</td>
</tr>
<tr>
<td>Geology (GEOL) B.A.</td>
<td>GEOG 1303 and 1103 or 1403 Two Math courses: MATH 1324 and 1325 One Science course selected from: BIOL 1306 and 1106, 1406 CHEM 1311 and 1111, 1411, 1412 PHYS 1301 and 1101, 1401</td>
</tr>
<tr>
<td>Geology (GEOL) B.S.</td>
<td>GEOG 1303 and 1103 or 1403 These four Math/Science courses: MATH 2413, 2414, CHEM 1411, 1412</td>
</tr>
<tr>
<td>Geophysics (GEOP) B.S.</td>
<td>GEOG 1303 and 1103 or 1403 These four Math/Science courses: MATH 2413, 2414; PHYS 2325 and 2125, PHYS 2326 and 2126</td>
</tr>
<tr>
<td>Meteorology (METR) B.S.</td>
<td>MATH 2413, 2414; PHYS 2425, CHEM 1401, 1412 (These courses must be completed with a B or better.)</td>
</tr>
<tr>
<td>Oceanography (OCNG) B.S.</td>
<td>MATH 2413, 2414; CHEM 1411, 1412; PHYS 2325, 2326; BIOL11106, 1306 (These courses must be completed with a C or better.)</td>
</tr>
</tbody>
</table>

College of Science

Applicants should complete 24 hours, as appropriate to the choice of major, with a cumulative GPA of at least 3.00. Strength of schedule is a factor in determining admission. Applicants will not be admitted without the completion of the first two semesters of courses in their declared major with a grade of B or better. Chemistry and Physics majors must also complete 8 hours of Calculus I and II with a grade of B or better. Biology students must complete 8 hours of Chemistry I and II with a grade of B or better and Calculus I and II with a grade of C or better. The College of Science will consider second-choice majors. Students with 90 hours of college credit will not be considered for transfer admission. For more information, visit the College of Science website (http://www.science.tamu.edu).

The transfer admission guidelines by major in the College of Science include:

Biology

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111¹</td>
<td>Introductory Biology I</td>
<td>BIOL 1306 and 1106, 1406</td>
</tr>
<tr>
<td>BIOL 112¹</td>
<td>Introductory Biology II</td>
<td>BIOL 1307 and 1107, 1407</td>
</tr>
<tr>
<td>CHEM 119¹</td>
<td>Fund. of Chem. I</td>
<td>CHEM 1311 and 1111, 1411</td>
</tr>
<tr>
<td>CHEM 120¹</td>
<td>Fund. of Chem. II</td>
<td>CHEM 1312 and 1112, 1412</td>
</tr>
<tr>
<td>MATH 151²</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
<tr>
<td>MATH 152²</td>
<td>Engineering Math II</td>
<td>MATH 2414</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119¹</td>
<td>Fund. of Chem. I</td>
<td>CHEM 1311 and 1111, 1411</td>
</tr>
<tr>
<td>CHEM 120¹</td>
<td>Fund. of Chem. II</td>
<td>CHEM 1312 and 1112, 1412</td>
</tr>
<tr>
<td>ENGL 104³</td>
<td>Composition ad Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>HIST 105³</td>
<td>History of the U.S.</td>
<td>HIST 1301</td>
</tr>
<tr>
<td>HIST 106³</td>
<td>History of the U.S.</td>
<td>HIST 1302</td>
</tr>
<tr>
<td>MATH 151¹</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
<tr>
<td>MATH 152¹</td>
<td>Engineering Math II</td>
<td>MATH 2414</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104³</td>
<td>Composition and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>ENGL 210³</td>
<td>Scientific/Technical Writing</td>
<td>ENGL 2311</td>
</tr>
<tr>
<td>HIST 105³</td>
<td>History of the United States</td>
<td>HIST 1301</td>
</tr>
<tr>
<td>MATH 151¹</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
</tbody>
</table>
MATH 152\(^1\) Engineering Math II MATH 2414
PHYS 206/226\(^1\) Newtonian Mechanics for Engineering and Science/Lab PHYS 2325 and 2125, 2425
PHYS 207/227\(^1\) Electricity and Magnetism for Engineering and Science/Lab PHYS 2326 and 2126, 2426

Physics

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119(^3)</td>
<td>Fund. of Chem. I</td>
<td>CHEM 1311 and 1111, 1411</td>
</tr>
<tr>
<td>ENGL 104(^3)</td>
<td>Composition and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>HIST 105(^3)</td>
<td>History of the United States</td>
<td>HIST 1301</td>
</tr>
<tr>
<td>MATH 151(^1)</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
<tr>
<td>MATH 152(^1)</td>
<td>Engineering Math II</td>
<td>MATH 2414</td>
</tr>
<tr>
<td>PHYS 206/226(^1)</td>
<td>Newtonian Mechanics for Engineering and Science/Lab</td>
<td>PHYS 2325 and 2125, 2425</td>
</tr>
<tr>
<td>PHYS 207/227(^1)</td>
<td>Electricity and Magnetism for Engineering and Science/Lab</td>
<td>PHYS 2326 and 2126, 2426</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203(^3)</td>
<td>Public Speaking</td>
<td>SPCH 1315</td>
</tr>
<tr>
<td>CSCE 206(^3)</td>
<td>Structured Programming in C</td>
<td>BCIS 1420, COSC 1420</td>
</tr>
<tr>
<td>ENGL 104(^3)</td>
<td>Composition and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>MATH 151(^1)</td>
<td>Engineering Math I</td>
<td>MATH 2413</td>
</tr>
<tr>
<td>MATH 152(^1)</td>
<td>Engineering Math II</td>
<td>MATH 2414</td>
</tr>
<tr>
<td>PHYS 206/226(^1)</td>
<td>Newtonian Mechanics for Engineering and Science/Lab</td>
<td>PHYS 2325 and 2125, 2425</td>
</tr>
<tr>
<td>PHYS 207/227(^1)</td>
<td>Electricity and Magnetism for Engineering and Science/Lab</td>
<td>PHYS 2326 and 2126, 2426</td>
</tr>
</tbody>
</table>

Field of Study Curricula

A Field of Study Curriculum is a set of courses that will satisfy lower-division requirements for a baccalaureate degree in a specific academic area at a general academic teaching institution. The Texas Higher Education Coordinating Board publishes information about Board-approved Field of Study Curricula (http://www.thecb.state.tx.us). Texas A&M University complies with requirements outlined in 19 Texas Administrative Code §4.32 regarding transfer of course credit for completed or partially-completed Field of Study Curricula. Per 19 Texas Administrative Code §4.32, following the receipt of credit, “the student may be required to satisfy the remaining course requirements in the field of study curriculum of the receiving institution, or to complete additional requirements in the receiving institution’s program, as long as those requirements do not duplicate course content already completed through the field of study curriculum.”

College of Veterinary Medicine and Biomedical Sciences

Applicants should have a 3.00 GPA on at least 45 hours of graded transferable coursework at the time of application and meet all Common Body of Knowledge (CBK) requirements for Biomedical Sciences in order to be considered for admission into Biomedical Sciences. Students who begin a set of courses which have a two-semester sequence are encouraged to complete both courses in the sequence before transferring to Texas A&M. No second-choice majors are considered. No summer admissions accepted. For more information, visit the College of Veterinary Medicine and Biomedical Sciences (http://vetmed.tamu.edu) website.

Transfer students with 45 or more hours completed at the time of application will be given preference in admission. The transfer into Biomedical Sciences must occur before the student reaches 75 completed hours. All CBK courses should have a minimum grade of a C. Any CBK courses transferred in from a community college must have a minimum grade of a B.

Readmits will require a 3.0 at Texas A&M University and all CBK courses completed with at least a C in all courses. Any CBK courses transferred in from a community college must have a minimum grade of a B.

CBK Requirements

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>TCCNS Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Intro. to Biology I</td>
<td>BIOL 1306 and 1106, 1406</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Intro. to Biology II</td>
<td>BIOL 1307 and 1107, 1407</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fund. of Chemistry I</td>
<td>CHEM 1311 and 1111, 1411</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fund. of Chemistry II</td>
<td>CHEM 1312 and 1112, 1412</td>
</tr>
<tr>
<td>CHEM 227/237</td>
<td>Organic Chem. I/Lab</td>
<td>CHEM 2323 and 2123, 2423</td>
</tr>
<tr>
<td>CHEM 228/238</td>
<td>Organic Chem. II/Lab</td>
<td>CHEM 2325 and 2125, 2425</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus (^1)</td>
<td>PHYS 1301 and 1101, 1401</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics I</td>
<td>PHYS 1302 and 1102, 1402</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics II</td>
<td>PHYS 1302 and 1102, 1402</td>
</tr>
</tbody>
</table>

\(^1\) Students may choose to take MATH 2413 or MATH 1325 as calculus for transfer. These are equivalent to TAMU course numbers MATH 151 and MATH 142, respectively.

Notification of Admission Decisions

Transfer admissions are made through a competitive review process. Applicants are notified of the admission decision on a rolling basis throughout the application season. For those applicants requested
to submit spring grades for fall consideration, decisions should be announced by early July.

Additional Information for Transfer Applicants

1. All applicants are encouraged to view the Transfer Course Sheets (http://admissions.tamu.edu/transfer/majors/) posted on the admissions website for information concerning required courses and GPA requirements for admission to a specific major. Applicants to the Colleges of Architecture, Business, and Veterinary Medicine and Biomedical Sciences should refer to the Upper Level Entry requirements. Applicants to the College of Engineering should refer to the Entry To A Major – College of Engineering requirements.

2. A 2.0 GPA or better on coursework in progress during the semester (excluding summer terms) immediately prior to enrollment at Texas A&M is a condition of admission.

3. Grades for all transferable courses are used in the computation of the GPA. This includes:
 - Failing grades, repeated courses, WF, Incomplete, etc.
 - Grades reported as Incomplete are computed as Fs.
 - Plus and minus grade designations are not used; C+ is computed as a C, B- as a B, etc.

4. Credit by examination courses which are transcripted from other colleges or universities may be transferred if sequential coursework with credit is also indicated. If there is evidence that the credit by examination courses are part of the student’s program of study at that institution, credit will be awarded for those courses that meet the transfer guidelines. Note: Credit by examination will not count toward the 24 hours required for consideration for admission.

5. Coursework taken as credit-by-exam must be listed as a specific course and course number on an official college transcript to be considered for transfer of credit.

Transfer Course Credit Policies

Transfer credit on coursework complete at the time of application to Texas A&M University is determined when an official transcript from the originating institution is presented as part of the application for admission or readmission process. An official transcript is required from every post-secondary institution attended (including dual credit earned in high school) even if the applicant did not earn credit, receive a course grade or the course is not transferable.

The transfer of course credit is determined by the Office of Admissions on a course-by-course basis by application of policies set under the guidance of the Texas Higher Education Coordinating Board, the Texas Association of Collegiate Registrars and Admissions Officers, and under the guidance of faculty within the academic colleges. Credit submitted for transfer must be on an official transcript received by the Office of Admissions from the Registrar of the institution where the credit was earned. Course content will be determined from the catalog description or the syllabus. The transferability of courses will be based on the criteria below. All criteria are intended to be considered together; for example, criteria 10 may be qualified by criteria 7.

Credit from Institutions Accredited by One of the Institutional Accrediting Agencies

1. A course that is normally considered as part of a bachelor’s degree program (not including the bachelor of technology or similar terminal degree) may be transferred. The following criteria, taken together, are used:

 a. The course is applicable to a bachelor’s degree at Texas A&M.
 b. The course is similar to a course or courses offered for degree credit by Texas A&M.
 c. The course content is at or above the level of the beginning course in the subject matter offered by Texas A&M.

2. A course that is intended for use in a vocational, technical or occupational program will not typically transfer. In certain cases, credit for occupational skill courses will be considered. Transfer of this credit requires that the student’s Texas A&M major is engineering technology or industrial distribution or that the student’s major department and dean approve the course for use in the student’s degree program after enrollment.

3. Credit for support courses such as Math, Science and English intended specifically for use in an occupational program will not be transferred.

4. Credit for the course must be shown on the official transcript in semester hours or in units that are readily converted to semester hours.

5. A graduate-level course will not be transferred for undergraduate credit unless approved for use in the student’s undergraduate degree program by the student’s major department and Dean. This also applies for a course offered in a professional degree program such as Nursing, Law, or Medicine.

6. Credit by examination courses which are transcripted from other colleges or universities may be transferred if sequential coursework with credit is also indicated. If there is evidence that the credit by examination courses are part of the student’s program of study at that institution, credit will be awarded for those courses that meet our transfer guidelines.

7. Courses similar to ones offered by Texas A&M at the junior or senior level transfer by title only. Such courses may be used in the student’s degree program only if approved by the Department Head and Dean of the student’s major field. Validation of such credit, either by examination or the completion of a higher level course, may be required.

8. A field experience, internship or student teaching course may be transferred by title only.

9. Credit for cooperative education will not be transferred.

10. A course that is substantially equivalent to a Texas A&M lower level course transfers as an equivalent course. Two or more courses may be combined to form one or more equivalent courses. If there is doubt about the equivalency of a course, the Texas A&M department offering the course subject matter may be asked to determine if the course is equivalent. STEM courses are often referred to the departments for evaluation.

11. As a general policy, credit for admission will be given for transfer work satisfactorily completed with a passing grade at another properly accredited institution.

12. Grade Point Average (GPA) for any period shall be computed by dividing the total number of semester hours of transferable courses for which the student received grades into the total number of grade points earned in that period. Credit hours to which grades equivalent to Texas A&M grades of W, WF, F, I or U are assigned shall be included; those having grades equivalent to Texas A&M grades of WP, Q, S, X and NG shall be excluded.

13. In any case where a decision cannot be made using the above criteria, the Office of Admissions will determine the transfer of credit based
on University policy, previous actions of the University and prior experience.

Resolution of Transfer Disputes for Lower Division Courses Between Public Institutions in Texas

The following procedures shall be followed by public institutions of higher education in the resolution of transfer credit disputes involving lower-division courses:

1. If an institution of higher education does not accept course credit earned by a student at another institution of higher education, the receiving institution shall give written notice to the student and to the sending institution that transfer of the course credit is denied. A receiving institution shall also provide written notice of the reasons for denying credit for a particular course or set of courses at the request of the sending institution.
2. A student who receives notice as specified in subsection 1 may dispute the denial of credit by contacting a designated official at either the sending or the receiving institution.
3. The two institutions and the student shall attempt to resolve the transfer of the course credit in accordance with the rules and guidelines of the Texas Higher Education Coordinating Board (THECB).
4. If the transfer dispute is not resolved to the satisfaction of the student or the sending institution within 45 days after the date the student received written notice of denial, the institution that denies the course credit for transfer shall notify the Commissioner of its denial and the reasons for the denial.

The Commissioner of Higher Education or the Commissioner’s designee shall make the final determination about the dispute concerning the transfer of course credit and give written notice of the determination to the involved student and institutions.

Credit from Non-accredited Schools

Students who transfer to Texas A&M from an institution of higher education that is not accredited by one of the institutional accrediting agencies may validate the work taken at the institution by one of the following methods upon admission:

1. Successful completion of a comprehensive departmental examination or nationally standardized examination that is approved by the department.
2. Successful completion of a higher level course in the same subject area when approved by the head of the department and the dean of the college.

Credit will be given to students transferring from non-accredited public colleges in Texas for work completed with grades of C or better if they earn a grade point of 2.0 (C average) on the first 30 hours of residence work at Texas A&M.

Credit from Foreign Institutions

Transfer work from institutions that do not follow the United States educational system with instruction in English will be evaluated on an individual basis. A-level examinations with a grade of C or better will result in the award of transfer credit. We do not award credit for Baccalaureate II examinations. Credit will be given for work satisfactorily completed at international institutions offering programs recognized by Texas A&M. Official credentials submitted directly from the Office of the Registrar and a listing of courses completed and grades awarded must accompany any request for transfer credit. Transfer work will be awarded by course title unless previous arrangements have been made using the Texas A&M University Transfer Credit Study Abroad Pre-Approval Form. Courses must be equivalent in character and content to courses offered at Texas A&M. Credit will not be awarded from international institutions which are not academically accredited by the Ministry of Education or other appropriate authority in the home country.

No English composition courses will be transferred from institutions located in non-English speaking countries. American history and American political science (government) courses will not transfer from foreign institutions.

Courses taken at language training centers or language institutes are generally not awarded transfer credit. A transcript from such an institution must be issued through the Office of the Registrar at a Texas A&M recognized university, institute or language training center. Credentials of all language training centers and institutes are carefully reviewed.

Credit for Military Experience

State law (Texas Education Code Section 51.3042) and Texas A&M University policy awards credit for military service to eligible veterans. To receive credit, student veterans must submit proof of eligibility to the Office of Admissions. Up to 12 hours of general elective credits may be awarded, as needed for the student’s degree plan.

Proof of eligibility includes:

• DD Form 214 showing 1 year active duty and an honorable discharge OR
• Military orders OR
• Disability discharge documentation AND
• Documentation of high school completion (final high school transcript or General Educational Development certificate)

Military transcripts are evaluated at the time of application and credit for military experience/training is awarded based on recommendations contained within the Guide to the Evaluation of Educational Experiences in the Armed Services published by the American Council on Education (ACE). Texas A&M University will award KINE 198 and KINE 199 credit for completion of Basic Training if applicable to a student’s degree plan. Credit under this policy does not prohibit Texas A&M University from awarding additional credit. The Military Transcript Credit Appeal form shall be provided to the Office of Admissions with approval of the academic advisor and veteran.

Proof of eligibility includes:

• Official military transcript (JST or CCAF)

Military Service Credits are irrevocable once awarded. Potential consequences should be identified and understood before a request is submitted. Students must consult their academic advisor for advice on the number of credits from military service that can be used in their degree program to avoid excess credit accumulation and possible negative effects.

Extension and Correspondence Courses

Students may apply a maximum of 30 semester hours of approved extension class work and correspondence study toward a degree. Students may apply up to 12 hours of correspondence credit earned through an accredited institution toward the requirements for an
undergraduate degree, even though Texas A&M does not offer courses by correspondence.

Correspondence courses taken through the Defense Activity for Nontraditional Education Support (DANTES) may be accepted and included in the 12 hours allowed.

In order for a student in residence at Texas A&M to receive credit for correspondence work toward a bachelor’s degree, he or she should:

• obtain advance written permission from the dean of his or her college;
• present appropriate evidence of having completed the course.

Testing Services is authorized to act as an agent to receive correspondence courses.

International Admissions

International Admission Criteria

Transcripts/Examination Results

Official academic records (transcripts, mark sheets, diplomas, etc.) are required for all secondary and any university coursework completed. Records should include all courses taken in high school and every college or university the applicant has attended.

Official records require the original school seal or an original signature of a school official (Registrar, Principal, Headmaster or Director of Student Records, Controller of Examinations, or the Ministry of Education).

Official records should be mailed from the school directly to Texas A&M University, Office of Admissions. Examination results should be sent directly from the examination agency. In addition to the original records in a language other than English, Texas A&M requires official translations in English. Translations sent directly from the institution attended or from a recognized translator will be accepted. Transcript evaluations that include a certified copy of the original transcript and a word for word translation from an evaluation service which is a member of the National Association of Credential Evaluation Services (http://www.naces.org/members.html) are strongly recommended and will allow faster processing of files. We recommend a document-by-document evaluation (with a GPA) for high school credentials and a course-by-course evaluation for college/university transcripts from non-U.S. institutions. Credential evaluations that include a word for word translation will be considered as an official translation but will NOT be accepted as a substitute for required transcripts. For students enrolled in the United States, we will accept copies of official transcripts from other countries that are on file and verified by the U.S. institution. Unofficial photocopies, fax copies and notarized copies of records, examination results or translations will not be accepted. Uploaded transcripts and diplomas indicating graduation from secondary school (final high school transcripts) will not be accepted. These transcripts must be mailed.

Admission Criteria for International Applicants with U.S. Based Credentials

International applicants who are completing their education at an institution that is accredited by the U.S. will be reviewed in accordance with the guidelines determined for domestic admission. However, these applicants must still meet international deadlines and testing requirements. (See item 2 below.)

Admission Criteria for International Applicants with Foreign Credentials

International applicants who are completing their education at an institution that is not accredited by the U.S. will be reviewed based on the following criteria:

1. Academic Achievement

• International applicants are expected to complete an educational program that will allow them to be considered for admission to a university in their home country. Examples include the completion of Grade 13, Form 6 or 3 A-level exams following the General Certificate of Secondary Education (GCSE). Predicted A-level exam results must be received by the application closing date.
• Applicants must submit proof of high school graduation, typically a diploma, leaving certificate, or official examination results. Students that complete the West African Examinations Council (WAEC) exam must provide the necessary information for Texas A&M to verify the WAEC results, typically a WAEC scratch card or results checker, by the application closing date.
• Successful applicants will rank near the top of their country’s educational system (B average or better) and score well above average on national exams.
• Secondary school courses: Appropriate college preparatory coursework is required.

2. Testing and Proof of English Proficiency

SAT or ACT scores will be considered in the review criteria for international freshman applicants. Applicants whose native language is not English are required to demonstrate English proficiency by meeting one of the following requirements to be eligible for review for admission:

• TOEFL internet-based test score of 80 or higher (taken within two years of date of intended enrollment)
• IELTS with a 6.0 overall band score (taken within two years of date of intended enrollment)
• SAT Evidence Based Reading and Writing (EBRW) score of 560 or higher
• ACT English score of 21 or higher
• Completed all four years of high school within the U.S.
• Transfer from an accredited U.S. institution of higher education with at least 30 semester credit hours including the equivalent to Texas A&M’s ENGL 103 or ENGL 104 with a grade of C or better

Duolingo English Test and English3: Texas A&M University is temporarily accepting both the Duolingo English Test and English3 online assessments from applicants where TOEFL and IELTS exams are impacted due to Coronavirus (COVID-19) concerns. Applicants from affected countries may submit Duolingo English Test (105 minimum) or English3 scores (67 minimum) to satisfy English proficiency requirements for spring 2021 admission.

1. Individual Achievement and Recognition

• Leadership positions held
• Honors/awards received
• Major national, state or Texas A&M scholarships received

Additional Requirements for International Applicants

After Admission

If admitted, international students should review the International Student Services Channel, howdy.tamu.edu · Applicant tab, for next steps concerning enrollment at Texas A&M University. Additional information
Scholarship Information for International Students
There are a limited number of scholarships, fellowships, grants and loans available to international students, both in the admission process and throughout their enrollment. Some of these come from academic departments, particularly for graduate applicants, but there are also forms of financial aid available through International Student Services and Scholarships & Financial Aid. International applicants with financial need are encouraged to complete the International Student Financial Aid Application (ISFAA) (http://financialaid.tamu.edu/Apply-for-Aid/ISFAA/). This form must be resubmitted annually for continued consideration.

One special opportunity that a student may be eligible for upon admission to Texas A&M University is the Texas/Mexico Education Scholarship. Texas law allows a limited number of admitted applicants who are citizens of Mexico, and who can document financial need, to pay the same tuition as the residents of the State of Texas. For more information regarding how to apply for this scholarship, please refer to International Student Services (http://iss.tamu.edu) website.

For additional information regarding financial assistance and other scholarships available to International Students, please contact:

Scholarships & Financial Aid
Texas A&M University
P. O. Box 30016
College Station, TX 77842-3016
(979) 845-3236
financialaid@tamu.edu
http://financialaid.tamu.edu

For additional information, please contact:
International Student Services Office
Pavilion Room 110
Texas A&M University
1226 TAMU
College Station, TX 77843-1226
USA
(979) 845-1824
Fax (979) 862-4633
iss@tamu.edu
http://iss.tamu.edu

Other Admissions
Admission Criteria for Other Application Types
Readmission Criteria
Admission decisions for readmission are based on the following:

• GPA on Texas A&M coursework;
• GPA on coursework since leaving Texas A&M;
• desired major; and
• information presented in the application and essay/statement of purpose.

If you were previously admitted but did not enroll and attend class through the official census date, you do not qualify as a readmit, and you must apply as either a freshman or transfer student.

If you were previously enrolled at Texas A&M but did not attend class through the official census date of the previous long semester, then you must apply for readmission.

Transcripts from institutions attended since the last enrollment at Texas A&M are required as follows:

<table>
<thead>
<tr>
<th>If Desired Readmission Term Is</th>
<th>Must Have Transcripts Through</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021 Spring semester</td>
<td>2020 Summer session</td>
</tr>
<tr>
<td>2021 Summer semester</td>
<td>2020 Fall semester</td>
</tr>
<tr>
<td>2021 Fall semester</td>
<td>2021 Spring semester if applying after June 1</td>
</tr>
</tbody>
</table>

Post-baccalaureate Undergraduate Criteria
Admission is limited and intended for applicants with a degree who wish to apply for further study at the undergraduate level to pursue a second bachelor’s degree.

Additional requirements to complete a post-baccalaureate application:

• an official transcript indicating the receipt of a recognized baccalaureate degree
• a statement of purpose explaining why enrollment at Texas A&M is necessary
• official transcripts from all colleges attended (official high school transcript not required)

Admission decisions for post-baccalaureate undergraduates consider:

• GPA on transferable college coursework
• completion of prerequisite coursework
• information presented in the application

Priority is given to qualified applicants for their initial degree; therefore, post-baccalaureate undergraduate admission may be limited or may not be available. Mays Business School, the College of Liberal Arts, the School of Public Health, and the College of Veterinary Medicine do not currently consider applicants for post-baccalaureate study. See the Classification section of this catalog for the enrollment rights and privileges of this classification.

Undergraduate Non-degree Criteria
Admission is limited and intended for applicants with a high school diploma (with the exception of High School Enrichment Program participants) or for degree applicants who do not intend to pursue a baccalaureate degree at Texas A&M. This includes:

• local residents or University employees taking courses on a part-time basis
• applicants completing established Texas A&M University requirements for teacher or other certification
• applicants completing a prescribed set of courses as preparation for application to graduate study or professional programs (i.e., medical school, veterinary school, law school or CPA exam)
• others as deemed appropriate by the Office of Admissions and the college or program of admission
Eligibility requirements:

- any transportation considerations.
- registration will be completed by the Texas A&M advisor. No summer levels of related coursework offered at their high school. Each student
- To be considered for this program, students must have completed all
- may qualify to continue to study Physics at the college level.
- and you have completed all of the classes your high school offers, you
- graduation at both levels. For example, if you are interested in Physics
- This program provides a chance to further your knowledge in a subject
- toward high school graduation. Admission for this program is on a space-
- by the posted deadline. If a student does not have coursework subsequent to ten years, he or she will be considered for admission based on the guidelines for new entering freshmen, which will require, among other things, an acceptable SAT or ACT score that has been completed within the past five years.

Priority is given to qualified applicants for their initial bachelor’s degree; therefore, non-degree admission may be limited or not available. The College of Liberal Arts limits enrollment to summer only and the College of Veterinary Medicine and School of Public Health does not allow non-degree seeking admission. See the Classification section of this catalog for the enrollment rights and privileges of this classification.

Transient Session Only Criteria

Admission is considered for applicants who wish to attend summer only and present appropriate credentials for the level of specified coursework and apply within the processing period for the specific session.

Additional requirements to complete transient session only application:

- a statement of purpose explaining why enrollment at Texas A&M is desired
- an official college transcript showing the latest collegiate coursework attempted or a complete, official high school transcript if no college work has been attempted after high school graduation

High School Enrichment Program

Texas A&M University is pleased to offer the High School Enrichment Program (HSEP) for qualified high school students in the Bryan/College Station area that will provide college credit and may also provide credit toward high school graduation. Admission for this program is on a space-available basis. The applicant pool is competitive, and admission into this program is not guaranteed.

This program provides a chance to further your knowledge in a subject you have completed in high school and earn valuable credit for graduation at both levels. For example, if you are interested in Physics and you have completed all of the classes your high school offers, you may qualify to continue to study Physics at the college level.

To be considered for this program, students must have completed all levels of related coursework offered at their high school. Each student is eligible to take one course per fall or spring semester, and course registration will be completed by the Texas A&M advisor. No summer classes are offered at this time. Classes will be held on the Texas A&M campus, and students and their parents/guardians will be responsible for any transportation considerations.

Eligibility requirements:

- You must be a junior or senior in high school in the Bryan/College Station area.
- You must have a minimum new SAT score of 1270 or an ACT score of 27.
- You must provide a recommendation form from your high school counselor to participate.

Academic Fresh Start Policy

Applicants for admission or readmission to Texas A&M may choose to have academic coursework that was completed at least 10 years prior to their term of application removed from consideration in the admission decision (Texas residents only). All other admission requirements apply. Should a Fresh Start applicant be admitted, he or she will forfeit all credit earned prior to 10 years from the term of admission. Academic Fresh Start must be requested as part of the application process. It cannot be requested after an applicant is admitted or enrolled.

Academic work done subsequent to ten years will be used in the evaluation of the applicant for admission. Applicants with subsequent coursework are required to submit the transfer application along with transcripts for all college level coursework as well as all additional required documents by the posted deadline. If a student does not have coursework subsequent to ten years, he or she will be considered for admission based on the guidelines for new entering freshmen, which will require, among other things, an acceptable SAT or ACT score that has been completed within the past five years.

Admitted Fresh Start applicants have “Academic Fresh Start” indicated on their official Texas A&M transcript, are required to satisfy TSI (https://successcenter.tamu.edu/Texas-Success-Initiative/) requirements, and will follow the academic requirements of the Undergraduate Catalog of record for the term of admission.

Forfeited coursework cannot be considered as prerequisites but placement examinations are allowed for courses which were not considered for admission because of the Fresh Start Policy. Once admitted on Academic Fresh Start, the applicant or student cannot subsequently request that the Fresh Start policy restrictions be removed.

If an applicant has used the Academic Fresh Start Policy at a previous school, the Academic Fresh Start will remain in effect at Texas A&M upon transfer.

Note: For financial aid purposes all previously taken coursework will be included when evaluating aid eligibility. In addition, the Department of Veterans Affairs (VA) does not recognize the Academic Fresh Start program. Students cannot be certified for courses they have successfully completed. Students using VA Educational benefits should coordinate with the Veterans Services Office.

Entry to a Major – College of Engineering

Freshmen in General Engineering (https://engineering.tamu.edu/admissions-and-aid/incoming-students/), Engineering at Galveston (https://engineering.tamu.edu/academics/engineering-at-galveston/), Engineering at McAllen (https://engineering.tamu.edu/admissions-and-aid/engineering-at-mcallen/), or Engineering Academy programs (https://engineering.tamu.edu/academies/) have a common first year engineering curriculum to allow time for students to learn about the various engineering degree granting majors. It is recognized that in most cases students are not made aware of all our engineering majors prior to joining Texas A&M. Students are introduced to the different engineering majors in the first year engineering courses, ENGR 102, ENGR 216/PHYS 216 and ENGR 217/PHYS 217. Students are encouraged to leverage additional resources, including the career center, faculty, and advisors to get even more information. Students must complete the following courses in at least two semesters before applying to an engineering major: two engineering courses, two math courses, and two science courses in the first year engineering curriculum. Exceptions
will be made as needed for students entering with credit for the required courses.

The entry-to-a-major (ETAM) process is designed for students to take ownership of their future by identifying at least three majors that are a good match for their career goals and academic performance. The entry-to-a-major process (https://engineering.tamu.edu/academics/undergraduate/entry-to-a-major/) is designed to place students in the highest rank major possible based upon academic performance, ETAM application content, and program capacities. Students are encouraged to be in a major as early as possible. Students in the General Engineering (https://engineering.tamu.edu/admissions-and-aid/incoming-students/), Engineering at Galveston (https://engineering.tamu.edu/academics/engineering-at-galveston/), Engineering at McAllen (https://engineering.tamu.edu/admissions-and-aid/engineering-at-mcallen/) and the Engineering Academy programs (https://engineering.tamu.edu/academics/academies/) must be in a major by the end of the fourth semester in engineering.

Transfer students are admitted directly to a degree granting major through the admissions process.

Upper-Level Entry into Colleges of Architecture, Business and Veterinary Medicine and Biomedical Sciences—Biomedical Science

College of Architecture

Transfer Students

Transfer students, who meet the University entrance requirements and who desire to enter a major field of study in the College of Architecture, will be admitted based on available space and current College of Architecture entrance criteria. Following admission, some departments place transfer students on a 2.5 GPA probation for a minimum of 12 credit hours to substantiate competency in required lower-level courses. Departments with lower-level classification will admit transfer students into the college with a lower-level classification. Students may apply for upper-level status after at least one semester at Texas A&M University.

Change of Major

Students currently enrolled in another major at Texas A&M University with fewer than 60 hours (fewer than 90 hours for University Studies - Global Arts, Planning, Design, and Construction students) who desire to change their major field of study into the College of Architecture must fill out a Change of Curriculum application found on the College of Architecture homepage. Deadlines for applications are as follows:

- March 1 for summer admittance (for Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning, Visualization, and University Studies - Global Arts, Planning, Design, and Construction students)
- June 1 for fall admittance (for Construction Science, Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning, Visualization, and University Studies - Global Arts, Planning, Design, and Construction students)
- October 1 for spring admittance (for Construction Science, Landscape Architecture, Urban and Regional Planning, Visualization, and University Studies - Global Arts, Planning, Design, and Construction students)

The college will admit the best-qualified applicants based on the number of spaces available in their program of choice. Enrollment in Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning, and Visualization is driven by available studio space. Additionally, there are eight sequential studios in those degree programs which make it difficult for students that transfer with more than 36 hours to graduate in a timely manner.

Mays Business School

Lower-level business (BUAD) students are encouraged to complete the freshman and sophomore sequence of courses as listed under Program Requirements.

The BBA Upper-Level (UL) entry requirements and application procedures are as follows:

1. **Admission:** To be admitted to an UL BBA major, a student must be admitted to Mays Business School and have:
 a. Satisfactorily completed the following five courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

 b. Submitted application for UL admission no later than preregistration for the expected UL entry term. **NOTE:** For summer UL entry, all requirements must be completed BEFORE the first class day of the FIRST SUMMER SESSION.
 c. UL admission requirements include completion of the three remaining lower-level Core Business Knowledge (CBK) courses prior to or during the first UL semester. Business students must preregister for and complete the following three remaining lower-level CBK courses at Texas A&M during their first UL semester, unless satisfactorily completed prior to UL entry:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
</tbody>
</table>

 d. BUAD students may preregister for UL business courses in the semester for which they have applied for UL. However, students who fail to complete UL requirements shall not be permitted to remain registered in UL business classes.

2. **Transfer Students:** Transfer students admitted to Mays Business School enter as lower-level business (BUAD) students until they complete all requirements listed previously in item 1, at which time they may apply for admission to an UL BBA major. Transfer students may immediately apply for UL when admitted to Mays Business School if, and only if, they meet all UL requirements at that time.

3. **Change of Curriculum Students:** Texas A&M students who change curriculum into Mays Business School from another college or department at the University will enter as lower-level business (BUAD) students until they complete all requirements listed previously in
item 1. Change of curriculum students who, when admitted to the business school, qualify to apply for admission to an UL BBA major may do so.

4. Junior- and Senior-Level Business Courses: Preference for available seats in junior- and senior-level business courses will be given to students who have been admitted to a BBA granting major in Mays Business School. All ineligible students who preregister for UL business classes are subject to cancellation of their registration in these courses.

College of Veterinary Medicine and Biomedical Sciences

Biomedical Sciences

1. A Biomedical Sciences (BIMS) major will be admitted into the upper-level courses according to the following criteria:
 a. Completion of a set of Common Body of Knowledge (CBK) courses with a grade of C or better in each course completed at Texas A&M. Any CBK course transferred from a community college must have a minimum grade of a B. Normally, for admission to BIMS upper-level courses, a student may have attempted a CBK course no more than twice.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Math 131, 142, 147, 151 or 171 will count for the calculus credit</td>
<td></td>
</tr>
</tbody>
</table>

 | Total Semester Credit Hours | 35 |

 b. Transfer students admitted under another major and wishing to change into BIMS must complete one semester of graded coursework at Texas A&M University with a cumulative overall TAMU GPA of 2.5, as well as meet change of major requirements for current students.
 c. Texas A&M University change of majors must have at least 55 semester credit hours with a minimum cumulative GPA of 3.0.

4. Students seeking readmission will be considered on a case-by-case basis, according to current catalog policy. No quotas will be placed on readmission; however, the decision to readmit will be dependent on resource availability and University policy.

5. Any BIMS student admitted to upper-level courses who then falls below the 2.5 GPA requirement will not be considered in good academic standing in their major and will be placed on college probation. Students who achieve less than an overall TAMU GPA of 1.0, in any semester, are not eligible for college probation or grade warning status. All Biomedical Sciences majors must follow established probation rules for the Biomedical Sciences Program.

6. The Dean, Director or Department Head will reserve the right to waive CBK or GPA requirements within the criteria established in Texas A&M University Student Rules.

7. No courses other than BIMS 481, BIMS 484, VIBS 310, VIBS 311, or research/directed studies courses can be taken S/U to be used in the degree plan.

8. BIMS probation is determined at the end of the Spring semester. Students not meeting acceptable GPA requirements (2.5 BIMS majors with 55 or more credit hours or 2.0 area of concentration (USVM) or BIMS majors with less than 55 credit hours) will be required to attend Texas A&M University that summer and repeat courses as needed to raise their GPA. Students who achieve less than an overall TAMU GPA of 1.0 in any semester (BIMS or USVM) are not eligible for college probation or grade warning status.

9. Students may only attempt CVM courses a total of three times.

Texas Success Initiative (TSI)

The Texas Success Initiative (TSI) was instituted to ensure that students enrolled in Texas public colleges and universities possess the necessary academic skills to perform effectively in college and to provide diagnostic information about reading, writing and mathematics skills of each student. All undergraduate students who did not meet one of the allowed exemptions must take the approved TSI Assessment.

Students who do not meet established cutoff scores or other approved exemptions for the TSI Assessment are required by Texas law to be enrolled in, and actively attend, an academic skills course and/or program each semester prior to completing all TSI requirements. Academic skills courses in each of the three TSI areas are offered by Texas A&M. Failure to meet the attendance requirements of the academic skills course will result in withdrawal from Texas A&M. The hours for these courses will not count toward any degree program but may count toward determining attendance status. See http://asc.tamu.edu/TSI-Assessment/TSI-Assessment-Q&As (http://successcenter.tamu.edu/Texas-Success-Initiative/TSI-FAQs/) for specific information.

Students required to take the TSI Assessment should provide their score reports to the Academic Success Center at Texas A&M University at the address below.

Academic Success Center
1133 TAMU
College Station, TX 77843-1133
More information can be obtained from testing centers at most Texas public colleges and universities or by contacting:

Texas Higher Education Coordinating Board
P. O. Box 12788
Austin, TX 78711-2788

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

College of Dentistry – Caruth School of Dental Hygiene

Basis For Acceptance

All applicants will be considered using the following criteria. In addition, the applicant must be able to perform the essential functions required in the curriculum. The quality of the applicant’s academic achievement is a prime consideration. A grade point average (GPA) is computed based on all courses taken in college.

Preference for admission is given to students with:

- A cumulative GPA and Science GPA indicating ability to succeed in the program.
- Attention given to detail when completing the application.
- A comprehensive biographical sketch that includes information that will help the Admissions Committee know the applicant better. Details about the dental hygiene procedures that have been observed, a description of the community service projects in which you have participated and information concerning your interests, abilities and attitudes that have motivated you to make the commitment required for a career in dental hygiene are examples of information that might be included.

The application deadline is January 5. The Office of Recruitment and Admissions encourages applicants to submit the online application forms by December 1. All materials related to the application must be received in the Office of Recruitment and Admissions by February 1.

- The following must be included with the application when it is submitted online:
 a. Application for Admission
 b. Secondary Application
 c. List of courses in progress and those planned prior to enrollment in the dental hygiene program
 d. Biographical sketch
- Other materials that should be sent to complete your application:
 a. Application Fee ($35.00)
 b. Photograph sized 2 x 2 (does not have to be a passport picture - can be regular photograph cut down)
 c. Transcripts from high school and all colleges attended (if you attended a foreign high school, you do not have to submit a copy)
 d. Scores from Texas Success Initiative (TSI). (Or if exempt, SAT/ACT or TAAS – usually scores are listed on high school transcript; you do not have to submit scores separately.)
 e. Observation Verification Form (minimum 16 hours required)
 f. Recommendations: these evaluation forms should be completed by 1) a college instructor, 2) a dental hygienist and 3) an individual who has known applicant for some time; for example, an employer or supervisor.
 - An application is valid for one academic year only.
 - Official transcripts are required and will be accepted only when sent directly from each school the applicant has attended.
 - It is the responsibility of the applicant to keep the application file current. Failure to supply grades, transcripts or recommendations may be perceived as an indication that the applicant is no longer interested in admission.

Interviews

Processing of applications begins the year prior to entrance into the professional program and continues until the class is filled. The applications are evaluated, and an invitation for an interview may be extended. The purpose of the interview is to determine the applicant’s knowledge of the dental hygiene profession. It also provides an opportunity for the applicant to see the facility, meet with the Admissions Committee and to ask questions about the Caruth School of Dental Hygiene program.

All prospective students are encouraged to contact the college with questions regarding prerequisite courses or the program.

To Access the Dental Hygiene Application Forms:

The applicant will need to create an account on the Banner Admissions Management Framework (BAMF) website. The applicant will be required to complete and submit the College of Dentistry Dental Hygiene Application, the Secondary Application and the Ethnicity Form.

The application for the Dental Hygiene Program will be available on the BAMF website from July 15 to January 5.

Download Forms (Adobe PDF files):

The Evaluation Form and Observation Verification Form are available for download. You will need to print these forms and submit them with signatures through regular mail.

- Evaluation Form – top section to be filled in by applicant
- Observation Verification Form

For questions about the application process, please contact The Office of Recruitment and Admissions at (214) 828-8231 or by email at admissions-dentistry@tamhs.edu.

Mail forms and transcripts to:

Office of Recruitment and Admissions
Texas A&M University College of Dentistry
3302 Gaston Avenue, Room 525
Dallas, TX 75246-2013
USA

Transfer Credit

Transfer credit will be determined by each component in conjunction with the staff of the college on a course-by-course basis from official transcripts submitted in the competitive admissions process. Course content will be determined by the catalog course description or course syllabus.

Course acceptability is guided by these criteria:
• Courses completed at regionally accredited institutions are considered for transfer if:
 a. They are acceptable as credit for a bachelor’s degree at a regionally accredited institution.
 b. Course content is at or above the level of courses specified in the requirements for admission.
• Courses intended for use in a vocational, technical or occupational program normally do not transfer; general courses within this type of program may transfer.
• Credit on the transcript must appear in semester hours or credits that may be converted to semester hours.
• Credit by examination courses may be transferred if accepted by another college and followed by sequenced coursework.
• Equivalency of coursework is determined by content found in catalog course descriptions or syllabi of courses. In case of doubt, departmental faculty will determine equivalency. The final determination is left to the Program Director.
• As a general policy, coursework with a passing grade may be transferred, but the applicant must keep in mind that admission to the hygiene program is on a competitive basis and grades of F are calculated into the grade point average.
• Course hours will be evaluated on a course-by-course basis but will be transferred as a block of hours, and the grades do not calculate into the GPA for the hygiene program.
• Online courses are accepted.
• Typically, credit will not be given for courses completed at institutions not accredited by a regional accrediting agency.
• The college does not accept non-credit coursework to be used in lieu of coursework taken for academic credit.

College of Dentistry
Dental Hygiene Program (BS)

Application Fee	$35 non-refundable fee
Admissions Standards	Completion of required courses with GPA as high as possible. Admission is competitive.
Use of High School Record	No
Number of Articulation Agreements and Requirements for Admission	Not applicable
TOEFL**	Not applicable
Other Requirements	Three LOR required and TSI assessment. Interview; comprehensive biographical sketch; and 16 hours of verified observation of a dental hygienist

College of Nursing

There are three different tracks leading to a baccalaureate degree in nursing. The traditional BSN track is for students seeking their first degree in college. The second degree BSN track (post baccalaureate) is for individuals who have already earned a bachelor’s degree in another field of study. The third option is an RN to BSN program for registered nurses who hold an associate degree in nursing. Prerequisite courses, which are the essential foundation for nursing, must be completed before entry into upper-division nursing courses through a competitive admission process. In addition, all students must meet the core curriculum requirements for Texas A&M University if not already completed at another institution.

The following documents are required for an application to be considered complete and eligible for review:

• Application
• Application fee
• Official college transcript(s)
• Personal statement (essay)
• Completion of prerequisite courses by the time of enrollment with a grade of C or better
• Admissions Assessment (HESI A2) entrance exam required for traditional and second degree BSN applicants only
• Reference required for RN to BSN applicants only
• RN to BSN applicants must provide proof of RN licensure in good standing
• Copy of permanent resident card, if applicable
• Official TOEFL Scores required for international applicants and must be taken within the past two years. Test scores must be sent directly from the testing agency to be considered official.

The most current information regarding application to nursing can be found on the College of Nursing (https://nursing.tamhsc.edu/) (CON) website. Applications must be received by the posted deadline. No late documents will be accepted. Admission to the college is competitive. At the time of application, students must be enrolled in or have completed all prerequisite course requirements which includes University Core Curriculum and nursing prerequisites. Admission offers may be made to students finalizing courses and will be contingent upon successful completion of all prerequisite requirements and students presenting a clear criminal background check and a negative drug screen.

If the student completed a core curriculum from another Texas public institution in a previous degree program, they are not required to complete the college's Core Curriculum. Students transferring from out of state, from a private institution, those with an international degree or anyone with concerns about this requirement, please contact an advisor at the College of Nursing for further clarification. Students will not be considered for admission unless the required coursework will be completed by the time of enrollment.

Additional Requirements for International Applicants and Applicants with Foreign Credentials

In addition to each program’s stated application requirements, applicants with foreign transcripts must also include a transcript evaluation from an evaluation service which is a member of the National Association of Credential Evaluation Services. A course-by-course listing that reflects U.S. grade point equivalencies and semester credits is required. These reports must be sent directly from the evaluation agency in the original sealed envelope to NursingCAS. Send to: NursingCAS, P.O. Box 9201, Watertown, MA 02471. If sent via UPS or FEDEX, send to NursingCAS Transcript Department, 311 Arsenal Street, Suite #15, Watertown, MA 02472. Students may wish to speak with an advisor to determine transfer credits based on results of the evaluation.

If admitted to the College of Nursing, applicants with foreign transcripts must submit the native language transcript along with an official English translation. These documents must include all original seals and/or
signatures and be approved by the Texas A&M Office of Admissions prior to enrollment in the program.

English Proficiency and other Requirements for International Applicants

Applicants whose native language is not English are required to submit proof of English proficiency to be eligible for review. English proficiency can be demonstrated through various criteria. See more on this requirement on the international admissions website (https://admissions.tamu.edu/international/transfer/). International applicants will be expected to present declaration of finances, F-1 travel documents and additional documentation upon acceptance to the College of Nursing. All deadlines required by the Office of International Student Services must be met.

Prerequisite Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>Microbiology</td>
<td>6</td>
</tr>
<tr>
<td>American History (or Texas History)</td>
<td>General Biology</td>
<td>6</td>
</tr>
<tr>
<td>Government (Federal and Texas)</td>
<td>Psychology (General and Lifespan Growth and Development)</td>
<td>6</td>
</tr>
<tr>
<td>Intro to Ethics or Philosophy (Culture/Language/Philosophy)</td>
<td>Creative Arts</td>
<td>3</td>
</tr>
<tr>
<td>Math (or Fine Arts)</td>
<td>Current TAMU applicants can meet requirement by completing any 6 hours of TAMU core math; transfer applicants must take 3 credit hours of Statistics as one of the math courses</td>
<td>6</td>
</tr>
<tr>
<td>Nutrition and Diet Therapy</td>
<td>Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>General Biology</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>Anatomy & Physiology</td>
<td>Microbiology</td>
<td>8</td>
</tr>
</tbody>
</table>

College of Nursing (Health Science Center) Traditional, Second Degree and RN to BSN

| Applications & Fee | • $75 Paid through Apply Texas Application
| | • $50 Paid through Nursing CAS Application |
| Admission Standards | • Admission is competitive.
	Required minimum grade of "C" in each of the prerequisite courses.
Use of High School Record	• Not used for admission purposes but required upon acceptance
Number of Articulation Agreements	• Two: South Texas College and Angelina College
TOEFL	See website for additional information

Other Requirements

Entrance exam for pre-licensure applicants; Reference for RN to BSN applicants; Personal Statement for all applicants through Nursing CAS application portal.

Course Credit

Course Credit

Testing Services

Testing Services serves as the center for credit by examination, placement testing and correspondence testing, as well as national standardized testing. Other services include posting of test scores and evaluation of tests for college credit.

Credit by Examination

Undergraduate students at Texas A&M may earn course credits by demonstrating superior achievement on tests offered through several examination programs. Credit by examination is available to freshmen who plan to enter the University and to students who are currently enrolled. Credit earned by examination does not contribute to a student’s grade point ratio. The University awards credit for scores on certain tests published by the Advanced Placement Program (AP), the College Level Examination Program Computer-Based Testing (CLEP CBT), the SAT Subject Tests, DANTES Subject Standardized Tests (DSST) and the International Baccalaureate (IB) Program. Texas A&M also offers qualified students opportunities to earn credits by taking departmental examinations prepared by the faculty. Information concerning credit by examination may be obtained from Testing Services (http://testing.tamu.edu), (979) 845-0532.

Please note these regulations concerning credit by examination:

1. Test scores and/or credit eligibility must be reported formally to Testing Services for credit by examination to be awarded. Credit is posted to the academic record once appropriate scores are received by Testing Services, the student has officially enrolled in the University and the student has accepted the credit. For information regarding current procedures for accepting credit, please visit the Testing Services (http://testing.tamu.edu) website.
2. Students may not receive credit by examination for courses that are prerequisites to courses for which they already have credit except with the approval of the department authorizing the examination.
3. A student may not have credit posted for credit by examination for a course in which he or she is currently registered. If a student has acquired a grade or exercised First-Year Grade Exclusion on a course, then the student will not be eligible to take the equivalent departmental exam. Eligibility will not be affected if a student has a Q, W or NG in a course.
4. Please note that once any credit has been accepted it cannot be removed.

Advanced Placement Program (AP)

Examinations offered by the AP Program are administered during late spring by high schools. Students usually take the examinations after completing Advanced Placement courses, although experience in an AP course is not required. Interested students should contact their high school counselors for information concerning registration and test sites. High school students and currently enrolled students should have the College Board forward their scores to Testing Services, institution code: 6003. Advanced Placement scores of entering freshmen are generally
Students will need to log onto their Howdy portal under My Records and then Credit by Exam to accept the credit earned via AP tests. Testing Services suggests visiting with your advisor before you accept credit.

The following list includes all AP examinations currently accepted for credit.

<table>
<thead>
<tr>
<th>AP Examination</th>
<th>Minimum Score Required</th>
<th>Texas A&M Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Research</td>
<td>3</td>
<td>See academic advisor</td>
<td>1-2</td>
</tr>
<tr>
<td>AP Seminar</td>
<td>3</td>
<td>See academic advisor</td>
<td>1-2</td>
</tr>
<tr>
<td>Art History</td>
<td>3</td>
<td>ARTS 149</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ARTS 149,150</td>
<td>6</td>
</tr>
<tr>
<td>Biology</td>
<td>3</td>
<td>BIOL 113, BIOL 123</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>BIOL 111,112</td>
<td>8</td>
</tr>
<tr>
<td>Calculus AB</td>
<td>3</td>
<td>MATH 131</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td>Calculus BC</td>
<td>3</td>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MATH 151, MATH 152</td>
<td>8</td>
</tr>
<tr>
<td>Chemistry</td>
<td>3</td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CHEM 119, CHEM 120</td>
<td>8</td>
</tr>
<tr>
<td>Chinese</td>
<td>3</td>
<td>CHIN 101, CHIN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CHIN 101, CHIN 102, CHIN 201</td>
<td>14</td>
</tr>
<tr>
<td>Comparative Governments</td>
<td>3</td>
<td>POLS 229</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science A</td>
<td>3</td>
<td>CSCE 110</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science Principles</td>
<td>3</td>
<td>CSCE 110</td>
<td>4</td>
</tr>
<tr>
<td>Economics: Macroeconomics</td>
<td>3</td>
<td>ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Economics: Microeconomics</td>
<td>3</td>
<td>ECON 202</td>
<td>3</td>
</tr>
<tr>
<td>English Lang. and Comp.</td>
<td>3</td>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ENGL 104, ENGL 241</td>
<td>6</td>
</tr>
<tr>
<td>English Lit. and Comp.</td>
<td>3</td>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ENGL 104, ENGL 203</td>
<td>6</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>3</td>
<td>GEOS 105</td>
<td>3</td>
</tr>
<tr>
<td>European History</td>
<td>3</td>
<td>HIST 102</td>
<td>3</td>
</tr>
<tr>
<td>French Language</td>
<td>3</td>
<td>FREN 101, FREN 102</td>
<td>8</td>
</tr>
<tr>
<td>German Language</td>
<td>3</td>
<td>GERM 101, GERM 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GERM 101, GERM 102, GERM 201, GERM 202</td>
<td>14</td>
</tr>
<tr>
<td>Human Geography</td>
<td>3</td>
<td>GEOG 201</td>
<td>3</td>
</tr>
<tr>
<td>Italian Language</td>
<td>3</td>
<td>ITAL 101, ITAL 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ITAL 101, ITAL 102, ITAL 201, ITAL 202</td>
<td>14</td>
</tr>
<tr>
<td>Japanese Language</td>
<td>3</td>
<td>JAPN 101, JAPN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>JAPN 101, JAPN 102, JAPN 201, JAPN 202</td>
<td>14</td>
</tr>
<tr>
<td>Latin</td>
<td>3</td>
<td>CLAS 121, CLAS 122</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CLAS 121, CLAS 122, CLAS 221, CLAS 222</td>
<td>14</td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>3</td>
<td>ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>3</td>
<td>ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Music Theory</td>
<td>3</td>
<td>MUSC 102</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1</td>
<td>3</td>
<td>PHYS 201</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PHYS 201</td>
<td>4</td>
</tr>
<tr>
<td>Physics 2</td>
<td>3</td>
<td>PHYS 202</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PHYS 202</td>
<td>4</td>
</tr>
<tr>
<td>Physics C: Mechanics</td>
<td>3</td>
<td>PHYS 218 or 206 or 226</td>
<td>3 or 4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PHYS 208 or 207 or 227</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>PSYC 107</td>
<td>3</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>3</td>
<td>SPAN 101, SPAN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SPAN 101, SPAN 102, SPAN 201</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SPAN 101, SPAN 102, SPAN 201, SPAN 202</td>
<td>14</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>3</td>
<td>SPAN 202, SPAN 320</td>
<td>6</td>
</tr>
<tr>
<td>Statistics</td>
<td>3</td>
<td>STAT 201</td>
<td>3</td>
</tr>
</tbody>
</table>
Studio Art: Drawing 3 ARTS 103 3
Studio Art: 2-D 3 ARTS 103 3
 ARTS 103,111 6
Studio Art: 3-D 3 ARTS 103 3
U.S. Government and Politics 3 POLS 206 3
U.S. History 3 HIST 105, 3 4
 HIST 106 6
World History 3 HIST 104 3

1 Students must consult their academic advisor for advice on the number of credits that can be used in their degree program to avoid excessive credit accumulation and possible negative effects.
2 Variable credits up to a maximum of 3 credit hours. Students must consult their academic advisor for advice on the number of credits that can be used in their degree program to avoid excessive credit accumulation and possible negative effects.
* Engineering majors should accept credit for PHYS 206 and 207 only, (not 226 and 227) a 2 hour lab is required for their degree plan.

For instructions on accepting AP credit, please visit Testing Services (http://testing.tamu.edu).

College Level Examination Program Computer-Based Testing (CLEP CBT)

CLEP CBT tests are designed to evaluate nontraditional college-level education such as independent study, correspondence work, etc. Both enrolled undergraduate students and entering freshmen may receive CLEP CBT credit for the courses which are listed below. Only examination titles below are currently accepted. The minimum scores listed below are based on the current version of CLEP CBT Examinations. Students will need to log onto their Howdy portal under My Records and then Credit by Exam to accept the credit earned via CLEP tests. Testing Services suggests visiting with your advisor before you accept credit.

<table>
<thead>
<tr>
<th>CLEP CBT Subject Examination</th>
<th>Minimum Score Required</th>
<th>Texas A&M Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
<td>50</td>
<td>MATH 102</td>
<td>3</td>
</tr>
<tr>
<td>American Government</td>
<td>50</td>
<td>POLS 206</td>
<td>3</td>
</tr>
<tr>
<td>Calculus with Elementary Functions</td>
<td>50</td>
<td>MATH 151 or MATH 171</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td>45</td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td>Financial Accounting</td>
<td>50</td>
<td>ACCT 209</td>
<td>3</td>
</tr>
<tr>
<td>History of the United States I: Early Colonization to 1877</td>
<td>50</td>
<td>HIST 105</td>
<td>3</td>
</tr>
<tr>
<td>History of the United States II: 1865 to the Present</td>
<td>50</td>
<td>HIST 106</td>
<td>3</td>
</tr>
<tr>
<td>History of the World</td>
<td>50</td>
<td>ARTS 149, ARTS 150</td>
<td>3</td>
</tr>
<tr>
<td>Astronomy</td>
<td>48</td>
<td>ASTR 101</td>
<td>3</td>
</tr>
<tr>
<td>Business Law II</td>
<td>52</td>
<td>MGMT 212</td>
<td>3</td>
</tr>
<tr>
<td>Lifespan Develop. Psy.</td>
<td>47</td>
<td>PSYC 307</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Statistics</td>
<td>48</td>
<td>STAT 201 or PSYC 203</td>
<td>3,4</td>
</tr>
</tbody>
</table>

For instructions on accepting CLEP credit, please visit Testing Services (http://testing.tamu.edu).

Dantes Subject Standardized Tests (DSST) Program

The DSST Program is available to all interested persons. Enrolled undergraduate students and entering freshmen may receive DSST credit for the courses listed below. For more information about the test, please contact Testing Services.

<table>
<thead>
<tr>
<th>DSST Examination</th>
<th>Minimum Score Required</th>
<th>Texas A&M Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art of the Western World</td>
<td>50</td>
<td>ARTS 149, ARTS 150</td>
<td>6</td>
</tr>
<tr>
<td>Astronomy</td>
<td>48</td>
<td>ASTR 101</td>
<td>3</td>
</tr>
<tr>
<td>Business Law II</td>
<td>52</td>
<td>MGMT 212</td>
<td>3</td>
</tr>
<tr>
<td>Lifespan Develop. Psy.</td>
<td>47</td>
<td>PSYC 307</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Statistics</td>
<td>48</td>
<td>STAT 201 or PSYC 203</td>
<td>3,4</td>
</tr>
</tbody>
</table>

International Baccalaureate (IB)

Texas A&M University, in compliance with SB111, will grant at least 24 semester credit hours of course-specific college credit in subject-appropriate areas on all International Baccalaureate (IB) exam scores of 4 or above as long as the incoming freshman has earned an IB diploma. While some course credit will be awarded regardless of a student’s IB diploma status, some course credit at Texas A&M University may be subject to the successful completion of the IB diploma.

Entering freshman students should submit their International Baccalaureate transcript to Texas A&M University, institution code: 01355, for review. Students should contact Testing Services regarding their eligibility for course credit. Students should work with an academic advisor to determine the use of the IB credits in their individual degree
plan and the impact accepting the credit may have upon tuition rebate eligibility, tuition charges for excessive total hours, and preparedness for sequential coursework based on IB test scores. Students will need to log onto their Howdy portal under My Records and then Credit by Exam to accept the credit earned via IB tests. Testing Services suggests visiting with your advisor before you accept credit.

Texas A&M University will notify IB applicants of their eligibility to receive credit by posting information on the website, Testing Services, and by establishing links to other web pages.

The evaluation of IB courses in order to identify the appropriate course credit is continuing and will be posted as it becomes available. The following list includes all IB examinations currently accepted for credit.

<table>
<thead>
<tr>
<th>IB Higher Level Examination</th>
<th>Minimum Score Required</th>
<th>Texas A&M Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic: Language A or B SL</td>
<td>4</td>
<td>ARAB 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ARAB 101, ARAB 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ARAB 101, ARAB 102, ARAB 201</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>ARAB 101, ARAB 102, ARAB 201, ARAB 202</td>
<td>14</td>
</tr>
<tr>
<td>Arabic: Language A or B HL</td>
<td>3</td>
<td>ARAB 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ARAB 101, ARAB 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ARAB 101, ARAB 102, ARAB 201</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ARAB 101, ARAB 102, ARAB 201, ARAB 202</td>
<td>14</td>
</tr>
<tr>
<td>Biology SL</td>
<td>4</td>
<td>BIOL 113/BIOL 123</td>
<td>4</td>
</tr>
<tr>
<td>Biology HL</td>
<td>4</td>
<td>BIOL 111</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>BIOL 111, BIOL 112</td>
<td>8</td>
</tr>
<tr>
<td>Business Management SL</td>
<td>4</td>
<td>MGMT 309</td>
<td>3</td>
</tr>
<tr>
<td>Business Management HL</td>
<td>4</td>
<td>MGMT 309</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry SL</td>
<td>4</td>
<td>CHEM 106/CHEM 116</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry HL</td>
<td>4</td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>CHEM 119, CHEM 120</td>
<td>8</td>
</tr>
<tr>
<td>Chinese: Language A or B HL</td>
<td>3</td>
<td>CHIN 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CHIN 101, CHIN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>CHIN 101, CHIN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>CHIN 101, CHIN 102, CHIN 201</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>CHIN 101, CHIN 102, CHIN 201, CHIN 202</td>
<td>14</td>
</tr>
<tr>
<td>Classical Greek: A or B SL</td>
<td>4</td>
<td>CLAS 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>CLAS 101, CLAS 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>CLAS 101, CLAS 102, CLAS 211</td>
<td>11</td>
</tr>
<tr>
<td>Classical Greek HL</td>
<td>3</td>
<td>CLAS 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CLAS 101, CLAS 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>CLAS 101, CLAS 102, CLAS 211</td>
<td>11</td>
</tr>
<tr>
<td>Computer Science SL</td>
<td>4</td>
<td>CSCE 111</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science HL</td>
<td>4</td>
<td>CSCE 111</td>
<td>4</td>
</tr>
<tr>
<td>Economics SL</td>
<td>4</td>
<td>ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Economics HL</td>
<td>4</td>
<td>ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>English: Lang. A SL</td>
<td>4</td>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td>English: Lang. A HL</td>
<td>4</td>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ENGL 104, ENGL 222/ MODL 222</td>
<td>6</td>
</tr>
<tr>
<td>Environmental Systems</td>
<td>4</td>
<td>GEOS 105</td>
<td>3</td>
</tr>
<tr>
<td>French: Lang. A or B SL</td>
<td>4</td>
<td>FREN 101</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>FREN 101, FREN 102</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>FREN 101, FREN 102, FREN 201</td>
<td>11</td>
</tr>
<tr>
<td>Level</td>
<td>Course Code</td>
<td>Course Name</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>French: Lang. A or B HL</td>
<td>FREN 101, FREN 102, FREN 201, FREN 202</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREN 101</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREN 101</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREN 101, FREN 102, FREN 201, FREN 202</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Music</td>
<td>MUSC 102, MUSC 6202</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Further Mathematics SL</td>
<td>MATH 102</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geography HL</td>
<td>GEOG 201</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>German: Lang. A or B SL</td>
<td>GERM 101</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102, GERM 201</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102, GERM 201, GERM 202</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102, GERM 201, GERM 202</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GERM 101, GERM 102, GERM 201, GERM 202</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>History HL</td>
<td>HIST 104</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 105</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 105, HIST 106</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Latin SL</td>
<td>CLAS 121</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLAS 121</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLAS 121, CLAS 122</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLAS 121, CLAS 122, CLAS 221</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Islamic History</td>
<td>HIST 221/RELS 221</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Minimum Score Required</td>
<td>Texas A&M Course(s)</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Chemistry</td>
<td>630</td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td>French</td>
<td>640</td>
<td>FREN 101</td>
<td>4</td>
</tr>
<tr>
<td>German</td>
<td>630</td>
<td>GERM 101</td>
<td>4</td>
</tr>
<tr>
<td>SAT Subject Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>630</td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td>French</td>
<td>640</td>
<td>FREN 101</td>
<td>4</td>
</tr>
<tr>
<td>German</td>
<td>630</td>
<td>GERM 101</td>
<td>4</td>
</tr>
</tbody>
</table>

For instructions on accepting IB credit, please visit Testing Services (http://testing.tamu.edu).

SAT Subject Tests

Credits are offered to entering freshmen who score high on the SAT Subject Tests. High school students who are interested in taking these tests should contact their school counselors or write College Board ATP, Box 592, Princeton, NJ 08541.
The minimum score required is based on the re-centered scale. Students who took tests before April 1, 1995, should contact Testing Services to determine the minimum score required. For instructions on accepting SAT Subject credit, please visit Testing Services (http://testing.tamu.edu).

Departmental Examinations for Entering Freshmen and Currently Enrolled Students

Qualified entering freshmen may take departmental tests after being officially admitted into Texas A&M University. Currently enrolled students can also take the exams throughout the year. Contact Testing Services (http://testing.tamu.edu) for registration information. The tests are prepared by participating Texas A&M departments. Current offerings include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Algebra (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II (Available to entering freshman only during the summer before beginning classes at Texas A&M)</td>
<td>4</td>
</tr>
</tbody>
</table>

Graduate Admission

Graduate Admission

For information related to graduate admission, please contact:

Office of Graduate Admissions
Texas A&M University
P. O. Box 40001
College Station, TX 77842-4001
(979) 845-1060
admissions@tamu.edu
http://admissions.tamu.edu/graduate

Please reference the Texas A&M University Graduate and Professional Catalog on this website.

Registration and Academic Status

Registration for the fall and spring semesters is accomplished at several times. During the fall and spring semesters (in November and April), a preregistration period is held for currently enrolled and readmitted students to register for the next semester. There are periods of announced open registration for students who were unable to preregister during the scheduled preregistration period. New Student Conferences serve as an opportunity for new undergraduate students to register. Further information concerning registration may be obtained from the academic calendar published in this catalog or from the Office of the Registrar. The schedule of classes is available online.

Full-Time Student

A full-time undergraduate student is defined as one who is registered for 12 semester hours during a fall or spring semester or 8 hours in a summer semester. Full-time enrollment for federal financial aid is always defined as 12 semester hours, including the summer term. A Q grade or W grade does not count toward the certification of enrollment status. Only hours for which a student is currently enrolled at Texas A&M University can be used toward certification of enrollment.*

* - Students participating in the Blinn TEAM program or the TAMU Engineering Academy at Blinn Bryan program may have unique enrollment certification specifications based on the program agreements. Enrollment status for students in these programs is reported to the National Student Clearinghouse by Texas A&M University and includes enrolled hours from both institutions. Students can obtain enrollment verification which will reflect this enrollment status.
status from the National Student Clearinghouse through Howdy. Students alternatively requesting enrollment verification directly from the Texas A&M University Registrar’s Office on TAMU letterhead are provided enrollment verification of Texas A&M University enrolled hours ONLY. Students may also consider obtaining a verification of their enrollment from Blinn College that will reflect their Blinn enrollment.

Undergraduates Registering for Graduate Courses
A senior undergraduate student with a cumulative grade point average of at least 3.0 or approval of his/her academic dean, is eligible to enroll in a graduate course and reserve it for graduate credit by filing a petition obtained from the student’s undergraduate college and approved by the course instructor, the student’s major department head, the dean of the college offering the course, and the dean of the student’s undergraduate college.

An academically superior undergraduate student with a cumulative grade point average of at least 3.25 or approval of his/her academic dean, is eligible to apply graduate credit hours toward his/her undergraduate degree program by filing a petition obtained from the student’s undergraduate college and approved by the course instructor, the student’s major department head, the dean of the college offering the course, and the dean of the student’s undergraduate college. Graduate credit hours used to meet the requirements for a baccalaureate degree may not be used to meet the requirements for a graduate degree.

VA Benefits
Students who are military veterans should note that to receive full VA benefits they must be registered for enough hours to be considered full-time for their degree during each term they are seeking benefits. This number may differ between degrees and during the summer semester. For hour requirements, please visit Veterans Services.

Maximum Schedule
An undergraduate student with an overall grade point average of 3.0 or better may register for a course load in excess of 19 hours in a fall or spring semester with the approval of his or her advisor. An undergraduate student with an overall grade point average of less than 3.0 must obtain approval of his or her dean before registering for a course load in excess of 19 hours in a fall or spring semester.

Classification
Each student has a classification which indicates the type of degree program in which the student is enrolled, and reflects the student’s progress within that program. The classifications are:

<table>
<thead>
<tr>
<th>Code</th>
<th>Classification Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>Undergraduate Non-degree</td>
</tr>
<tr>
<td></td>
<td>Students with a high school diploma (with the exception of high school concurrent enrollment participants) who do not intend to pursue a baccalaureate degree at Texas A&M University. This includes:</td>
</tr>
<tr>
<td></td>
<td>a. Summer session only students.</td>
</tr>
</tbody>
</table>

b. Local residents or university employees taking courses on a part-time basis.

c. Others as may be deemed appropriate by the Office of Admissions and the college or program of admission.

Undergraduate non-degree students are not permitted to enroll in courses until all degree seeking students have had the opportunity to enroll. Undergraduate non-degree enrollment begins on the first day of open registration. Enrollment may be limited by college or program policies. Admitted students are not eligible for refund of the admission processing fee regardless of course availability.

An academically superior undergraduate student must maintain a 2.0 GPA on all coursework attempted to remain eligible to register. Enrollment is subject to review at the end of each semester of enrollment. Enrollment beyond two years of attendance will be approved only in exceptional cases.

Should an undergraduate non-degree student desire admission to a degree program, regular formal application is necessary, including: a complete application for admission, the required application processing fee, the submission of all required credentials, and the meeting of all admission requirements.

An undergraduate non-degree student may not take graduate-level coursework.

Undergraduate non-degree students are subject to TSI and English proficiency requirements.

An undergraduate non-degree student does not qualify for financial aid through the University.

With few exceptions, undergraduate non-degree status is not available to international students.

U1 Freshman 0-29 hours
U2 Sophomore 30-59 hours
U3 Junior 60-89 hours
U4 Senior 90+ hours
U5 Postbaccalaureate Undergraduate
Students with a recognized baccalaureate degree who wish to complete requirements for a second baccalaureate degree at Texas A&M University or to complete established Texas A&M University certification requirements.

The postbaccalaureate undergraduate classification (U5) has all the privileges and responsibilities of a senior classification (U4).

Recipients of a Texas A&M University baccalaureate degree are not eligible for continued enrollment unless they have the specific approval of the college offering the second bachelor's degree or certification. Should they break enrollment, they must apply for readmission as second bachelor's degree candidates.

A candidate for a second baccalaureate degree must complete all the essential work of the second degree not covered in the first. In all such cases, the total semester hours required must be at least 30 semester hours additional to the greater number required for either degree (see Two Degrees in the Degree Information section). To pursue a second baccalaureate degree concurrently with the pursuit of the initial degree, all essential work required for a second degree must be defined in advance in writing by the dean of the college granting the second degree. To pursue a second baccalaureate degree sequentially requires admission to a second bachelor's degree classification.

Pursuit of a second baccalaureate degree may be limited or may not be allowed by some colleges.

E0 Extension, Undergraduate

Up to 30 hours of extension work may apply toward an undergraduate degree.

Academic Status

Distinguished Student and Dean’s Honor Roll

An undergraduate student who completes a semester schedule of at least 15 graded hours or a summer session schedule of at least 12 graded hours with no grade lower than C and with a grade point average of not less than 3.5 for the semester or for a summer session shall be designated “distinguished student.” A student who, under the same circumstances, achieves a grade point average of at least 3.75 shall also be designated as a member of the “dean’s honor roll.” First semester freshmen must complete a semester schedule of at least 15 hours with no grade lower than a C, no Q-drops and with a grade point average of not less than 3.5 for “distinguished student” designation and a 3.75 for “dean’s honor roll.” Official notification of these designations will be issued to the student by the dean of the student’s college. The hours earned with a grade of S shall not be included in determining minimum hours required for the designation of “distinguished student” or “dean’s honor roll.” A grade of I or U disqualifies a student from being considered as a “distinguished student” or for the “dean’s honor roll.” Grades of Q, W, and NG may not be included in the 15 graded hours. Only undergraduate courses or graduate courses used for the undergraduate degree will be used in either calculation.

Scholastic Probation

Scholastic probation is conditional permission for an undergraduate student to continue in the University after he or she has become scholastically deficient. For university policy regarding scholastic deficiency and scholastic probation, see the Texas A&M University Student Rules (http://student-rules.tamu.edu).

Withdrawal from the University

An official withdrawal from the university will result when a student drops all in progress and courses not yet started in a particular term. A student who withdraws from the university before the completion of a semester or summer term is required to comply with the official withdrawal procedure. This process is initiated by submitting a request through the Student Withdrawal channel on the My Record tab in the Howdy portal. Students may not withdraw after the Q-drop deadline. The student’s dean will retain the authority to support a student withdrawal after the deadline.

If a student is enrolled in one or more inter/intra-session (‘minimesters’) or summer terms and chooses to withdraw, all current and future in progress courses for the entire semester will be dropped. The student will be ineligible to register for courses for the remainder of that semester.

For university policy regarding withdrawal, see the Texas A&M University Student Rules (http://student-rules.tamu.edu).

Correct Addresses

It is necessary to have a correct residence address on file with the University. Students may change their address in Howdy. International students must have a correct physical and permanent address.

Official University Communications

Texas A&M may also use email for official communications. It is each student’s responsibility to claim his/her Texas A&M University email account (http://gateway.tamu.edu) and to check that account on a frequent and consistent basis.

Grading System

Because students attend a college or university to extend their education, grades are usually given as an indication of the proficiency of their endeavors. The student's semester grade in a course shall be based upon performance and/or participation in class, exercises and tests, laboratory work and final examination, as applicable to the course. The proportionate weight assigned to each of the factors shall be determined by the department administering the course.
The basis upon which the final grade will be determined shall be distributed in written form to the class during the first class meeting.

There are five passing grades at the undergraduate level, A, B, C, D and S, representing varying degrees of achievement; these letters carry grade points and significance as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent, 4 grade points per semester hour</td>
</tr>
<tr>
<td>B</td>
<td>Good, 3 grade points per semester hour</td>
</tr>
<tr>
<td>C</td>
<td>Satisfactory, 2 grade points per semester hour</td>
</tr>
<tr>
<td>D</td>
<td>Passing, 1 grade point per semester hour</td>
</tr>
<tr>
<td>F</td>
<td>Failing, no grade points, hours included in GPA calculation</td>
</tr>
<tr>
<td>I</td>
<td>Incomplete, no grade points, hours not included in GPA calculation</td>
</tr>
<tr>
<td>NG</td>
<td>No grade, grade removed from record, no grade points, hours not included in GPA calculation</td>
</tr>
<tr>
<td>Q</td>
<td>Course dropped with no penalty, no grade points, hours not included in GPA calculation</td>
</tr>
<tr>
<td>S</td>
<td>Satisfactory (C or above), no grade points, hours not included in GPA calculation</td>
</tr>
<tr>
<td>U</td>
<td>Unsatisfactory (D or F), no grade points, hours included in GPA calculation</td>
</tr>
<tr>
<td>X</td>
<td>No grade submitted, no grade points, hours not included in GPA calculation</td>
</tr>
<tr>
<td>W</td>
<td>Withdrew, no grade points, hours not included in GPA calculation (effective Spring 1996)</td>
</tr>
<tr>
<td>F*</td>
<td>Aggie Honor Code violation, no grade points, hours included in GPA calculation</td>
</tr>
<tr>
<td>U*</td>
<td>Aggie Honor Code violation, no grade points, hours included in GPA calculation</td>
</tr>
</tbody>
</table>

There are two failing grades, U and F, indicating work of unsatisfactory quality.

Repetition of a Course to Improve Grade

Any undergraduate student who wishes to repeat a course must do so before he or she completes a more advanced course in the same subject. What constitutes a more advanced course will be determined by the head of the department offering the course.

Credit for a course failed may be obtained only by registering for and repeating the course. The original grade will remain on the student’s permanent record, and both grades will be used in computing the GPA. An F or U previously earned is not removed once the course is passed. Credit for each repeated course may only be used once toward degree requirements.

A student repeating a course completed at Texas A&M in which a grade of B or better has been earned will not receive grade points for the repeated course, unless the catalog states the course may be repeated for credit.

I and X Grades

A temporary grade of I (incomplete) at the end of a semester or summer term indicates that the student has completed the course with the exception of a major quiz, final examination or other work. The instructor shall give this grade only when the deficiency is due to an authorized absence or other cause beyond the control of the student. When an instructor reports an incomplete grade to the Office of the Registrar, he or she will fill out an “Incomplete Grade Report,” which is filed with the head of the department in which the course is taught. Copies are sent to the student and to the student’s academic dean. This report includes:

1. a statement of the instructor’s reason for awarding the incomplete grade and
2. a statement concerning the remaining work to be completed.

The remaining work must be completed before the last day of scheduled classes of the next fall or spring semester in which the student enrolls in the University unless the student’s academic dean, with the consent of the instructor (in the absence of the instructor, the department head), grants an extension of time for good reason. If the incomplete work is not completed within this time or if the student registers for the same course again, the I will be changed to an F by the Office of the Registrar.

The X notation is assigned to a course by the Office of the Registrar at the end of a semester or summer term only when a grade is not submitted by the instructor. The Office of the Registrar will notify the dean of the college in which the course is taught that an X notation has been made. The dean of the college offering the course will request, through the department head, that the instructor submit a Grade Change Request online in Howdy, removing the X notation and assigning a grade. The instructor will have 30 days from the beginning of the succeeding semester or summer term to report a change of grade to the Office of the Registrar. If a Grade Change Request is not received during this time period, the Office of the Registrar will automatically remove the X notation and assign a grade of F.

Q-Drop and Add and Drop

1. A student may enroll in a class during the first five class days of a fall or spring semester or during the first four class days of a summer term. A student requesting to add a course after these deadlines must have the approval of the student’s dean or designee and department.

2. A student may drop a course with no record during the first 12 class days of a fall or spring semester and during the first four class days of a summer term. Following this period, if approved by the dean of the college or his or her designee, a student may drop a course without penalty through the 60th class day of a fall or spring semester, the 15th class day of a summer term or the 35th class day of a 10-week summer semester. The symbol Q shall be given to indicate a drop without penalty.

Under section 51.907 of the Texas Education Code, “an institution of higher education may not permit a student to drop more than six courses, including any course a transfer student has dropped at another institution of higher education.” Any course that a student drops is counted toward the six-course limit if “(1)” the student was able to drop the course without receiving a grade or incurring
an academic penalty; (2) the student's transcript indicates or will indicate that the student was enrolled in the course; and (3) the student is not dropping the course in order to withdraw from the institution.” Some exemptions for good cause could allow a student to drop a course without having it counted toward this limit, but it is the responsibility of the student to establish that good cause. Undergraduate students at Texas A&M will normally be permitted four Q-drops during their undergraduate studies. However, in order to comply with this statute a student who has dropped courses at other Texas public institutions may not be permitted four Q-drops if the student's total number of dropped courses would exceed the State limit of six.

3. Any course taught on a shortened format or between regularly scheduled terms will have add/drop, Q-drop and withdrawal dates proportionally the same as if the course were offered in a regular term. These dates will be determined by the Office of the Registrar.

4. After the Q-drop period has elapsed, a course may be dropped and a grade of W recorded if the student's dean determines that unusual circumstances exist to warrant a late drop.

Satisfactory/Unsatisfactory

Undergraduate students may be permitted to take courses in their degree programs at Texas A&M on a satisfactory/unsatisfactory (S/U) basis consistent with the requirements of the student's college. The hours for which a student receives a grade of satisfactory shall not be included in the computation of the student's semester or cumulative GPA; a grade of unsatisfactory shall be included in the computation of the student's grade points per credit hour as an F. A grade of satisfactory (S) will be given only for grades of C and above; a grade of unsatisfactory (U) will be given for grades D and F. The hours earned on a satisfactory/unsatisfactory basis shall not be included in the designation of distinguished student or dean's honor roll.

Students on probationary standing may be required to take electives on an S/U basis as determined by published college policies.

Students must register for courses on an S/U basis during the official registration periods and shall not be permitted to change the basis on which their grades will be recorded on their official transcripts, except for unusual circumstances and with the approval of the student's academic dean.

Students registered for KINE 198 or KINE 199 who wish to change the grade type from a graded course to S/U or from S/U to a graded course, may do so in Howdy. All requests for KINE 198 and KINE 199 changes must be completed on or before the Q-drop deadline for the fall, spring or summer semester.

Grade Point Average (GPA)

Only the grade earned in coursework for which the student was registered in this institution shall be used in determining his or her grade point average. Students anticipating graduating with honors should refer to that section of this catalog for information concerning the computation of grade point averages for that purpose.

A student's grade point average for any period shall be computed by dividing the total number of semester hours for which he or she received grades into the total number of grade points earned in that period. Semester credit hours to which grades of F or U are assigned shall be included; those involving grades of W, Q, S, X, I, and NG shall be excluded.

Classification

Classification for academic purposes shall be based solely on scholastic progress as shown by the official records in the Office of the Registrar. Sophomore, junior and senior classification will be granted students who have passed 30, 60 and 90 semester hours, respectively.

Grade Reports

Mid-semester Report

Near the middle of the fall and spring semesters, a preliminary report, showing the current progress of undergraduate students who have completed less than 30 semester credit hours of coursework at Texas A&M, and of a selected group of other students that the academic deans/departments are monitoring, will be made available. Preliminary grades are not recorded on the student's permanent record. Grades are available in Howdy.

Final Grade Report

End of semester final grades are available in Howdy. No student grade may be posted in a manner that is personally identifiable unless the student has given written consent in advance.

Parent/Guardian Access to Grades

A parent or guardian may access midterm and final grades in Howdy after the student sets the parent access password. The Office of the Registrar cannot access the passwords created by students for parental access.

Semester Credit Hour

A lecture course which meets one hour per week for 15 weeks is worth 1 semester credit hour. Thus, a course worth 3 semester credit hours, meets three hours per week. Credit hours for laboratory courses are determined to be some fraction of the number of hours spent in class.

For further information, visit Texas A&M University Rule — Definition of a Credit Hour — 11.03.99.M1 (http://rules.tamu.edu/PDFs/11.03.99.M1.pdf), which complies with The Texas Higher Education Coordinating Board definition of minimum course lengths as part of the Texas Administrative Code, “Minimum Length of Courses and Limitation on the Amount of Credit that a Student May Earn in a Given Time Period”. For more information, please see the Texas Administrative Code online (http://texreg.sos.state.tx.us/public/readtac$ext.TacPage/?sl=T&app=9&p_dir=N&p_rloc=162966&p_tloc=&p_ploc=1&pg=19&pt=1&ch=4&rl=5).

Transcripts

Students applying for admission to Texas A&M are required to submit transcripts of previous academic work and in some cases, results of standardized tests. The submission of altered documents or the failure to furnish complete and accurate information on admission forms will be grounds for disciplinary action.

Individuals who have attended the University may obtain an official transcript of their completed work, provided they have no financial obligations to the University. A fee, which, according to state law must be paid in advance, will be charged for each copy. During grading and degree posting, official transcripts may be produced for enrolled students only if all courses for that semester or term are shown as in progress (IP) or have all final grades posted. Students and former students may submit a Transcript Request Order form in person, by mail, by fax or by completing the transcript request form in the Howdy portal. Transcript requests will not be accepted over the phone. A faxed request must be paid using a credit card from a United States bank. A transcript request ordered
through the Howdy portal must be paid either by electronic check (ECH) or by credit card from a United States bank. Requests made in person or by mail may only be paid with check, money order or a credit card.

Housing

Off-Campus Student Services
http://ocss.tamu.edu

AggieSearch provides students access to apartment and property listings, as well as roommate search options.

The Off Campus Survival Manual (OCSM) introduces students to the community and provides information regarding leases, transportation, security deposits, the BCS community, and more.

On-Campus Housing and White Creek Apartments
http://reslife.tamu.edu

Admission to the University is required prior to apply for campus housing.

Undergraduate students can apply for campus housing online. Applications should be completed as soon as possible following admission since the date of application for housing is important in the housing assignment process. An application fee is required at the time of application.

On-campus housing is assigned on a first-come, first-served basis. With the exception of the Corps of Cadets, students are not required to live on campus at Texas A&M.

University Apartments (The Gardens)
http://reslife.tamu.edu/apartments

Available for graduate students, married students, students with dependent children, international students, U.S. military veteran students, students who are at least 21 years old, or undergraduate students who have completed at least 30 credit hours.

Fully furnished one- and two-bedroom units are available. Rent for The Gardens can be monthly or by semester and includes furniture, parking, cable TV service and high-speed Internet. Students pay electricity. All leases are either 9 1/2- or 12-month leases.

Application forms, rental rates and additional information may be obtained online.

Orientation

New Student Conferences
http://newaggie.tamu.edu

- Held each year for undergraduate students entering Texas A&M University. New students are required to register for and attend a conference in order to accept their offer of admission and register for classes.
- During the two day conference, new students learn about valuable University services and meet with academic advisors for curriculum advisement and selection of first semester courses.

Additional services and programs from the Office of New Student and Family Programs (http://studentlife.tamu.edu/nsfp/):

- Howdy Week: Aggieland’s Week of Welcome (https://howdyweek.tamu.edu/) - held the week before Fall classes begin
- Aggie Family Member (http://familyprograms.tamu.edu/) - support and outreach including a family communication portal open to all Aggie families
- Family Weekend (http://familyweekend.tamu.edu/) - held each Spring to honor and celebrate family members as they support their A&M student
- Online Orientation (https://newaggie.tamu.edu/online/) - series of educational modules incoming students complete prior to their New Student Conference
- Supervision and advisement of Aggie Orientation Leader Program (https://newaggie.tamu.edu/studentleadership/ol/) and Aggie Family Ambassadors (https://familyprograms.tamu.edu/aggie-family-ambassadors/)
- Publications for incoming students and family members

Aggie Honor Code

Integrity is a fundamental core value of Texas A&M University. Academic integrity requires a commitment by all faculty, students, and administrators to:

- Remain constantly focused on the quality of the academic programs;
- Achieve and maintain academic excellence in all courses and programs to assure the value of Texas A&M University degrees;
- Demand high academic standards from all members of the Aggie community.

All Texas A&M University students, graduate and undergraduate, part-time or full-time, in residence or in distance education, are expected to follow the guiding rule of the Aggie Honor Code:

An Aggie does not lie, cheat, or steal or tolerate those who do.

Upon accepting admission to Texas A&M University or one of its branch campuses, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. A student will be required to state his/her commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M community from the requirements or the processes of the Honor System.

The Honor System Office is charged with promotion of the honor code and administration of academic misconduct cases. The Honor Council, comprised of students and faculty from colleges and offices across the University, will investigate all such infractions of the honor code and recommend appropriate sanctions. The website, http://aggiehonor.tamu.edu, defines the types of infractions and the possible consequences. Students are urged to review this information.

In addition to adherence to the Honor Code, a student (graduate students in particular) who is completing a thesis, record of study, dissertation, and publication may fall under the additional federal requirements promulgated by the Office of Research Integrity (Scientific Misconduct Regulations — 42 CFR part 50), as well as Texas A&M System Regulations and Texas A&M University Rules (Texas A&M System Regulations — Ethics in Research, Scholarship and Creative Work —
Leadership (ExCEL) is a student organization designed to help new Texas A&M students, graduate and undergraduate, part-time or full-time, in residence or in distance education, are expected to follow the guiding rule of the Aggie Honor Code: “An Aggie does not lie, cheat, or steal or tolerate those who do.”

Upon accepting admission to Texas A&M University, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Aggie Honor System Office (see http://aggiehonor.tamu.edu). Students may be required to state their commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M community from the requirements or the processes of the Aggie Honor System Office.

Extended Orientation

ExCEL Program

http://excel.tamu.edu

Texas A&M University’s Excellence uniting Culture, Education, and Leadership (ExCEL) is a student organization designed to help new students find academic, social, and personal balance at Texas A&M by fostering a community where they can culturally identify and connect to campus. Since 1984, ExCEL has assisted new Aggies in making a smooth transition to college by orienting them to the program through a conference, cultivating relationships between peers and mentors, providing a sense of belonging, offering academic and personal support, and serving as a resource for transitioning into Aggie life.

ExCEL launches with the ExCEL Conference the Friday before fall classes. During the conference, students become familiar with the year-long program as they are assigned upper-class peer mentors and a peer group. The conference consists of motivational speakers, dialogue within peer groups, developmental series focused on personal development, and meet and greet mentor activities. Following the conference, academic, social, and cultural and community activities begin through the close of the spring semester. Activities include programs relevant to the audience, mentor/mentee engagement activities, community service, and socials.

While ExCEL is student-run, you may also obtain information by contacting the Department of Multicultural Services at (979) 862-2000 or in Suite 2200 of the Memorial Student Center.

Fish Camp

http://fishcamp.tamu.edu

Fish Camp is a student-run, extended orientation program intended to provide incoming freshman students the opportunity to establish friendships, meet student leaders, become familiar with Aggie traditions, and learn about Texas A&M campus life. Peer counselors, as well as faculty and staff, speak on topics such as study habits, personal goals, student involvement, and campus resources. Held during a three-week period preceding the fall semester, each four-day, three-night session is designed to aid students in the transition from high school to college and, particularly, to Texas A&M.

In addition to providing educational programs, group activities, and small group discussions, Fish Camp allows students to get to know each other through recreation, intramural sports, and evening theme mixers. Additionally, Fish Camp is not just a four-day experience before classes begin; activities and camp hangouts continue into the Fall semester. For more information on Fish Camp and how to register for a session, please visit our website.

Howdy Camp

http://atc.tamu.edu

Occurring every January, Howdy Camp is a three-day, two-night extended orientation program hosted by Aggie Transition Camps for all students entering Texas A&M University in the spring semester.

Howdy Camp is the spring semester’s equivalent to T-Camp and Fish Camp, and offers a great way for incoming students to find community before classes begin. At Howdy Camp, new Aggies are introduced to the many traditions, indescribable spirit, and unique customs of Aggieland. Additionally, Howdy Camp doesn’t end when the bus leaves camp! Counselors continue to be available and serve as resources during the semester as students transition into Texas A&M.

For more information on Howdy Camp and how to register, please visit our website listed above.

T-Camp

http://atc.tamu.edu

Held in August each year, T-Camp is a three-day, two-night extended orientation program for transfer and other non-traditional students entering Texas A&M in the summer and fall semesters. By the time new students leave camp, they will have gained knowledge of Texas A&M campus resources, learned about Aggie Traditions, and made many new friends.

Additionally, T-Camp doesn’t end when the bus leaves camp! Counselors will continue to be available and serve as resources as incoming students complete their transition into Texas A&M. Counselors will be at the T-Camp Backyard Bash during Howdy Week, will show new students around the MSC Open House, and will plan frequent camp hangouts. Counselors can also coordinate tours around campus so that new students are not lost on their first day! T-Camp is hosted by Aggie Transition Camps, a sponsored student organization at Texas A&M University.
For more information on T-Camp and how to register for a session, please visit the ATC website listed above.

Venture Camp: Backpacking

https://maroonlink.tamu.edu/organization/aggieventurecamp

Venture Camp: Backpacking is the newest extended orientation program to be offered out of the Departments of Student Activities and Recreational Sports. Venture Camp: Backpacking is a 9-day program led by trip leaders from Outdoor Adventures who will guide incoming Aggies through the beautiful Gila Wilderness in New Mexico. While exploring this beautiful terrain, students will learn about the same Aggie traditions and campus resources as the other extended orientation camps, but in a totally unique setting! Similarly to Venture Camp: Base Camp, participants on this Backpacking trip will participate in peer-led large and small group discussions about college and life at Texas A&M, and the most important asset will be a can-do attitude (beginners are welcome to attend).

Venture Camp: Base Camp

http://venturecamp.tamu.edu

Venture Camp: Base Camp, the inaugural program under the Venture Camp umbrella, is an outdoor, six-day, five-night extended orientation experience that occurs in July and takes place both on the Texas A&M main campus and also in the Texas Hill Country. A collaborative program hosted by the Departments of Student Activities and Recreational Sports, Venture Camp: Base Camp involves numerous outdoor adventures including hiking, rock climbing, camping, and paddling a river. Staff and students from Outdoor Adventures guide the trip activities during the day, and in the evening campers gather back at the campsite to participate in peer-led large and small group discussions about college and life at Texas A&M. No prior outdoor experience is required, but a willingness to be an active participant and a team player is very important! A much smaller program than the other summer extended orientation programs, Venture Camp: Base Camp offers a more intimate extended orientation experience while also providing information important to students transitioning into college life.

Venture Camp: Veterans

https://maroonlink.tamu.edu/organization/aggieventurecamp

Venture Camp: Veterans is an extended orientation program designed specifically for incoming student veterans which will take place over the course of the students’ first semester. A collaborative effort between the Departments of Student Activities, Recreational Sports, and the Veterans Resource & Support Center, Venture Camp: Veterans is designed to offer a combination of outdoor experiences as well as peer-led, on-campus activities designed to create greater sense of competence for incoming students learning to navigate the Texas A&M campus and community. Interested individuals can learn more by contacting the Veterans Resource & Support Center (http://aggieveterans.tamu.edu/).

Office for Student Success

The Office for Student Success (https://studentsuccess.tamu.edu/) is committed to the retention, success, and timely graduation of all students at Texas A&M University through first-year, first-generation, and undergraduate initiatives that address academic and financial obstacles. As an extension of the Office of the Provost, the Office for Student Success offers assistance if you need help but don’t know where to start. Our office provides:

- **Hullabaloo U**: This FREE first-semester experience course (zero credit hours) is designed to help freshmen transition to college and make Aggieland feel like home. Each 25-student section meets regularly for 50 minutes with their faculty/staff instructor and student peer mentor to discuss topics such as adjusting to college life, taking advantage of campus resources, and contributing to our diverse and inclusive environment as a member of the Aggie community. Some experiences may extend for a second semester. Read more: tx.ag/ OSSFYE (https://studentsuccess.tamu.edu/First-Year-Experience/Hullabaloo-U/)
- **The Help Desk**: Online and in-person, the Help Desk network of advisors works with students, faculty, and staff to overcome barriers between students and timely graduation. Read more: tx.ag/ OSSHelpDesk (https://studentsuccess.tamu.edu/Help-Desk/)
- **The First-Gen Center**: First-generation college students are invited to visit the First-Gen Center to utilize resources, receive support, and attend first-gen events throughout their undergraduate career. Read more: tx.ag/ OSSFirstGen (https://studentsuccess.tamu.edu/Gen1A-M-PITO-SSI-Simple-Subpage/)
- **The Navigate Student app**: Make every semester count with the Navigate Student app. Designed to get you from NSC to graduation, students can see their class schedule, explore campus resources, schedule advising appointments, keep up with deadlines, receive pre-registration hold alerts, and much more. Available in the App Store and Google Play. Read More: tx.ag/ OSSNavigate (https://studentsuccess.tamu.edu/Navigate/For-Students/)

The Office for Student Success is located in Hotard Hall – across the street from Northside Garage. Visit studentsuccess.tamu.edu (https://studentsuccess.tamu.edu) for more information about our office, mission, and initiatives and follow us on Facebook, Twitter, Instagram, and YouTube for student success news, stories, and events on campus.

Services for Students

Academic Advising (p. 86)
Academic Success Center (p. 86)
The Association of Former Students (p. 86)
Career Center (p. 86)
Counseling and Psychological Services (p. 86)
Disability Resources (p. 87)
Gay, Lesbian, Bisexual, Transgender (GLBT) Resource Center (p. 87)
George Bush Presidential Library and Museum (p. 87)
Health Promotion (p. 88)
International Student Services (p. 88)
Math Learning Center
Memorial Student Center (p. 88)
Department of Multicultural Services (p. 88)
Ombuds Services (p. 89)
Professional School Advising (p. 89)
Recreational Sports (p. 89)
Department of Residence Life (p. 89)
Student Activities (p. 89)
Student Assistance Services (p. 90)
Student Conduct Office (p. 90)
Student Health Services (p. 90)
Student Legal Services (p. 90)
Student Life (p. 90)
Student Media (p. 90)
Technology Resources (p. 91)
Transportation Services (p. 91)
University Center and Special Events (UCEN) (p. 91)
University Libraries (p. 91)
University Police (p. 91)
University Writing Center (p. 91)
Veteran Resource and Support Center (VRSC) (p. 92)
Veteran Services Office (Scholarships & Financial Aid) (p. 92)
Women’s Resource Center (WRC) (p. 92)

Academic Advising

Academic advising is an interactive partnership between a student and an academic advisor. Through teaching and learning experiences, the student sets goals, acquires information and services to make decisions consistent with interests, goals, abilities and degree requirements.

Academic advising at Texas A&M University is an important component of student learning and degree completion, contributing to the academic success of all students through:

- Supporting student achievement of the University Learning Outcomes and commitment to lifelong learning
- Being responsible to and respectful of the individual student
- Encouraging commitment to lifelong learning by directing students toward opportunities to interpret, reflect upon, and apply their classroom experiences in ways relevant to their careers and their lives
- Interpreting and conveying Texas A&M University’s mission to students
- Supporting the educational policies, procedures and values of the department, college and university; likewise, academic advising relies on the support and resources of the university, college and department
- Involving other university programs, services and individuals, when appropriate in the advising process
- Being responsible for professional academic advising, training, development and practices to ensure knowledge and skills stay relevant.

Academic Success Center

The Academic Success Center (http://asc.tamu.edu) helps all Aggies achieve their academic goals and fulfill their academic potential. We provide exceptional quality academic support services and resources in a welcoming environment, including:

- Academic coaching (http://asc.tamu.edu/Academic-Coaching/), personalized to help you find your success
- Courses and workshops (http://asc.tamu.edu/Courses-Presentations/Courses-Workshops/) on study strategies, time management, motivation, and related topics
- Supplemental Instruction (http://asc.tamu.edu/Supplemental-Instruction/) (SI)
- TutorHubs (http://asc.tamu.edu/Tutoring-TutorHubs/) across campus, including the Commons, Evans Library, Zachry Education Complex, and some residence halls
- Texas Success Initiative (http://asc.tamu.edu/TX-Success-Initiative/) (TSI)
- Transfer Student Programs (http://asc.tamu.edu/Transfer-Students/) (TSP), linking you to peer mentors who support your transition to TAMU
- StudyHub (http://studyhub.tamu.edu) to help you find academic help on campus

Also check out the Academic Success Center study and learning handouts (http://asc.tamu.edu/getdoc/3383509c-4419-48ba-9a90-2d04de0f816c/Study-Learning-Handouts(1).aspx) and YouTube (https://www.youtube.com/channel/UCF55VU8Tb6Gqepw-SN4er/) channel and keep up with our events by following us on Instagram or Facebook. Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

The Association of Former Students

www.AggieNetwork.com

- Aggie Ring
- Informational and Interactive Exhibits
- Alumni Services, Giving and Events
- Traveling Aggies

Career Center

The Texas A&M University Career Center provides comprehensive services and resources to undergraduate, graduate and former students to support you in exploring career opportunities, preparing for the job search, gaining relevant experience, seeking admission to graduate and professional school, and securing professional employment upon graduation. Our goal is to assist you every step of the way, from admission through graduation, and after, as a Former Student. We offer a variety of programs, services and resources:

- Career Exploration, Assessment, and Planning
- Introduction to Career Readiness Goals
- Job Search, Resume Writing, and Interview Preparation Tools
- Professional Networking Resources and Events
- Campus Recruiting for Aggies seeking Full-Time Positions, Internships, Externships, and Cooperative Education
- Assistance with Professional and Graduate School Applications and Interviews
- Presentations to Classes and Student Organizations, Workshops and Panel Discussions, Career Fairs, and Webinars
- Employer, Professional School and Graduate School Contacts
- Individual Appointments, Walk-in Advising, Open Office Hours, Mock Interviews

One of the largest programs of its kind in the nation, the Career Center has been recognized nationally and regionally for our many Best Practices. The Career Center can be found online at careercenter.tamu.edu (http://careercenter.tamu.edu/) and is located in the Koldus Building, Suite 209. You can also find us on Facebook, follow us on Twitter, Snapchat and Instagram, and view us on YouTube.

Counseling and Psychological Services

http://caps.tamu.edu

In support of the mission of Texas A&M and the Division of Student Affairs, Counseling & Psychological Services contributes to student
learning and development. We provide exceptional services and programming focused on student mental health. Counseling & Psychological Services exists to advance student development and academic success by providing short-term goal-oriented personalized and evidenced-based mental health care to Aggies. We, at Counseling & Psychological Services, are committed to respecting and celebrating the diverse students at Texas A&M University. We commit to enriching student development and growth through compassion, empowerment, advocacy and empathy. Below is a brief list of our services - Please go to our website for further information.

- **Confidential Services**
- **Prevention and Education**
 - Suicide Prevention Training
 - Educational outreach/programming
 - Sanvello – Wellness App paid for by Counseling & Psychological Services and accessible to all Texas A&M students
- **Short-term Counseling**
 - Assessment is the first step
 - Workshops and Group counseling
 - Individual and Couples counseling
 - AOD Assessment
 - ADHD/Learning Disability Screening
 - Psychiatric services in conjunction with counseling
 - Assistance with Community Referrals
- **Crisis Intervention**
 - Crisis intervention available anytime during business hours 8:00 a.m. - 5:00 p.m., Monday through Friday
 - HelpLine is open after-hours, 4:00 p.m. - 8:00 a.m., during the week, and 24 hours on the weekends. It is a confidential telephone hotline staffed by Aggies to provide: information, support, crisis intervention, and referrals

Disability Resources

http://disability.tamu.edu

- Makes student disability and accommodation determination decisions.
- Collaborates with faculty, staff and students to achieve access for students with disabilities.
- Facilitates accommodations including (but not limited to): exam accommodations, sign language interpreting and transcription, and classroom accommodations.
- Consults with all campus entities on providing access for students with disabilities.

Gay, Lesbian, Bisexual, and Transgender (GLBT) Resource Center

http://glbt.tamu.edu

- Programs include:
 - **Spirit Day:** Spirit Day is a means of speaking out against LGBTQ bullying and standing with LGBTQ youth, who disproportionately face bullying and harassment because of their identities. The Center provides Spirit Day shirts and encourages the Aggie Community to stand up for LGBTQ youth.
 - **Transgender Day of Remembrance:** On this day, the GLBT Resource Center encourages Aggies to honor the memory of those whose lives were lost in acts of anti-transgender violence.
 - **Mentorship Program:** The purpose of the GLBT Resource Center’s Mentorship Program is to offer support and guidance to lesbian, gay, bisexual, transgender, queer or questioning students at Texas A&M. Students are matched with a mentor based on academic and professional interests as well as personal interests and will meet with their mentor approximately once a month.
 - **The Coming Out Monologues:** The Coming Out Monologues is an annual story-telling performance made up of current and former students, faculty, staff, and community members who identify as LGBTQ+ or allies of the community.
 - **LGBT Awareness Week:** Designed to allow students to share their stories, experiences, and to foster a respectful and understanding community, GLBT Awareness Week helps Aggies better understand the diversity of their community and the global society of which they are a part.
 - **Lavender Graduation Celebration:** The Lavender Graduation Celebration serves as a cultural celebration that recognizes and affirms LGBTQ+ students and their allies while acknowledging their achievements and contributions to the university.
 - Presentation topics include, but are not limited to:
 - LGBTQ+ 101
 - Transgender 101
 - Organizational Inclusion
 - Resources to Create Affirming Healthcare Services for LGBTQ+ Patients
 - Custom Requests
 - Resource Library (Books, Periodicals, Brochures, and Films)
 - Advocacy
 - Visibility

George H.W. Bush Presidential Library and Museum

https://www.bush41.org

The George H.W. Bush Presidential Library and Museum at Texas A&M University is dedicated to preserving and making available the records and artifacts of George H.W. Bush, 41st President of the United States. We promote civic literacy and increased historical understanding of our national experience, and foster a community of public service and volunteerism. We accomplish this mission by offering:

- Rich Educational and Public Programs
- Original Museum Exhibits
- Access to our Archival Holdings
- Research Opportunities
- Special Events
- Unique Volunteer and Internship Positions
- Foundation Memberships

The George H.W. Bush Presidential Library and Museum can be found online at https://www.bush41.org and is located at 1000 George Bush Drive West, College Station, Texas 77845. For additional information on the resources the George Bush Presidential Library and Museum have to offer please call 979-691-4000 for all
Health Promotion
http://studentlife.tamu.edu/hp

- Provides educational health information and consultation
 • Alcohol and Other Drugs, Nutrition, Interpersonal Violence Prevention, Reproductive Health, Sexual Health, Stress Management, etc.
- Presentations available upon request
- Offers GreenDot Bystander Intervention Training
- Offers Stand UP Training on trauma informed care
- Offers the Stand UP Workshop
- Peer health educator training and outreach
- Resource tables and interactive programming available for student events

To request a presentation on any of these topics, visit our website at https://studentlife.tamu.edu/ (https://studentlife.tamu.edu/clear/) or email Health Promotion and healthpromotion@tamu.edu

For presentations on Green Dot Bystander Intervention Program visit http://greendot.tamu.edu (http://greendot.tamu.edu/)

For presentations on Stand UP visit https://studentlife.tamu.edu/standup/

For more information on Texas A&M's Step In Stand UP Campaign visit http://stepinstandup.tamu.edu (http://stepinstandup.tamu.edu/)

International Student Services
http://iss.tamu.edu

International Student Services provides the following support services to international students (defined as students who are not U.S. citizens or lawful permanent residents):

- Pre-arrival information
- Certificate of Eligibility (Forms I-20 and DS-2019)
- On-line Orientation and International Student Conference
- Represent the University with the Department of Homeland Security, Department of State and the Student Exchange Visitor Information System (SEVIS)
- Assist students with federal immigration regulation compliance
- Advising
- Liaison for students, university and community
- International student employment information
- Administration of some international student scholarships and loans
- Coordinate with the Texas A&M University System Student Health Insurance Plan provider and students
- Community involvement activities
- Acts as a liaison between the University, sponsors and sponsored students

Math Learning Center
The Math Learning Center (http://mlc.tamu.edu (http://mlc.tamu.edu/)) fosters the academic success of all Aggies by supporting the high-enrollment courses with significant mathematics, statistics, and quantitative reasoning content. Our high quality services include:

- Tutoring Help Sessions in multiple locations on campus.
- Active-learning Hands On, Grades Up sessions.
- Reboot Workshops on a variety of topics taught throughout the semester.
- Weekly reviews (Week-In-Review sessions) for the large enrollment courses.

Undergraduate Studies' units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Memorial Student Center (MSC)
http://msc.tamu.edu/

- The Memorial Student Center provides the local and campus community with academic, entertainment, arts, political and cultural awareness programs through experiential learning opportunities. The MSC’s student-driven committees, supported by full-time staff, foster leadership development and excellence through campus programming designed to enhance and enrich the Aggie experience. Volunteer in nature, our programming and service opportunities provide next level professional, personal and practical experiences in budgeting, communication, fund development, team development, program planning and logistics, meeting facilitation, public speaking, and technical skills such as running sound for a concert or installing an art exhibit.
- Our programs represent a wide variety of interests including the MSC OPAS performing arts series, student-curated art exhibitions in the MSC Reynolds Gallery, weekly concerts, service events and free film screenings. Dedicated to preparing our students to engage in a global society, our programs attract world-renowned speakers to discuss current events, national affairs, and other relevant topics of today.
- Each semester, the MSC hosts several Signature Events focused on creating a transformational learning experience for all in attendance to the annual Reverend Dr. Martin Luther King, Jr. Breakfast and MSC Open House, MSC Student Conference On National Affairs, MSC Student Conference On Latinx Affairs, MSC Spencer Leadership Conference and Kyle Field Day.
- The MSC Box Office provides students and organizations with convenient and affordable ticketing, cash handling and sales services. The MSC Box Office makes selling easier by eliminating the worry and risk of cash handling by providing online sales and extensive reporting capabilities, taking the hassle out of accounting, tracking sales and cash flow.

Department of Multicultural Services
http://dms.tamu.edu/

The Department of Multicultural Services (DMS) contributes to steady progress toward institutional diversity goals of greater inclusion and academic excellence by positively impacting the campus climate. The department has a mission to provide multiple educational and developmental services for underrepresented and historically marginalized racial and ethnic populations and diversity education programs that foster inclusive learning environments for all students. DMS supports, advocates for and challenges students as they transition and persist at Texas A&M, as well as provides opportunities for students to examine and communicate ways to contribute to an inclusive
and respectful campus community, develop cultural knowledge and competence and build cross-cultural communication skills.

DMS is home to a number of student organizations and programs that provide academic, social, cultural, and personal development, as well as intentional interaction and engagement. DMS assists students with their transition to and persistence through Texas A&M University and educates students about individual differences, cultural competence, and how to contribute to a respectful campus. The department strives to maintain a welcoming and inclusive environment for all students.

Ombuds Services

The Office of the Associate Provost for Undergraduate Studies provides Undergraduate Ombuds services to assist students, faculty, staff, and administrators with resolving academic conflicts on an informal and confidential basis. The Ombuds is equally open and accessible to all parties—students, faculty, staff, and administrators—in disputes that may arise when there are differing expectations or conflicting policies regarding academic issues. For more information, see http://us.tamu.edu/Students/Undergraduate-Ombuds. (http://us.tamu.edu/Students/Undergraduate-Ombuds/)

What does the Ombuds do?

- Assists members of the university community in solving problems and conflicts
- Investigates claims of unfair treatment or erroneous procedure
- Serves as a neutral listener, resource, advisor, intermediary, and mediator
- Considers all sides of a question impartially and objectively
- Explains established policies and procedures of Texas A&M University
- Develops options for addressing students’ concerns and helps craft a solution
- Facilitates communication between students and others involved in an issue

When would an undergraduate student need an Ombuds?

- There is an issue or a concern that cannot be resolved by the parties involved, or that one or all parties would prefer not to address through formal channels.
- There is a matter that is preferred for handling as “off the record,” or a need for an informal consultation.
- There is a problem and one or more parties are unsure of whom to speak with or what options are available to address it.
- One or more parties feel that a university policy, procedure, or regulation has been applied unfairly, or is itself unfair or ambiguous.
- There is a problem that requires an outside party to negotiate a solution or facilitate your communication with others.

What kinds of concerns could be brought to the Ombuds?

The Ombuds can assist with any concern, but some of the issues brought to the office typically involve the following:

- Academics (grading disputes, testing, procedures, instructor/student misunderstandings)
- Conflicts between undergraduate advisors and their students
- Disagreements/misunderstandings with university policy
- Questions about discrimination
- Cultural conflicts
- Reporting unethical behavior

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Professional School Advising

http://opsa.tamu.edu

- Preprofessional advising for Medical, Veterinary, Dental, Physical Therapy, Physician Assistant, Occupational Therapy and Nursing careers.
- PreLaw Advising Services
- Preprofessional Student Organizations

Recreational Sports

http://recsports.tamu.edu

- All currently enrolled Texas A&M students (with some exceptions) are automatically Rec members. All you need is your student ID to utilize the Student Recreation Center and other Rec Sports facilities. Guest passes for visitors are available for purchase. Persons with disabilities are invited to contact Member Services to inquire about accommodations.
- Drop-in recreation at the Student Recreation Center encompasses the use of recreational facilities such as a walking/jogging track, handball/racquetball courts, and indoor courts for soccer, basketball, volleyball, and badminton. The Rec Center also features a bouldering wall, an indoor rock climbing facility, outdoor basketball and sand volleyball courts, extensive strength and conditioning areas, dance/activity rooms, and a world-class natatorium featuring indoor and outdoor pools and a diving well. Facilities may be used on a drop-in basis except when reserved for classes or university functions.
- An additional recreational facility, ‘The Polo Road Rec Center’, located on Polo Road near University Drive, is slated to open in Spring 2021 and will offer about 28,000 square feet with strength and conditioning space, a fitness/multipurpose room, lockers, and changing areas.
- Rec Sports also offers aquatics classes, group exercise and specialty classes, boot camps, personal and small group training, intramural sports, the Texas A&M Sport Clubs program, Outdoor Adventures, and the Walk of Champions brick campaign.

Department of Residence Life

http://reslife.tamu.edu/

- Responsible for the operation of on-campus residence halls and University Apartments (White Creek and Gardens Apartments). Summer occupancy of on-campus residence halls is open to undergraduate and graduate students.
- University Apartment units (http://reslife.tamu.edu/apartments (http://reslife.tamu.edu/apartments)) are available for graduate students, single-parent families, veterans, international students, married students or single undergraduate students without children who are sophomores, juniors, seniors or non-traditional freshmen (The Gardens).

Student Activities

http://studentactivities.tamu.edu/ (http://aggieserve.tamu.edu/)
The Department of Student Activities fosters and supports leadership, learning, and involvement opportunities that enhance the growth and development of students and recognized student organizations. At Texas A&M, we care about helping Aggies develop in ways, both in and out of the classroom, that will prepare them for life beyond Aggieland. To do so, Student Activities offers opportunities to lead, serve, participate in campus traditions, represent student voice, and make an impact at Texas A&M. We also provide a way for Aggies to connect and volunteer with local community agencies through our AggieServe database (http://aggieserve.tamu.edu/). The perks of getting involved on campus range from reaching your leadership potential to networking with administrators and potential employers to forming lasting friendships.

Student Assistance Services

http://sas.tamu.edu

- Referrals/Resource Connections such as:
 - Personal
 - Academic
 - Community
 - Liaison with foster care alumni
 - Student absence notification
 - Assistance in coordinating family needs in the event of an emergency
 - Transition issues
- General consultation:
 - University rules
 - Process
 - Faculty concerns

Student Conduct Office

http://studentlife.tamu.edu/sco

- Receive and process reports of alleged student rule violations
- Presentations available upon request

Student Health Services

(Accredited by Accreditation Association for Ambulatory Health Care)

http://shs.tamu.edu

Patient Services/General Questions: (979) 458-8310

Clinics:

- Medical Clinics
- Women’s Clinic
- Specialty Clinics

Ancillary:

- Dietitian
- Medical Laboratory
- Pharmacy
- Physical Therapy
- Preventive Medicine
- Radiology Services

Additional Services:

- Ambulance Service/EMS
- Dial-A-Nurse
- Health Insurance (https://tamu.myahpcare.com) Information
- Integrated Behavioral Health
- Appointments – Monday - Friday, 8 a.m. - 5 p.m.

Student Legal Services

http://studentlife.tamu.edu/sls

- Notary Public
- Legal advice and counseling for Texas A&M students

Student Life

http://studentlife.tamu.edu/

- The Offices of the Dean of Student Life strive to enhance your opportunities as a student to participate fully in the University experience. We do this by providing students with information, services, programs and involvement opportunities that facilitate responsible life choices and promote awareness of themselves and their community. Each of the program areas within the Offices of the Dean of Student Life has a specific mission, but one common goal: to provide education, outreach, and support to you.

- Specific services and programs offered include:
 - Health Promotion (Alcohol and other Drugs, Interpersonal Violence Prevention, and Wellness)
 - LGBTQ+Pride Center
 - New Student and Family Programs
 - Student Assistance Services
 - Student Conduct Office
 - Student Legal Services
 - Student Media (The Battalion and Aggieland yearbook)
 - Women’s Resource Center

Student Media

http://studentlife.tamu.edu/studentmedia (http://studentlife.tamu.edu/studentmedia/)

- Student Media produces national, award-winning publications; The Battalion newspaper, the Aggieland yearbook and the Maroon Life magazine. All three are written, edited and produced by students and offer excellent opportunities to gain valuable experience for journalistic and related careers.

- The Battalion, Texas A&M’s student newspaper since 1893, is typically printed weekly on Thursdays during the fall and spring and every other week during the summer sessions. Around finals and holidays, the delivery days may be changed. It is distributed to students, faculty and staff on campus and at many apartments and other high traffic areas in College Station. The Battalion is also available online and on mobile devices at thebatt.com. (http://www.thebatt.com/)

- The Aggieland, which dates back to 1895, is distributed in the fall but is a year-round project documenting school activities. It is one of the nation’s largest college yearbooks.

- Maroon Life is published five times during the school year with New Students’ Guide to Aggieland (distributed at New Student Conferences), Fall Sports Preview, Best of Aggieland (winter
distribution), Spring Sports Preview and Housing Guide (Family Weekend) editions.

Technology Resources
http://IT.tamu.edu
- Internet Access
- TAMULink Wireless Internet (http://tamulink.tamu.edu (http://tamulink.tamu.edu/))
- Texas A&M Gmail (http://google.tamu.edu)
- 24-Hour Technical Support (Help Desk Central (http://hdc.tamu.edu))
- Campus Computer Labs Ø (http://oal.tamu.edu/) pen Access Labs (http://oal.tamu.edu))
- Learning Management System - eCampus (http://ecampus.tamu.edu (http://ecampus.tamu.edu/))
- Discounted Software (http://software.tamu.edu (http://software.tamu.edu/))

Transportation Services
Transit - The university operates an on- and off-campus transit system that can be used by anyone on campus, fare-free. The off-campus transit system serves most of the major apartment complexes and housing areas in College Station, as well as the Blinn College Campus and RELLIS Campus.

All transit services are included in student registration fees and do not require a bus pass, however, passengers are required to present their Texas A&M, Blinn, or Brazos Transit District (BTD) ID when boarding at any off-campus stops. Members of the general public possessing a Brazos Transit District ID may ride both on- and off-campus bus routes. In addition, students may ride The District (http://bd.org/) buses fare-free by showing their IDs upon entering the bus. For BTD bus route information, visit http://bd.org (http://bd.org/).

For updates about transit routes, subscribe to the RSS feed at http://transport.tamu.edu/parking/faqpermit.aspx or follow @aggiespiritbus (http://twitter.com/aggiespiritbus/) on Twitter. For transit information, including maps and leave times, visit https://m.tamu.edu.

Parking - Those who choose to bring a vehicle to campus are required to purchase a permit or pay-by-the-hour to park. Download the Parkmobile app, available on the AppStore, Google Play, or Windows Store, or those without a smartphone may use the mobile web app at https://parkmobile.io in designated visitor areas (see also Optional Campus Services (http://catalog.tamu.edu/graduate/tuition-fees-financial-information/optional-campus-services/)).

Parking is at a premium on Texas A&M’s campus; MOST customers are not assigned their first choice for parking. Often the available parking may not be immediately adjacent to your building or facility. Students may register for a permit at https://transport.tamu.edu/parking/faqpermit.aspx (http://transport.tamu.edu/parking/faqpermit.aspx) or sign up for the wait lists at http://transport.tamu.edu/account (http://transport.tamu.edu/account/). To get the best parking available, register online by the July 8 priority deadline.

For updates about parking, traffic, and construction, subscribe to the RSS feeds at https://transport.tamu.edu/about/rss.aspx (http://transport.tamu.edu/about/rss.aspx) or follow @aggieparking (http://twitter.com/aggieparking/) on Twitter or @TAMUTransportation on Facebook and Instagram.

For more information about parking permits or to view the Parking Rules and Regulations, visit http://transport.tamu.edu/parkingreg (http://transport.tamu.edu/parkingreg/).

Bicycles - Bicycles are a great way to get to, from, and around campus. Bike services include the bike share program, bike lease program, borrow-a-bike, bike registration, summer bike storage, and maintenance stations.

For more information visit http://transport.tamu.edu/bicycles (http://transport.tamu.edu/bicycles/).

Alternatives - Don’t have a car? There are plenty of alternatives, including carshare, rideshare, and break/weekend shuttles to major Texas cities. For more Alternative Transportation options, visit http://transport.tamu.edu/alternative (http://transport.tamu.edu/alternative)/.

University Center and Special Events (UCEN)
http://ucenter.tamu.edu/

- University Center and Special Events features a variety of special event and meeting spaces, as well as theatrical production spaces. Our venues are ideal for student, academic, administrative, corporate, social, non-profit and arts-related events. Our spaces include: the Memorial Student Center, Rudder Theatre Complex, J. Earl Rudder Tower, Koldus Building, All Faiths Chapel, designated outdoor spaces and the University Center Guest Suites. We also provide services in any approved facility of your choosing.

- When it comes to planning events on campus, visit the University Center and Special Events office on the 2nd floor of Rudder Tower. Our staff can assist you with reservations in any of the UCEN facilities as well as help in all aspects of planning meetings, socials or conferences. The highly skilled staff arranges event set ups; provides and operates audio/visual equipment, electricity, lighting and event staging; and assists with many of the other support details that are essential to a successful event.

University Libraries
http://library.tamu.edu
- Sterling C. Evans Library (http://evans.library.tamu.edu/)
- Business Library and Collaboration Commons (BLCC) (http://wcl.library.tamu.edu)
- Medical Sciences Library (MSL) (http://msl.library.tamu.edu)
- Policy Sciences and Economics Library (PSEL) (http://psel.library.tamu.edu)
- Cushing Memorial Library and Archives (http://cushing.library.tamu.edu)

University Police
http://upd.tamu.edu
- Law Enforcement and Criminal Investigations
- Crime Prevention Programs

University Writing Center
The University Writing Center (p. 91) (http://writingcenter.tamu.edu) supports Aggies working on writing and public speaking. Our consultants
give advice and feedback on any writing or public speaking project. We offer the following resources:

- Online writing and speaking guides (http://writingcenter.tamu.edu/Students/Writing-Speaking-Guides/) – resources include print, audio, and video help for writers and public speakers. Also check for writing and speaking advice on our YouTube channel (https://www.youtube.com/user/tamuwritingcenter/).

- In-person and online consultations on writing and public speaking – Make an appointment (http://writingcenter.tamu.edu/Students/Make-an-Appointment/) for feedback on writing (anything—including papers, lab reports, memos, short stories, articles), speeches (for example, a script, presentation slides, or a video of you delivering a speech), posters, videos, and multi-modal communication. Come in person, send in work online, or meet in a web conference. You can also schedule appointments for group writing projects.

- Workshops and studios (http://writingcenter.tamu.edu/About-Us/Request-a-Presentation/) on writing and public speaking – Available for classes or organizations, workshops present information and engage participants in practice; studios combine instruction with an extended opportunity to write and seek advice from a consultant.

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Veteran Resource and Support Center (VRSC)
http://aggieveterans.tamu.edu

- Aggie Veteran Network – Connects military-affiliated students (veterans, active duty, reserve/National Guard and dependents) with hundreds of resources and contacts. http://aggieveterannetwork.tamu.edu/

- Academic and Student Life Support – Connects students with academic assistance and student life resources to meet individual requirements.

- Military Admissions Liaison – Located in the VRSC to assist student veterans with the admission process, military withdrawals and readmission paperwork.

- Vetsuccess on Campus (VSOC) – Connect with our campus VA Counselor for VA related inquiries, vocational rehabilitation support and programs. http://aggieveterans.tamu.edu/vetsuccess-on-campus/

- Peer Advising for Veteran Education (PAVE) – Connects new student veterans with current student veterans to facilitate the transition to Texas A&M University.

- Student Veteran Association – The organization for student veterans. Opportunity to meet other vets and be part of the Aggie veteran community.

- Assists eligible students in securing federal and state veterans’ education benefits and other educational funding including scholarships and financial aid.

Women’s Resource Center
http://studentlife.tamu.edu/wrc (http://studentlife.tamu.edu/wrc/)

- Programs include:
 - Elect Her: Aggie Women Win: A one day conference which encourages and trains women to run for student government and future political office.
 - First Thursday: Held on the first Thursday of the month during the fall and spring semesters, First Thursday connects students with professionals through informational panels which cover a variety of topics relevant to students.
 - International Women’s Day Conference: The aim of this evening conference is to bring awareness to the struggle women face internationally as well as to celebrate and empower women from all cultural backgrounds. The Conference is held during Women’s History Month in March.
 - Salary Negotiation Workshops: These workshops teach college students preparing to enter the job market about the gender pay gap, including its personal consequences; how to quantify the market value of their education, skills, and experience; how to conduct objective market research and determine a fair target salary; and how to create a strategic pitch and respond to salary offers.
 - Women’s History Month Calendar: A printed calendar highlighting campus events related to Women’s History Month in March.
 - Women’s Progress Award: Awards for students, staff, faculty, and administrators who encourage and promote sensitivity to and awareness of issues that relate to women. Presented during the Accountability, Climate and Equity Awards during the spring semester.

- Online Resources for Pregnant and Parenting Students
 - **Student Rights and Campus Resources:** A list of frequently asked questions regarding the rights of pregnant and parenting students and some of the on-campus resources available to students.
 - **Breastfeeding Welcomed Here:** A list of private, accessible spaces for nursing mothers to express their milk on campus. Locations can be found on the WRC website or the Aggie Map.
 - **The Little Aggie:** A resource guide for Aggie parents with information about local activities for children, information about local medical providers, and suggested questions for childcare providers.
 - **Off-Campus Resources:** A list of local, state, and national resources available to pregnant and parenting students covering a variety of issues from maternal health, to breastfeeding, to childcare.

- Presentation topics include, but are not limited to:
 - Women’s Leadership
 - Gender Equity
 - Body Image
 - Salary Negotiation

- Internships:
 - Elect Her Student Liaison
 - Pregnant and Parenting Initiatives Coordinator
• Internships designed to benefit the student and the Women’s Resource Center
• Onsite lactation suite for mothers to express their milk
• Student organization advisor: The American Association of University Women at Texas A&M University (AAUW-TAMU)
• Offers resources and referrals to survivors of sexual violence, dating and domestic violence, and stalking
• Offers resources and referrals to pregnant and parenting students

Campus Life

The Corps Experience (p. 93)
Department of Multicultural Services (p. 93)
Office of Fraternity and Sorority Life (OFSL) (p. 93)
Intercollegiate Athletics (p. 93)
Memorial Student Center (MSC) (p. 94)
Music Activities (MUSA) (p. 94)
Recreational Sports (p. 95)
Speech and Debate Team (p. 95)
Student Activities (p. 95)
Student Government (SGA) (p. 95)
Student Life (p. 95)
Student Life Studies (p. 96)
Student Media (p. 96)
University Art Galleries (p. 96)
University Center and Special Events (UCEN) (p. 96)
Vice President for Student Affairs (p. 97)

The Corps Experience

http://corps.tamu.edu

The Corps of Cadets is the largest and most visible student organization at Texas A&M. Known as the Keepers of the Spirit and the Guardians of Tradition, many of Texas A&M’s most cherished traditions grew out of the Corps, including Midnight Yell Practice, Aggie Muster and Silver Taps. Currently, over 2,300 young men and women are Corps members.

Most cadet graduates pursue a career in the public and private sector; however, the Corps of Cadets consistently commissions more officers than any institution other than the service academies.

Academic excellence is the top priority of the Corps of Cadets offering scholastic advising and cadet-led support programs as well as access to state-of-the-art academic facilities.

Cadets who pursue non-military careers continue to hone their leadership skills through a rigorous progression of academic leadership courses, applied leadership experiences within the Corps and broader Texas A&M community, and personal development of an Individual Leadership Development Plan. Additional emphasis is given to the development of career readiness competencies of critical thinking, teamwork, professionalism, oral/written communication, career management, digital technology, leadership, and global/intercultural fluency.

The Corps of Cadets offers cadet organizations (The Fightin’ Texas Aggie Band, a precision military band; the Ross Volunteers, the official honor guard for the governor of the state of Texas; the Fish Drill Team, a precision drill unit; and Parsons Mounted Cavalry, the only mounted ROTC unit in the United States), ROTC special units (Army’s Ranger Challenge Team and Rudder’s Rangers, Navy SEAL Platoon, Marine Recon Platoon and the Air Force’s Arnold Air Society) and advanced course ROTC contracts.

Department of Multicultural Services

http://dms.tamu.edu

The Department of Multicultural Services (DMS) contributes to steady progress toward institutional diversity goals of greater inclusion and academic excellence by positively impacting the campus climate.

The department has a mission to provide multiple educational and developmental services for underrepresented and historically marginalized racial and ethnic populations and diversity education programs that foster inclusive learning environments for all students.

DMS supports, advocates for and challenges students as they transition and persist at Texas A&M, as well as provides opportunities for students to examine and communicate ways to contribute to an inclusive and respectful campus community, develop cultural knowledge and competence and build cross-cultural communication skills.

DMS is home to a number of student organizations and programs that provide academic, social, cultural, and personal development, as well as intentional interaction and engagement. DMS assists students with their transition to and persistence through Texas A&M University and educates students about individual differences, cultural competence, and how to contribute to a respectful campus. The department strives to maintain a welcoming and inclusive environment for all students.

Office of Fraternity and Sorority Life (OFSL)

http://aggiegreeks.tamu.edu

• housed in the Department of Student Activities, the Office of Fraternity and Sorority Life’s mission is to build an inclusive fraternity and sorority community at Texas A&M and enhance the collegiate experience by supporting opportunities for leadership, academic success, civic engagement and the creation of fraternal bonds. Our office serves as a liaison among our collegiate chapters, parents, alumni, international organizations, and Texas A&M University to provide organizational guidance, educational programs, and resources while challenging members to live their fraternal values.

• Fraternities and Sororities are a fundamental part of Texas A&M University. We are home to 55+ internationally affiliated or local Greek-letter organizations governed by one of four councils: Collegiate Panhellenic Council (CPC), the InterFraternity Council (IFC), the Multicultural Greek Council (MGC), and the National Pan-Hellenic Council (NPHC). Our fraternities and sororities collectively constitute the largest membership-based and multi-faceted community on campus.

• Representing 10 percent of the undergraduate student population, fraternity and sorority members are committed to their academics, developing and strengthening their leadership skills, volunteering time in the community and continually forming a campus and cultural support network for current and incoming Aggies.

Intercollegiate Athletics

www.aggieathletics.com
• Texas A&M is a member of the National Collegiate Athletic Association (NCAA) and the prestigious Southeastern Conference (SEC), which also includes the University of Alabama, University of Arkansas, Auburn University, University of Florida, University of Georgia, University of Kentucky, Louisiana State University, University of Mississippi, Mississippi State University, University of Missouri, University of South Carolina, University of Tennessee and Vanderbilt University.

• Texas A&M sponsors 20 intercollegiate athletics teams. The nine men’s programs are football, basketball, baseball, golf, indoor track and field, outdoor track and field, cross country, swimming and diving, and tennis. The 11 women’s programs are basketball, cross country, golf, indoor track and field, outdoor track and field, softball, swimming and diving, tennis, volleyball, soccer and equestrian.

• Texas A&M brought home four national champion titles in 2011 as the women's basketball team, the men's and women's outdoor track and field squads and the women's western equestrian all won their respective national championships. The track and field program accomplished the double national titles for the third straight year, a historic accomplishment in NCAA history.

• Aggie athletes have earned more than 800 All-American citations and hundreds have gone on to successful professional careers in their respective sports. In addition, Texas A&M has produced a number of Olympic athletes, including a record number of Aggies who competed in the 2012 Summer Olympic Games.

• The mission of Texas A&M athletics is “Building Champions” and it at the heart of the athletic department's Mission Statement: "Texas A&M Athletics commits to Building Champions through academic achievement, athletic excellence and national recognition of our student-athletes, teams and programs. We provide our student-athletes with all the necessary tools for them to be Champions in their sport and in life. The integrity of our program takes root in the tradition and spirit of Texas A&M, bringing honor and distinction to our University.”

Memorial Student Center (MSC)
http://msc.tamu.edu

• The Memorial Student Center provides the local and campus community with academic, entertainment, arts, political and cultural awareness programs through experiential learning opportunities. The MSC’s student-driven committees, supported by full-time staff, foster leadership development and excellence through campus programming designed to enhance and enrich the Aggie experience. Volunteer in nature, our programming and service opportunities provide next level professional, personal and practical experiences in budgeting, communication, fund development, team development, program planning and logistics, meeting facilitation, public speaking, and technical skills such as running sound for a concert or installing an art exhibit.

• Our programs represent a wide variety of interests including the MSC OPAS performing arts series, student-curated art exhibitions in the MSC Reynolds Gallery, weekly concerts, service events and free film screenings. Dedicated to preparing our students to engage in a global society, our programs attract world-renowned speakers to discuss current events, national affairs, and other relevant topics of today.

• Each semester, the MSC hosts several Signature Events focused on creating a transformational learning experience for all in attendance to the annual Reverend Dr. Martin Luther King, Jr. Breakfast and MSC Open House, MSC Student Conference On National Affairs, MSC Student Conference On Latinx Affairs, MSC Spencer Leadership Conference and Kyle Field Day.

• The MSC Box Office provides students and organizations with convenient and affordable ticketing, cash handling and sales services. The MSC Box Office makes selling easier by eliminating the worry and risk of cash handling by providing online sales and extensive reporting capabilities, taking the hassle out of accounting, tracking sales and cash flow.

Music Activities (MUSA)
http://musa.tamu.edu

Band Opportunities

• Fightin’ Texas Aggie Band – The Fightin’ Texas Aggie Band is nationally known for its precision military marching formations on the football gridiron and is the largest military marching band in the nation. This 400+ member, Corps of Cadets unit is the official marching band of Texas A&M University. Corps of Cadets membership is required as well as an audition with the directors. Please refer to our website (http://musa.tamu.edu/) for more information.

• University Concert Bands – Wind Symphony, Symphonic Winds, Symphonic Band and Concert Band. These ensembles consist of outstanding wind and percussion players from all areas of the Texas A&M campus. Literature performed by the bands is chosen from the best of traditional and contemporary band works. The bands perform at least two concerts per semester and occasionally participate in off-campus concerts and tours. Students from all majors are welcome in the band, and Corps of Cadets membership is not required. An audition is required to participate in the bands. Please refer to our website (http://musa.tamu.edu/) for more information.

• University Jazz Ensembles – These two groups utilize standard 17-piece, large jazz ensemble instrumentation for 13 winds and 4 rhythm section instruments. The bands perform select literature from the best traditional and contemporary big band jazz repertoire. The ensembles perform at least two concerts each semester, including campus and community performances. An audition is required to participate in the jazz ensembles. Please refer to our website (http://musa.tamu.edu/) for more information.

• Hullabaloo Band – The Hullabaloo Band is housed in the Athletic Department and is a sponsored student organization, consisting of 100 student musicians that support Texas A&M Volleyball, and Men's and Women's Basketball. The band regularly travels to tournaments with the teams during postseason play. An audition is required to participate in the Hullabaloo Band. Please refer to our website (http://www.12thman.com/sports/2015/3/23/GEN_20140101165.aspx) for more information.

Choral Opportunities

• Century Singers – The Century Singers is a close-knit family that connects through a shared passion for music. Members also have the opportunity to participate in events throughout the year including overnight retreats and activities such as ice-skating, movie nights, and group dinners. Involvement in both social gathering and formal rehearsals brings members together as Aggies, musicians, and friends. This creates a truly unique and rewarding experience that will be remembered for a lifetime. An audition is required to participate in the Century Singers. Please refer to our website (http://musa.tamu.edu/) for more information.
• Singing Cadets – The purpose of the Singing Cadets is to enhance the public relations of Texas A&M University through musical presentations as deemed appropriate by the Director and to develop disciplined leaders of character as defined by the Singing Cadet Handbook. The four pillars of the Singing Cadets are Purpose, Unity, Spirit, and Honor. Together, these four pillars have formed the solid foundation that has inspired and enabled our organization to succeed in carrying out its purpose for over a century. An audition is required to participate in the Singing Cadets. Please refer to our website (http://musa.tamu.edu/) for more information.

• Women’s Chorus – The Texas A&M Women’s Chorus is a recognized student organization that strives to promote excellence in the fine arts and to encourage cultural expansion at Texas A&M. They also aim to provide entertainment for the campus community, and to enhance the perception of the ensemble at all levels. The choir travels throughout Texas, beyond our state borders, and internationally, and performs a varied repertoire of sacred and secular classical selections. An audition is required to participate in the Women’s Chorus. Please refer to our website (http://musa.tamu.edu/) for more information.

Orchestral Opportunities
• University Orchestras – The orchestra program at Texas A&M consists of two orchestras; the Chamber Orchestra and the Philharmonic Orchestra. Both of these groups are comprised of students from all majors at the university. Both orchestras provide students with outstanding musical experiences while allowing time for academics and other interests. Students in the orchestras perform the best of both string and symphony orchestra literature at a high level of artistic achievement in a focused and supportive environment. An audition is required to participate in the orchestras. Please refer to our website (http://musa.tamu.edu/) for more information.

Recreational Sports
http://recsports.tamu.edu
• All currently enrolled Texas A&M students (with some exceptions) are automatically Rec members. All you need is your student ID to utilize the Student Recreation Center and other Rec Sports facilities. Guest passes for visitors are available for purchase. Persons with disabilities are invited to contact Member Services to inquire about accommodations.
• Drop-in recreation at the Student Recreation Center encompasses the use of recreational facilities such as a walking/jogging track, handball/racquetball courts, and indoor courts for soccer, basketball, volleyball, and badminton. The Rec Center also features a bouldering wall, an indoor rock climbing facility, outdoor basketball and sand volleyball courts, extensive strength and conditioning areas, dance/activity rooms, and a world-class natatorium featuring indoor and outdoor pools and a diving well. Facilities may be used on a drop-in basis except when reserved for classes or university functions.
• An additional recreational facility, The Polo Road Rec Center, located on Polo Road near University Drive, is slated to open in Spring 2021 and will offer about 28,000 square feet with strength and conditioning space, a fitness/multipurpose room, lockers, and changing areas.
• Rec Sports also offers aquatics classes, group exercise and specialty classes, boot camps, personal and small group training, intramural sports, the Texas A&M Sport Clubs program, Outdoor Adventures, and the Walk of Champions brick campaign.

Speech and Debate Team
http://speech.tamu.edu
• Compete at national level while impacting the community and the world at a grassroots level.
• Compete in debate, public address events, individual limited preparation events and oral interpretation events.
• Student-run, student-funded and student-oriented organization.

Student Activities
http://studentactivities.tamu.edu
• The Department of Student Activities fosters and supports leadership, learning, and involvement opportunities that enhance the growth and development of students and recognized student organizations. At Texas A&M, we care about helping Aggies develop in ways, both in and out of the classroom, that will prepare them for life beyond Aggieland. To do so, Student Activities offers opportunities to lead, serve, participate in campus traditions, represent student voice, and make an impact at Texas A&M. We also provide a way for Aggies to connect and volunteer with local community agencies through our AggieServe database (http://aggieserve.tamu.edu/). The perks of getting involved on campus range from reaching your leadership potential to networking with administrators and potential employers to forming lasting friendships.
• The Department of Student Activities houses key involvement opportunities, including 1100+ recognized student organizations, as well as 50+ fraternity and sorority chapters that can be found through our Office of Fraternity and Sorority Life. The Student Government Association and the Texas A&M Class Councils offer opportunities for those who are passionate about representing the student voice and hosting Texas A&M traditions.
• At Texas A&M, Aggies are held to a high standard of leadership and selfless service. To promote and develop these qualities, our Leadership and Service Center offers a number of leadership programs to help you reach your leadership potential, including the Maroon & White Leadership Fellows Program, and it also houses several service-based organizations and events such as The Big Event and the Volunteer Opportunities Fair.

Student Government (SGA)
http://sga.tamu.edu
• SGA is comprised of the executive, legislative and judicial branches. Members of these branches work to advocate for student needs and help better the Texas A&M campus.
• In addition, SGA has four commissions – Development, Election, Diversity and Legislative Relations. Each of these serve to carry out the goals of the Student Body President from fundraising money for all of SGA to advocating for students at the state level.
• Finally, SGA houses 13 committees including CARPOOL, The BIG Event, Muster and more. These committees strive to enhance the student body through their leadership, programs, conferences and traditions, and they directly have an impact on the student body and community.

Student Life
http://studentlife.tamu.edu
• The Offices of the Dean of Student Life strive to enhance your opportunities as a student to participate fully in the University experience. We do this by providing you with information, services, programs and involvement opportunities that facilitate responsible life choices and promote awareness of yourself and of your community. Each of the program areas within the Offices of the Dean of Student Life has a specific mission, but one common goal: to provide education, outreach, and support to you.

• Additionally, the department advises the following student organizations: Aggie Orientation Leader Program (AOLP), American Association of University Women at Texas A&M University (AAUW-TAMU), Graduate and Professional Student Government (GPSG), Aggie Parent & Family Ambassadors (APFA) and Sexual Health and Relationship Education Campaign (SHREC).

• Specific services and programs offered include:
 • Health Promotion (Alcohol and other Drugs, Interpersonal Violence Prevention, Wellness)
 • LGBTQ+ Pride Center
 • New Student and Family Programs
 • Off Campus Student Services
 • Student Assistance Services
 • Student Conduct Office
 • Student Legal Services
 • Student Media (The Battalion and Aggieland yearbook)
 • Women’s Resource Center

Student Life Studies
http://studentlifestudies.tamu.edu

• Facilitates the Division of Student Affairs and student organizations in the assessment and evaluation of services and programs and assists in expanding the knowledge base about Texas A&M students and their co-curricular experiences. Department staff can assist with the development of assessment instruments and the collection and analysis of data.

Student Media
http://studentmedia.tamu.edu

• Student Media produces national, award-winning publications; The Battalion newspaper, the Aggieland yearbook and the Maroon Life magazine. All three are written, edited and produced by students and offer excellent opportunities to gain valuable experience for journalistic and related careers.

• The Battalion, Texas A&M’s student newspaper since 1893, is typically printed weekly on Thursdays during the fall and spring and every other week during the summer sessions. Around finals and holidays, the delivery days may be changed. It is distributed to students, faculty and staff on campus and at many apartments and other high traffic areas in College Station. The Battalion also is available online and on mobile devices at thebatt.com.

• The Aggieland, which dates back to 1895, is distributed in the fall but is a year-round project documenting school activities. It is one of the nation’s largest college yearbooks.

• Maroon Life is published five times during the school year with New Students’ Guide to Aggieland (distributed at New Student Conferences), Fall Sports Preview, Best of Aggieland (winter distribution), Spring Sports Preview and Housing Guide (Family Weekend) editions.

University Art Galleries
http://uart.tamu.edu

• The University Art Galleries (UART) Department supports the educational mission of Texas A&M University by providing impactful visual arts experiences to diverse campus and regional community audiences. UART serves as steward of its collections, promoting arts advocacy and engagement across the university. It is responsible for visual art exhibitions at the J. Wayne Stark Galleries, the Forsyth Galleries, the public art on campus, and for art inventories at Texas A&M.

• The program organizes the major art exhibitions for the University; advises on the selection, display and management of visual art objects on the campus; handles all art and art-related gifts to the University; and provides guidance and support to all exhibitions and collections at the University. The department also maintains the outdoor sculpture collection for the university.

• In addition, the University Art Galleries department organizes programs to complement exhibitions; has a docent program, which provides guided tours of changing exhibitions on campus and the University’s permanent collections to interested community and school groups as well as other art education programs.

University Center and Special Events (UCEN)
http://ucenter.tamu.edu

• University Center and Special Events (UCEN) is a highly skilled team of professionals committed to creating extraordinary guest experiences. We provide exceptional event management and technical support in state-of-the-art facilities that are well maintained, safe and clean. Through our facilities and services, we enhance the educational, business, social and cultural experiences of students, faculty, staff and visitors of Texas A&M University.

• Event Services – located on the second floor of Rudder Tower, the Event Services team assists in the booking, coordination, setup and staffing of meetings and events held in the Memorial Student Center (MSC), J. Earl Rudder Conference Tower, John J. Koldus Building, All Faiths Chapel, and the surrounding outside event spaces.

• Special Events – located on the first floor of Rudder Theatre Complex, the Special Events team assists with the booking of space in Rudder Theatre Complex, which includes Rudder Auditorium, Rudder Theatre, Rudder Forum, and the Exhibit Hall. Additionally, our Special Events team provides AV technical support, event setup and support, equipment rental and event consultation for events held outside of UCEN facilities.

• University Center Guest Suites – located in the Memorial Student Center (MSC), the University Center Guest Suites are an ideal and convenient place for housing speakers, visitors, and out-of-town guests. With an offering of 800 square feet, each suite includes a living room, kitchenette, king bedroom, full bath and vanity. Individually decorated, each suite welcomes guests with tailored amenities, exemplary service and an experience which embraces university traditions and values.
Vice President for Student Affairs

http://studentaffairs.tamu.edu

In support of the Texas A&M University mission, the Division of Student Affairs contributes to student learning and development. The Division provides exceptional services, facilities, and programs that promote student success, embody the Aggie spirit, and foster a diverse and inclusive campus community to deepen the understanding and individual application of the Aggie Core Values - Loyalty, Integrity, Excellence, Leadership, Selfless Service and Respect.
TUITION, FEES AND OTHER FINANCIAL INFORMATION

General Information

Educational expenses for nine months will vary according to personal needs and course of study. The Financial Aid Office's basic budget for new undergraduate students including tuition and fees, books, supplies, transportation, on-campus room and board, incidental and living expenses come to about $30,024. Total expenses for returning students during an academic year should be slightly less than those for new students. The costs for new nonresident or international students is about $58,550. All tuition and fees amounts provided herein represent the most accurate figures available at the time of publication and are subject to change without notice. University Rules in place at the time of publishing are reflected here. All are subject to change. The most current information available will be maintained on the Scholarship & Financial Aid (http://financialaid.tamu.edu) website. Student Business Services online tuition and fee estimate calculator can be found at the Student Business Services (http://sbs.tamu.edu) website.

Payment of Tuition and Fees

Students must meet all financial obligations to the University by their due dates to avoid late penalties. Failure to pay amounts owed may result in cancellation of the student's registration, barring from future enrollment and non-issuance of official transcripts. State law requires that tuition and fees be paid prior to the first day of classes. Students who wish to pay fees in installments can select the option on the My Finances tab on the Howdy (http://howdy.tamu.edu) Portal.

Obligation to Pay Tuition, Required Fees, Other Fees and Charges for Optional Services

By registering for classes, students agree to pay all tuition and required fees associated with their registration, optional services and other fees, whether paying in full or utilizing the installment payment option. Failure to pay tuition, fees and other charges may result in penalties, late registration fees and/or possible cancellation.

Financial Obligation for Graduating Students

According to Texas A&M University Student Rules and Chapter § 54.007 (c) of the Texas Education Code, all financial obligations to the University must be paid by the end of the semester. Failure to settle all financial obligations will result in withholding a student’s diploma at graduation. Additionally, a block will be placed on the student’s account which will prohibit registration in subsequent semesters and receipt of official transcripts.

Citations

- Section 14.15 of the Texas A&M University Student Rules states “The student must have settled all financial obligations to the University.”
- Chapter § 54.007 (c) of the Texas Education Code states “A student who fails to make payment prior to the end of the semester may be denied credit for the work done that semester.”

Tuition

Texas A&M Tuition and Required Fees per Semester Credit Hour

A tuition calculator is provided on the Student Business Services (SBS) website to assist students in estimating their tuition and fee costs based on enrolled semester credit hours. Tuition and fee explanations can also be found at sbs.tamu.edu.

All rates are the most current available at the time of printing and are subject to change.

Nonresident Tuition Waiver

If you have any questions concerning your eligibility for a waiver of nonresident tuition, please visit our website (http://sbs.tamu.edu/accounts-billing/forms/waivers-exemptions/) or contact Student Business Services by email at sbs@tamu.edu.

University Advancement Fee

The University Advancement Fee is a required fee charged to all Texas A&M University students. The University Advancement Fee funds services such as advising, the Career Center, University Writing Center, technology and libraries as well as administrative services such as ID services, the campus bus system, billing and refunds, access for students to discounted software and many of the services provided through the Division of Student Affairs.

CEHD Teacher Preparation Program

Undergraduate students enrolled in the professional phase of teacher preparation programs incur a differential tuition charge of $300 in each of the remaining fall and spring semesters. This differential tuition helps support field experiences, supervision, scholarships and international/urban experiences in culturally diverse settings.

Distance Education Administration Fee

This $30 per semester credit hour administrative fee is assessed to Non-Funded Out-of-State students taking distance education courses.

Distance Education Differential Tuition

The rate to be charged for distance education courses will range from a minimum of $40/SCH to a maximum of $550/SCH. Each academic department will have an individual rate that will be approved annually by the President of Texas A&M University. For more information regarding Distance Education Differential Tuition, please visit http://sbs.tamu.edu/accounts-billing/tuition-fees/schedule/#DIST_ED_DIFF.

TAMUHSC Tuition and Required Fees

Texas A&M University Health Science Center tuition and fees are approved by The Texas A&M University System Board of Regents within guidelines established by the Texas Legislature. Fees are subject to change by the Board of Regents.

A tuition calculator is provided on the SBS website to assist students in estimating their tuition and fee costs based on enrolled semester credit hours. Tuition and fee explanations can also be found at sbs.tamu.edu.
TAMUHSC Fees

Distance Education Administration Fee
This $30.00 per semester credit hour administrative fee is assessed to Non-Funded Out-of-State students taking distance education courses.

Field Trip Fees
Field trip fees are assessed to cover the cost of providing trips and vary depending on the course taken and expected expenses.

Group Hospital Fee
The group hospital fee supports the provision of medical services to students to access services at the academic locale.

Instructional Enhancement/ Equipment Fee
The Texas A&M University Health Science Center charges an Instructional Enhancement Fee (IEF) at each of the colleges offering TAMUHSC academic programs. The colleges have varying fee rates based on the IEF needs of the college. This fee supports an array of educational activity enhancing academic programs at the college. A few examples of enhancement expenditures are; software to enhance education, media, web-based instruction, tracking and evaluation tools, licensure fees, and integration of technology.

Publication ASDA/ ADHA Fee
This fee provides for students to receive a monthly publication, annual membership into the ASDA, ADA, or ADHA, and many leadership opportunities depending on the student’s academic program.

ID card (1-time flat rate)
This additional ID fee covers the College of Dentistry badge, which also serves an access card to secure locations of the dental school in addition to being an identification card.

Matriculation Fee (1-time flat rate)
This is a setup fee for first-year dental students related to a college-specific file set up with the college.

Drug Testing Fee (1-time flat rate)
All dental students pay this fee to cover drug testing for students, and this is a one-time assessment.

Lab Fee
The University is required to assess and collect a laboratory fee not less than $2 nor more than $30.00 for each laboratory course to cover in general the cost of laboratory materials and supplies used by a student.

Medical Liability
Medical Liability Insurance is required by students interacting & treating patients. This fee covers medical malpractice required for this type of activity.

Equipment Usage
This fee supports costs associated with instruments used during dental education.

Summer Clinic Fee (D3 and D4 only)
The Summer Clinic Fee is used to partly cover the cost of students working in the clinic. This fee is a flat fee and is not charged by the hour.

The students are scheduling and working on patients as part of their clinical training.

Clinical Simulation Fee
The fee covers costs associated with Clinical Learning Resources Center to include specialized simulation technology, equipment, materials and supplies related to the operating of the simulation center.

Gross Anatomy Fee (M1 Only)
This fee covers costs associated with Gross Anatomy lab to include lab materials, supplies, furnishings, software and equipment specific to gross anatomy

Professional Liability Fee
Professional liability insurance coverage is required of all students who will be in clinical settings providing patient care. It is a mandatory requirement of all local facilities with which we have contracts for student clinical experiences.

Clinic Simulation Fee
This fee covers costs associated with Clinical Learning Resources Center to include specialized simulation technology, equipment, materials, and supplies related to the operating of the simulation center.

Professional Activity Fee
The Professional Activity Fee supports various professional activities for pharmacy students such as participation in clinical partnerships enhancing experiential education, financial resources to ensure these clinical experiences meet pharmacy education expectations, support of student travel to professional meetings/conferences, and other professional activities.

Professional Development Fee
One-third of the pharmacy curriculum is experiential education, which consists of the Introductory Pharmacy Practice Experiences (IPPE) and the Advanced Pharmacy Practice Experiences (APPE). This fee supports clinical site payments for student rotations. In addition to clinical site payments, the Professional Development Fee supports service learning activities and other professional development services and programs.

Environmental Service Fee
This fee supports distribution, maintenance and pickup of recycle bins and materials from each building located on the Texas A&M University-Kingsville campus. Only pharmacy students located at Kingsville are assessed this fee.

Career Services and Professional Services Fee
This fee will support efficient and effective support services for professional career development services. Various operational costs associated with the provision of professional career development services.

Advising Services Fee
This fee will provide advising support services for all graduate degree programs not provided by members of the faculty. This fee includes, but is not limited to Graduate Studies, Professional School Advising, and Admission Services related to student enrollment. Various operational costs associated with the delivery of services noted in programmatic justification.
Transportation Fee
This $70 per semester fee ($35 for a 5-week summer term and $70 for a 10-week summer semester) is assessed to provide unlimited fare-free access to all students to on-campus and off-campus services, and expanded service and revenue for a long-term bus replacement plan. In addition, revenue will pay for operating expenses and the enhancement of bus facilities on campus. Fee subject to change.

Locked and Variable Rate Tuition Plans
Beginning with the Academic Year 2018-2019, incoming undergraduate Texas resident students at Texas A&M University will be offered the choice between a variable rate tuition plan or a locked-rate (fixed) tuition plan allowing students and their parents to better plan and budget for college expenses. You will need to select the best option for you and your family prior to registration. Incoming Non-Resident Students will default to the Variable Rate Plan.

Options
Variable rate plan: Tuition and fees could increase each year, using the Higher Education Price Index.

Locked-rate (fixed) plan: Tuition and fees are locked into a per semester rate for 12 consecutive semesters, or 4 years, from the point of initial enrollment at a public or private institution.

Entering Freshman Texas Resident Students: Will choose either the variable rate or the locked-rate (fixed) associated with their first term of enrollment.

Entering Transfer or Readmit Texas Resident Students: Have three options to choose from

- Variable rate, which will vary each academic year
- Locked rate (fixed), based on their first term of enrollment in college after high school, which will expire at the end of 12 consecutive semesters, or 4 years from that first term of enrollment
- The current academic year’s tuition and fee rate which will be locked in for 12 consecutive semesters or 4 years

Presumptions
Students will enroll in 30 hours an academic year for 4 years allowing completion of most degree plans. Some majors such as engineering and architecture are offered 1-2 additional semesters at the locked rate.

Where do I select my tuition rate?
All incoming freshmen and admitted transfer and readmit applicants must select a rate prior to registration. Rate code selections can be made by logging in to the Howdy Portal at howdy.tamu.edu (http://howdy.tamu.edu), selecting the My Finances Tab and following the instructions. The choice will be offered only once and cannot be changed in future semesters.

Tuition estimates can be found on the Student Business Services website at http://sbs.tamu.edu/.

Texas A&M University meets requirements of the Texas Education Code, Section 54.017 regarding fixed tuition for undergraduate students.

<table>
<thead>
<tr>
<th>Fees</th>
<th>Distance Education and Other Nontraditional Course Offerings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Tuition and Fees</td>
</tr>
<tr>
<td>Tuition</td>
<td>Yes</td>
</tr>
<tr>
<td>University Advancement Fee</td>
<td>Yes</td>
</tr>
<tr>
<td>Cooperative No Education Fee</td>
<td>No</td>
</tr>
<tr>
<td>Distance Learning Fee</td>
<td>Yes</td>
</tr>
<tr>
<td>Equipment Access Fees</td>
<td>Yes</td>
</tr>
<tr>
<td>Field Trip Fees</td>
<td>Yes</td>
</tr>
<tr>
<td>Health Center Fee</td>
<td>No</td>
</tr>
<tr>
<td>International Student Services Fee</td>
<td>Yes</td>
</tr>
<tr>
<td>Laboratory Fees</td>
<td>Yes</td>
</tr>
<tr>
<td>Property Deposit</td>
<td>Yes</td>
</tr>
<tr>
<td>Recreational Sports Fee</td>
<td>No</td>
</tr>
<tr>
<td>Sponsored International Student Fee</td>
<td>Yes</td>
</tr>
<tr>
<td>University Center Complex Fee</td>
<td>No</td>
</tr>
</tbody>
</table>

1 Distance Education Instruction: This group includes traditional off-campus classes, all university centers and telecommunications, video and other nontraditional Distance Education Instruction delivery models.
2 In Absentia: The traditional student who is performing individual research or completing degree requirements that do not require classroom instruction.
3 Cooperative Registration: Students participating in the Cooperative Education Program at Texas A&M University.
4 Texas A&M University Graduate Students—Galveston: Texas A&M graduate students who enrolled at College Station, but who are taking courses exclusively at Galveston.
5 Study Abroad: Students participating in the Texas A&M University Education Abroad Program.
Application Fees
Graduate: $50; Undergraduate: $75; International: $90

Cooperative Education Fee
A fee of $75 is charged to all participants of the Cooperative Education program.

Field Trip Fees
Field trip fees are assessed to cover the cost of providing trips and vary depending on the course taken and expected expenses.

Laboratory Fees
The University is required to assess and collect a laboratory fee not to exceed $30 for each laboratory course to cover the cost of laboratory materials and supplies used by a student.

Late Penalties
Students who fail to pay fees and installments when due are assessed a late payment fee for each payment or installment paid late.

Late Registration/Add Penalties
The Late Registration Charge is assessed to students who register on or after the first class day. A charge of $100 for registration between the 1st and 12th class day and $200 for registration after the 12th class day also applies to students who have not paid 100% of tuition and fees or submitted adequate Installment Plan payments by the semester census date. Registration after the 12th class day is by exception only and requires Dean’s approval.

Students who add classes after the 12th class day that result in a net increase in hours enrolled are assessed a $50 late add fee.

Microfilming, Binding and Collating
Binding, collating, microfilming theses and dissertations—Masters: $110, Doctoral: $170

New Student Conference Fee
A non-refundable new student orientation fee of $225 is charged to all freshmen students and $153 to transfer students. An additional fee of $35 is required of all international students to cover additional costs associated with orientation programs.

ROTC Uniform Rental
Qualifying cadets enrolled in Army, Air Force, or Naval ROTC will be reimbursed the cost of basic cadet uniforms. Cadets who are not enrolled in ROTC (Drills and Ceremonies Cadets) are required to pay for the cost of uniforms.

Supplementary Fee for Courses Attempted More than Twice
A non-repeatable course that is attempted by a student more than twice at a public institution of higher education in Texas may not be reported for state funding. As a result, the institution must either pass the non-funded portion to all students or charge a supplementary fee to the student who is attempting the course more than twice. Texas A&M has chosen to assess a supplementary fee to those students attempting a course more than twice.

A student attempting non-repeatable courses more than twice at Texas A&M University will be subject to a supplementary fee of $125 per semester credit hour ($375 for a 3-hour course) for the repeated course, in addition to tuition and required fees associated with the course.

Students will be notified at the time they register for a course that it has been taken twice at Texas A&M and is subject to the supplementary fee.

Greek Dues Fee
This $25 due fee provides members of fraternities and sororities with a sustainable advising and programming model to create a membership experience that is congruent with both the university’s and the organizations’ mission, purpose and values.

Musical Activities Performance Fee
The $100 Musical Activities Facility Performance Fee is a per semester fee that is charged to each participant in a Music Activities affiliated vocal or instrumental program and supports programming, performance, and operational costs. This charge is not Title IV eligible.

Diploma/Graduation Fee
A non-refundable fee per degree sought is assessed the semester a student applies for graduation. This fee is payable each time a student applies for graduation. A late fee of $50, in addition to the diploma/graduation fee, may be charged to those who apply for graduation after the published deadline.

Health Center Fee
This $75.00 per semester fee ($25 for a 5-week summer term and $75.00 for a 10-week summer term) is required of all students for the purpose of operating, maintaining and equipping the University Health Center and entitles the student to its services. These services do not include surgical operations or charges for consultations with outside physicians.

Identification Card (Aggie Card)
Every student is required to have a student ID card. ID cards are permanent and students are responsible for maintaining a working ID throughout their career at the University. The Aggie Card is used for residence hall access, registration, fee collection, financial aid disbursement, dining halls, athletic event and recreational sports admissittance and library privileges. Replacement ID cards are $12.

Students who lose their IDs can report the loss immediately and deactivate their card online at http://myaggiecard.tamu.edu or by contacting:

Student Business Services
Aggie Card Office, General Services Complex
(979) 845-4661
8 a.m.–5 p.m., Monday through Friday

International Student Health Insurance
The Texas A&M University System requires all international students entering the U.S. on a F-1 or J-1 student visa to be covered under the Texas A&M University System Student Health Insurance Plan (SSHIP) or have equivalent insurance coverage that meets the waiver criteria.
The System Student Health Insurance Regulation is located at http://policies.tamus.edu/26-99-01.pdf.

For more information regarding the health insurance and waiver processes, please visit http://iss.tamu.edu.

International Student Orientation Fee

This $35 fee is charged to cover the cost of new student programming for newly admitted or returning international students.

International Student Services Fee

This $85 fee is required of all students who are not U.S. Citizens or Lawful Permanent Residents to offset the cost of specialized services provided to these students from International Student Services, Center for Teaching Excellence - English Language Proficiency Program, and the Writing Center.

Recreational Sports Fee

The Recreational Sports fee is assessed to all students attending the University for use of the Student Recreation Center and all other Recreational Sports facilities. The fee for new undergraduate students, graduate students and students on the variable rate tuition plan is $145 per semester ($72.50 for a 5-week summer term and $145 for a 10-week summer semester). Returning undergraduate students for fall 2020 semester on a fixed rate tuition plan will continue to pay $106 per semester ($53 for a 5-week summer term and $106 for a 10-week summer semester) for the duration of their fixed rate tuition agreement.

Reinstatement Fee

Students who fail to pay all fees by the last day of the semester will be administratively withdrawn from the University and charged a $50 reinstatement fee.

Sponsored International Students

International Student Services (ISS) provides specialized administrative services, advising, and other program management related to the specific requirements for sponsored students. ISS serves as a liaison with academic departments, the Texas A&M University campus, sponsored students and their sponsors.

Third Party Billing and invoices for sponsored students are handled by Student Business Services (SBS). http://sbs.tamu.edu/accounts-billing/for-sponsors-and-sponsored-students/

An administrative fee not to exceed $500 per semester or summer session (all or part thereof) will be required to support international sponsored students whose programs are coordinated through International Student Services, unless these fees are waived as part of negotiated contractual agreements.

For more information, please visit the sponsored student section at http://iss.tamu.edu.

Student Center Complex Fee

This $100 fee ($50 for a 5-week summer term and $100 for a 10-week summer semester) is required of all students for operating, maintaining, improving and equipping the Student Center Complex.

The TEA Teacher Ed Prep Program Fee

The TEA Teacher Ed Prep Program Fee is mandated by the Texas Education Agency for all candidates seeking educator certification in the State of Texas TAC 229.9 (https://texreg.sos.state.tx.us/public/readtac$ext.TacPage/?sl=R&app=9&p_dir=&p_rloc=&p_loc=&p_tloc=&pp=1&p_tac=&ti=19&pt=7&ch=229&page=10). This fee is assessed based on information provided by the College of Education.

Optional Services

Athletic Events

Sports Pass are available for purchase. For more information, please visit http://mysportspass.tamu.edu (http://mysportspass.tamu.edu/).

Installment Payment Option

Students who choose to pay using the installment plan pay a $15 installment payment service charge per semester (excluding the Summer term.) This charge is non-refundable. You may add the installment plan by selecting the installment option through the online registration system at https://howdy.tamu.edu (https://howdy.tamu.edu/).

MSC OPAS Tickets

Special Discounted Student OPAS tickets are available through the MSC Box office. For more information, please contact MSC OPAS at (979) 845-1661 or visit their website (http://mscopas.org/).

Yearbook

The cost is $81.19 including shipping and sales tax.

Campus Dining

Freshmen (classified as U1s with less than 30 hours of college credit when they initially apply to live on campus) will be required to have a minimum dining plan for the full academic year (or remainder of the academic year for those that apply for housing after the beginning of the fall semester).

All Corps of Cadets members are required to have a dining plan, as designated by the Office of the Commandant.

Upperclassmen and students who are not campus residents are not required to purchase a Dining Plan, but the option is available.

All Dining Plans are loaded onto the Student ID card to make access and use easy.

Fees for the selected meal plan will be added to your Texas A&M University student fee, and are separate from housing fees. Any plan purchases or additions made after the ninth week of class cannot be charged to the student’s account and must be paid via credit card. Please visit our website for official date as it may vary each semester based on the academic and billing calendars.

Students have the option to select a Dining Plan that fits their individual needs. Dining Plans are designed to be flexible for an array of lifestyles and appetites. Smaller Dining Plans are available for upperclassmen and students who live off campus. Most Dining Plans include 2 parts: First, “Meals,” which can be used at the all-you-care-to-eat dining halls, or in select retail locations as a “meal trade.” The second part of the dining
plan consists of “Dining Dollars.” These declining balance dollars can be spent like cash or a debit card, and are accepted at all University Dining kiosks, coffee shops, food courts and dining centers. Each purchase is automatically deducted from the account.

When paying with Dining Dollars, patrons will enjoy a discount on the door rate at Duncan, Sbisa, and The Commons, the all-you-care-to-eat dining halls on campus. Dining Dollars roll over from fall to spring with the purchase of a spring dining plan.

Dining Dollars are only accepted on campus, assuring parents and guardians that this money is spent only on food and beverages. Applicable sales tax will be added at checkout.

Parking Permit

Vehicles parked on the Texas A&M University campus are required to display a valid parking permit or pay by the hour to park in designated visitor areas. Costs of permits are prorated and subject to change.

For more information or to purchase a permit, visit transport.tamu.edu/permitreg (http://transport.tamu.edu/parking/faqpermit.aspx).

<table>
<thead>
<tr>
<th>Parking Type</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Lot</td>
<td>$329</td>
</tr>
<tr>
<td>Night Permit (only valid 5pm - 6am)</td>
<td>$105</td>
</tr>
<tr>
<td>Garage Non-Reserved Space (The new Polo Rd. Garage is $630)</td>
<td>$530</td>
</tr>
<tr>
<td>Motorcycle Permit - including mopeds and scooters</td>
<td>$105</td>
</tr>
</tbody>
</table>

Residence Hall and Apartment Room Rates

All students living in residence halls or apartments are required to pay room rent. Rooms are furnished with beds, mattresses, desks, chairs and dressers. Students are expected to furnish their own pillows, blankets and linens internet and basic tv service. Room rates include heat, air-conditioning, lights and cleaning of common areas. Rates are for the semester and are subject to change.

For more information, please see Residence Life (http://reslife.tamu.edu).

Payments

Scholarships, Grants and Loans

All financial aid or loans must be accepted and requirements completed before it can be applied toward a student’s account.

Payment Methods

Texas A&M utilizes online statements and electronic payments in its efforts to provide timely financial information to students and to control costs. Student account payment options include:

- **Electronic/Online**
 - Students can view their account and make online payments using E-Checks, American Express, Discover Card or MasterCard by selecting “Pay Bill/Manage Account” on the My Finances tab in the Howdy portal. Payments made with credit cards will incur a convenience fee charged at the time of payment. Payments made with credit cards will incur a 2.25% convenience fee minimum charge of $3.00. Additional forms of payment accepted include personal checks, cashier’s checks, wire transfers and Pin Debit. (Please Note: Once online payment transaction has occurred, the Convenience Fee is non-refundable).

Paper

- Checks – Students may still use paper checks for payments. The University reserves the right to utilize check conversion technology to convert paper checks into electronic format.
- Cashier’s checks
- Money orders

Cash

- Cash is not accepted.

Flywire

- All bank wire transfers are accepted using our partner, Flywire. Texas A&M University does not accept direct wire transfers and will not provide our banking information.

Returned Payments

Any payment that is rejected for payment by the paying bank, credit card company or other financial institution is subject to returned item charges of $30 or more. Rejected payments may also result in cancellation of the student’s registration and additional late registration penalties if the student is required to re-register on or after the first day of classes.

Installments

Tuition, required fees, room, board and parking are payable in full, or in installments. A $15 per semester service charge, to cover the cost of handling, will be assessed to each student who chooses to use the installment plan. Students may pay their account in full any time during a semester; however, the service fee will not be refunded once a payment is made under the installment plan or after the first installment due date. See the Student Business Services (http://sbs.tamu.edu) website for information on installment plans.

Deposits

General Deposit

A deposit of $100 is required of every student to ensure the institution against losses, damages, and breakage for which the student is responsible, or to be used to offset in part amounts owed by the student to the institution. General deposits are returned to students, less any such amounts owed to the institution, within a reasonable period after the date of the student’s withdrawal or graduation from the institution, not to exceed 180 days. The deposit retention period provides the University sufficient time to identify all amounts owed and to determine if the student intends to enroll in the semester or summer session immediately following the student’s withdrawal or graduation or, if the student withdraws or graduates in the spring semester, in the next fall semester. If a student leaves the University without graduating or officially withdrawing, they must submit a written request to Student Business Services to receive a refund of their deposit. Deposits for students that do not graduate, withdraw or otherwise request a refund remain on file for four years. Those deposits are forfeited to the University’s General Deposit Scholarship Fund, after deducting any amounts owed the University.
Residence Hall Deposit
There is a $75 non-refundable application fee that is required to complete the housing application and sign a contract for the residence halls and university apartments. Students have until May 1st to cancel their housing for the Fall term, or October 31st for the Spring term. Any cancellation after that date is considered a late cancellation and cancellation penalties apply. Freshmen classified as U1 with less than 30 hours will be required to have a dining plan if they live on campus.

Penalties and Late Fees

Late Payment Penalty
There are severe penalties for failure to pay student account balances and installments by their specified due dates. If a payment is delinquent when a semester ends, the student will be blocked and may not receive credit for academic work performed. Students will not be readmitted to the University until all past due balances, including late charges, are paid. A late fee of $25 for A&M students and $50 for HSC students will be assessed for each payment not received on or before it is due. If a student is removed from the rolls of the University or is withdrawn for failure to pay amounts owed the University, a reinstatement fee of $50 for A&M students and $150 for HSC students will be assessed in addition to any other late fees or penalties already incurred and must be paid before the student will be reinstated. Current due dates can be found online at the Student Business Services website.

Late Registration Fees
Students who register on or after the first day of classes are assessed a late registration fee of $100 for A&M students and $200 for HSC students. Students who register after the official census date (12th class day for fall or spring and 4th class day for summer) are assessed a late registration fee of $200 for A&M students and $250 for HSC students. Students who add classes after the official census date are assessed a late add fee of $50 for A&M students and $100 for HSC students. Note: Penalties, late registration and late add fees also apply to students who are required to re-enroll because their registrations were canceled for nonpayment. Registrations are subject to cancellation and/or financial penalties if sufficient payment is not received before 5:00 p.m. on the semester due date.

Use of Collection Agencies and Credit Bureau
If amounts become past due, the University reserves the right to report the account to the Credit Bureau. This will also initiate internal collection efforts and could cause the University to employ an outside collection agency to recover the debt. If any collection efforts must take place, the student will be required to reimburse the University for the fees of any collection agency which may be based on a percentage at a maximum of 30% of the debt. All costs and expenses, including reasonable attorney’s fees the University, incur in such collection efforts.

Canceling Registration
Once students have registered for classes, they must select one course of action from the following to remain in good standing with the University:

- pay all amounts due by the specified due date;
- use the online registration to drop all classes prior to the first day of classes; or
- initiate the withdrawal process online in Howdy to begin the process to withdraw from the University after the first day of classes.

Following this procedure is especially important for students who have been awarded scholarships or financial aid since the aid may automatically pay tuition and fees and cause the registration to be held even though the student has decided not to attend. Failure to request cancellation of an unwanted registration may result in grades of F or I in all courses for the semester. The student will be required to reimburse the University for scholarships and other financial aid applied to his or her account and will be held responsible for paying all fees for the semester, regardless of whether he or she attended classes.

Cancellation for Nonpayment of Tuition or Fees
The University reserves the right to cancel registrations not paid by their due date, or the official census date for a semester or summer term, to comply with state laws requiring payment of tuition and fees, to free the classroom spaces for other students, and to ensure the most efficient use of university resources.

Refunds and Adjustments

Fee Adjustments for Courses Dropped
A student may drop individual courses during the first five days of a fall or spring semester (first four days of a summer term). Students also may drop individual classes with special permission of the dean between the 6th and 12th class days. Full refunds will be given for the individually dropped courses during these periods provided the student remains enrolled in at least one class and has not withdrawn from the university. Refunds will not be issued for classes dropped after the 12th class day. Any credit balance on a student account as a result of dropping courses will not be refunded until after the fifth class day. As of the first day of the semester, students may not drop all of their courses through the drop/add process, but instead must begin the official withdrawal process online through Howdy (https://howdy.tamu.edu) (see Withdrawal from the University below for additional information regarding the withdrawal process). A student may add courses during the first five days of a fall or spring semester.

Adjustments for Withdrawal—Tuition and Fees
Tuition and fee adjustments shall be made to students officially withdrawing from the University for charges listed below according to the following refund schedule: Tuition and Required Fees, Residence Hall Rent, and Meal Plans.

Fall and Spring Semester and 10-Week Summer Semester
By 5 p.m. on the last business day before the first day of class

- 100%
- During the first five class days
- 80%
- During the second five class days
- 70%
- During the third five class days
- 50%
- During the fourth five class days
- 25%
- After the fourth five class days
- None

Summer Term of More Than 5 Weeks But Less Than 10 Weeks
By 5 p.m. on the last business day before the first day of class

- 100%
During the first, second or third class day | 80%
During the fourth, fifth or sixth class day | 50%
Seventh day of class and thereafter | None

Athletic Refunds
Refunds are not allowed for individual games or games missed. A prorated refund is permitted until the option is used to pick up a ticket for any one game. Once a ticket option has been used, prorated refunds will be given only in the event of withdrawal from the University. For information on refunds, contact the Athletic Business Office at (979) 846-8892.

Reductions in Rates for Late Entry to the University
No reduction will be made in the charge of room rent and board in case of entrance within 10 days after the opening of a semester or summer term, nor will a refund be made in case of withdrawal during the last 10 days of a semester or summer term, or the last days for which payment is made.

Refund Delivery
Texas A&M and Heartland ECSI have joined forces to deliver financial aid and other refunds to students faster through the University’s refund delivery process. You will receive information from Heartland ECSI and the University at your new student conference and in your official University email account, which will explain the process for signing up for direct deposit of refunds.

Yearbook Refunds
Yearbook charges are refundable in full during the semester in which payment is made. Thereafter, no refunds will be made on orders canceled in subsequent semesters. Yearbooks must be picked up during the academic year in which they are published. Students who will not be on campus when the yearbooks are published must pay a mailing and handling fee. Yearbooks will not be held, nor will they be mailed, without payment of the mailing and handling fee. Refunds will not be made on books not picked up within one semester of the publication date. Refunds will not be made before 21 days from the date of payment. Refund policies contained herein reflect policies in effect at the time of publication and are subject to change.

Dining Plan Refunds and Add/Change/ Drop Policies
Texas A&M University Dining’s dining plans and options listed are based on information available at time of printing and are subject to change. University Dining follows the University’s refund schedule for Tuition and Fee Adjustments. Refunds are given on the percentage basis listed for students dropping fee options or officially withdrawing from the University.

Students may purchase a dining plan, change to a larger plan or add on to a plan during registration for classes or at any time through University Dining. Dining Plans and additions to the plans may be charged to the student account through the ninth week of school. Any purchases after that point will require a credit card payment. Changes from a higher dining plan to a smaller dining plan or requests to cancel/drop are permitted only through the fourth week of classes. The appropriate fee is to be paid to the Office of Student Business Services.

Dining plans are valid for one semester starting with the first day of campus move-in (as designated by the Department of Residence Life) and end after the last final exam day. Check with Dining for posted dates for dining plan access. Location hours may vary during class breaks and meal availability may exclude official University holidays.

Following University policy, no one is authorized to use or borrow a student’s identification card (Aggie Card); therefore, dining plans are not transferable between students. The Aggie Card must be presented to Dining cashiers for dining plan participation. If an Aggie Card becomes lost, report it immediately by calling (979) 845-4661 or go to http://myaggiecard.tamu.edu (https://myaggiecard.tamu.edu/) to deactivate the card.

For questions and assistance, please email dining@tamu.edu (include name, UIN and instructions if dining plan related) or contact our office at (979) 845-0152. Additional information on University Dining and dining plans can be found on our website (https://new.dineoncampus.com/tamu/) or in this catalog under Campus Dining.

Residence Hall Rent Refund
If a student withdraws, moves off campus or in any other way terminates the housing contract, a refund of residence hall rent may be made according to the stipulations in the housing contract. Any cancellation after May 1st for the Fall (regardless of when the student applies) is subject to the following cancellations penalties: 1) Prior to May 1st - no penalty, 2) May 2nd to May 30th - $500, 3) June 1st to August 14th - $1000, 4) August 15th (or after move) - 100% of Fall semester rent and 5) Students who cancel their housing assignment after the student has moved in for the Fall is subject to 100% of the Spring semester rent.

Exceptions to the housing charge/refund schedule may be granted for students who graduate at the end of the Fall semester, enlist in the Armed Forces of the United States, are accepted into one of the Service Academies, or participate in a cooperative education/internship, student teaching (not in the local area), or a student abroad program for the Spring semester if written notification and verification of the aforementioned condition is received in the Housing Assignments Office, Corps Housing Office, or University Apartments Office (as applicable) by November 15th. Exceptions may also be made for students who are academically restricted from re-enrollment or who become medically unable to return for the Spring (or summer if a 12 month contract) semester if written notification is received prior to the beginning of classes for the Spring (or Summer if a 12 month contract).

Withdrawal from the University
Once the University has accepted payment for tuition and fees, a student is considered officially enrolled unless otherwise restricted from enrolling. Stopping payment on a check for fees or allowing the check to be returned unpaid by the bank for any reason does not constitute official withdrawal.

Before classes begin, you may go online to Howdy (http:// howdy.tamu.edu/) and cancel your courses and options for the semester.

After classes begin, you must go through the official withdrawal process in order to cancel your registration for the semester. In Howdy (http:// howdy.tamu.edu/), go to the Student Withdrawal channel on the My Record tab to begin the online withdrawal process. Failure to complete
the withdrawal process will result in forfeiture of any tuition and fee adjustments, and course work may be recorded as incomplete or failed.

Failure to follow procedures for withdrawing from the University may result in financial penalties and delays with future enrollment in the University. Once a student registers, he or she is responsible for the total fees assessed regardless of whether the installment option is used. Refund percentages are applied to total fees assessed and not the amount paid. This means that students who withdraw before paying all installments may, in the event of withdrawal, still owe the University.

International students must visit with an advisor in the International Student Services Office before withdrawing to determine if doing so will affect visa status.

Student athletes should visit with an academic advisor in the Department of Athletics before initiating the withdrawal process.

Recipients of financial assistance should visit with a Scholarships & Financial Aid advisor before withdrawing. Students receiving funds awarded by Scholarships & Financial Aid should be aware of policies (http://financialaid.tamu.edu/Undergraduate/Maintaining-Eligibility/#2-Withdrawals) regarding withdrawal from the University. Federal regulations require a return calculation for all students who receive Title IV student assistance at a post-secondary institution of higher education and withdraw during a payment period (semester). The length of time during which a return must be calculated is up to 60 percent of the payment period. Students withdrawing prior to 60 percent of the payment period may be required to return disbursed funds not earned. Additionally, students who do not successfully complete courses for the semester may be considered unofficially withdrawn and may be subject to a return calculation or all disbursed funds being returned if attendance cannot be documented. Eligibility for state and institutional funds may also be impacted by withdrawing from the University.

Drops and withdrawals are considered unsuccessfully completed coursework when determining Satisfactory Academic Progress (http://financialaid.tamu.edu/Undergraduate/Maintaining-Eligibility/) (SAP) and will impact completion rate.

Allocating Returned Title IV (Federal Aid)
Funds that are returned to the federal government due to student withdrawal are used to reduce the outstanding balances in individual federal programs.

Financial aid returned (by the University and/or the student or parent) must be allocated in the following order:

1. Unsubsidized Federal Direct Loan
2. Subsidized Federal Direct Loan
3. Federal Perkins Loan
4. Direct Graduate Plus (Student) Loan
5. Federal Direct PLUS (Parent) Loan
6. Federal Pell Grant
7. Federal Supplemental Educational Opportunity Grant (FSEOG)
8. TEACH Grant
9. Other federal loan or grant assistance
10. Other state or institutional financial aid programs

State and institutional aid awards will be calculated using the same percentage proration used by Student Business Services to determine the amount of tuition and fees to be charged to a withdrawn student.

Additionally, students who do not successfully complete courses for the semester may be considered unofficially withdrawn and may be subject to a return calculation if attendance cannot be documented.

Unclaimed Refunds
According to federal law, the university is required to return Title IV funds that have not been claimed (i.e., refund check that has not been cashed) within 240 days of issue. These funds will be returned to the appropriate federal financial aid program.

Rebates
Tuition Rebates After Graduation
Certain undergraduate students who attempt no more than three hours in excess of the minimum number of semester credit hours required to complete the degree under the catalog under which they were graduated may be entitled to a $1,000 tuition rebate after graduation. Several conditions apply and students must meet all of the specified criteria. If you wish to try and qualify for this program, please see the Office of the Registrar (http://registrar.tamu.edu) website for a complete set of student and institutional responsibilities and other criteria.

Financial Assistance and Scholarships
The mission of Scholarships & Financial Aid is to provide students with information and financial resources to attend Texas A&M University along with support programs that promote higher education and developmental opportunities. As a part of this commitment, we strive to provide financial solutions to students at all income levels and with varying academic, merit, and leadership qualifications.

The need-based financial assistance program is designed for students who have a demonstrated financial need, as defined by the Free Application for Federal Student Aid (FAFSA) or other applicable application, in order to assist students in paying college expenses. All financial aid is contingent upon student enrollment and making Satisfactory Academic Progress (SAP), as defined by Scholarships & Financial Aid or the specific aid program.

Financial aid is available in two forms: Gift Aid and Self-help.

<table>
<thead>
<tr>
<th>Gift Aid</th>
<th>Self-Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grants (Federal, State, Institutional)</td>
<td>Loans (Federal, State, Institutional, Alternative)</td>
</tr>
<tr>
<td>Scholarships</td>
<td>Student Employment (Work Study, Part-time Employment, Internships, Assistantships)</td>
</tr>
</tbody>
</table>

Non-resident Tuition Waivers
Texas A&M University’s packaging philosophy for need-based financial aid is to provide the greatest amount of gift aid to those students with the highest demonstrated need and to keep loan liability to a minimum. Financial aid is awarded on a first-come, first-served basis based on priority dates published on financialaid.tamu.edu (http://financialaid.tamu.edu/).

To apply for financial assistance, an eligible student must submit a Free Application for Federal Student Aid (FAFSA). The FAFSA becomes available on October 1st each year for the next academic year. Students are encouraged to submit their FAFSA online at https://fafsa.gov as
soon as possible. Students who do not meet the citizenship eligibility requirements to complete the FAFSA may be eligible to submit the Texas Application for State Financial Aid (TASFA) or the International Student Financial Aid Application (ISFAA). Only students who have been accepted for enrollment, have a FAFSA or other financial aid application on file, and have submitted all requested documentation to Scholarships & Financial Aid will be sent a financial aid offer. Award offers for incoming students beginning in the Fall semester are made early in the preceding Spring semester. Award offers for incoming students beginning in the Spring semester are made late in the preceding Fall semester. Award offers to continuing students for the upcoming academic year are made after Spring semester grades have been submitted. Summer financial assistance is offered to students with a FAFSA on file who enroll at least half-time in summer coursework at Texas A&M.

Financial aid offers are made based on the assumption that students will enroll full-time in the Fall and Spring semesters. Cost of attendance and awards will be adjusted for students who are enrolled less than full-time at Texas A&M University or through the Texas A&M-Blinn TEAM Program, the Texas A&M Engineering Academy at Blinn-Bryan, or another approved consortium program. Students may only receive federal financial aid for eligible courses that count towards the program of study. State and Institutional Aid are not subject to the same regulatory restrictions. However, the cost of attendance for students will be reduced for courses that are not counting to the program of study, which can result in a lower amount of state and institutional aid a student could receive. Financial aid awards may also be adjusted if a student does not begin attendance in all courses in which he or she is registered.

Student inquiries may be directed to:

Scholarships & Financial Aid
Texas A&M University
P. O. Box 30016
College Station, TX 77842-3016
(979) 845-3236
financialaid@tamu.edu
http://financialaid.tamu.edu
FAFSA School Code 003632

Please visit our website (http://financialaid.tamu.edu) for the most current information on financial aid applications, programs, and any associated deadlines.

Grants
The Federal Pell Grant is available to undergraduate students who have not received a baccalaureate degree and who have demonstrated financial need as determined by the FAFSA. The Federal Pell Grant provides a foundation of financial assistance to which aid from other sources may be added.

The Federal Supplemental Educational Opportunity Grant (FSEOG), and the Texas Public Education Grant (TPEG) are available to students, provided the results of their financial aid application show evidence of financial need and funds are available. These funds are awarded on a first-come, first-served basis.

The Towards EXcellence, Access and Success (TEXAS) grant is available to eligible Texas residents who have requisite levels of financial need according to the FAFSA and have met the remaining program criteria (http://financialaid.tamu.edu/Undergraduate/Types-of-Aid/#0-TEXASGrant); it is also subject to funds availability and eligibility guidelines as defined by the Texas Higher Education Coordinating Board.

Additionally, Texas A&M University provides institutional grant aid to eligible students to assist with educational expenses. Student grants are subject to fund availability and may be single-year or multi-year awards.

Student Part-Time Employment
The Student Employment Office in Scholarships & Financial Aid coordinates student part-time employment, both off- and on-campus in the Bryan/College Station area. Students may visit the online job database. Work Study, assistantships and other part-time positions are posted. Students secure their own employment through job referrals provided by Scholarships & Financial Aid or through their own initiative. Employment advising is available to students who have not had previous job seeking experience.

On-campus student employees are paid minimum wage or higher and are paid bi-weekly along with regular University employees. University student employees are not eligible for paid holidays, retirement, vacation, nor sick leave.

Professional development workshops are available for student employees and supervisors of student employees. These free workshops include topics ranging from communication skills to preventing sexual harassment in the workplace and from customer service to workplace etiquette. For more information or to register, please visit the Jobs for Aggies website (http://jobsforaggies.tamu.edu) or call (979) 845-0686.

The Federal/Texas College Work Study Programs
Federal and state programs provide part-time employment for U.S. citizens, permanent residents and eligible non-citizens, within fund limitations, who have an established financial need and desire on-campus employment.

To qualify for the Federal/Texas College Work Study Programs, a student must have submitted a financial aid application, have financial need, be eligible to work in the United States, be enrolled at least half-time or accepted for enrollment and be making Satisfactory Academic Progress if enrolled.

The Community Service Program allows students who qualify for the Federal Work Study Program to work part-time with participating local non-profit, governmental and community-based organizations. This program is designed to improve the quality of life for community residents, particularly low-income individuals, or to solve problems related to community needs.

The Texas A&M University Reads and Counts program is a partner of the national Every Student Succeeds Act (established initially as a part of the No Child Left Behind initiative). It is based on the philosophy that children are our nation’s greatest asset. It calls all Americans to support teachers and help ensure that every child can read well by the end of the third grade. Eligible and dedicated college students are called to serve as reading and math tutors, as well as mentors and role models for area elementary and middle school students.

All Work Study students are paid minimum wage or higher, work an average of 20 hours per week, and are not eligible for paid holidays, retirement, vacation, nor sick leave. For more information on Federal/ Texas College Work Study, the Community Service Program, or Texas A&M University Reads and Counts, visit the Student Employment Office on the second floor of the Pavilion or the Jobs for Aggies website (http://jobsforaggies.tamu.edu).
Loan Programs
The Federal Direct Loan Programs are available to students who have submitted a FAFSA. Students will be notified of their eligibility for the Direct Loan program(s) through a financial aid offer.

Students and parents seeking the Parent Loan for Undergraduate Students (PLUS) may obtain information from the financial aid website (http://financialaid.tamu.edu). This program requires the FAFSA to be on file with Scholarships & Financial Aid.

Short-term loans are available to provide assistance to students who experience temporary financial difficulties with educationally related expenses. Funding for this program is provided by The Association of Former Students, the Class of 1926 and other University resources. This program is not intended to provide long-term assistance or to replace other assistance available through Scholarships & Financial Aid. Students must be degree-seeking and enrolled at least half-time to be eligible for short-term loans.

The Emergency Tuition and Required Fees loan program is available to help students pay their Texas A&M University tuition and required fees. The loan is applied directly to the student's tuition and fee account.

Please refer to our website (http://financialaid.tamu.edu) for detailed information on all of the aforementioned programs and more.

The Money Education (ME) Center

The Money Education (ME) Center provides Aggies with the education and resources they need to make smarter personal finance decisions during college so that they can lay a foundation of financial success for a lifetime. Through the following resources, the ME Center teaches Aggies about budgeting, saving and banking, building and protecting credit, investing, buying a car and home, and more. The ME Center offers the following services and resources:

- Foundations of Money Education Course (AGEC 235)
- Scheduled Appointments
- Walk-in Advising
- Scheduled Presentations
- Class Presentations
- Student Group Presentations
- Resource Tables
- Online Resources

To learn more about these free resources, visit money.tamu.edu (http://money.tamu.edu/) or contact money@tamu.edu.

Scholarships

College/Departmental Level Scholarships
A number of colleges and departments at the University award scholarships to students interested in particular major fields of study on the basis of academic record, service, activities, and demonstrated leadership. The value of the awards vary, and the term of scholarships range from one to four years. Awarding college and department select recipients based upon criteria. Completed scholarship applications must be received no later than specified deadlines. Awards are typically announced mid-spring for the following academic year. For more information, please visit https://u.tamu.edu/CollegeDepartmentScholarships (https://u.tamu.edu/CollegeDepartmentScholarships/)

Incoming Freshmen Scholarship Programs

Opportunity Awards are awarded to freshmen based on academic achievement, leadership ability, extracurricular participation, and, in some cases, financial need.

Achievement Scholarships are available to incoming freshmen who attended and graduated from targeted high schools in the State of Texas. Scholarships include the President’s Achievement Scholarship and Century Scholars. Awards are based on academic achievement, leadership ability, and extracurricular participation.

Academic Scholarships are available to incoming freshmen who achieve a minimum SAT/ACT score eligibility requirements. Scholarships include the President’s Endowed Scholarship, Lechner Scholarship, and McFadden Scholarship. Awards are based on academic achievement, leadership ability, and extracurricular participation.

For more information on Freshman Scholarships, visit https://uwide.tamu.edu

Continuing Student Scholarships

The University Scholarship Application is available to students with at least one semester completed at Texas A&M. Awards range in value from $500 to $1,500 and are available to undergraduate, graduate, and professional students currently enrolled at Texas A&M. Some awards are limited to certain fields of study and to individuals who have attained a necessary academic classification, while others are unrestricted. Awards are made to outstanding students based on a combination of academic achievement, campus/community involvement, campus leadership roles, and, for some scholarships, financial need. In addition to scholarships offered through the Scholarships & Financial Aid office, many colleges, departments, the Corps of Cadets, and the Texas A&M Foundation use the University Scholarship Application for award consideration. Students are encouraged to complete the University Scholarship Application beginning in October. The deadline for submitting applications is February 1, prior to the academic year for which the student will be awarded.

For more information on Continuing Student Scholarships, visit http://sfaid.tamu.edu/uwideapp/

Transfer Student Scholarships

Aggie Transfer Student scholarships are designed to recognize outstanding students who transfer to Texas A&M University. Scholarships are awarded based on a combination of academic achievement, extracurricular activities, campus involvement at their current institution, leadership, major and, in some instances, financial need. In addition to scholarships offered through the Scholarships & Financial Aid office, many colleges, departments, the Corps of Cadets, and the Texas A&M Foundation use the transfer scholarship application for award consideration.

For more on Transfer Student Scholarships, visit https://u.tamu.edu/TransferScholarships (https://u.tamu.edu/TransferScholarships/)

Scholarship Recipients and Non-Resident Tuition Waivers
The Non-Resident Tuition Waiver for Competitive Scholarship Recipients, authorized under the Texas Education, is an optional waiver that institutions can implement. An eligible non-resident student who holds a competitive academic scholarship of a specified minimum dollar amount for the academic year or summer for which the student is enrolled may be
eligible to pay the fees and charges required of Texas residents without regard to the length of time the student has resided in Texas. The student must have competed with other students, including Texas residents, for the scholarship and the scholarship must be awarded by a Texas A&M University college or departmental scholarship committee or university representative.

More information is available at https://u.tamu.edu/NonResScholarshipWaiver (https://u.tamu.edu/NonResScholarshipWaiver/)

For additional information on scholarships, please visit https://scholarships.tamu.edu/ or email scholarships@tamu.edu.
UNIVERSITY POLICIES

Aggie Honor Code (p. 110)

Intellectual Property (p. 110)

Responsible Conduct of Research (p. 110)

Student Grievances and Appeals Procedures (p. 111)

University Statement for Individuals with Disabilities (p. 111)

University Statement on Harassment and Discrimination (p. 112)

University Student Rules (p. 112)

Aggie Honor Code

Integrity is a fundamental core value of Texas A&M University. Academic integrity requires a commitment by all faculty, students, and administrators to:

- Remain constantly focused on the quality of the academic programs;
- Achieve and maintain academic excellence in all courses and programs to assure the value of Texas A&M University degrees;
- Demand high academic standards from all members of the Aggie community.

All Texas A&M University students, graduate and undergraduate, part-time or full-time, in residence or in distance education, are expected to follow the guiding rule of the Aggie Honor Code:

"An Aggie does not lie, cheat, or steal or tolerate those who do."

Upon accepting admission to Texas A&M University or one of its branch campuses, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System. A student will be required to state his/her commitment on examinations, research papers, and other academic work. Ignorance of the rules does not exclude any member of the Texas A&M community from the requirements or the processes of the Honor System.

The Honor System Office is charged with promotion of the honor code and administration of academic misconduct cases. The Honor Council, comprised of students and faculty from colleges and offices across the University, will investigate all such infractions of the honor code and recommend appropriate sanctions. The website, http://aggiehonor.tamu.edu, defines the types of infractions and the possible consequences. Students are urged to review this information.

In addition to adherence to the Honor Code, a student (graduate students in particular) who is completing a thesis, record of study, dissertation, and publication may fall under the additional federal requirements promulgated by the Office of Research Integrity (Scientific Misconduct Regulations — 42 CFR part 50), as well as Texas A&M System Regulations and Texas A&M University Rules (Texas A&M System Regulations — Ethics in Research, Scholarship and Creative Work — 15.99.03 (https://www.tamus.edu/legal/policy/policy-and-regulation-library/), and Texas A&M University rules and standard administrative procedures — Responsible Conduct in Research and Scholarship — 15.99.03.M1, 15.99.03. M1.01-06 (http://rules-saps.tamu.edu/TAMURulesAndSAPs.aspx#15)).

Contact information for each campus can be found at the following:

- Texas A&M University website - http://aggiehonor.tamu.edu
- Texas A&M at Galveston website - http://www.tamug.edu/honor system (http://www.tamug.edu/honorsystem/)
- Texas A&M at Qatar website - https://www.qatar.tamu.edu/students/academic-services/aggie-honor-system (https://www.qatar.tamu.edu/students/academic-services/aggie-honor-system/)

Intellectual Property

The ownership, management and commercialization of system-owned Intellectual Property and Tangible Research Property are set forth in System Policy 17.01 Intellectual Property Management and Commercialization. Intellectual Property will mean, collectively, all forms of intellectual property including, but not limited to, issued patents, patentable inventions, copyrightable works, trademarks, mask works, and trade secrets. The system recognizes and affirms the traditional academic freedom of its faculty and staff to publish pedagogical, scholarly or artistic works without restriction. In keeping with this philosophy, the system does not claim copyright to pedagogical, scholarly or artistic works, regardless of their form of expression, unless required by a funding or research contract. Such works include, but are not limited to, copyrightable works of students created in the course of their education, such as dissertations, papers and journal articles. Authors of copyrightable works that are not owned by the system, its members, or another party such as a research sponsor, own the copyright in their works and are free to publish them, register the copyright, and receive any revenues which may result.

Accordingly, copyrightable works may be owned by the student/author/creator, by multiple individuals (such as a research team or co-authors of a publication), by the System, by a System member, or by another party such as a research sponsor. Factors that require consideration in determining ownership include:

1. whether or not the intellectual property was conceived or developed as a result of activities related to an individual's employment responsibilities and/or with support from University-administered funds, facilities or personnel;
2. whether or not the intellectual property was conceived or developed in the course of, or resulting from, research supported by a grant or contract with the federal government or state government or a nonprofit or for-profit nongovernmental entity; and,
3. the individual collaborators, relative contributions of each individual, and agreements among creators of the work.

It is required that the student identify in the thesis, dissertation or record of study any collaborators, contributors, and sources of financial support (unless prohibited through contractual agreements) in carrying out the research or in publications presented in the thesis/dissertation/record of study. It is also required that the student clearly indicate what the student’s independent contributions were to the work. The advisory committee is responsible for ensuring that the student’s independent contribution is sufficient to represent a thesis, dissertation, or record of study.

Responsible Conduct of Research

Students who will be involved in research involving human subjects (e.g., survey data; human tissue/cell lines, protected health information), animals (e.g., vertebrate animals, animal tissues/cell lines), and/or
biosafety/biohazards (e.g., recombinant DNA/transgenic animals, plants; agents infectious to humans, animals or plants) should obtain approval through the appropriate university committee (or be included in existing research approvals) prior to engaging in the research. Engaging in unauthorized research can result in severe penalties for non-compliance. All students are urged to complete responsible conduct of research training early in their programs to support their efforts in conducting research responsibly and ethically.

Additional information, as well as online training, may be obtained from the office of Research Compliance and office of Biosafety at http://rcb.tamu.edu (http://rcb.tamu.edu/).

Student Grievances and Appeals Procedures

Specific procedures at Texas A&M University allow students to pursue a grievance for any of the problems, issues, or concerns listed in the table below. **BEFORE** initiating a grievance, students are strongly encouraged to seek clarification and advice regarding appropriate procedures. The Office of the Associate Provost for Undergraduate Studies provides Undergraduate Ombuds services (p. 89) to assist students, faculty, staff, and administrators with resolving academic conflicts on an informal and confidential basis. These are valuable resources for questions regarding grievances and appeals.

<table>
<thead>
<tr>
<th>Type of Grievance/Issue</th>
<th>A&M Student Rule</th>
<th>University Panel Handling Appeals</th>
<th>Appeals Panel Preliminary and Formal Resolution Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrimination and Discrimination Appeals</td>
<td>45 (http://student-rules.tamu.edu/rule45/)</td>
<td>See SAP 08.01.01.M1 (http://rules.saps.tamu.edu/PDFs/08.01.01.M1.pdf)</td>
<td>56 (http://student-rules.tamu.edu/rule56/)</td>
</tr>
<tr>
<td>Disability Accommodations in Academic Programs</td>
<td>46 (http://student-rules.tamu.edu/rule46/)</td>
<td>See SAP 08.01.01.M1 (http://rules.saps.tamu.edu/PDFs/08.01.01.M1.pdf)</td>
<td>56 (http://student-rules.tamu.edu/rule56/)</td>
</tr>
<tr>
<td>Sexual Harassment, Sexual Violence, Dating Violence, Domestic Violence, and/or Stalking</td>
<td>47 (http://student-rules.tamu.edu/rule47/)</td>
<td>See SAP 08.01.01.M1 (http://rules.saps.tamu.edu/PDFs/08.01.01.M1.pdf)</td>
<td>58 (http://student-rules.tamu.edu/rule58/)</td>
</tr>
<tr>
<td>Grade Disputes</td>
<td>48 (http://student-rules.tamu.edu/rule48/)</td>
<td>Undergraduate Academic Appeals Panel</td>
<td>57 (http://student-rules.tamu.edu/rule57/)</td>
</tr>
<tr>
<td>Unexcused Absences</td>
<td>49 (http://student-rules.tamu.edu/rule49/)</td>
<td>Undergraduate Academic Appeals Panel</td>
<td>57 (http://student-rules.tamu.edu/rule57/)</td>
</tr>
<tr>
<td>Academic Suspension and Blocks</td>
<td>50 (http://student-rules.tamu.edu/rule50/)</td>
<td>Undergraduate Academic Appeals Panel</td>
<td>57 (http://student-rules.tamu.edu/rule57/)</td>
</tr>
<tr>
<td>Student Conduct Separation and Appeal</td>
<td>51 (http://student-rules.tamu.edu/rule51/)</td>
<td>University Disciplinary Panel</td>
<td>58 (http://student-rules.tamu.edu/rule58/)</td>
</tr>
<tr>
<td>Academic Misconduct</td>
<td>52 (http://student-rules.tamu.edu/rule52/)</td>
<td>Aggie Honor System Office</td>
<td>http://aggiehonor.tamu.edu</td>
</tr>
<tr>
<td>Financial Assessments by the University</td>
<td>54 (http://student-rules.tamu.edu/rule54/)</td>
<td>Head of Department or Unit Involved</td>
<td>Student Fiscal Appeal Process (https://sbs.tamu.edu/accounts-billing/student-information/appeal-process/)</td>
</tr>
<tr>
<td>Parking Citations</td>
<td>55 (http://student-rules.tamu.edu/rule55/)</td>
<td>Student Parking Appeals Board</td>
<td>http://transport.tamu.edu/Parking/appeal.aspx</td>
</tr>
</tbody>
</table>

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

University Statement for Individuals with Disabilities

Texas A&M University (TAMU) is committed to maintaining an accessible campus community and providing reasonable accommodations to qualified students, faculty, staff and visitors, including making its web sites accessible and usable. TAMU does not discriminate on the basis of an individual’s disability and complies with Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) as amended.

Students are protected from discrimination regarding access to and participation in TAMU’s programs and activities. TAMU provides academic adjustments and auxiliary aids to accommodate needs of students with disabilities, as defined under the law, who are otherwise qualified to meet the institution’s academic requirements.

Students with disabilities who would like to request accommodations may contact the following:

- TAMU, Texas A&M Health's (TAMH) College of Nursing, Irma Lerma Rangel College of Pharmacy College Station, College of Medicine, and School of Public Health should contact Disability Resources (979) 845-1637 or disability@tamu.edu.
- TAMH College of Dentistry should contact the Office of Academic Affairs (214) 828-8978 or bramsey@tamu.edu to request accommodations.
- TAMU School of Law should contact the Office of Student Affairs at (817) 212-4020 to request accommodations.
- TAMH Irma Lerma Rangel College of Pharmacy in Kingsville should contact the Disability Resource Center at TAMU at Kingsville at (361) 593-3024 to request accommodations.
- TAMU at Galveston (TAMUG) should contact Counseling and Career Services at (409) 740-4736 or studentservices@tamu.edu.
University Policies

• TAMU at Qatar (TAMUQ) should contact the campus psychologist, Dr. Steve Wilson +974-4423-0047 or stephen.wilson@qatar.tamu.edu.

Students with a disability who believe they have experienced discrimination may contact Kevin McGinnis, Chief Risk, Ethics, and Compliance Officer, at the J. K. Williams Building, Suite 302, College Station, TX 77843, civilrights@tamu.edu, or at (979) 458-0308. Students can also contact the TAMU ADA Coordinator at ADA.Coordinator@tamu.edu or (979) 845-8115, or any of the following campus contacts:

• TAMU, TAMU School of Law, and TAMH locations should contact the ADA Coordinator at (979) 845-8115 or ADA.Coordinator@tamu.edu.

• TAMUG should contact the ADA Coordinator at (409) 740-4503 or boyerj@tamug.edu.

• TAMUQ should contact Miguel Trevino at +974-4423-0317 or miguel.trevino@qatar.tamu.edu.

For more information about disability accommodations, see TAMU Student Rule 46, Disability Accommodations in Academic Programs (http://student-rules.tamu.edu/rule46/) or TAMUG Student Rule 46, Disability Accommodations in Academic Programs (http://www.tamug.edu/studentrules/Student_Grievance_Procedures/46_Disability_Accommodations.html).

University Statement on Harassment and Discrimination

Texas A&M University is committed to providing a safe and non-discriminatory learning, living, and working environment for all members of the University community. The University provides equal opportunity to all employees, students, applicants for employment or admission, and the public regardless of race, color, sex, religion, national origin, age, disability, genetic information, veteran status, sexual orientation, or gender identity. Texas A&M University will promptly investigate and resolve all complaints of discrimination, harassment (including sexual harassment), and related retaliation in accordance with applicable federal and state laws and University rules and standard administrative procedures.

The University’s response to allegations of discrimination, harassment, and related retaliation will be 1) prompt and equitable; 2) intended to prevent the recurrence of any discrimination, harassment or retaliation; and 3) intended to remedy its discriminatory effects, as appropriate. A substantiated allegation of such conduct will result in disciplinary action, up to and including separation from the University. The University’s student sanctioning guidance for substantiated allegations of discrimination on the basis of sex, including sexual harassment, sexual violence and related retaliation, can be found here: Title IX Cumulative Sanctioning Matrix (https://urc.tamu.edu/media/1601574/title-ix-sanctioning-matrices-august-2018.pdf).

Students who have questions or believe they have experienced discrimination, harassment, sexual violence, and/or related retaliation are encouraged to contact Kevin McGinnis, Chief Risk, Ethics, and Compliance Officer, at the J. K. Williams Building, Suite 302, College Station, TX 77843. He may be contacted at civilrights@tamu.edu or at (979) 458-0308.

In addition, any report can be submitted to Jennifer Smith, Title IX Officer, at the Medical Sciences Library, Suite 007, College Station, TX 77843. Her telephone number is: (979) 458-8167 and email address is civilrights@tamu.edu. Such reports will be immediately forwarded to the Chief Risk, Ethics, and Compliance Officer for investigation and resolution. The Title IX website can be found at http://urc.tamu.edu/title-ix/.

To report incidents, request accommodations, or inquire about discrimination based on disability, you may contact Peggy Zapalac, ADA Coordinator, at (979) 845-8115 or ADA.Coordinator@tamu.edu. The office address is 750 Agronomy Road, Suite 2101, College Station, TX 77843 or see the ADA website at https://urc.tamu.edu/ada/). Reported allegations of discrimination will be immediately forwarded to the Chief Risk, Ethics, and Compliance Officer for investigation and resolution.

University Student Rules

Each student enrolled at Texas A&M University is responsible for being fully acquainted with and complying with the Texas A&M University Student Rules. Specific rules, information and procedures may be found in publications pertaining to each particular service or department. Students are encouraged to reference the website at http://student-rules.tamu.edu (http://student-rules.tamu.edu/) for current published rules and regulations.

For information concerning federal and state policies, please reference the appendices (p. 1299) in this catalog.
INTERNATIONAL OPPORTUNITIES FOR STUDENTS

Education Abroad

http://abroad.tamu.edu (http://abroad.tamu.edu/)

Texas A&M University is committed to providing access to high impact international opportunities for all students. The ability to engage successfully across cultures and the development of international leadership skills and global awareness are crucial for success as graduates enter the work force and commit to lifelong learning.

Texas A&M Education Abroad provides access for all Texas A&M students to a broad range of transformational and international experiences lasting from one week to an academic year. Last year, over 5,800 students participated in study, intern, volunteer, and research opportunities in over 100 different countries. Our office also contributes to the development of on-campus experiences that foster cultural awareness.

Students are encouraged to visit Education Abroad, located on the 1st floor of the Pavilion, any weekday from 8 am – 5 pm for additional information. It is also important to consult with your academic advisor to identify courses to take abroad.

Faculty-led and Field Trip Programs

Programs led by a Texas A&M faculty member designed around specific A&M courses. To find the most recent offerings, visit http://abroad.tamu.edu/Program-Types/Faculty-led (http://abroad.tamu.edu/Program-Types/Faculty-led/).

Exchange Programs

Pay tuition at Texas A&M but “switch places” with counterparts at one of our foreign partner universities. Students can learn more about our exchange partners at http://abroad.tamu.edu/Program-Types/Exchange (http://abroad.tamu.edu/Program-Types/Exchange/).

Affiliate Provider Programs

Pursue a study, intern, volunteer, or research program through one of our third-party affiliate providers. Learn more at http://abroad.tamu.edu/Program-Types/Affiliate-Provider-Programs (http://abroad.tamu.edu/Program-Types/Affiliate-Provider-Programs/).

Intern and Volunteer

Students have a variety of options for credit or non-credit intern or volunteer abroad programs through Texas A&M offices and student organizations as well as third-party affiliate providers. Visit Education Abroad to learn more.

Research and Conferences

Texas A&M faculty engage in research around the world. Students who join faculty to research overseas, who develop independent research opportunities, or attend conferences, must also register with Education Abroad. Learn more at http://abroad.tamu.edu/Program-Types/Independent-Travel (http://abroad.tamu.edu/Program-Types/Independent-Travel/).

Other Opportunities

Students going abroad on a program not organized by a Texas A&M office or department or through an affiliate provider must complete the Independent Travel Registration (http://abroad.tamu.edu/Program-Types/Independent-Travel/) if one or more of the following applies:

• Receiving credit (TAMU or transfer) for the experience
• Receiving any support from a TAMU entity (e.g. funding or arranging experience)
• Satisfying a degree or graduation requirement (e.g. thesis or dissertation research)
• Representing Texas A&M University in any way

Funding to Go Abroad

Federal and other financial aid may be adjusted to accommodate for extra costs associated with credit-bearing international experiences. Students interested in exploring funding options should discuss this with your academic department, your education abroad advisor, and Scholarships & Financial Aid. Learn about funding available through Texas A&M, locally and nationally, and from affiliate providers at http://abroad.tamu.edu/Funding (http://abroad.tamu.edu/Funding/).

University Locations Abroad

Texas A&M has a research and education center in Costa Rica as well as a campus in Qatar.

The Soltis Center for Research and Education in north-central Costa Rica was established in January 2009 to support research, education, and outreach throughout Central America. The unique physical and cultural setting of the center provides students and faculty with research and educational opportunities in tropical ecology, civil engineering, ecosystem sciences, geosciences, public and rural health and agricultural economics.

Texas A&M’s branch campus in Qatar, part of the 2,500-acre multi-institutional campus known as Education City formally opened on September 7, 2003. Texas A&M University at Qatar is fully funded by the Qatar Foundation for Education, Science, and Community Development and provides a unique opportunity for the University to expand its international presence and provide educational and research opportunities for all faculty and students. Learn more at http://qatar.tamu.edu (http://qatar.tamu.edu/).

On Campus Engagement

Students don’t have to go abroad to take advantage of international opportunities offered by Texas A&M. Students who remain on campus are encouraged to participate in many options available including the following:

• Center for International Business Studies (http://cibs.tamu.edu/)
• Corps Global Leadership Initiatives (http://corps.tamu.edu/global/)
• Halliburton Engineering Global Programs (http://engineering.tamu.edu/global/)
• MSC L.T. Jordan Institute for International Awareness (http://ltjordan.tamu.edu/)
• MSC SCONA (http://scona.tamu.edu/)
• Norman Borlaug Institute for International Agriculture (http://borlaug.tamu.edu/)
• Public Policy Internship Program (http://ppip.tamu.edu/)
• Scowcroft Institute of International Affairs (http://bush.tamu.edu/scowcroft/)
• Student Organizations (http://studentactivities.tamu.edu/app/organization/) – To find internationally focused student organizations, visit http://studentactivities.tamu.edu/app/search/index (http://studentactivities.tamu.edu/app/search/index/) and search international.
• Undergraduate Research (http://ugr.tamu.edu/)

Students should consult their department and college advisers for additional opportunities to engage in global education on or off campus.
HONORS AND UNDERGRADUATE RESEARCH

LAUNCH promotes student success by providing high-impact educational experiences and challenges motivated students in all academic disciplines to pursue an enriched, intellectually-stimulating curriculum. LAUNCH joins the university community in making Texas A&M a welcoming environment for all individuals. We are committed to helping our students understand the cultures that set us apart and appreciate the values that bring us together.

Undergraduate Research

LAUNCH: Undergraduate Research promotes, coordinates, creates, and assesses undergraduate programs involving creative scholarship, inquiry, and research in all academic disciplines at Texas A&M. As a recognized “high impact practice,” undergraduate research experiences increase undergraduate student learning and success, not only while students are at Texas A&M, but long after graduation.

In terms of professional and intellectual development, being involved in undergraduate research allows students to participate in a scholarly community of students with common interests, to learn more about their future professional field, and to develop a close working relationship with acclaimed faculty. Research experiences make students more competitive for scholarships, internships, jobs, international opportunities, and admission to top graduate and professional programs. Perhaps most importantly, engaging in undergraduate research allows students to experience the excitement of working collaboratively to create new knowledge, solve cutting-edge problems, and communicate more effectively—life skills that are increasingly valued in our world.

Campus-wide programs coordinated by LAUNCH: Undergraduate Research include the Undergraduate Research Scholars program, the Undergraduate Research Ambassadors, and the publication of Explorations: the Texas A&M Undergraduate Journal. The office offers workshops for undergraduate students on getting started in research, finding summer research opportunities, developing research presentations, and organizing thesis writing, as well as workshops for faculty and graduate students on mentoring undergraduate researchers. LAUNCH: Undergraduate Research also works with groups across campus to promote and facilitate activities that support undergraduate research opportunities, such as Summer Undergraduate Research Experiences, National Science Foundation Research Experiences for Undergraduates (REU) programs, the LAUNCH Undergraduate Research Expo, and the LAUNCH Undergraduate Research Scholars Symposium. Lastly, the office provides assistance for developing externally-funded proposals and implementation of funded projects that have undergraduate research involvement, such as National Science Foundation REU, Beckman Scholars, and Howard Hughes Medical Institute Education grants.

Undergraduate Research Scholars Program

Any junior or senior student with a cumulative Texas A&M GPA of 3.0 or above may apply to the Undergraduate Research Scholars (http://ugr.tamu.edu/UGR/UGRS/) program. Groups of at least two students collaborating as a team on a single project may also apply. The Research Scholars program requires independent research during the Fall and Spring semesters supervised by a faculty advisor that culminates in a scholarly product. The scholarly product may be a research thesis, an accepted article in a professional journal, an exhibit, a performance, or other product as determined by the faculty advisor in collaboration with the LAUNCH: Undergraduate Research Office. Participants are selected for this program based on the quality of their project proposals and their academic records.

Explorations: The Texas A&M Undergraduate Journal

Explorations is an interdisciplinary, student-led journal guided by faculty and administrators that selects and publishes student-authored research, scholarly, and creative pieces of general interest in any area. Explorations is composed of an executive board, editorial board, as well as a marketing and design team made of students that work to accomplish the many facets of editing, publishing, and marketing the journal while representing departmental diversity, critical thought, and creativity. The call for new board members is early in the fall semester each year.

The call for submissions begins in the fall semester and extends into the early spring semester. Manuscripts are submitted in a two-stage process: first, synopses of prospective manuscripts are reviewed by faculty-student teams; second, full-length manuscripts are evaluated in another round of peer review. All authors of accepted pieces are paired with student board members who provide editorial assistance and formatting guidance. Additionally, the Explorations Board extends a call for cover art submissions based on one of the accepted pieces for each volume. Every fall Explorations hosts a journal release event to recognize all who were involved in the making of the latest volume.

Acceptance to the journal is highly competitive—less than 20% of submitted synopses result in published articles. Recently published articles cover a wide range of academic fields: music, creative poetry, forensics, cancer biology, astrophysics, nanomedicine, computer algorithms, business, geosciences, sociology, aerospace engineering, and cultural anthropology. To review recent volumes and to find upcoming deadlines, visit explorations.tamu.edu (http://explorations.tamu.edu/).

Undergraduate Research Ambassadors

Undergraduate Research Ambassadors represent LAUNCH: Undergraduate Research at research, recruiting, and outreach events. Juniors or seniors with an extensive background in research, a GPA of 3.0 or higher, outstanding oral communication skills, and the ability to describe research to a general audience may apply to the program. A cohort of about a dozen Ambassadors are chosen to join existing Ambassadors from multiple disciplines each year. They are trained in presentation and leadership skills and then participate in a variety of activities including meeting with highly-placed members of the University Administration, distinguished faculty, outstanding alumni, prospective students, and parents.

Workshops and Events

LAUNCH: Undergraduate Research offers informational workshops on undergraduate research for undergraduate students, graduate students, and faculty. Additionally, we coordinate numerous public events that celebrate and promote undergraduate research, providing venues for students to present their research projects, for faculty to recruit new student researchers, and for recognition of research efforts by both students and faculty. Workshops and events are publicized through emails, newsletters, and the LAUNCH (http://ugr.tamu.edu/) website.
Grant, Proposal, and Project Assistance

LAUNCH: Undergraduate Research provides a wide variety of support services for undergraduate research programs, proposal development, and implementation. Please contact the office directly for more information.

Other Capstones

LAUNCH: Capstones offers one year Capstone experiences to any junior or senior with a cumulative Texas A&M GPA of 3.0 or above. A listing of capstone options can be found at http://tx.ag/Capstones (http://tx.ag/Capstones/).

The Undergraduate Teacher Scholars program allows students to collaborate closely with a Texas A&M University faculty member to create a one-credit hour seminar or to improve an existing course in collaboration with a faculty expert. The Teacher Scholar will have the opportunity to research, design, and arrange the content of the seminar. The Teacher Scholar will be responsible for the presentation of class material under the supervision of the Texas A&M University supporting faculty member.

The Undergraduate Service Scholars program pairs students with community leaders to develop and carry out projects that benefit the greater community. The Undergraduate Service Scholars capstone allows the student to draw upon their undergraduate education to plan, coordinate, and execute a project aimed at improving the community while learning about issues that affect that community.

The Undergraduate Leadership Scholars program enables student leaders in various organizations to refine their leadership skills and methodologies. In collaboration with their faculty advisor, Undergraduate Leadership Scholars plan and implement improvements to their organization's programming and impact on campus or in the community.

The Undergraduate Performance Scholars program allows students to explore the impact of art on their academic career. Under the supervision of a working artist, students will create a performance project that creatively synthesizes their art and experience.

All capstones require a proposal and timeline, two semesters engaging with the project, supervision by a faculty member or similar expert, a public presentation, regular reflection, and a scholarly project appropriate for the field. Students are selected for participation in these programs based on the quality of their proposals, their academic record and the recommendation of their faculty or community advisor.

Admission to the University Honors Program

Honors Fellows is the university-level Honors distinction offered by the University Honors Program run by LAUNCH: Honors. Students are admitted to the Honors Fellows curriculum on a competitive basis. Incoming freshmen apply as part of their application for admission to the university. Continuing students may apply each spring for entry in the fall prior to completing 60 credit hours at Texas A&M.

Applications are evaluated on the basis of the student's record of academic achievement and demonstrated potential for creativity, intellectual ability, imagination, curiosity, willingness to try new things and self-awareness. Once admitted to the Honors Fellows curriculum, students are designated as “Honors Students” and may then access specific privileges and resources, including additional advising, priority registration, contracting non-honors courses for Honors credit, and enrolling in graduate-level courses for undergraduate Honors credit. Honors Students also receive priority for the Honors Housing Community and advising for competitive national fellowships.

Freshmen admitted to the University Honors Program are required to live in the Honors Housing Community and participate in the Honors first year experience course. To remain in the program, all students (freshman and continuing students) must make progress toward the Honors Fellows distinction and meet minimum co-curricular participation requirements. See the section on Maintaining Honors Status (p. 117).

Honors Fellows Curriculum

To receive the Honors Fellows distinction at graduation, Honors Students must:

- Earn a total of 30 Honors points. Each credit hour of Honors coursework equals 1 point. 21 points must come from Honors courses distributed as follows:
 - Depth: 12 hours in upper-division (300/400-level) courses or graduate courses taken for undergraduate credit
 - Breadth: 9 hours in the Core Curriculum, ICD, or W courses, as specified in the student's catalog
 - Additional honors points to bring the total to 30 points
- Maintain 3.25 GPA in Honors coursework and 3.5 GPA overall (http://registrar.tamu.edu/Transcripts-Grades/How-to-Calculate-GPA/).
- Annually update an ePortfolio
- Practical Application: Complete an Honors Capstone experience (http://honors.tamu.edu/Capstones/).

The University Honors Program works with academic departments across the university to ensure that appropriate Honors courses are offered. Honors courses have limited enrollment and encourage participatory learning. In Honors classrooms, students work closely with many of the University's most acclaimed faculty. Material in Honors courses is intended to provide increased breadth, depth, and complexity, not simply more work or greater difficulty. Honors classes may be special sections of regularly offered courses or courses developed specifically for Honors Students. Students are encouraged to visit regularly with University Honors Program advisors to ensure that their course selection meets both degree and Honors curriculum requirements.

Honors Students are afforded other avenues to earn Honors credit in addition to regularly offered Honors courses. Honors Students may contract for Honors credit or take graduate courses that count toward undergraduate degree requirements. Honors Students should consult with University Honors Program advisors about these opportunities.

Honors Students are expected to annually reflect in an ePortfolio on how their long-term goals are connected to their values and how their education, both in and out of the classroom, is preparing them to meet those goals. For more details, see http://tx.ag/ePortfolio (http://tx.ag/ePortfolio/).

To complete Honors Fellows curriculum requirements, Honors Students must complete a capstone experience. The requirement may be met by engaging an academic research project in the Undergraduate Research Scholars Program, by preparing and teaching a seminar or adding enriching material to an existing course as part of the Undergraduate Teacher Scholars Program, by undertaking a community service project as a participant in the Undergraduate Service Scholars Program, by developing an enhancement project for a student organization through the Undergraduate Leadership Scholars Program, creating an
artistic performance through the Undergraduate Performance Scholars program, or by completing a capstone project designated by their home department that meets expectations described at http://tx.ag/Capstones (http://tx.ag/Capstones/). Students should consult with a University Honors Program advisor in the planning stages to seek approval for their capstone experience.

Honors Students with unique intellectual interests and specific educational goals may also “major” in Honors by pursuing the innovative University Studies – Honors (USHN) degree. Students may combine a range of related academic areas into a coherent degree plan by designating an “area of concentration” in combination with two established minor fields of study. The formulation of the degree plan requires students to conceptually link their course selection to a specific “problem” that will be addressed in a capstone thesis.

Maintaining Honors Status

To remain in the Honors Fellows curriculum, Honors Students must:

1. Maintain a 3.5 cumulative GPA,
2. Maintain a 3.25 GPA in honors coursework,
3. Make progress toward curriculum requirements by taking at least 6 Honors credits per year,
4. Fulfill annual co-curricular participation requirements,
 a. Freshmen: Live in Honors Housing Community (or obtain a waiver) and participate in the Living Learning Program course (UGST 181 Honors Family Meeting), and
 b. Continuing Students: Participate in at least two Honors Student Council events each semester, with at least one designated as academic/intellectual.
 c. All: Prepare or update an ePortfolio on an annual basis.

Honors Students who fail to meet any of these requirements will be given a semester of probation to correct any deficiencies. Honors Students who fail to meet requirements after a semester of probation will be dismissed from the program.

University Scholars

The University Scholars program identifies students who embody academic leadership and enhances the personal, professional and intellectual development of these students.

University Scholars receive a scholarship stipend and participate in a number of development activities, including the University Scholar Exploration Series, which are intimate discussion-based seminars offered on a wide variety of topics. Additionally, University Scholars serve as ambassadors for LAUNCH at Texas A&M University, representing the office at outreach events and in publicity materials.

Each spring semester, eligible freshmen are invited to apply for the University Scholar program. The application process involves an extensive written application and, for the approximately 40 students selected as semi-finalists, an in-depth interview. In the end, approximately 10 students are invited to join the University Scholar program.

Freshmen who meet the eligibility criteria for the program will be contacted via their official Texas A&M University email accounts at the start of the Spring semester. Students with questions about eligibility should contact LAUNCH.

Honors Student Services

Honors students have access to numerous special services and programs. Throughout the academic year, LAUNCH: Honors coordinates recreational and community-building events, lectures and workshops. Honors students are invited to engage in leadership opportunities and contribute to the development of the University Honors Program through Honors Student Council, the University Scholars program, and as members of the Honors Housing Community.

Honors students can take advantage of supplemental advising to help them identify ways to enrich their college experience and complete the requirements for the prestigious Honors Fellows distinction. Throughout their time in the University Honors Program, students are encouraged to take on challenging and enriching experiences such as undergraduate research, study abroad, service learning, capstone experiences, and application to nationally-competitive scholarships and fellowships. This program is uniquely designed to make Honors students good candidates for opportunities coordinated through LAUNCH: National Fellowships. These include scholar programs such as the Rhodes, Truman, and Goldwater Scholarships. They also include other prestigious opportunities such as the Fulbright Program for U.S. Students and the National Science Foundation Graduate Research Fellowship Program.

Information about upcoming opportunities for Honors students appear regularly in our email bulletins (https://listserv.tamu.edu/cgi-bin/wa/?A0=honors-l).

Services for All Students

LAUNCH challenges all motivated and high-achieving Texas A&M students to explore their world, expand their horizons and excel academically. While some services of the office are exclusive to Honors Students, advisors are available to talk with any undergraduate student who is interested in sampling the academic challenge of an Honors course, committing to an undergraduate research project, applying to the University Honors Program or engaging the process of self-discovery entailed in preparation for national fellowships. Students interested in applying to nationally competitive scholarships like the Rhodes, Marshall, Goldwater, and Fulbright U.S. Student Program should visit our list of fellowship opportunities (http://tx.ag/natlFellows/) and make note of instructions for our campus application processes.

Continuing students with a minimum 3.5 cumulative GPA who have not applied or not been accepted to the Honors Fellows program may enroll in honors coursework during their assigned registration time. Students who would like to meet with a University Honors Program advisor may sign up for an appointment through our online appointment system (https://tamucampus.eab.com/https://tamucampus.eab.com/ (http://tx.ag/HonorsAdvising/)). All students interested in the services offered by LAUNCH are encouraged to sign up for the Honors weekly email bulletin.

Graduation with Honors

All Honors courses are designated on a student's transcript demonstrating to future employers or graduate and professional admissions committees that the student has engaged with an enriched, challenging curriculum. Students who complete the Honors Fellows curriculum and/or complete the Undergraduate Research Scholars program have these distinctions noted on their transcripts.

Undergraduates in some academic colleges and departments may pursue additional transcript distinctions (See http://honorsprograms.tamu.edu (http://honorsprograms.tamu.edu/)). These
distinction requirements work in parallel with the Honors Fellows plan but are separate and distinct from the University Honors Program. Many students elect to graduate with multiple distinctions from the university, college, or departmental offerings. In general, all Honors transcript distinctions require that the student complete a substantial body of Honors coursework, hold a minimum cumulative Texas A&M GPA of 3.5, and a cumulative Honors course GPA of 3.25, and meet other program participation requirements. Students are encouraged to work through their college and/or departmental advisor to ensure satisfactory completion of the distinction requirements.

These Honors transcript distinctions are separate and distinct from “Latin Honors” such as *cum laude, summa cum laude* or *magna cum laude* which are conferred by the Office of the Registrar and are based upon cumulative GPA and residency requirements (See http://registrar.tamu.edu/Graduation-Degree-Programs/Graduation-Diplomas/Graduation-with-Honors/).

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.
Transition Academic Programs

Transition Academic Programs (TAP) provides academic advising and administrative support for students transitioning between majors, as well as programming for students transitioning from high school to college. Campus-wide TAP programs include the Texas A&M-Blinn TEAM co-enrollment partnership with Blinn College (TEAM), the Aggie Gateway to Success provisional admission program (Gateway), and the General Studies transitional major.

Academic Advising for Students in Transition

Students in the TEAM and Gateway programs are supported by TAP academic advisors for the length of those programs. Continuing students approved to enter TAP for one semester to qualify for entry to a different degree-granting major are temporarily classified as "General Studies" majors. A TAP academic advisor will help each General Studies student develop a realistic academic plan for transitioning into a specific major and progressing toward timely graduation.

Aggie Gateway to Success

Qualified students are selected for provisional admission by the Office of Admissions to participate in the Aggie Gateway to Success (AGS or Gateway) program as General Studies students. Students participating in this mandatory program are assigned 6 hours of University Core Curriculum courses plus a study skills class during the second summer session (July-August) prior to their first fall semester at Texas A&M University. They participate in peer-mentor led groups and must reside on campus during the summer. Participating students must attend a designated New Student Conference. Gateway students may apply for summer Financial Aid.

Students who pass all assigned summer courses with at least a 2.0 grade point average and no failing grades earn the right to continue as fully admitted students for the fall semester. They gain the opportunity to earn acceptance into any major program for which they meet regular change of curriculum requirements. Gateway students are advised by Transition Academic Programs advisors about the best way to complete these requirements.

The Texas A&M-Blinn TEAM Program

The Texas A&M-Blinn TEAM Program (TEAM) is a collaborative, co-enrollment partnership between Texas A&M University and Blinn College. To be considered for selection to the TEAM program, a prospective student must apply for regular freshman admission and meet all admission criteria. Participating TEAM students enroll in a minimum of 12 total credit hours per semester, divided between Texas A&M and Blinn. TEAM students are able to transition into degree-granting majors at Texas A&M via the change of curriculum process if they satisfy benchmark credit and grade point criteria at both schools, and complete departmental entry requirements. It is sometimes possible for TEAM students to transition to full enrollment at A&M in less than two years. TEAM students are able to access student services and programs on both campuses, to include participation in the Corps of Cadets and Greek Life. They may apply for on-campus housing at A&M, as well as financial aid (based upon their combined credit hours from both schools).

FOCUS Learning Community

FOCUS is a learning community that allows first-year students to discover more about themselves while building a foundation for a successful undergraduate experience. Students who participate in FOCUS are Regents’ Scholarship recipients who are pursuing degrees in the College of Agriculture and Life Sciences, College of Veterinary Medicine and Biomedical Sciences, and the Texas A&M Health Science Center School of Public Health.

As an Office for Student Success First-Generation Learning Community, FOCUS offers first-year Regents’ Scholarship recipients a full-year experience while they build Foundations of Continued Undergraduate Success (FOCUSE). During the first year on campus, FOCUS students delve into connection, achievement, respect and exploration as guiding principles for personal development and individual responsibility in university life. Students meet weekly in one In-FOCUSE Session of FYEX 101 (zero-credit, S/U) each semester and benefit from professional staff guidance, undergraduate Community Leaders, and monthly activities.

FOCUS students are highly encouraged to live in the First Year Eats Living-Learning Program in Clements Hall. Regents’ Scholars register for the program through the Living-Learning Programs application in the Residence Life housing portal during the spring prior to enrolling at Texas A&M University. Students who are not eligible for Regents’ Scholarships may register and request placement on the wait list.

First-generation students who are not Regents’ Scholarship recipients are invited to apply for participation in Ignite. Ignite offers peer mentoring, a weekly seminar, professional guidance and monthly activities as well as participation in the Constellation Living-Learning Program. For information on the Office for Student Success’ First-Generation Learning Communities, please visit http://studentsuccess.tamu.edu/First-Generation/First-Generation-Learning-Communities/.

Undergraduate Studies' units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.
UNIVERSITY STUDIES DEGREES

The University Studies Degree provides students the flexibility to combine areas of study that are of special interest. The combination of courses may not be possible through existing degree plans. This flexibility may be attractive to students who have particular career paths or post-baccalaureate degree paths in mind.

A University Studies Degree consists of a concentration of 21-24 hours and two minors of 15-18 hours each and requires 120 hours for completion. One of the two minors must be completed in a college outside of the college that provides the concentration for the student’s degree. A University Studies major will be considered a student in the college that offers the concentration and will receive academic advising services from that college. The student’s diploma will list Bachelor of Arts or Bachelor of Science in University Studies.

Information on specific University Studies degree programs is listed with individual colleges.

Texas A&M University

- University Studies - BA, Journalism Studies Concentration (p. 565)
- University Studies - BA, Race, Gender, Ethnicity Concentration (p. 655)
- University Studies - BA, Religious Thought, Practices and Cultures Concentration (p. 656)
- University Studies - BA, Society, Ethics and Law Concentration (p. 657)
- University Studies – BS, Arts and Sciences Concentration (p. 751)
- University Studies - BS, Biomedical Sciences Concentration (p. 771)
- University Studies - BS, Business Concentration (p. 303)
- University Studies - BS, Child Professional Services (non-certification program) Concentration (p. 320)
- University Studies - BS, Dance Concentration (p. 343)
- University Studies - BS, Environmental Business Concentration (p. 200)
- University Studies - BS, Geographic Information Science and Technology Concentration (p. 505)
- University Studies - BS, Geography Concentration (p. 506)
- University Studies - BS, Global Arts Planning, Design, and Construction Concentration (p. 257)
- University Studies - BS, Health Humanities Concentration (p. 659)
- University Studies - BS, Leadership Studies Concentration (p. 151)
- University Studies - BS, Liberal Arts Concentration (p. 660)
- University Studies - BS, Mathematics for Business Concentration (p. 753)
- University Studies - BS, Mathematics for Pre-Professionals Concentration (p. 753)
- University Studies - BS, Mathematics for Teaching Concentration (p. 754)
- University Studies - BS, Race, Gender, Ethnicity Concentration (p. 661)

Texas A&M University Galveston Campus

- University Studies - BS, Marine Environmental Law and Policy Concentration (p. 811)
- University Studies - BS, Oceans and One Health Concentration (p. 808)
- University Studies - BS, Tourism and Coastal Community Development Concentration (p. 812)

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.
INTERDISCIPLINARY PROGRAMS

Majors

College of Agriculture and Life Sciences
• Bachelor of Science in Environmental Studies (p. 199)

College of Geosciences
• Bachelor of Science in Environmental Studies (p. 488)

College of Liberal Arts
• Bachelor of Science in Neuroscience, Behavioral and Cognitive Neuroscience Track (p. 639)

College of Science
• Bachelor of Science in Neuroscience, Molecular and Cellular Neuroscience Track (p. 693)

College of Veterinary Medicine and Biomedical Sciences
• Bachelor of Science in Neuroscience, Translational and Preclinical Neuroscience Track (p. 760)

Minors
• Entrepreneurship Minor (p. 121)
• Leadership Minor (p. 152)
• Neuroscience Minor (p. 123)

Certificates
• Neuroscience Certificate (p. 124)

Masters
• Master of Agribusiness in Agribusiness (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/mab/)
• Master of Biotechnology in Biotechnology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/mbiot/)
• Master of Science in Energy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/energy-ms/)
• Master of Science in Genetics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/genetics-ms/)
• Master of Science in Marine Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/marine-biology-ms/)
• Master of Science in Molecular and Environmental Plant Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/molecular-environmental-plant-sciences-ms/)
• Master of Science in Neuroscience (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/neuroscience-ms/)
• Master of Science in Toxicology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/toxicology-ms/)
• Master of Science in Water Management and Hydrological Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/water-management-hydrological-science-ms/)
• Master of Water Management and Hydrological Science in Water Management and Hydrological Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/wmwm/)

Doctoral
• Doctor of Philosophy in Agribusiness and Managerial Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/agribusiness-managerial-economics-phd/)
• Doctor of Philosophy in Ecology and Evolutionary Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/ecology-evolutionary-biology-phd/)
• Doctor of Philosophy in Genetics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/genetics-phd/)
• Doctor of Philosophy in Marine Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/marine-biology-phd/)
• Doctor of Philosophy in Molecular and Environmental Plant Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/molecular-environmental-plant-sciences-ms/)
• Doctor of Philosophy in Neuroscience (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/neuroscience-phd/)
• Doctor of Philosophy in Toxicology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/toxicology-phd/)
• Doctor of Philosophy in Water Management and Hydrological Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/water-management-hydrological-science-phd/)

Entrepreneurship - Minor
The entrepreneurship minor fosters development of a creative, visionary mindset and spirit and prepares students to be opportunity seekers and creators that identify, evaluate, and implement innovative, value-added solutions. The entrepreneurship minor requires a total of 15 credit hours to consist of 6 hours of foundational courses that are common across all clusters plus 6 hours of discipline-specific courses and a 3-hour capstone experience. The minor includes discipline-specific course clusters intended to aid students’ course selection. Course clusters are not restrictive. Students may select courses within a single cluster or across multiple clusters to best meet their interests and professional goals. Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foundational Courses</td>
<td>Select 6 hours from the following:</td>
</tr>
</tbody>
</table>

Texas A&M University 121
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>AGEC 223</td>
<td>Establishing Agribusiness Entrepreneurship Networks I</td>
</tr>
<tr>
<td>AGEC 285</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>AGEC 315</td>
<td>Food and Agricultural Sales</td>
</tr>
<tr>
<td>AGSM 289</td>
<td>Special Topics in... (Faulkner Entrepreneurship Lecture Series)</td>
</tr>
<tr>
<td>BAEN 289</td>
<td>Special Topics in... (Faulkner Entrepreneurship Lecture Series)</td>
</tr>
<tr>
<td>MGMT 470</td>
<td>Entrepreneurial Small Business</td>
</tr>
<tr>
<td>MKTG 322</td>
<td>Consumer Behavior</td>
</tr>
<tr>
<td>MKTG 335</td>
<td>Professional Selling</td>
</tr>
<tr>
<td>MKTG 442</td>
<td>Innovation and Product Management</td>
</tr>
<tr>
<td>SOCI 376/</td>
<td>Entrepreneurial Perspectives</td>
</tr>
<tr>
<td>MGMT 376</td>
<td></td>
</tr>
<tr>
<td>SOCI 476/</td>
<td>Entrepreneurship Practice</td>
</tr>
<tr>
<td>MGMT 476</td>
<td></td>
</tr>
</tbody>
</table>

Discipline-specific Courses

Select 6 hours from the following:

1. **Agriculture and Life Science Cluster**
 - AGEC 324 Agribusiness Entrepreneurship – Budgeting
 - AGEC 424 Agribusiness Entrepreneurship – Economic Analysis
 - AGEC 425 Agribusiness Entrepreneurship – Financial Analysis
 - AGSM 439 Management of Agricultural Systems I
 - BAEN 479 Biological and Agricultural Engineering Design I

2. **Business Cluster**
 - ACCT 210 Survey of Managerial and Cost Accounting Principles
 - MGMT 424 Organizational Design, Change and Development
 - MGMT 440 Creativity and Innovation in Business
 - MGMT 460 Managing Projects
 - MKTG 323 Marketing Research

3. **Liberal Arts Cluster**
 - COMM 320 Organizational Communication
 - COMM 324 Communication Leadership and Conflict Management
 - COMM 489 Special Topics in... (Humanities and Social Science Innovation)
 - ECON 425 The Organization of Industry
 - ECON 433 Energy Markets and Policy
 - ECON 449 Economics of Decision-Making Strategy
 - ENDS 101 Design Process
 - ENGL 210 Technical and Business Writing
 - ENGL 304 Topics in Digital Research
 - ENGL 320 Technical and Professional Editing

4. **HIST 361 Technology and Engineering in Western Civilization, 1400-Present**
5. **HIST 364 History of Technology and Engineering in America, 1607-Present**
6. **HIST 470 American Business History**
7. **POLS 229 Introduction to Comparative Politics**
8. **POLS 308 Game Theoretic Methods in Political Science**
9. **PSYC 352 Organizational Psychology**
10. **PSYC 354 Conflict and Negotiation**
11. **SOCI 335 Sociology of Organizations**
12. **SOCI 377 Entrepreneurial Thought Leaders Seminar**
13. **SOCI 445 Sociology of Law**

Capstone Courses

Select 3 hours from the following:

1. **Agriculture and Life Sciences Cluster**
 - AGEC 425 Agribusiness Entrepreneurship – Financial Analysis
 - AGSM 440 Management of Agricultural Systems II
 - BAEN 480 Biological and Agricultural Engineering Design II
 - MGMT 477 Entrepreneurship: The Lean Startup Approach
 - Internship
 - Research

2. **Business Cluster**
 - MGMT 432 Managing the Nonprofit Organization
 - MGMT 477 Entrepreneurship: The Lean Startup Approach
 - SOCI 450/ MGTMT 478 Social Entrepreneurship

3. **Liberal Arts Cluster**
 - ENGL 489 Special Topics in... (Narrative and Digital Technology)
 - MGMT 432 Managing the Nonprofit Organization
 - MGMT 477 Entrepreneurship: The Lean Startup Approach
 - SOCI 404/ RPTS 404 Sociology of the Community
 - SOCI 450/ MGTMT 478 Social Entrepreneurship

Total Semester Credit Hours

1. Choose 2 three-hour courses or 1 three-hour course plus 3 one-hour courses.
2. Course has prerequisites; student should consult with academic advisor or instructor before enrolling.
3. Approval required.
4. Choose at least three hours at 300- to 400-level.
Leadership - Minor

The minor in leadership studies (LDAG) provides students with formal instruction in leadership theory and the application of concepts necessary to be successful leaders in future careers. The 15 hour curriculum prepares students to be effective industry, community, and organizational leaders. Students explore leadership roles in their future contexts, develop an awareness of personal leadership characteristics, and apply leadership theories and models to future their professional experiences. The coursework includes five courses in foundational leadership concepts that can be completed 100% in an asynchronous distance education environment. Students must have a declared major, a GPA of 2.5 or higher, and completed less than 75 credit hours at the time of application.

For more information about this minor, visit our LDAG web page (https://alec.tamu.edu/academics/undergraduate/minor-in-leadership-studies-ldag/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 202</td>
<td>Introduction to Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 301</td>
<td>Personal Leadership Education</td>
<td>3</td>
</tr>
<tr>
<td>ALED 340</td>
<td>Survey of Leadership Theory</td>
<td>3</td>
</tr>
<tr>
<td>ALED 424</td>
<td>Applied Ethics in Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Must make a C or better in all minor coursework.

Neuroscience

Interdisciplinary Program in Neuroscience

Chair: J. Welsh

Neuroscience is a field devoted to the scientific study of the nervous system, from its molecular/cellular underpinnings to the organization of neural circuits, and the manifestation of this biological/neurochemical machinery as behavioral, physiological and psychological processes. It aims to detail both how the normal system operates and how alterations in function contribute to clinical diseases, such as mental illness, dementia, developmental disorders, neurodegenerative diseases, chronic pain, drug addiction, and the loss of function with aging or neural injury.

Minors

- Neuroscience Minor (p. 123)

Certificates

- Neuroscience Certificate (p. 124)
BIOL 388 Principles of Animal Physiology
BIOL 435 Laboratory for Regulatory and Behavioral Neuroscience
Total Semester Credit Hours 15

The minor must be declared before the student has completed 95 credit hours.

Student must make a grade of C or better.

No more than 6 credit hours can be counted toward both the Neuroscience Minor and the student’s major(s). Hours cannot be counted towards both the Neuroscience Minor and an additional minor.

A total of 6 hours of directed research (485/491) may be counted toward the minor. Directed studies may be conducted with any member of the faculty of Neuroscience. Research experiences must be approved by the NRSC faculty mentor.

Neuroscience - Certificate
The Neuroscience Certificate, offered by the Texas A&M Institute for Neuroscience (TAMIN), provides students with the opportunity to acquire enhanced training in research in various aspects of the nervous system of humans and other animals. Students in this Certificate Program will gain a broader understanding of how the nervous system functions during health and disease through enriched experiences in areas of molecular, structural, physiological, cognitive, behavioral, computational, or bioengineering neuroscience. The Neuroscience Certificate requires completion of 16 hours of course work in designated courses. Students must complete, prior to graduation, a combination of coursework and inquiry-based research (or an internship), which will be completed under the supervision of a TAMIN faculty member.

Steps:
Normally, students should apply to the Neuroscience Certificate program approximately two years before they plan to graduate. For the first two years of the program (Fall 2014-Spring 2016), students who are further along in the program may apply (and are expected to complete all requirements). To apply, students must:

1. Identify a faculty advisor who is willing to supervise Directed Studies in Research (NRSC 485/491). Working with the faculty advisor, the student must develop a brief (one paragraph) description of the proposed line of research.
2. Complete the Neuroscience Certificate Program form and have the faculty advisor sign it.
3. Submit the form to the TAMIN Coordinator in the Interdisciplinary Life Sciences Building, Room 3148.
4. Once a student completes the Undergraduate Neuroscience Certificate program requirements, the Completion Form for the Undergraduate NRSC Certificate must be submitted to the TAMIN Advising Office in ILSB 3148. *This form is due no later than the first month of the semester in which the student intends to graduate.

Students must maintain the required GPA for their major.

Students must present their research at one TAMU Student Research Week and a poster at the Annual TAMIN Spring Symposium (or related conference approved by TAMIN faculty member). One hour of NRSC 681-

Seminar will be taken to complete presentation requirements and the Neuroscience Certificate.

Students are expected to file a degree plan for their major within the administering department at the start of their junior year.

Students wishing to obtain an Honors Neuroscience Certificate must maintain a GPA of 3.5. Please visit the Honors Office in Henderson Hall to request honors credit and to complete any paperwork required by that office.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRSC 485</td>
<td>Directed Studies</td>
<td>4</td>
</tr>
<tr>
<td>NRSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRSC 277/ VIBS 277</td>
<td>Introduction to Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 340/ PSYC 340</td>
<td>Psychology of Learning</td>
<td></td>
</tr>
<tr>
<td>NRSC 434/ BIOL 434</td>
<td>Regulatory and Behavioral Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 681</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>NRSC 235/ PSYC 235</td>
<td>Introduction to Behavioral and Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 277/ VIBS 277</td>
<td>Introduction to Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 311/ PSYC 311</td>
<td>Psychology of Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>NRSC 320/ PSYC 320</td>
<td>Sensation-Perception</td>
<td></td>
</tr>
<tr>
<td>NRSC 332/ PSYC 332</td>
<td>Neuroscience of Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>NRSC 333/ PSYC 333</td>
<td>Biology of Psychological Disorders</td>
<td></td>
</tr>
<tr>
<td>NRSC 340/ PSYC 340</td>
<td>Psychology of Learning</td>
<td></td>
</tr>
<tr>
<td>NRSC 360/ PSYC 360</td>
<td>Health Psychology and Behavioral Medicine</td>
<td></td>
</tr>
<tr>
<td>NRSC 401/ VIBS 401</td>
<td>Developmental Neurotoxicology</td>
<td></td>
</tr>
<tr>
<td>NRSC 434/ BIOL 434</td>
<td>Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 450/ VIBS 450</td>
<td>Mammalian Functional</td>
<td></td>
</tr>
<tr>
<td>Other electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>BICH 431/ GENE 431</td>
<td>Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td></td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 413</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 423</td>
<td>Cell Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>GENE 405/</td>
<td>Mammalian Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 431/</td>
<td>Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BICH 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 469</td>
<td>Experimental Nutrition Laboratory</td>
<td></td>
</tr>
<tr>
<td>PHIL 320</td>
<td>Philosophy of Mind</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

1. No more than six credits can be used towards the Neuroscience Certificate. This limit does not preclude students from taking additional hours. Those hours will not, however, count towards the 16 credit hours needed to complete the Neuroscience Certificate.

2. If a student takes more than one course, it can count towards their electives.
College of Agriculture and Life Sciences

Administrative Officers

Vice Chancellor and Dean - Patrick J. Stover, Ph.D.
Executive Associate Dean - Clare A. Gill, Ph.D.
Associate Dean for Academic Affairs - Mary Bryk, Ph.D.
Associate Dean for Inclusive Excellence - Craig Coates, Ph.D.
Associate Dean for Student Development - Chris L. Skaggs, Ph.D.
Associate Dean for Faculty Affairs - X. Ben Wu, Ph.D.
Assistant Dean for Student Success - Danielle A. Harris, Ph.D.

General Statement

The College of Agriculture and Life Sciences is widely recognized as a leader in the academic programs offered by its departments. The students we educate and the scientific advancements we make and share improve the lives of Texans and people around the world through agriculture. Our faculty members and students are breeding crops to help conserve water, unlocking genetic mysteries to cure diseases, fostering best practices in environmental stewardship, and improving the safety, healthfulness, and abundance of the world’s food supply. Through innovative curricula, we prepare students for careers as scientists, business leaders, engineers, educators, physicians, affiliated health professionals, sales representatives, and other professionals.

Our academic programs focus on high-impact learning experiences and the science, technology, engineering, and math (STEM) courses that prepare students for a variety of careers. Students gain technical expertise, learn to think creatively and critically, solve problems, make decisions, communicate effectively, and learn how to work effectively with people of varied backgrounds. Faculty members who teach undergraduate classes include many who are recognized nationally and internationally for research and other accomplishments in their disciplines. Undergraduates also have opportunities to participate in research themselves.

All students are encouraged to participate in at least three high-impact experiences before graduation, such as undergraduate research, field study, an internship, or international experience. The college has study abroad programs in the Americas, Asia, Europe, Oceania, Africa, and the Caribbean. Honors programs are available in many of the college’s academic departments. There are numerous student organizations that are sponsored by departments or the college such as the Freshman Leadership Experience and the College of Agriculture and Life Sciences Student Council. These organizations promote interaction among students who share interests and foster leadership skills.

The College of Agriculture and Life Sciences and its departments offer a variety of scholarships to students on a competitive basis. Many are reserved for incoming freshmen or transfer students. Additional information and application forms for college-level scholarships for current students can be obtained from the Scholarships & Financial Aid Office. Information about departmental scholarships can be obtained from the departments directly.

College of Agriculture and Life Sciences

Baccalaureate Degree Programs

Each major can be arranged to prepare students for graduate study or admission to professional schools in medicine, dentistry, veterinary medicine, other health professions, and law. Students in programs, such as biochemistry, genetics, and nutritional sciences, are highly recruited for medicine, nursing, and other health professions. Animal science and wildlife and fisheries sciences are among several excellent choices for students interested in veterinary medicine. Students with a background in natural resources, the agricultural industry, forensics, or life sciences can use that knowledge to their advantage if they choose to enter law school. An environmental lawyer with a degree in a natural resource area is better equipped to incorporate the science with the law.

Advising is provided for each student in the college through offices in the individual academic departments. Departmental faculty and professional advisors assist with course selection and other academic issues. They also serve as mentors for career planning and admission to graduate or professional school. Advisors serve as professional consultants for students in the College with the objective of avoiding problems if possible and solving problems if needed.

Requirements for Graduation

Requirements for graduation are listed in the Texas A&M University Student Rules and this catalog. With the exception of general elective requirements, courses taken to satisfy degree requirements must be taken for letter grades.

Internships

Internships provide real-world experience in industries related to a student’s education and professional career preparation. Students return to campus with a broader perspective and more intense interest in their education. The experiences are so valuable that many students complete more than one internship. Most departments in the College offer academic credit for the satisfactory completion of an internship. In fact, an internship is required for graduation in some degree programs.

The Agricultural and Natural Resources Policy (ANRP) Internship Program places students from the College of Agriculture and Life Sciences in policy-based internships in Austin, TX, Washington, D.C. and Rome, Italy for a semester or summer. Selection for the program is based upon factors such as academic performance, leadership, and a student’s general interest in learning the policy process.

Graduate Study

All departments in the College of Agriculture and Life Sciences offer graduate degrees at the masters and doctoral levels. Many departments offer courses and programs online.

Students are encouraged to contact the department in which they wish to obtain information about graduate study. Information on admission, programs available, etc., can be found in the Texas A&M University Graduate and Professional Catalog.

Teacher Certification

Texas teacher certification in agricultural science is available through the Department of Agricultural Leadership, Education, and Communications. Certification is granted through the State Board of Educator Certification (SBEC) upon a student's completion of the course of study administered
by the department. The undergraduate major in agricultural science includes all coursework required for teacher certification. The requirements can be completed with any major in the College of Agriculture and Life Sciences. See an advisor in Agricultural Science, Department of Agricultural Leadership, Education, and Communications, for more information.

Majors

College of Agriculture and Life Sciences
- Bachelor of Science in Renewable Natural Resources (p. 219)

Department of Agricultural Economics
- Bachelor of Science in Agribusiness (p. 133)
- Bachelor of Science in Agricultural Economics, Finance and Real Estate Option (p. 135)
- Bachelor of Science in Agricultural Economics, Food Marketing Systems Option (p. 136)
- Bachelor of Science in Agricultural Economics, Policy and Economic Analysis Option (p. 137)
- Bachelor of Science in Agricultural Economics, Rural Entrepreneurship Option (p. 139)
- Bachelor of Science in Agricultural Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 140)

Department of Agricultural Leadership, Education, and Communications
- Bachelor of Science in Agricultural Communications and Journalism (p. 146)
- Bachelor of Science in Agricultural Leadership and Development (p. 148)
- Bachelor of Science in Agricultural Science (p. 149)
- Bachelor of Science in University Studies, Leadership Studies Concentration (p. 151)

Department of Animal Science
- Bachelor of Science in Animal Science, Production/Industry Option (p. 155)
- Bachelor of Science in Animal Science, Science Option (p. 157)

Department of Biochemistry and Biophysics
- Bachelor of Science in Biochemistry (p. 160)
- Bachelor of Science in Genetics (p. 161)

Department of Biological and Agricultural Engineering
- Bachelor of Science in Agricultural Systems Management (p. 164)
- Bachelor of Science in Biological and Agricultural Engineering (p. 165) – offered in conjunction with the College of Engineering

Department of Ecology and Conservation Biology
- Bachelor of Science in Ecological Restoration (p. 169)
- Bachelor of Science in Forestry (p. 170)
- Bachelor of Science in Renewable Natural Resources (p. 219)
- Bachelor of Science in Spatial Sciences (p. 171)

Department of Entomology
- Bachelor of Science in Entomology (p. 175)
- Bachelor of Science in Forensic and Investigative Sciences, Pre-Law Emphasis (p. 177)
- Bachelor of Science in Forensic and Investigative Sciences, Science Emphasis (p. 178)

Department of Food Science and Technology
- Bachelor of Science in Food Science and Technology, Food Industry Option (p. 182)
- Bachelor of Science in Food Science and Technology, Food Science Option (p. 184)
- Bachelor of Science in Food Systems Industry Management (p. 186)

Department of Horticultural Sciences
- Bachelor of Arts in Horticulture (p. 188)
- Bachelor of Science in Horticulture (p. 190)

Department of Nutrition
- Bachelor of Science in Nutrition, Didactic Program in Dietetics Track (p. 193)
- Bachelor of Science in Nutrition, General Nutrition Track (p. 194)
- Bachelor of Science in Nutrition, Molecular and Experimental Track (p. 196)

Department of Plant Pathology and Microbiology
- Bachelor of Science in Bioenvironmental Sciences (p. 198)
- Bachelor of Science in Environmental Studies (p. 199)
- Bachelor of Science in University Studies, Environmental Business Concentration (p. 200)

Department of Poultry Science
- Bachelor of Science in Poultry Science, Industry Emphasis (p. 203)
- Bachelor of Science in Poultry Science, Technical Emphasis (p. 204)

Department of Rangeland, Wildlife and Fisheries Management
- Bachelor of Science in Rangeland Ecology and Management, Ranch Management Option (p. 206)
- Bachelor of Science in Rangeland Ecology and Management, Rangeland Resources Option (p. 208)
- Bachelor of Science in Renewable Natural Resources (p. 219)
• Bachelor of Science in Wildlife and Fisheries Sciences, Fisheries, Aquaculture and Aquatic Sciences Track (p. 210)
• Bachelor of Science in Wildlife and Fisheries Sciences, Vertebrate Zoology Option (p. 211)
• Bachelor of Science in Wildlife and Fisheries Sciences, Wildlife Ecology and Conservation Option (p. 212)
• Bachelor of Science in Wildlife and Fisheries Sciences and Master of Public Service Administration, 5-Year Degree Program (p. 214)

Department of Recreation, Park and Tourism Sciences
• Bachelor of Science in Recreation, Park and Tourism Sciences with Certificate (p. 217)
• Bachelor of Science in Renewable Natural Resources (p. 219)

Department of Soil and Crop Sciences
• Bachelor of Science in Plant and Environmental Soil Science, Crops Emphasis (p. 227)
• Bachelor of Science in Plant and Environmental Soil Science, Soil and Water Emphasis (p. 228)
• Bachelor of Science in Turfgrass Science (p. 229)

Minors
Minors consist of a group of specified courses totaling between 15 and 18 credit hours. Students who are eligible to enroll in a minor should contact an advisor in the department offering the minor. Minors available in the college are listed.

Department of Agricultural Economics
• Agribusiness Entrepreneurship Minor
• Agricultural Economics Minor (p. 143)
• AgriFood Sales Minor (p. 143)
• Financial Planning Minor (p. 144)

Department of Agricultural Leadership, Education, and Communications
• Agricultural Communications and Journalism Minor (p. 151)
• Extension Education Minor (p. 152)
• International Agricultural Development Minor (p. 152)
• Leadership Minor (p. 123)

Department of Biochemistry and Biophysics
• Biochemistry Minor (p. 162)
• Genetics Minor (p. 163)

Department of Biological and Agricultural Engineering
• Agricultural Systems Management Minor (p. 167)

Department of Ecology and Conservation Biology
• Forestry Minor (p. 173)
• Spatial Sciences Minor (p. 173)

Department of Entomology
• Entomology Minor (p. 180)

Department of Horticultural Sciences
• Horticulture Minor (p. 191)

Department of Plant Pathology and Microbiology
• Bioenvironmental Sciences Minor (p. 202)

Department of Poultry Science
• Poultry Science Minor (p. 205)

Department of Rangeland, Wildlife and Fisheries Management
• Rangeland Ecology and Management Minor (p. 215)
• Wildlife and Fisheries Sciences Minor (p. 215)

Department of Recreation, Park and Tourism Science
• Park and Natural Resource Management Minor (p. 221)
• Recreation, Park and Tourism Sciences Minor (p. 222)
• Tourism Management Minor (p. 222)
• Youth Development Minor (p. 222)

Department of Soil and Crop Sciences
• Agronomy Minor (p. 230)
• Environmental Soil Science Minor (p. 231)
• Plant Breeding Minor (p. 231)

Certificates
Certificate programs document expertise in an area beyond a major or minor. Information on requirements for certificate programs is available from the advisor of the department offering the certificate. Certificate programs available in the college are listed.

Department of Agricultural Economics
• International Trade and Agriculture Certificate (p. 144)

Department of Animal Science
• Equine Science Certificate (p. 158)
• Meat Science Certificate (p. 158)

Department of Ecology and Conservation Biology
• Watershed Certificate (p. 173)
Department of Entomology
• Public Health Entomology Certificate (p. 181)

Department of Food Science and Technology
• Food Diversity Certificate (p. 187)

Department of Horticultural Sciences
• Enology Certificate (p. 192)

Department of Recreation, Park and Tourism Science
• Community Recreation and Park Administration Certificate (p. 223)
• Hospitality Management Certificate (p. 223)
• Parks and Conservation Certificate (p. 224)
• Professional Event Manager Certificate (p. 224)
• Tourism Management Certificate (p. 225)
• Youth Development Certificate (p. 225)

Masters

College of Agriculture and Life Sciences
• Master of Natural Resources Development in Natural Resources Development (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/recreation-park-tourism-sciences/mmr/)
• Master of Science in Plant Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/plant-breeding-ms/)

Department of Agricultural Economics
• Master of Agriculture in Agricultural Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-economics/agriculture-masters/)
• Master of Science in Agricultural Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-economics/ms/)

Department of Agricultural Leadership, Education, and Communications
• Master of Agriculture in Agricultural Development (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-leadership-education-communications/agricultural-development-agriculture-masters/)
• Master of Education in Agricultural Leadership, Education, and Communication (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-leadership-education-communications/med/)
• Master of Science in Agricultural Leadership, Education, and Communications (http://catalog.tamu.edu/graduate/colleges-interdisciplinary/agriculture-life-sciences/agricultural-leadership-education-communications/ms/)

Department of Animal Science
• Master of Agriculture in Animal Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/magr/)
• Master of Equine Industry Management in Equine Industry Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/equine-industry-reproduction-ms/)
• Master of Science in Animal Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/animal-breeding-ms/)
• Master of Science in Animal Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/ms/)
• Master of Science in Physiology of Reproduction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/physiology-reproduction-ms/)

Department of Biochemistry and Biophysics
• Master of Science in Biochemistry (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biochemistry-biophysics/biochemistry-ms/)

Department of Biological and Agricultural Engineering
• Master of Agriculture in Agricultural Systems Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biological-agricultural-engineering/systems-management-magr/)
• Master of Engineering in Biological and Agricultural Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biological-agricultural-engineering/meng/)
• Master of Science in Agricultural Systems Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biological-agricultural-engineering/systems-management-ms/)
• Master of Science in Biological and Agricultural Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biological-agricultural-engineering/biological-agricultural-engineering-ms/)

Department of Ecology and Conservation Biology
• Master of Agriculture in Ecosystem Science and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/ecology-and-conservation-biology/magr/)
• Master of Science in Ecosystem Science and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/ecology-and-conservation-biology/ms/)
Department of Entomology
- Master of Science in Entomology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/entomology/ms/)

Department of Food Science and Technology
- Master of Agriculture in Food Science and Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/food-science-and-technology/magr/)
- Master of Science in Food Science and Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/food-science-and-technology/food-science-technology/ms/)

Department of Horticultural Sciences
- Master of Agriculture in Horticulture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/magr/)
- Master of Science in Horticulture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/horticulture-ms/)
- Master of Science in Plant Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/plant-breeding-ms/)

Department of Nutrition
- Master of Clinical Nutrition in Clinical Nutrition (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/nutrition/medicine/ms/)
- Master of Science in Nutrition (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/nutrition/nutrition-ms/)
- Master of Science in Nutrition (NUTR) and Master of Science in Kinesiology (KINE) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/nutrition/combined-ms-nutr-ms-kine/)

Department of Plant Pathology and Microbiology
- Master of Science in Plant Pathology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/plant-pathology-microbiology/ms/)

Department of Poultry Science
- Master of Agriculture in Poultry Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/poultry-science/magr/)
- Master of Science in Poultry Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/poultry-science/ms/)

Department of Rangeland, Wildlife and Fisheries Management
- Master of Natural Resources Development in Natural Resources Development (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/rangeland-wildlife-and-fisheries-management/mnrd/)
- Master of Science in Wildlife and Fisheries Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/rangeland-wildlife-and-fisheries-management/ms/)

Department of Recreation, Park and Tourism Sciences
- Master of Recreation and Youth Development (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/recreation-park-tourism-sciences/mrtyd/)
- Master of Science in Recreation, Park and Tourism Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/recreation-park-tourism-sciences/ms/)

Department of Soil and Crop Sciences
- Master of Science in Agronomy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/soil-crop-sciences/agronomy-ms/)
- Master of Science in Plant Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/soil-crop-sciences/plant-breeding-ms/)
- Master of Science in Soil Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/soil-crop-sciences/soil-science/ms/)

Doctoral

College of Agriculture and Life Sciences
- Doctor of Philosophy in Plant Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/plant-breeding-phd/)

Department of Agricultural Economics
- Doctor of Philosophy in Agricultural Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-economics/phd/)

Department of Agricultural Leadership, Education, and Communications
- Doctor of Education in Agricultural Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/agricultural-leadership-education-communications/edd/)
- Doctor of Philosophy in Agricultural Leadership, Education, and Communications (http://catalog.tamu.edu/graduate/colleges-
Department of Animal Science

- Doctor of Philosophy in Animal Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/animal-breeding/phd/)
- Doctor of Philosophy in Animal Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/animal-science/phd/)
- Doctor of Philosophy in Physiology of Reproduction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/animal-science/physiology-reproduction/phd/)

Department of Biochemistry and Biophysics

- Doctor of Philosophy in Biochemistry (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biochemistry-biophysics/phd/)

Department of Biological and Agricultural Engineering

- Doctor of Philosophy in Biological and Agricultural Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/biological-agricultural-engineering/phd/)

Department of Ecology and Conservation Biology

- Doctor of Philosophy in Ecosystem Science and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/ecology-and-conservation-biology/phd/)

Department of Entomology

- Doctor of Philosophy in Entomology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/entomology/phd/)

Department of Food Science and Technology

- Doctor of Philosophy in Food Science and Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/food-science-and-technology/food-science-technology/phd/)

Department of Horticultural Sciences

- Doctor of Philosophy in Horticulture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/horticulture/phd/)
- Doctor of Philosophy in Plant Breeding (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/horticultural-sciences/plant-breeding/phd/)

Department of Nutrition

- Doctor of Philosophy in Nutrition (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/nutrition/phd/)

Department of Plant Pathology and Microbiology

- Doctor of Philosophy in Plant Pathology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/plant-pathology-microbiology/phd/)

Department of Poultry Science

- Doctor of Philosophy in Poultry Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/poultry-science/phd/)

Department of Rangeland, Wildlife and Fisheries Management

- Doctor of Philosophy in Wildlife and Fisheries Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/rangeland-wildlife-and-fisheries-management/phd/)

Department of Recreation, Park and Tourism Sciences

- Doctor of Philosophy in Recreation, Park and Tourism Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/recreation-park-tourism-phd/)

Department of Soil and Crop Sciences

- Doctor of Philosophy in Agronomy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/soil-crop-sciences/agronomy/phd/)
- Doctor of Philosophy in Soil Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/soil-crop-sciences/soil-science/phd/)

Interdepartmental Degree Programs

The Bachelor of Science in Renewable Natural Resources degree is an interdepartmental degree in the College of Agriculture and Life Sciences. It is offered in the Department of Ecology and Conservation Biology (p. 168), the Department of Recreation, Park and Tourism Sciences, (p. 216) and the Department of Rangeland, Wildlife, and Fisheries Management (p. 206).

Majors

- Bachelor of Science in Renewable Natural Resources (p. 219)
Department of Agricultural Economics

The Department of Agricultural Economics offers Bachelor of Science degree programs in the fields of Agricultural Economics and Agribusiness. The B.S. degree in Agricultural Economics allows students to direct their plan of study towards their professional interests by selecting a concentration in either Finance and Real Estate, Food Marketing Systems, Policy and Economic Analysis, or Rural Entrepreneurship (course requirements for the freshman and sophomore years are identical for all concentrations). The department also offers an accelerated five-year program in association with the Bush School of Government and Public Service that provides AGEC students with the opportunity to receive a B.S. in Agricultural Economics and a Masters of Public Service and Administration. The B.S. in Agribusiness is a selective program that provides students with a comprehensive and versatile business skill set designed to address the challenges of both agribusinesses and non-agricultural companies, incorporating coursework from the Mays Business School.

Department of Agricultural Economics Honors Program

The Department of Agricultural Economics at Texas A&M University offers an enhanced learning experience to qualified, academically-talented students majoring in Agricultural Economics and Agribusiness. Participation in the AGEC Honors Program enriches a student's college experience by offering scholastically-challenging curriculum and stimulating an interest in research. As honors classes are restricted in size, students also have the opportunity to work closely with the renowned faculty at Texas A&M University while developing the vital problem solving and critical thinking skills that are valued in today's fast-paced business culture. The coursework and co-curricular activities offered through this program are specially designed to promote academic and professional success. Honors distinctions are also beneficial to students that are planning to attend graduate school or law school by demonstrating one's ability to handle a challenging course of study.

The Department of Agricultural Economics Honors Program is administered through the AGEC Undergraduate Programs Office (located in Room 214 of the Agriculture and Life Sciences Building). For more information, contact the AGEC Undergraduate Programs Office at (979) 845-4911 or visit our website at http://agecon.tamu.edu/undergraduate/current-students/honors/.

Faculty

Adcock, Flynn, Assistant Lecturer
Agricultural Economics
MS, Texas A&M University, 1998

Anderson, David, Visiting Professor
Agricultural Economics
PHD, Texas A&M University, 1994

Boadu, Frederick O, Professor
Agricultural Economics
PHD, University of Kentucky, 1981

Buenger, Sarah D, Lecturer
Agricultural Economics
MS, College for Financial Planning, 2015

Harness, Nathaniel J, Instructional Associate Professor
Agricultural Economics
PHD, Texas Tech University, 2007

Ishdorj, Ariun, Associate Professor
Agricultural Economics
PHD, Iowa State University, 2008

Kibriya, Shahriar, Visiting Lecturer
Agricultural Economics
PHD, Texas A&M University, 2011

Kilmer, Nicholas G, Lecturer
Agricultural Economics
MBA, University of Texas at Tyler, 2011

Leatham, David J, Professor
Agricultural Economics
PHD, Perdue University, 1983

McCarl, Bruce A, Distinguished Professor
Agricultural Economics
PHD, The Pennsylvania State University, 1973

Menzies III, Max D, Lecturer
Agricultural Economics
PHD, Texas A&M University, 2017

Mjelde, James W, Professor
Agricultural Economics
PHD, University of Illinois at Urbana - Champaign, 1985

Moore, Christopher M, Lecturer
Agricultural Economics
CERT, Texas A&M University, 2016

Ng, Desmond W, Associate Professor
Agricultural Economics
PHD, University of Illinois at Urbana-Champaign, 2001

Noack, Kyle W, Assistant Lecturer
Agricultural Economics
CERT, Texas Department of Insurance, 2018

Outlaw, Joe, Visiting Professor
Agricultural Economics
PHD, Texas A&M University, 1992

Palma, Marco, Professor
Agricultural Economics
PHD, University of Florida, 2005

Park, John, Professor
Agricultural Economics
PHD, Texas A&M University, 1996

Price, Edwin C, Professor
Agricultural Economics
PHD, University of Kentucky, 1973

Rister, M E, Professor
Agricultural Economics
PHD, Michigan State University, 1981
Majors

Agribusiness

- Bachelor of Science in Agribusiness (p. 133)

Agricultural Economics

- Bachelor of Science in Agricultural Economics, Finance and Real Estate Option (p. 135)
- Bachelor of Science in Agricultural Economics, Food Marketing Systems Option (p. 136)
- Bachelor of Science in Agricultural Economics, Policy and Economic Analysis Option (p. 137)
- Bachelor of Science in Agricultural Economics, Rural Entrepreneurship Option (p. 139)

- Bachelor of Science in Agricultural Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 140)

Minors

- Agribusiness Entrepreneurship Minor (p. 142)
- Agricultural Economics Minor (p. 143)
- AgriFood Sales Minor (p. 143)
- Financial Planning Minor (p. 144)

Certificates

- International Trade and Agriculture Certificate (p. 144)

Agribusiness - BS

Curriculum in Agribusiness (BS)

The Bachelor of Science degree in Agribusiness combines selected Core Business Knowledge classes from a degree in business with coursework emphasizing the understanding of the unique institutional and managerial challenges facing agribusiness firms. By integrating business management principles with applied technical knowledge, students develop practical decision-making skills to address challenges facing agribusiness firms in the production, processing and distribution of food and fiber in Texas, the nation, and the world. Students in the BS Agribusiness degree program will take selected coursework in the Mays Business School.

Requirements for graduation are listed in the Texas A&M University Student Rules and this catalog. With the exception of general elective requirements, courses taken to satisfy degree requirements must be taken for letter grades. In addition, students pursuing the Agribusiness degree must have a GPA of 2.0 in the courses included in the Core Business Knowledge.

Upper-Level Entry into Agribusiness

The requirements and procedures for consideration for upper level are as follows:

1. In order to be considered for upper-level and possible admission into the program of study in agribusiness, a student must have:
 a. Satisfactorily completed at least 60 semester credit hours.
 b. Satisfactorily completed all of the following eight courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 217</td>
<td>Fundamentals of Agricultural Economics Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

 c. Students should complete the freshman and sophomore sequence of courses as listed under Curriculum in Agribusiness.
Program Requirements

First Year

Fall

Semester Credit Hours

1. AGEC 105 Introduction to Agricultural Economics 1 3
2. MATH 140 Mathematics for Business and Social Sciences 3
3. American History (p. 29) 2
4. Communication elective (p. 26) 3
5. Life and physical sciences elective (p. 26) 3
6. Semester Credit Hours 15

Spring

1. AGEC 117 Critical Thinking and Decision Making in Agricultural Economics 4 1
2. MATH 142 Business Calculus 3
3. American History (p. 29) 2
4. Creative arts elective (p. 29) 5
5. Language, philosophy and culture elective (p. 27) 5
6. Life and physical sciences elective (p. 26) 3
7. Semester Credit Hours 16

Second Year

Fall

1. ACCT 229 Introductory Accounting 3
2. ECON 202 Principles of Economics 3
3. MGMT 211 Legal and Social Environment of Business 3
4. Government/Political science elective (p. 30) 2
5. Life and physical sciences elective (p. 26) 3
6. Semester Credit Hours 15

Spring

1. ACCT 230 Introductory Accounting 3
2. AGEC 217 Fundamentals of Agricultural Economics Analysis 3
3. ECON 203 Principles of Economics 3
4. Communication elective (p. 26) 3
5. Government/Political science elective (p. 30) 2
6. Semester Credit Hours 15

Third Year

Fall

1. AGEC 340 Agribusiness Management 3
2. ECON 323 Microeconomic Theory 3
3. FINC 341 Business Finance 3
4. MKTG 321 Marketing 3
5. Select one of the following:
 1. SCMT 303 Statistical Methods
 2. STAT 301 Introduction to Biometry
 3. STAT 302 Statistical Methods
 4. STAT 303 Statistical Methods
6. Semester Credit Hours 15

Spring

1. AGEC 317 Economic Analysis for Agribusiness Management 3
2. AGEC 429 Agricultural Policy 4
3. MGMT 363 Managing People in Organizations 3
4. SCMT 364 Operations Management 3
5. Directed elective-international 6
6. General electives 5,8
7. Technical agricultural elective 5,7
8. Semester Credit Hours 15

Fourth Year

Fall

1. AGEC 431 Cases in Agribusiness Finance 3
2. AGEC 481 Ethics in Agribusiness and Agricultural Economics 1
3. Directed elective-international 5
4. General electives 5,8
5. Technical agricultural elective 5,7
6. Semester Credit Hours 15

Spring

1. AGEC 414 Agribusiness and Food Market Analysis 3
2. Select one of the following:
 1. AGEC 430 Macroeconomics of Agriculture
 2. ECON 311 Money and Banking
 3. ECON 410 Macroeconomic Theory
 4. AGEC 440 Agribusiness Strategic Analysis 3
 5. General electives 5,8
6. Semester Credit Hours 15
7. Total Semester Credit Hours 120

1. Satisfies the University Core Curriculum Social and Behavioral Sciences requirement.
2. For those students under ROTC contract, see Requirement 7 of the Requirements for a Baccalaureate Degree (p. 33).
3. Three hours must be selected from ENGL 103 or ENGL 104.
4. All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
5. The Graduation requirements include 3 hours of cultural discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
Six hours required. A complete list of approved international electives is available in the college Undergraduate Program Office, Room 214 of the Agriculture and Life Sciences Building, or can be found on our website (http://ageon.tamu.edu/undergraduate/).

Three hours of technical agriculture electives to be selected from any course offered by the College of Agriculture and Life Sciences except 285s, 484s, 485s and agricultural economics courses. To be selected in consultation with an advisor.

Any Texas A&M or transfer course (except ASCC 001- ASCC 003 (p. 908); KINE 198 and KINE 199) not used to meet other requirements.

Agribusiness Core Business Knowledge

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 217</td>
<td>Fundamentals of Agricultural Economics Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 440</td>
<td>Agribusiness Strategic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 481</td>
<td>Ethics in Agribusiness and Agricultural Economics</td>
<td>1</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
<td></td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

BS in Agribusiness Major Field

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 117</td>
<td>Critical Thinking and Decision</td>
<td>1</td>
</tr>
<tr>
<td>AGEC 317</td>
<td>Economic Analysis for Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 340</td>
<td>Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 414</td>
<td>Agribusiness and Food Market Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 429</td>
<td>Agricultural Policy</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 431</td>
<td>Cases in Agribusiness Finance</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGEC 430</td>
<td>Macroeconomics of Agriculture</td>
<td>3</td>
</tr>
</tbody>
</table>

Agricultural Economics - BS, Finance and Real Estate Option

The Bachelor of Science degree in Agricultural Economics offers students four options: Finance and Real Estate, Food Marketing Systems, Policy and Economic Analysis, and Rural Entrepreneurship. The course requirements for the freshman and sophomore years are the same for the above Agricultural Economics options.

In addition to the four options, the department offers a five-year program in conjunction with the Bush School of Government & Public Service which would allow a student to receive a Bachelor of Science (B.S. AGEC) in Agricultural Economics and a Master’s of Public Service and Administration degree.

The Agricultural Economics program is designed to assist in the development of skills in agriculture, applied economics, and economic logic that students can utilize to analyze and communicate about financial, real estate, sales, marketing, policy, and entrepreneurship issues in Texas, the nation, and the world. Graduates are trained for a wide variety of jobs in agricultural and non-agricultural businesses, firms, and agencies in both the public and private sectors. Flexibility is included in the curriculum so that a student, in consultation with an academic adviser, can develop a degree program that best fits personal career objectives and may include one or more of the following experiences: industry internship, the Agricultural and Natural Resources Policy Internship program, and research, directed studies, or study abroad opportunities.

Requirements for graduation are listed in the Texas A&M University Student Rules and this catalog. With the exception of general elective requirements, courses taken to satisfy degree requirements must be taken for letter grades.

Finance and Real Estate Option

The Finance and Real Estate option is designed to provide a well-founded basis in principles, concepts and methods for students interested in finance and/or real estate professional careers in the agricultural industry and/or related professions.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>AGEC 105</td>
</tr>
<tr>
<td>AGLS 101</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
</tr>
<tr>
<td>MATH 140</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
</tbody>
</table>

1 American history
Directed agricultural economics elective \(^2,^3 \) 3

Spring

AGEC 117 Critical Thinking and Decision Making in Agricultural Economics 1
MATH 142 Business Calculus 3
American history (p. 29) 1 3
Creative Arts (p. 29) 3
Language, philosophy and culture (p. 27) 3
Life and physical sciences (p. 26) 3

Semester Credit Hours 16

Second Year

Fall

ACCT 209 Survey of Accounting Principles 3
AGEC 217 Fundamentals of Agricultural Economics Analysis 4
ECON 202 Principles of Economics 3
Government/Political science (p. 30) 1 3
Life and physical sciences (p. 26) 3

Semester Credit Hours 15

Spring

ACCT 210 Survey of Managerial and Cost Accounting Principles 3
ECON 203 Principles of Economics 3
Communication (p. 26) 3
Government/Political science (p. 30) 1 3
Life and physical sciences (p. 26) 3

Semester Credit Hours 15

Third Year

Fall

AGEC 314 Marketing Agricultural and Food Products 3
AGEC 330 Financial Management in Agriculture 3
AGEC 422 Land Economics 3
ECON 323 Microeconomic Theory 3
STAT 303 Statistical Methods 3
Directed non-agricultural economics elective 3,5 3

Semester Credit Hours 18

Spring

AGEC 317 Economic Analysis for Agribusiness Management 3
AGEC 429 Agricultural Policy 4 3
AGEC 481 Ethics in Agribusiness and Agricultural Economics 1
Directed agricultural economics elective 6 3
Directed non-agricultural economics elective 3,5 3
General elective 3,7 3

Semester Credit Hours 16

Fourth Year

Fall

AGEC 340 Agribusiness Management 3
AGEC 424 Agribusiness Entrepreneurship – Economic Analysis 3
Directed agricultural economics elective 6 3

Semester Credit Hours 12

General elective 3,7 3

Spring

AGEC 430 Macroeconomics of Agriculture 3
AGEC 432 Rural Real Estate and Financial Analysis 3
Directed agricultural economics elective 6 3
General elective 3,7 3

Semester Credit Hours 12

Total Semester Credit Hours 120

1 Students under ROTC contract, see Requirement 7 of the Requirements for a Baccalaureate Degree. (p. 26)
2 Any course offered by the College of Agriculture and Life Sciences, except 285s, 484s, 485s and agricultural economics courses. (p. 26)
3 The Graduation requirements include a requirement for 3 hours of international and cultural diversity courses and 3 hours of cultural currise courses. A course satisfying a Core category, a college/ department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
4 All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
5 Six hours to be selected in one or more departments outside of the Department of Agricultural Economics. A minimum of 3 of these must be at the 300- or 400-level. To be selected in consultation with an advisor.
6 To be selected in consultation with an advisor.
7 Any Texas A&M or transfer course (except ASCC 001-ASCC 003 (p. 908); KINE 198 and KINE 199) not used to meet other requirements.

Agricultural Economics - BS, Food Marketing Systems Option

The Bachelor of Science degree in Agricultural Economics, with an option in Food Marketing Systems is designed to assist in the development of economic theory and quantitative analysis skills that students can apply to analyze and communicate about the food marketing issues in Texas, the nation, and the world. Students apply analytical skills to address operations involved in movement of agricultural commodities from farmer to consumer via several intermediaries; functions involve buying, selling, transportation, storage, financing, grading, pricing and risk bearing; agricultural supply chain or value chain is studied in detail; marketing aspects of commodities and differentiated goods. A student's educational experience is further enriched with supportive high impact opportunities such as business and industry internships, study abroad, directed studies and research, and industry professional mentorship, and participation in prestigious sales competitions such as the National Agri-Marketing Association (NAMA) student competition.

Graduates are trained for a wide variety of jobs in agricultural and non-agricultural oriented businesses, firms, and agencies in both the public and private sectors. The program prepares students to continue on to graduate school, or pursue the 5-year combined program (BS-AGEC and MPS-PSAA (p. 140)) with the Bush School of Government and Public Service. The flexibility in the program allows a student to specialize in an area such as sales. These students end up joining major agriculture, non-agriculture and technology sales firms.
The BS in Agricultural Economics with a Food Marketing Systems option is also offered in McAllen, Texas.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGLS 101</td>
<td>Modern Agricultural Systems and Renewable Natural Resources</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical agriculture elective 2,3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 117</td>
<td>Critical Thinking and Decision Making in Agricultural Economics</td>
<td>1</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29) 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 217</td>
<td>Fundamentals of Agricultural Economics Analysis 4</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 314</td>
<td>Marketing Agricultural and Food Products</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 315</td>
<td>Food and Agricultural Sales</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Directed non-agricultural economics elective 3,5</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 429</td>
<td>Agricultural Policy 4</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 452</td>
<td>International Trade and Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>or AGEC 453</td>
<td>or International Agribusiness Marketing</td>
<td></td>
</tr>
<tr>
<td>Directed agricultural economics electives 6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General elective 3,7</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 430</td>
<td>Macroeconomics of Agriculture or ECON 311</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 447</td>
<td>or Agricultural Price Analysis 8</td>
<td>3</td>
</tr>
<tr>
<td>or AGEC 448</td>
<td>or Agricultural Commodity Futures</td>
<td></td>
</tr>
<tr>
<td>Directed non-agricultural economics elective 3,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective 3,7</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 12 |

Total Semester Credit Hours

120

1 Students under ROTC contract, see Requirement 7 of the Requirements for a Baccalaureate Degree. (p. 908)
2 Any course offered by the College of Agriculture and Life Sciences, except 285s, 484s, 485s and agricultural economics courses.
3 The Graduation requirements include a requirement for 3 hours of international and cultural diversity courses and 3 hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
4 All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
5 Six hours to be selected in one or more departments outside of the Department of Agricultural Economics. A minimum of 3 of these hours must be at the 300- or 400-level. To be selected in consultation with an advisor.
6 To be selected in consultation with an advisor.
7 Any Texas A&M or transfer course (except ASCC 001 - ASCC 003 (p. 908) KINE 198 and KINE 199) not used to meet other requirements.
8 AGEC 447 is a fall only class. AGEC 448 is a spring only class.

Agricultural Economics - BS, Policy and Economic Analysis Option

The Bachelor of Science degree in Agricultural Economics, with an option in Policy and Economic Analysis is designed to assist in the development of economic theory and quantitative analysis skills that
students can apply to analyze and communicate about agricultural policy and economic issues in Texas, the nation, and the world. The option equips students with analytical skills to understand the causes, nature, and effects of government participation in agriculture, and interrelationship of the American agriculture and agribusiness sector with the political and economic system, public administration, and interest group representation. A student's educational experience is further enriched with supportive high impact opportunities such as participation in the Agriculture and Natural Resource Program (ANRP) Congressional Internship; Texas State Government Internships, Commodity groups and Lobby internship; Study Abroad and Independent research. With the aid of faculty and staff advisors, students in the Policy and Economic Analysis option design their plan of study reflecting their particular future goals by incorporating higher-level electives outside the department.

Students interested in graduate education may focus on developing a strong background in the following areas: quantitative analysis, economic theory, and applied economics. Those interested in entering law school may focus on courses in law, political science, and technical writing. Furthermore, those students interested in careers in government and policy may focus on courses in policy, political science, and management.

Graduates are trained for a wide variety of careers in local, state, and federal governments, and also with commodity groups and lobby firms. The program prepares students to continue on to graduate school, or pursue the 5-year combined program (BS-AGEC and MPS-PSAA (p. 140)) with the Bush School of Government and Public Service. A good number of students have pursued this option and continued on to law school.

The BS in Agricultural Economics with a Policy and Economic Analysis option is also offered in McAllen, Texas.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 105 Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>1</td>
<td>AGLS 101 Modern Agricultural Systems and Renewable Natural Resources</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 103 Introduction to Rhetoric and Composition or ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>3</td>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Technical agriculture</td>
</tr>
<tr>
<td>3</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 117 Critical Thinking and Decision Making in Agricultural Economics</td>
</tr>
<tr>
<td>3</td>
<td>MATH 142 Business Calculus</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ACCT 209 Survey of Accounting Principles</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 217 Fundamentals of Agricultural Economics Analysis</td>
</tr>
<tr>
<td>3</td>
<td>ECON 202 Principles of Economics</td>
</tr>
<tr>
<td>3</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ACCT 210 Survey of Managerial and Cost Accounting Principles</td>
</tr>
<tr>
<td>3</td>
<td>ECON 203 Principles of Economics</td>
</tr>
<tr>
<td>3</td>
<td>Communication elective (p. 26)</td>
</tr>
<tr>
<td>3</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 314 Marketing Agricultural and Food Products</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 340 Agribusiness Management</td>
</tr>
<tr>
<td>3</td>
<td>ECON 323 Microeconomic Theory</td>
</tr>
<tr>
<td>3</td>
<td>STAT 303 Statistical Methods</td>
</tr>
<tr>
<td>3</td>
<td>Directed non-agricultural economics elective</td>
</tr>
<tr>
<td>3</td>
<td>General elective</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 317 Economic Analysis for Agribusiness Management</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 330 Financial Management in Agriculture</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 429 Agricultural Policy</td>
</tr>
<tr>
<td>1</td>
<td>AGEC 481 Ethics in Agribusiness and Agricultural Economics</td>
</tr>
<tr>
<td>3</td>
<td>Directed agricultural economics elective</td>
</tr>
<tr>
<td>3</td>
<td>General elective</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 344 or AGEC 452 Food and Agricultural Law or International Trade and Agriculture</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 447 Food and Agricultural Price Analysis</td>
</tr>
<tr>
<td>3</td>
<td>Directed agricultural economics elective</td>
</tr>
<tr>
<td>3</td>
<td>Directed non-agricultural economics elective</td>
</tr>
<tr>
<td>3</td>
<td>General elective</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AGEC 350 Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>3</td>
<td>AGEC 430 or ECON 311 Macroeconomics of Agriculture or Money and Banking</td>
</tr>
<tr>
<td>3</td>
<td>Directed agricultural economics elective</td>
</tr>
<tr>
<td>3</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>
Rural Entrepreneurship Option

The Rural Entrepreneurship Option is designed to provide a well-founded basis in principles, concepts and methods for students interested in owning and/or managing or otherwise being engaged in working a rural business.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>AGLS 101</td>
<td>Modern Agricultural Systems and Renewable Natural Resources</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>1</td>
</tr>
<tr>
<td>Technical agriculture elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 117</td>
<td>Critical Thinking and Decision Making in Agricultural Economics</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>1</td>
</tr>
<tr>
<td>Creative Arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
</tr>
<tr>
<td>AGEC 217</td>
<td>Fundamentals of Agricultural Economics Analysis</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>1</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>1</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGEC 314</td>
<td>Marketing Agricultural and Food Products</td>
</tr>
<tr>
<td>AGEC 340</td>
<td>Agribusiness Management</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
</tr>
</tbody>
</table>

Agricultural Economics - BS, Rural Entrepreneurship Option

The Bachelor of Science degree in Agricultural Economics offers students four options: Finance and Real Estate, Food Marketing Systems, Policy and Economic Analysis, and Rural Entrepreneurship. The course requirements for the freshman and sophomore years are the same for the above Agricultural Economics options.

In addition to the four options, the department offers a five-year program in conjunction with the Bush School of Government & Public Service that would allow a student to receive a Bachelor of Science (B.S. AGEC) in Agricultural Economics and a Master's of Public Service and Administration degree.

The Agricultural Economics program is designed to assist in the development of skills in agriculture, applied economics, and economic logic that students can utilize to analyze and communicate about financial, real estate, sales, marketing, policy, and entrepreneurship issues in Texas, the nation, and the world. Graduates are trained for a wide variety of jobs in agricultural and non-agricultural oriented businesses, firms, and agencies in both the public and private sectors. Flexibility is included in the curriculum so that a student, in consultation with an academic adviser, can develop a degree program which best fits personal career objectives and could include one or more of the following experiences: industry internship, the Agricultural and Natural Resources Policy Internship program, and research, directed studies, or study abroad opportunities.

Requirements for graduation are listed in the Texas A&M University Student Rules and this catalog. With the exception of general elective requirements, courses taken to satisfy degree requirements must be taken for letter grades.

1. Students under ROTC contract, see Requirement 7 of the Requirements for a Baccalaureate Degree. (p. 908)
2. Any course offered by the College of Agriculture and Life Sciences, except 285s, 484s, 485s and agricultural economics courses.
3. The Graduation requirements include a requirement for 3 hours of international and cultural diversity courses and 3 hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
4. All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
5. Six hours to be selected in one or more departments outside of the Department of Agricultural Economics. A minimum of 3 of these hours must be at the 300- or 400-level. To be selected in consultation with an advisor.
6. To be selected in consultation with an advisor.
7. Any Texas A&M or transfer course (except ASCC 001 - ASCC 003 (p. 908); KINE 198 and KINE 199) not used to meet other requirements.
Agricultural Economics - 5-Year Bachelor of Science/Master of Public Service Administration

The combined program between the Department of Agricultural Economics and The Bush School of Government and Public Service allows undergraduate Agricultural Economics students to enter the Master of Public Service Program at the beginning of their senior year (typically year four) at Texas A&M University. This enables students to receive both their Bachelor of Science in Agricultural Economics (B.S. AGEC) and a Master of Public Service and Administration (MPSA) graduate degree, with a track emphasis in public policy analysis (PPA), in five years. The program includes a total of 151 hours with 17 hours double-counting to both degrees.

To be considered for the 5-year combined degree program, Agricultural Economics students must have a minimum 3.25 GPA and have completed 103 of the 120 hours of course work required to receive a bachelor’s degree. These courses must include all of the specific prerequisites for a B.S. in Agricultural Economics, as well as the courses required by the College of Agriculture and Life Sciences and by Texas A&M University for an undergraduate degree.

Students in the 3+2 combined program will submit the same materials (including GRE scores) as other MPSA applicants; the one exception to this is the submission of a 2-page application found on the Bush School website rather than the ApplyTexas application, hence no application fee. Students whose records are judged to be competitive by the mid-January deadline will be invited to attend the GBS Interview Conference Weekend in late February/early March. The admissions criteria for the five-year program will be the same as for other MPSA students.

To be considered for the 5-year combined degree program, Agricultural Economics students must have a minimum 3.25 GPA and have completed 103 of the 120 hours of course work required to receive a bachelor’s degree. These courses must include all of the specific prerequisites for a B.S. in Agricultural Economics, as well as the courses required by the College of Agriculture and Life Sciences and by Texas A&M University for an undergraduate degree.

Students who choose not to finish the MPSA degree after being admitted to the five-year program may exit the program at any time. Completed MPSA courses will be applied to their bachelor’s degree in Agricultural Economics, and students will select the Agricultural Economics option area that is most appropriate for their interest. Failure to complete the MPSA program will in no way impede their ability to attain a bachelor’s degree in Agricultural Economics when the requirements for that degree are completed.

Advising for the five-year program will involve a coordinated effort by the Undergraduate Program Office in the Department of Agricultural Economics and the Director of the MPSA program in the Bush School. Advising by the Department of Agricultural Economics will help ensure that interested students have satisfied the prerequisite course requirements for their bachelor’s degree by the beginning of their senior year. The MPSA director and GBS director of recruiting will also be available for Agricultural Economics students who wish to set up appointments to talk individually about the MPSA program’s curriculum and career opportunities available to its graduates.

Students in the five-year program will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School’s MPSA program.
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American History (p. 29)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>AGEC 117</td>
<td>Critical Thinking and Decision Making in Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 217</td>
<td>Fundamentals of Agricultural Economics Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences elective (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>AGEC 330</td>
<td>Financial Management in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 340</td>
<td>Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 349</td>
<td>Agricultural Policy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 452 or AGEC 453</td>
<td>International Trade and Agriculture or International Agribusiness Marketing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed agricultural economics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>AGEC 317</td>
<td>Economic Analysis for Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 344</td>
<td>Food and Agricultural Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 430 or ECON 311</td>
<td>Macroeconomics of Agriculture or Money and Banking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 481</td>
<td>Ethics in Agribusiness and Agricultural Economics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Directed agricultural economics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>Directed non-agricultural economics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECMT 461</td>
<td>Economic Data Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 433</td>
<td>Energy Markets and Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 330 or GEOG 430</td>
<td>Resources and the Environment or Environmental Justice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 430</td>
<td>Global Science and Policy Making</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTG 409</td>
<td>Principles of Marketing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFSC 444</td>
<td>Fundamentals of Food Law</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 340</td>
<td>Introduction to Public Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 364</td>
<td>Global Political Thought</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 412</td>
<td>International Political Economy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 415</td>
<td>Contemporary Issues in American Foreign Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 439</td>
<td>Foreign Policy Decision Making</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 440</td>
<td>Public Policies and Policymaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 447 or POLS 475</td>
<td>National Security Policy or Government and the Economy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 360</td>
<td>Issues in Environmental Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WGST 430/ MGMT 430</td>
<td>Employment Discrimination Law</td>
<td></td>
</tr>
</tbody>
</table>
The Agribusiness Entrepreneurship Minor is for students who are interested in starting their own business; working in an existing family-owned business; working for an entrepreneur; pursuing employment with a bank or financial institution; or wanting a working knowledge of business development practices and strategies.
Students will choose to develop a business plan for their own professional career pursuit, or to evaluate a business from an investor’s or consultant’s perspective in the coursework included in this minor. The instructor and student will mutually agree on a business venture and business settings selected. The options for students’ businesses are wide and varied, with locations in either a rural or metropolitan setting.

A critical ingredient in the Agribusiness Entrepreneurship Minor is learning to establish and develop a large network with successful entrepreneurs and other professionals. This minor offers ample opportunities for you to learn how to develop networking strategies in the classroom and in social settings.

Innovation and entrepreneurship are not limited to one field/degree area; therefore, the Agribusiness Entrepreneurship Minor is open to all majors. Students must have a cumulative GPA of 2.0 or higher to be approved to pursue the minor. Students must earn a grade of C or better in all required minor coursework.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 315</td>
<td>Food and Agricultural Sales</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 424</td>
<td>Agribusiness Entrepreneurship – Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 425</td>
<td>Agribusiness Entrepreneurship – Financial Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 434</td>
<td>Rural Financial Markets and Financial Planning</td>
<td>3</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AGEC 223</td>
<td>Establishing Agribusiness Entrepreneurship Networks I</td>
<td></td>
</tr>
<tr>
<td>AGEC 423</td>
<td>Establishing Agribusiness Entrepreneurship Networks II</td>
<td></td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGEC 324</td>
<td>Agribusiness Entrepreneurship – Budgeting</td>
<td></td>
</tr>
<tr>
<td>MGMT 461</td>
<td>Entrepreneurship and New Ventures</td>
<td></td>
</tr>
<tr>
<td>MGMT 470</td>
<td>Entrepreneurial Small Business</td>
<td></td>
</tr>
<tr>
<td>MGMT 477</td>
<td>Entrepreneurship: The Lean Startup Approach</td>
<td></td>
</tr>
<tr>
<td>MGMT 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

1 Must be taken as MGMT 489 Innovative Product Design: The Lean Startup Method.

Must have declared a major.

Must meet all prerequisites for each course listed above prior to enrolling in any required course.

Must make a grade of ‘C’ or better in each required course.

Must have a cumulative GPR of 2.0 or higher.

AgriFood Sales - Minor

A minor in AgriFood Sales is essential for any student looking to pursue a career in professional sales, expand a strong network of industry representatives, and explore career development opportunities. Our mission is to develop emotionally intelligent sales professionals through industry partnerships, self-management and self-awareness application, and high impact learning environments. We are focused on developing qualified sales professionals that are easily recruited by reputable firms upon graduation.

Although there is an emphasis on AgriFood, we find that our students go into a wide variety of industries. The courses are applicable to tech, pharmaceutical, and other industries that do not fall under the agriculture umbrella. Our four video labs in the Agriculture and Life Sciences building allow students to review their simulated role-plays instantly with state of the art technology. This addition to any degree plan would offer a substantial high-impact learning experience.

The Minor in AgriFood Sales consists of 16 hours of specific courses. Students must have declared a major; meet all the requirements for each course listed prior to enrolling in the course, have a cumulative GPA of 2.0 or higher, and must earn a grade of C or better in each required course to earn the minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 216</td>
<td>Fundamentals of the AgriFood Sales Industry</td>
<td>1</td>
</tr>
<tr>
<td>AGEC 315</td>
<td>Food and Agricultural Sales</td>
<td>3</td>
</tr>
</tbody>
</table>
Financial Planning - Minor

The minor in Financial Planning prepares students for leadership roles in this growing profession. Financial planners advise their clients about financial decisions, including budget management, insurance, investment, taxes, retirement and estate planning. Their goal is to assist clients in achieving their financial goals in an increasingly complex economy. The six-course curriculum (18 credit hours) also satisfies the educational requirements to be eligible to sit for the exam portion of the CERTIFIED FINANCIAL PLANNER™ (CFP®) designation conferred by the CFP Board of Standards (http://www.cfp.net). Professionals who have earned this designation are in high demand in the financial services sector.

The minor in Financial Planning is available to all junior or senior undergraduate students enrolled at Texas A&M University, who have completed an introductory finance course and have an overall GPA of 2.5 or higher. Successful completion of the minor requires the courses to be taken for academic credit with a grade of C or better for each course. Coursework is offered both online and in the classroom to meet students’ learning preferences. Visit our website (http://financialplanning.tamu.edu) for more information about this minor and the career opportunities in Financial Planning.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE 429</td>
<td>Agricultural Policy</td>
<td>3</td>
</tr>
<tr>
<td>AGE 452</td>
<td>International Trade and Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>AGE 453</td>
<td>International Agribusiness Marketing</td>
<td>3</td>
</tr>
<tr>
<td>Select two from the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>AGE 430</td>
<td>Macroeconomics of Agriculture</td>
<td></td>
</tr>
<tr>
<td>ALEC 350</td>
<td>Global Agricultural Issues</td>
<td></td>
</tr>
<tr>
<td>ALEC 450</td>
<td>Global Social Justice Issues in Agriculture</td>
<td></td>
</tr>
<tr>
<td>ALED 313</td>
<td>Culture Theory, Orientation and Adaptation</td>
<td></td>
</tr>
<tr>
<td>ALED 422</td>
<td>Cultural Pluralism in Agriculture</td>
<td></td>
</tr>
<tr>
<td>ANTH 205</td>
<td>Peoples and Cultures of the World</td>
<td></td>
</tr>
<tr>
<td>ANTH 300</td>
<td>Cultural Change and Development</td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 365/</td>
<td>International Communication</td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 330</td>
<td>Economic Development</td>
<td></td>
</tr>
<tr>
<td>ECON 410</td>
<td>Macroeconomic Theory</td>
<td></td>
</tr>
<tr>
<td>ECON 452</td>
<td>International Trade Theory and Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 314</td>
<td>Principles of Rangeland Management Around the World</td>
<td>3</td>
</tr>
<tr>
<td>FINC 445/IBUS 446</td>
<td>International Finance</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 202</td>
<td>Geography of the Global Village</td>
<td></td>
</tr>
</tbody>
</table>
Texas A&M University

GEOG 323 Geography of Latin America
MGMT 450/International Environment of Business
MGMT 452/International Management
IBUS 452
MKTG 401/ Global Marketing
IBUS 401
POLS 322 Western European Government and Politics
POLS 323 Political Systems of Latin America
POLS 333 International Cooperation
POLS 338 Government and Politics of the Former Soviet Union
POLS 412 International Political Economy
POLS 424 Comparative Governmental Institutions
SPMT 337 International Sport Business

Total Semester Credit Hours 15

Study abroad, foreign languages, and international internships are encouraged and allowed to contribute toward the 15 hours required for the certificate. No more than three hours of foreign language or six hours of study abroad or six hours of international internship may be counted as credit toward the certificate.

Department of Agricultural Leadership, Education, and Communications

The Department of Agricultural Leadership, Education, and Communications (ALEC) includes a student-centered faculty and staff offering undergraduate degrees leading to professional careers. Using a blend of asynchronous and synchronous courses, our programs offer a unique combination of practical, hands-on experiences and critical people skills required for success in today’s fast-paced careers. Upon graduation, our students are uniquely equipped for leadership, education, communications, and training roles in the broad field of agricultural sciences and human performance in both domestic and international settings.

We offer four Bachelor of Science degrees: Agricultural Communications and Journalism, Agricultural Leadership and Development, Agricultural Science, and University Studies-Leadership Studies; and four minors: Agricultural Communications and Journalism, Extension Education, International Agricultural Development, and Leadership.

Degree Programs

Agricultural Communications and Journalism (AGCJ)

This program prepares the student to work in news, magazine, broadcast, public relations, advertising, multimedia, digital cable, or satellite communications. Students in this program will complete courses in writing, editing, and basic digital design. Professional skills courses include publications production, public relations, photography, broadcasting, and electronic communications.

Agricultural Leadership and Development (ALED)

This program prepares the student to work with people involved in agriculture and life sciences and other related fields. Students in this program will complete courses in personal and organizational leadership, ethics, and leading change. Specialized courses include courses such as team leadership, leading volunteers, cultural pluralism, and agricultural extension related courses.

University Studies-Leadership Studies (ALED-USAL)

This program prepares the student for careers in profit and non-profit organizations, law, politics, public service, military careers, etc. Students have the ability to customize their higher educational experience to suit their future career goals. Specific fields are determined by the students’ interest, which makes each University Studies-Leadership degree as unique as each of our students.

Agricultural Science (AGSC)

This program prepares the student for a degree and as well as teacher certification in Secondary Agricultural Science. Students in this program will study educational technologies, instructional design and program planning in agricultural science. The program is aimed at creating high quality high school agricultural science teachers. However, other careers can often benefit from this training in agriculture and education.

For more information about each of our programs, visit the specific majors tab (https://catalog.tamu.edu/undergraduate/agriculture-life-sciences/agricultural-leadership-education-communications/#majorstext) or visit our department web page. (https://alec.tamu.edu/academics/undergraduate/)

Degree Minors

We offer four minors, in specific areas, that provide our students with foundational knowledge and concepts required for success in future careers such as communication specialists, Extension educators, and students seeking positions as leaders in domestic or international settings.

- Agricultural Communication and Journalism (AGCJ)
- Extension Education (EXED)
- International Development in Agriculture (IDAG)
- Leadership Studies (LDAG)

NOTE: The LDAG minor can be completed 100% in an asynchronous distance education environment.

For more information on each minor, select the link below or visit our department web page (https://alec.tamu.edu/academics/undergraduate/).

Faculty

Archer, Holli R, Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2013

Boyd, Barry L, Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1991
Briers, Gary E, Professor
Ag Leadership, Educ & Comm
PHD, Iowa State University, 1978

Dooley, Kim E, Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1995

Dunn, Allison L, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2018

Dunsford, Deborah W, Senior Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1993

Elbert, Chanda D, Associate Professor
Ag Leadership, Educ & Comm
PHD, The Pennsylvania State University, 2000

Elliot, John F, Professor
Ag Leadership, Educ & Comm
PHD, Ohio State University, 1988

Felton Odom, Summer R, Associate Professor
Ag Leadership, Educ & Comm
MS, Texas A&M University, 1984

Harlin, Julie F, Associate Professor
Ag Leadership, Educ & Comm
PHD, Oklahoma State University, 1999

Lockett, Landry L, Senior Lecturer
Ag Leadership, Educ & Comm
EDD, Texas A&M University, 2007

Mastrogiovanni, Melissa, Assistant Lecturer
Ag Leadership, Educ & Comm
MA, Ball State University Muncie Indiana, 2005

McCubbins, Andrew, Assistant Professor
Ag Leadership, Educ & Comm
PHD, Iowa State University, 2016

McGrath, Paul A, Assistant Lecturer
Ag Leadership, Educ & Comm
MA, Marist College, 2012

McKim, Billy R, Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2010

Moore, Lori L, Associate Professor
Ag Leadership, Educ & Comm
PHD, University of Florida, 2003

Murphy, Timothy H, Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1995

Pina Jr, Manuel, Instructional Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1978

Preston, Tammie M, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2014

Redwine, Tobin D, Instructional Assistant Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2014

Strong Jr, Robert L, Associate Professor
Ag Leadership, Educ & Comm
PHD, University of Florida, 2010

Strong, Jennifer R, Associate Professor
Ag Leadership, Educ & Comm
PHD, Oklahoma State University, 2007

Walther, David R, Assistant Lecturer
Ag Leadership, Educ & Comm
MS, Texas Tech University, 2011

Wegener, Robert P, Assistant Lecturer
Ag Leadership, Educ & Comm
MS, Oklahoma State University, 1975

Wingenbach, Gary J, Professor
Ag Leadership, Educ & Comm
PHD, Iowa State University, 1995

Zent, Rodney L, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1981

Majors
- Bachelor of Science in Agricultural Communications and Journalism (p. 146)
- Bachelor of Science in Agricultural Leadership and Development (p. 148)
- Bachelor of Science in Agricultural Science (p. 149)
- Bachelor of Science in University Studies, Leadership Studies Concentration (p. 151)

Minors
- Agricultural Communications and Journalism Minor (p. 151)
- Extension Education Minor (p. 152)
- International Agricultural Development Minor (p. 152)
- Leadership Minor (p. 123)

Agricultural Communications and Journalism - BS

Students graduating with a Bachelor of Science in Agricultural Communications and Journalism are prepared for employment in agricultural businesses, organizations, associations, government
The degree requires the completion of 120 semester credit hours. The student who wishes to develop specific career plans may do so in consultation with their Agricultural Communications and Journalism advisor. With approval of the advisor and the dean’s office, substitutions may be made in the required scientific and technical agriculture courses to help meet the student’s goals.

For more information about this minor, visit our AGCJ web page (https://alec.tamu.edu/academics/undergraduate/agricultural-communications/).

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 105 Introduction to Agricultural Communications</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Human performance directed elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 281 Journalism Concepts for Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Animal science directed elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 312 Editing for Agricultural Audiences</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Plant science directed elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 307 Design for Agricultural Media</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 305 Theory and Practice of Agricultural Publishing</td>
<td></td>
</tr>
<tr>
<td>AGCJ 306 Theory and Practice of Agricultural Public Relations</td>
<td></td>
</tr>
<tr>
<td>AGCJ 308 Agricultural Photography</td>
<td></td>
</tr>
<tr>
<td>AGCJ 366 Radio Broadcasting</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 313 Agricultural Media Writing I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 305 Theory and Practice of Agricultural Publishing</td>
<td></td>
</tr>
<tr>
<td>AGCJ 306 Theory and Practice of Agricultural Public Relations</td>
<td></td>
</tr>
<tr>
<td>AGCJ 308 Agricultural Photography</td>
<td></td>
</tr>
<tr>
<td>AGCJ 366 Radio Broadcasting</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 105 Introduction to Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 202 Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 203 Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>Agricultural emphasis area</td>
<td>4</td>
</tr>
<tr>
<td>Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 314 Agricultural Media Writing II</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 404 Communicating Agricultural Information to the Public</td>
<td></td>
</tr>
<tr>
<td>AGCJ 405 Agricultural Publications Production</td>
<td></td>
</tr>
<tr>
<td>AGCJ 406 Agricultural Public Relations Methods</td>
<td></td>
</tr>
<tr>
<td>AGCJ 407 Web Authoring in Agricultural Communication</td>
<td></td>
</tr>
<tr>
<td>AGCJ 408 Advertising Copy and Design</td>
<td></td>
</tr>
<tr>
<td>AGCJ 409 Television Production for Agricultural Journalists</td>
<td></td>
</tr>
<tr>
<td>AGCJ 413 Emerging Media in Agriculture</td>
<td></td>
</tr>
<tr>
<td>AGCJ 466 Advanced Radio Broadcasting</td>
<td></td>
</tr>
<tr>
<td>AGCJ 485 Directed Studies</td>
<td></td>
</tr>
<tr>
<td>AGCJ 491 Research</td>
<td></td>
</tr>
<tr>
<td>AGCJ 494 Internship</td>
<td></td>
</tr>
<tr>
<td>Agriculture emphasis area</td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 424 Applied Ethics in Leadership</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 404 Communicating Agricultural Information to the Public</td>
<td></td>
</tr>
<tr>
<td>AGCJ 405 Agricultural Publications Production</td>
<td></td>
</tr>
<tr>
<td>AGCJ 406 Agricultural Public Relations Methods</td>
<td></td>
</tr>
<tr>
<td>AGCJ 407 Web Authoring in Agricultural Communication</td>
<td></td>
</tr>
<tr>
<td>AGCJ 408 Advertising Copy and Design</td>
<td></td>
</tr>
<tr>
<td>AGCJ 409 Television Production for Agricultural Journalists</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |
AGCJ 413 Emerging Media in Agriculture
AGCJ 466 Advanced Radio Broadcasting
AGCJ 485 Directed Studies
AGCJ 491 Research
AGCJ 494 Internship
Agricultural emphasis area 3
General elective 3
General elective 3

| Semester Credit Hours | 15 |

Spring
Select one of the following:
AGCJ 404 Communicating Agricultural Information to the Public
AGCJ 405 Agricultural Publications Production
AGCJ 406 Agricultural Public Relations Methods
AGCJ 407 Web Authoring in Agricultural Communication
AGCJ 408 Advertising Copy and Design
AGCJ 409 Television Production for Agricultural Journalists
AGCJ 413 Emerging Media in Agriculture
AGCJ 466 Advanced Radio Broadcasting
AGCJ 485 Directed Studies
AGCJ 491 Research
AGCJ 494 Internship
Select one of the following:
AGCJ 481 Senior Seminar
AGCJ 491 Research
AGCJ 494 Internship
Select one of the following:
ALEC 350 Global Agricultural Issues
ALEC 450 Global Social Justice Issues in Agriculture
ALED 313 Culture Theory, Orientation and Adaptation
ALED 422 Cultural Pluralism in Agriculture
Agricultural emphasis area 4
General elective 3
General elective 3

| Semester Credit Hours | 15 |

Total Semester Credit Hours 120

1 Select from ALED 100-499 (p. 890), NFSC 100-499. (p. 1090)
2 Select from ANSC 100-499 (p. 891), ENTO 100-499 (p. 980), POSC 100-499 (p. 1123), WFSC 100-499 (p. 1170).
3 Select from ESSM 100-499 (p. 985), HORT 100-499 (p. 1024), PLPA 100-499 (p. 1118), SCSC 100-499 (p. 1139).
4 Agriculture emphasis area courses will be used to develop a cohesive career emphasis and are to be selected in consultation with an academic advisor.
5 Select from AGCJ 411, STAT 201-225 (p. 1154), STAT 301-415 (p. 1154).

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See an academic advisor.

Agricultural Leadership and Development - BS

The Agricultural Leadership and Development program includes a multidisciplinary curriculum emphasizing the development of tools to be successful both professionally and personally. Graduates are prepared for leadership positions in local, state, regional, and national groups, organizations, and agencies that are involved in the agricultural industry. The degree requires the completion of 120 semester credit hours and a 15-18 hour university approved minor that serves as a context for students to apply their leadership knowledge.

For more information about this minor, visit our ALED web page (https://alec.tamu.edu/academics/undergraduate/agricultural-communications/). (https://alec.tamu.edu/academics/undergraduate/agricultural-communications/)

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 202 Introduction to Leadership</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 105 Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202 Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203 Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select from the following:</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 100-449 (p. 985)</td>
<td>3</td>
</tr>
<tr>
<td>HORT 100-499 (p. 1024)</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 100-499 (p. 1139)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 107 General Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 201 General Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 208 Veterinary Entomology</td>
<td>3</td>
</tr>
<tr>
<td>POSC 201 General Avian Science</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 304 Wildlife and Fisheries Conservation</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>
General elective

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 301 or ALED 340</td>
</tr>
<tr>
<td>or Personal Leadership Education</td>
</tr>
<tr>
<td>or Survey of Leadership Theory</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>ANSC 320 Animal Nutrition and Feeding</td>
</tr>
<tr>
<td>NFSC 201 Food Science</td>
</tr>
<tr>
<td>NFSC 202 Fundamentals of Human Nutrition</td>
</tr>
<tr>
<td>Government/Political science</td>
</tr>
<tr>
<td>Life and physical sciences</td>
</tr>
<tr>
<td>American history</td>
</tr>
<tr>
<td>Government/Political science</td>
</tr>
<tr>
<td>Life and physical sciences</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ALED 301 or ALED 340</td>
</tr>
<tr>
<td>or Personal Leadership Education</td>
</tr>
<tr>
<td>or Survey of Leadership Theory</td>
</tr>
<tr>
<td>Select from the following:</td>
</tr>
<tr>
<td>ENTO 100-499 (p. 980)</td>
</tr>
<tr>
<td>ESSM 100-499 (p. 985)</td>
</tr>
<tr>
<td>RENR 100-499 (p. 1132)</td>
</tr>
<tr>
<td>WFSC 100-499 (p. 1170)</td>
</tr>
<tr>
<td>Government/Political science</td>
</tr>
<tr>
<td>Agricultural elective</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 424 or ALED 440</td>
</tr>
<tr>
<td>or Applied Ethics in Leadership</td>
</tr>
<tr>
<td>or Leading Change</td>
</tr>
<tr>
<td>Agricultural leadership and development</td>
</tr>
<tr>
<td>Agricultural elective</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ALED 424 or ALED 440</td>
</tr>
<tr>
<td>or Applied Ethics in Leadership</td>
</tr>
<tr>
<td>or Leading Change</td>
</tr>
<tr>
<td>Agricultural leadership and development</td>
</tr>
<tr>
<td>Agricultural elective</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 481</td>
</tr>
<tr>
<td>or Agricultural leadership and development</td>
</tr>
<tr>
<td>or Agricultural elective</td>
</tr>
<tr>
<td>Minor or general elective</td>
</tr>
<tr>
<td>General elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1 Select course not taken the previous semester.
2 Select from AECJ 100-499 (p. 879); AECJ 101-499 (p. 881); AGST 100-499 (p. 888); AGST 100-499 (p. 894); BAEN 100-499 (p. 912); CESC 100-499 (p. 917); BICH 100-499 (p. 916); DASC 100-499 (p. 955); ENTO 100-499 (p. 980); ESSM 100-499 (p. 985); FIVS 100-499 (p. 996); GENE 100-499 (p. 999); HORT 100-499 (p. 1024); NFSC 100-499 (p. 1090); PLPA 100-499 (p. 1118); POSC 100-499 (p. 1123); RENR 100-499 (p. 1132); RPTS 100-499 (p. 1133); SCSC 100-499 (p. 1139); WFSC 100-499. (p. 1170)
3 ALED courses may not be used for these electives.
4 6 hours of the 12 required Agriculture electives must be in the 300-400 level.
5 Select from AECJ 300-499 (p. 889); AECJ 300-499 (p. 890).

Students are required to make a C or better for each of their courses in the major coursework area.

Before registering as a junior, students must develop a degree program in consultation with a departmental advisor.

At least 36 credits must be 300- and 400-level courses.

The Graduation requirements include 3 hours of International and Cultural Diversity (p. 47), and 3 hours of Cultural Discourse. (p. 46) A course satisfying a Core category, a college/department requirement or a free elective can be used to satisfy this requirement.

Agricultural Science - BS

The Agricultural Science curriculum includes a combination of courses in scientific agriculture and professional education that will meet requirements for employment and advanced study in careers emphasizing formal and informal programs of education. This degree plan will prepare a student to successfully work toward teacher certification, resulting in the ability to teach Agriculture, Food, and Natural Resources (AFNR) classes in a secondary school setting. A student following this curriculum must meet the requirements of admission to the teacher education program as determined by the State of Texas. Enrollment in this program requires a passing score on the TExES AFNR content exam and a full semester off-campus professional teaching internship in a secondary classroom in order to graduate. After successful completion of the professional teaching semester, a student may be eligible to enter public schools as a teacher of AFNR certified by the Texas Education Agency.

In addition to teaching in a secondary agriculture program, career options may include working as an agricultural extension agent, working for a marketing agency or agricultural supply company, or working in other industries related to agricultural education.

A student majoring in agricultural science will be counseled by an advisor in the Department of Agricultural Leadership, Education, and Communications to ensure that the program developed with the student will satisfy his or her unique interests, needs and professional aspirations, as well as requirements for teacher certification. The degree requires the completion of 120 semester credit hours. Course selection allows a student to place emphasis on a particular field of agriculture or to prepare broadly in agricultural studies.

For more information on this major, visit our AGSC web page (https://aecd.tamu.edu/academics/undergraduate/agricultural-science-agsc/).
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGLS 101</td>
<td>Modern Agricultural Systems and Renewable Natural Resources</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 107</td>
<td>General Animal Science or POSC 201 or General Avian Science</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Scientific agricultural elective<sup>1</sup></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices or SCSC 105 or World Food and Fiber Crops</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGSC 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 201</td>
<td>Agricultural Energy and Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 360</td>
<td>Occupational Safety Management</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>POSC 427</td>
<td>Animal Waste Management</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| 15 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Scientific agricultural elective<sup>1</sup></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| 15 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Scientific agricultural elective<sup>1</sup></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| 15 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSC 302</td>
<td>Teaching School-Based Agricultural Education & Clinical Professional Experience</td>
<td>4</td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations<sup>2</sup></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSC 402</td>
<td>Designing Instruction for Secondary Agricultural Science Programs<sup>2,3</sup></td>
<td>3</td>
</tr>
<tr>
<td>AGSC 405</td>
<td>Facilitating Complete Secondary Agricultural Science Programs<sup>2,3</sup></td>
<td>3</td>
</tr>
<tr>
<td>ANSC 333</td>
<td>Reproduction in Farm Animals</td>
<td>3</td>
</tr>
<tr>
<td>Plant science elective<sup>4</sup></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Scientific agricultural elective<sup>1</sup></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| 14 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSC 425</td>
<td>Learner Centered Instruction in Agricultural Science<sup>2,3</sup></td>
<td>3</td>
</tr>
<tr>
<td>AGSC 436</td>
<td>Professional Teaching Internship in AGSC<sup>2,3</sup></td>
<td>6</td>
</tr>
<tr>
<td>AGSC 481</td>
<td>Seminar<sup>2</sup></td>
<td>1</td>
</tr>
<tr>
<td>AGSC 484</td>
<td>Field Experience<sup>2</sup></td>
<td>4</td>
</tr>
<tr>
<td>ANSC 484</td>
<td>Livestock Practicum</td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

| 120 |

1. All scientific agricultural electives are to be selected in consultation with an academic advisor.
2. Must make a grade of C or better to receive credit.
3. Professional development course required for certification as a teacher of agricultural science.
4. Select from ESSM 100-499 (p. 985), HORT 100-499 (p. 1024), SCSC 100-499 (p. 1139).

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See an academic advisor.

Additional Requirements:

1. Completion of all courses listed on the degree plan. All AGSC and Interdisciplinary Studies (INST) courses with a C or better.
2. A minimum of 2.75 Cumulative GPA at Texas A&M.
University Studies - BS, Leadership Studies Concentration

The University Studies-Leadership (USAL/LED) degree is an interdisciplinary program requiring the completion of 120 semester credit hours with a concentration of 26 hours of leadership studies and two 15-18 credit hour minors. The University Studies Degree format was created to provide the student the flexibility to combine areas of study that are of special interest. In the leadership studies concentration, students learn theories and models of the leadership process and they use analysis and evaluation to synthesize multiple leadership theories. This interdisciplinary program allows students the ability to customize their higher education experience to their future career goals. The student, with support from an USAL/LED advisor, will choose minors to assist them in creating a degree plan that will allow students to gain the knowledge and skills required for their chosen career path.

For more information on this major, visit our USAL/LED web page (https://alec.tamu.edu/academics/undergraduate/university-studies-usalled/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 202</td>
<td>Introduction to Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 301</td>
<td>Personal Leadership Education</td>
<td>3</td>
</tr>
<tr>
<td>ALED 340</td>
<td>Survey of Leadership Theory</td>
<td>3</td>
</tr>
<tr>
<td>ALED 424</td>
<td>Applied Ethics in Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
<tr>
<td>ALED 481</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>6</td>
</tr>
<tr>
<td>& POLS 207</td>
<td>and State and Local Government</td>
<td></td>
</tr>
<tr>
<td>Agricultural leadership and development1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Select from the following:</td>
<td></td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>(p. 889)</td>
<td></td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>(p. 889)</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Minor 12</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>Minor 22</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>18-24</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

1 Before registering as a junior, each student must develop a degree program in consultation with the departmental advisor.

2 The total number of hours between Minor 1, Minor 2 and general electives must be 54 hours. Courses counting in other areas of the degree plan and toward a minor cannot count toward the 54 total hours. One of the two minors must be completed in a college outside of the College of Agricultural and Life Sciences. Must meet with an advisor to determine correct hours.

Students are required to make a C or better for each of their courses in the major coursework.

At least 36 credits must be 300- and 400-level courses.

The Graduation requirements include a requirement for three hours of international and cultural diversity courses and three hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

Agricultural Communications and Journalism - Minor

Students seeking a minor in Agricultural Communications and Journalism (AGCJ) should begin the process by discussing the option with their academic advisor in their major. Students should then make an appointment with an AGCJ advisor to discuss interests. An application is required for establishing a minor in Agricultural Communications and Journalism. The minor requires the completion of 18 semester credit hours. To be eligible for the AGCJ minor, a student must have completed less than 70 hours and have at least a 2.5 GPA.

The AGCJ minor is highly focused on written communication. Students should consider their interest in writing before beginning the minor. Students seeking to complete the AGCJ minor will graduate prepared to assist with writing news releases, social media posts, photography or other media relations activities in many communication fields.

For more information about this minor, visit our AGCJ web page (https://alec.tamu.edu/academics/undergraduate/minor-agricultural-communications-journalism/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 105</td>
<td>Introduction to Agricultural Communications</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 307</td>
<td>Design for Agricultural Media</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 312</td>
<td>Editing for Agricultural Audiences</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 313</td>
<td>Agricultural Media Writing I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>AGCJ 305</td>
<td>Theory and Practice of Agricultural Publishing</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 306</td>
<td>Theory and Practice of Agricultural Public Relations</td>
<td>3</td>
</tr>
<tr>
<td>AGCJ 308</td>
<td>Agricultural Photography</td>
<td></td>
</tr>
<tr>
<td>AGCJ 314</td>
<td>Agricultural Media Writing II</td>
<td></td>
</tr>
<tr>
<td>AGCJ 366</td>
<td>Radio Broadcasting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>AGCJ 405</td>
<td>Agricultural Publications Production</td>
<td></td>
</tr>
</tbody>
</table>
Program Requirements

Extension Education - Minor

The undergraduate Minor in Extension Education (EXED) provides students with formal instruction in Extension Education necessary to be successful Extension educators. The 18 hour curriculum prepares students in the history and philosophy of Extension education, extension educational methodologies, program management and program development. Students explore Extension educational roles in their future contexts; develop an awareness of program development, volunteer management, Extension educational theories and models for future application as an Extension educator. The curriculum includes nine credits of foundational leadership concepts, three credit hours in a specialized area of leadership, and three hours in an Extension internship. Students must be in good standing with Texas A&M University, have a declared major, and must have a cumulative 2.5 GPR or higher. Students must have also completed 75 hours or less at time of application.

For more information about this minor visit our EXED web page (https://alectic.tamu.edu/academics/undergraduate/extension-education-minor-ixed/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEC 412</td>
<td>Technology-Enhanced Instructional Design Strategies for Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 425</td>
<td>Principles of Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>ALED 341</td>
<td>Team Learning</td>
<td>3</td>
</tr>
<tr>
<td>ALED 426</td>
<td>Leading and Training Adult Learners</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEC 412</td>
<td>Technology-Enhanced Instructional Design Strategies for Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 425</td>
<td>Principles of Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>ALED 341</td>
<td>Team Learning</td>
<td>3</td>
</tr>
<tr>
<td>ALED 426</td>
<td>Leading and Training Adult Learners</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 308</td>
<td>Foundations of Community and Community Development</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 371</td>
<td>Understanding and Developing Effective Skills for Youth Development</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 408</td>
<td>Community Development and Supporting Institutions</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must make a grade of 'C' or better in all courses.

International Agricultural Development - Minor

The minor in International Agricultural Development (IDAG) provides students with instruction in international development concepts and practical experiences through language acquisition and/or international study, research, and fieldwork. Students examine current international agricultural issues and/or diversity and communications. The 18-hour curriculum prepares students for post-baccalaureate international careers or graduate studies. Coursework includes 12 credits of foundational concepts and six hours of upper-division foreign languages or approved international experiences. Students must have a declared major, a GPA of 2.0 or higher, and have completed less than 75 hours at time of application. Before being accepted into the minor, students must meet with an IDAG advisor and complete an online application.

For more information about this minor visit our IDAG web page (https://alectic.tamu.edu/academics/undergraduate/international-development-idag/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 491</td>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 350</td>
<td>Global Agricultural Issues</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 450</td>
<td>Global Social Justice Issues in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 422</td>
<td>Cultural Pluralism in Agriculture</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 491</td>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 350</td>
<td>Global Agricultural Issues</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 450</td>
<td>Global Social Justice Issues in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 422</td>
<td>Cultural Pluralism in Agriculture</td>
<td>3</td>
</tr>
</tbody>
</table>

Practical Skills/Experiences: Upper-division, university-level foreign languages; or IDAG advisor approved international experiences

Total Semester Credit Hours 18

Students must have completed less than 75 hours and have a minimum GPA of 2.0 or higher.

Leadership - Minor

The university-level leadership minor provides students the skills and knowledge needed to become leaders demonstrated by an ability to apply ethical frameworks to varied settings and situations, respect others, and do what is right even if it is more difficult. The minor in leadership focuses on leadership practice with a grounding in leadership theory. Thus, the minor’s 15 credit hour curriculum consists of six hours of foundational courses in leadership theory, six hours of practice-focused courses that allow students to develop depth or breadth in areas that support their professional goals, a three hour capstone experience that requires a leadership practicum, and a required reflection. Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foundational Courses</td>
<td>6</td>
</tr>
<tr>
<td>ALED 202</td>
<td>Introduction to Leadership</td>
<td></td>
</tr>
<tr>
<td>ALED 301</td>
<td>Personal Leadership Education</td>
<td></td>
</tr>
<tr>
<td>ALED 340</td>
<td>Survey of Leadership Theory</td>
<td></td>
</tr>
<tr>
<td>NVSC 210</td>
<td>Leadership and Management I</td>
<td></td>
</tr>
<tr>
<td>PHIL 111</td>
<td>Contemporary Moral Issues</td>
<td></td>
</tr>
<tr>
<td>SOMS 280</td>
<td>Fundamentals of Peer Leadership</td>
<td></td>
</tr>
<tr>
<td>SOMS 281</td>
<td>Fundamentals of Intentional Leadership</td>
<td></td>
</tr>
<tr>
<td>SPMT 230</td>
<td>Introduction to Leadership in Sport Organizations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth and Breadth Courses</td>
<td>6</td>
</tr>
<tr>
<td>AERS 303</td>
<td>Air Force Leadership Studies</td>
<td></td>
</tr>
<tr>
<td>AERS 304</td>
<td>Air Force Leadership Studies</td>
<td></td>
</tr>
<tr>
<td>ALED 341</td>
<td>Team Learning</td>
<td></td>
</tr>
<tr>
<td>ALED 344</td>
<td>Leadership of Volunteers</td>
<td></td>
</tr>
<tr>
<td>ALED 422</td>
<td>Cultural Pluralism in Agriculture</td>
<td></td>
</tr>
<tr>
<td>ALED 424</td>
<td>Applied Ethics in Leadership</td>
<td></td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td></td>
</tr>
<tr>
<td>ALED 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td></td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 320</td>
<td>Organizational Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 324</td>
<td>Communication Leadership and Conflict Management</td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 343</td>
<td>Communication and Cultural Discourse</td>
<td></td>
</tr>
<tr>
<td>EHRD 374</td>
<td>Organizational Development</td>
<td></td>
</tr>
<tr>
<td>EHRD 405</td>
<td>Principles and Practices of Leadership in Human Resource Development and Technology Management</td>
<td></td>
</tr>
<tr>
<td>EHRD 413</td>
<td>Conflict Management and Dialogue</td>
<td></td>
</tr>
<tr>
<td>MGMT 475</td>
<td>Leadership Development</td>
<td></td>
</tr>
<tr>
<td>MLSC 221</td>
<td>Tactics and Leadership Theory I</td>
<td></td>
</tr>
<tr>
<td>MLSC 222</td>
<td>Tactics and Leadership Theory II</td>
<td></td>
</tr>
<tr>
<td>MLSC 321</td>
<td>Adaptive Leadership and Tactical Operations I</td>
<td></td>
</tr>
<tr>
<td>MLSC 322</td>
<td>Adaptive Leadership and Tactical Operations II</td>
<td></td>
</tr>
<tr>
<td>PHIL 482/</td>
<td>Ethics and Engineering</td>
<td></td>
</tr>
<tr>
<td>ENGR 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 209/</td>
<td>Psychology of Culture and Diversity</td>
<td></td>
</tr>
<tr>
<td>AFST 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 354</td>
<td>Conflict and Negotiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capstone Courses</td>
<td>3</td>
</tr>
<tr>
<td>ALED 400</td>
<td>Public Leadership Development</td>
<td></td>
</tr>
<tr>
<td>ALED 401</td>
<td>Advanced Professional Leadership Development</td>
<td></td>
</tr>
<tr>
<td>ALED 481</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>ALED 485</td>
<td>Directed Studies in Agricultural Leadership Development</td>
<td>1</td>
</tr>
<tr>
<td>COMM 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>NVSC 402</td>
<td>Leadership and Ethics</td>
<td></td>
</tr>
<tr>
<td>SOMS 482</td>
<td>Seminar in Executive Leadership II</td>
<td></td>
</tr>
<tr>
<td>SOMS 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>UGST 497</td>
<td>Capstone</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reflection Course</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Choose one 0-credit course:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALED 485 Directed Studies in Agricultural Leadership Development</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>COMM 485 Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SOMS 485 Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>UGST 485 Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1 Departmental approval required.
2 Must be taken as a 0-credit course and for a letter grade.

Must make a grade of C or better is required in all courses. A grade of S cannot be used to meet the program requirements.

Courses used to fulfill requirements of the leadership minor may not be used to fulfill area of concentration requirements for university studies degrees.

At least 6 credit hours must be completed in residence at the 300-400 level.

Department of Animal Science

The curricula in Animal Science are designed to prepare students for rewarding careers in animal-oriented agribusiness. The millions of domestic animals that provide food, fiber and recreation for humans offer a variety of career opportunities for animal science graduates.

Students completing the Bachelor of Science degree in Animal Science are in demand by both the private and public sectors. Career paths include livestock production and the extensive infrastructure that provides the products and services required for management, marketing and processing of livestock and livestock products. Students receive training in nutrition, breeding, reproductive physiology, meat science, dairy products, wool and mohair, and the production and management
of livestock. Extensive laboratory facilities and livestock operations located on or near campus in the Animal Science Teaching, Research and Extension Complex facilitate practical application of the scientific principles.

Leadership skills are developed through participation in a wide array of extracurricular activities, including departmental clubs, judging teams and continuing education/youth programs. A substantial number of students gain experience in a variety of disciplines through high impact learning experiences such as internships, research, study abroad and field trips.

Faculty

Baber, Jessica, Lecturer
Animal Science
PHD, Texas A&M University, 2019

Bazer, Fuller W, Distinguished Professor
Animal Science
PHD, North Carolina State University, 1969

Carstens, Gordon E, Professor
Animal Science
PHD, Colorado State University, 1998

Castillo, Alejandro, Associate Professor
Animal Science
PHD, Texas A&M University, 1998

Collins, Haley C, Lecturer
Animal Science
MS, Sam Houston State University, 2015

Cooke, Reinaldo F, Associate Professor
Animal Science
PHD, University of Florida, 2008

Cross, H Russell, Professor
Animal Science
PHD, Texas A&M University, 1972

Daigle, Courtney L, Assistant Professor
Animal Science
PHD, Michigan State University, East Lansing, MI, 2013

De Carvalho Cardoso, Rodolfo, Assistant Professor
Animal Science
PHD, Texas A&M University, 2014
DVM, Sao Paulo State University, 2005

Dunlap, Kathrin A, Instructional Associate Professor
Animal Science
PHD, Texas A&M University, 2006

Forrest, David W, Professor
Animal Science
PHD, University of Wyoming, 1979

Garcia, Leslie L, Instructional Assistant Professor
Animal Science
PHD, Texas A&M University, 2015

Gehring, Kerri B, Professor
Animal Science
PHD, Texas A&M University, 1994

Gill, Clare A, Professor
Animal Science
PHD, University of Adelaide, Australia, 2000

Gill, Jason J, Associate Professor
Animal Science
PHD, University of Guelph, 2006

Heird, James C, Executive Professor
Animal Science
PHD, Texas Tech University, 1978

Herring, Andy D, Professor
Animal Science
PHD, Texas A&M University, 1994

Ing, Nancy H, Professor
Animal Science
PHD, University of Florida, 1988

Kerth, Christopher R, Associate Professor
Animal Science
PHD, Texas Tech University, 1999

Lamb, Graham C, Professor
Animal Science
PHD, Kansas State University, 1998

Leatherwood, Jessica L, Assistant Professor
Animal Science
PHD, Texas A&M University, 2013

Linne, Paige K, Lecturer
Animal Science
MS, Texas A&M University, 2017

Miller, Rhonda K, Professor
Animal Science
PHD, Colorado State University, 1983

Osburn, Wesley N, Associate Professor
Animal Science
PHD, University of Nebraska–Lincoln, 1996

Paudyal, Sushil, Instructional Assistant Professor
Animal Science
PHD, Colorado State University, 2018

Pohler, Ky Garrett, Assistant Professor
Animal Science
PHD, University of Missouri, 2015

Ramsey, W S, Professor
Animal Science
PHD, New Mexico State University, 1996

Riggs, Penny K, Associate Professor
Animal Science
PHD, Texas A&M University, 1996
Certificates

- Equine Science Certificate (p. 158)
- Meat Science Certificate (p. 158)

Animal Science - BS, Production/Industry Option

This curriculum prepares students for careers in animal-oriented agribusinesses. Other courses, in addition to animal science courses, include accounting, economics, genetics and management. A wide array of internships giving students invaluable experience in all phases of livestock production and related industries is available. Career opportunities include sales, management, public relations, marketing, quality control and education. Students may concentrate on an emphasis area within this option, including the following.

Beef Cattle

Students receive training that enables them to pursue careers in ranch management, feedlot management, pharmaceutical sales and other service-oriented livestock industries. Students are trained in all aspects of production, marketing and merchandising techniques for employment in the beef industry. The University Beef Cattle Center gives students hands-on experience.

Dairy

The focus of this emphasis area is to develop a well-rounded, knowledgeable student. Students have the opportunity to apply scientific principles, problem-solving methods, state-of-the-art techniques and information transfer to complex dairy production systems.

Equine

Designed for students with professional or vocational interests in horses and the horse industry. Coursework emphasizes equine nutrition, breeding, reproduction, health, management, training and judging. Lectures are reinforced with laboratories in which students work with horses. Graduates are well prepared for careers with horse production farms, stallion stations, performance and race training stables, breed associations, performance horse organizations, feed and pharmaceutical companies, county extension positions, and other industries and agencies related to the horse industry.

Meat

Students prepare for a career in the meats industry by taking meat science and processing and evaluation courses. Students also can conduct research through special problems courses and can gain valuable work experience on campus in the Meat Science Section or the Rosenthal Meat Science and Technology Center or off campus through internships or summer jobs. Job opportunities are available in packing, processing, retailing, purveying, food service, promotion, public relations and government regulatory agencies.

Sheep

Designed to prepare students for careers in the sheep and goat industries and in the associated wool and mohair industries, this emphasis gives students first-hand experience in sheep production and management practices, as well as procedures for processing and evaluating fleeces. Job opportunities are diverse and include flock management, marketing...
of lamb and fiber products, feed and pharmaceutical sales and county extension agent positions.

Swine

This emphasis area is designated for students planning to pursue a career in swine production or closely allied industries. Students are taught the principles of breeding and genetics, nutrition and feeding, animal health, environmental control and waste management as they relate to profitable swine production systems. These principles are reinforced by hands-on experience with the department's swine herd. Career paths include management of swine production units and technical service or sales for feed, pharmaceutical and breeding stock companies.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ANSC 101</td>
<td>Introductory Seminar for Animal Science</td>
</tr>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
</tr>
<tr>
<td>& ANSC 108</td>
<td>and General Animal Science Laboratory</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 111</td>
<td>Animal Production Systems</td>
</tr>
<tr>
<td>ANSC 113</td>
<td>Farm Animal Biosystems</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td>or BIOL 111</td>
<td>or Introductory Biology I</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ANSC 303/ NFSC 303</td>
<td>Principles of Animal Nutrition</td>
</tr>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 325</td>
<td>Principles of Farm and Ranch Management</td>
</tr>
<tr>
<td>AGEC 340</td>
<td>Agribusiness Management</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
</tr>
<tr>
<td>ANSC disciplinary focus 2</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 3</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 399</td>
<td>Animal Science Experience 4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGEC 330/ FINC 409</td>
<td>Financial Management in Agriculture or Survey of Finance Principles</td>
</tr>
<tr>
<td>ANSC disciplinary focus 2</td>
<td>4</td>
</tr>
<tr>
<td>Agriculture elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 498</td>
<td>Animal Science Capstone</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 120 |

1 To be selected from the University Core Curriculum. The University Core Curriculum includes a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46). Refer to the University Core Curriculum (p. 25) catalog page for a list of acceptable courses. A course satisfying another Core category, a college/department requirement or taken as a general elective can be used to satisfy these requirements. Select in consultation with an academic advisor.
Select from the following courses: ANSC 404, ANSC 406, ANSC 408, ANSC 412, ANSC 414, ANSC 420, ANSC 429, ANSC 434, ANSC 447, DASC 418. 8 total hours required.

Any ANSC (p. 891) course that is not fulfilling part of your ‘major coursework’ category.

May include but is not limited to: undergraduate research, study abroad, internships, and competitive judging teams. At least one term enrollment in ANSC 399 required; can complete in Fall, Spring, or Summer.

Any course taught within the College of Agriculture and Life Sciences.

Students are required to make a C or better in each of their courses in their major (ANSC) coursework area.

All undergraduate students must take at least (2) specific courses in their major designated as writing or communication intensive (W or C). To be chosen in consultation with your academic advisor.

Animal Science - BS, Science Option

This curriculum is designed to provide scientific expertise in chemistry, biological and physical sciences and mathematics and is recommended for students considering entry into the veterinary, medical or allied health field, or the graduate program of their choice. This option provides a strong background for graduate study in a wide variety of disciplines. Animal scientists graduating with a Bachelor of Science degree in this option who do not enter graduate or professional school find employment in rewarding careers in the pharmaceutical, clinical and food-related industries. Students may concentrate on an emphasis area within this option, including the following.

Pre-Professional

Students planning to pursue a career in veterinary medicine can complete course requirements for admission to the professional curriculum in this emphasis. Students gain experience working with animals through direct contact in laboratory courses and directed field study. Students acquire knowledge of animal systems and animal behavior principles through coursework and interaction with livestock industry leaders. Students are also prepared to seek admission to the professional curricula in medicine, dentistry, pharmacy, optometry and physical therapy.

Pre-graduate Studies

This emphasis prepares students to pursue a Master of Science, Master of Agriculture or Doctor of Philosophy degree. Possible graduate programs include animal behavior, animal breeding, biochemistry, cellular and molecular biology, meats, dairy science, food science and technology, genetics, growth biology, nutrition and reproductive physiology. Experience gained through honors courses, internships, special problems courses and research laboratories helps the student identify specific disciplines of interest for graduate study. Students with advanced degrees are employed as university professors, research scientists or technicians, extension livestock specialists and technical representatives for industry.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ANSC 101</td>
<td>Introductory Seminar for Animal Science</td>
</tr>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
</tr>
<tr>
<td>& ANSC 108</td>
<td>and General Animal Science Laboratory</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ANSC 111</td>
<td>Animal Production Systems</td>
</tr>
<tr>
<td>ANSC 113</td>
<td>Farm Animal Biosystems</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ANSC 303/</td>
<td>Principles of Animal Nutrition</td>
</tr>
<tr>
<td>NFSC 303</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>& CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ANSC 307/</td>
<td>Meats</td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>& CHEM 238</td>
<td>and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ANSC 318</td>
<td>Animal Feeds and Feeding</td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>or BICH 409</td>
<td>or Principles of Biochemistry</td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
</tr>
<tr>
<td>& GENE 312</td>
<td>and Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ANSC 305</td>
<td>Animal Breeding</td>
</tr>
<tr>
<td>ANSC 333</td>
<td>Reproduction in Farm Animals</td>
</tr>
</tbody>
</table>

Texas A&M University
Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 326/</td>
<td>Food Bacteriology and Food Bacteriology Lab</td>
<td>4</td>
</tr>
<tr>
<td>NFSC 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ANSC 327/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 206</td>
<td>Introductory Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td></td>
</tr>
<tr>
<td>VTPB 405</td>
<td>Biomedical Microbiology</td>
<td></td>
</tr>
</tbody>
</table>

General elective 2

| Semester Credit Hours | 6 |

Summer

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 399</td>
<td>Animal Science Experience</td>
<td>0</td>
</tr>
</tbody>
</table>

| Fourth Year |

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC disciplinary focus 4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ANSC disciplinary focus 4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 201</td>
<td>Introductory Equine Care and Use</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 211</td>
<td>Equine Industry and Career Preparation</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 311</td>
<td>Equine Behavior and Training</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 411</td>
<td>Equine Nutrition and Health</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 420</td>
<td>Equine Production and Management</td>
<td>4</td>
</tr>
<tr>
<td>ANSC 423</td>
<td>Issues in the Equine Industry</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 494</td>
<td>Animal Science Internship</td>
<td>3</td>
</tr>
<tr>
<td>VLCS 422</td>
<td>Equine Disease and Epidemiology</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 22 |

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 498</td>
<td>Animal Science Capstone</td>
<td>4</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking or Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 210</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 13 |

| Total Semester Credit Hours | 120 |

1. To be selected from the University Core Curriculum. The University Core Curriculum includes a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46). Refer to the the University Core Curriculum (p. 25) catalog page for a list of acceptable courses. A course satisfying another Core category, a college/department requirement or taken as a general elective can be used to satisfy these requirements. Select in consultation with an academic advisor.

2. Students may choose to use general electives to complete a concentration in a pre-professional program, a pre-graduate study area, or a certificate program.

3. May include but is not limited to: undergraduate research, study abroad, internships, and competitive judging teams. At least one term enrollment in ANSC 399 required; can complete in Fall, Spring, or Summer.

4. Select from the following courses: ANSC 404, ANSC 406, ANSC 408, ANSC 412, ANSC 414, ANSC 420, ANSC 429, ANSC 434, ANSC 447; DASC 418. 8 total hours required.

Students are required to make a C or better for each of their courses in the major (ANSC) coursework area.

All undergraduate students must take at least (2) specific courses in their major designated as writing or communication intensive (W or C). To be chosen in consultation with your academic advisor.

Equine Science - Certificate

The Department of Animal Science offers a certificate in Equine Science for students who wish to obtain specialization in this area. The certificate is designed to provide a knowledge base to those individuals who have an interest in pursuing a career in the equine industry. Please reference the program requirements tab for information on course of study requirements for the Equine Science certificate.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 201</td>
<td>Introductory Equine Care and Use</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 211</td>
<td>Equine Industry and Career Preparation</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 311</td>
<td>Equine Behavior and Training</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 411</td>
<td>Equine Nutrition and Health</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 420</td>
<td>Equine Production and Management</td>
<td>4</td>
</tr>
<tr>
<td>ANSC 423</td>
<td>Issues in the Equine Industry</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 494</td>
<td>Animal Science Internship</td>
<td>3</td>
</tr>
<tr>
<td>VLCS 422</td>
<td>Equine Disease and Epidemiology</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 22 |

Meat Science - Certificate

The Department of Animal Science offers a certificate in Meat Science for students who wish to obtain specialization in this area. The certificate is designed to provide a knowledge base to those individuals who have an interest in pursuing a career that involves the meat industry. Students must complete a minimum of 18 credit hours by taking four required courses and selecting additional courses from the elective list to complete the minimum credit hour requirement.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 307/</td>
<td>Meats</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 326/</td>
<td>Food Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 447</td>
<td>Advanced Meat Science and Technology</td>
<td>4</td>
</tr>
<tr>
<td>ANSC 457/</td>
<td>Hazard Analysis and Critical Control</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 457</td>
<td>Point System</td>
<td></td>
</tr>
</tbody>
</table>

Select 5 semester credit hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 317</td>
<td>Meat Selection, Evaluation and Grading</td>
<td>5</td>
</tr>
<tr>
<td>ANSC 327/</td>
<td>Food Bacteriology Lab</td>
<td></td>
</tr>
<tr>
<td>NFSC 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 337</td>
<td>Meat Merchandising 2</td>
<td></td>
</tr>
<tr>
<td>ANSC 437</td>
<td>Marketing and Grading of Livestock and Meats</td>
<td></td>
</tr>
<tr>
<td>ANSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 18 |
Students who have taken ANSC 489, Special Topics in Advanced Meat Technology, will be credited with ANSC 447.

Students who have taken ANSC 489, Special Topics in Meat Merchandising, will be credited with ANSC 337.

Department of Biochemistry/Biophysics

Curriculum in Biochemistry is administered by the Department of Biochemistry and Biophysics.

Biochemists seek to understand life at the molecular level, including the detailed structures of biological molecules and the chemical reactions in which they participate. They study the molecules of living systems of all kinds, from the simplest viruses and bacteria to higher plants and animals. In their work, biochemists use experimental tools ranging from x-ray crystallography and nuclear magnetic resonance to bioinformatics and genetic engineering. Biochemistry is a dynamic and diverse field that has become the basic discipline for the life sciences, and biochemists have made significant discoveries that relate to medicine, agriculture, and the environment.

Faculty

Ayres, Nicola M, Senior Lecturer
Biochemistry & Biophysics
PHD, University of Nebraska - Lincoln, 1987

Bryk, Mary E, Associate Professor
Biochemistry & Biophysics
PHD, Albany Medical College, 1994

Cho, Jae H, Assistant Professor
Biochemistry & Biophysics
PHD, State University of New York at Stony Brook, 2006

Cruz-Reyes, Jorge A, Professor
Biochemistry & Biophysics
PHD, London School of Hygiene & Tropical Medicine, 1992

Datta, Sumana, Professor
Biochemistry & Biophysics
PHD, University of California - San Diego, 1987

Devarene, Timothy P, Associate Professor
Biochemistry & Biophysics
PHD, University of Kentucky, 2000

Glasner, Margaret E, Associate Professor
Biochemistry & Biophysics
PHD, Massachusetts Institute of Technology, 2003

Gohil, Vishal M, Associate Professor
Biochemistry & Biophysics
PHD, Wayne State University, 2005

He, Ping, Professor
Biochemistry & Biophysics
PHD, Kansas State University, 2003

Henderson, Michelle, Senior Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 2010

Herman, Jennifer K, Associate Professor
Biochemistry & Biophysics
PHD, Indiana University, 2005

Igumenova, Tatyana I, Associate Professor
Biochemistry & Biophysics
PHD, Columbia University, 2003

Kunkel, Gary R, Associate Professor
Biochemistry & Biophysics
PHD, University of California - Los Angeles, 1977

Kurosaki, Dzmitry L, Assistant Professor
Biochemistry & Biophysics
PHD, Suny at Albany, 2013

Li, Pingwei, Professor
Biochemistry & Biophysics
PHD, Peking University, 1996

Meek, Thomas D, Professor
Biochemistry & Biophysics
PHD, Pennsylvania State University, 1981

Miles, Bryant W, Senior Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 1998

Mullet, John E, Professor
Biochemistry & Biophysics
PHD, University of Illinois - Urbana-Champaign, 1981

Panin, Vladislav M, Professor
Biochemistry & Biophysics
PHD, Moscow State University, 1990

Park, William D, Professor
Biochemistry & Biophysics
PHD, University of Florida, 1977

Pellois, Jean-Philippe, Professor
Biochemistry & Biophysics
PHD, University of Houston, 2002

Perez, Stephanie A, Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 2012

Pishko, Elizabeth J, Lecturer
Biochemistry & Biophysics
PHD, University of Texas, 1993

Polymenis, Michael S, Professor
Biochemistry & Biophysics
PHD, Tufts University, 1994

Reinhart, Gregory D, Professor
Biochemistry & Biophysics
PHD, University of Wisconsin - Madison, 1979

Reynolds, Mollie M, Senior Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 2010
Rye, Chavela M, Senior Lecturer
Biochemistry & Biophysics
PHD, MIT, 2014

Rye, Hays S, Associate Professor
Biochemistry & Biophysics
PHD, University of California-Berkeley, 1995

Sacchettini, James C, Professor
Biochemistry & Biophysics
PHD, Washington University in St. Louis, 1987

Shippen, Dorothy E, University Distinguished Professor
Biochemistry & Biophysics
PHD, University of Alabama at Birmingham, 1987

Stover, Patrick, Professor
Biochemistry & Biophysics
PHD, Virginia Commonwealth University, 1990

Straight, Paul D, Associate Professor
Biochemistry & Biophysics
PHD, University of Colorado, 2000

Sze, Sing, Associate Professor
Biochemistry & Biophysics
PHD, University of Southern California, 2000

Threadgill, David, University Distinguished Professor
Biochemistry & Biophysics
PHD, Texas A&M University, 1989

Young, Ryland F, University Distinguished Professor
Biochemistry & Biophysics
PHD, University of Texas at Dallas, 1975

Zeng, Lanying, Associate Professor
Biochemistry & Biophysics
PHD, University of Illinois at Urbana-Champaign, 2007

Zhang, Xiuren, Professor
Biochemistry & Biophysics
PHD, Cornell University, 2003

Majors
- Bachelor of Science in Biochemistry (p. 160)
- Bachelor of Science in Genetics (p. 161)

Minors
- Biochemistry Minor (p. 162)
- Genetics Minor (p. 163)

Biochemistry - BS

The undergraduate biochemistry curriculum is designed to provide a solid background in chemistry and the physical sciences, as well as in the biological sciences. Consequently, biochemistry is an especially versatile major giving undergraduates many options when they complete their BS degree. A biochemistry major provides a strong background for entering graduate school in a variety of fields, and the majority of biochemistry majors go on to graduate school or to professional schools such as medicine, veterinary medicine or dentistry. Biochemistry majors excel in biomedical professional schools because of their strong background in the basic sciences. In addition, a wide variety of job opportunities is open to biochemistry majors with a BS degree. Many find rewarding careers working in laboratories as research scientists, forensic scientists and technicians in clinical, governmental and university laboratories. Biochemists are also employed by diverse companies in the chemical, pharmaceutical, agricultural, food and scientific equipment industries.

Majors in Biochemistry must make a grade of C or better in CHEM 227, CHEM 237, CHEM 228 and CHEM 238 before registration in BICH 440. In addition, majors in Biochemistry must make a grade of C or better in all major coursework used to satisfy the degree plan.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

BICH 101/GENE 101	Perspectives in Biochemistry and Genetics	1
CHEM 119	Fundamentals of Chemistry I	4
ENGL 104	Composition and Rhetoric	3
MATH 151 or MATH 171	Engineering Mathematics I or II	4
Free elective		3
Semester Credit Hours	15	

| Spring |

BIOL 111	Introductory Biology I	4
CHEM 120	Fundamentals of Chemistry II	4
MATH 152 or MATH 172	Engineering Mathematics II or II	4
University Core Curriculum (p. 25)	3	
Semester Credit Hours	15	

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

BIOL 112	Introductory Biology II	4
CHEM 227	Organic Chemistry I	3
CHEM 237	Organic Chemistry Laboratory	1
ENGL 210	Technical and Business Writing	3
MATH 251	Engineering Mathematics III or II	3
Free elective		1
Semester Credit Hours	15	

| Spring |

CHEM 228	Organic Chemistry II	3
CHEM 238	Organic Chemistry Laboratory	1
GENE 302	Principles of Genetics	3
GENE 312	Comprehensive Genetics Laboratory	1
PHYS 206 & PHYS 226	Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences	4
University Core Curriculum (p. 25)	3	
Semester Credit Hours	15	
Third Year

Fall
- **BICH 404** Biochemical Calculations 2
- **BICH 440** Biochemistry I 3
- **BICH 491** Research 1
- **PHYS 207 & PHYS 227** Electricity and Magnetism for Engineering and Science
 and Electricity and Magnetism Laboratory for the Sciences 4

<table>
<thead>
<tr>
<th>University Core Curriculum (p. 25)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Electives 1</td>
<td>2</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring
- **BICH 441** Biochemistry II 3
- **BICH 414** Biochemical Techniques I or **BICH 432/GENE 432** Laboratory in Molecular Genetics 2
- **BICH 491** Research 1
- **CHEM 327** Physical Chemistry I 3

<table>
<thead>
<tr>
<th>University Core Curriculum (p. 25)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free elective 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall
- **BICH 431/GENE 431** Molecular Genetics 3
- **BICH 491** Research 1
- **BIOL 351** Fundamentals of Microbiology 4
- **CHEM 328** Physical Chemistry II 3

| University Core Curriculum (p. 25) | 3 |

Semester Credit Hours 14

Spring
- **BICH 491** Research 4
- Biochemistry elective (p. 916) 5
- **University Core Curriculum (p. 25)** 2
- Free electives 1

Semester Credit Hours 16

Total Semester Credit Hours 120

1. Often used for a minor degree. Students intending to pursue and advance degree in biochemistry are strongly encouraged to use some free electives for additional upper division courses in BICH (p. 916), GENE (p. 999), BIOL (p. 919), CHEM (p. 929), MATH (p. 1066) or STAT (p. 1154). Except: BICH 303, BICH 410-412 (p. 916); MATH 100-104, 131-148 (p. 1066).

2. To be selected from the University Core Curriculum (p. 25). Of the 21 hours shown as University Core Curriculum (p. 25) electives, 3 must be from language, philosophy and culture, 3 from creative arts, 3 from social and behavioral sciences, 6 from American history, 6 from POLS 206 and POLS 207. The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses which may be met by courses satisfying the language, philosophy and culture, creative arts, social and behavioral sciences, government/political science and American history requirements if they are also on the approved list of international and cultural diversity courses.

3. Before registration in BICH 440, students much have attained a grade of C or better in each of these courses: CHEM 227, CHEM 228, CHEM 237, CHEM 238.

4. The fourth registered hour of research must be taken as writing intensive.

5. Hours to be selected from any 400-level course in BICH with approval of student's academic advisor. BICH 404, BICH 414, BICH 431/GENE 431, BICH 432/GENE 432, BICH 440, BICH 441, or BICH 491 may not be used to satisfy this requirement.

Students must make a grade of C or better in all major coursework used to satisfy degree plan.

Genetics - BS

Curriculum in Genetics is administered by the Department of Biochemistry and Biophysics.

Genetics is one of the most exciting, rapidly expanding areas in the life sciences. More than an independent discipline, it has become the basis for understanding many aspects of medical and agricultural systems, animal and plant diseases, and even animal behavior. Developments in molecular genetics have provided biotechnologies that will dramatically affect our lives from the improved diagnosis of human disease, to the production of viral-resistant crops, to environmental cleanup.

The undergraduate curriculum in genetics allows the study of several different aspects of genetics, including population genetics, human genetics and genetic engineering. The genetics major is designed to develop the knowledge and skills necessary for advanced studies in all disciplines related to life sciences from medicine/veterinary medicine to genetic engineering. This basic science curriculum also has enough flexibility to allow a student to prepare for such diverse careers as forensics, medicine, business or law.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CHEM 119</td>
</tr>
<tr>
<td>ENGL 104</td>
</tr>
<tr>
<td>GENE 101/</td>
</tr>
<tr>
<td>BICH 101</td>
</tr>
<tr>
<td>MATH 151</td>
</tr>
<tr>
<td>or MATH 171</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15
Biochemistry - Minor

The Department of Biochemistry and Biophysics offers a minor in Biochemistry. Students seeking a minor must complete a minor form (http://biochemistry.tamu.edu/academics/undergraduate-programs/academic-requirements/minors/) and have it approved and signed by the BICH/GENE undergraduate advisor and their major academic advisor. Students are required to obtain a grade of C or better in all minor courses and meet all minor course prerequisites.

Program Requirements

#### Code	Title	Semester Credit Hours
BICH 410 | Comprehensive Biochemistry I | 3
or BICH 440 | or Biochemistry I | 3
BICH 411 | Comprehensive Biochemistry II | 3
or BICH 441 | or Biochemistry II | 3
BICH 414 | Biochemical Techniques I | 2
or BICH 432 | or Laboratory in Molecular Genetics | 3
or BICH 432 | or Biochemical Techniques I | 2
GENE 432 | Molecular Genetics | 3
or BICH 431 | | 3
CHEM 327 | Physical Chemistry I | 3

Spring

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 450/</td>
<td>Genomics</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 419/</td>
<td>Computational Techniques for Evolutionary</td>
<td>3</td>
</tr>
<tr>
<td>BICH 419</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>GENE 432/</td>
<td>Laboratory in Molecular Genetics</td>
<td>2</td>
</tr>
<tr>
<td>BICH 432</td>
<td>or Biochemical Techniques I</td>
<td></td>
</tr>
<tr>
<td>or BICH 414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

Total Semester Credit Hours

To be selected from the University Core Curriculum. Of the 21 hours shown as University Core Curriculum courses, 3 must be from Language, Philosophy and Culture (p. 12); 3 from Social and Behavioral Sciences (p. 12); and the American History (p. 12) requirements if they are also on the approved list of International and Cultural Diversity (p. 47)/Cultural Discourse (p. 46) courses.

Before Registration in BICH 409, students must have attained a grade of C or better in the following courses: CHEM 227, CHEM 237, CHEM 228, and CHEM 238.

Third Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 409</td>
<td>Principles of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>GENE 491</td>
<td>Research</td>
<td>2</td>
</tr>
<tr>
<td>STAT 404</td>
<td>Statistical Computing</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

General elective

Total Semester Credit Hours

4

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 450/</td>
<td>Genomics</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 419/</td>
<td>Computational Techniques for Evolutionary</td>
<td>3</td>
</tr>
<tr>
<td>BICH 419</td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>GENE 432/</td>
<td>Laboratory in Molecular Genetics</td>
<td>2</td>
</tr>
<tr>
<td>BICH 432</td>
<td>or Biochemical Techniques I</td>
<td></td>
</tr>
<tr>
<td>or BICH 414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

3

2

4

3

5

The fourth registered hour of research must be taken as Writing Intensive.

Students must make a grade of C or better in all major coursework used to satisfy the degree plan.
Biochemistry elective (p. 916)

Total Semester Credit Hours

1 Hours to be selected from any 400-level course in BICH with approval of academic advisor.

Students must make a grade of 'C' or better in all courses.

Genetics - Minor

The Department of Biochemistry and Biophysics offers a minor in Genetics. Students seeking a minor must complete a minor form (http://biochemistry.tamu.edu/academics/undergraduate-programs/academic-requirements/minors/) and have it approved and signed by the BICH/GENE undergraduate advisor and their major academic advisor. Students are required to obtain a grade of C or better in all minor courses and meet all minor course prerequisites.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td>GENE 320/</td>
<td>Biomedical Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 412</td>
<td>Population, Quantitative and Ecological Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENE 431/</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BICH 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 404/</td>
<td>Plant Breeding</td>
<td>6</td>
</tr>
<tr>
<td>HORT 404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 405/</td>
<td>Mammalian Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 406/</td>
<td>Bacterial Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 420</td>
<td>Bioethics</td>
<td></td>
</tr>
<tr>
<td>GENE 421/</td>
<td>Advanced Human Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 450</td>
<td>Recombinant DNA and Biototechnology</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Department of Biological and Agricultural Engineering

Biological and agricultural engineers apply their knowledge of physical and biological sciences, mathematics, engineering principles and engineering design to the production and processing of food and fiber, to the preservation of environmental quality, to biological systems and processes, and to machine systems that interface with all of these. Because of their broad general engineering background, biological and agricultural engineering graduates are sought by a wide variety of employers including environmental consulting firms, equipment manufacturers, crop storage and handling industries, the cotton and forest products industries, food and feed processing industries, animal production industries, biotechnology companies, electric utility companies, chemical companies, and governmental agencies. Biological and agricultural engineers make significant contributions to meeting many basic needs of society such as maintaining food quality, quantity and safety, improving environmental quality, and enhancing the quantity and quality of our water resources.

The Biological and Agricultural Engineering Department provides quality education, research and outreach in engineering and technology for the world’s agricultural, biological, environmental and food systems. Our undergraduate programs provide a high quality education for engineering and systems management students to fulfill the needs of industries we serve and advance our reputation as a world leader in engineering and systems management education.

Biological and Agricultural Engineering is accredited by the Accreditation Board for Engineering and Technology (ABET). The Fundamentals of Engineering (FE) exam is generally your first step in the process to becoming a professional licensed engineer (P.E.). Students are able to obtain these licenses upon graduating from an ABET-accredited program.

Faculty

Agarwal, Girish S, Professor
Biological & Agricultural Eng
PHD, University of Rochester, 1969

Calabrese, Salvatore, Assistant Professor
Biological & Agricultural Eng
PHD, Princeton University, 2019

Capareda, Sergio C, Professor
Biological & Agricultural Eng
PHD, Texas A&M University, 1990

Castell-Perez, M E, Professor
Biological & Agricultural Eng
PHD, Texas A&M University, 1990

Engler, Cady R, Senior Professor
Biological & Agricultural Eng
PHD, University of Waterloo, 1980

Fernando, Sandun D, Professor
Biological & Agricultural Eng
PHD, University of Nebraska, 2003

Hardin, Robert G, Assistant Professor
Biological & Agricultural Eng
PHD, Texas A&M University, 2009

Huang, Yongheng, Associate Professor
Biological & Agricultural Eng
PHD, University of Nebraska - Lincoln, 2002

Kenimer, Ann L, Professor
Biological & Agricultural Eng
PHD, University of Illinois at Urbana-Champaign, 1990

King, Maria D, Assistant Professor
Biological & Agricultural Eng
PHD, Institute for Biototechnology, Berlin, Germany, 1986

Kingman, Douglas M, Instructional Associate Professor
Biological & Agricultural Eng
PHD, Purdue University, 2002
Lacey, Ronald E, Professor
Biological & Agricultural Eng
PHD, University of Kentucky, 1992

McGee, Russell O, Lecturer
Biological & Agricultural Eng
MEN, Texas A&M University, 1997

Mohanty, Binayak P, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1992

Mohtar, Rabi H, Professor
Biological & Agricultural Eng
PHD, Michigan State University, 1994

Moore, Janie M, Assistant Professor
Biological & Agricultural Eng
PHD, Purdue University, 2015

Moreira, Rosana G, Professor
Biological & Agricultural Eng
PHD, Michigan State University, 1989

Munster, Clyde L, Senior Professor
Biological & Agricultural Eng
PHD, North Carolina State University, 1992

Nikolov, Zivko L, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1986

Riskowski, Gerald L, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1986

Searcy, Stephen W, Senior Professor
Biological & Agricultural Eng
PHD, Oklahoma State University, 1980

Singh, Vijay P, University Distinguished Professor
Biological & Agricultural Eng
PHD, Colorado State University, 1974

Smith, Patricia K, Professor
Biological & Agricultural Eng
PHD, North Carolina State University, 2000

Stark, Gregory L, Assistant Professor of the Practice
Biological & Agricultural Eng
MPH, University of Nebraska - Lincoln, 1986

Thomasson, John A, Professor
Biological & Agricultural Eng
PHD, University of Kentucky, 1997

Majors

• Bachelor of Science in Agricultural Systems Management (p. 164)
• Bachelor of Science in Biological and Agricultural Engineering (p. 165)

Minors

• Agricultural Systems Management Minor (p. 167)

Agricultural Systems Management - BS

Graduates of the Agricultural Systems Management program manage people, money and machines in the food and agricultural industries. They are typically employed as production or processing operations managers, equipment managers, or in technical sales and services. Employers include farm and industrial equipment companies, food processing plants, cotton gins, grain and seed companies, livestock feeding operations, irrigation companies, construction companies, manufacturers, and a variety of other employers who need technical managers.

The technological courses are applications-oriented and focus on practical experience in food processing systems, water management, machinery and power systems, electrical systems and electronics. Business courses include accounting, economics, marketing, management, law and finance. Students can obtain a minor in either Agricultural Economics or Business by taking the 15 hours of noted coursework, plus one additional 3-hour class per minor. Management and systems science techniques such as linear programming, simulation, optimization, queuing theory, inventory models, PERT/CPM and expert systems are taught along with applications for solving realistic problems faced by agribusiness managers. Supporting courses provide a foundation of mathematics, chemistry, computer and communications skills. Technical electives are available to develop a degree program that meets personal career objectives.

The curriculum is administered by the Department of Biological and Agricultural Engineering and leads to the Bachelor of Science degree in Agricultural Systems Management. AGSM 360 prepares students for the opportunity to pursue an occupational license. Students who participate in the class regularly and pass the course will be eligible for a ‘30 hour Course for General Industry’ diploma from NASP. Please refer to the Notification for Students Pursuing an Occupational License (http://catalog.tamu.edu/undergraduate/appendices/occupational-licensing/) in our catalog for additional information.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSM 125</td>
</tr>
<tr>
<td>AGSM 201</td>
</tr>
<tr>
<td>CHEM 119</td>
</tr>
<tr>
<td>ENGL 104</td>
</tr>
<tr>
<td>MATH 140</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Language, philosophy and culture (p. 27)1,2
Select one of the following:

- AGSM 470
- AGSM 439
- AGSM 403
- Fall
- AGSM 470
- AGSM 439
- AGSM 403
- Fourth Year
- AGSM 403
- AGSM 439
- AGSM 470
- Select one of the following:
 - AGSM 473
 - AGSM 470
 - Project Management for Agricultural Systems Technology (Select one of the following)
 - ESSM 351
 - RENR 405
 - Geographic Information Systems for Resource Management
 - RENR 405
 - Geographic Information Systems for Resource Management
 - ESSM 351
 - Spring
 - AGSM 440
 - Management of Agricultural Systems II
 - MKTG 409 or AGEC 314
 - Principles of Marketing or Marketing Agricultural and Food Products
 - AGSM Directed elective
 - Technical elective
 - Technical elective
 - Technical elective
 - Semester Credit Hours

1. To be selected from the University Core Curriculum.
2. The 3 hours of international and cultural diversity (p. 47) and 3 hours of cultural discourse (p. 46) courses, as required for graduation, may be met in the curriculum. Students may select Language, Philosophy, and Culture, Creative Arts, Technical Electives, or American History Electives that also meet the ICD/CD requirement.
3. A minor in Business may be obtained by completing the noted courses, plus ISTM 209. Each of these courses must be completed with a C or better.
4. A minor in Agricultural Economics may be obtained by completing the noted courses, plus AGEC 105. Each of these courses must be completed with a C or better.
5. The two (2) required AGSM Directed Electives must be selected from AGSM 335, AGSM 337, AGSM 435, AGSM 477.
6. All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive (W). This course is an approved W course.
7. Technical electives must be selected in consultation with the student’s advisor and from the current list of approved electives published by the department.

A grade of C or better is required for all Common Body of Knowledge (CBK) courses; ACCT 209, AGSM 301, CHEM 119, ECON 202, MATH 140, MATH 142 and PHYS 201, or equivalents and senior capstone courses AGSM 439 and AGSM 440.

Biological and Agricultural Engineering - BS

Graduates from the Biological and Agricultural Engineering program will:

- Successfully enter the biological and agricultural engineering profession as practicing engineers and consultants in the natural resources, machine systems, food processing, bioprocessing, and agricultural production and processing fields.
- Pursue graduate education and research at major universities in biological and agricultural engineering, and related fields.
- Advance into leadership positions in their chosen fields and professional societies.
- Engage in life-long learning through professional registration and professional development.

Students learn to apply fundamental knowledge of biological and physical sciences, mathematics, and engineering principles to formulate...
and solve engineering problems. Engineering design is integrated throughout the curriculum, along with opportunities to develop communication, learning, and teamwork skills, culminating in a capstone design experience. Electives in the curriculum allow the student to focus in one of the following areas:

- **Environmental and Natural Resources Engineering**—design and management of systems affecting soil, water, and air resources.
- **Renewable Energy Engineering**—design and development of biomass, wind and solar energy systems.
- **Food and Bioprocess Engineering**—design and development of systems for processing and handling of food and agricultural products and processes involving cells, enzymes, or other biological components.
- **Machine Systems Engineering**—design and development of machines and machine systems for food, feed and fiber production and processing.

Students select courses with the assistance of faculty advisors in an individualized advising system. Faculty members also assist with professional development and job placement for students.

The biological and agricultural engineering program is jointly administered by the College of Agriculture and Life Sciences and the College of Engineering, and the curriculum is fully accredited by the Engineering Accreditation Commission of ABET, Inc., www.abet.org. The department is one of the largest in North America and is consistently ranked as one of the top programs in the nation.

For graduates to become successful practicing biological and agricultural engineers, students need to acquire a set of skills, knowledge, and behaviors as they progress through the curriculum. We have established the following program outcomes outlining what students are expected to know and be able to do upon completion of the curriculum. At the time of graduation, students should have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Biological and Agricultural Engineering is accredited by the Accreditation Board for Engineering and Technology (ABET).

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I (^1)</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>American history (p. 29) (^2)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 216/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 216</td>
<td>II - Mechanics</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 201</td>
<td>Analysis of Biological and Agricultural</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering Problems</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 221</td>
<td>Statics and Particle Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 301</td>
<td>Biological and Agricultural Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fundamentals I</td>
<td></td>
</tr>
<tr>
<td>BAEN 320</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 222/</td>
<td>Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MSEN 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 302</td>
<td>Biological and Agricultural Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fundamentals II</td>
<td></td>
</tr>
<tr>
<td>BAEN 340</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>BAEN 354</td>
<td>Engineering Properties of Biological</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSM 201</td>
<td>Agricultural Energy and Power Systems</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 301</td>
<td>Systems Analysis in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Select four of the following:

- AGSM 310 Agricultural Machinery Management
- AGSM 315/ Food Process Engineering
- NFSC 315 Technology
- AGSM 325 Agri-Industrial Applications of Electricity
- AGSM 335 Water and Soil Management
- AGSM 337 Technology for Environmental and Natural Resource Engineering
- AGSM 360 Occupational Safety Management
- AGSM 403 Processing and Storage of Agricultural Products
- AGSM 417/ Food Process Engineering
- NFSC 417 Technology II
- AGSM 435 Irrigation Principles and Management
- AGSM 470 Agricultural Electronics and Control
- AGSM 473 Project Management for Agricultural Systems Technology

Agricultural Systems Management - Minor

The minor in Agricultural Systems Management is available to all students enrolled at Texas A&M University. The primary educational objective of this minor program is to provide students, majoring in other fields, with a fundamental knowledge of the fields of agricultural systems management.

AGSM 360 prepares students for the opportunity to pursue an occupational license. Students who participate in the class regularly and pass the course will be eligible for a '30 hour Course for General Industry' diploma from NASP. Please refer to the Notification for Students Pursuing an Occupational License (http://catalog.tamu.edu/undergraduate/appendices/occupational-licensing/) in our catalog for additional information.
AGSM 477 Air Pollution Control and Regulatory Compliance
Total Semester Credit Hours 18

Students must make a grade of C or better in all courses.

Department of Ecology and Conservation Biology

The Department of Ecology and Conservation Biology provides one of the most advanced educational opportunities available to prepare undergraduate students for leadership in the science and stewardship of rangeland, forest and wetland ecosystems across the rural-urban gradient. We offer Bachelors of Science degrees in Ecological Restoration, Forestry, Rangeland Ecology and Management, Renewable Natural Resources, and Spatial Sciences.

Faculty

Barboza, Peregrine, Professor
Ecology and Conservation Biology
PHD, University of New England, 1991

Boutton, Thomas, Professor
Ecology and Conservation Biology
PHD, Brigham Young University, 1979

Briske, David, Professor
Ecology and Conservation Biology
PHD, Colorado State University, 1978

Casola, Claudio, Associate Professor
Ecology and Conservation Biology
PHD, University of Pisa, Italy, 2006

Conway, Kevin, Associate Professor
Ecology and Conservation Biology
PHD, San Louis University, 2010

Dewitt, Thomas, Associate Professor
Ecology and Conservation Biology
PHD, State University of New York - Binghamton, 1996

Dronen, Norman, Professor
Ecology and Conservation Biology
PHD, New Mexico State University, 1974

Eriksson, Marian, Associate Professor
Ecology and Conservation Biology
PHD, University of Minnesota, 1989

Feagin, Russell, Professor
Ecology and Conservation Biology
PHD, Texas A&M University, 2003

Fitzgerald, Lee, Professor
Ecology and Conservation Biology
PHD, University of New Mexico, 1993

Fujiwara, Masami, Associate Professor
Ecology and Conservation Biology
PHD, Massachusetts Inst of Technology, 2002

Gan, Jianbang, Professor
Ecology and Conservation Biology
PHD, Iowa State University, 1990

Gatlin, Delbert, Professor
Ecology and Conservation Biology
PHD, Mississippi State University, 1983

Grace, Jacquelyn, Assistant Professor
Ecology and Conservation Biology
PHD, Wake Forest University, 2014

Grant, William, Professor
Ecology and Conservation Biology
PHD, Colorado State University, 1974

Hibbits, Toby, Lecturer
Ecology and Conservation Biology
PHD, University of the Witwatersrand, 2006

Hurtado Clavijo, Luis, Associate Professor
Ecology and Conservation Biology
PHD, Rutgers, 2002

Hyodo, Ayumi, Research Assistant Professor
Ecology and Conservation Biology
PHD, The University of Western Ontario, 2010

Kreuter, Urs, Professor
Ecology and Conservation Biology
PHD, Utah State University, 1992

Lacher, Thomas, Professor
Ecology and Conservation Biology
PHD, University of Pittsburgh, 1980

Lawing, Anna, Associate Professor
Ecology and Conservation Biology
PHD, Indiana University, 2012

Light, Jessica, Associate Professor
Ecology and Conservation Biology
PHD, Louisiana State University, 2005

Loopstra, Carol, Associate Professor
Ecology and Conservation Biology
PHD, North Carolina State University, 1992

Mateos, Mariana, Associate Professor
Ecology and Conservation Biology
PHD, Rutgers, 2002

Moore, Georgianne, Professor
Ecology and Conservation Biology
PHD, Oregon State University, 2004

Mora-Zacarias, Miguel, Professor
Ecology and Conservation Biology
PHD, University of California, Davis, 1990

Noormets, Asko, Professor
Ecology and Conservation Biology
PHD, Michigan Technological University, 2001
Osorio Leyton, Javier, Visiting Lecturer
Ecology and Conservation Biology
PHD, Virginia Polytechnic Institute and State University, 2012

Perkin, Joshuah, Assistant Professor
Ecology and Conservation Biology
PHD, Kansas State University, 2012

Popescu, Sorin, Professor
Ecology and Conservation Biology
PHD, Virginia Tech, 2002

Rogers, William, Professor
Ecology and Conservation Biology
PHD, Kansas State University, 1998

Smeins, Fred, Visiting Professor
Ecology and Conservation Biology
PHD, University of Saskatchewan, 1967

Spalink, Daniel, Assistant Professor
Ecology and Conservation Biology
PHD, University of Wisconsin-Madison, 2015

Srinivasan, Raghavan, Professor
Ecology and Conservation Biology
PHD, Purdue University, 1992

Struminger, Rhonda, Assistant Professor of the Practice
Ecology and Conservation Biology
PHD, Texas A&M University, 2013

Veldman, Joseph, Assistant Professor
Ecology and Conservation Biology
PHD, University of Florida, 2010

Voelker, Gary, Professor
Ecology and Conservation Biology
PHD, University of Washington, 1998

Watson, Wesley, Lecturer
Ecology and Conservation Biology
PHD, Texas A&M University, 1999

West, Jason, Associate Professor
Ecology and Conservation Biology
PHD, University of Georgia, 2002

Wilcox, Bradford, Professor
Ecology and Conservation Biology
PHD, Texas A&M University, 1986

Winemiller, Kirk, Professor
Ecology and Conservation Biology
PHD, University of Texas, 1987

Wu, Xinyuan, Professor
Ecology and Conservation Biology
PHD, University of Tennessee, Knoxville, 1991

Yorzinski, Jessica, Assistant Professor
Ecology and Conservation Biology
PHD, University of California Davis, 2012

Majors

• Bachelor of Science in Ecological Restoration (p. 169)
• Bachelor of Science in Forestry (p. 170)
• Bachelor of Science in Renewable Natural Resources (p. 219)
• Bachelor of Science in Spatial Sciences (p. 171)

Minors

• Forestry Minor (p. 173)
• Spatial Sciences Minor (p. 173)

Certificates

• Watershed Certificate (p. 173)

Ecological Restoration - BS

Ecological restoration is the process of repairing dysfunctional ecosystems to provide essential ecosystem goods and services important to society. The Ecological Restoration degree prepares students for a career that requires an understanding of the causes of land degradation and strategies for recovery of ecosystems damaged, degraded, or destroyed by natural or human causes.

The curriculum focuses on restoration of damaged ecosystems and landscapes, particularly terrestrial, wetland, and riparian systems in diverse settings that span the rural-urban spectrum. The discipline of ecological restoration requires a strong conceptual/theoretical foundation as well as a practical application component. This degree combines basic sciences, modern technologies, and contemporary ecological knowledge. Students will develop practical capabilities and gain critical understanding of the interaction of biophysical, socio-economic and political drivers that affect land degradation and restoration through a program that incorporates integrated coursework and an internship with ecological restoration practitioners.

Completion of this degree will prepare students to assess the causes of ecosystem degradation and to develop strategies for ecological restoration at multiple spatial scales. Graduates will be equipped for professional careers with environmental consulting companies, governmental and non-governmental land management organizations, and regulatory agencies. This degree program also provides a foundation for students planning to pursue advanced degrees in restoration ecology, disturbed land reclamation, natural resources conservation and management, or related fields.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>ESSM 201</td>
<td>Exploring Ecosystem Science and Management</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
</tr>
<tr>
<td>HORT 201 & HORT 202</td>
<td>Horticultural Science and Practices & Horticultural Science and Practices Laboratory</td>
</tr>
<tr>
<td>Semester</td>
<td>Course Code</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fall</td>
<td>RENR 205</td>
</tr>
<tr>
<td></td>
<td>& RENR 215</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>ESSM 281</td>
</tr>
<tr>
<td></td>
<td>ESSM 304</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Summer</td>
<td>CHEM 119</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Second Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Emphasis area elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>ESSM 301</td>
</tr>
<tr>
<td></td>
<td>ESSM 313</td>
</tr>
<tr>
<td></td>
<td>ESSM 320</td>
</tr>
<tr>
<td></td>
<td>SCSC 301</td>
</tr>
<tr>
<td></td>
<td>Emphasis area elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Third Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>ESSM 351/</td>
</tr>
<tr>
<td></td>
<td>RENR 405</td>
</tr>
<tr>
<td></td>
<td>ESSM 406</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td></td>
<td>Emphasis area elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>RENR 470</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td></td>
<td>Emphasis area elective</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>or ESSM 311</td>
</tr>
<tr>
<td></td>
<td>ESSM 416</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

1 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

2 Credit by examination may be used to substitute 3 hours of POLS 206 or POLS 207.

3 To be selected from an approved list in consultation with an academic advisor.

Forestry - BS

The Department of Ecology and Conservation Biology provides one of the most advanced educational opportunities available for developing leaders in the management, conservation and restoration of the world’s diverse forests. Students seeking to study forestry in this department are interested in solving problems related to protecting forest biodiversity, providing wood, water, recreation and wildlife for a growing society, and contributing to the advancement of knowledge about forests. Resolving today’s forest management issues requires a broad education in the biological, physical and social sciences, a solid understanding of the methods used to integrate information from many fields and to solve problems, and an in-depth knowledge of the sophisticated tools and techniques that are an essential part of modern forestry. Curriculum in the Department of Ecology and Conservation Biology incorporates these ideas so that motivated and capable students can become competent forest and resource management professionals and scientists.

Forests cover one-third of the land area of the United States. The products and services derived from forests, and the scenic beauty they provide, have contributed to the well-being of the American people since the founding of this country. These benefits range from lumber and paper to recreation and biological diversity. Forests also are renewable. Under proper stewardship, they yield products and biodiversity indefinitely. Proper management of forests, which is the responsibility of the professional forester, results in healthy, productive forests that are capable of serving human needs and providing a quality environment in rural or urban settings.

The primary objective of the Department of Ecology and Conservation Biology is to educate students in the scientific management of forest resources. Students select a course of study best suited to their educational and career goals. Students also receive help from faculty
advisors in their areas of interest. The total number of credit hours required for a degree is 120.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>ESSM 201</td>
<td>Exploring Ecosystem Science and Management</td>
</tr>
<tr>
<td>ESSM 203</td>
<td>Forest Trees of North America</td>
</tr>
</tbody>
</table>

Communication (p. 26) | 1

| Total Semester Credit Hours | 14 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ESSM 281</td>
<td>Seminar in Ecosystem Science and Management</td>
</tr>
</tbody>
</table>

American history (p. 29) | 1

Communication (p. 26) | 1

Mathematics (p. 26) | 3

| Total Semester Credit Hours | 14 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 309</td>
<td>Forest Ecology</td>
</tr>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
</tr>
</tbody>
</table>

Select one of the following: | 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>HORT 201 & HORT 202</td>
<td>Horticultural Science and Practices and Horticultural Science and Practices Laboratory</td>
</tr>
</tbody>
</table>

Mathematics (p. 26) | 3

Emphasis area elective | 3

| Total Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 300</td>
<td>Field Studies in Forest Ecosystems</td>
</tr>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
</tr>
<tr>
<td>ESSM 313</td>
<td>Vegetation Sampling Methods and Designs in Ecosystems</td>
</tr>
</tbody>
</table>

Government/Political science (p. 30) | 1

Emphasis area elective | 3

| Total Semester Credit Hours | 15 |

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 4 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>ESSM 319</td>
<td>Principles of Forestry</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 120 |

1. Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

2. To be selected from an approved list in consultation with an advisor.

3. Credit by examination may be used to substitute 3 hours of POLS 206 or POLS 207.

Spatial Sciences - BS

A degree in Spatial Sciences offers students the opportunity to obtain a career in a cutting-edge discipline at the intersection of environmental and spatial sciences. The spatial sciences combine multidisciplinary fields of scientific study with geospatial technologies including Geographic Information Systems (GIS), Global Positioning Systems (GPS), and Remote Sensing. A spatial sciences graduate will possess an advanced knowledge of these technologies, experience in interpretation of aerial photographs and processing of satellite images, as well as a broad understanding of computer applications and database management. Graduates are capable of working as environmental and natural resource managers and possess the necessary skills to map geographical features, patterns, and changes. Furthermore, these individuals will be able to lead and conduct modern environmental management activities.
Through core and supporting coursework, students will learn to utilize the full potential of the spatial sciences in real-world problem solving. From real-time wildfire risk assessment to crime analysis, habitat mapping for endangered species, and evaluating environmental damage from natural disasters, the spatial sciences are an integral part of modern resource management.

Students in this degree program receive guidance from faculty advisors in their areas of interest and meet regularly to discuss courses and career opportunities.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 201</td>
<td>Exploring Ecosystem Science and Management</td>
<td>1</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>4</td>
</tr>
<tr>
<td>& RENR 215</td>
<td>Fundamentals of Ecology--Laboratory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td></td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
<td></td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td></td>
</tr>
<tr>
<td>& HORT 202</td>
<td>Horticultural Science and Practices--Laboratory</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)¹</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ESSM 281</td>
<td>Seminar in Ecosystem Science and Management</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)¹,³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 306 or ESSM 311</td>
<td>Plant Functional Ecology and Adaptation or Biogeochemistry and Global Change</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 313</td>
<td>Vegetation Sampling Methods and Designs in Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)¹,³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 203 or ESSM 302</td>
<td>Forest Trees of North America or Wildland Plants of North America</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 444</td>
<td>Remote Sensing of the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 461</td>
<td>Spatial Databases for Data Storage, Manipulation and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
<td></td>
</tr>
<tr>
<td>ESSM 404</td>
<td>Changing Natural Resource Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 459</td>
<td>Programming for Spatial Data Applications</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESSM 317</td>
<td>Vegetation Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 319</td>
<td>Principles of Forestry</td>
<td></td>
</tr>
<tr>
<td>ESSM 320</td>
<td>Ecosystem Restoration and Management</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 481</td>
<td>Senior Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 12

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 462 or GEOG 462</td>
<td>Advanced GIS Analysis for Natural Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 464</td>
<td>Spatial Project Management</td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 12

Total Semester Credit Hours 120

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)¹</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 7

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 203 or ESSM 302</td>
<td>Forest Trees of North America or Wildland Plants of North America</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 444</td>
<td>Remote Sensing of the Environment</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 461</td>
<td>Spatial Databases for Data Storage, Manipulation and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
<td></td>
</tr>
<tr>
<td>ESSM 404</td>
<td>Changing Natural Resource Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 459</td>
<td>Programming for Spatial Data Applications</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESSM 317</td>
<td>Vegetation Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 319</td>
<td>Principles of Forestry</td>
<td></td>
</tr>
<tr>
<td>ESSM 320</td>
<td>Ecosystem Restoration and Management</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective²</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

¹ Optional course
² Optional elective
³ May be taken concurrently with other courses
Graduation requirements include a requirement for three hours of International and Cultural Diversity (p. 47) courses and three hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See an academic advisor.

To be selected from an approved list in consultation with an academic advisor.

Credit by examination may be used to substitute 3 hours of POLS 206 or POLS 207.

Forestry - Minor

The primary objective of the minor in Forestry is to educate students in the scientific management of forest resources. Students select courses from the minor best suited to their educational and career goals. The minor in Forestry is housed in the Department of Ecology and Conservation Biology.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSM 203</td>
<td>Forest Trees of North America</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 313</td>
<td>Vegetation Sampling Methods and Designs in Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 319</td>
<td>Principles of Forestry</td>
<td>4</td>
</tr>
<tr>
<td>ESSM 324</td>
<td>Forest Measurements</td>
<td>2</td>
</tr>
<tr>
<td>Elective Courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students must make a grade of C or better in all courses.

Minimum of 18 hours required.

Spatial Sciences - Minor

The minor in Spatial Sciences gives students the knowledge and skills to use computer-based technologies such as Geographic Information Systems (GIS), Global Positioning Systems (GPS), and Remote Sensing.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students must complete a minimum of 6 hours in residence at the 300-400 level.

Students must maintain a 2.0 or above in minor curriculum.

Watershed - Certificate

The goal of the Watershed Certificate is to provide a rigorous and high quality program that will produce graduates capable of working as a professional in watershed or hydrology fields, but with very solid scientific and ecological foundation. Graduates will be qualified to work in government or consulting or if they choose, be prepared to pursue graduate training in any watershed/hydrology science program. Training will be built on a solid foundation in watershed management and hydrology.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Department of Entomology

The Department of Entomology at Texas A&M University is one of the top entomology departments in the United States. We offer two undergraduate degrees, a Bachelor of Science degree in Entomology and a Bachelor of Science degree in Forensic and Investigative Sciences (FIVS). Our FIVS degree is the only bachelor’s degree in the state of Texas that is nationally accredited by the Forensic Science Education Programs Accreditation Commission (FEPAC) of the American Academy of Forensic Sciences. Both undergraduate degrees provide students with the necessary curriculum requirements to pursue graduate study in entomology, as well as in other professional fields, such as law and medicine.

Faculty

Adelman, Zachary N, Professor
Entomology
PHD, Colorado State University Fort Collins, 2000

Behmer, Spencer T, Professor
Entomology
PHD, University of Arizona, 1998

Bernal, Julio S, Professor
Entomology
PHD, University of California, Riverside, 1995

Brundage, Adrienne L, Instructional Assistant Professor
Entomology
PHD, Texas A&M University, 2012

Coates, Craig J, Instructional Professor
Entomology
PHD, Australian National University, 1997

Coulson, Robert N, Professor
Entomology
PHD, University of Georgia, 1969

Eubanks, Micky D, Professor
Entomology
PHD, University of Maryland, College Park, 1997

Hamer, Gabriel L, Associate Professor
Entomology
PHD, Michigan State University, 2008

Heinz, Kevin M, Senior Professor
Entomology
PHD, University of California, Riverside, 1989

Helms, Anjel Marie, Assistant Professor
Entomology
PHD, The Pennsylvania State University, 2015

Johnston, J S, Professor
Entomology
PHD, University of Arizona, 1972

Kovar, Scott J, Senior Lecturer
Entomology
MS, CUNY John Jay College of Criminal Justice, 2007

Medina, Raul F, Professor
Entomology
PHD, University of Maryland, College Park, 2005

Myles II, Kevin M, Professor
Entomology
PHD, Colorado State University, 2003

Olive Chavez, Adela, Assistant Professor
Entomology
PHD, University of Minnesota, 2014

Oswald, John D, Professor
Entomology
PHD, Cornell University, 1991

Pietrantonio, Patricia, Professor
Entomology
PHD, University of California, Riverside, 1995

Rangel Posada, Juliana, Associate Professor
Entomology
PHD, Cornell University, 2010

Slotman, Michel A, Associate Professor
Entomology
PHD, Yale University, 2003

Song, Hojun, Associate Professor
Entomology
PHD, The Ohio State University Columbus, OH, 2006

Sword, Gregory A, Professor
Entomology
PHD, University of Texas at Austin, 1998

Tambarindgeuy, Cecilia, Associate Professor
Entomology
PHD, Institut National Polytechnique de Toulouse, 2004

Tarone, Aaron M, Professor
Entomology
PHD, Michigan State University, 2007

Teel, Pete D, Professor
Entomology
PHD, Oklahoma State University, 1978

Tomberlin, Jeffery K, Professor
Entomology
PHD, University of Georgia, 2001

Vargo, Edward L, Professor
Entomology
PHD, University of Georgia, Athens, 1986
Majors
- Bachelor of Science in Entomology (p. 175)
- Bachelor of Science in Forensic and Investigative Sciences, Pre-Law Emphasis (p. 177)
- Bachelor of Science in Forensic and Investigative Sciences, Science Emphasis (p. 178)

Minors
- Entomology Minor (p. 180)

Certificates
- Public Health Entomology Certificate (p. 181)

Entomology - BS

Entomology is a basic and applied science of insects and their relatives such as ticks and mites. Insects are the most numerous and diverse forms of life on earth; they are essential constituents of virtually every terrestrial and aquatic ecosystem. While society benefits from the many diverse roles played by the vast majority of insects, some species may become limiting factors in the production, processing and storage of our food and fiber crops, and to the health and well being of humans and animals. The knowledge and skills possessed by entomologists are essential components of modern integrated pest management strategies designed to safely and efficiently produce adequate food supplies for a continuously expanding world population, and to impede the transmission of insect-borne diseases, while at the same time protecting our endangered species and fragile ecosystems.

The Bachelor of Science degree in Entomology leads to a wide array of career paths with strong employment demands among corporate and private agribusiness; urban pest management companies; scientific and technical organizations; public health agencies; local, state and federal governments; and international organizations. In addition, employment opportunities exist in areas such as forensic entomology, conservation biology, environmental quality, food quality, regulatory inspection, public health and many more. Our curriculum is sufficiently flexible such that a student, in consultation with the academic advisor, may tailor the degree to meet their individual academic goals, including requirements for graduate school, professional schools in the health career areas (medical, veterinary, dental) as well as providing the analytical skills needed for law school. Our department also participates in the Texas A&M accelerate online program for teaching certification, which is an innovative approach to training Texas secondary science teachers to gain the background education needed to prepare for certification to teach science grades 8–12.

Students majoring in related areas such as agronomy, animal science, horticulture, biology, genetics and biomedical sciences may wish to consider augmenting their knowledge base and broaden their career opportunities by electing to either double major or to minor in entomology. Interested students should contact the departmental Undergraduate Advisor for additional information on these options.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGLS 101 or ENTO 101</td>
<td>Modern Agricultural Systems and Renewable Natural Resources or Introduction to Academic Success in Entomology</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>MATH 142 or PHIL 240</td>
<td>Business Calculus or Introduction to Logic</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 222 or CHEM 227</td>
<td>Elements of Organic and Biological Chemistry or Organic Chemistry I</td>
</tr>
<tr>
<td>ENTO 482</td>
<td>Occupational and Professional Development</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENTO 305</td>
<td>Evolution of Insect Structure</td>
</tr>
<tr>
<td>ENTO 306</td>
<td>Insect Physiology</td>
</tr>
<tr>
<td>Technical electives</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 301</td>
<td>Biodiversity and Biology of Insects</td>
</tr>
<tr>
<td>ENTO 424</td>
<td>Insect Ecology</td>
</tr>
<tr>
<td>ENTO 481</td>
<td>Seminar</td>
</tr>
</tbody>
</table>
GENE 301 Comprehensive Genetics and Comprehensive Genetics Laboratory 4
Creative arts (p. 29) 1 3
Semester Credit Hours 15

Fourth Year
Fall
ENTO 428 Insect Biotechnology 3
ENTO 429 Insect Biotechnology Laboratory 1
Technical electives 2 7
General elective 3
Semester Credit Hours 14
Spring
ENTO 435 Case Studies in Problem Solving 3
ENTO 484 or ENT 491 Professional Internship or Research 2 6
Technical electives 2 6
General electives 5
Semester Credit Hours 16
Total Semester Credit Hours 120

1 To be selected in consultation with student's academic advisor in the department. Three hours of international and cultural diversity (p. 47) electives and three hours of cultural discourse (p. 46) are required for graduation; these courses may fulfill other degree requirements as well. See the list of approved courses.
2 Technical electives must be selected in consultation with the student's advisor or from the current list of approved electives published by the department. See Technical Electives table.

Additional Requirements for a Baccalaureate Degree

- Foreign Language (two years of the same language in high school or one year/two semester sequence in college)
- Writing Intensive Courses (two courses designated W in major or one W and one C course in major)
- International and Cultural Diversity Courses (three credit hours)
- Cultural Discourse Course (three credit hours)

Technical Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>AGE C 314</td>
<td>Marketing Agricultural and Food Products</td>
<td>3</td>
</tr>
<tr>
<td>AGE C 330</td>
<td>Financial Management in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>AGE C 340</td>
<td>Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 335</td>
<td>Water and Soil Management</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 337</td>
<td>Technology for Environmental and Natural Resource Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 108</td>
<td>General Animal Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 303/</td>
<td>Principles of Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 305</td>
<td>Animal Breeding</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 307/</td>
<td>Meats</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 318</td>
<td>Animal Feeds and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 320</td>
<td>Animal Nutrition and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>BESC 401</td>
<td>Bioenvironmental Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BESC 402</td>
<td>Microbial Processes in Bioremediation</td>
<td>3</td>
</tr>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BICH 431/</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENE 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 206</td>
<td>Introductory Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 357</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 358</td>
<td>Ecology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 413</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 456</td>
<td>Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 208 - ENTO 299 (p. 980)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 320</td>
<td>Honey Bee Biology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 322</td>
<td>Insects and Human Society</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 401</td>
<td>Principles of Integrated Pest Management</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 402</td>
<td>Field-Crop Insects</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 403</td>
<td>Urban Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 431/</td>
<td>The Science of Forensic Entomology</td>
<td>3</td>
</tr>
<tr>
<td>FIVS 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 432/</td>
<td>Applied Forensic Entomology</td>
<td>1</td>
</tr>
<tr>
<td>FIVS 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>ENTO 489</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>BIOL 406</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>GENE 412</td>
<td>Population, Quantitative and Ecological Genetics</td>
<td>3</td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td>3</td>
</tr>
<tr>
<td>HORT 301</td>
<td>Garden Science</td>
<td>3</td>
</tr>
<tr>
<td>HORT 308</td>
<td>Plants for Sustainable Landscapes</td>
<td>3</td>
</tr>
</tbody>
</table>
Forensic and Investigative Sciences - BS, Pre-Law Emphasis

Forensic and Investigative Sciences, an accredited program by the Forensic Science Education Programs Accreditation Commission (FEPAC), is a major offered by the Department of Entomology and is a growing area of interest for students seeking to gain entry into careers that deal with the collection, preservation, processing and use of evidentiary information to solve problems. A life sciences-based education, which develops skills in problem solving and critical thinking, is essential for career opportunities in this field. Forensic and investigative scientists rely upon state-of-the-art scientific discoveries and technologies as tools to seek answers to critical questions in a variety of settings. Molecular, organismal, environmental, and ecological sources of information are often analyzed and interpreted in industrial, regulatory, legal, medical and associated professions. Graduates will be competitive for employment opportunities in quality assurance laboratories, homeland security and investigative services at local, state and national levels. Graduates will also be well prepared for opportunities to enter post-graduate studies or professional schools including medicine, law, and veterinary medicine.

Interactions with and among plants, animals and microbes occur regularly. These interactions impact public and environmental health and require life science-based forensic and investigative science to improve the quality of life. Homeland security, criminal investigation, environmental quality, agricultural and public health offer careers for students with forensic and investigative skills. Students can also pursue avenues to forensic careers through degree programs in specialty areas such as chemistry, anthropology, physics, computer science and business.

Forensic and investigative sciences also operate at the crossroads of science and the legal profession, and provide opportunities for students to consider pre-law preparation. There are growing demands for attorneys with knowledge and understanding of science and research to address legal issues and cases where the interpretation of science and/or scientific data and analyses are pivotal. Law schools often seek candidates with diverse backgrounds and interests, and they look closely at curricula that stress analytical and problem-solving skills, critical reading abilities, writing skills, oral communication and listening abilities, general research skills, and task organization and management skills.

The Forensic and Investigative Sciences program provides students with opportunities to build these essential skills and knowledge areas through a combination of required and elective courses.

Law Emphasis

This track provides pre-law students with a solid scientific foundation while also preparing them for success in law school. Ultimately, our goal is to empower students to more effectively practice law in arenas where science will play a critical role in the judicial process. We aim to educate and train Texas A&M students as the next generation of lawyers, judges, and policy makers that are best able to critically evaluate scientific research and apply these concepts to the evaluation of evidence, in order to improve the application of justice for all. Students in this major have successfully completed their Juris Doctor (JD) degrees at top law schools.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGLS 101 or FIVS 101</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>FIVS 205</td>
<td>Introduction to Forensic and Investigative Sciences</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>MATH 142 or PHIL 240</td>
<td>Business Calculus or Introduction to Logic</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
</tbody>
</table>
Communication (p. 26) 3
Language, philosophy and culture (p. 27) 3
Directed elective 1 3

Semester Credit Hours 16

Spring
PHYS 202 College Physics 4
American history (p. 29) 3
Creative arts (p. 29) 3
Social and behavioral sciences (p. 30) 3
General elective 3

Semester Credit Hours 15

Third Year
Fall
FIVS 308 Forensic Implications of Inheritance 4
FIVS 482 Occupational and Professional Development 2
STAT 303 Statistical Methods 3
American history (p. 29) 3
Directed elective 1 3

Semester Credit Hours 15

Spring
BICH 303 Elements of Biological Chemistry 3
FIVS 422 Crime Scene Investigation 2
FIVS 481 Seminar 2 1
Government/Political science (p. 30) 3
Directed elective 1 3
Directed elective 1 3

Semester Credit Hours 15

Fourth Year
Fall
FIVS 316 Biotechnology and Forensics 4
FIVS 401/ SCSC 401 Forensic Soil Science 3
FIVS 484 Professional Internship or Research 2
Government/Political science (p. 30) 3
Directed Elective 1 3

Semester Credit Hours 15

Spring
FIVS 415 Practice and Principles of Science and Law 3
FIVS 431/ ENTO 431 & FIVS 432/ ENTO 432 The Science of Forensic Entomology and Applied Forensic Entomology 4
FIVS 435 Case Studies in Problem Solving 2 3
Directed Elective 1 4

Semester Credit Hours 14

Total Semester Credit Hours 120

1 Students must choose one course (minimum 3 hours) from each of the three categories of pre-law directed electives. The remaining pre-law directed electives must be selected in consultation with the student's advisor based on career and educational goals and from the current list of approved list published by the department. See below the approved list of directed electives.

Category 1 - AGEC 105, AGEC 315, AGEC 344, AGEC 350, AGEC 429; ECON 202; ECON 323, ECON 420; ESSM 406; MGMT 209, MGMT 212; PSYC 305; SOCI 211, SOCI 314; URPN 361, URPN 401, URPN 450, WFSC 303.

Category 2 - ALED 340; COMM 203, COMM 243, COMM 305, COMM 325, COMM 443; PSYC 354, PSYC 371; SOCI 304.

Category 3 - ALED 202, ALED 301, ALED 424, ALED 440; FIVS 289, FIVS 421, FIVS 489; GENE 420; HIST 447; PHIL 111, PHIL 307, PHIL 314, PHIL 315, PHIL 334, PHIL 480; RENR 470; SOCI 445.

2 This course fulfills a writing requirement. See Requirement for a Baccalaureate Degree (p. 33) section.

The Forensic and Investigative Sciences program requires students to earn a grade of C or better in all courses within the program curriculum.

University Graduation Requirements:

- Foreign Language (two years of the same language in high school OR one year/ two semester sequence in college)
- Writing Intensive courses (two courses designated W in major or one W and one C course in major)
- International and Cultural Diversity (p. 47) courses (three credit hours)
- Cultural Discourse (p. 46) course (three credit hours)

Forensic and Investigative Sciences - BS, Science Emphasis

Forensic and Investigative Sciences, an accredited program by the Forensic Science Education Programs Accreditation Commission (FEPAC), is a major offered by the Department of Entomology and is a growing area of interest for students seeking to gain entry into careers that deal with the collection, preservation, processing and use of evidentiary information to solve problems. A life sciences-based education, which develops skills in problem solving and critical thinking, is essential for career opportunities in this field. Forensic and investigative scientists rely upon state-of-the-art scientific discoveries and technologies as tools to seek answers to critical questions in a variety of settings. Molecular, organismal, environmental, and ecological sources of information are often analyzed and interpreted in industrial, regulatory, legal, medical and associated professions. Graduates will be competitive for employment opportunities in quality assurance laboratories, homeland security and investigative services at local, state and national levels. Graduates will also be well prepared for opportunities to enter post-graduate studies or professional schools including medicine, law, and veterinary medicine.

Interactions with and among plants, animals and microbes occur regularly. These interactions impact public and environmental health and require life science-based forensic and investigative science to improve the quality of life. Homeland security, criminal investigation, environmental quality, agricultural and public health offer careers for students with forensic and investigative skills. Students can also pursue avenues to forensic careers through degree programs in specialty...
areas such as chemistry, anthropology, physics, computer science and business.

Forensic and investigative sciences also operate at the crossroads of science and the legal profession, and provide opportunities for students to consider pre-law preparation. There are growing demands for attorneys with knowledge and understanding of science and research to address legal issues and cases where the interpretation of science and/or scientific data and analyses are pivotal. Law schools often seek candidates with diverse backgrounds and interests, and they look closely at curricula that stress analytical and problem-solving skills, critical reading abilities, writing skills, oral communication and listening abilities, general research skills, and task organization and management skills. The Forensic and Investigative Sciences program provides students with opportunities to enter postgraduate studies or professional schools including medicine, law, and veterinary medicine.

Science Emphasis

The Science Emphasis develops skills in problem solving and critical thinking. Forensic and investigative scientists rely upon state-of-the-art scientific discoveries and technologies as tools to seek answers to critical questions in a variety of settings. Molecular, organismal, environmental, and ecological sources of information are often analyzed and interpreted in industrial, regulatory, legal, medical and associated professions. Graduates will be competitive for employment opportunities in quality assurance laboratories, homeland security and investigative services at local, state and national levels. Students will be prepared for opportunities to enter professional schools including medicine, law, and veterinary medicine.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGLS 101 or FIVS 101</td>
</tr>
<tr>
<td>1</td>
<td>Modern Agricultural Systems and Renewable Natural Resources or Introduction to Academic Success in Forensic and Investigative Sciences</td>
</tr>
<tr>
<td>4</td>
<td>BIOL 111 Introductory Biology I</td>
</tr>
<tr>
<td>3</td>
<td>CHEM 119 Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>3</td>
<td>FIVS 205 Introduction to Forensic and Investigative Sciences</td>
</tr>
<tr>
<td>3</td>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 112 Introductory Biology II</td>
</tr>
<tr>
<td>4</td>
<td>CHEM 120 Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>3</td>
<td>MATH 142 Business Calculus</td>
</tr>
<tr>
<td>3</td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 227 Organic Chemistry I and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>PHYS 201 College Physics</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 228 Organic Chemistry II</td>
</tr>
<tr>
<td>4</td>
<td>CHEM 238 Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>PHYS 202 College Physics</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BICH 410 Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>1</td>
<td>BICH 412 Biochemistry Laboratory I</td>
</tr>
<tr>
<td>2</td>
<td>CHEM 316 Quantitative Analysis</td>
</tr>
<tr>
<td>1</td>
<td>CHEM 318 Quantitative Analysis Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>FIVS 308 Forensic Implications of Inheritance</td>
</tr>
<tr>
<td>2</td>
<td>FIVS 482 Occupational and Professional Development</td>
</tr>
<tr>
<td>3</td>
<td>Directed elective</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BICH 411 Comprehensive Biochemistry II</td>
</tr>
<tr>
<td>2</td>
<td>FIVS 422 Crime Scene Investigation</td>
</tr>
<tr>
<td>4</td>
<td>FIVS 431/ENTO 431 and Applied Forensic Entomology</td>
</tr>
<tr>
<td>2</td>
<td>FIVS 484 Seminar</td>
</tr>
<tr>
<td>3</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>FIVS 316 Biotechnology and Forensics</td>
</tr>
<tr>
<td>3</td>
<td>FIVS 401/SCSC 401 Forensic Soil Science</td>
</tr>
<tr>
<td>2</td>
<td>FIVS 484 or FIVS 491 Professional Internship or Research</td>
</tr>
<tr>
<td>3</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>4</td>
<td>Directed elective</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FIVS 415 Practice and Principles of Science and Law</td>
</tr>
<tr>
<td>3</td>
<td>FIVS 435 Case Studies in Problem Solving</td>
</tr>
<tr>
<td>3</td>
<td>STAT 302 Statistical Methods</td>
</tr>
<tr>
<td>3</td>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
<tr>
<td>3</td>
<td>General elective</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 120 |
Entomology - Minor

Entomology is a basic and applied science of insects and their relatives such as ticks and mites. Insects are the most numerous and diverse forms of life on earth; they are essential constituents of virtually every terrestrial and aquatic ecosystem. While society benefits from the many diverse roles played by the vast majority of insects, some species may become limiting factors in the production, processing and storage of our food and fiber crops, and to the health and well being of humans and animals. The knowledge and skills possessed by entomologists are essential components of modern integrated pest management strategies designed to safely and efficiently produce adequate food supplies for a continuously expanding world population, and to impede the transmission of insect-borne diseases, while at the same time protecting our endangered species and fragile ecosystems.

Students majoring in related areas such as agronomy, animal science, horticulture, biology, genetics and biomedical sciences may wish to consider augmenting their knowledge base and broaden their career opportunities by electing to either double major or to minor in entomology. Interested students should contact the departmental Undergraduate Advisor for additional information on these options.

Program Requirements

The minor in Entomology is available to all students enrolled at Texas A&M University. The courses listed constitute the minimum 17 hours required for a minor in Entomology.

1. Students must earn a grade of C or better in each course used for the minor.

2. Prerequisite Courses: All prerequisites for each core and elective course also must be met. Prerequisite courses will not be applied to the minor requirements and do not count toward the number of hours needed to complete the minor. Please refer to the Texas A&M University Undergraduate Catalog for a listing of course prerequisites.

3. Availability of courses and minor recognition: The Department of Entomology cannot guarantee the availability of the courses required to meet the minor requirements. Successful completion of the minor will be certified by a degree audit in Howdy during the semester of the student’s graduation. The minor will be recognized after graduation on the student’s transcript, but not on the student’s diploma.

Students pursuing the Minor in Entomology (http://entomology.tamu.edu/entomology-academic-program/entomology-minor/) are to complete the minor application form and submit the document to the Department of Entomology Advising Office in 404 Minnie Belle Heep Building (HPCT).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 201</td>
<td>General Entomology or Veterinary Entomology</td>
<td>3</td>
</tr>
<tr>
<td>or ENTO 208/209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 482</td>
<td>Occupational and Professional Development</td>
<td>2</td>
</tr>
<tr>
<td>ENTO 301</td>
<td>Biodiversity and Biology of Insects or Insects and Human Society</td>
<td></td>
</tr>
<tr>
<td>or ENTO 32</td>
<td></td>
<td>3-4</td>
</tr>
</tbody>
</table>

Directed Electives 9

Select from the following list:

- ENTO 300/301 Field Studies
- WFSC 300
- ENTO 305 Evolution of Insect Structure
- ENTO 306 Insect Physiology
- ENTO 320 Honey Bee Biology
- ENTO 401 Principles of Integrated Pest Management
- ENTO 402 Field-Crop Insects
- ENTO 403 Urban Entomology
- ENTO 423 Medical Entomology
- ENTO 424 Insect Ecology
- ENTO 428 Insect Biotechnology
- ENTO 429 Insect Biotechnology Laboratory
- ENTO 431/432 The Science of Forensic Entomology
- FIVS 430 Entomology
- ENTO 432/433 Applied Forensic Entomology
- FIVS 432
- ENTO 435 Case Studies in Problem Solving
- ENTO 450/451 Caribbean Conservation
- WFSC 450
- ENTO 451/452 Caribbean Research Seminar
- WFSC 451
- ENTO 481 Seminar
- ENTO 484 Professional Internship
- ENTO 485 Directed Studies
- ENTO 489 Special Topics in...
- ENTO 491 Research
Students are encouraged to visit the Department of Entomology Advising Office in 404 Minnie Belle Heep Building (HPCT), West Campus, to select the appropriate directed elective courses based on their individual educational and career interests.

Students must earn a grade of C or better in each course used for the minor.

Public Health Entomology - Certificate

Population growth and distribution predicted over future decades pose increased risks of disease outbreaks and emergence of new diseases worldwide. Scientists from many disciplines, physicians, veterinarians, health-care practitioners, public health workers and policy makers are needed to provide public health surveillance, make new discoveries, and find solutions to address these risks.

This certificate offers a 15 credit-hour concentration in Public Health Entomology focused on insects and other arthropods that serve as vectors and reservoirs of disease pathogens, and are responsible for the direct and indirect causation of disease.

Employment opportunities in the public health sector include environmental and health service agencies, mosquito control districts, the Centers for Disease Control and Prevention (CDC), the Department of Defense, the World Health Organization, and the PanAmerican Health Organization.

Students completing this certificate will be competitive for employment upon graduation, for graduate programs in related disciplines, such as Master’s programs in Public Health, Epidemiology, and Entomology, as well as professional schools.

Eligibility Requirements for Entrance:

1. Completion of a minimum of one (1) course from both Category I and II with a grade of B or better and a cumulative TAMU GPA of 2.0+.
2. Students must complete Eligibility Requirement 1 and submit an application before completion of 75 total credit hours.

Eligibility Requirements for Application and Entrance:

1. Complete a minimum of one course from both Category I and Category II with a grade of B or better.
2. Students must complete Eligibility Requirement 1 and submit an application before completion of 75 total credit hours.
3. Must have a 2.0 overall GPA or better at Texas A&M University.

To Complete the Certification, Students Must:

- Successfully complete courses in Category I-III PRIOR to enrollment in Category IV.
- Complete all courses within the certification with a minimum grade of C.
- Earn a cumulative 3.0 GPA or better in the certificate courses.
- Complete exit survey.
- Meet the minimum qualifications for graduation as defined by Texas A&M University including a 2.0 cumulative GPA.

For additional information and to discuss the scheduling of these courses upon successful completion of your entrance requirements, please contact a member of the Entomology Academic Advising Team to submit your Certificate in Public Health Entomology Application.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATEGORY I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BESC 314 Pathogens, the Environment and Society</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 210 Global Public Health Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPB 221 Great Diseases of the World</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATEGORY II</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ENTO 208 Veterinary Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ENTO 209and Veterinary Entomology Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 423 Medical Entomology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATEGORY III</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 403 Urban Entomology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Department of Food Science and Technology

Nutritional sciences prepares majors with a comprehensive knowledge of the biological and social sciences to understand the relationships between nutrients, food components and human health. Prevention of diseases that are related to lifestyle, particularly diet and nutrition, is a focus of the curriculum. Core courses emphasize the role of nutrients in biochemistry, genetics, physiology, microbiology and immunology that promotes wellness and enhances the quality of life. The major also provides an excellent background for those interested in pursuing graduate degrees in biological, nutritional or food sciences; professional degrees in human or veterinary medicine; degrees in dentistry, pharmacy, physical therapy, nursing, public health and other health professions; or dietetic internships.

The Didactic Program in Dietetics (DPD) and the Graduate Degree/Dietetic Internship Program are accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). Students who
successfully complete the DPD and a dietetic internship are eligible to take the Registration Examination to become a Registered Dietitian (RD).

Three curriculum tracks are offered (General Nutrition, Didactic Program in Dietetics and Molecular and Experimental Nutrition) to provide flexibility in one’s chosen career path. The Nutrition major prepares one for graduate school, corporate wellness positions, health promotion programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. For more information, visit http://nfs.tamu.edu. (http://nfs.tamu.edu)

Faculty
Creasy, Rebecca, Lecturer
Food Science and Technology
PHD, University of Florida, 2013

Murano, Elsa, Professor
Food Science and Technology
PHD, Virginia Tech, 1990

Quailes, Natasha, Lecturer
Food Science and Technology
MS, Chapman University, 2014

Talcott, Stephen, Professor
Food Science and Technology
PHD, University of Arkansas, 2000

Talcott, Susanne, Associate Professor
Food Science and Technology
PHD, University of Florida, 2004

Majors
• Bachelor of Science in Food Science and Technology, Food Industry Option (p. 182)
• Bachelor of Science in Food Science and Technology, Food Science Option (p. 184)
• Bachelor of Science in Food Systems Industry Management (p. 186)

Certificates
• Food Diversity Certificate (p. 187)

Food Science and Technology - BS, Food Industry Option

Food Science and Technology is an exciting multidisciplinary field that prepares majors with a comprehensive knowledge of the biological, physical and engineering sciences to develop new food products, design innovative processing technologies, improve food quality and nutritive value, enhance the safety of foods and ensure the wholesomeness of our food supply. Food Science majors apply the principles learned in the basic sciences such as food chemistry, biochemistry, genetics, microbiology, food engineering and nutrition to provide consumers with safe, wholesome and attractive food products that contribute to their health and well-being. For more information, visit http://nfs.tamu.edu

The undergraduate curriculum is approved by the Institute of Food Technologists (IFT) and offers two tracks, a Food Science Option and an Industry Option. These tracks provide promising career opportunities in areas such as food product/process design, technical service, research and development, quality assurance, food safety, food law, regulatory oversight, technological innovation, marketing, corporate sales, sensory evaluation and operations management. There are numerous opportunities available for corporate internships, scholarships and study abroad programs that provide real-world experience and enhance opportunities for employment after completing a baccalaureate degree. The major also provides an excellent background for those interested in professional schools, graduate studies, medicine, veterinary medicine, dentistry, pharmacy, physical therapy, nursing, occupational therapy and public health.

Food Industry Option

The Food Industry option integrates knowledge from the basic disciplines of chemistry, microbiology, physics and biology and applies scientific principles from food engineering, food processing operations, sensory evaluation, food safety, HACCP, quality assurance and management to produce foods that are wholesome, affordable and safe. The goal of the curriculum is to prepare Food Technologists for careers in the food and related industries. These careers may involve food processing, manufacturing, technical service, food product development, operations management, regulatory oversight and other technology based opportunities.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric I or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 201</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 204</td>
<td>Perspectives in Nutrition and Food Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NFSC 210</td>
<td>Horizons in Nutrition and Food Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NFSC 202 or NFSC 203</td>
<td>Fundamentals of Human Nutrition or Scientific Principles of Human Nutrition</td>
<td>3</td>
</tr>
</tbody>
</table>

Faculty
Creasy, Rebecca, Lecturer
Food Science and Technology
PHD, University of Florida, 2013

Murano, Elsa, Professor
Food Science and Technology
PHD, Virginia Tech, 1990

Quailes, Natasha, Lecturer
Food Science and Technology
MS, Chapman University, 2014

Talcott, Stephen, Professor
Food Science and Technology
PHD, University of Arkansas, 2000

Talcott, Susanne, Associate Professor
Food Science and Technology
PHD, University of Florida, 2004

Majors
• Bachelor of Science in Food Science and Technology, Food Industry Option (p. 182)
• Bachelor of Science in Food Science and Technology, Food Science Option (p. 184)
• Bachelor of Science in Food Systems Industry Management (p. 186)

Certificates
• Food Diversity Certificate (p. 187)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 311</td>
<td>Principles of Food Processing</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ANSC 307/</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 457/</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>NFSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td></td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td></td>
</tr>
<tr>
<td>HORT 421</td>
<td>Enology</td>
<td></td>
</tr>
<tr>
<td>NFSC 211</td>
<td>Scientific Principles of Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 305</td>
<td>Fundamental Baking</td>
<td></td>
</tr>
<tr>
<td>NFSC 307/</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>ANSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 320</td>
<td>Understanding Obesity: A Social and Scientific Challenge</td>
<td></td>
</tr>
<tr>
<td>NFSC 324</td>
<td>Food Safety and Preventive Controls for Human Food</td>
<td></td>
</tr>
<tr>
<td>NFSC 406/</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 410</td>
<td>Nutritional Pharmacometrics of Food Compounds</td>
<td></td>
</tr>
<tr>
<td>NFSC 420</td>
<td>Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
<td></td>
</tr>
<tr>
<td>NFSC 422</td>
<td>Food Processing for Sustainable Nutrition in Brazil</td>
<td></td>
</tr>
<tr>
<td>NFSC 457/</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Free elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGEC 314</td>
<td>Marketing Agricultural and Food Products</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 312</td>
<td>Food Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 313</td>
<td>Food Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
<td></td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 314</td>
<td>Food Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 315/</td>
<td>Food Process Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 326/</td>
<td>Food Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 327/</td>
<td>Food Bacteriology Lab</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ANSC 307/</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 457/</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>NFSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td></td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td></td>
</tr>
<tr>
<td>HORT 421</td>
<td>Enology</td>
<td></td>
</tr>
<tr>
<td>NFSC 211</td>
<td>Scientific Principles of Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 305</td>
<td>Fundamental Baking</td>
<td></td>
</tr>
<tr>
<td>NFSC 307/</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>ANSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 320</td>
<td>Understanding Obesity: A Social and Scientific Challenge</td>
<td></td>
</tr>
<tr>
<td>NFSC 324</td>
<td>Food Safety and Preventive Controls for Human Food</td>
<td></td>
</tr>
<tr>
<td>NFSC 406/</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 410</td>
<td>Nutritional Pharmacometrics of Food Compounds</td>
<td></td>
</tr>
<tr>
<td>NFSC 420</td>
<td>Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
<td></td>
</tr>
<tr>
<td>NFSC 422</td>
<td>Food Processing for Sustainable Nutrition in Brazil</td>
<td></td>
</tr>
<tr>
<td>NFSC 457/</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>NFSC 401</td>
<td>Food Product Development</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 444</td>
<td>Fundamentals of Food Law</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Free electives 3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Food Science and Technology - BS, Food Science Option

Food Science and Technology is an exciting multidisciplinary field that prepares majors with a comprehensive knowledge of the biological, physical and engineering sciences to develop new food products, design innovative processing technologies, improve food quality and nutritive value, enhance the safety of foods and ensure the wholesomeness of our food supply. Food Science majors apply the principles learned in the basic sciences such as food chemistry, biochemistry, genetics, microbiology, food engineering and nutrition to provide consumers with safe, wholesome and attractive food products that contribute to their health and well-being. For more information, visit http://nfs.tamu.edu

The undergraduate curriculum is approved by the Institute of Food Technologists (IFT) and offers two tracks, a Food Science Option and an Industry Option. These tracks provide promising career opportunities in areas such as food product/process design, technical service, research and development, quality assurance, food safety, food law, regulatory oversight, technological innovation, marketing, corporate sales, sensory evaluation and operations management. There are numerous opportunities available for corporate internships, scholarships and study abroad programs that provide real-world experience and enhance opportunities for employment after completing a baccalaureate degree. The major also provides an excellent background for those interested in professional schools, graduate studies, medicine, veterinary medicine, dentistry, pharmacy, physical therapy, nursing, occupational therapy and public health.

Food Science Option

The Food Science option provides a strong knowledge base and fundamental understanding of chemistry, biology, engineering, physics, statistics, genetics, biochemistry, microbiology and nutrition that is applied toward the preservation, processing, packaging and distribution on foods that are wholesome, affordable and safe. The goal of the curriculum is to prepare Food Scientists for career opportunities in the food and allied industries or for further studies in graduate or professional schools. See an academic advisor for specific course listings.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 201</td>
<td>Food Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 204</td>
<td>Perspectives in Nutrition and Food Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NFSC 210</td>
<td>Horizons in Nutrition and Food Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NFSC 202 or NFSC 203</td>
<td>Fundamentals of Human Nutrition or Scientific Principles of Human Nutrition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 316</td>
<td>Quantitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 311</td>
<td>Principles of Food Processing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>NFSC 312</td>
<td>Food Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NFSC 313</td>
<td>Food Chemistry Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
<td>3</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 307</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>NFSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td></td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td></td>
</tr>
<tr>
<td>HORT 421</td>
<td>Enology</td>
<td></td>
</tr>
<tr>
<td>NFSC 211</td>
<td>Understanding Obesity: A Social and Scientific Challenge</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 305</td>
<td>Fundamental Baking</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>ANSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 320</td>
<td>Understanding Obesity: A Social and Scientific Challenge</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 324</td>
<td>Food Safety and Preventive Controls for Human Food</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 406</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 410</td>
<td>Nutritional Pharmacometrics of Food Compounds</td>
<td></td>
</tr>
<tr>
<td>NFSC 420</td>
<td>Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 422</td>
<td>Food Processing for Sustainable Nutrition in Brazil</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 457</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFSC 314</td>
<td>Food Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 326</td>
<td>Food Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 327</td>
<td>Food Bacteriology Lab</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 327</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 307</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>NFSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td></td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td></td>
</tr>
<tr>
<td>HORT 421</td>
<td>Enology</td>
<td></td>
</tr>
<tr>
<td>NFSC 211</td>
<td>Scientific Principles of Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 305</td>
<td>Fundamental Baking</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>ANSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 320</td>
<td>Understanding Obesity: A Social and Scientific Challenge</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 324</td>
<td>Food Safety and Preventive Controls for Human Food</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 406</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 410</td>
<td>Nutritional Pharmacometrics of Food Compounds</td>
<td></td>
</tr>
<tr>
<td>NFSC 420</td>
<td>Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 422</td>
<td>Food Processing for Sustainable Nutrition in Brazil</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 457</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFSC 314</td>
<td>Food Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 326</td>
<td>Food Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 327</td>
<td>Food Bacteriology Lab</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 327</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 307</td>
<td>Meats</td>
<td></td>
</tr>
<tr>
<td>NFSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC 457</td>
<td>Hazard Analysis and Critical Control Point</td>
<td></td>
</tr>
<tr>
<td>NFSC 457</td>
<td>System</td>
<td></td>
</tr>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td></td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td></td>
</tr>
<tr>
<td>HORT 421</td>
<td>Enology</td>
<td></td>
</tr>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>NFSC 315</td>
<td>Food Process Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td>or AGSM 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 401</td>
<td>Food Product Development</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 444</td>
<td>Fundamentals of Food Law</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>NFSC 315</td>
<td>Food Process Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td>or AGSM 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 401</td>
<td>Food Product Development</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 444</td>
<td>Fundamentals of Food Law</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

| Credit Hours | 120 |

1. MATH prefix required.

2. The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 25). Selection must be from courses on the approved list. Selection can be courses that also satisfy the requirement for social and behavioral sciences; creative arts; language, philosophy and culture; or electives. For more information on core requirements visit the University Core Curriculum (p. 25) catalog page.

3. Students may earn a chemistry minor by taking 6 hours of additional chemistry courses from an approved list as free electives. See the Department of Chemistry for more details. Students seeking a minor in chemistry must complete the Declaration of Minor in Chemistry form and have it approved by the undergraduate advisor in Chemistry (Room 104 Chemistry) and their NFSC advisor.

A total of 120 hours is required for graduation; 36 hours of 300/400 level courses are required to meet the Texas A&M University residency requirement.
Food Systems Industry Management - BS

The Bachelor of Science in Food Systems Industry Management is a program that focuses on the application of chemical, physical, and engineering principles to the development and implementation of manufacturing, packaging, storage, and distribution technologies and processes for food products. Includes instruction in food engineering, food preservation and handling, food preparation, food packaging and display, food storage and shipment, and related equipment and facilities design, operation and maintenance. The program capitalizes on the food system supply chain from a post-harvest to table perspective. It is a unique and integrated Science, Technology, Engineering, and Mathematics degree program with an interdisciplinary approach with equal input from Agricultural Systems Management, Food Science and Technology, and Agricultural Economics. Students will be prepared in four core competency domains, as well as high impact experiences to integrate knowledge across discipline areas: (a) operate and manage food processing, storage, and distribution systems; (b) perform systems analysis and management of food processing, storage, and distribution systems; (c) perform economic analyses on food processing, storage, and distribution systems; and (d) effectively manage and utilize large databases and information systems. Students can choose directed electives in specialize areas and will complete 2 capstone class experiences and an off-site internship as part of the degree requirements. For more information, visit http://nfs.tamu.edu.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
</tr>
<tr>
<td>CHEM 119</td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103</td>
</tr>
<tr>
<td>NFSC 201</td>
</tr>
<tr>
<td>NFSC 210</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202 or ECON 203</td>
</tr>
<tr>
<td>ENGL 210</td>
</tr>
<tr>
<td>HIST 105</td>
</tr>
<tr>
<td>MATH 140</td>
</tr>
<tr>
<td>PHYS 201</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209 or ACCT 229</td>
</tr>
<tr>
<td>AGSM 301</td>
</tr>
<tr>
<td>HIST 106</td>
</tr>
<tr>
<td>MATH 142</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120 or PHYS 202</td>
</tr>
<tr>
<td>POLS 207</td>
</tr>
<tr>
<td>STAT 301</td>
</tr>
<tr>
<td>STAT 302</td>
</tr>
<tr>
<td>STAT 303</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 340</td>
</tr>
<tr>
<td>AGSM 473</td>
</tr>
<tr>
<td>ANSC 326/NSC 326 & ANSC 327/NSC 327</td>
</tr>
<tr>
<td>NFSC 311</td>
</tr>
<tr>
<td>Technical elective 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 314</td>
</tr>
<tr>
<td>AGEC 330</td>
</tr>
<tr>
<td>AGSM 439</td>
</tr>
<tr>
<td>ANSC 470/NSC 470</td>
</tr>
<tr>
<td>NSFSC 324</td>
</tr>
<tr>
<td>NSFSC 485 or NSFSC 491</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>Technical electives 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 453</td>
</tr>
<tr>
<td>AGSM 439</td>
</tr>
<tr>
<td>ANSC 470/NSC 470</td>
</tr>
<tr>
<td>NSFSC 324</td>
</tr>
<tr>
<td>NSFSC 485 or NSFSC 491</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGSM 440</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>Technical electives 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

120
program for environmental health and interdisciplinary program in research and education portfolio of FDIP will join forces with the training high impact learning in concert with the food industry. The current and ethnic foods and other certified foods to educate students through sustainable high-impact and fraud. Our endowed FDIP program was established in 2016 as a GMO, gluten-free, allergen-free, and other personal/socially conscious of increasing importance to the global food industry including religious Food Diversity Innovation Program (FDIP) encompasses key principles diversity” are a nexus between the food industries and consumers. The food authentication, food certifications are prevalent and issues of “food cultures and processing regulations. As such, issues of food safety, additives and ingredients from around the world representing different cultures and processing regulations. As such, issues of food safety, food authentication/adulteration/fraud while engaging in hands-on, life-long learning, and critical thinking activities that increase our students’ ability to thrive and excel in diverse work-environments.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFSC 300</td>
<td>Religious and Ethnic Foods</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 307</td>
<td>Meats</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 324</td>
<td>Food Safety and Preventive Controls for Human Food</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 470</td>
<td>Quality Assurance for the Food Industry</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Department of Horticultural Sciences

Horticulture encompasses a unique blend of art, science and technology. Horticultural crops include trees, shrubs, tropical plants, ornamental grasses, herbs, flowers, fruits, vegetables and nuts which are grown and utilized throughout the world. The Department of Horticultural Sciences offers two undergraduate degrees: a Bachelor of Science in Horticulture and a Bachelor of Arts in Horticulture. Our flexible degree plans enable students opportunities to develop programs tailored to their unique career goals. The horticulture industry is one of the largest agricultural industries in the state and offers graduates a multitude of diverse career opportunities.

Faculty

Arnold, Michael A, Professor
Horticultural Sciences
PHD, North Carolina State University, 1990

Burghner, Gerald, Lecturer
Horticultural Sciences
PHD, Texas A&M University, 2019
MLA, Louisiana State University, 1994

Byrne, David H, Professor
Horticultural Sciences
PHD, Cornell University, 1980

Cisneros-Zevallos, Luis A, Professor
Horticultural Sciences
PHD, University of California, Davis, 1998

Crosby, Kevin M, Professor
Horticultural Sciences
PHD, Texas A&M University, 1999

The Graduation requirements include a requirement for 3 hours of international and cultural diversity (p. 47) and 3 hours of cultural discourse (p. 46). Selection must be from courses on the approved list. Selection can be courses that also satisfy the requirement for social and behavioral sciences; creative arts; language, philosophy and culture; or electives. For more information on core requirements visit the University Core Curriculum (p. 25) catalog page.

A total of 120 hours is required for graduation; 36 hours of 300/400 level courses are required to meet the Texas A&M University residency requirement.

Food Diversity - Certificate

Our food supply is internationally connected and highly dependent on additives and ingredients from around the world representing different cultures and processing regulations. As such, issues of food safety, food authentication, food certifications are prevalent and issues of “food diversity” are a nexus between the food industries and consumers. The Food Diversity Innovation Program (FDIP) encompasses key principles of increasing importance to the global food industry including religious and ethnic foods and other certified food systems such as organic, non-GMO, gluten-free, allergen-free, and other personal/socially conscious certifications. Certified food systems require extensive employee training and recordkeeping to verify authenticity, safety, processing adulterations, and fraud. Our endowed FDIP program was established in 2016 as a sustainable high-impact research and education model based on religious and ethnic foods and other certified foods to educate students through high impact learning in concert with the food industry. The current research and education portfolio of FDIP will join forces with the training program for environmental health and interdisciplinary program in toxicology at the graduate and undergraduate level with research in human exposure to toxins in food and water and environmental impacts of food production. These programs will provide outside the classroom high-impact-learning modules for existing courses and research activities for graduate and undergraduate students exploring complexities of diverse food systems, environmental and food toxicology, food safety, and food authentication/adulteration/fraud while engaging in hands-on, life-long learning, and critical thinking activities that increase our students’ ability to thrive and excel in diverse work-environments.
Majors

- Bachelor of Arts in Horticulture (p. 188)
- Bachelor of Science in Horticulture (p. 190)

Minors

- Horticulture Minor (p. 191)

Certificates

- Enology Certificate (p. 192)

Horticulture - BA

This degree blends traditional horticulture with the benefits derived from the human association with plants. This degree offers students the option of pairing a horticulture degree with electives in social sciences, business, education, art and design. Pairing the horticulture degree with a required minor of the student’s choosing from outside of horticulture provides an opportunity for a secondary area of emphasis. Creative opportunities range from planning gala events, operating floral shops, and constructing educational programs for school gardens to pursuing advanced degrees. Graduates may find themselves working in exciting environments including wedding venues, international flower markets, or upscale resorts.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>BIOL 101 or BIOL 111</th>
<th>Botany or Introductory Biology I</th>
<th>HORT 281</th>
<th>Horticulture as a Profession.</th>
<th>Language, philosophy and culture (p. 27)</th>
<th>Mathematics (MATH or STAT prefix required) (p. 26)</th>
<th>Social and behavioral sciences (p. 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>CHEM 119</th>
<th>Fundamentals of Chemistry I</th>
<th>HORT 201</th>
<th>Horticultural Science and Practices</th>
<th>HORT 202</th>
<th>Horticultural Science and Practices Laboratory</th>
<th>Creative arts (p. 29)</th>
<th>Foreign Language</th>
<th>Government/Political science (p. 30)</th>
<th>Mathematics (MATH or STAT prefix required) (p. 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- ARCH 249 Survey of World Architecture History I
- ARCH 250 Survey of World Architecture History II
- ARCH 350 History and Theory of Modern and Contemporary Architecture
- ARTS 149 Art History Survey I
- ARTS 150 Art History Survey II
- ARTS 330 The Arts of America
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ARTS 349</td>
<td>The History of Modern Art</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Principles of Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HORT 308</td>
<td>Plants for Sustainable Landscapes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 332</td>
<td>Horticulture Landscape Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 432</td>
<td>Horticulture Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 442</td>
<td>Horticulture Landscape Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 451</td>
<td>Retail Floristry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 452</td>
<td>Floral Design: Weddings and Personal Flowers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 453</td>
<td>Floral Art</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 454</td>
<td>Special Event Design and Production</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td>Fall</td>
<td>HORT 315</td>
<td>Issues in Horticulture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HORT 335</td>
<td>Sociohorticulture</td>
</tr>
<tr>
<td></td>
<td>Principles of Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HORT 308</td>
<td>Plants for Sustainable Landscapes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 332</td>
<td>Horticulture Landscape Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 432</td>
<td>Horticulture Landscape Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 442</td>
<td>Horticulture Landscape Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 451</td>
<td>Retail Floristry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 452</td>
<td>Floral Design: Weddings and Personal Flowers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 453</td>
<td>Floral Art</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HORT 454</td>
<td>Special Event Design and Production</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>HORT 481</td>
<td>Seminar</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1. The Graduation requirements include a requirement for 3 hours of I (p. 47) International and Cultural Diversity (p. 47) courses and 3 hours of C (p. 46) Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free or directed elective can be used to satisfy this requirement. See academic advisor.
2. Student must successfully compete a course of a foreign language beyond that required by the university in general.
3. Selected general elective courses should include a student's required minor or dual major. Any university approved minor or major is acceptable, except a minor or major in Horticulture as the intent is to provide a concentration in a second field of expertise.
4. This course fulfills a writing requirement (see Requirements for a Baccalaureate Degree (p. 31)).
Horticulture - BS

This degree is designed to provide students with the knowledge and skills needed for production, management and marketing of horticulture and floriculture crops or designing and building residential or small scale commercial landscapes. This degree also offers students with strong interests in science and/or technology opportunities in research related fields including preparation for graduate studies. Career prospects range from producing specialty crops such as local foods for upscale restaurants, controlled environment crop production, managing landscape businesses for growing communities, designing sustainable residential landscapes of the future, working with clientele in botanic and community gardens to enhance urban environments, to growing and marketing fruits and vegetables for healthier lifestyles. Many former students are self-employed, owning their own horticultural crop production, greenhouse, nursery or landscape operation. Others work in upper management of large corporations; facilitate implementation and development of new products and production services; serve in educational institutions, government agencies, or community service organizations; or travel the world developing and marketing future horticultural crops.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 101 or BIOL 111</td>
<td>4</td>
</tr>
<tr>
<td>HORT 281</td>
<td>Horticulture as a Profession</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (MATH or STAT prefix required) (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry</td>
</tr>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
</tr>
<tr>
<td>HORT 205</td>
<td>Fundamentals of Ecology</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 222 or CHEM 227</td>
<td>Elements of Organic and Biological Chemistry or Organic Chemistry</td>
</tr>
<tr>
<td>HORT 326</td>
<td>Plant Propagation</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>GENE 310</td>
<td>Principles of Heredity</td>
</tr>
<tr>
<td>GENE 315</td>
<td>Genetics of Plants</td>
</tr>
<tr>
<td>GENE 320/ BIMS 320</td>
<td>Biomedical Genetics</td>
</tr>
<tr>
<td>HORT 404/ GENE 404</td>
<td>Plant Breeding</td>
</tr>
<tr>
<td>SCSC 304</td>
<td>Plant Breeding and Genetics</td>
</tr>
<tr>
<td>Directed electives</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>HORT 315</td>
<td>Issues in Horticulture</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
</tr>
<tr>
<td>Horticultural Crop Production</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>HORT 319</td>
<td>Fruit and Nut Production</td>
</tr>
<tr>
<td>HORT 325</td>
<td>Vegetable Crop Production</td>
</tr>
<tr>
<td>HORT 418</td>
<td>Nut Culture</td>
</tr>
</tbody>
</table>

5 Hours to be selected from among the following AGEC 105, AGEC 223, AGEC 300-499 (p. 881); AGLS 101; AGSM 435, AGSM 201, AGSM 300-499 (p. 887); ALED 339, ALED 340, ALED 341, ALED 426, ALED 440, ALED 441; ANSC 487/NFSC 487; ATMO 201; BESC 201, BESC 204, BESC 300-499 (p. 915); BICH 411; BIOL 112, BIOL 206, BIOL 213, BIOL 401, BIOL 451; CHEM 300-499 (p. 929); COMM 203, COMM 205; COSC 253, COSC 254; ECON 202, ECON 203; ENGL 320; ENTO 300-499; (p. 980) ESSM 351/RENR 405; ESSM 351/RENR 405/RENR 450; ESSM 351/RENR 405/RENR 450; FINC 201, FINC 409; FRSC 420; GENE 310, GENE 411; ISTM 209; MGRT 209; MGRT 300-499 (p. 1076); MKTG 300-499 (p. 1079); NFSC 201, NFSC 300, NFSC 307/ANSC 307, NFSC 470/ANSC 470, NFSC 485; PHIL 314; PHYS 100-499 (p. 1115); RENR 205, RENR 410, RENR 405/EESM 351; RPTS 201, RPTS 300-499 (p. 1133); SCSC 105, SCSC 205, SCSC 300-499; (p. 1139) SPAN 201, SPAN 202; UGST 181 or hours to be selected with approval by the student’s academic advisor and the associate department head from 100-400 level courses in ACCT (p. 871), AGGC (p. 879) AEC (p. 881), AGLS (p. 885), ALEC (p. 889), ANTH (p. 906), ARTS (p. 915), COMM (p. 937), ECON (p. 965), END (p. 969), ENTO (p. 960), EPSY (p. 982), ESSM (p. 985), FINC (p. 993), GEOG (p. 1001), GENE (p. 999); HLTH (p. 1022); HORT (p. 1024), INST (p. 1030), ISTM (p. 1034), KINE (p. 1041), LAND (p. 1045); MEPS (p. 1075), MGMT (p. 1076), MKTG (p. 1079), NFSC (p. 1090); PSYC (p. 1125), RENR (p. 1132), RPTS (p. 1133); SCSC (p. 1139), SCMT (p. 1137), SOC (p. 1142); SPAN (p. 1147), SPED (p. 1150), STAT (p. 1154), WFSC (p. 1170).

6 Hours to be selected based on the emphasis area chosen in consultation with the student’s academic advisor.

7 This course fulfills a communications requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 419</td>
<td>Viticulture and Small Fruit Culture</td>
<td>3</td>
</tr>
<tr>
<td>HORT 420</td>
<td>Concepts of Wine Production</td>
<td>3</td>
</tr>
<tr>
<td>HORT 423</td>
<td>Tropical Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>HORT 431</td>
<td>Nursery Production and Management</td>
<td>3</td>
</tr>
<tr>
<td>Plant Identification/Characterization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HORT 306</td>
<td>Trees and Shrubs for Sustainable Built Environments</td>
<td>3</td>
</tr>
<tr>
<td>HORT 308</td>
<td>Plants for Sustainable Landscapes</td>
<td>3</td>
</tr>
<tr>
<td>Directed electives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEPS 313</td>
<td>Introduction to Plant Physiology</td>
<td>3</td>
</tr>
<tr>
<td>PLPA 303</td>
<td>Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>PLPA 304</td>
<td>Plant Pathology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Horticulture Crop Production</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HORT 425</td>
<td>Landscape Maintenance and Construction</td>
<td>3</td>
</tr>
<tr>
<td>HORT 426</td>
<td>International Floriculture</td>
<td>3</td>
</tr>
<tr>
<td>HORT 428</td>
<td>Greenhouse Technology & Sustainable Crop Production Systems</td>
<td>1</td>
</tr>
<tr>
<td>HORT 431</td>
<td>Nursery Production and Management</td>
<td>3</td>
</tr>
<tr>
<td>HORT 460</td>
<td>Landscape Estimating, Bidding, and Operations</td>
<td>6</td>
</tr>
<tr>
<td>Directed electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORT 481</td>
<td>Seminar 4</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HORT 300-499</td>
<td>(p. 1024)</td>
<td>5</td>
</tr>
<tr>
<td>American history</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Directed electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Impact Learning</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORT 400</td>
<td>Field Studies in Horticulture</td>
<td>3</td>
</tr>
<tr>
<td>HORT 484</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>HORT 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>HORT 491</td>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>Horticulture Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HORT 300-499</td>
<td>(p. 1024)</td>
<td>5</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Directed electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1 The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free or directed elective can be used to satisfy this requirement. See academic advisor.

2 Hours to be selected from among the following AGEC 105, AGEC 216, AGEC 223, AGEC 300-499 (p. 881); AGLS 101; AGSM 125, AGSM 201, AGSM 435, AGSM 300-499; ALEC 425; ALED 339, ALED 340, ALED 341, ALED 424, ALED 426, ALED 440, ALED 441, ALED 494; ANSC 487/NFSC 487; ATMO 201; BESC 201, BESC 204, BESC 300-499 (p. 887); BICH 410, BICH 411; BIOL 112, BIOL 113, BIOL 206, BIOL 213, BIOL 401, BIOL 451; CHEM 300-499 (p. 929); COMM 203, COMM 205, COMM 210; COSC 253, COSC 254; ECON 202, ECON 203; ENGL 320; ENTO 300-499 (p. 980); ESSM 351/RENR 405; FINC 201, FINC 409; FRSC 420, FRSC 421; GENE 310, GENE 411; ISTM 209; MGMT 105, MGMT 209, MGMT 300-499 (p. 1076); MKTG 300-499 (p. 1079); NFSC 201, NFSC 300, NFSC 307/ANSC 307, NFSC 324, NFSC 470/ANSC 470, NFSC 485; PHIL 314; PHYS 100-499 (p. 1115); RENR 215, RENR 405/ESSM 351, RENR 410: RPTS 201, RPTS 308, RPTS 370, RPTS 371, RPTS 478, RPTS 300-499 (p. 1133); SCSC 105, SCSC 205, SCSC 300-499 (p. 1139); SPAN 101, SPAN 102, SPAN 201, SPAN 202, UGST 181, or hours to be selected with approval by the student’s academic advisor and the associate department head from 100-400-level courses in ACCT (p. 871), AGCJ (p. 879), AGEC (p. 881), AGLS (p. 885), ALEC (p. 889), ANTH (p. 896), ARTS (p. 906), BESC (p. 915), COMM (p. 937), ECON (p. 965), ENDS (p. 969), ENTO (p. 980), EPSY (p. 982), ESSM (p. 985), FINC (p. 993), GENE (p. 999), GEOG (p. 1001), HLTB (p. 1022), HORT (p. 1024), INST (p. 1030), ISTM (p. 1034), KINE (p. 1041), LAND (p. 1045), MEPS (p. 1075), MGMT (p. 1076), MKTG (p. 1079), NFSC (p. 1090), PSYC (p. 1125), RENR (p. 1132), RPTS (p. 1133), SCSC (p. 1139), SCM (p. 1137), SOCI (p. 1142), SPAN (p. 1147), SPED (p. 1150), STAT (p. 1154), WFSC (p. 1170).

3 This course fulfills a writing intensive course requirement.

4 This course fulfills a communications requirement.

5 Hours to be selected based on the emphasis area chosen in consultation with the student’s academic advisor.

Horticulture - Minor

An undergraduate minor in Horticulture provides students a concentration of courses that focus on areas of horticulture and floriculture. These may range from a broad based, comparative perspective to a narrower application within the field. Students may choose such diverse topics as herb, fruit, and vegetable production, viticulture and wine production (enology), greenhouse and nursery management, floral and landscape design, science and biotechnology, urban and environmental horticulture and much more. Earning a minor in Horticulture provides students with the skills required to have a basic working knowledge in the field of Horticulture.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td>3</td>
</tr>
<tr>
<td>HORT 202</td>
<td>Horticultural Science and Practices Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Upper-level requirement 9
for Education in Nutrition and Dietetics (ACEND). Students who successfully complete the DPD and a dietetic internship are eligible to take the Registration Examination to become a Registered Dietitian (RD).

Three curriculum tracks are offered (General Nutrition, Didactic Program in Dietetics and Molecular and Experimental Nutrition) to provide flexibility in one's chosen career path. The Nutrition major prepares one for graduate school, corporate wellness positions, health promotion programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. For more information, visit http://nfs.tamu.edu. (http://nfs.tamu.edu)

Faculty

Allred, Clinton, Associate Professor
Nutrition
PHD, University of Illinois at Urbana Champaign, 2002

Beathard, Karen, Senior Lecturer
Nutrition
MS, Texas Woman's University, Denton, 1990

Chapkin, Robert, University Distinguished Professor
Nutrition
PHD, University of California, Davis, 1986

Chew, Boon, Professor
Nutrition
PHD, Purdue University, 1978

Geismar, Karen, Senior Lecturer
Nutrition
PHD, Texas Woman's University, Denton, 1998

Giles, Erin, Assistant Professor
Nutrition
PHD, McMaster University, 2015

Guo, Shaodong, Associate Professor
Nutrition
PHD, Peking University, Beijing China, 1995

Johnston, Bradley, Associate Professor
Nutrition
PHD, University of Alberta, 2009

Lorenz, Saundra, Senior Lecturer
Nutrition
MS, Texas A&M University, 2002

Seguin, Rebecca, Associate Professor
Nutrition
PHD, Tufts University, 2008

Sun, Yuxiang, Associate Professor
Nutrition
PHD, University of Manitoba, 2000

Wu, Chaodong, Professor
Nutrition
PHD, Beijing Medical University, 1998

Department of Nutrition

Nutritional sciences prepares majors with a comprehensive knowledge of the biological and social sciences to understand the relationships between nutrients, food components and human health. Prevention of diseases that are related to lifestyle, particularly diet and nutrition, is a focus of the curriculum. Core courses emphasize the role of nutrients in biochemistry, genetics, physiology, microbiology and immunology that promotes wellness and enhances the quality of life. The major also provides an excellent background for those interested in pursuing graduate degrees in biological, nutritional or food sciences; professional degrees in human or veterinary medicine; degrees in dentistry, pharmacy, physical therapy, nursing, public health and other health professions; or dietetic internships.

The Didactic Program in Dietetics (DPD) and the Graduate Degree/Dietetic Internship Program are accredited by the Accreditation Council
Majors

- Bachelor of Science in Nutrition, Didactic Program in Dietetics Track (p. 193)
- Bachelor of Science in Nutrition, General Nutrition Track (p. 194)
 - Teacher certification in Biology and Life Sciences, Chemistry and Science (p. 196)
- Bachelor of Science in Nutrition, Molecular and Experimental Track (p. 196)

Nutrition - BS, Didactic Program in Dietetics Track

Nutritional sciences prepares majors with a comprehensive knowledge of the biological and social sciences to understand the relationships between nutrients, food components and human health. Prevention of diseases that are related to lifestyle, particularly diet and nutrition, is a focus of the curriculum. Core courses emphasize the role of nutrients in biochemistry, genetics, physiology, microbiology and immunology that promotes wellness and enhances the quality of life. The major also provides an excellent background for those interested in pursuing graduate degrees in biological, nutritional or food sciences; professional degrees in human or veterinary medicine; degrees in dentistry, pharmacy, physical therapy, nursing, public health and other health professions; or dietetic internships.

The Didactic Program in Dietetics (DPD) and the Graduate Degree/Dietetic Internship Program are accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). Students who successfully complete the DPD and a dietetic internship are eligible to take the Registration Examination to become a Registered Dietitian (RD).

Three curriculum tracks are offered (General Nutrition, Didactic Program in Dietetics and Molecular and Experimental Nutrition) to provide flexibility in one’s chosen career path. The Nutrition major prepares one for graduate school, corporate wellness positions, health promotion programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. For more information, visit http://nfs.tamu.edu.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>NFSC 204</td>
<td>Perspectives in Nutrition and Food Science</td>
<td>1</td>
</tr>
<tr>
<td>NFSC 210</td>
<td>Horizons in Nutrition and Food Science</td>
<td>2</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 203</td>
<td>Scientific Principles of Human Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 211</td>
<td>Scientific Principles of Foods</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>or VIBS 305</td>
<td>or Biomedical Anatomy</td>
<td></td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 301</td>
<td>Nutrition Through Life</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>or VTPP 423</td>
<td>or Biomedical Physiology I</td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>NFSC 304</td>
<td>Food Service Systems Management</td>
<td>4</td>
</tr>
</tbody>
</table>

Didactic Program in Dietetics Track

The Didactic Program in Dietetics (DPD) is accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND) and is designed to prepare students for meeting the requirements for the credential of Registered Dietician (RD). The DPD provides a strong science base and foundational courses in nutrition for students desiring a dietetic practice in a clinical, therapeutic, community wellness, public health or food production/service setting.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFSC 204</td>
<td>Perspectives in Nutrition and Food Science</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NFSC 210</td>
<td>Horizons in Nutrition and Food Science</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring	BIOL 112	Introductory Biology II	4
	CHEM 120	Fundamentals of Chemistry II	4
	American history (p. 29)		3
	Mathematics (p. 26)		3

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 203</td>
<td>Scientific Principles of Human Nutrition</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| American history (p. 29) | | 3 |

Spring	CHEM 228	Organic Chemistry II		3
	NFSC 211	Scientific Principles of Foods		4
	POLS 206	American National Government		3
	Creative arts (p. 29)		3	
	Free elective		3	

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of VIBS 305</td>
<td>or Biomedical Anatomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NFSC 301</td>
<td>Nutrition Through Life</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring	BIOL 320	Integrated Human Anatomy and Physiology II	4	
	or VTPP 423	or Biomedical Physiology I		
	GENE 301	Comprehensive Genetics		3
	GENE 312	Comprehensive Genetics Laboratory		1
	NFSC 304	Food Service Systems Management		4
Nutritional sciences prepares majors with a comprehensive knowledge of the biological and social sciences to understand the relationships between nutrients, food components and human health. Prevention of diseases that are related to lifestyle, particularly diet and nutrition, is a focus of the curriculum. Core courses emphasize the role of nutrients in biochemistry, genetics, physiology, microbiology and immunology.

The Didactic Program in Dietetics (DPD) and the Graduate Degree/Dietetic Internship Program are accredited by the Accreditation Council for Education in Nutrition and Dietetics (ACEND). Students who successfully complete the DPD and a dietetic internship are eligible to take the Registration Examination to become a Registered Dietitian (RD).

Three curriculum tracks are offered (General Nutrition, Didactic Program in Dietetics and Molecular and Experimental Nutrition) to provide flexibility in one's chosen career path. The Nutrition major prepares one for graduate school, corporate wellness positions, health promotion programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. For more information, visit http://nfs.tamu.edu. (http://nfs.tamu.edu)

General Nutrition Track

The General Nutrition Track provides a wide range of approved electives in biochemistry, nutrition, food science, microbiology, immunology, genetics, and psychology in order to customize a degree suited to research interests and career objectives. Through this program, students are prepared to work in community nutrition programs, sports nutrition programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. This is also an excellent program for students wanting to go to professional schools such as medicine, dentistry, physical therapy, physician assistant, or pharmacy.

Teacher Certification

The secondary Provisional Teaching Certificate may be obtained in conjunction with the Bachelor of Science degree in Nutritional Sciences, General Nutrition Track. There are three subject areas available for teacher certification through this degree: Biology/Life Science (grades 8-12), Chemistry (grades 8-12), and Science (grades 8-12).

Students must also complete the STEM (Science, Technology, Engineering, Mathematics) minor. Students interested in teacher certification should contact the teacher certification advisor in the Department of Teaching, Learning and Culture in the College of Education and Human Development for more information.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

1. MATH prefix required.
2. The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46). Selection must be from courses on the approved list. Selection can be courses that also satisfy the requirement for social and behavioral sciences; creative arts; language, philosophy and culture; or electives. For more information on core requirements visit the University Core Curriculum (p. 25) catalog page. Use the Creative Arts Elective (p. 29) and ANTH 205, ANTH 210 as Language, Philosophy & Culture to satisfy degree requirements as well as international and cultural diversity and cultural discourse requirements.

A total of 120 hours is required for graduation; 36 hours of 300/400 level courses are required to meet the Texas A&M University residency requirement.

To be eligible to participate in the DPD program, students must maintain an overall GPR of 3.0 or above and have a grade of at least C in all non-nutrition courses and a grade of at least B in all nutrition courses. See NFSC Academic Advisor for information on specific course listings and eligibility requirements.
<table>
<thead>
<tr>
<th>Mathematics (p. 26)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112 Introduction to Biology II</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CHEM 227 Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
</tr>
<tr>
<td>NFSC 203 Scientific Principles of Human Nutrition</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Social and behavioral science (p. 30)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228 Organic Chemistry II</td>
</tr>
<tr>
<td>NFSC 301 Nutrition Through Life</td>
</tr>
<tr>
<td>POLS 206 American National Government</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>General elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BIOL 319 Integrated Human Anatomy and Physiology</td>
</tr>
<tr>
<td>NFSC 365 Nutritional Physiology of Vitamins and Minerals</td>
</tr>
<tr>
<td>POLS 207 State and Local Government</td>
</tr>
<tr>
<td>Technical elective</td>
</tr>
<tr>
<td>General elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320 Integrated Human Anatomy and Physiology</td>
</tr>
<tr>
<td>GENE 301 Comprehensive Genetics</td>
</tr>
<tr>
<td>GENE 312 Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>STAT 301 Introduction to Biometry</td>
</tr>
<tr>
<td>STAT 302 Statistical Methods</td>
</tr>
<tr>
<td>STAT 303 Statistical Methods</td>
</tr>
<tr>
<td>Technical elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BICH 410 Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>NFSC 326/ ANSC 326 Food Bacteriology</td>
</tr>
<tr>
<td>BIOL 351 Fundamentals of Microbiology</td>
</tr>
<tr>
<td>Technical elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrition elective</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>NFSC 211 Scientific Principles of Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 300 Religious and Ethnic Foods</td>
<td></td>
</tr>
<tr>
<td>NFSC 320 Understanding Obesity: A Social and Scientific Challenge</td>
<td></td>
</tr>
<tr>
<td>NFSC 410 Nutritional Pharmacometrics of Food Compounds</td>
<td></td>
</tr>
<tr>
<td>NFSC 412 Nutritional Treatment of Disease</td>
<td></td>
</tr>
<tr>
<td>NFSC 420 Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
<td></td>
</tr>
<tr>
<td>NFSC 422 Food Processing for Sustainable Nutrition in Brazil</td>
<td></td>
</tr>
<tr>
<td>NFSC 430 Community Nutrition</td>
<td></td>
</tr>
<tr>
<td>NFSC 469 Experimental Nutrition Laboratory</td>
<td></td>
</tr>
<tr>
<td>NFSC 485 Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 489 Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>NFSC 491 Research</td>
<td></td>
</tr>
<tr>
<td>SOCI 330 Sociology of Nutrition</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411 Comprehensive Biochemistry II</td>
</tr>
<tr>
<td>NFSC 475 Nutrition and Physiological Chemistry</td>
</tr>
<tr>
<td>NFSC 481 Seminar</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>Nutrition elective</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>NFSC 211 Scientific Principles of Foods</td>
</tr>
<tr>
<td>NFSC 300 Religious and Ethnic Foods</td>
</tr>
<tr>
<td>NFSC 320 Understanding Obesity: A Social and Scientific Challenge</td>
</tr>
<tr>
<td>NFSC 410 Nutritional Pharmacometrics of Food Compounds</td>
</tr>
<tr>
<td>NFSC 412 Nutritional Treatment of Disease</td>
</tr>
<tr>
<td>NFSC 420 Supervised Research in Mediterranean Nutrition and Food Processing in Italy</td>
</tr>
<tr>
<td>NFSC 422 Food Processing for Sustainable Nutrition in Brazil</td>
</tr>
<tr>
<td>NFSC 430 Community Nutrition</td>
</tr>
<tr>
<td>NFSC 469 Experimental Nutrition Laboratory</td>
</tr>
<tr>
<td>NFSC 485 Directed Studies</td>
</tr>
<tr>
<td>NFSC 489 Special Topics in...</td>
</tr>
<tr>
<td>NFSC 491 Research</td>
</tr>
<tr>
<td>SOCI 330 Sociology of Nutrition</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 120 |
for Education in Nutrition and Dietetics (ACEND). Students who successfully complete the DPD and a dietetic internship are eligible to take the Registration Examination to become a Registered Dietitian (RD).

Three curriculum tracks are offered (General Nutrition, Didactic Program in Dietetics and Molecular and Experimental Nutrition) to provide flexibility in one's chosen career path. The Nutrition major prepares one for graduate school, corporate wellness positions, health promotion programs, the food industry, public health programs, pharmaceutical sales, clinical dietetics, medical and research laboratories, biotechnology firms, government agencies and related fields. For more information, visit http://nfs.tamu.edu. (http://nfs.tamu.edu)

Molecular and Experimental Track

The Molecular and Experimental Track emphasizes a fundamental background in the biological and physical sciences that relate to human health and nutrition. This option offers students the opportunity to develop analytical and critical thinking skills through undergraduate research with department faculty, independent study and study abroad programs, and a science-based curricula that is essential for graduate studies and pre-professional schools. The goal of this track is to enable students to seek employment in specialized science-based fields in the biological or medical sciences, to pursue graduate degrees beyond the baccalaureate or to enter professional schools of medicine, veterinary medicine, dentistry, pharmacy or similar disciplines. See academic advisor for information on application procedures, GPA requirements, specific course listings and eligibility requirements.

Program Requirements

Nutrition - BS, Molecular and Experimental Track

Nutritional sciences prepares majors with a comprehensive knowledge of the biological and social sciences to understand the relationships between nutrients, food components and human health. Prevention of diseases that are related to lifestyle, particularly diet and nutrition, is a focus of the curriculum. Core courses emphasize the role of nutrients in biochemistry, genetics, physiology, microbiology and immunology that promotes wellness and enhances the quality of life. The major also provides an excellent background for those interested in pursuing graduate degrees in biological, nutritional or food sciences; professional degrees in human or veterinary medicine; degrees in dentistry, pharmacy, physical therapy, nursing, public health and other health professions; or dietetic internships.

The Didactic Program in Dietetics (DPD) and the Graduate Degree/Dietetic Internship Program are accredited by the Accreditation Council
Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>BIOL 413</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 414</td>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 325</td>
<td>Persuasion</td>
<td></td>
</tr>
<tr>
<td>HLTH 334</td>
<td>Women's Health</td>
<td></td>
</tr>
<tr>
<td>HLTH 354</td>
<td>Medical Terminology for the Health Professions</td>
<td></td>
</tr>
<tr>
<td>NFSC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>PSYC 300-499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPP 425</td>
<td>Pharmacology</td>
<td></td>
</tr>
</tbody>
</table>

Creative arts (p. 29)

| Semester Credit Hours | 3 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>or VIBS 305</td>
<td>or Biomedical Anatomy</td>
<td></td>
</tr>
<tr>
<td>NFSC 301</td>
<td>Nutrition Through Life</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 13 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>or VTPP 423</td>
<td>or Biomedical Physiology I</td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td>3</td>
</tr>
<tr>
<td>GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>NFSC 365</td>
<td>Nutritional Physiology of Vitamins and Minerals</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
<td></td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 14 |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>NFSC 469</td>
<td>Experimental Nutrition Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>NFSC 491</td>
<td>Research</td>
<td>4</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 14 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BICH 431/GENE 431</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Department of Plant Pathology and Microbiology

Our mission is to conduct leading edge research on plant diseases and plant-microbe interactions that directly and indirectly impact: Our ability to feed the world; Human and animal health; Environmental stewardship and sustainability. Educate and prepare leaders in the STEM fields of plant and environmental health through a creative and challenging educational environment that integrates scholarship, fundamental knowledge, and experiential learning. Convey information relevant to society through effective outreach and services that address plant health, food safety and environmental health to the citizens of Texas, the United States and the World.

An extension of this mission is to train the next generation of environmental professionals by providing them both the analytical and biological understanding to successfully protect the environment while promoting economic vitality.

Faculty

- Antony Babu, Sanjay, Assistant Professor
 Plant Pathology & Microbiology
 PHD, Newcastle University, 2018

- Chappell, Thomas M, Assistant Professor
 Plant Pathology & Microbiology
 PHD, Duke University, 2010

- Dai, Yuan, Associate Professor
 Plant Pathology & Microbiology
 PHD, Duke University, 2006

- Ebbole, Daniel J, Professor
 Plant Pathology & Microbiology
 PHD, Purdue University, 1988

- Gonzalez, Carlos F, Professor
 Plant Pathology & Microbiology
 PHD, University of Nebraska - Lincoln, 1978
Major breakthroughs are taking place locally, regionally and globally concerning environmental awareness. Environmental hazards take many forms, including microbial threats, toxic wastes and the indirect impact of man’s activities on a fragile ecosystem. As a result, there is a growing recognition that the solutions to environmental problems require innovative multi-disciplinary perspectives and technologically-intensive approaches. The Bioenvironmental Sciences curriculum (BESC) was designed in consultation with numerous industry representatives in order to comply with the most current thinking on the talents needed for tomorrow’s environmental fields. Students will be prepared for a breadth of career choices in the environmental sciences. These choices include such areas as research and development, environmental consulting, remediation of wastes, site assessment and environmental sampling, and environmental law. Graduates from BESC find employment in federal, state and municipal environmental agencies; in industries concerned with the generation and clean-up of hazardous wastes; with environmental advocacy and educational groups. In addition, the strong science base in BESC prepares students for professional and graduate schools in a variety of disciplines.

The curriculum described combines a foundation of required courses of technical and free electives to allow the student the maximum flexibility to design a personalized course of study. Students are advised to focus on an area of emphasis with those electives that come from such categories as conservation/ecology, policy/ethics/regulations, the physical environment, engineering, plant studies, genetics/biotechnology and general environmental. The Department of Plant Pathology and Microbiology also supports the extracurricular activities needed to support a successful environmental professional.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>BIOL 111 or BIOL 101</td>
<td>Introductory Biology I or Botany</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>RENR 215</td>
<td>Fundamentals of Ecology--Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112 or BIOL 107</td>
<td>Introductory Biology II or Zoology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Bioenvironmental group elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bioenvironmental Sciences - BS

Major breakthroughs are taking place locally, regionally and globally concerning environmental awareness. Environmental hazards take many forms, including microbial threats, toxic wastes and the indirect impact of man’s activities on a fragile ecosystem. As a result, there is a growing recognition that the solutions to environmental problems require innovative multi-disciplinary perspectives and technologically-intensive approaches. The Bioenvironmental Sciences curriculum (BESC) was designed in consultation with numerous industry representatives in order to comply with the most current thinking on the talents needed for tomorrow’s environmental fields. Students will be prepared for a breadth of career choices in the environmental sciences. These choices include such areas as research and development, environmental consulting, remediation of wastes, site assessment and environmental sampling, and environmental law. Graduates from BESC find employment in federal, state and municipal environmental agencies; in industries concerned with the generation and clean-up of hazardous wastes; with environmental advocacy and educational groups. In addition, the strong science base in BESC prepares students for professional and graduate schools in a variety of disciplines.

The curriculum described combines a foundation of required courses of technical and free electives to allow the student the maximum flexibility to design a personalized course of study. Students are advised to focus on an area of emphasis with those electives that come from such categories as conservation/ecology, policy/ethics/regulations, the physical environment, engineering, plant studies, genetics/biotechnology and general environmental. The Department of Plant Pathology and Microbiology also supports the extracurricular activities needed to support a successful environmental professional.
Creative arts (p. 29) 1
Bioenvironmental group elective 2
Technical elective 3

Semester Credit Hours 16

Third Year

Fall

Select one of the following: 4

CHEM 222 Elements of Organic and Biological Chemistry & CHEM 242 and Elementary Organic Chemistry Laboratory

CHEM 227 Organic Chemistry I & CHEM 237 and Organic Chemistry Laboratory

American history (p. 29) 1
Mathematics (p. 26) 1
Technical elective 3
General elective 1

Semester Credit Hours 16

Spring

GENE 310 Principles of Heredity or GENE 315 Principles of Genetics of Plants
Mathematics (p. 26) 1
Bioenvironmental group elective 2
Technical elective 3
General elective 1

Semester Credit Hours 15

Fourth Year

Fall

SCSC 301 Soil Science
Select one of the following: 3

STAT 301 Introduction to Biometry
STAT 302 Statistical Methods
STAT 303 Statistical Methods
Communication (p. 26) 1
Bioenvironmental group elective 2
Technical elective 3

Semester Credit Hours 16

Spring

BESC 481 Seminar
BESC 484 Field Experience
Bioenvironmental group elective 2
Technical elective 3
General elective 1

Semester Credit Hours 13
Total Semester Credit Hours 120

1 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

2 Select 18 hours from: BESC 204, BESC 311, BESC 314, BESC 320, BESC 357, BESC 367, BESC 401, BESC 402, BESC 403, BESC 411, BESC 489, SCSC 405. Other courses approved by advisor.

3 Courses may be selected from categories designed to reflect the professional aspirations of the student. Select 15 hours from: AGEC 344, AGEC 350, AGEC 429; AGSM 360; ATMO 201; BESC 491; BICH 303, BICH 410, BICH 411; BIOL 213, BIOL 214, BIOL 357, BIOL 440; CHEM 228, CHEM 238, CHEM 316, CHEM 318; ENTO 201, ENTO 424; ESM 308, ESSM 309, ESSM 314, ESSM 320, ESSM 351/RNEN 405, ESSM 406/EESM 440; GENE 412, GENE 431/BICH 431, GENE 432/BICH 432; GEOG 201, GEOG 202, GEOG 203, GEOG 205, GEOG 213, GEOG 330, GEOG 380, GEOG 390, GEOG 398, GEOG 434, GEOG 435, GEOL 101, GEOL 104, GEOL 410, GEOL 420, GEOS 105; HIST 359, HORT 201, HORT 202, MEPS 313, MEPS 411; NSFC 201, NSFC 326/ANS C 326, NFSC 327/ANSC 327, OCNG 420; PHIL 314; PHY5 305, PHY5 330, PHY5 331; PHYS 201, PHYS 202, PHYS 206; POLS 306, POLS 347, POLS 461; RENR 375, RENR 405/EESM 351, RENR 410, RENR 460/RPTS 460, RENR 470; RPTS 307; SCSC 105, SCSC 455; SOCI 328; URNP 360, URNP 370; URNP 460; VTPB 221, VTPP 423, WFSC 301, WFSC 303, WFSC 403, WFSC 405, WFSC 406,WFSC 407, WFSC 420,WFSC 425, WFSC 428.

Environmental Studies - BS

The BS degree in Environmental Studies in the College of Agriculture and Life Sciences provides students with the opportunity to learn about the major societal forces that influence environmental issues. These include political agreement supporting legal and regulatory requirements, economics and the marketplace, environmental values, and technology. Students gain technical background blended with a solid foundation in economics, political issues, environmental law, ethics, and communications. Technology and the environment are well supported in existing curricula and contribute to the multidisciplinary nature of the Environmental Studies degree. Technical courses focus on biological sciences, natural resources, and assessment of the environment and come from the Agricultural Economics; Bioenvironmental Sciences; Entomology; Forest Science; Rangeland Ecology and Management; Recreation, Park and Tourism Sciences; Soil and Crop Sciences; and Wildlife and Fisheries Sciences. It is the fusion of these courses with those from the Liberal Arts that make this a truly unique curriculum. This degree is housed within the Department of Plant Pathology and Microbiology.

Program Requirements

First Year

Fall

Semester Credit Hours

BESC 201 Introduction to Bioenvironmental Sciences 3

BIOL 111 or BIOL 101 Introductory Biology I or Botany 4

RENR 205 Fundamentals of Ecology 3

Social and behavioral sciences (p. 30) 1
General elective 1

Semester Credit Hours 14

Spring

CHEM 119 Fundamentals of Chemistry I 4

GEOG 201 Introduction to Human Geography 3

Communication (p. 26) 1

3
Government/Political science (p. 30) 3
Language, philosophy and culture (p. 27) 3

Semester Credit Hours 16

Second Year
Fall
BESC 367 U.S. Environmental Regulations 3
GEOG 203 Planet Earth 3
GEOG 213 Planet Earth Lab 1
Government/Political science (p. 30) 3
Environmental policy elective 2 3
General elective 1 3

Semester Credit Hours 16

Spring
ESSM 309 Forest Ecology 3
American history (p. 29) 1 3
Creative arts (p. 29) 1 3
Environmental policy elective 2 3
Natural resource elective 3 3

Semester Credit Hours 15

Third Year
Fall
GEOG 304 Economic Geography 3
RENR 375 Conservation of Natural Resources 3
American history (p. 29) 1 3
Mathematics (p. 26) 1 3
Natural resource elective 3 3

Semester Credit Hours 15

Spring
WFSC 301 Wildlife and the Changing Environment 3
Mathematics (p. 26) 1 3
Environmental policy elective 2 3
Natural resource elective 3 3
General elective 1 3

Semester Credit Hours 16

Fourth Year
Fall
SCSC 301 Soil Science 4
STAT 303 Statistical Methods 3
RENR 405/ ESSM 351 Geographic Information Systems for Resource Management or Environmental Impact Assessment
Communication (p. 26) 1 3
Environmental policy elective 2 3

Semester Credit Hours 16

Spring
BESC 481 Seminar 1
BESC 484 Field Experience 3
Environmental policy elective 2 3
Natural resource elective 3 3

Semester Credit Hours 13

Total Semester Credit Hours 120

1 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.
2 Select five from the following in consultation with academic advisor: AGEC 344, AGEC 350, AGEC 429, BESC 314, BESC 357; ECON 202, ECON 203, ECON 323, ECON 412, ENTO 210, ENTO 431/FIVS 431; ESSM 406; GEOG 205, GEOG 401, GEOG 406, GEOS 105, PHIL 205, PHIL 314, URPN 202, URPN 360, URPN 370, URPN 460, POLS 229, POLS 231, POLS 306, POLS 340, POLS 342, POLS 347, POLS 440, POLS 461, SOCI 312, SOCI 328, WFSC 303.
3 Select four from the following in consultation with academic advisor: AGSM 301, AGSM 377, BESC 204, BESC 320, BESC 401, BESC 403, ENTO 201, ENTO 320, ENTO 403, ENTO 424; ESSM 201, ESSM 309, ESSM 320, ESSM 444, FRSC 421, HORT 301, POSC 427, RENR 410, RPTS 316, RPTS 426, RPTS 460/RENR 460, WFSC 304, WFSC 403, WFSC 405, WFSC 418, WFSC 420.

A minimum of 120 semester hours will be required for a BS degree.

University Studies - BS, Environmental Business Concentration

A University Studies Degree differs from a traditional “major” in that it consists of a concentration of 21-24 hours and two minors of 15-18 hours each. The University Studies Degree format was created to provide students the flexibility to combine areas of study that are of special interest. Under the guidelines of the University Studies Degree requirements, the student’s diploma will list “University Studies” in the place where the major is currently listed. The student’s area of concentration (Environmental Business) and the two minors (Rangeland Ecology & Management AND Business) will be indicated on the student’s transcript.

This new degree option features a blending of environmental science coursework and business coursework in a truly unique combination unlike any other degree at Texas A&M University. The Environmental Business concentration draws heavily from the established Bioenvironmental Sciences degree already offered at Texas A&M, but this concentration is significantly different in that it lacks the larger number of life science courses that serve as a necessary foundation in any environmental science degree. The focus on environmental coursework (through the BESC and ECCB courses) coupled with core business coursework allows this University Studies concentration to provide a very well-rounded and marketable degree in a variety of arenas.

This interdisciplinary degree plan provides a highly-marketable focus from an already fast-rising, multi-faceted discipline. The coursework retains the “customizable” nature of the university studies degree within the concentration itself, allowing students a truly one-of-a-kind opportunity for their bachelor’s degree. The Environmental Business concentration provides a solid foundation of Bioenvironmental Sciences...
coursework that, when paired with the Rangeland Ecology & Management minor and the Business minor, provides students with a versatile, sound degree that is uniquely positioned in the job market and combines a general overview of both environmental issues/policies and business administration principals/content.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RENR 215</td>
<td>Fundamentals of Ecology-Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BIOL 101</td>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or BIOL 111</td>
<td>or Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
</tr>
<tr>
<td></td>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
</tr>
<tr>
<td></td>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
</tr>
<tr>
<td></td>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
</tr>
<tr>
<td></td>
<td>BESC 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td></td>
<td>PLPA 301</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td></td>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Business minor</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Select one from the following:</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
</tr>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
</tr>
<tr>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
</tr>
<tr>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
</tr>
<tr>
<td>BESC 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Business minor</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
</tr>
<tr>
<td></td>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
</tr>
<tr>
<td></td>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
</tr>
<tr>
<td></td>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
</tr>
<tr>
<td></td>
<td>BESC 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td></td>
<td>PLPA 301</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td></td>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
</tr>
<tr>
<td></td>
<td>Business minor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Select one from the following:</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 481</td>
<td>Seminar</td>
</tr>
<tr>
<td>BESC 484</td>
<td>Field Experience</td>
</tr>
<tr>
<td>Business minor</td>
<td></td>
</tr>
<tr>
<td>Free elective</td>
<td></td>
</tr>
</tbody>
</table>
The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46). A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

Business Minor

The minor in business consists of six specific courses chosen to develop a foundational knowledge in the basic aspects of business, including accounting, finance, management, marketing, and management information systems.

The courses listed below constitute the 18 hours required for a minor in business.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles (or TCCNS ACCT 2301 or 2401)</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 209</td>
<td>Business Information Systems Concepts</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law (or Blinn College BUSI 2371)</td>
<td>3</td>
</tr>
<tr>
<td>FINC 409</td>
<td>Survey of Finance Principles</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 409</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1. The Information Systems CLEP exam is available for students who have not taken ISTM 209 to demonstrate mastery of the course concepts. See http://testing.tamu.edu/Exams/CLEP (http://testing.tamu.edu/Exams/CLEP/).
2. MGMT 212 cannot be used to meet this requirement.
3. Course must be taken in residence at Texas A&M. No transfer courses or substitutions will be allowed.

Students must earn a grade of ‘C’ or better in each course listed above to be awarded the business minor and receive transcript recognition.

Rangeland Ecology and Management Minor

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 302</td>
<td>Wildland Plants of North America</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 303</td>
<td>Agrostology</td>
<td></td>
</tr>
<tr>
<td>ESSM 304</td>
<td>Rangeland Plant Taxonomy</td>
<td></td>
</tr>
<tr>
<td>ESSM 314</td>
<td>Principles of Rangeland Management Around the World</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 316</td>
<td>Range Ecology</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must make a grade of C or better in all courses.

Bioenvironmental Sciences - Minor

The purpose of the Bioenvironmental Sciences minor is to prepare students for a breadth of career choices in the environmental sciences. The minor in Bioenvironmental Sciences is available to all students enrolled in majors at Texas A&M University outside of the Department of Plant Pathology & Microbiology.

The minor requirements can be found on the Program Requirements tab. Note that all prerequisites for each core and elective course also must be met. Prerequisite courses will not be applied to the minor requirements and do not count toward the number of hours needed to complete the minor.

Program Requirements

Select 9 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
<td>3</td>
</tr>
<tr>
<td>or BESC 36; or U.S. Environmental Regulations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select 9 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
<td></td>
</tr>
<tr>
<td>BESC 311</td>
<td>International Perspectives on Environmental Issues</td>
<td></td>
</tr>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
<td></td>
</tr>
<tr>
<td>BESC 401</td>
<td>Bioenvironmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>BESC 402</td>
<td>Microbial Processes in Bioremediation</td>
<td></td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
<td></td>
</tr>
<tr>
<td>BESC 411</td>
<td>Environmental Health and Safety Compliance</td>
<td></td>
</tr>
<tr>
<td>BESC 484</td>
<td>Field Experience</td>
<td></td>
</tr>
<tr>
<td>BESC 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>BESC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>BESC 491</td>
<td>Research</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15
Department of Poultry Science

Growth of the poultry industry has created the need for scientific, technical and business knowledge in the various fields important to successful poultry production. In few fields of science is an understanding of the basic sciences, nutrition, genetics, physiology, diseases, biotechnology, processing and marketing more rewarding than in the modern, intensive methods of poultry and food production. Students are trained in the necessary background, analytical skills, problem solving and leadership for complex production units, hatcheries, integrated feed mills, processing plants and research laboratories. Rapid industry growth provides many career opportunities for graduates. Students are given two emphasis areas in which to specialize their education toward their selected career goals. The University Core Curriculum courses and the Poultry Science Core courses are required for both emphases. Students then complete a BS degree in either emphasis area by completing the respective emphasis area courses. All students are strongly encouraged to get early and frequent academic counseling which is readily available.

Faculty

Athrey, Giridhar N, Assistant Professor
Poultry Science
PHD, University of Louisiana at Lafayette, 2009

Bailey, Christopher A, Professor
Poultry Science
PHD, Texas A&M University, 1982

Berghman, Luc R, Professor
Poultry Science
PHD, University of Leuven, Belgium, 1987

Carey, John B, Professor
Poultry Science
PHD, Kansas State University, 1982

Duong, Tri, Associate Professor
Poultry Science
PHD, North Carolina State University, 2008

Farnell, Morgan B, Associate Professor
Poultry Science
PHD, Texas A&M University, 2003

Farnell, Yuhua Z, Instructional Assistant Professor
Poultry Science
PHD, Texas A&M University, 2002

McElroy, Audrey, Professor
Poultry Science
PHD, Texas A&M University, 1998

Pillai, Suresh D, Professor
Poultry Science
PHD, University of Arizona, 1989

Walzem, Rosemary L, Professor
Poultry Science
PHD, University of California, Davis, 1987

Majors

• Bachelor of Science in Poultry Science, Industry Emphasis (p. 203)
• Bachelor of Science in Poultry Science, Technical Emphasis (p. 204)

Minors

• Poultry Science Minor (p. 205)

Poultry Science - BS, Industry Emphasis

Growth of the poultry industry has created the need for scientific, technical and business knowledge in the various fields important to successful poultry production. In few fields of science is an understanding of the basic sciences, nutrition, genetics, physiology, diseases, biotechnology, processing and marketing more rewarding than in the modern, intensive methods of poultry and food production. Students are trained in the necessary background, analytical skills, problem solving and leadership for complex production units, hatcheries, integrated feed mills, processing plants and research laboratories. Rapid industry growth provides many career opportunities for graduates. Students are given two emphasis areas in which to specialize their education toward their selected career goals. The University Core Curriculum courses and the Poultry Science Core courses are required for both emphases. Students then complete a BS degree in either emphasis area by completing the respective emphasis area courses. All students are strongly encouraged to get early and frequent academic counseling which is readily available.

Students completing a BS degree in the industry emphasis find employment with the poultry and food industries in positions such as corporate management, quality assurance, sales or technical support in live production, processing or marketing. Students in this emphasis also get positions with pharmaceutical and equipment companies, with industry trade publications and in various university and public service positions.

Students completing a BS degree in the technical emphasis are prepared for advanced study in biochemistry, nutrition, physiology, molecular genetics, reproduction, processing technology, microbiology or environmental science and for eventual professional employment in research, teaching or public service. This curriculum can be easily tailored to meet the veterinary medicine preprofessional requirements.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
</tr>
<tr>
<td>BIOL 111 or BIOL 107</td>
<td>Introductory Biology I or Zoology</td>
</tr>
<tr>
<td>POSC 201</td>
<td>General Avian Science</td>
</tr>
<tr>
<td>POSC 302</td>
<td>Avian Science Laboratory</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Spring

| CHEM 119 | Fundamentals of Chemistry I | 4 |
Second Year
Fall
- **POSC 308** Avian Anatomy and Physiology 3
- **POSC 309** Poultry Meat Production 4
- **American history (p. 29)** 1 3
- **Mathematics (p. 26)** 3
- **General elective** 2 3

Semester Credit Hours 16

Spring
- **POSC 381** Investigation of Professional Development in Poultry Science 2
- **Communication (p. 26)** 3
- **Creative arts (p. 29)** 1 3
- **Government/Political science (p. 30)** 3
- **General elective** 2 3

Semester Credit Hours 16

Third Year
Fall
- **AGEC 314** Marketing Agricultural and Food Products or ACCT 209 3
- **ANS 326** Food Bacteriology 3
- **POSC 326** Commercial Egg Industry 3
- **POSC 414** Avian Genetics and Breeding 3
- **POSC 427** Animal Waste Management 3

Semester Credit Hours 15

Spring
- **CHEM 222** Elements of Organic and Biological Chemistry 3
- **POSC 429** Advanced Food Bacteriology 4
- **Select one of the following:** 3
 - **ACCT 210** Survey of Managerial and Cost Accounting Principles
 - **AGEC 340** Agribusiness Management
 - **AGEC 344** Food and Agricultural Law
 - **ECON 202** Principles of Economics
 - **ECON 203** Principles of Economics
 - **ISTM 209** Business Information Systems Concepts
 - **MGMT 212** Business Law
 - **MGMT 105** Introduction to Business
 - **Government/Political science (p. 30)**
 - **General elective** 2 2

Semester Credit Hours 16

Fourth Year
Fall
- **POSC 405** Egg and Poultry Meat Processing 3
- **POSC 411** Poultry Nutrition 3

Spring
- **POSC 481** Poultry Science Systems 2
- **General elective** 2 6

Semester Credit Hours 14

Total Semester Credit Hours
120

1. The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (http://catalog.tamu.edu/undergraduate/agriculture-life-sciences/poultry-science/industry-education/bs-emphasis/20/undergraduate/general-information/degree-information/international-cultural-diversity-requirements/) courses and 3 hours Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

2. To be utilized by students to enhance the science and/or business aspects of their undergraduate program.

Poultry Science - BS, Technical Emphasis

Growth of the poultry industry has created the need for scientific, technical and business knowledge in the various fields important to successful poultry production. In few fields of science is an understanding of the basic sciences, nutrition, genetics, physiology, diseases, biotechnology, processing and marketing more rewarding than in the modern, intensive methods of poultry and food production. Students are trained in the necessary background, analytical skills, problem solving and leadership for complex production units, hatcheries, integrated feed mills, processing plants and research laboratories. Rapid industry growth provides many career opportunities for graduates. Students are given two emphasis areas in which to specialize their education toward their selected career goals. The University Core Curriculum courses and the Poultry Science Core courses are required for both emphases. Students then complete a BS degree in either emphasis area by completing the respective emphasis area courses. All students are strongly encouraged to get early and frequent academic counseling which is readily available.

Students completing a BS degree in the industry emphasis find employment with the poultry and food industries in positions such as corporate management, quality assurance, sales or technical support in live production, processing or marketing. Students in this emphasis also get positions with pharmaceutical and equipment companies, with industry trade publications and in various university and public service positions.

Students completing a BS degree in the technical emphasis are prepared for advanced study in biochemistry, nutrition, physiology, molecular genetics, reproduction, processing technology, microbiology or environmental science and for eventual professional employment.
in research, teaching or public service. This curriculum can be easily tailored to meet the veterinary medicine preprofessional requirements.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>POSC 201</td>
<td>General Avian Science</td>
</tr>
<tr>
<td>POSC 302</td>
<td>Avian Science Laboratory</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>or BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>POSC 319</td>
<td>Breeder and Hatchery Management</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>& CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>POSC 308</td>
<td>Avian Anatomy and Physiology</td>
</tr>
<tr>
<td>POSC 309</td>
<td>Poultry Meat Production</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>POSC 381</td>
<td>Investigation of Professional Development in Poultry Science</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
</tr>
<tr>
<td>or VTPB 405</td>
<td>or Biomedical Microbiology</td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
</tr>
<tr>
<td>POSC 411</td>
<td>Poultry Nutrition</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
</tr>
<tr>
<td>POSC 412</td>
<td>Poultry Feed Formulation</td>
</tr>
<tr>
<td>POSC 429</td>
<td>Advanced Food Bacteriology</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

General elective | 4

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
</tr>
<tr>
<td>& GENE 312</td>
<td>and Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>POSC 405/ NFSC 405</td>
<td>Egg and Poultry Meat Processing</td>
</tr>
<tr>
<td>POSC 427</td>
<td>Animal Waste Management</td>
</tr>
<tr>
<td>POSC 481</td>
<td>Poultry Science Systems</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>POSC 406/ NFSC 406</td>
<td>Poultry Further Processing</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Introduction to Biometry</td>
</tr>
<tr>
<td>or STAT 302</td>
<td>or Statistical Methods</td>
</tr>
<tr>
<td>VTPB 334</td>
<td>Poultry Diseases</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

2. To be utilized by students to enhance the science and/or business aspects of their undergraduate program.

Poultry Science - Minor

The minor in Poultry Science is available to all students enrolled at Texas A&M University. The main educational goal of this program is to provide students majoring in other fields with a basic knowledge of various fields within the poultry industry. The courses required for this minor will cover information on major topics in the poultry industry.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSC 201</td>
<td>General Avian Science</td>
<td>3</td>
</tr>
<tr>
<td>POSC 309</td>
<td>Poultry Meat Production</td>
<td>4</td>
</tr>
<tr>
<td>POSC 308</td>
<td>Avian Anatomy and Physiology</td>
<td>3</td>
</tr>
<tr>
<td>POSC 313</td>
<td>Game Birds and Ornamental Fowl</td>
<td></td>
</tr>
<tr>
<td>POSC 319</td>
<td>Breeder and Hatchery Management</td>
<td></td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>NFSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSC 411</td>
<td>Poultry Nutrition</td>
<td></td>
</tr>
<tr>
<td>POSC 414</td>
<td>Avian Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td>POSC 425</td>
<td>Environmental Physiology</td>
<td></td>
</tr>
<tr>
<td>POSC 427</td>
<td>Animal Waste Management</td>
<td></td>
</tr>
<tr>
<td>POSC 429</td>
<td>Advanced Food Bacteriology</td>
<td></td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
<td></td>
</tr>
<tr>
<td>POSC 333</td>
<td>Instincts and Behavior</td>
<td></td>
</tr>
<tr>
<td>POSC 319</td>
<td>Breeder and Hatchery Management</td>
<td></td>
</tr>
<tr>
<td>POSC 308</td>
<td>Avian Anatomy and Physiology</td>
<td></td>
</tr>
<tr>
<td>POSC 313</td>
<td>Game Birds and Ornamental Fowl</td>
<td></td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>NFSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSC 411</td>
<td>Poultry Nutrition</td>
<td></td>
</tr>
<tr>
<td>POSC 414</td>
<td>Avian Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td>POSC 425</td>
<td>Environmental Physiology</td>
<td></td>
</tr>
<tr>
<td>POSC 427</td>
<td>Animal Waste Management</td>
<td></td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
<td></td>
</tr>
<tr>
<td>POSC 333</td>
<td>Instincts and Behavior</td>
<td></td>
</tr>
<tr>
<td>POSC 319</td>
<td>Breeder and Hatchery Management</td>
<td></td>
</tr>
<tr>
<td>POSC 308</td>
<td>Avian Anatomy and Physiology</td>
<td></td>
</tr>
<tr>
<td>POSC 313</td>
<td>Game Birds and Ornamental Fowl</td>
<td></td>
</tr>
<tr>
<td>POSC 326</td>
<td>Commercial Egg Industry</td>
<td></td>
</tr>
<tr>
<td>POSC 406</td>
<td>Poultry Further Processing</td>
<td></td>
</tr>
<tr>
<td>NFSC 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSC 411</td>
<td>Poultry Nutrition</td>
<td></td>
</tr>
<tr>
<td>POSC 414</td>
<td>Avian Genetics and Breeding</td>
<td></td>
</tr>
<tr>
<td>POSC 425</td>
<td>Environmental Physiology</td>
<td></td>
</tr>
<tr>
<td>POSC 427</td>
<td>Animal Waste Management</td>
<td></td>
</tr>
<tr>
<td>POSC 429</td>
<td>Advanced Food Bacteriology</td>
<td></td>
</tr>
</tbody>
</table>
Faculty

Barboza, Peregrine, Professor
Rangeland, Wildlife and Fisheries Management
PHD, University of New England, 1991

Evans, Steven, Lecturer
Rangeland, Wildlife and Fisheries Management
MS, Colorado State University, 2018

Kaiser, Ronald, Professor
Rangeland, Wildlife and Fisheries Management
LLM, University of California, Berkeley, 1989
JD, Thomas M. Cooley Law School, 1977

Knight, Robert, Associate Professor
Rangeland, Wildlife and Fisheries Management
PHD, Texas A&M University, 1980

Kothmann, Merwyn, Senior Professor
Rangeland, Wildlife and Fisheries Management
PHD, Texas A&M University, 1968

Kyle, Gerard, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Pennsylvania State University, 2001

Matarrita Cascante, David, Associate Professor
Rangeland, Wildlife and Fisheries Management
PHD, Pennsylvania State University, 2008

Morrison, Mike, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Oregon State University, 1982

Schuett, Michael, Professor
Rangeland, Wildlife and Fisheries Management
PHD, University of Illinois at Urbana - Champaign, 1991

Silvy, Nova, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Southern Illinois University, 1975

Stronza, Amanda, Professor
Rangeland, Wildlife and Fisheries Management
PHD, University of Florida, 2000

Minors

• Bachelor of Science in Rangeland Ecology and Management Minor (p. 215)
• Wildlife and Fisheries Sciences Minor (p. 215)

Rangeland Ecology and Management - BS, Ranch Management Option

Students majoring in Rangeland Ecology and Management are taught to integrate knowledge and technology in a systems approach to manage land for sustainable utilization of natural resources. Emphasis is placed on conservation and maintenance of biological diversity in wet to arid environments and sustainable production, conservation and function of land. Rangelands comprise approximately 50% of the land area of the United States and the world. Natural resources on rangelands provide many products and values for society including: livestock grazing, habitat for game and non-game wildlife, water for urban and agricultural uses, recreational opportunities, minerals, oil and gas. The expansiveness and diversity of rangelands require that knowledge and technology be drawn from numerous disciplines.

Employment opportunities are diverse. They include all aspects of natural resource management, including ranch management, environmental consulting, conservation and natural resource planning on private lands and with state and federal agencies. Students also find employment in agribusiness sales, marketing, agricultural finance real estate, consulting
and reclamation. Students can also pursue professional careers in teaching agricultural science.

Two options in the Rangeland Ecology and Management curriculum provide the opportunity for specialization in a minor field.

Ranch Management Option

Designed for students preparing for careers in ranch management and agribusiness. This option emphasizes management and utilization of rangeland for livestock and wildlife production. It provides excellent preparation for students desiring to obtain a Master of Agriculture degree in ranch management. Employment opportunities are available on private ranches, businesses, and industries supporting ranches and with state and federal agencies.

Emphasis Areas

Ecology

Designed for students to explore and specialize in a diverse array of ecological topics. They study plants and animals and the ecological principles essential for effective conservation, management and restoration of the land and associated natural resources. They are prepared for careers in resource monitoring, management and conservation with state and federal agencies and the private sector.

Environmental Science

Designed for students preparing for professional careers in environmental management. The coursework includes a basic foundation of ecological sciences, plant taxonomy and rangeland management with emphasis on plants, water and soils. Job opportunities are available in environmental consulting firms, public utility companies, municipalities and federal environmental agencies. The curriculum provides a good foundation for students planning to pursue graduate studies in watershed management, environmental sciences, pollution control or waste management.

Preveterinary Medicine

Prepares students for admission to the professional program in veterinary medicine. Students planning to work in large animal practice would benefit from studies in rangeland ecology and management.

Range/Soil Conservation

Designed to qualify students as range management specialists or soil conservationists with the federal government. The curriculum will provide students with competitive ratings with federal Civil Service for positions with the Natural Resources Conservation Service, Forest Service and Bureau of Land Management. Various electives and work experience may be used to increase the rating score. Job opportunities are also available in private and state organizations.

Teaching

For students majoring in rangeland ecology and management who wish to teach. Directed electives may be chosen so that, following this curriculum, the student is eligible to enter the induction year as a teacher of agricultural science under the Texas Education Agency Plan. Off-campus student teaching is required.

Watershed Resources

For students preparing for a professional career in watershed management. Graduates qualify for employment as range management specialists and soil conservationists or, with proper selection of electives, as hydrologists. Opportunities are also available in environmental consulting firms, public utility companies, land reclamation firms, municipalities, secondary school education and private land management.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>AGEC 105</td>
</tr>
<tr>
<td>Introducing to Agricultural Economics</td>
</tr>
<tr>
<td>ESSM 201</td>
</tr>
<tr>
<td>Exploring Ecosystem Science and Management</td>
</tr>
<tr>
<td>RENR 205 & RENR 215</td>
</tr>
<tr>
<td>Fundamentals of Ecology and Fundamentals of Ecology—Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>BIOL 101</td>
</tr>
<tr>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 113</td>
</tr>
<tr>
<td>Essentials in Biology</td>
</tr>
<tr>
<td>HORT 201 & HORT 202</td>
</tr>
<tr>
<td>Horticultural Science and Practices and Horticultural Science and Practices Laboratory</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ANSC 107 & ANSC 108</td>
</tr>
<tr>
<td>General Animal Science and General Animal Science Laboratory</td>
</tr>
<tr>
<td>CHEM 119</td>
</tr>
<tr>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ESSM 281</td>
</tr>
<tr>
<td>Seminar in Ecosystem Science and Management</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>Second Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ESSM 302</td>
</tr>
<tr>
<td>Wildland Plants of North America</td>
</tr>
<tr>
<td>ESSM 314</td>
</tr>
<tr>
<td>Principles of Rangeland Management Around the World</td>
</tr>
<tr>
<td>ESSM 351/RENR 405 or ESSM 351</td>
</tr>
<tr>
<td>Geographic Information Systems for Resource Management or Geographic Information Systems for Resource Management</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ANSC 320</td>
</tr>
<tr>
<td>Animal Nutrition and Feeding</td>
</tr>
<tr>
<td>ESSM 301</td>
</tr>
<tr>
<td>Wildland Watershed Management</td>
</tr>
</tbody>
</table>
Rangeland Ecology and Management - BS, Rangeland Resources Option

Students majoring in Rangeland Ecology and Management are taught to integrate knowledge and technology in a systems approach to manage land for sustainable utilization of natural resources. Emphasis is placed on conservation and maintenance of biological diversity in wet to arid environments and sustainable production, conservation and function of land. Rangelands comprise approximately 50% of the land area of the United States and the world. Natural resources on rangelands provide many products and values for society including: livestock grazing, habitat for game and non-game wildlife, water for urban and agricultural uses, recreational opportunities, minerals, oil and gas. The expansiveness and diversity of rangelands require that knowledge and technology be drawn from numerous disciplines.

Employment opportunities are diverse. They include all aspects of natural resource management, including ranch management, environmental consulting, conservation and natural resource planning on private lands and with state and federal agencies. Students also find employment in agribusiness sales, marketing, agricultural finance real estate, consulting and reclamation. Students can also pursue professional careers in teaching agricultural science.

Two options in the Rangeland Ecology and Management curriculum provide the opportunity for specialization in a minor field.

Rangeland Resources Option

Designed for students preparing for careers in the private, state and federal sectors in the area of natural resources conservation and management. It also provides good preparation for graduate study leading to positions in extension, teaching, research and consulting. It allows maximum flexibility to orient a degree program towards specific career interests. Students are encouraged to develop an emphasis area by selecting 15 hours of directed elective courses in related disciplines. Several suggested emphasis areas for the Rangeland Resources Option follow.

Emphasis Areas

Ecology

Designed for students to explore and specialize in a diverse array of ecological topics. They study plants and animals and the ecological principles essential for effective conservation, management and restoration of the land and associated natural resources. They are prepared for careers in resource monitoring, management and conservation with state and federal agencies and the private sector.

Environmental Science

Designed for students preparing for professional careers in environmental management. The coursework includes a basic foundation of ecological...
sciences, plant taxonomy and rangeland management with emphasis on plants, water and soils. Job opportunities are available in environmental consulting firms, public utility companies, municipalities and federal environmental agencies. The curriculum provides a good foundation for students planning to pursue graduate studies in watershed management, environmental sciences, pollution control or waste management.

Preveterinary Medicine
Prepares students for admission to the professional program in veterinary medicine. Students planning to work in large animal practice would benefit from studies in rangeland ecology and management.

Range/Soil Conservation
Designed to qualify students as range management specialists or soil conservationists with the federal government. The curriculum will provide students with competitive ratings with federal Civil Service for positions with the Natural Resources Conservation Service, Forest Service and Bureau of Land Management. Various electives and work experience may be used to increase the rating score. Job opportunities are also available in private and state organizations.

Teaching
For students majoring in rangeland ecology and management who wish to teach. Directed electives may be chosen so that, following this curriculum, the student is eligible to enter the induction year as a teacher of agricultural science under the Texas Education Agency Plan. Off-campus student teaching is required.

Watershed Resources
For students preparing for a professional career in watershed management. Graduates qualify for employment as range management specialists and soil conservationists or, with proper selection of electives, as hydrologists. Opportunities are also available in environmental consulting firms, public utility companies, land reclamation firms, municipalities, secondary school education and private land management.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics 3</td>
</tr>
<tr>
<td>ESSM 201</td>
<td>Exploring Ecosystem Science and Management 1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
</tr>
<tr>
<td>HORT 201 & HORT 202</td>
<td>Horticultural Science and Practices and Horticultural Science and Practices Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ESSM 302</td>
<td>Wildland Plants of North America 3</td>
</tr>
<tr>
<td>ESSM 314</td>
<td>Principles of Rangeland Management Around the World 3</td>
</tr>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management 3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective 2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I 4</td>
</tr>
<tr>
<td>ESSM 281</td>
<td>Seminar in Ecosystem Science and Management 1</td>
</tr>
<tr>
<td>American history (p. 29) 1</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26) 1</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science 4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 325</td>
<td>Principles of Farm and Ranch Management</td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
</tr>
<tr>
<td>ESSM 404</td>
<td>Changing Natural Resource Policy</td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>Emphasis area elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective 2</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative arts (p. 29) 1</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 306</td>
<td>Plant Functional Ecology and Adaptation 3</td>
</tr>
<tr>
<td>American history (p. 29) 1</td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective 2</td>
<td>3</td>
</tr>
</tbody>
</table>
of Science degree. Each student will choose a course of study from among the options within the department’s curricula after consultation with the academic advisor. The chosen option is enhanced by a common departmental “core” of courses necessary for a sound education in the wildlife and fisheries conservation professions.

Students are encouraged to develop an emphasis area within their degree option. To build this emphasis area, students will choose directed electives, from related disciplines, in consultation with their academic advisor and faculty members.

This option (previously known as the Aquatic Ecology and Conservation) is designed for students interested in the research and management of fish, other freshwater and marine organisms, and the ecosystems that sustain them as well as controlled production of organisms in aquatic systems. Careers are available in state and federal resource agencies; fisheries management companies; nongovernmental conservation organizations; environmental consulting firms; and private consultation. In addition, careers may be available in supporting areas such as quality control, supply, marketing, distribution, finance, consultation as well as domestic and foreign resource development. This degree option can also prepare students for grad school. This option meets American Fisheries Society requirements for certification as an Associate Fisheries Professional.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 111 - Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>RENR 205 - Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140 - Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 101 - Introduction to Wildlife and Fisheries</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 1</td>
<td>2</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 112 - Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 142 - Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 2</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 2</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119 - Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104 - Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 302 - Natural History of the Vertebrates</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring	
CHEM 222 - Elements of Organic and Biological Chemistry	3
COMM 203 - Public Speaking	3
RENR 215 - Fundamentals of Ecology–Laboratory	1

Wildlife and Fisheries Sciences - BS, Fisheries, Aquaculture and Aquatic Sciences Track

Graduates are well equipped for post-baccalaureate study in many life science fields (graduate school programs and human and veterinary medicine) or for direct entry into professions such as wildlife management, fisheries management, environmental impact assessment, aquaculture, natural history museum education, zoological park collection management, public school teaching and urban wildlife management. Employers of recent graduates include state and federal resource agencies, scientific foundations, ranches, hunting and fishing clubs, fish farms, environmental consulting firms, museums and secondary schools.

Wildlife Ecology & Conservation; Fisheries, Aquaculture & Aquatic Sciences; and Vertebrate Zoology curriculum options lead to the Bachelor
Students are required to make a C or better in all WFSC and RENR 205/RENR 215 courses.

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>VTPP 423</td>
<td>Biomedical Physiology I</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 316</td>
<td>Field Herpetology</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 335</td>
<td>Natural History of the Invertebrates</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 311</td>
<td>Ichthyology</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 403</td>
<td>Animal Ecology</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 449</td>
<td>Professional Aspects of Aquatic Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>WFSC 303</td>
<td>Fish and Wildlife Laws and Administration</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 404</td>
<td>Aquatic Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 425</td>
<td>Marine Fisheries</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFSC 410</td>
<td>Principles of Fisheries Management</td>
<td>4</td>
</tr>
<tr>
<td>WFSC 447</td>
<td>Aquaculture II: Aquatic Animal Nutrition,</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Feeding and Disease Management</td>
<td></td>
</tr>
<tr>
<td>WFSC 448</td>
<td>Fish Ecophysiology</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>WFSC 300/</td>
<td>Field Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFSC 484</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 491</td>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td>4</td>
</tr>
<tr>
<td>& GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>WFSC 304</td>
<td>Wildlife and Fisheries Conservation</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 444</td>
<td>Aquaculture I: Principles and Practices</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Vertebrate Zoology Option

This emphasis provides the rigorous training needed for careers in the various aspects of natural resources related to the fields of ichthyology, herpetology, mammalogy and ornithology, including behavior, ecology, evolution, genetics, molecular biology, physiology and systematics. It is a flexible program which permits the inclusion of courses specifically required by schools graduate programs as well as schools of dentistry, law, medicine and veterinary medicine.

For students interested in biological diversity and the ecological processes and population interactions that sustain it, courses in this option are designed to provide a strong foundation in basic and applied organismal biology that will prepare students for graduate studies as well as careers within governmental and nongovernmental agencies and environmental firms dealing with biological conservation.

Students who are interested in mathematical and statistical approaches to conservation of endangered species, management of exploited populations, and their habitats will be equipped in basic ecological data analysis and modeling. The demand for professionals who can integrate quantitative methods and ecological concepts is rapidly increasing among government agencies, academia, and the private sector. Possible careers include entry-level assistant positions in fisheries management, wildlife management, environmental consulting, and research at conservation agencies, hospitals, and universities. This is also suitable for students who plan to obtain a post baccalaureate degree (MS or PhD) in ecology and related fields later in order to pursue higher level positions.

A total of 120 semester hours will be required for a BS degree.

Wildlife and Fisheries Sciences - BS, Vertebrate Zoology Option

Graduates are well equipped for post-baccalaureate study in many life science fields (graduate school programs and human and veterinary medicine) or for direct entry into professions such as wildlife management, fisheries management, environmental impact assessment, aquaculture, natural history museum education, zoological park collection management, public school teaching and urban wildlife management. Employers of recent graduates include state and federal resource agencies, scientific foundations, ranches, hunting and fishing clubs, fish farms, environmental consulting firms, museums and secondary schools.

Wildlife Ecology & Conservation; Fisheries, Aquaculture & Aquatic Sciences; and Vertebrate Zoology curriculum options lead to the Bachelor of Science degree. Each student will choose a course of study from among the options within the department’s curricula after consultation with the academic advisor. The chosen option is enhanced by a common departmental “core” of courses necessary for a sound education in the wildlife and fisheries conservation professions.

Students are encouraged to develop an emphasis area within their degree option. To build this emphasis area, students will choose directed electives, from related disciplines, in consultation with their academic advisor and faculty members.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
</tr>
<tr>
<td>WFSC 101</td>
<td>Introduction to Wildlife and Fisheries</td>
</tr>
<tr>
<td>Directed elective 1</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed elective</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours: 15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>WFSC 302</td>
<td>Natural History of the Vertebrates</td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 2</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours: 17 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>& CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 2</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours: 16 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>& CHEM 238</td>
<td>and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
</tr>
<tr>
<td>VTPP 423</td>
<td>Biomedical Physiology I</td>
</tr>
<tr>
<td>WFSC 335</td>
<td>Natural History of the Invertebrates</td>
</tr>
<tr>
<td>Creative arts (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 2</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 1</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours: 15 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 303</td>
<td>Elements of Biological Chemistry</td>
</tr>
<tr>
<td>or BICH 410</td>
<td>or Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>Biodiversity elective 3</td>
<td></td>
</tr>
<tr>
<td>Directed elective 1</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology–Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>WFSC 300/ENTO 300</td>
<td>Field Studies</td>
</tr>
<tr>
<td>WFSC 484</td>
<td>Internship</td>
</tr>
<tr>
<td>WFSC 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>WFSC 491</td>
<td>Research</td>
</tr>
<tr>
<td>Biodiversity elective 3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours: 13 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>WFSC 304</td>
<td>Wildlife and Fisheries Conservation</td>
</tr>
<tr>
<td>Directed elective 1</td>
<td></td>
</tr>
<tr>
<td>Directed elective 1</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours: 14 |

| Total Semester Credit Hours | 120 |

1. Directed electives to be chosen to meet prerequisite requirements for admission to professional schools.
2. Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
3. Select from ENTO 201; WFSC 311, WFSC 315, WFSC 401, WFSC 402.

Students are required to make a C or better in all WFSC and RENR 205/RENR 215 courses.

A total of 120 semester hours will be required for a BS degree.

Wildlife and Fisheries Sciences - BS, Wildlife Ecology and Conservation Option

Graduates are well equipped for post-baccalaureate study in many life science fields (graduate school programs and human and veterinary medicine) or for direct entry into professions such as wildlife management, fisheries management, environmental impact assessment, aquaculture, natural history museum education, zoological park collection management, public school teaching and urban wildlife management. Employers of recent graduates include state and federal resource agencies, scientific foundations, ranches, hunting and fishing clubs, fish farms, environmental consulting firms, museums and secondary schools.

Wildlife Ecology & Conservation; Fisheries, Aquaculture & Aquatic Sciences; and Vertebrate Zoology curriculum options lead to the Bachelor of Science degree. Each student will choose a course of study from among the options within the department’s curricula after consultation with the academic advisor. The chosen option is enhanced by a common
departmental “core” of courses necessary for a sound education in the wildlife and fisheries conservation professions.

Students are encouraged to develop an emphasis area within their degree option. To build this emphasis area, students will choose directed electives, from related disciplines, in consultation with their academic advisor and faculty members.

Wildlife Ecology and Conservation Option

This option is designed for students interested in the research, management and conservation of wildlife and its ecosystems. This option provides considerable flexibility when designing a degree program and allows students to focus on both terrestrial and aquatic conservation management. Job opportunities are available with state and federal agencies; private land management individuals and companies; state, national and international organizations; zoos and wildlife centers; environmental consulting firms; and as private consultants. In addition, this degree program can prepare students for further graduate school studies in the wildlife and/or fisheries area. Emphasis areas in this option include:

Wildlife Ecology Emphasis

The wildlife ecology emphasis is for students interested in research and management of terrestrial animals and ecosystems, including game, non-game, and endangered species. The ability to be certified is becoming increasingly important for employment. Courses taken can go toward course certification requirements of The Wildlife Society.

Wildlife and Fisheries Management Emphasis

This emphasis is for students interested in understanding and management of both aquatic and terrestrial habitats. Courses taken can go toward course certification requirements of both the American Fisheries Society and The Wildlife Society. The ability to be certified is becoming increasingly important for employment.

Conservation Biology Emphasis

This emphasis is for students interested in conservation of the earth’s biodiversity. This emphasis allows the student to focus on various ecological environments and socio-economic aspects including urban and/or wetland conservation.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111 Introductory Biology I</td>
</tr>
<tr>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>RENR 205 Fundamentals of Ecology</td>
</tr>
<tr>
<td>WFSC 101 Introduction to Wildlife and Fisheries</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112 Introductory Biology II</td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>WFSC 302 Natural History of the Vertebrates</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 222 Elements of Organic and Biological Chemistry</td>
</tr>
<tr>
<td>& CHEM 242 and Elementary Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>RENR 215 Fundamentals of Ecology–Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>BIOL 388 Principles of Animal Physiology</td>
</tr>
<tr>
<td>VTPP 423 Biomedical Physiology I</td>
</tr>
<tr>
<td>WFSC 335 Natural History of the Invertebrates</td>
</tr>
<tr>
<td>Government/Poliitical science (p. 30)</td>
</tr>
<tr>
<td>Directed elective</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
</tr>
<tr>
<td>STAT 302 Statistical Methods</td>
</tr>
<tr>
<td>Government/Poliitical science (p. 30)</td>
</tr>
<tr>
<td>Directed elective</td>
</tr>
<tr>
<td>Directed elective</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203 Public Speaking</td>
</tr>
<tr>
<td>GENE 301 Comprehensive Genetics</td>
</tr>
<tr>
<td>& GENE 312 and Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>ESSM 406 Natural Resources Policy</td>
</tr>
<tr>
<td>RENR 375 Conservation of Natural Resources</td>
</tr>
<tr>
<td>RENR 470 Environmental Impact Assessment</td>
</tr>
<tr>
<td>WFSC 303 Fish and Wildlife Laws and Administration</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>GEOG 203 Planet Earth</td>
</tr>
<tr>
<td>GEO 101 Principles of Geology</td>
</tr>
<tr>
<td>OCNG 251 Oceanography</td>
</tr>
<tr>
<td>Biodiversity elective</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201 College Physics</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>WFSC 300/ ENTO 300 Field Studies</td>
</tr>
<tr>
<td>WFSC 484 Internship</td>
</tr>
</tbody>
</table>
WFSC 485 Directed Studies
WFSC 491 Research
Biodiversity elective 3
Directed elective 1
Directed elective 1
Semester Credit Hours 16

Spring
WFSC 304 Wildlife and Fisheries Conservation 3
Directed elective 1
Directed elective 1
Directed elective 1
Semester Credit Hours 13

Total Semester Credit Hours 120

1 Directed electives to be chosen in areas related to wildlife management, conservation or animal behavior.
2 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
3 Select from ENTO 201, WFSC 311, WFSC 315, WFSC 401, WFSC 402.

Students are required to make a C or better in all WFSC and RENR 205/REN 215 courses.

A total of 120 semester hours will be required for a BS degree.

Wildlife and Fisheries Sciences - 5-Year Bachelor of Science /Master of Public Service Administration

The Department of Rangeland, Wildlife and Fisheries Management and The Bush School of Government and Public Service offers a five-year joint-degree program that allows undergraduate students majoring in Wildlife and Fisheries Sciences to enter the Master of Public Service and Administration program at the beginning of their fourth year. The program integrates the science and practice of managing fish and wildlife populations with policies for these public resources on both public and private lands. Students are prepared for careers in conservation with a foundation in life and physical sciences, mathematics, and problem-solving skills that accommodate animals and their habitats within larger ecological systems. After completing the joint-degree, students are prepared for a wide variety of post-graduate opportunities including employment in local, state, or federal government, non-profit organizations, and private industry.

Program Requirements

First Year
Fall
BIOL 111 Introductory Biology I 4
MATH 140 Mathematics for Business and Social Sciences 3
RENR 205 Fundamentals of Ecology 3
Semester Credit Hours 16

Spring
BIOL 112 Introductory Biology II 4
ENGL 104 Composition and Rhetoric 3
HIST 105 History of the United States 3
MATH 142 Business Calculus 3
Language, philosophy and culture elective (p. 27) 1
Semester Credit Hours 16

Second Year
Fall
CHEM 119 Fundamentals of Chemistry I 4
HIST 106 History of the United States 3
POLS 206 American National Government 3
WFSC 302 Natural History of the Vertebrates 3
Free elective 1
Creative arts elective (p. 29) 1
Semester Credit Hours 17

Spring
CHEM 222 Elements of Organic and Biological Chemistry 3
PHYS 201 College Physics 4
POLS 207 State and Local Government 3
RENR 215 Fundamentals of Ecology--Laboratory 1
WFSC 303 Fish and Wildlife Laws and Administration 3
WFSC 401 General Mammalogy 3
Semester Credit Hours 18

Third Year
Fall
ESSM 351/RENR 405 Geographic Information Systems for Resource Management 3
WFSC 311 Ichthyology 3
WFSC 403 Animal Ecology 3
WFSC 408 Techniques of Wildlife Management 3
WFSC 433 Molecular Ecology in Wildlife and Fisheries 3
Social and behavioral sciences elective (p. 30) 1
Semester Credit Hours 17

Spring
COMM 203 or ENGL 210 Public Speaking or Technical and Business Writing 3
WFSC 304 Wildlife and Fisheries Conservation 3
WFSC 402 General Ornithology 3
WFSC 484 Internship 3
Select one of the following:
ESSM 301 Wildland Watershed Management 3
ESSM 302 Wildland Plants of North America 3
ESSM 303 Agrostology 3
Select one of the following:
STAT 301 Introduction to Biometry 3
STAT 302 Statistical Methods 3
The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Science in Wildlife and Fisheries Sciences and the Master of Public Service Administration.

Rangeland Ecology and Management - Minor

The minor in Rangeland Ecology and Management teaches students to integrate knowledge and technology in a systems approach to manage land for sustainable utilization of natural resources.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 302</td>
<td>Wildland Plants of North America</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 303</td>
<td>Agrostology</td>
<td></td>
</tr>
<tr>
<td>ESSM 304</td>
<td>Rangeland Plant Taxonomy</td>
<td></td>
</tr>
<tr>
<td>ESSM 314</td>
<td>Principles of Rangeland Management Around the World</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 316</td>
<td>Range Ecology</td>
<td></td>
</tr>
<tr>
<td>ESSM 317</td>
<td>Vegetation Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 320</td>
<td>Ecosystem Restoration and Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 416</td>
<td>Fire Ecology and Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 420</td>
<td>Ecological Restoration of Wetland and Riparian Systems</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must make a grade of C or better in all courses.

Wildlife and Fisheries Sciences - Minor

The Department of Rangeland, Wildlife, and Fisheries Management offers an 18-hour minor in Wildlife and Fisheries Sciences as a supplement to
other related majors. The minor includes three required courses as well as three additional courses that students can choose from which include courses centered on wildlife management, fisheries management, habitat management, and differences among the different types of wildlife. Students will get an exposure to both terrestrial and aquatic wildlife and habitats. BIOL 111 and BIOL 112 as well as RENR 205 are required prerequisites for several of these courses.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFSC 302</td>
<td>Natural History of the Vertebrates</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 304</td>
<td>Wildlife and Fisheries Conservation</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 403</td>
<td>Animal Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WFSC 311</td>
<td>Ichthyology</td>
<td>1</td>
</tr>
<tr>
<td>WFSC 401</td>
<td>General Mammalogy</td>
<td>1</td>
</tr>
<tr>
<td>WFSC 402</td>
<td>General Ornithology</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WFSC 405</td>
<td>Urban Wildlife and Fisheries</td>
<td></td>
</tr>
<tr>
<td>WFSC 406</td>
<td>Wildlife Habitat Management</td>
<td></td>
</tr>
<tr>
<td>WFSC 410</td>
<td>Principles of Fisheries Management</td>
<td></td>
</tr>
<tr>
<td>Select one of the following</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WFSC 404</td>
<td>Aquatic Ecosystems</td>
<td></td>
</tr>
<tr>
<td>WFSC 408</td>
<td>Techniques of Wildlife Management</td>
<td></td>
</tr>
<tr>
<td>WFSC 425</td>
<td>Marine Fisheries</td>
<td></td>
</tr>
<tr>
<td>WFSC 444</td>
<td>Aquaculture I: Principles and Practices</td>
<td></td>
</tr>
<tr>
<td>WFSC 447</td>
<td>Aquaculture II: Aquatic Animal Nutrition, Feeding and Disease Management</td>
<td></td>
</tr>
<tr>
<td>WFSC 448</td>
<td>Fish Ecophysiology</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Aquatic course

Students must choose at least one terrestrial and one aquatic course.

Department of Recreation, Park and Tourism Sciences

The undergraduate curriculum leading to a Bachelor of Science degree with a major in Recreation, Park and Tourism Sciences emphasizes problem-solving skills, development of an international perspective and the application of scientific principles to managerial problems. Students study both the social and life sciences to gain an understanding of how to manage and market organizations in the vast park, recreation and tourism industry. The curriculum provides the student with an introduction to the history and concepts of recreation, park and tourism sciences, followed by the knowledge and skills for both entry-level positions and for future professional growth in the field. In addition to core courses, students must fulfill requirements for at least one certificate, and may earn additional certificates. An education in recreation, park and tourism sciences prepares students to become leaders for the 21st century with the capacity to learn from life and throughout life.

Faculty

Crompton, John L, Distinguished Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 1977

Durko, Angela M, Instructional Associate Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 2014

Ellis, Gary D, Professor
Recreation, Park & Tourism Sc
PHD, North Texas State University, 1983

Ettekal, Andrea V, Assistant Professor
Recreation, Park & Tourism Sc
PHD, Arizona State University, 2014

Harwell, William R, Assistant Professor of the Practice
Recreation, Park & Tourism Sc
CERT, Duke University, Durham, NC, 1996

Hodges, Louis, Instructional Associate Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 1971

Jamal, Tazim B, Professor
Recreation, Park & Tourism Sc
PHD, University of Calgary, 1997

Kaiser, Ronald A, Professor
Recreation, Park & Tourism Sc
LLM, University of California, Berkeley, 1989
JD, Thomas M. Cooley Law School, 1977

Kyle, Gerard T, Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 2001

Kyle, Kelly T, Lecturer
Recreation, Park & Tourism Sc
MS, Pennsylvania State University, 2000

Matarrita Cascante, David, Associate Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 2008

Nelson, Chad, Instructional Assistant Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 2019

Petrick, James F, Professor
Recreation, Park & Tourism Sc
PHD, Clemson University, 1999

Schuett, Michael A, Instructional Professor
Recreation, Park & Tourism Sc
PHD, University of Illinois at Urbana - Champaign, 1991

Scott, David, Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 1990
Recreational, park and tourism sciences prepare students to become professionals with the capacity to learn from life and throughout life. Through the curriculum, students develop the depth and breadth of knowledge needed to scientifically investigate and select among alternatives as well as the intellectual skills to organize and integrate their knowledge in new and more effective patterns. An education in recreation, park and tourism sciences prepares students to become professionals with the capacity to learn from life and throughout life.

Recreation, Park and Tourism Sciences majors must complete at least one of the following certificate options:

Community Recreation and Park Administration Certificate

Management of recreation, park and leisure-service agencies requires expertise in problem-solving, decision-making, assessment of social and environmental impacts, personnel, public relations, volunteer management, financing and fund-raising, marketing of services, and needs assessments. Skills in working with people in the legal and political environment are necessary, as well as the ability to assess and work with other organizations for cooperative developments in recreation and tourism. Utilizing computer based decision-aids, students in this emphasis prepare for managerial careers with public recreation and park agencies, youth agencies, not-for-profit recreation agencies, and commercial recreation enterprises.

Parks and Conservation Certificate

This option focuses on management of natural and cultural resources associated with conserving parks, and other protected areas, while also providing for their use by people. Land managers and related professionals operate within a variety of forums that require the integration of concepts in the environmental, social and behavioral sciences, along with policy and administrative decision-making. Necessary skills include computer applications for natural resource management, planning and design related to natural and cultural resources. Students with an option in this field look forward to careers with both public and private employers in the recreation, park and tourism fields, including state and federal agencies and private enterprises, non-profit organizations, camps and environmental education programs.

Tourism Management Certificate

Tourism is one of the world's largest and most diverse industries. To help students prepare for tourism careers, this option area introduces issues pertaining to the management, development, and promotion of places and events as tourism attractions. Courses in tourism are designed to collectively build understanding about the links that exist between local places, host populations, and various public, private and special interest groups. Students also develop competencies in assessing economic, environmental, social and political impacts of tourism, as well as in tourism marketing. Students in this option can pursue careers in private sector enterprises, government agencies, convention and visitor bureaus, and other tourism-related service organizations.

Youth Development Certificate

This option focuses on programs and services that contribute to the development of young people's personal, physical, social and educational abilities. Youth workers are program developers, leaders and managers.
who need to be able to work with youth, families, organizations and communities. Coursework in this option focuses on positive youth development, program planning and evaluation, methods for working with young people, and societal factors that both contribute to and inhibit the development of young people. Students with an option in this field look forward to careers with non-profit, public and for-profit agencies that supply youth development opportunities for young people. Settings include after-school programs, community programs, camps, outdoor adventure and church-related recreation programs.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 201</td>
<td>Foundations of Recreation, Parks and Tourism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 230</td>
<td>Computer Applications in Recreation, Parks and Tourism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Summer</td>
<td>RPTS 336</td>
<td>Research and Analysis in Recreation and Tourism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 340</td>
<td>Recreation, Parks, Tourism and Diverse Populations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 311</td>
<td>Planning and Implementation of Events and Programs</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spring</td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>RPTS 336</td>
<td>Research and Analysis in Recreation and Tourism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 340</td>
<td>Recreation, Parks, Tourism and Diverse Populations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RPTS 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spring</td>
<td>RPTS 484</td>
<td>Internship</td>
<td>6</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RENS 215</td>
<td>Fundamentals of Ecology–Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td>AGCJ 404</td>
<td>Communicating Agricultural Information to the Public or Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RPTS Certificate</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

1 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

2 Students will choose any course or choose a course towards another RPTS certificate

3 MATH 168 accepted in place of MATH 140.
Complete one embedded certificate, GPA of 2.0 or better in certificate coursework is required. Select from options below.

Certificate Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Community Recreation and Park Administration Certificate</td>
<td></td>
</tr>
<tr>
<td>RPTS 209</td>
<td>Park and Tourism Operations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 323</td>
<td>or Managing Hospitality and Recreation Organizations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design[5]</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 403</td>
<td>Financing and Marketing Recreation, Park and Tourism Resources[6]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Departmental electives (p. 1133)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 19

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parks and Conservation Certificate</td>
<td></td>
</tr>
<tr>
<td>RENR 460/460</td>
<td>Nature, Values, and Protected Areas</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 316</td>
<td>Recreational Management of Wildlands</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design[5]</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 403</td>
<td>Financing and Marketing Recreation, Park and Tourism Resources[6]</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 19

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tourism Management Certificate</td>
<td></td>
</tr>
<tr>
<td>RPTS 323</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 331</td>
<td>Tourism Marketing</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 401</td>
<td>Tourism and Recreation Enterprises</td>
<td>4</td>
</tr>
<tr>
<td>or RPTS 403</td>
<td>or Financing and Marketing Recreation, Park and Tourism Resources</td>
<td>4</td>
</tr>
<tr>
<td>RPTS 426</td>
<td>Tourism Impacts[6]</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Departmental electives (p. 1133)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 19

4 This course satisfies the oral communication (C) course requirement.
5 This course satisfies the writing (W) course requirement.

Renewable Natural Resources - BS

Professional Fields of Study and Department Heads

- Rangeland, Wildlife and Fisheries Management - Cliff Lamb, Interim Head
- Recreation, Park and Tourism Sciences - Scott Shafer, Head
- Ecology and Conservation Biology - Kirk Winemiller, Interim Head

General Statement

Three departments offer degrees in specific areas of natural resources management and conservation. Students may select one of these degree programs or a broad approach to natural resource education by pursuing the multi-department degree in Renewable Natural Resources.

Renewable Natural Resources

Renewable Natural Resources (RENR) is for students desiring a rigorous education in the study and management of sustainable ecosystems for a wide variety of resource values. The RENR program of study is comprised of a core of courses and two emphases. The goal of this core/emphasis structure is to provide students with an identity as a renewable natural resources specialist, while, at the same time, affording the flexibility for preparation for a variety of career tracks. One emphasis focuses on management and the other on policy. Technical electives prepare the students in chosen educational and career directions. The underlying goal of the RENR degree is to integrate the scientific issues of renewable natural resources. Graduates of this program will be able to articulate these issues verbally and in writing in their chosen career. Therefore, the RENR degree emphasizes verbal presentations and major papers as well as field-oriented activities.

The RENR programs are designed to help students prepare for careers in public and private organizations associated with the planning and use of natural resources and the environment. Possible employment includes...
areas such as multi-use land management, environmental assessment, resource inventory, natural resource planning, law, policy analysis and land remediation.

An emphasis may be selected in policy or management. The RENR degree consists of 120 credit hours: 42 university core, 42-45 common to both emphasis areas and 24-27 designated by the emphasis area and 9 free elective hours.

RENR Areas of Emphasis
The BS in Renewable Natural Resources includes two emphasis areas for students to select. The directed electives available from advisors are what differentiates the emphases.

Management Emphasis
Designed for an education in the scientific management of integrated natural resources. In today's world, it is important to have college graduates prepared to deal with integrated systems, accounting for all of the separate aspects of the system. The management emphasis seeks to prepare the student to integrate concerns related to land, water, air, plants and wildlife into the management process. Students select 24 credit hours of directed electives from an approved list in consultation with their advisor. The remaining 9 credit hours are free electives.

Policy Emphasis
Designed for students desiring an education in natural resources policy. This emphasis incorporates knowledge from all renewable natural resources disciplines, which provides a foundation for decision-making related to the environment. Students will obtain an understanding of the behavior of institutions and organizations associated with natural resource management.

Professionals associated with natural resources need to consider legislative mandates, community interests, resource evaluation and competing uses, and conflict management techniques. This emphasis prepares the student for work in private industry, public and non-profit agencies, and graduate school. Students must select 24 hours of restricted electives from an approved list in consultation with their advisor. The remaining nine hours are free electives.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ESSM 102</td>
<td>Introduction to Natural Resources and Ecosystem Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 201</td>
<td>Exploring Ecosystem Science and Management</td>
<td></td>
</tr>
<tr>
<td>WFSC 101</td>
<td>Introduction to Wildlife and Fisheries</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>ESSM 203</td>
<td>Forest Trees of North America</td>
<td></td>
</tr>
<tr>
<td>ESSM 302</td>
<td>Wildland Plants of North America</td>
<td></td>
</tr>
<tr>
<td>ESSM 303</td>
<td>Agrostology</td>
<td></td>
</tr>
<tr>
<td>ESSM 304</td>
<td>Rangeland Plant Taxonomy</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ESSM 281</td>
<td>Seminar in Ecosystem Science and Management</td>
<td>1</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 318</td>
<td>Coupled Social and Ecological Systems</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td></td>
</tr>
<tr>
<td>ESSM 306</td>
<td>Plant Functional Ecology and Adaptation</td>
<td></td>
</tr>
<tr>
<td>ESSM 311</td>
<td>Biogeochemistry and Global Change</td>
<td></td>
</tr>
<tr>
<td>WFSC 414</td>
<td>Ecology of Lakes and Rivers</td>
<td></td>
</tr>
<tr>
<td>WFSC 428</td>
<td>Wetland Ecosystem Management</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Emphasis area elective</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 484</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>RPTS 484</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>WFSC 484</td>
<td>Internship</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
</tbody>
</table>
WFSC 303 Fish and Wildlife Laws and Administration 3
Government/Political science (p. 30) 3
Language, philosophy and culture (p. 27) 3
Emphasis area elective 3
Semester Credit Hours 15

Spring
Select one of the following: 3-4
SCSC 301 Soil Science 3
ESSM 306 Plant Functional Ecology and Adaptation 3
ESSM 311 Biogeochemistry and Global Change 3
WFSC 414 Ecology of Lakes and Rivers 3
WFSC 428 Wetland Ecosystem Management 3
Creative arts (p. 29) 1
Emphasis area elective 2
Emphasis area elective 2
Semester Credit Hours 12

Fourth Year
Fall
ESSM 481 Senior Seminar or WFSC 481 or Seminar 1
or RENR 375 Conservation of Natural Resources 3
Emphasis area elective 2
Emphasis area elective 2
General elective 3
Semester Credit Hours 13

Spring
REN 410 Ecosystem Management 4
Emphasis area elective 2
Emphasis area elective 2
General elective 3
General elective 2
Semester Credit Hours 15
Total Semester Credit Hours 120

1 Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.
2 To be selected from an approved list in consultation with an academic advisor.
3 Credit by examination may be used to substitute for 3 hours of POLS 206 or POLS 207.
4 Students will complete an internship, study abroad or independent research experience.

Park and Natural Resource Management - Minor

The Department of Recreation, Park and Tourism Sciences offers an 18 credit hour minor in Park and Natural Resource Management as a supplement to other majors. The minor focuses on management of natural and cultural resources associated with conserving parks and other protected areas. Land managers and related professionals integrate concepts in the bio-environmental sciences, social and behavioral sciences, and policy and administrative decision-making. Students with an emphasis in this field look forward to careers with both public and private employers in the recreation, park, and tourism fields, including state and federal agencies and private enterprises, non-profit organizations, youth camps, and environmental education programs.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 201</td>
<td>Foundations of Recreation, Parks and Tourism</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 316</td>
<td>Recreational Management of Wildlands</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 300</td>
<td>Supervised Field Studies</td>
<td></td>
</tr>
<tr>
<td>RPTS 301</td>
<td>Leisure and Outdoor Recreation in American Culture</td>
<td></td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td></td>
</tr>
<tr>
<td>or RPTS 324 Managing Hospitality and Recreation Organizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design</td>
<td></td>
</tr>
<tr>
<td>RPTS 460/ RENR 460</td>
<td>Nature, Values, and Protected Areas</td>
<td></td>
</tr>
<tr>
<td>RENR 345</td>
<td>Park Ecology and Management</td>
<td></td>
</tr>
<tr>
<td>RENR 400</td>
<td>Study Abroad in Natural Resources</td>
<td>1</td>
</tr>
<tr>
<td>or RENR 460/ Nature, Values, and Protected Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPTS 460</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 213</td>
<td>Sustainable Architecture</td>
<td></td>
</tr>
<tr>
<td>ESSM 308</td>
<td>Fundamentals of Environmental Decision-Making</td>
<td></td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td></td>
</tr>
<tr>
<td>GEOG 205</td>
<td>Environmental Change</td>
<td></td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td></td>
</tr>
<tr>
<td>WFSC 301</td>
<td>Wildlife and the Changing Environment</td>
<td></td>
</tr>
<tr>
<td>WFSC 303</td>
<td>Fish and Wildlife Laws and Administration</td>
<td></td>
</tr>
<tr>
<td>WFSC 304</td>
<td>Wildlife and Fisheries Conservation</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Maximum of 3 hours of RENR 400 will apply to Minor.

Students must make a grade of C or better in all courses.

An internship, RPTS 484, is available for minors above the required 18 hours.
Recreation, Park and Tourism Sciences - Minor

The minor in Recreation, Park and Tourism Sciences provides historical and philosophical foundations of recreation and tourism, with flexibility for students to select electives in their areas of interest.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 201</td>
<td>Foundations of Recreation, Parks and Tourism</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select four from the following:</td>
<td>12</td>
</tr>
<tr>
<td>RPTS 300</td>
<td>Supervised Field Studies</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 301</td>
<td>Leisure and Outdoor Recreation in American Culture</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS:</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td></td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 308</td>
<td>Foundations of Community and Community Development</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 311</td>
<td>Planning and Implementation of Events and Programs</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 340</td>
<td>Recreation, Parks, Tourism and Diverse Populations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 411</td>
<td>Cruise Tourism</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 444</td>
<td>Service Quality for Hospitality Organizations</td>
<td>3</td>
</tr>
<tr>
<td>RENR 400</td>
<td>Study Abroad in Natural Resources</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must make a grade of C or better in all courses.

An internship (RPTS 484) is available for minors above required 18 hours.

Youth Development - Minor

The Department of Recreation, Park and Tourism Sciences offers an 18 hour minor in Youth Development as a supplement to other majors. The minor focuses on programs and services that contribute to the development of young people's personal, physical, social and educational abilities. Youth workers are program developers, leaders and managers who need to be able to work with youth, families, organizations and communities. Coursework in this option focuses on positive youth development, program planning and evaluation, methods for working with young people, and societal factors that both contribute to and inhibit the development of young people.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 371</td>
<td>Understanding and Developing Effective Skills for Youth Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select four from the following:</td>
<td>12</td>
</tr>
<tr>
<td>RPTS 300</td>
<td>Supervised Field Studies</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Youth Development - Minor

The Department of Recreation, Park and Tourism Sciences offers an 18 credit hour minor in Tourism Management as a supplement to other majors. The minor focuses on the planning, management, development, and promotion of places and events as tourism attractions. Courses in tourism are designed to collectively build understanding about the linkages that exist between local places and cultures, host populations, and various public, private, and special interest groups. The minor requires RPTS 302 and RPTS 311. Students select four additional courses from a list of ten.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 311</td>
<td>Planning and Implementation of Events and Programs</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select four from the following:</td>
<td>12</td>
</tr>
<tr>
<td>RPTS 300</td>
<td>Supervised Field Studies</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Youth Development - Minor

The Department of Recreation, Park and Tourism Sciences offers an 18 credit hour minor in Tourism Management as a supplement to other majors. The minor focuses on the planning, management, development, and promotion of places and events as tourism attractions. Courses in tourism are designed to collectively build understanding about the linkages that exist between local places and cultures, host populations, and various public, private, and special interest groups. The minor requires RPTS 302 and RPTS 311. Students select four additional courses from a list of ten.
Community Recreation and Park Administration - Certificate

Management of recreation, park and leisure-service agencies requires expertise in problem-solving, decision-making, assessment of social and environmental impacts, personnel, public relations, volunteer management, financing and fund-raising, marketing of services, and needs assessments. Skills in working with people in the legal and political environment are necessary, as well as the ability to assess and work with other organizations for cooperative developments in recreation and tourism. Utilizing computer based decision-aids, students in this emphasis prepare for managerial careers with public recreation and park agencies, youth agencies, not-for-profit recreation agencies, and commercial recreation enterprises.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 209</td>
<td>Park and Tourism Operations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 323</td>
<td>or Managing Hospitality and Recreation Organizations</td>
<td></td>
</tr>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 401</td>
<td>Tourism and Recreation Enterprises</td>
<td>4</td>
</tr>
<tr>
<td>or RPTS 403</td>
<td>or Financing and Marketing Recreation, Park and Tourism Resources</td>
<td></td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design</td>
<td>1</td>
</tr>
<tr>
<td>Departmental elective (Select from list below)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>RPTS 300</td>
<td>Supervised Field Studies</td>
<td></td>
</tr>
<tr>
<td>RPTS 301</td>
<td>Leisure and Outdoor Recreation in American Culture</td>
<td></td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td></td>
</tr>
</tbody>
</table>

RPTS 308 Foundations of Community and Community Development

RPTS 316 Recreational Management of Wildlands

RPTS 320 Event Management and Operations

RPTS 321 Event Management and Operations II

RPTS 331 Tourism Marketing

RPTS 371 Understanding and Developing Effective Skills for Youth Development

RPTS 411 Cruise Tourism

RPTS 421 Hotel and Resort Operations

RPTS 426 Tourism Impacts

RPTS 444 Service Quality for Hospitality Organizations

RPTS 460/ RENR 460 Nature, Values, and Protected Areas

RPTS 472 Grant Writing and Program Evaluation for Youth Development Organizations

RPTS 476 Leadership for Outdoor Recreation

RPTS 478 Youth Development Practice

RENR 345 Park Ecology and Management

RENR 400 Study Abroad in Natural Resources

Total Semester Credit Hours 18

Students must make a grade of C or better in all courses.

An internship (RPTS 484) is available for minors above required 18 hours.

Hospitality Management - Certificate

The Certificate in Hospitality Management, offered by the Department of Recreation, Park and Tourism Sciences, is designed to provide students with an understanding of the planning, analysis, and decision-making techniques needed for management positions in the tourism and hospitality industries. Students will study and develop skills related to principles of management, sustainability, development, cultural tolerance, marketing, finance, and service quality as they apply to the hospitality and tourism industries.

This program is also approved to be offered online and is delivered via asynchronous technology.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 323</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 301</td>
<td>or Administration of Recreation Resource Agencies</td>
<td></td>
</tr>
<tr>
<td>RPTS 331</td>
<td>Tourism Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>
This Certificate requires a minimum of 15 credit hours of designated courses, all of which are to be taken online. If a student has taken the on-campus version of any course prior to enrollment in the Certificate, it may be substituted for the on-line version with permission of the RPTS academic advisor. Students must earn a grade of a C or better in each course used to meet the requirements, and an overall average of at least a 2.5 in applicable coursework.

Parks and Conservation - Certificate

This option focuses on management of natural and cultural resources associated with conserving parks, and other protected areas, while also providing for their use by people. Land managers and related professionals operate within a variety of forums that require the integration of concepts in the environmental, social and behavioral sciences, along with policy and administrative decision-making. Necessary skills include computer applications for natural resource management, planning and design related to natural and cultural resources. Students with an option in this field look forward to careers with both public and private employers in the recreation, park and tourism fields, including state and federal agencies and private enterprises, non-profit organizations, camps and environmental education programs.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 323</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td></td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 316</td>
<td>Recreational Management of Wildlands</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 401</td>
<td>Tourism and Recreation Enterprises</td>
<td>4</td>
</tr>
<tr>
<td>or RPTS 40:</td>
<td>Financing and Marketing Recreation, Park and Tourism Resources</td>
<td></td>
</tr>
<tr>
<td>RPTS 402</td>
<td>Park Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>RENR 460/</td>
<td>Nature, Values, and Protected Areas</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 460</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 19

The PEMC program requires a minimum of 15 credit hours in designated courses, plus the zero-credit course RPTS 324. Students must earn a grade of “C” or better in each course used to meet the requirements, and maintain a “B” average (3.0 GPA) in the required courses. Students who pursue the PEMC must complete all requirements prior to graduation. Details are available in the Undergraduate Programs Office of the Department of Recreation, Park and Tourism Sciences and on our website.

Professional Event Manager - Certificate

The Professional Event Manager Certificate (PEMC), offered by the Department of Recreation, Park and Tourism Sciences, is designed to provide students with an understanding of and the ability to plan, implement, and evaluate festivals, fairs and special events in a variety of governmental, not-for-profit and commercial settings. This certificate is open to all majors.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 311</td>
<td>Planning and Implementation of Events and Programs</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 320</td>
<td>Event Management and Operations I</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 321</td>
<td>Event Management and Operations II</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 324</td>
<td>Event Management Final Assessment</td>
<td>0</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td></td>
</tr>
<tr>
<td>RPTS 323</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td></td>
</tr>
<tr>
<td>RPTS 444</td>
<td>Service Quality for Hospitality Organizations</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCJ 306</td>
<td>Theory and Practice of Agricultural Public Relations</td>
<td></td>
</tr>
<tr>
<td>AGCJ 307</td>
<td>Design for Agricultural Media</td>
<td></td>
</tr>
<tr>
<td>HORT 203</td>
<td>Floral Design</td>
<td></td>
</tr>
<tr>
<td>HORT 416</td>
<td>Understanding Wine: From Vines to Wines and Beyond</td>
<td></td>
</tr>
<tr>
<td>HORT 452</td>
<td>Floral Design: Weddings and Personal Flowers</td>
<td></td>
</tr>
<tr>
<td>HORT 454</td>
<td>Special Event Design and Production</td>
<td></td>
</tr>
<tr>
<td>RPTS 308</td>
<td>Foundations of Community and Community Development</td>
<td></td>
</tr>
<tr>
<td>RPTS 331</td>
<td>Tourism Marketing</td>
<td></td>
</tr>
<tr>
<td>RPTS 484</td>
<td>Internship</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15

For graduation, students must earn at least a C average (2.0) in certificate courses.
Tourism Management - Certificate

Tourism is one of the world's largest and most diverse industries. To help students prepare for tourism careers, the certificate in Tourism Management introduces issues pertaining to the management, development, and promotion of places and events as tourism attractions. Courses in tourism are designed to collectively build understanding about the links that exist between local places, host populations, and various public, private and special interest groups. Students also develop competencies in assessing economic, environmental, social and political impacts of tourism, as well as in tourism marketing. Students in this certificate can pursue careers in private sector enterprises, government agencies, convention and visitor bureaus, and other tourism-related service organizations.

This program is approved for delivery via asynchronous or synchronous distance education technology.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 320</td>
<td>Event Management and Operations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 323</td>
<td>Managing Hospitality and Recreation Organizations</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 304</td>
<td>or Administration of Recreation Resource Agencies</td>
<td></td>
</tr>
<tr>
<td>RPTS 331</td>
<td>Tourism Marketing</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 401</td>
<td>Tourism and Recreation Enterprises (each is a W course)</td>
<td>4</td>
</tr>
<tr>
<td>or RPTS 403</td>
<td>or Financing and Marketing Recreation, Park and Tourism Resources</td>
<td></td>
</tr>
<tr>
<td>RPTS 426</td>
<td>Tourism Impacts (W course)</td>
<td>3</td>
</tr>
<tr>
<td>Departmental elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- RPTS 209 park and Tourism Operations
- RPTS 300 Supervised Field Studies
- RPTS 301 leisure and Outdoor Recreation in American Culture
- RPTS 307 Interpretation of Natural and Cultural Resources
- RPTS 308 Foundations of Community and Community Development
- RPTS 316 Recreational Management of Wildlands
- RPTS 321 Event Management and Operations II
- RPTS 370 Youth Development Organizations and Services
- RPTS 371 Understanding and Developing Effective Skills for Youth Development
- RPTS 402 Park Planning and Design
- RPTS 411 Cruise Tourism
- RPTS 421 Hotel and Resort Operations
- RPTS 444 Service Quality for Hospitality Organizations
- RPTS 460/RENR 460 Nature, Values, and Protected Areas
- RPTS 472 Grant Writing and Program Evaluation for Youth Development Organizations
- RPTS 476 Leadership for Outdoor Recreation
- RPTS 478 Youth Development Practice
- RENR 345 Park Ecology and Management
- RENR 400 Study Abroad in Natural Resources

Total Semester Credit Hours 19

For graduation, students must earn at least a C average (2.0) in certificate courses.

Youth Development - Certificate

This option focuses on programs and services that contribute to the development of young people's personal, physical, social and educational abilities. Youth workers are program developers, leaders and managers who need to be able to work with youth, families, organizations and communities. Coursework in this option focuses on positive youth development, program planning and evaluation, methods for working with young people, and societal factors that both contribute to and inhibit the development of young people. Students with an option in this field look forward to careers with non-profit, public and for-profit agencies that supply youth development opportunities for young people. Settings include after-school programs, community programs, camps, outdoor adventure and church-related recreation programs.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 304</td>
<td>Administration of Recreation Resource Agencies</td>
<td>3</td>
</tr>
<tr>
<td>or RPTS 323</td>
<td>or Managing Hospitality and Recreation Organizations</td>
<td></td>
</tr>
<tr>
<td>RPTS 370</td>
<td>Youth Development Organizations and Services</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 371</td>
<td>Understanding and Developing Effective Skills for Youth Development</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 401</td>
<td>Tourism and Recreation Enterprises (each is a W course)</td>
<td>4</td>
</tr>
<tr>
<td>or RPTS 403</td>
<td>or Financing and Marketing Recreation, Park and Tourism Resources</td>
<td></td>
</tr>
<tr>
<td>RPTS 472</td>
<td>Grant Writing and Program Evaluation for Youth Development Organizations</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 478</td>
<td>Youth Development Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 19

For graduation, students must earn at least a C average (2.0) in certificate courses.
Department of Soil and Crop Sciences

Undergraduate Students who complete the undergraduate course of study receive the degree of Bachelor of Science in Plant and Environmental Soil Science or Turfgrass Science.

The B.S. degrees require a minimum of 120 credit hours. Details of course requirements are given below and in the Texas A&M University Undergraduate Catalog. Information on undergraduate admissions, including how to order a catalog, can be obtained from the Office of Admissions (http://admissions.tamu.edu/). We encourage prospective students to make an appointment with an academic advisor prior to applying.

Undergraduates are required to complete an internship, undergraduate research or study abroad. Soil and Crop Sciences offers a wide variety of experiential learning opportunities for students to achieve their graduation needs. Students are able to complete their experiential learning requirement regionally, nationally, or internationally. Information about undergraduate research and internship opportunities can be obtained from students’ academic advisors and professors.

Faculty

Aitkenhead, Jacqueline A, Associate Professor
Soil & Crop Sciences
PHD, University of New Hampshire, 2000

Awika, Joseph M, Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2003

Bagavathiannan, Muthukumar V, Associate Professor
Soil & Crop Sciences
PHD, University of Manitoba, Canada, 2010

Baltensperger, David D, Professor
Soil & Crop Sciences
PHD, New Mexico State University, 1981

Carson, Katherine H, Instructional Assistant Professor
Soil & Crop Sciences
PHD, University of Arkansas, 1999

Deng, Youjun, Associate Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2001

Finlayson, Scott A, Associate Professor
Soil & Crop Sciences
PHD, University of Calgary, 1994

Gentry, Terry J, Professor
Soil & Crop Sciences
PHD, University of Arizona, 2003

Hague, Steven S, Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2000

Hays, Dirk B, Professor
Soil & Crop Sciences
PHD, University of Calgary, 1997

Heilman, James L, Professor
Soil & Crop Sciences
PHD, Kansas State University, 1977

Howe, Julie A, Associate Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 2004

Ibrahim, Amir M, Professor
Soil & Crop Sciences
PHD, Colorado State University, 1998

Jessup, Russell W, Associate Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2005

McInnes, Kevin J, Professor
Soil & Crop Sciences
PHD, Kansas State University, 1985

Murray, Seth C, Professor
Soil & Crop Sciences
PHD, Cornell University, 2008

Okumoto, Sakiko, Associate Professor
Soil & Crop Sciences
PHD, Tubingen University, 2003

Rajan, Nithya, Associate Professor
Soil & Crop Sciences
PHD, Texas Tech University, 2007

Rooney, William L, Professor
Soil & Crop Sciences
PHD, University of Minnesota, 1992

Schwab, Arthur R Professor
Soil & Crop Sciences
PHD, Colorado State University, 1981

Septiningsih, Endang M, Associate Professor
Soil & Crop Sciences
PHD, Cornell University, 2002

Smith, Ashly Peyton, Assistant Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 2013

Smith, C W, Professor
Soil & Crop Sciences
PHD, University of Tennessee, 1974

Stelly, David M, Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 1983

Straw, Chase, Assistant Professor
Soil & Crop Sciences
PHD, University of Georgia, 2017
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCSC 205</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 222</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HORT 201</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 307</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SCSC 301</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 307</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
</tbody>
</table>

Minors

- Agronomy Minor (p. 230)
- Environmental Soil Science Minor (p. 231)
- Plant Breeding Minor (p. 231)

Plant and Environmental Soil Science

- BS, Crops Emphasis

Curriculum in Plant and Environmental Soil Science is administered by the Department of Soil and Crop Sciences. Students following this curriculum develop and utilize basic scientific knowledge to understand the most fundamental resources—plants, soils, and water—and the interaction of these resources in different environmental settings. The required courses provide an essential foundation in several disciplines, while the elective courses can be selected to meet the interests, needs and objectives of individual students.

Based on professional goals and objectives, students majoring in Plant and Environmental Soil Science will select an emphasis in crops or soil and water. The crops emphasis focuses on the principles of production, management, marketing and use of fiber, forage, grain, biofuel and oilseed crops. The graduate in Plant and Environmental Soil Science with a crops emphasis may choose a career in: education such as consulting, extension, or public relations, or in production agriculture such as biofuel or seed production, farming, or farm management.

Flexible curricula are provided so that each student, in consultation with their academic advisor, can design a degree program that best serves the student’s career objectives.
curriculum develop and utilize basic scientific knowledge to understand the most fundamental resources—plants, soils, and water—and the interaction of these resources in different environmental settings. The required courses provide an essential foundation in several disciplines, while the elective courses can be selected to meet the interests, needs and objectives of individual students.

Based on professional goals and objectives, students majoring in Plant and Environmental Soil Science will select an emphasis in crops or soil and water. In the soil and water emphasis, students will study the nature, properties, management, conservation, and use of soils and water. The graduate in Plant and Environmental Soil Science with a soil and water emphasis may choose a career in: soil and water resource management such as soil surveying, land appraisal, land use planning, conservation and pollution abatement, or watershed management, or in environmental areas such as pollution control and environmental protection as affected by plant-soil-water interactions.

Flexible curricula are provided so that each student, in consultation with their academic advisor, can design a degree program that best serves the student's career objectives.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 205</td>
<td>Problem Solving in Plant and Soil Systems</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 205</td>
<td>Problem Solving in Plant and Soil Systems</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 401</td>
<td>Principles of Integrated Pest Management</td>
<td></td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>SCSC 446</td>
<td>Weed Management and Ecology</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td>3</td>
</tr>
</tbody>
</table>

Plant and Environmental Soil Science - BS, Soil and Water Emphasis

Curriculum in Plant and Environmental Soil Science is administered by the Department of Soil and Crop Sciences. Students following this
Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
</tr>
<tr>
<td>ENTO 401</td>
<td>Principles of Integrated Pest Management</td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>SCSC 446</td>
<td>Weed Management and Ecology</td>
</tr>
</tbody>
</table>

Creative arts (p. 29) 1

Semester Credit Hours 16

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
</tr>
<tr>
<td>SCSC 307</td>
<td>Crop Biology and Physiology</td>
</tr>
</tbody>
</table>

Select one of the following: 4

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 313</td>
<td>Vegetation Sampling Methods and Designs in Ecosystems</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
</tr>
</tbody>
</table>

General elective 3

Semester Credit Hours 14

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
</tr>
<tr>
<td>or SCSC 444</td>
<td>or Forage Ecology and Management</td>
</tr>
<tr>
<td>SCSC 309</td>
<td>Water in Soils and Plants</td>
</tr>
<tr>
<td>SCSC 310</td>
<td>Soil Morphology and Interpretations</td>
</tr>
<tr>
<td>Directed elective 3</td>
<td></td>
</tr>
<tr>
<td>General elective 3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 405</td>
<td>Soil and Water Microbiology</td>
</tr>
<tr>
<td>SCSC 406</td>
<td>Soil and Water Microbiology Laboratory</td>
</tr>
<tr>
<td>SCSC 422</td>
<td>Soil Fertility and Plant Nutrient Management</td>
</tr>
<tr>
<td>SCSC 432</td>
<td>Soil Fertility and Plant Nutrient Management Laboratory</td>
</tr>
</tbody>
</table>

Select one of the following: 5

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 420</td>
<td>Brazilian Agriculture and Food Production Systems</td>
</tr>
<tr>
<td>SCSC 421</td>
<td>International Agricultural Research Centers - Mexico</td>
</tr>
<tr>
<td>SCSC 484</td>
<td>Internship</td>
</tr>
<tr>
<td>SCSC 491</td>
<td>Research</td>
</tr>
</tbody>
</table>

General elective 3

Semester Credit Hours 14

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEG 390</td>
<td>Principles of Geographic Information Systems</td>
</tr>
<tr>
<td>or ESSM 351/RENR 405</td>
<td>or Geographic Information Systems for Resource Management</td>
</tr>
<tr>
<td>SCSC 455</td>
<td>Environmental Soil and Water Science</td>
</tr>
<tr>
<td>SCSC 458</td>
<td>Watershed, Water and Soil Quality Management</td>
</tr>
<tr>
<td>SCSC 481</td>
<td>Senior Seminar</td>
</tr>
</tbody>
</table>

General elective 2

Semester Credit Hours 15

Total Semester Credit Hours 120

1. Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

2. Choose from core curriculum courses with a MATH prefix.

3. To be selected from SCSC 201 and SCSC 300-499 (p. 1139) courses not already required on the degree plan and selected in consultation with an academic advisor.

4. Statistics course to be selected in consultation with academic advisor.

5. Students will complete an internship, study abroad or independent research experience.

Turfgrass Science - BS

Curriculum in Turfgrass Science is administered by the Department of Soil and Crop Sciences. Students following this curriculum develop and utilize basic scientific knowledge to understand the most fundamental resources—turfgrass, soils, and water—and the interaction of these resources in different environmental settings. The required courses provide an essential foundation, while the elective courses (i.e., ornamental horticulture, plant protection, business, landscape architecture) can be selected to meet the interests, needs and objectives of individual students.

Turfgrass Science prepares graduates for careers in: management—golf courses, athletic fields, public, private or commercial grounds; production agriculture—turfgrass production, or plant breeding; agribusiness—seed sales, turf equipment and supplies, landscape contractor, commercial or home lawn care specialists; education—consulting, extension, or public relations.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 205</td>
<td>Problem Solving in Plant and Soil Systems</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15
Agronomy - Minor

The Department of Soil and Crop Sciences offers a minor in Agronomy. The minor in Agronomy prepares agricultural majors for a career in the nation's food, feed, fiber, greenspace, shelter, and bioenergy industries. Exposure to this academic discipline could lead students to the pursuit of advanced degrees and a career in the field of agronomy or several related agricultural fields. Agronomy is the cornerstone of modern agriculture that provides the necessities of human existence at a level unprecedented in human history. Continued advancement in productivity must be made in order to feed, clothe, shelter, and meet other basic human needs as global population continues to expand.

SCSC 105, Food & Fiber or SCSC 205, Problem Solving in Plant and Soil Science and SCSC 301, Soil Science are required. Select an additional 8

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 105</td>
<td>Introduction to Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 401</td>
<td>Principles of Integrated Pest Management</td>
<td></td>
</tr>
<tr>
<td>PLPA 334</td>
<td>Turfgrass Pathology</td>
<td></td>
</tr>
<tr>
<td>SCSC 446</td>
<td>Weed Management and Ecology</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology & GEOL 102</td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ENTO 201</td>
<td>General Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 401</td>
<td>Principles of Integrated Pest Management</td>
<td></td>
</tr>
<tr>
<td>PLPA 334</td>
<td>Turfgrass Pathology</td>
<td></td>
</tr>
<tr>
<td>SCSC 446</td>
<td>Weed Management and Ecology</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 302</td>
<td>Recreational Turf</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 312</td>
<td>Professional Development in Turfgrass</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ESSM 313</td>
<td>Vegetation Sampling Methods and Designs in Ecosystems</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td></td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>Directed elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology or SCSC 444</td>
<td>3</td>
</tr>
<tr>
<td>or SCSC 444</td>
<td>Forage Ecology and Management</td>
<td></td>
</tr>
<tr>
<td>SCSC 309</td>
<td>Water in Soils and Plants</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 429</td>
<td>Turf Management Systems</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SCSC 420</td>
<td>Brazilian Agriculture and Food Production Systems</td>
<td></td>
</tr>
<tr>
<td>SCSC 421</td>
<td>International Agricultural Research Centers - Mexico</td>
<td></td>
</tr>
<tr>
<td>SCSC 484</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>SCSC 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 307</td>
<td>Crop Biology and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 427</td>
<td>Sports Field Construction</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 430</td>
<td>Turfgrass Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 481</td>
<td>Senior Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

1. Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.
2. Choose from core curriculum courses with a MATH prefix.
3. To be selected from SCSC 300-499 (p. 1139) courses not counting elsewhere on the degree plan and in consultation with an academic advisor.
4. Statistics course should be selected after consultation with an academic advisor.
5. Students will complete an internship, study abroad or independent research experience.

Agronomy - Minor

The Department of Soil and Crop Sciences offers a minor in Agronomy. The minor in Agronomy prepares agricultural majors for a career in the nation’s food, feed, fiber, greenspace, shelter, and bioenergy industries. Exposure to this academic discipline could lead students to the pursuit of advanced degrees and a career in the field of agronomy or several related agricultural fields. Agronomy is the cornerstone of modern agriculture that provides the necessities of human existence at a level unprecedented in human history. Continued advancement in productivity must be made in order to feed, clothe, shelter, and meet other basic human needs as global population continues to expand.

SCSC 105, Food & Fiber or SCSC 205, Problem Solving in Plant and Soil Science and SCSC 301, Soil Science are required. Select an additional 8
hours of course work within Soil and Crop Sciences. Please speak with an advisor concerning courses prior to registering.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses: SCSC 105</td>
<td>World Food and Fiber Crops</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or SCSC 20!</td>
<td>Problem Solving in Plant and Soil Systems</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>SCSC 302-489 (p. 1139)</td>
<td>1, 2</td>
<td>8</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. Except SCSC 481, SCSC 484, SCSC 491
2. Students with a major in the Department of Soil and Crop Sciences may not use courses already used elsewhere in their degree program.

Students must make a grade of C or better in all courses.

Environmental Soil Science - Minor

The Department of Soil and Crop Sciences offers a minor in Environmental Soil Science. The minor in Environmental Soil Science prepares agricultural majors for a career in industry, government, and non-government organizations that address environmental issues related to soil, soil science, and water quality. Additional career avenues include industry and agencies dealing with food, feed, fiber, greenspace, shelter, and bioenergy. Exposure to this academic discipline could lead students to the pursuit of advanced degrees and a career in the field of soil science or several related agricultural fields.

SCSC 301, Soil Science is required. You may select from the 11 hours of soil science courses. See an advisor for more details.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>Select from the following: SCSC 310</td>
<td>Soil Morphology and Interpretations</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>SCSC 401/ FIVS 401</td>
<td>Forensic Soil Science</td>
</tr>
<tr>
<td></td>
<td>SCSC 405</td>
<td>Soil and Water Microbiology</td>
</tr>
<tr>
<td>SCSC 422</td>
<td>Soil Fertility and Plant Nutrient Management</td>
<td></td>
</tr>
<tr>
<td>SCSC 432</td>
<td>Soil Fertility and Plant Nutrient Management Laboratory</td>
<td></td>
</tr>
<tr>
<td>SCSC 455</td>
<td>Environmental Soil and Water Science</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. GEN 301 may be substituted for GEN 310. Must have an overall GPA of 2.75 to enter program.

Students must make a grade of 'C' or better in all courses.

Plant Breeding - Minor

The Department of Soil and Crop Sciences offers a Minor in Plant Breeding. The minor in plant breeding prepares agricultural majors for a career in nation's variety development industry and exposes the student to an academic discipline that could lead to the pursuit of advanced degrees and a career in the field of plant breeding. Plant breeders develop new varieties that are the cornerstone of modern agriculture and improve the genetic basis of improved yield, quality, and resistance to biotic and abiotic stresses affecting or nation's food, feed, fiber, greenspace, shelter, and bioenergy plants.

SCSC 304, plant breeding and genetics, and GEN 301, principles of heredity, are required courses. Students select an additional nine hours of course work and a C or better is required in all coursework. GEN 301 may be substituted for GEN 310. The Plant Breeding minor offers the opportunity for students to explore their interest in applied biological sciences in the areas of plant breeding, crop improvement, crop biotechnology, and genetics. Students must have an overall GPA of 2.75 or better to enter the program.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEN 310</td>
<td>Principles of Heredity 1</td>
<td>3</td>
</tr>
<tr>
<td>SCSC 304</td>
<td>Plant Breeding and Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Select nine hours of the following: SCSC 411</td>
<td>Biotechnology for Crop Improvement</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SCSC 301</td>
<td>Soil Science</td>
</tr>
<tr>
<td></td>
<td>SCSC 305</td>
<td>Professional Development in Agronomy</td>
</tr>
<tr>
<td></td>
<td>SCSC 311</td>
<td>Principles of Crop Production</td>
</tr>
<tr>
<td></td>
<td>SCSC 402</td>
<td>Crop Stress Management</td>
</tr>
<tr>
<td></td>
<td>SCSC 410</td>
<td>International Agricultural Systems</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. GEN 301 may be substituted for GEN 310. Must have an overall GPA of 2.75 to enter program.

University Studies Programs

The College of Agriculture and Life Sciences offers degrees in University Studies. A University Studies degree differs from a traditional “major” in that it consists of a concentration of 26 hours and two minors of 15-18 hours each. The University Studies degree format was created to provide students the flexibility to combine areas of study that are of special interest.

Majors

• Bachelor of Science in University Studies, Environmental Business Concentration (p. 200)
• Bachelor of Science in University Studies, Leadership Studies Concentration (p. 151)

University Studies - BS, Environmental Business Concentration

A University Studies Degree differs from a traditional “major” in that it consists of a concentration of 21-24 hours and two minors of 15-18...
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology--Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 111</td>
<td>or Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
<td></td>
</tr>
<tr>
<td>BESC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Communication (p. 26) 3

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td>3</td>
</tr>
<tr>
<td>Business minor (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/POLITICAL science (p. 30) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free elective 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

Select one from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
<td></td>
</tr>
<tr>
<td>BESC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

American history (p. 29) 1

Business minor (p.) | | 3 |

Creative arts (p. 29) 1

Free elective 1

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Business minor (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business minor (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Free elective 1

Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26) 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 204</td>
<td>Molds and Mushrooms: The Impact of Fungi on Society and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 320</td>
<td>Water and the Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 357</td>
<td>Biotechnology for Biofuels and Bioproducts</td>
<td></td>
</tr>
<tr>
<td>BESC 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>PLPA 301</td>
<td>Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>PLPA 303</td>
<td>Plant Pathology Laboratory</td>
<td></td>
</tr>
<tr>
<td>Business minor (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Free elective 1^ 3
Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BESC 484</td>
<td>Field Experience</td>
<td>3</td>
</tr>
<tr>
<td>Business minor (p.)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1^</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1^</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

1^ The Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46). A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

Business Minor

The minor in business consists of six specific courses chosen to develop a foundational knowledge in the basic aspects of business, including accounting, finance, management, marketing, and management information systems.

The courses listed below constitute the 18 hours required for a minor in business.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles (or TCNS ACCT 2301 or 2401)</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 209</td>
<td>Business Information Systems Concepts 1^</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law (or Blinn College BUSI 2371) 2^</td>
<td>3</td>
</tr>
<tr>
<td>FINC 409</td>
<td>Survey of Finance Principles 3^</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management 3^</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must make a grade of C or better in all courses.

University Studies - BS, Leadership Studies Concentration

The University Studies-Leadership (USAL/LED) degree is an interdisciplinary program requiring the completion of 120 semester credit hours with a concentration of 26 hours of leadership studies and two 15-18 credit hour minors. The University Studies Degree format was created to provide the student the flexibility to combine areas of study that are of special interest. In the leadership studies concentration, students learn theories and models of the leadership process and they use analysis and evaluation to synthesize multiple leadership theories. This interdisciplinary program allows students the ability to customize their higher education experience to their future career goals. The student, with support from an USAL/LED advisor, will choose minors to assist them in creating a degree plan that will allow students to gain the knowledge and skills required for their chosen career path.
For more information on this major, visit our USAL/LED web page (https://alec.tamu.edu/academics/undergraduate/university-studies-usalled/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALED 202</td>
<td>Introduction to Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 301</td>
<td>Personal Leadership Education</td>
<td>3</td>
</tr>
<tr>
<td>ALED 340</td>
<td>Survey of Leadership Theory</td>
<td>3</td>
</tr>
<tr>
<td>ALED 424</td>
<td>Applied Ethics in Leadership</td>
<td>3</td>
</tr>
<tr>
<td>ALED 440</td>
<td>Leading Change</td>
<td>3</td>
</tr>
<tr>
<td>ALED 481</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government & POLS 207</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Agricultural leadership and development</td>
<td>6</td>
</tr>
</tbody>
</table>

- Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEC 300-499</td>
<td>American history [p. 29]</td>
<td>6</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Communication [p. 26]</td>
<td>6</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Creative arts [p. 29]</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Language, philosophy and culture [p. 27]</td>
<td>3</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Life and physical sciences [p. 26]</td>
<td>9</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Mathematics [p. 26]</td>
<td>6</td>
</tr>
<tr>
<td>ALEC 300-499</td>
<td>Social and behavioral sciences [p. 30]</td>
<td>3</td>
</tr>
<tr>
<td>Minor 1</td>
<td></td>
<td>15-18</td>
</tr>
<tr>
<td>Minor 2</td>
<td></td>
<td>15-18</td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>18-24</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

1. Before registering as a junior, each student must develop a degree program in consultation with the departmental advisor.
2. The total number of hours between Minor 1, Minor 2 and general electives must be 54 hours. Courses counting in other areas of the degree plan and toward a minor cannot count toward the 54 total hours. One of the two minors must be completed in a college outside of the College of Agricultural and Life Sciences. Must meet with an advisor to determine correct hours.

Students are required to make a C or better for each of their courses in the major coursework.

At least 36 credits must be 300- and 400-level courses.

The Graduation requirements include a requirement for three hours of international and cultural diversity courses and three hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
COLLEGE OF ARCHITECTURE

Administrative Officers
Dean - Jorge A. Vanegas, Ph.D.
Executive Associate Dean - Dawn Jourdan, Ph.D.
Associate Dean for Outreach and Diversity - Cecilia Guisti, Ph.D.
Associate Dean for Academic Affairs - Leslie H. Feigenbaum, M.S.
Associate Dean for International Programs - Elton Abbott, D.E.D.

General Statement
The College of Architecture offers undergraduate and graduate professional programs to prepare individuals to enter the professions of architecture, landscape architecture, construction management, urban and regional planning and visualization. The planning, design and construction of the world's buildings, cities and landscapes involve a variety of professional skills. The faculty of architects, urban planners, landscape architects, engineers, computer scientists, constructors, lawyers, historians and artists, in collaboration with educators in the language, philosophy and culture and natural and social sciences, help students develop an understanding of the physical, social, economic and political forces that shape our environment.

Undergraduate degree programs are offered in landscape architecture, construction science, environmental design architectural studies, visualization and urban and regional planning. Minors in art and architectural history, global art, design and construction; architectural fabrication and product design; and sustainable architecture and planning are offered through the Department of Architecture. A minor in urban and regional planning is offered through the Department of Landscape Architecture and Urban Planning. Minors in facility management; and leadership in the design and construction professions are offered through the Department of Construction Science. Minors in art; and game design and development are offered through the Department of Visualization. Master’s degree programs are offered in architecture, landscape architecture, urban planning, land and property development, construction management, fine arts and visualization. Doctor of Philosophy degrees are offered in architecture and urban and regional sciences.

Personal Computers
Because of the important role of computing in the disciplines housed within the College of Architecture, all entering students are required to possess a portable, network-ready personal computer capable of running software appropriate to their academic program. Financial aid is available to assist students in their computer purchases. No student will be denied admission to Texas A&M University based on an inability to purchase a computer. Additional information is available on the College of Architecture (http://dept.arch.tamu.edu) or in a professional internship. Specific information on these programs is available through each department or the Texas A&M Education Abroad Office.

Enrollment Management Policy
Students that are admitted into the College of Architecture enter with a lower level classification in Construction Science (p. 244) (COSL), Environmental Design Architectural Studies (p. 237) (EDAL), Landscape Architecture (p. 248) (LANL), Urban and Regional Planning (p. 248) or Visualization (p. 258) (VISL). All students must comply with the guidelines in terms of coursework and process to be considered for upper level. Until students are accepted into upper level they are prohibited from taking 300 and 400 level courses in their major.

Admission will be effective upon successful completion of in-progress courses. If all requirements are not met prior to the start of the following semester, admission will not be granted and registration in all upper level coursework in the College of Architecture will be cancelled. Admission is not guaranteed. If there are more qualified applicants than there is space available, preference will be given to students based on their academic achievement.

Transfer Students
Transfer students, who meet the University entrance requirements and who desire to enter a major field of study in the College of Architecture, will be admitted based on available space and current College of Architecture entrance criteria. Following admission, all transfer students are placed on a 2.5 GPA probation for a minimum of 12 credit hours to substantiate competency in required lower-level courses. Transfer students will be admitted into the college with a lower-level classification and may apply for upper-level status after at least one semester at Texas A&M University.

Transfer students accepted into the Bachelor of Environmental Design degree program must submit a portfolio to the Department of Architecture to receive credit for drawing and design studio classes taken at another university or college, unless the course is listed as an equivalent under the Texas common course numbering system. The review of the portfolio will ensure appropriate studio placement. Additional information may be found on the Department of Architecture (http://dept.arch.tamu.edu/undergraduate/prospective-students/) website.

Change of Major
Students currently enrolled in another major at Texas A&M University with fewer than 60 hours who desire to change their major field of study into the College of Architecture must fill out a Change of Curriculum application. Deadlines for applications are as follows:
- March 1 for summer admittance (for Construction Science, Environmental Design Architectural Studies, Landscape Architecture, Urban and Regional Planning, Visualization and University Studies students)
- June 15 for fall admittance (for Construction Science, Environmental Design Architectural Studies, Urban and Regional Planning, Visualization and University Studies students)
- October 1 for spring admittance (for Construction Science, Urban and Regional Planning, Visualization and University Studies students)

Students will be notified of action on their applications within 30 days of the deadline date. The college will admit the best-qualified applicants based on the number of spaces available in their program of choice.

Semester Away
The College of Architecture requires all upper-level undergraduate students to spend one semester studying abroad or at another university, or in a professional internship. Specific information on these programs is available through each department or the Texas A&M Education Abroad Office.
Academic Policies

For Construction Science, Environmental Design Architectural Studies, Landscape Architecture, Urban Planning and Visualization

Majors: Students must make a grade of C or better in every College of Architecture course (ARCH, ARTS, CARC, COSC, ENDS, LAND, LDEV, URPN, VIST) used to satisfy degree requirements. Students must also make a grade of C or better in any course used as an equivalent substitution for College of Architecture courses that satisfy degree requirements. All majors within the college require student to maintain a 2.0 or better GPA; the college does not offer academic probation.

Majors

College of Architecture

- Bachelor of Science in University Studies, Global Arts, Planning, Design and Construction Concentration (p. 257)

Department of Architecture

- Bachelor of Environmental Design in Environmental Design Architectural Studies (p. 240)

Department of Construction Science

- Bachelor of Science in Construction Science (p. 246)

Department of Landscape Architecture and Urban Planning

- Bachelor of Landscape Architecture in Landscape Architecture (p. 250)
- Bachelor of Science in Urban and Regional Planning, Urban Design Track (p. 251)
- Bachelor of Science in Urban and Regional Planning, Urban Policy Track (p. 252)
- Bachelor of Science in Urban and Regional Planning and Master of Land and Property Development, 5-Year Degree Program (p. 254)
- Bachelor of Science in Urban and Regional Planning and Master of Urban Planning, 5-Year Degree Program (p. 255)

Department of Visualization

- Bachelor of Science in Visualization (p. 259)

Minors

College of Architecture

- Global Culture and Society Minor (p. 237)

Department of Architecture

- Architectural Fabrication and Product Design Minor (p. 241)
- Architectural Heritage Conservation Minor (p. 242)
- Art and Architectural History Minor (p. 242)
- Global Art, Design and Construction Minor (p. 243)
- Sustainable Architecture and Planning Minor (p. 243)

Department of Construction Science

- Facility Management Minor (p. 247)
- Leadership in the Design and Construction Professions (p. 248)

Department of Landscape Architecture and Urban Planning

- Bachelor of Science in Urban and Regional Planning Minor (p. 256)

Department of Visualization

- Art Minor, New Media Emphasis or Traditional Media Emphasis (p. 260)
- Game Design and Development Minor (p. 261)

Certificates

College of Architecture

- Diversity Program Certificate (p. 237)

Masters

Department of Architecture

- Master of Architecture in Architecture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/architecture/march/)
- Master of Architecture in Architecture (ARCH) and Master of Urban Planning (URPL) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/architecture/combined-mar-mup/)
- Master of Land and Property Development (LPDV) and Master of Architecture (ARCH) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-mar/)
- Master of Science in Architecture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/architecture/ms/)
- Master of Science in Architecture (ARCH) and Master of Architecture in Architecture (ARCH) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/architecture/combined-ms-mar/)

Department of Construction Science

- Master of Science in Construction Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/construction-science/ms/)

Department of Landscape Architecture and Urban Planning

- Master of Architecture (ARCH) and Master of Urban Planning (URPL) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/architecture/combined-mar-mup/)
- Master of Land and Property Development in Land and Property Development (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/land-property-development-masters/)
- Master of Land and Property Development (LPDV) and Master of Architecture (ARCH) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-mar/)
Program Requirements

- Master of Land and Property Development (LPDV) and Master of Real Estate (LERE) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-ler/)
- Master of Land and Property Development (LPDV) and Master of Science in Construction Management (COMG) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-ms-comg/)
- Master of Landscape Architecture in Landscape Architecture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/ms-landscape-architecture/)
- Master of Urban Planning in Urban and Regional Planning (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-ms-comg/)
- Master of Urban Planning (URPL) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-ms-comg/)
- Master of Fine Arts in Visualization (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/visualizaion/ms/)
- Master of Science in Visualization (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/visualizaion/ms/)

Department of Visualization

- Doctor of Philosophy in Architecture (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/phd/)

Department of Architecture

- Doctor of Philosophy in Urban and Regional Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/urban-regional-science-phd/)

Global Culture and Society - Minor

The Global Culture and Society minor will combine a study abroad experience at a single Texas A&M University-affiliated facility abroad with the completion of an interdisciplinary undergraduate minor on a theme appropriate for the center that can be completed in one semester.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio 1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History II</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- a. Orientation
- b. Co-curricular component
- c. Service learning component
- d. Capstone retreat

Other Courses approved by student's college 2

Total Semester Credit Hours 16

Students must make a grade of C or better.

1. Portfolio in global culture and society. May be completed either during the long semester abroad or upon return to College Station.
2. Must be taken in a single fall or spring semester at a TAMU-affiliated facility such as Santa Chiara or Softis Center.

Diversity - Certificate

The Diversity Certificate, developed and administered in association with the Department of Multicultural Services, is available to undergraduate students in several colleges at Texas A&M University, including the College of Architecture. Drawing from existing courses, programs and associations within the university, the Diversity Certificate Program enables its students to create, synthesize and integrate academic coursework, co-curricular experience, and service learning engagement in order to demonstrate their preparedness for participation in the modern global economy.

Students who complete the certificate will be able to discuss issues such as race, ethnicity, gender, disability and socioeconomic status, and explain how individual and group behavior affects others in terms of human rights, environmental, social, and economic well-being. To complete the certificate, students must complete a one-hour directed study course in addition to 12 hours of academic coursework from their field of study. See the Program Requirements section for more information, or go to https://dms.tamu.edu/academics/diversity-certificate/.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARC 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>a. Orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Co-curricular component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Service learning component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Capstone retreat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prescribed electives 12

Total Semester Credit Hours 13

Department of Architecture

The undergraduate curriculum in Environmental Design Architectural Studies at Texas A&M University is offered through the Department of Architecture. The four-year Bachelor of Environmental Design (BED) degree prepares students for challenging careers in industries supporting the built environments. The program produces graduates who are
prepared to influence society with informed and visionary designs—designs that ensure sustainability by responding to cultural, social, economic and ecological factors.

Students interested in professional registration as an architect must complete a National Architectural Accreditation Board (NAAB) accredited Master of Architecture program in addition to the four-year undergraduate Bachelor of Environmental Design degree.

Enrollment in Environmental Design Architectural Studies Upper Level Program

1. Students must have satisfactorily completed at least 54 hours of coursework with a minimum GPA of 2.5 for those courses completed at Texas A&M University.

2. Students must satisfactorily complete the following courses as part of the 54 hours of coursework with a minimum of a 2.5 GPA to apply for upper level.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 205</td>
<td>Architecture Design I</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 206</td>
<td>Architecture Design II</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>Social and Behavioral Factors in Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 281</td>
<td>Seminar in Contemporary Architecture</td>
<td>1</td>
</tr>
<tr>
<td>CARC 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>ENDS 105</td>
<td>Design Foundations I</td>
<td>4</td>
</tr>
<tr>
<td>ENDS 108</td>
<td>Design and Visual Communication Foundations II</td>
<td>5</td>
</tr>
<tr>
<td>ENDS 115</td>
<td>Design Communication Foundations</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>6</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Social Sciences and Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

3. Students must apply to the upper level through the department. The application is to be submitted by the following date:
 - March 1 for Summer and Fall admission

4. Students applying for upper level must submit a portfolio that provides documentation of the applicant's design representation and creative problem solving ability. Portfolios will be reviewed as evidence supporting design ability. Guidelines are outlined on the application form and in the Student Services office. Students will be admitted according to available space.

Preparation for Professional Studies in Architecture

Although the four-year BED degree at Texas A&M University is a pre-professional degree and is not accredited by the National Architectural Accrediting Board (NAAB), those who have completed this pre-professional degree can apply to an accredited Master of Architecture program, which is offered at Texas A&M University.

In the United States, most state architectural registration boards require, as the prerequisites for licensure, a degree from a National Architectural Accrediting Board (NAAB) accredited professional degree program, the fulfillment of the National Council of Architectural Registration Board's (NCARB) Internship Development Program (IDP), and the successful completion of NCARB's Architectural Licensing Examination (ARE). The NAAB, which is the sole agency authorized to accredit U.S. professional degree programs in architecture, recognizes three types of degrees: the Bachelor of Architecture (BArch), the Master of Architecture (MArch), and the Doctor of Architecture (DArch). Students should consult the Texas A&M Master of Architecture, NAAB and NCARB websites for additional information.

Transfer and Change of Major Students

Transfer and change of major students (students currently enrolled in another major at Texas A&M University) who are admitted to the Department of Architecture are classified as lower level (EDAL). Transfer students who meet all the criteria for admittance to upper-level studies may immediately apply for admittance to upper level.

Transfer students who have completed at least 24 graded transferable hours, and change of major students who have completed at least 12 graded transferable hours are encouraged to participate in a 10-week summer module offered by the Department of Architecture. The summer module is designed to provide an intensive first-year design studio sequence along with support coursework that will enable change of major and transfer students to qualify for sophomore design studios the following semester. This summer module can enable Transfer and Change of Major students to complete the four-year degree in a more efficient and timely manner.

Transfer students accepted into the Bachelor of Environmental Design degree program must submit a portfolio to the Department of Architecture to receive credit for drawing and design studio classes taken at another university or college, unless the course is listed as an equivalent under the Texas common course numbering system. The review of the portfolio will ensure appropriate studio placement. Additional information may be found on the Department of Architecture website.

Faculty

Abbott Jr, Elton D, Associate Professor of the Practice Architecture
PHD, Texas A&M University, 1983

Adams, Harold Lynn, Professor Of The Practice Architecture
BAR, Texas Agricultural and Mechanical College (now TAMU), 2014

Altani, Koichiro, Associate Professor Architecture
PHD, Kyushu University, 2015
MAR, Virginia Polytechnic Institute and State University, 1997
Ali, Ahmed K, Assistant Professor
Architecture
PHD, Virginia Polytechnic Institute, 2012

Baltazar, Juan Carlos, Associate Professor
Architecture
PHD, Texas A&M University, 2006

Beltran, Liliana O, Associate Professor
Architecture
PHD, University of California - Berkeley, 1997

Borges Gonzalez, Alejandro, Assistant Professor
Architecture
MAR, Cornell University, 1994

Caffey, Stephen M, Instructional Associate Professor
Architecture
PHD, The University of Texas at Austin, 2008

Campagnol Abuabara, Gabriela, Instructional Associate Professor
Architecture
PHD, University of Sao Paulo - USP, 2008

Clayton, Mark J, Professor
Architecture
PHD, Stanford University, 1998
MAR, University of California at Los Angeles, 1987

Culp III, Charles H, Professor
Architecture
PHD, Iowa State University, 1976

De Lima Vaz Xavier, Davi, Visiting Assistant Professor
Architecture
BAR, University of Brazil, 2018

Ermny Castillo, Marcel, Associate Professor of the Practice
Architecture
PHD, Central University of Venezuela, 1987

Esquivel, Jose G, Associate Professor
Architecture
MAR, Ohio State University, 1998

Faulkner, Matthew T, Visiting Lecturer
Architecture
MAR, Texas A&M University, 2006

Fortenberry, Brent R, Assistant Professor
Architecture
PHD, Boston University, 2013

Geva, Anat M, Professor
Architecture
PHD, Texas A&M University, 1995

Gibbs, Brian C, Visiting Lecturer
Architecture
MAR, Texas A&M University, 2006

Glowacki, Kevin T, Associate Professor
Architecture
PHD, Bryn Mawr College, 1991

Haberl, Jeff, Professor
Architecture
PHD, University of Colorado, 1986

Haliburton, James T, Lecturer
Architecture
PHD, Texas A&M University, 2016
MAR, Texas A&M University, 2014

Hamilton, Daniel Kirk, Professor
Architecture
PHD, Arizona State University, 2017

Hawkins, Andrew G, Visiting Lecturer
Architecture
MAR, University of Oregon, 1999

He, Weiling, Associate Professor
Architecture
PHD, Georgia Institute of Technology, 2005

Hill, Rodney C, Professor
Architecture
MAR, University of California - Berkeley, 1969

Holliday III, Ray W, Assistant Professor of the Practice
Architecture
MLA, Texas A&M University, 2000
MAR, Texas A&M University, 1992

Holliday, Shelley D, Associate Professor of the Practice
Architecture
MEN, Texas A&M University, 2001

Hsu, Frances, Visiting Assistant Professor
Architecture
DAR, ETH Zurich (Swiss Federal Institute of Technology, 2004
MAR, Harvard University Graduate School of Design, 1985

Jain, Priya, Assistant Professor
Architecture
MAR, The University of Arizona, 2007

Kim, Hyoungsub, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2017
MAR, University of Pennsylvania, 2012

Klein, Nancy L, Associate Professor
Architecture
PHD, Bryn Mawr College, 1991

Lopez, Marcelo F., Assistant Professor
Architecture
MS, Columbia University, New York, 2013

Lu, Zhipeng, Senior Lecturer
Architecture
PHD, Texas A&M University, 2009

Lutz, Shawn M, Visiting Assistant Professor
Architecture
MAR, Harvard University Graduate School of Design, 2011
Maffei, Gerald L, Visiting Professor
Architecture
MAR, University of California at Berkeley, 1969

Mann, George J, Professor
Architecture
DVM, Columbia University, 1961

Miranda, Valerian, Associate Professor
Architecture
PHD, Texas A&M University, 1988
MAR, Texas A&M University, 1984

Nichols, Anne B, Associate Professor of the Practice
Architecture
PHD, University of Illinois, 2000

Obrien, Michael J, Professor
Architecture
MAR, Virginia Tech, 1982

Ostadalimakhmalbaf, Mohammadreza, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2018

Pentecost III, Aubrey R, Professor of the Practice
Architecture
DrPH, University of Texas, School of Public Health, 1982

Rodiek, Susan D, Associate Professor
Architecture
PHD, Cardiff University, 2004

Rogers, Julia S, Senior Lecturer
Architecture
PHD, Texas A&M University, 1996

Stewart, Kateri, Visiting Lecturer
Architecture
BAR, University of Notre Dame, 2007

Stewart, Zachary D, Assistant Professor
Architecture
PHD, Columbia University, 2015

Tate, James Michael, Assistant Professor
Architecture
MAR, Yale University, 2007

Tripp, Andrew Reed, Assistant Professor
Architecture
PHD, University of Pennsylvania, 2017

Vahdat Zad, Vahid, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2014

Vanegas, Jorge A, Professor
Architecture
PHD, Stanford University, 1988

Warden, Robert R, Professor
Architecture
MAR, Texas A&M University, 1986

Yan, Wei, Professor
Architecture
MAR, University of California - Berkeley, 2004

Zhu, Xuemei, Associate Professor
Architecture
PHD, Texas A&M University, 2008

Majors

- Bachelor of Environmental Design in Environmental Design Architectural Studies (p. 240)

Minors

- Architectural Fabrication and Product Design Minor (p. 241)
- Architectural Heritage Conservation Minor (p. 242)
- Art and Architectural History Minor (p. 242)
- Global Art, Design and Construction Minor (p. 243)
- Sustainable Architecture and Planning Minor (p. 243)

Environmental Design Architectural Studies - BED

The degree in Environmental Design Architectural Studies requires study in the arts, humanities and sciences. The curriculum fosters creativity and problem-solving skills while providing a solid foundation in design, theory, architectural history, building and technology. Coursework encourages multidisciplinary and comparative perspectives that allow opportunities for communication and team-oriented methods of production. Global perspectives are encouraged by a mandatory semester-long study away experience that includes study abroad or internship opportunities.

Students develop skills and acquire knowledge through a studio-based experience with a variety of proposed or actual design-related projects. The studio projects place a shared emphasis on the technical and expressive content of design work; the processes by which student’s research, synthesize and document their design ideas; and the creation of tangible products that achieve a high quality of graphic and physical craft.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
</tr>
<tr>
<td>ARCH 281</td>
<td>Seminar in Contemporary Architecture</td>
</tr>
<tr>
<td>ENDS 105</td>
<td>Design Foundations I</td>
</tr>
<tr>
<td>ENDS 115</td>
<td>Design Communication Foundations</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>ENDS 108</td>
<td>Design and Visual Communication Foundations II</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>MATH 142 or MATH 151</td>
<td>Business Calculus or Engineering Mathematics I</td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td>3</td>
</tr>
<tr>
<td>Second Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>ARCH 205</td>
</tr>
<tr>
<td>ARCH 212</td>
<td>Social and Behavioral Factors in Design</td>
</tr>
<tr>
<td>ARCH 330</td>
<td>The Making of Architecture</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>ARCH 206</td>
<td>Architecture Design II</td>
</tr>
<tr>
<td>ARCH 213</td>
<td>Sustainable Architecture</td>
</tr>
<tr>
<td>CARC 481</td>
<td>Seminar</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>4</td>
</tr>
<tr>
<td>Third Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>ARCH 305</td>
</tr>
<tr>
<td>ARCH 331</td>
<td>Architectural Structures</td>
</tr>
<tr>
<td>ARCH 335</td>
<td>Architectural Systems</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>1</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Study Away</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>Option 1:</td>
<td>ARCH 494</td>
</tr>
<tr>
<td>Study away elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Option 2:</td>
<td>CARC 301</td>
</tr>
<tr>
<td>Study away elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>ARCH 405</td>
</tr>
<tr>
<td>ARCH 431</td>
<td>Integrated Structures</td>
</tr>
<tr>
<td>ARCH 435</td>
<td>Integrated Systems</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
</tr>
<tr>
<td>ARCH 406</td>
<td>Architecture Design V</td>
</tr>
</tbody>
</table>

1. To be selected from any of the 100-499 level courses designated as cultural discourse (p. 46) (CD) not used elsewhere (such as CARC 101).
2. Study away electives will be selected with approval of the Assistant Dean for International Programs and Initiatives.
3. Select from ARCH 216, ARCH 246, ARCH 260, ARCH 317, ARCH 327, ARCH 328, ARCH 345, ARCH 421, ARCH 430, ARCH 433, ARCH 434, ARCH 438, ARCH 441, ARCH 458, ARCH 463, ARCH 481, ARCH 484; ARTS 330, COSC 253; GEOG 330; LAND 301; RENR 375; URPN 340, URPN 361, URPN 370, URPN 470.

All proposals for undergraduate independent study must be signed by the supervising faculty and submitted to the department for approval; forms are available from the Department of Architecture Undergraduate Advisor (in Langford ARCA 219) and on the department website.

A grade of C or better must be made in all College of Architecture courses (ARCH, ARTS, COSC, CARC, ENDS, LAND, LDEV, URPN, and VIST). Students must also make a grade of C or better in any course used as an equivalent substitution for College of Architecture courses satisfying degree requirements.

Architectural Fabrication and Product Design - Minor

The minor in Architectural Fabrication and Product Design can serve as a complement to several major fields of study and is open to all Texas A&M University undergraduates. The structure of the minor encourages students to gain a broad understanding of the terminology, history, prototyping and professional practices in Architectural Fabrication and Product Design. The minor includes six (6) credit hours of foundation coursework and nine (9) credit hours of design, theory and practice coursework.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 216</td>
<td>Computational Methods in Architecture</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 353</td>
<td>History of Product Design</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 381</td>
<td>Design Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 317</td>
<td>Digital Fabrication for Architecture</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1. This is a 1 credit hour course that must be taken three times for a total of 3 credits.

Must make a grade of 'C' or better in all courses.

NOTE: Must see ENDS Undergraduate Academic Advisor for minor form
Architectural Heritage Conservation - Minor

The minor in Architectural Heritage Conservation provides an interdisciplinary and global approach to understanding heritage conservation and its importance to sustainable conservation of the built environment. The curriculum emphasizes an awareness of principles and theories impacting architectural heritage conservation. In addition, the minor enables students to explore technological advancements critical to documenting and assessing the built environment. The minor in Architectural Heritage Conservation can serve as a complement to several major fields of study and is open to all Texas A&M undergraduates. The structure of the minor encourages students to gain a broad understanding of the foundations of conservation before advancing to specialized areas of interest. The minor includes six (6) credit hours of required foundation coursework, three (3) credit hours of architectural history, and six (6) credit hours elective coursework. Note: The minor is 15 credit hours. Six (6) hours of minor coursework must be in residence at the 300-400 level.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foundation</td>
<td></td>
</tr>
<tr>
<td>ARCH 246</td>
<td>Foundations of Historic Preservation</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 346</td>
<td>Architecture, Heritage and Culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Architectural History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 430</td>
<td>History of Ancient Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 434</td>
<td>The Role of Sculpture and Painting in Ancient Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 438</td>
<td>History and Design of Sacred Architecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>ANTH 202</td>
<td>Introduction to Archaeology</td>
<td></td>
</tr>
<tr>
<td>ANTH 313</td>
<td>Historical Archaeology</td>
<td></td>
</tr>
<tr>
<td>ANTH 402</td>
<td>Archaeological Artifact Conservation</td>
<td></td>
</tr>
<tr>
<td>ANTH 421</td>
<td>Advanced Museum Studies</td>
<td></td>
</tr>
<tr>
<td>ARCH 260</td>
<td>Comparative Theory in the Built and Virtual Environments</td>
<td></td>
</tr>
<tr>
<td>ARCH 345</td>
<td>History of Building Technology</td>
<td></td>
</tr>
<tr>
<td>ARCH 347</td>
<td>Documentation of Historic Buildings and Sites</td>
<td></td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td></td>
</tr>
<tr>
<td>RENR 405/</td>
<td>Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>ESSM 351</td>
<td>for Resource Management</td>
<td></td>
</tr>
<tr>
<td>RPTS 307</td>
<td>Interpretation of Natural and Cultural Resources</td>
<td></td>
</tr>
<tr>
<td>URPN 201</td>
<td>The Evolving City</td>
<td></td>
</tr>
</tbody>
</table>

1 Eligible undergraduate students meeting prerequisite requirements may enroll in the ARCH 648.

Students must complete a minimum of 6 hours in residence at the 300-400 level.

Students applying for a minor in Architectural Heritage Conservation must have a 2.0 or better overall GPR. Some colleges and departments outside the College of Architecture may permit their students to minor.

Students must obtain a C or better in each course listed above (or in any transfer course used as an equivalent).

Coordination with Bachelor of Environmental Design (BED) Degree Plan - For students pursuing the BED degree, upper level coursework for the minor may be applied to general or free electives, but may not be applied to directed electives or any other requirements for BED degree plan.

Art and Architecture History - Minor

The Minor in Art and Architecture History provides undergraduate students with an interdisciplinary, global, and multicultural approach to understanding visual arts and the built environment. The curriculum emphasizes an awareness of diverse global cultures and historical traditions, an appreciation of context, visual understanding, and critical thinking. The Minor in Art and Architecture History can serve as a complement to several major fields of study and is open to all Texas A&M undergraduates. The structure of the minor encourages students to gain a broad chronological understanding of art and architectural history before advancing to specialized areas of interest. Coursework includes six (6) credit hours at the introductory level (100- and 200-level courses) and nine (9) credit hours in specialized subjects at an advanced level (300- and 400-level courses) for a total of 15 credit hours.

The application form can be found on the Department of Architecture's website. Per university guidelines, the student's home college/department is responsible for advising students pursuing the Minor in Art and Architecture History.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS 149</td>
<td>Art History Survey I</td>
<td>3</td>
</tr>
<tr>
<td>or ARCH 249</td>
<td>or Survey of World Architecture History I</td>
<td></td>
</tr>
<tr>
<td>ARTS 150</td>
<td>Art History Survey II</td>
<td>3</td>
</tr>
<tr>
<td>or ARCH 25</td>
<td>or Survey of World Architecture History II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select nine hours from the following: 1,2,3</td>
<td>9</td>
</tr>
<tr>
<td>ANTH 353/</td>
<td>Archaeology of Ancient Greece</td>
<td></td>
</tr>
<tr>
<td>CLAS 353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 354/</td>
<td>Archaeology of Ancient Italy</td>
<td></td>
</tr>
<tr>
<td>CLAS 354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 345</td>
<td>History of Building Technology</td>
<td></td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 430</td>
<td>History of Ancient Architecture</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
<td>6</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td></td>
</tr>
<tr>
<td>ARCH 345</td>
<td>History of Building Technology</td>
<td></td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td></td>
</tr>
<tr>
<td>ARTS 149</td>
<td>Art History Survey I</td>
<td></td>
</tr>
<tr>
<td>ARTS 150</td>
<td>Art History Survey II</td>
<td></td>
</tr>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Select six hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 345</td>
<td>History of Building Technology</td>
<td></td>
</tr>
<tr>
<td>ARCH 403</td>
<td>History of Ancient Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 434</td>
<td>The Role of Sculpture and Painting in Ancient Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 437</td>
<td>Great Medieval Cathedrals</td>
<td></td>
</tr>
<tr>
<td>ARCH 441</td>
<td>Baroque and Rococo Architecture</td>
<td></td>
</tr>
<tr>
<td>ARCH 443</td>
<td>Aegean Art and Architecture</td>
<td></td>
</tr>
<tr>
<td>ARTS 329</td>
<td>Texas Art History</td>
<td></td>
</tr>
<tr>
<td>ARTS 330</td>
<td>The Arts of America</td>
<td></td>
</tr>
<tr>
<td>ARTS 335</td>
<td>The Art and Architecture of Rome</td>
<td></td>
</tr>
<tr>
<td>ARTS 349</td>
<td>The History of Modern Art</td>
<td></td>
</tr>
<tr>
<td>ARTS 445</td>
<td>Byzantine Art and Architecture</td>
<td></td>
</tr>
<tr>
<td>LAND 241</td>
<td>History and Development of Landscape Architecture in North America</td>
<td></td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
<td></td>
</tr>
</tbody>
</table>

Global Art Design and Construction - Minor

The Minor in Global Art, Design and Construction is designed for students in the College of Architecture and other colleges to officially record they have taken courses in an international environment.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 484</td>
<td>Summer Internship</td>
<td>1</td>
</tr>
<tr>
<td>ARCH 494</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td>ARTS 212</td>
<td>Life Drawing</td>
<td>2</td>
</tr>
<tr>
<td>ARTS 305</td>
<td>Painting</td>
<td>2</td>
</tr>
<tr>
<td>ARTS 308</td>
<td>Sculpture</td>
<td>2</td>
</tr>
<tr>
<td>ARTS 311</td>
<td>Traditional Photography</td>
<td>2</td>
</tr>
<tr>
<td>ARTS 312</td>
<td>Advanced Photography</td>
<td>2</td>
</tr>
<tr>
<td>ARTS 350</td>
<td>The Arts and Civilization</td>
<td>2</td>
</tr>
<tr>
<td>CARC 301</td>
<td>Field Studies in Design Innovation</td>
<td>2</td>
</tr>
<tr>
<td>CARC 311</td>
<td>Field Studies in Design Communication</td>
<td>2</td>
</tr>
<tr>
<td>CARC 331</td>
<td>Field Studies in Design Philosophy</td>
<td>2</td>
</tr>
<tr>
<td>COSC 484</td>
<td>Internship - 10 Week</td>
<td>1</td>
</tr>
<tr>
<td>COSC 494</td>
<td>Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 18

1. Must be taken as international internship.
2. Must be taken as international studio.

Students must make a grade of C or better.

Sustainable Architecture and Planning - Minor

The Minor in Sustainable Architecture and Planning (SARP) provides undergraduate students with a multidisciplinary approach to understanding sustainability of the built environment. The curriculum emphasizes an awareness of responsible practices at a variety of scales impacting the built environment: buildings, communities, architectural systems, global resource management, and social equity. Students will become aware of responsible architectural design and develop critical thinking skills to address the multifaceted issues facing the profession today.

The Minor in Sustainable Architecture and Planning can serve as a complement to several major fields of study and is open to all Texas A&M undergraduates. The structure of the minor encourages students to gain a broad understanding before advancing to specialized areas of interest.
Coursework includes six (6) credit hours at the introductory level (100- and 200-level courses) and nine (9) credit hours in specialized subjects, three of which must be at an advanced level (300- and 400-level courses) for a minimum total of 15 credit hours. Per University guidelines, the student’s home college/department is responsible for advising students pursuing the Minor in Sustainable Architecture and Planning.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 213</td>
<td>Sustainable Architecture</td>
<td>3</td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
<td>3</td>
</tr>
<tr>
<td>Select three courses from the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ARCH 246</td>
<td>Foundations of Historic Preservation</td>
<td></td>
</tr>
<tr>
<td>ARCH 421</td>
<td>Energy and Sustainable Architecture</td>
<td></td>
</tr>
<tr>
<td>ENGR 101</td>
<td>Energy, Resources, Utilization and Importance to Society</td>
<td></td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td></td>
</tr>
<tr>
<td>PHIL 205</td>
<td>Technology and Human Values</td>
<td></td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td></td>
</tr>
<tr>
<td>URPN 361</td>
<td>Urban Issues</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1. At least three of the nine hours must be at the 300-400 level. Six of the nine hours may be coursework taken outside of the College of Architecture.

2. BED majors may not use directed electives to satisfy both the minor and graduation requirements. USAR majors may not use coursework to satisfy both the minor and the concentration area.

3. Students must complete a minimum of 6 hours in residence at the 300-400 level.

Students must make a grade of ‘C’ or better in all courses.

Department of Construction Science

The construction industry is the largest industry in the nation with more than 7.7 million employees who annually produce more than 5 percent of the nation’s Gross Domestic Product. Managing the construction process requires a broad understanding of the principles of construction science as well as leadership skills in motivating teams and integrating a wide range of tasks to produce a completed project.

The primary mission of the Department of Construction Science is to prepare students for successful careers and future leadership roles in construction and construction-related industries. The program integrates principles of architecture, technology, engineering, business and project management preparing students to effectively manage the total construction process. Courses taught by the Department include construction materials and methods, fundamental design courses in soils and foundations, mechanical and electrical systems and structures, project control systems and management, construction law, labor and contracts, and industry emphasis courses. In addition, related courses from other colleges are included to ensure a broad base of knowledge in business, engineering and construction fundamentals.

Enrollment in Construction Science Upper Level Program

1. Students must have satisfactorily completed at least 54 hours of coursework with a minimum GPA of 2.5 for those courses completed at Texas A&M University.

2. Students must satisfactorily complete the following courses as part of the 54 hours of coursework with a minimum of a 2.5 GPA to be considered to upper level:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 153</td>
<td>Introduction to the Construction Industry</td>
<td>3</td>
</tr>
<tr>
<td>COSC 175/AREN 175</td>
<td>Construction Graphics/Communication</td>
<td>3</td>
</tr>
<tr>
<td>COSC 184</td>
<td>Construction Safety I</td>
<td>1</td>
</tr>
<tr>
<td>COSC 253</td>
<td>Construction Materials and Methods I</td>
<td>3</td>
</tr>
<tr>
<td>COSC 275</td>
<td>Estimating I</td>
<td>3</td>
</tr>
<tr>
<td>COSC 284</td>
<td>Introduction to Applied Workplace Ethics, Etiquette and Communications</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 203</td>
<td>or Public Speaking</td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>or GEOL 101</td>
<td>or Principles of Geology and & GEOL 102</td>
<td>Principles of Geology Laboratory</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 34

3. Students must apply for upper level through the department. The application is to be submitted the semester or summer session in which all of the above criteria are met.

- March 1 for Summer admission
- June 1 for Fall admission
- October 1 for Spring admission

Faculty

Ahn, Changbum R, Associate Professor
Construction Science
PHD, University of Illinois at Urbana-Champaign, 2012

Behzadan, Amir H, Associate Professor
Construction Science
PHD, University of Michigan, 2008
Suermann, Patrick C, Associate Professor
Construction Science
PHD, University of Florida, 2009

Whitman, John M, Visiting Lecturer
Construction Science
BS, Texas A&M University, 1989

Williamson, Kenneth C, Associate Professor
Construction Science
PHD, University of Oklahoma, 1994

Majors

- Bachelor of Science in Construction Science (p. 246)

Minors

- Facility Management Minor (p. 247)
- Leadership in the Design and Construction Professions Minor (p. 248)

Construction Science - BS

The Construction Science Program is a 120 hour program accredited by the American Council for Construction Education. Strong ties are maintained with the construction industry via the Construction Industry Advisory Council, an organization of construction and construction-related companies and individuals committed to supporting the Construction Science Program at Texas A&M University.

The undergraduate program integrates the principles of architecture, technology, engineering, business and project management, which prepares students to effectively manage the total construction process. Specialized course work in building systems, materials and methods of construction, scheduling, cost estimating, structures, construction management, law, and business/labor relations are taught. This interdisciplinary approach provides the student with the best possible exposure to the various tools needed to become a construction industry leader.

Construction management graduates quickly become valued members of a construction team and participate in planning, cost estimating, scheduling, supervision, and commissioning of complete facilities in a timely, safe and quality manner. They also possess the professional knowledge to confidently interact with professional engineers, registered architects, and owners to solve problems that may arise.

In addition to the academic coursework, each student is required to accomplish an approved internship of full-time practical work experience with a construction company, or in a construction-related work activity. For more information, please visit the Department of Construction Science website.

Because of the important role of computing in the disciplines housed within the College of Architecture, all entering students are required to possess a portable, network-ready personal computer capable of running software appropriate to their academic program. Financial aid is available to assist students in their computer purchases. No student will be denied admission to Texas A&M University based on an inability to purchase a computer. Additional information is available on the College of Architecture website.

This program is approved to be offered at the Texas A&M Higher Education Center in McAllen, Texas.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 153</td>
<td>Introduction to the Construction Industry</td>
<td>3</td>
</tr>
<tr>
<td>COSC 184</td>
<td>Construction Safety I</td>
<td>1</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 203</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>History of Construction</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>COSC 175/AREN 175</td>
<td>Construction Graphics Communication</td>
<td>3</td>
</tr>
<tr>
<td>COSC 284</td>
<td>Introduction to Applied Workplace Ethics, Etiquette and Communications</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 226</td>
<td>History of Texas</td>
<td></td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 253</td>
<td>Construction Materials and Methods I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 275</td>
<td>Estimating I</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>Principles of Geology Laboratory</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ARCH 249</td>
<td>Survey of World Architecture History I</td>
<td></td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td></td>
</tr>
<tr>
<td>ARCH 350</td>
<td>History and Theory of Modern and Contemporary Architecture</td>
<td></td>
</tr>
<tr>
<td>ARTS 150</td>
<td>Art History Survey II</td>
<td></td>
</tr>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td></td>
</tr>
<tr>
<td>Government/Political science</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 16
Third Year

Fall
- COSC 301: Construction Surveying 3
- COSC 321: Structural Systems I 3
- COSC 325: Mechanical, Electrical and Plumbing Systems in Construction I 3
- COSC 375: Estimating II 3
- COSC directed elective I 3
 - Select one of the following:
 - COSC 464: Construction Safety II
 - COSC 468: Risk Management in the Built Environment
 - KINE 223: Introduction to the Science of Health and Fitness
- Semester Credit Hours 15

Spring
- COSC 353: Construction Project Management 3
- COSC 463: Introduction to Construction Law 3
- COSC 475: Construction Project Planning 3
- COSC directed elective II 3
 - Select one of the following:
 - COSC 450: Facility Management Principles and Practices
 - COSC 459: Industrial Construction
 - COSC 474: Facility Management Internship
 - COSC 484: Internship - 10 Week
- Language, philosophy and culture (p. 27) 3
- Semester Credit Hours 15

Fourth Year

Fall
- COSC 494: Internship 2
- MGMT 309: Survey of Management 3
- FINC 409: Survey of Finance Principles 3
- Semester Credit Hours 13

Spring
- COSC 465: Advanced Topics in Construction Law 3
- COSC 477: Construction Project Controls 3
 - Select one of the following: 3
 - COSC 440: Interdisciplinary Capstone
 - COSC 441: Residential Capstone
 - COSC 442: Commercial Capstone
 - COSC 443: Industrial Capstone
 - COSC 446: Specialty Capstone
- COSC directed elective III 3
 - Select one of the following:
 - COSC 326: Mechanical, Electrical and Plumbing Systems in Construction II
 - COSC 421: Soil and Structural Analysis
 - COSC 461: Building Information Modeling System
 - COSC 489: Special Topics in...
- COSC directed elective IV 4
 - Select one of the following:
 - COSC 326: Mechanical, Electrical and Plumbing Systems in Construction II
- Semester Credit Hours 15
- Total Semester Credit Hours 120

1. Consult with advisor for course options.
2. Internship must be Fall or Spring semester. Only online courses at Texas A&M can be taken during an official internship.
3. Capstone must be taken the last semester.
4. Must select a course from Directed Electives 1, 2, or 3 that has not already been completed for credit.

A grade of C or better is required in all College of Architecture course (ARCH, ARTS, CARC, COSC, ENDS, LAND, URPN, and VIST) to satisfy Construction Science degree requirements.

Facility Management - Minor

The Department of Construction Science offers a minor in Facility Management.

Facilities management is an integral part of the built environment and students will learn to strategically and systematically manage and ensure functionality of the built environment by integrating people, place, process and technology.

Courses offered in this minor will provide an introduction to concepts and components of project management; their interrelationships in construction practice; the life cycle of a project; strategic planning; performance measurements; life cycle cost approach; building sustainability; maintenance management; and industry practices.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 450</td>
<td>Facility Management Principles and Practices</td>
<td>3</td>
</tr>
<tr>
<td>COSC 474</td>
<td>Facility Management Internship</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
<td></td>
</tr>
<tr>
<td>AGE 422</td>
<td>Land Economics</td>
<td></td>
</tr>
<tr>
<td>FINC 409</td>
<td>Survey of Finance Principles</td>
<td></td>
</tr>
<tr>
<td>URPN 440</td>
<td>Urban and Regional Economic Development</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:
Leadership in the Design and Construction Professions - Minor

The College of Architecture through the Department of Construction Science offers a minor in Leadership in the Design and Construction Professions. The minor is designed to enhance leadership skills and increase each students understanding of themselves by encouraging and facilitating introspective looks into each individuals personality type, strengths and challenges. The goal of the minor is to focus on personal growth to become the most effective leaders in the design and construction industries.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSC 310</td>
<td>Design and Construction Leadership Education I</td>
<td>1</td>
</tr>
<tr>
<td>COSC 410</td>
<td>Design and Construction Leadership Education II</td>
<td>1</td>
</tr>
<tr>
<td>COSC 411</td>
<td>Seminar in Design and Construction Executive Leadership</td>
<td>1</td>
</tr>
<tr>
<td>Select from:</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Leadership in the Design and Construction Professions - Minor

College of Architecture students can apply no more than six hours of coursework toward both the Facility Management Minor and their degree requirements.

At least two courses must be taken outside of the major area of study.

Must make a grade of C or better.

A grade of 'C' or better is required in all classes used towards the minor.

Must have at least a 2.5 TAMU GPA to apply for minor.
private and public sector practice. Our educational goal is to produce graduates motivated to be leaders in the field and professionals who are intellectually active, broadly-educated citizens and life-long learners.

Urban and Regional Planning

The Bachelor of Science in Urban and Regional Planning degree program emphasizes the social, economic, cultural and natural factors that govern how communities and society are shaped. Coursework provides students with the knowledge and skills needed to develop solutions to community and regional growth and development issues that face our state and nation. Students have an opportunity to specialize in specific aspects of community and regional planning and development issues along with internship and service-learning experiences locally, nationally, and/or internationally.

Faculty

Booth, Geoffrey J, Associate Professor
Land Arch & Urban Planning
MA, University of Queensland, 1987

Brown, Robert D, Professor
Land Arch & Urban Planning
PHD, University of Guelph, 1985
MLA, University of Guelph, 1982

Calvesbert, Tyrene, Visiting Lecturer
Land Arch & Urban Planning
MUP, Graduate School of Architecture, Planning and Preservation, 2019

Cooper Jr, John T, Associate Professor of the Practice
Land Arch & Urban Planning
PHD, University of North Carolina - Chapel Hill, 2004

Cowell Jr, Robert S, Visiting Assistant Professor
Land Arch & Urban Planning
MS, University of Tennessee, 1994

Davis, Deidra, Instructional Assistant Professor
Land Arch & Urban Planning
PHD, Southern Illinois University, 2017

Dvorak, Bruce D, Associate Professor
Land Arch & Urban Planning
MLA, University of Illinois at Urbana-Champaign, 1994

Early, Timothy, Associate Professor of the Practice
Land Arch & Urban Planning
MS, Texas A&M University, 1991

Giusti, Cecilia Hundskopf, Associate Professor
Land Arch & Urban Planning
PHD, The University of Texas - Austin, 2001

Goddard, Tara B, Assistant Professor
Land Arch & Urban Planning
PHD, Portland State University, 2017

Golbabai, Justin, Associate Professor of the Practice
Land Arch & Urban Planning
CERT, American Institute of Certified Planners, 2015

Huang, Chang S, Associate Professor
Land Arch & Urban Planning
PHD, University of Pennsylvania, 1995

Hurst, Kenneth R, Assistant Professor of the Practice
Land Arch & Urban Planning
PHD, Texas A&M University, 2016
MLA, University of Oklahoma, 1988

Jourdan, Dawn E, Professor
Land Arch & Urban Planning
PHD, Florida State University, 2004
JD, University of Kansas, 2000

Kim, Youjung, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2019

Lee, Chanam, Professor
Land Arch & Urban Planning
PHD, University of Washington, 2004

Lee, Ryun Jung, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2018

Li, Dongying, Assistant Professor
Land Arch & Urban Planning
PHD, University of Illinois - Champaign, 2016

Li, Wei, Associate Professor
Land Arch & Urban Planning
PHD, University of California, Irvine, 2011

Martin, June C, Instructional Associate Professor
Land Arch & Urban Planning
MS, University of Georgia, 2002
MPA, University of Georgia, 1991

Meyer, Michelle Annette, Associate Professor
Land Arch & Urban Planning
PHD, Colorado State University, 2013

Ndubisi, Forster O, Professor
Land Arch & Urban Planning
PHD, University of Waterloo, 1987

Newman, Galen D, Associate Professor
Land Arch & Urban Planning
PHD, Clemson University, 2010
MLA, Auburn University, 2006

Newton, Karah F, Assistant Lecturer
Land Arch & Urban Planning
BA, Suny University at Buffalo, 2000
MPA, New York University Wagner, 2014

Noh, Youngre, Instructional Assistant Professor
Land Arch & Urban Planning
PHD, Texas A&M University, 2015

Peacock, Walter Gillis, Professor
Land Arch & Urban Planning
PHD, University of Georgia, 1986
Reid, Russell W, Instructional Associate Professor
Land Arch & Urban Planning
MAR, Texas A&M University, 2001

Ren, Dingding, Lecturer
Land Arch & Urban Planning
MLA, Texas A&M University, 2018

Rising, Hope Hui, Assistant Professor
Land Arch & Urban Planning
PHD, University of Oregon, 2015
MLA, University of Michigan, 2000

Roberts, Andrea R, Assistant Professor
Land Arch & Urban Planning
PHD, University of Texas - Austin, 2016

Rogers, George O, Professor
Land Arch & Urban Planning
PHD, University of Pittsburgh, 1983

Scott, Bentley Nelson, Visiting Associate Professor
Land Arch & Urban Planning
MS, Texas A&M University, 2015

Van Zandt, Shannon S, Professor
Land Arch & Urban Planning
PHD, University of North Carolina at Chapel Hill, 2004

Winslow, Jane Futrell, Assistant Professor
Land Arch & Urban Planning
PHD, The University of Texas, 2015
MLA, Kansas State University, 2010

Winslow, William Palmer, Professor Of The Practice
Land Arch & Urban Planning
MLA, University of Michigan, 1982

Woodfin, Thomas, Executive Professor
Land Arch & Urban Planning
PHD, Texas A&M University, 2007
MLA, Harvard University, 1981

Woodruff, Sierra C, Assistant Professor
Land Arch & Urban Planning
PHD, University of North Carolina at Chapel Hill, 2017

Wunneburger, Douglas F, Instructional Professor
Land Arch & Urban Planning
PHD, Texas A&M University, 1992

Yu, Siyu, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2019

Majors

• Bachelor of Landscape Architecture in Landscape Architecture (p. 250)
• Bachelor of Science in Urban and Regional Planning, Urban Design Track (p. 251)
• Bachelor of Science in Urban and Regional Planning, Urban Policy Track (p. 252)
• Bachelor of Science in Urban and Regional Planning and Master of Land and Property Development, 5-Year Degree Program (p. 254)

Minors

• Urban and Regional Planning Minor (p. 256)

Landscape Architecture - BLA

The mission of the Bachelor of Landscape Architecture (BLA) program is to prepare students to become professional landscape architects in the private and public sectors of practice. We foster a learning environment of creativity and critical analysis that uses evidence-based design principles as its core. This approach builds upon the knowledge of natural and built environments and how humans interact within various cultural settings. Our BLA graduates use this knowledge to produce spatial solutions at multiple scales from site design to land use planning. This creative process aims to advance human health, and social, economic and environmental sustainability. The program strives to produce graduates motivated to be life-long learners capable of working independently and leading interdisciplinary teams in the field of landscape architecture.

Graduates from the BLA program are prepared for employment with private practice firms in landscape architecture, engineering, architecture, or planning; and with federal, state, or local government agencies. Upon graduation and with additional two-year practical experience students are qualified to pursue licensure in the profession or post graduate education in landscape architecture or a related field.

Because of the important role of computing in the disciplines housed within the College of Architecture, all entering students are required to possess a portable, network-ready personal computer capable of running software appropriate to their academic program. Financial aid is available to assist students in their computer purchases. No student will be denied admission to Texas A&M University based on an inability to purchase a computer. Additional information is available on the Department of Landscape Architecture and Urban Planning website.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Tutorial Hours</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LAND 101 Introduction to Landscape Architectural Practice</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LAND 111 Landscape Architecture Communications I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 168 Finite Mathematics</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>URPN 220 Digital Communication I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Tutorial Hours</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 250 Survey of World Architecture History II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LAND 112 Landscape Architecture Communications II</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
General elective

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>LAND 211</td>
<td>Landscape Design I</td>
<td>4</td>
</tr>
<tr>
<td>LAND 231</td>
<td>Landscape Construction I</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 212</td>
<td>Landscape Design II</td>
<td>4</td>
</tr>
<tr>
<td>LAND 232</td>
<td>Landscape Construction II</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology–Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Computer elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>HORT 306</td>
<td>Trees and Shrubs for Sustainable Built Environments</td>
<td>3</td>
</tr>
<tr>
<td>LAND 241</td>
<td>History and Development of Landscape Architecture in North America</td>
<td>3</td>
</tr>
<tr>
<td>LAND 311</td>
<td>Landscape Design III</td>
<td>5</td>
</tr>
<tr>
<td>URPN 201</td>
<td>The Evolving City</td>
<td>3</td>
</tr>
<tr>
<td>URPN 330</td>
<td>Land Development I</td>
<td></td>
</tr>
<tr>
<td>URPN 370</td>
<td>Health Systems Planning</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT 308</td>
<td>Plants for Sustainable Landscapes</td>
<td>3</td>
</tr>
<tr>
<td>LAND 301</td>
<td>Landscape Architecture Theory</td>
<td>3</td>
</tr>
<tr>
<td>LAND 312</td>
<td>Landscape Design IV</td>
<td>5</td>
</tr>
<tr>
<td>LAND 331</td>
<td>Landscape Construction III</td>
<td>4</td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 18

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 484</td>
<td>Summer Internship</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 0

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Away</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CARC 301</td>
<td>Field Studies in Design Innovation</td>
<td></td>
</tr>
<tr>
<td>LAND 494</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>2, 6</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 412</td>
<td>Landscape Design VI</td>
<td>5</td>
</tr>
<tr>
<td>LAND 431</td>
<td>Professional Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 314</td>
<td>Environmental Ethics</td>
<td>6</td>
</tr>
<tr>
<td>URPN 361</td>
<td>Urban Issues</td>
<td>3</td>
</tr>
<tr>
<td>or URPN 460</td>
<td>Urban Issues or Sustainable Communities</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours: 14

Total Semester Credit Hours: 128

1. Any approved university core curriculum history course
2. This course will be selected in consultation with the student’s advisor.
3. URPN 320 or URPN 325 or approval of BLA Program Coordinator
4. Semester Away: May be satisfied by study abroad, at another university, internship, or special arrangement by advisor or instructor. Electives may be taken during summer, online, distance education, at another university or college, or at a study abroad university.
5. Study abroad course.
6. If electing to study abroad, must take CARC 311 for PHIL 314 and CARC 331 as an elective.

A grade of C or better is required in College of Architecture courses (CARC, COSC, ENDS, ARCH, URPN, LAND, VIST, ARTS) to satisfy Landscape Architecture degree requirements.

Any student wishing to change majors into the Landscape Architecture program must have less than 60 total hours, including all transfer hours.

Urban and Regional Planning - BS, Urban Design Track

The Bachelor of Science in Urban and Regional Planning degree program is based in the Department of Landscape Architecture and Urban Planning (LAUP) within the College of Architecture at Texas A&M University. The Urban and Regional Planning program equips students for entry-level positions in planning allied fields and prepares them for graduate studies in fields such as Urban Planning and Land Development. The core curriculum, designed to equip students with knowledge and skills to deal effectively with the opportunities and challenges inherent in the development, growth and culture of neighborhoods, cities, and regions, is based on theoretical training in the natural, physical, and social sciences. Students acquire skills that enable them to apply these theories to develop communities, cities, and regions which are safe, healthy, and sustainable.

Critical thinking and analytical skills are emphasized for problem-solving at the community and regional scale. Classroom service-learning experiences enable graduates to more reliably and realistically assess complex community problems, design solutions for overcoming those problems, and evaluate the outcomes of programs and policies in meeting community and regional needs.

The Urban Design Track emphasizes physical solutions and the urban form of communities and cities, related to land uses, site planning, the provision of infrastructure such as roads, sidewalks, and storm water management, and the provision of public spaces. Skill-building emphasizes graphic representation and the use of Geographic Information Systems (GIS) for both analysis and design.
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENDS 101</td>
<td>Design Process</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LAND 101</td>
<td>Introduction to Landscape Architectural Practice</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 201</td>
<td>The Evolving City</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 210</td>
<td>Urban Analytical Methods I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 220</td>
<td>Digital Communication I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RENR 215</td>
<td>Fundamentals of Ecology—Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>URPN 310</td>
<td>Urban Analytical Methods II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 320</td>
<td>Digital Communication II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI 311</td>
<td>Social Change</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI 312</td>
<td>Population and Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI 314</td>
<td>Social Problems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI 317/AFST 317</td>
<td>Racial and Ethnic Relations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 325</td>
<td>Introduction to GIS in Urban and Regional Planning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 330</td>
<td>Land Development I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 420</td>
<td>Principles of Urban Design I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 489</td>
<td>Special Topics in...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

General elective 3

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Semester Away</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CARC 301</td>
<td>Field Studies in Design Innovation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>URPN 494</td>
<td>Internship</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>URPN 331</td>
<td>Public and Private Infrastructure Funding</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>URPN 409</td>
<td>GeoDesign Studio</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. See advisor for a list of approved courses.
3. Semester Away: May be satisfied by study abroad, at another university, internship, or special arrangement by advisor or instructor. Concentration electives may be taken during summer, online, distance education, at another university or college, or at a study abroad university.
4. Study abroad course. If electing to study abroad, must take CARC 311 and CARC 331 as concentration electives.
5. If a student takes URPN 494 in Fall of 4th year, 6 hours of concentration electives must be added to different semesters other than this fall.
6. This course will be selected in consultation with the student’s advisor. If not participating in study abroad, 3 hours must come from approved course in International and Cultural Diversity (p. 47).

Urban and Regional Planning - BS, Urban Policy Track

The Bachelor of Science in Urban and Regional Planning degree program is based in the Department of Landscape Architecture and Urban Planning (LAUP) within the College of Architecture at Texas A&M University. The Urban and Regional Planning program equips students for entry-level positions in planning allied fields and prepares them for graduate studies in fields such as Urban Planning and Land Development. The core curriculum, designed to equip students with knowledge and skills to deal effectively with the opportunities and challenges inherent
in the development, growth and culture of neighborhoods, cities, and regions, is based on theoretical training in the natural, physical, and social sciences. Students acquire skills that enable them to apply these theories to develop communities, cities, and regions which are safe, healthy, and sustainable.

Critical thinking and analytical skills are emphasized for problem-solving at the community and regional scale. Classroom service-learning experiences enable graduates to more reliably and realistically assess complex community problems, design solutions for overcoming those problems, and evaluate the outcomes of programs and policies in meeting community and regional needs.

The Urban Policy Track emphasizes policy solutions for building resilient, efficient, healthy, and sustainable communities. Policy evaluation and formulation address urban issues related to the equitable provision of public services, housing, environmental services, employment, and transportation. Skill-building emphasizes critical thinking, analytical skills, and written and verbal communication.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>LAND 101</td>
<td>Introduction to Landscape Architectural Practice</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>URPN 201</td>
<td>The Evolving City</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>URPN 210</td>
<td>Urban Analytical Methods I 1</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>URPN 310</td>
<td>Urban Analytical Methods II 1</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following Sociology electives: 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 311</td>
<td>Social Change</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 312</td>
<td>Population and Society</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 314</td>
<td>Social Problems</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology–Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 220</td>
<td>Digital Communication I 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 302</td>
<td>Planning Law</td>
<td>3</td>
</tr>
<tr>
<td>Concentration elective 1,2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARC 481</td>
<td>Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>URPN 325</td>
<td>Introduction to GIS in Urban and Regional Planning 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 330</td>
<td>Land Development I 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 401</td>
<td>Policy Implementation 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 483</td>
<td>Studio in Urban and Regional Science 1</td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Away 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CARC 301</td>
<td>Field Studies in Design Innovation 1,4</td>
<td>3</td>
</tr>
<tr>
<td>URPN 494</td>
<td>Internship 1,5</td>
<td>5</td>
</tr>
<tr>
<td>Concentration elective 1,2,6</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Semester Credit Hours 12

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>URPN 331</td>
<td>Public and Private Infrastructure Funding 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 493</td>
<td>Urban and Regional Studies Capstone Course 1</td>
<td>5</td>
</tr>
<tr>
<td>Concentration elective 1,2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 120

1. Must make a grade of C or better.
2. See advisor for a list of approved courses.
3. Semester Away: May be satisfied by study abroad, at another university, internship, or special arrangement by advisor or instructor. Concentration electives may be taken during summer, online, distance education, at another university or college, or at a study abroad university.
4. Study abroad course. If electing to study abroad, must take CARC 311 and CARC 331 as concentration electives.
5. If a student takes URPN 494 in Fall of 4th year, 6 hours of concentration electives must be added to different semesters other than this fall.
This course will be selected in consultation with the student's advisor. If not participating in study abroad, 3 hours must come from approved course in International and Cultural Diversity (p. 47).

Urban and Regional Planning - 5-Year Bachelor of Science/Master of Land and Property Development

The 5-year combined BS and MLPD allows high-performing undergraduate students to streamline their undergraduate and professional education. The undergraduate core is designed to equip students with knowledge and skills to deal effectively with the opportunities and challenges inherent in the development, growth and culture of neighborhoods, cities, and regions, is based on theoretical training in the natural, physical, and social sciences. Students acquire skills that enable them to apply these theories to develop communities, cities, and regions which are safe, healthy, and sustainable. While still completing undergraduate credits, students begin graduate coursework in land and property development, where their core knowledge of urban growth and development can be enhanced with real estate, financial and management skills, leading to a fruitful career in real estate and land development.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>LAND 101</td>
<td>Introduction to Landscape Architectural Practice</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>URPN 201</td>
<td>The Evolving City</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture History II</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>URPN 210</td>
<td>Urban Analytical Methods 1</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>URPN 310</td>
<td>Urban Analytical Methods II 1</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following Sociology electives:</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>LDEV 664</td>
<td>Market Analysis for Development 2</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology-Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>URPN 220</td>
<td>Digital Communication I</td>
<td>3</td>
</tr>
<tr>
<td>URPN 302</td>
<td>Planning Law</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARC 481</td>
<td>Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>URPN 330</td>
<td>Land Development I</td>
<td>3</td>
</tr>
<tr>
<td>URPN 325</td>
<td>Introduction to GIS in Urban and Regional Planning</td>
<td>3</td>
</tr>
<tr>
<td>URPN 401</td>
<td>Policy Implementation 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 483</td>
<td>Studio in Urban and Regional Science 1</td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARC 301</td>
<td>Field Studies in Design Innovation 1,4</td>
<td>6</td>
</tr>
<tr>
<td>URPN 494</td>
<td>Internship 1,5</td>
<td>5</td>
</tr>
<tr>
<td>Concentration elective 1,6,7</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>URPN 331</td>
<td>Public and Private Infrastructure Funding 1</td>
<td>3</td>
</tr>
<tr>
<td>URPN 493</td>
<td>Urban and Regional Studies Capstone Course 1</td>
<td>5</td>
</tr>
<tr>
<td>LDEV 668</td>
<td>Land Development Practice 2</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fifth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEV 667</td>
<td>Design and Development Economy</td>
<td>3</td>
</tr>
<tr>
<td>LDEV 663</td>
<td>Introduction to Project Management</td>
<td>3</td>
</tr>
<tr>
<td>LDEV 669</td>
<td>Income Property Land Development</td>
<td>3</td>
</tr>
<tr>
<td>LDEV 687</td>
<td>Development Feasibility and Design</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 670</td>
<td>Real Property Analysis</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td></td>
</tr>
<tr>
<td>SOCI 311</td>
<td>Social Change</td>
<td></td>
</tr>
<tr>
<td>SOCI 312</td>
<td>Population and Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 314</td>
<td>Social Problems</td>
<td></td>
</tr>
<tr>
<td>SOCI 317/AFST 317</td>
<td>Racial and Ethnic Relations</td>
<td></td>
</tr>
</tbody>
</table>

American history (p. 29) | 3
Life and physical sciences (p. 26) | 4
General elective | 3
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>LAND 101</td>
<td>Introduction to Landscape Architectural Practice</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>URPN 201</td>
<td>The Evolving City</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDEV 684</td>
<td>Professional Internship</td>
<td>1</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 1 |

| Total Semester Credit Hours | 150 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND 240</td>
<td>History of Landscape Architecture</td>
<td>3</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>URPN 210</td>
<td>Urban Analytical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENR 310</td>
<td>Urban Analytical Methods II</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following sociology elective:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td></td>
</tr>
<tr>
<td>SOCI 311</td>
<td>Social Change</td>
<td></td>
</tr>
<tr>
<td>SOCI 312</td>
<td>Population and Society</td>
<td></td>
</tr>
<tr>
<td>SOCI 314</td>
<td>Social Problems</td>
<td></td>
</tr>
<tr>
<td>SOCI 317/A NST 317</td>
<td>Racial and Ethnic Relations</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>PLAN 664</td>
<td>Planning Theory and History</td>
<td>3</td>
</tr>
<tr>
<td>RENR 215</td>
<td>Fundamentals of Ecology—Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>URPN 220</td>
<td>Digital Communication I</td>
<td>3</td>
</tr>
<tr>
<td>URPN 302</td>
<td>Planning Law</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Urban and Regional Planning - 5-Year Bachelor of Science/Master of Urban Planning

The 5-year combined BS and MUP allows high-performing undergraduate students to streamline their undergraduate and professional education. The undergraduate core is designed to equip students with knowledge and skills to deal effectively with the opportunities and challenges inherent in the development, growth and culture of neighborhoods, cities, and regions, is based on theoretical training in the natural, physical, and social sciences. Students acquire skills that enable them to apply these theories to develop communities, cities, and regions which are safe, healthy, and sustainable. While still completing undergraduate credits, students begin graduate coursework in urban planning to refine and extend their skills in critical thinking, problem-solving, and communication, leading to an accredited professional degree appropriate for planning positions in the public sector, private consulting, or the non-profit world.
Spring
CARC 481 Seminar 1 1
URPN 325 Introduction to GIS in Urban and Regional Planning 1,2 3
URPN 330 Land Development I 1 3
URPN 401 Policy Implementation 1,2 3
URPN 483 Studio in Urban and Regional Science 1 4
Life and physical sciences (p. 26) 1
Semester Credit Hours 15

Fourth Year
Fall
Semester Away
Select one of the following: 3 6
CARC 301 Field Studies in Design Innovation 1,4 1
URPN 494 Internship 1,5 3
Concentration electives 1,6,7 6
Semester Credit Hours 12

Spring
PLAN 667 Site Planning 2 3
URPN 331 Public and Private Infrastructure Funding 1 3
URPN 493 Urban and Regional Studies Capstone Course 1 5
General elective 4
Semester Credit Hours 15

Summer
PLAN 684 Professional Internship 3
Semester Credit Hours 3

Fifth Year
Fall
PLAN 661 Information and Communication in Planning 3
PLAN 665 Plan Making 3
Elective 3
Semester Credit Hours 12

Spring
PLAN 613 Planning Methods and Techniques 3
PLAN 640 Law and Legislation Related to Planning 3
PLAN 662 Applied Planning I 3
PLAN 693 Professional Study 3
Elective 3
Semester Credit Hours 15
Total Semester Credit Hours 150

1 Must make a grade of C or better.
2 Equivalent Coursework: Students enrolled in the 3+2 program will take a designated section of the following courses which will be double counted.
 • PLAN 664, Planning Theory & History will substitute for a Concentration/Directed Elective
 • PLAN 667, Site Planning will substitute for a Concentration/Directed Elective
 • URPN 220 (special section), will substitute for PLAN 624, Digital Communications in Landscape Architecture and Urban Planning
 • URPN 325 (special section), will substitute for PLAN 625, GIS in Landscape Architecture and Urban Planning
 • URPN 310 (special section), will substitute for PLAN 613, Planning Methods II
 • URPN 401 (special section), will substitute for PLAN 658, Plan Implementation
3 Semester Away: May be satisfied by study abroad, at another university, internship, or special arrangement by advisor or instructor. Concentration electives may be taken during summer, online, distance education, at another university or college, or at a study abroad university.
4 Study abroad course. If electing to study abroad, must take CARC 311 and CARC 331 as concentration electives.
5 If a student takes URPN 494 in Fall of 4th year, 6 hours of concentration electives must be added to different semesters other than this fall.
6 See advisor for a list of approved courses.
7 This course will be selected in consultation with the student’s advisor. If not participating in study abroad, 3 hours must come from approved course in International and Cultural Diversity (p. 47).

A grade of B or better is required for graduate level courses.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Science in Urban & Regional Planning and the Master of Urban Planning.

Urban and Regional Planning - Minor

By pursuing a minor in urban planning at Texas A&M, students will earn an education within a multi-disciplinary atmosphere where analytical skills and critical thinking are harvested. Students will then apply this acquired knowledge to address real-world issues which communities and regions face on a daily basis. Those earning a minor in urban planning can effectively solve problems related to a number of complex issues involving the built and natural environment, transportation, health, economic development, among others.

The minor in urban planning program will provide a solid educational basis for those students wishing to pursue a post-graduate education within the planning field. Also, because of its broad scope, the minor program may serve as an effective introduction to graduate studies in other social science disciplines such as economics, geography, political science, and public policy.

The minor program will prepare students for entry-level positions in a variety of fields including state and local government; advocacy, grant-making and civic organizations; real estate management; environmental science; social assistance services; and health care services.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>URPN 201</td>
<td>The Evolving City ¹</td>
<td>3</td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 9 hours from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 340 Housing and Community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 361 Urban Issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 370 Health Systems Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 460 Sustainable Communities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 471 Planning Healthier Communities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

¹ The student’s home college or major department may approve/disapprove GEOG 306.
² USAR students will have to take URPN 330.

University Studies Programs

The College of Architecture offers a degree in University Studies. A University Studies degree differs from a traditional “major” in that it consists of a concentration and two minors of 15-18 hours each. The University Studies degree format was created to provide students the flexibility to combine areas of study that are of special interest.

Majors

- Bachelor of Science in University Studies, Global Arts, Planning, Design and Construction Concentration (p. 257)

University Studies - BS, Global Arts, Planning, Design and Construction Concentration

The Global Arts, Planning, Design and Construction concentration is an interdisciplinary course of study that integrates multiple aspects of the built environment. The course offerings are from all of the professional undergraduate programs within the College of Architecture and are intended to give students an understanding of the interplay of professions that are required to work as a team in order to successfully complete built environment projects. These foundation courses are coupled with a required study abroad experience. All students in the College of Architecture are required to participate in a semester away experience that serves to expand the context of their education. The benefit of this experience is integrated into the concentration at a smaller scale.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration Requirements</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCH 249 Survey of World Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>History I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARTS 111 Drawing I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARTS 149 Art History Survey I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARTS 150 Art History Survey II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COSC 175/ Construction Graphics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AREN 175 Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENDS 101 Design Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global and Cultural Discourse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARC 101 Cultural and Social Issues in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Natural, Built and Virtual Environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COSC 253 Construction Materials and Methods I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or COSC 15: or Introduction to the Construction Industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leadership</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALED 340 Survey of Leadership Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Urban Planning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>URPN 202 Building Better Cities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or URPN 20 or The Evolving City</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study Abroad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARC 481 Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CARC 311 Field Studies in Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication ¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARC 331 Field Studies in Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philosophy ¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directed electives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Architecture course 300-499</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>College and University Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 206 American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207 State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 1</td>
<td>15-18</td>
</tr>
<tr>
<td></td>
<td>Minor 2</td>
<td>15-18</td>
</tr>
<tr>
<td></td>
<td>General Electives</td>
<td>17-23</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

¹ Or approved study abroad course.

A 2.0 GPA is required in all major field of study courses.

Two writing-intensive courses are required.

One course must meet the International and Cultural Diversity (p. 47) requirement.

One course must meet the Cultural Discourse (p. 46) requirement.
Department of Visualization

Visualization is the blending of art and science focusing on visual communication. The Bachelor of Science in Visualization is a studio-based program requiring completion of 120 credit hours including elements of traditional art, programming, history, and theory as well as digital media. The degree prepares students for the artistic and technical demands facing digital content creators in a variety of visually-oriented professions including interactive design, information technology, education, entertainment, and independent practice.

Enrolled Visualization Students

Students enrolled in the Bachelor of Science in Visualization (VISL) program will move into the Sophomore level art and visualization courses by obtaining a 3.6 GPA in category A courses and a 3.0 GPA in category B courses and completing 27 semester credit hours during the first two semesters in the Visualization Program (VISL).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARTS 115</td>
<td>Drawing for Visualization</td>
<td>3</td>
</tr>
<tr>
<td>VIST 105</td>
<td>Principles of Design I</td>
<td>3</td>
</tr>
<tr>
<td>VIST 106</td>
<td>Principles of Design II</td>
<td>3</td>
</tr>
<tr>
<td>Category B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>VIST 170</td>
<td>Introduction to Visualization/Computing Environments</td>
<td>1</td>
</tr>
</tbody>
</table>

If AP or Dual Credit courses are available as substitutions in any of the above courses, sequential or other art/visualization/math/science courses taken at Texas A&M University will be used to calculate the respective GPAs. For change of major and transfer students, equivalent transferable courses may be substituted for any of the above courses. In this case, courses taken at Texas A&M University in the same program area will be specified and used to calculate the respective GPAs.

Students who do not achieve the required GPA in the above courses can remain in the visualization program, but cannot move on through studio classes. Depending on space availability, students can proceed into sophomore level art and visualization courses based on a ranking of the combined GPA of the Category A and Category B courses. An optional 500 word essay may be submitted to explain extenuating circumstances related to the 1st year academic experience and provide justification why the student should be allowed to take sophomore level courses. The essay may be used to adjust the overall student ranking.

Transfer and Change of Major Students

Transfer and change of major students (students currently enrolled in another major at Texas A&M University) who are admitted to the Department of Visualization are classified as lower level (VISL) and are required to complete the same 120 course work. This includes sequential coursework, that is designed to take place in a four year program.

Faculty

Akleman, Ergun, Professor Visualization
PHD, Georgia Institute of Technology, 1992

Andreassen, Mayet Maria, Lecturer Visualization
MFA, School of Animation and Visual Effects, 2006

Bieber, Susanne C, Assistant Professor Visualization
PHD, Freie Universitat Berlin, 2012

Bologan, Anatol, Instructional Assistant Professor Visualization
MFA, Texas A&M University, 2018

Braman, Gavin S, Lecturer Visualization
BEd, Texas A&M University, 2009

Campana, Lilia, Instructional Assistant Professor Visualization
PHD, Texas A&M University, 2014

Carletti, Sabrina, Instructional Assistant Professor Visualization
PHD, Princeton University, 2019

Davison, Richard R, Professor Visualization
MFA, Washington University St. Louis, 1979

Eilers, Howard F, Associate Professor Visualization
MFA, Ohio University, 1964

Finch, Krista S, Instructional Assistant Professor Visualization
MFA, Maryland Institute College of Art, 2000

Finch, Sherman S, Assistant Professor Visualization
MFA, Maryland Institute College of Art, 1998

Galanter, Philip, Associate Professor Visualization
MFA, School of Visual Arts, 1999

Honeycutt, Amanda J, Lecturer Visualization
BS, Texas A&M University, 2011

House, Felice L, Associate Professor Visualization
MFA, University of Texas at Austin, 2011

Jenks, Morgan M, Lecturer Visualization
MFA, Texas A&M University, 2014

Kicklighter, Caleb L, Lecturer Visualization
MFA, Texas A&M University, 2018
Texas A&M University

Klein, Barbara J, Instructional Assistant Professor Visualization
MFA, Texas A&M University, 2019

Knox, Benjamin C, Assistant Professor of the Practice Visualization
BED, Texas A&M University, 1993

Koulov, Dmitri V, Lecturer Visualization
BFA, Ivanovo Art institute, 1987

Lafayette, Carol J, Professor Visualization
MFA, SUNY, University at Buffalo, 1991

Leiderman, Daniil M, Instructional Assistant Professor Visualization
PHD, Princeton University, 2016

Lisonbee, Laurie J, Instructional Assistant Professor Visualization
MFA, California State University, Fullerton, 1998

McLaughlin, Timothy D, Associate Professor Visualization
MS, Texas A&M University, 1994

McNamara, Ann M, Associate Professor Visualization
PHD, University of Bristol, UK, 2000

Quek, Francis K, Professor Visualization
PHD, University of Michigan, 1990

Ramadan, Hadeel M, Instructional Assistant Professor Visualization
MFA, Virginia Tech, 2014

Schuld, Dawna L, Assistant Professor Visualization
PHD, The University of Chicago, 2009

Seo, Jinsil, Associate Professor Visualization
PHD, Simon Fraser University, 2011

MFA, School of Visual Arts, 2004

Starrett, Courtney, Associate Professor Visualization
MFA, Tyler School of Art, Temple University, 2005

Stoenescu, Livia, Instructional Associate Professor Visualization
PHD, Queen’s University, 2010

Sutherland, Susan D, Lecturer Visualization
MA, UNIVERSITY OF WISCONSIN-MADISON, 1994

Tassinari, Louis G, Professor Visualization
JD, Boston College, 2003

PHD, Dartmouth College, 1984

Thomas, Andre, Associate Professor of The Practice Visualization
MFA, Laguna College of Art & Design, 2017

Woodfin, Samuel, Lecturer Visualization
MFA, Laguna College of Art and Design, 2018

Majors

• Bachelor of Science in Visualization (p. 259)

Minors

• Art Minor (p. 260)

• Game Design and Development Minor (p. 261)

Visualization - BS

The mission of the Bachelor of Science in Visualization program is to engage and develop the student's visual, intuitive and analytical capabilities through the scientific and aesthetic issues surrounding the use of technology in visual communication. To fulfill its mission, the program requires both a creative spirit and the technical understanding to adapt to the changing demands of the visual industries served by the departmental programs.

The curriculum integrates elements of fine arts, three-dimensional design, programming and digital technology to provide a broad, wide-ranging educational experience. The core of the program is the studio experience, which explores the relationship between theory and practices through a variety of exercises and projects using traditional and electronic media. A semester away from Texas A&M University is required during the Junior year. This is followed by a capstone proposal and studio during the Junior and Senior years. A broad range of directed electives allows the student to gain an in-depth understanding of an area of specialization.

Graduates of the program are prepared to be technically adept artists, designers and/or tool-makers capable of utilizing interactive and directed media. Employment may be found in such fields as user interface and web design, the entertainment industry (game design and development, animation and visual effects), as well as fields such as modeling and simulation, data analytics and other fields where visualization contributes to understanding. Alternatively, graduates may enter graduate programs that emphasize digital media in either computer science or art/design. Two such programs, the Master of Science (MS) in Visualization and the Master of Fine Arts (MFA) in Visualization, are offered by the Department of Visualization at Texas A&M University.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS 115 Drawing for Visualization</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201 College Physics</td>
<td>4</td>
</tr>
<tr>
<td>VIST 105 Principles of Design I</td>
<td>3</td>
</tr>
<tr>
<td>VIST 131 First Year Seminar</td>
<td>1</td>
</tr>
<tr>
<td>VIST 284 Visualization Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Semester</td>
<td>Course Code</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Spring</td>
<td>ARTS 149</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
</tr>
<tr>
<td></td>
<td>VIST 106</td>
</tr>
<tr>
<td></td>
<td>VIST 170</td>
</tr>
<tr>
<td></td>
<td>VIST 284</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Second Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
</tr>
<tr>
<td></td>
<td>VIST 205</td>
</tr>
<tr>
<td></td>
<td>VIST 270</td>
</tr>
<tr>
<td></td>
<td>Visualization directed elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>ARTS 150</td>
</tr>
<tr>
<td></td>
<td>VIST 206</td>
</tr>
<tr>
<td></td>
<td>VIST 235</td>
</tr>
<tr>
<td></td>
<td>VIST 271</td>
</tr>
<tr>
<td></td>
<td>VIST 284</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Third Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>VIST 305</td>
</tr>
<tr>
<td></td>
<td>VIST 339</td>
</tr>
<tr>
<td></td>
<td>VIST 375</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>CARC 301</td>
</tr>
<tr>
<td></td>
<td>or VIST 494</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td></td>
<td>Free elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td>VIST 405</td>
</tr>
<tr>
<td></td>
<td>VIST 432</td>
</tr>
<tr>
<td></td>
<td>or VIST 441</td>
</tr>
<tr>
<td></td>
<td>VIST 439</td>
</tr>
<tr>
<td></td>
<td>Digital arts</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>HIST 106</td>
</tr>
<tr>
<td></td>
<td>VIST 409</td>
</tr>
</tbody>
</table>

Communication (p. 26) | 3
Government/Political science (p. 30) | 3
Social and behavioral sciences (p. 30) | 3

Semester Credit Hours | 15
Total Semester Credit Hours | 120

1. Select from any 300 or 400 level ARTS (p. 906) or VIST (p. 1164) courses
2. Select from ARTS 305, ARTS 308, ARTS 311, ARTS 312, ARTS 315, ARTS 325, ARTS 328, ARTS 353, VIST 310, VIST 465.
3. Semester Away Semester: May be satisfied by study abroad, at another university, internship, or special arrangement by advisor or instructor. Electives may be taken during summer, online, distance education, at another university or college, or at study abroad university.
4. Select from any 300-499 course not used elsewhere. If you do not participate in study abroad, 3 hours will come from ICD. (p. 47)
5. Select from ARTS 303, ARTS 304, ARTS 403, VIST 357, VIST 370, VIST 372, VIST 374, VIST 470, VIST 472, VIST 476/CSCE 447, VIST 477/CSCE 446, VIST 486, VIST 487/CSCE 443.

A grade of C or better must be made in all College of Architecture courses (ARCH, ARTS, CARC, COSC, ENDS, LAND, LDEV, VIST, URPN and VIZA). Students must also make a grade of C or better in any course used as an equivalent substitution for College of Architecture courses that satisfy degree requirements.

Art - Minor

The Minor in Art provides a broad orientation to the visual arts offered by the Department of Visualization to non-visualization majors. Students pursuing other majors may minor in Art by taking the required hours. There are three emphases within the minor: Traditional Media, New Media, and Visual Culture. Based on the student’s interests, an emphasis in either may be selected.

Students must have a minimum cumulative GPA of 3.20 with 70 or fewer semester credit hours completed to apply and must maintain a C average or better in all courses completed as part of the minor in Art. The student’s home college/department may grant, with agreement from the Department of Visualization to non-visualization majors.

Per University guidelines, the student’s home college/department is responsible for advising students pursuing a minor in Art.

To apply, download the Art Minor Form, complete it and turn it into the Visualization Academic Advisor before the deadline. For additional information, please visit our website (https://viz.arch.tamu.edu/undergraduate/minors/).

Submission due dates: Summer: March 1st | Fall: June 1st | Spring: October 1st
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS 349</td>
<td>The History of Modern Art</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following emphases: 15

Traditional Media Emphasis

- ARTS 111 Drawing I
- ARTS 212 Life Drawing
- ARTS 305 Painting I
- ARTS 308 Sculpture
- ARTS 311 Traditional Photography
- ARTS 312 Advanced Photography
- ARTS 315 Figure Drawing For Narrative and Concept Development
- ARTS 328 Advanced Painting
- ARTS 353 Color Theory
- CARC 311 Field Studies in Design Communication
- CARC 331 Field Studies in Design Philosophy

New Media Emphasis

- ARTS 103 Design I
- ARTS 104 Introduction to Graphic Design
- VIST 284 Visualization Techniques
- ARTS 210 Introduction to Digital Photography
- ARTS 303 Graphic Design I
- ARTS 304 Graphic Design II
- ARTS 312 Advanced Photography
- ARTS 325 Digital Painting
- ARTS 403 Graphic Design III
- VIST 374 Multimedia Design and Development
- VIST 465 Video and Time Based Media
- VIST 474 Designing for the Web

Visual Culture Emphasis

- ARTS 339 Themes in Contemporary Art
- ARTS 234 Body Art of Tattoos
- ARTS 333 Visual And Material Culture of the Mediterranean
- ARTS 340 History of the Photographic Image
- ARTS 341 History of Animation
- ARTS 342 History of Graphic Design
- ARTS 343 History of Illustration
- ARTS 345 History of Gaming
- VIST 442 Digital Characters: Art, Technology, Uses and Meaning

Total Semester Credit Hours 18

1. Must be taken prior to additional Traditional Media Emphasis courses.

Game Design and Development - Minor

The Minor in Game Design and Development offers students the opportunity to develop the knowledge and skills associated with the aesthetic and technical aspects of game creation. The minor consists of 16 credit hours, 10 credit hours are required courses and six are from a prescribed menu of courses. The minor provides a foundation in the principles of game design and software development. Students develop core competencies, collaborate on the design and development of game projects, and engage in authentic, situated creative problem-solving to broaden their horizons as interdisciplinary team members.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following: 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CSCE 110 Programming I
 - CSCE 111 and Introduction to Computer Science Concepts and Programming
- CSCE 121 Introduction to Program Design and Concepts
- CSCE 441 Computer Graphics
 - VIST 486 or Introduction to Game Design
- CSCE 443/ VIST 487 Game Development

Select two from:

- COMM 230/Communication Technology Skills
- JOUR 230
- COMM 453 Communication and Video Games
- CSCE 436 Computer-Human Interaction
- VIST 370 Interactive Virtual Environments
- VIST 374 Multimedia Design and Development

Total Semester Credit Hours 16

1. Must be taken prior to additional Traditional Media Emphasis courses.

2. Must be taken prior to additional New Media Emphasis courses.

Minimum GPA of 3.2 for admittance into the minor.

A grade of 'C' or better is required for all courses used towards the minor.
MAYS BUSINESS SCHOOL

Administrative Officers
Dean - Eli Jones, Ph.D.
Associate Dean - Annie L. McGowan, Ph.D.
Director of Academic Services - Peter K. Drysdale, M.S.

General Statement
Mays Business School’s vision is to advance the world’s prosperity. To advance the world’s prosperity means providing a better future for generations who follow, including quality of life, environment and economic systems. To fulfill this vision, Mays’ mission is to be a vibrant learning organization that creates impactful knowledge and develops transformational leaders.

Mays is a comprehensive business school that equips students with a holistic view of an enterprise, a business mindset, functional area expertise and the full range of required technical skills that exist across all areas of business. Diversity, inclusion, and engagement inform decisions and actions at all levels of the organization. Best-in-class business education goes beyond the standard business functional areas – accounting, finance, management, marketing, management information systems, and supply chain management – to deliver an integrated, high-impact, career-launching set of experiences.

The business curriculum has a dual emphasis: a broad-based education in the foundation disciplines of the liberal arts and the sciences; and a focused development of business knowledge and behavioral skills. Lower level business majors learn and practice broad skills in core curriculum areas: American history; communication; creative arts; mathematics; political science; language, philosophy and culture; life and physical sciences; and social and behavioral sciences. They simultaneously take introductory business courses.

Upon successful completion of this broad-based foundation coursework, the student will begin to focus on a major field of study and a full range of business courses. The major field is chosen from accounting, finance, management, management information systems, marketing, and supply chain management. Students admitted to Mays Business Honors pursue an interdepartmental degree in business honors.

This combination of a broad educational foundation and more specialized study produces graduates uniquely prepared for entry-level, career launching organizational positions.

Requirements for Graduation
Requirements for graduation are listed in the Texas A&M University Student Rules and this catalog.

Courses taken to satisfy degree requirements must be taken for letter grades, with the exception of general elective requirements.

Students in Bachelor of Business Administration degree programs must complete with a 2.0 GPR or greater all courses included in the Core Business Knowledge.

Students must complete the Writing requirement. The requirement may be met by taking two writing (W) courses or one W course and one oral communication (C) course. See an academic advisor for additional information.

Students must complete the International and Cultural Diversity (ICD) and Cultural Discourse (CD) requirement.

- For the ICD requirement students must take one course (3 credit hours) from a list of approved courses. Students in BBA degree programs satisfy the ICD requirements by taking 3 hours of coursework from an approved list of international elective courses that also simultaneously fulfill the university’s ICD requirement. See an academic advisor for additional information.
- For the CD requirement students must take one course (3 credit hours) from a list of approved courses. If a course approved as CD also satisfies a Core Curriculum requirement, it can be used to satisfy both requirements. See an academic advisor for additional information.

Transfer of Credits
Acceptance of transfer of credit for business courses will generally be limited to those courses taught in the freshman and sophomore years at this institution. Transfer credit is not offered for upper-level (junior- and senior-level) business courses.

Bachelor’s Degrees and Departments of Instruction
There are five departments of instruction in Mays Business School: Accounting, Finance, Information and Operations Management, Management, and Marketing.

The Bachelor of Business Administration degree is offered in each of the following seven majors: Accounting, Business Honors, Finance, Management, Management Information Systems, Marketing, and Supply Chain Management.

A Bachelor of Science degree in University Studies with concentration in business (USBU) is offered.

Bachelor of Business Administration
The degree of Bachelor of Business Administration is offered in these seven majors: accounting, business honors, finance, management, management information systems, marketing, and supply chain management. Each requires a minimum of 120 semester credit hours of study. The student elects one of these as a “major,” but is also required to study fundamental theory and procedure in each of the basic business functions. In addition, the student takes courses essential to a general liberal education.

The following is a representation of the curriculum requirements by major.

<table>
<thead>
<tr>
<th>Accountancy</th>
<th>Business</th>
<th>Finance Honors</th>
<th>Managerial Finance</th>
<th>Management Information Systems</th>
<th>Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Businesscore Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BBA Core Business Knowledge

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Upper-Level Entry into Accounting, Business Honors, Finance, Management, Management Information Systems, Marketing and Supply Chain Management (BBA)

Students who meet the University and college entrance requirements enter Mays Business School as lower-level business (BUAD) students. Enrollment of Mays Business School students in junior- and senior-level business courses is limited to those who have been admitted to upper-level (also referred to as upper division) in one of the seven BBA majors: accounting, business honors, finance, management, management information systems, marketing, and supply chain management.

Upper-Level Entry Requirements and Application Procedures

Lower-level business (BUAD) students are encouraged to complete the freshman and sophomore sequence of courses as listed under Program Requirements.

The BBA upper-level (UL) entry requirements and application procedures are as follows:

1. **Admission**: To be admitted to an UL BBA major, a student must be admitted to Mays Business School and have:

 1. To satisfy the University’s Cultural Discourse (CD) graduation requirement students must take one course (3 credit hours) from a list of approved courses. If not satisfied through Core Curriculum, an approved CD [KUCD] course can be used to satisfy unmet General Elective requirement.
a. Satisfactorily completed the following five courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus (or its equivalent)</td>
<td>3</td>
</tr>
</tbody>
</table>

b. Submitted application for UL admission no later than prereregistration for the expected UL entry term. NOTE: For summer UL entry, all requirements must be completed BEFORE the first class day of the FIRST SUMMER SESSION.

c. UL admission requirements include completion of the three remaining lower-level Core Business Knowledge (CBK) courses prior to or during the first UL semester. Business students must preregister for and complete the following three remaining lower-level CBK courses at Texas A&M during their first UL semester, unless satisfactorily completed prior to UL entry:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
</tbody>
</table>

d. BUAD students may preregister for upper-level business courses in the semester for which they have applied for upper level. However, students who fail to complete upper-level requirements shall not be permitted to remain registered in upper-level business classes.

2. Transfer Students: Transfer students admitted to Mays Business School will be classified as lower-level business (BUAD) majors until they complete all requirements listed previously in item 1, at which time they may apply for admission to an UL BBA major. Transfer students may immediately apply for UL when admitted to Mays Business School if, and only if, they meet all UL requirements at that time.

3. Change of Curriculum Students: Texas A&M students who change curriculum into Mays Business School from another college or department at the University enter the business school as lower-level Business (BUAD) students until they complete all requirements listed previously in item 1. Change of curriculum students who, when admitted to the business school, qualify to apply for admission to an UL BBA major may do so.

4. Junior- and Senior-Level Business Courses: Preference for available seats in junior- and senior-level business courses will be given to students who have been admitted to a BBA degree granting major in Mays Business School. All ineligible students who pre-register for UL business classes are subject to cancellation of their registration in these courses.

Cooperative Education

Cooperative education is designed to augment the academic program of study with on-the-job training. Academic requirements a business undergraduate must have to be eligible to participate are 45 completed credit hours and a minimum 2.5 cumulative GPA. Interested students may obtain more information from the Career Center (http://careercenter.tamu.edu/) website or (979) 845-5139 or in Room 209, Koldus Building.

Restrictions on Two Degrees

Mays Business School is enrollment managed; demand for admission to the undergraduate business program consistently exceeds available educational resources. Priority is given to qualified applicants for their initial bachelor’s degree.

Double Major

Only Business Honors majors may elect a second major field of study within the BBA degree. The first major must be business honors. The Business Honors student must satisfy all University and Business School requirements and complete all curriculum requirements for each major. This option leads to the granting of one BBA degree with two majors. Additional restrictions may apply.

Double Degree

Approval of double degrees (BBA with BA or BS) is granted by exception only. A written appeal for a double degree may be submitted; the appeal should reflect an excellent academic record, support from the BA or BS granting college, and a compelling justification.

Second Degree

Postbaccalaureate admission to Mays is severely restricted and granted by exception only. Applicants for a postbaccalaureate business degree may present a case for an exception to this enrollment restriction in the essay of a complete Texas A&M admission application. Generally, eligible applicants are denied postbaccalaureate admission but may be encouraged to apply, instead, to an appropriate graduate degree program.

Certificate Programs

Mays offers certificate programs for undergraduate students who want to explore a particular topic area in more depth. Most are open to all BBA majors, and some are designed for specific majors who wish to specialize in a particular area in the major field of study.

Students who pursue any of the certificate programs must complete all requirements for the specific program prior to graduation. Certificates are noted on the transcript after graduation. Information regarding certificates programs and requirements can be found in the Mays Business School Certificates section.

Mays Business School

International: Each program offers BBA degree seeking students the opportunity to study international business and other cultures to develop foundation knowledge to meet global business challenges.

- European Union Business Certificate (p. 268)
- International Business Studies Certificate (p. 269)
- Latin American Business Certificate (p. 270)

Nonprofit and Social Innovation: Offers BBA degree seeking students high-impact educational opportunities that will equip them to contribute positively to nonprofit and social purpose organizations.

- Nonprofit and Social Innovation Certificate (p. 271)
James Benjamin Department of Accounting
• Energy Accounting Certificate (p. 278)
• Internal Audit Certificate (p. 279)

Department of Finance
• Capital Markets and Investments Certificate (p. 282)
• Commercial Banking Certificate (p. 282)
• Corporate Finance Certificate (p. 283)
• Investment Banking and Private Equity Certificate (p. 283)
• Investment Banking Certificate (p. 283)
• Trading, Risk and Investments Certificate (p. 283)

Majors

Mays Business School
• Bachelor of Business Administration in Business Honors (p. 266)
• Bachelor of Science in University Studies, Business Concentration (p. 303)

James Benjamin Department of Accounting
• Bachelor of Business Administration in Accounting (p. 273)
• Bachelor of Business Administration in Accounting and Master of Financial Management, 5-Year Degree Program (p. 275)
• Bachelor of Business Administration in Accounting and Master of Science, 5-Year Degree Program (p. 277)

Department of Finance
• Bachelor of Business Administration in Finance (p. 281)

Department of Information and Operations Management
• Bachelor of Business Administration in Management Information Systems (p. 285)
• Bachelor of Business Administration in Supply Chain Management (p. 287)

Department of Management
• Bachelor of Business Administration in Management, Consulting/General Management Track (p. 290)
• Bachelor of Business Administration in Management, Entrepreneurial Leadership Track (p. 291)
• Bachelor of Business Administration in Management, Human Resource Management Track (p. 293)
• Bachelor of Business Administration in Management, Pre-Law Track (p. 294)

Department of Marketing
• Bachelor of Business Administration in Marketing, Advertising Strategy Track (p. 297)
• Bachelor of Business Administration in Marketing, Analytics and Consulting Track (p. 298)
• Bachelor of Business Administration in Marketing, Healthcare Marketing Track (p. 300)

Masters

Mays Business School
• Master of Business Administration in Business Administration
 (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/ms/ba/)
 • Mays Executive MBA Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/executive-mba/)
 • Mays Professional MBA Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/professional-mba/)
• Master of Science in Analytics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/ms-analytics/)
• Master of Science in Business (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/ms/)

James Benjamin Department of Accounting
• Master of Science in Accounting (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/accounting/ms/)
Department of Finance
- Master of Financial Management in Financial Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/finance/mfm/)
- Master of Land and Property Development (LPDV) and Master of Real Estate (LERE) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/architecture/landscape-architecture-urban-planning/combined-mlp-mre/)
- Master of Real Estate in Land Economics and Real Estate (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/finance/mre/)
- Master of Science in Finance (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/finance/ms/)

Department of Information and Operations Management
- Master of Science in Management Information Systems (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/information-operations-management/ms/)

Department of Management
- Master of Science in Entrepreneurial Leadership (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/management/entrepreneurial-leadership-ms/)
- Master of Science in Human Resource Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/management/ms/)

Department of Marketing
- Master of Science in Marketing (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/marketing/ms/)

Doctoral

Mays Business School
- Doctor of Philosophy in Business Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/interdepartmental/phd/)

Department of Management
- Doctor of Philosophy in Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/business/management/phd/)

Business Honors - BBA

Mays Business School offers a Business Honors program. Selection through a separate application process is required to be eligible for participation in Business Honors. Prospective students apply to Business Honors as incoming freshmen or during the spring semester of their freshman year. Both selection cycles are competitive processes. More information is available at https://mays.tamu.edu/bba-business-honors/.

Bachelor of Business Administration

The Bachelor of Business Administration (BBA) in Business Honors degree is available only to students admitted to Mays’ Business Honors program. The Business Honors major is designed for students whose academic excellence is matched by strong character, leadership skills, and teamwork. The Business Honors major prepares students to begin careers in all fields or to continue on to a graduate program or professional school.

Students pursuing a BBA in Business Honors must maintain a cumulative GPA of 3.5 or higher and meet other program requirements to continue in Business Honors. Students are required to complete a total of 30 hours of honors coursework plus an internship for credit. Other program requirements apply.

Business Honors majors work closely with an academic advisor to identify a set of courses to meet their academic goals. They may pursue a double major in Business Honors and one of the six other BBA majors (accounting, finance, management, management information systems, marketing and supply chain management).

Upper-Level Entry Requirements

Admission to an upper level (UL) major in Business Honors requires satisfactory completion of specific coursework, in addition to the application and selection process for Business Honors program participation. To review UL requirements and application procedures see Upper-Level Entry Requirements and Application Procedures. (p. 262)

Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Communication</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
</tbody>
</table>

| Life and physical sciences (p. 26) | 3 |
| Social and behavioral sciences (p. 30) | 3 |

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>3</td>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
</tr>
<tr>
<td>3</td>
<td>ECON 203</td>
</tr>
<tr>
<td>3</td>
<td>ISTM 210</td>
</tr>
<tr>
<td>3</td>
<td>POLS 206</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Upper-Level Business Honors Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>3</td>
</tr>
<tr>
<td>Upper-Division Business Elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Upper-Division Business Elective

Semester Credit Hours 3

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSN 484</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
</tr>
<tr>
<td>Upper-Division Business Elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>Upper-Division Business Elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Business Honors Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>3</td>
</tr>
<tr>
<td>Upper-Division Business Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper-Division Business Elective

Semester Credit Hours 3

Total Program Hours 120

Business - Minor

Mays Business School offers a business minor (http://mays.tamu.edu/business-minors/) for undergraduate non-business majors. Students interested in pursuing a future MBA may find that when combined with appropriate statistics and economics coursework, the business minor provides the business foundation required by most MBA programs.

Students applying for a business minor must have a 2.0 or better overall GPA. Application is made in the student’s home college or major department. Students are encouraged to start taking business minor courses as soon as the minor is declared.

To be awarded the business minor and receive transcript recognition, students must obtain a grade of C or better in each required course. Once declared, minor requirements become graduation requirements. The
minor will be recognized on the transcript after graduation, but not on the diploma.

Program Requirements

The minor in business consists of six specific courses chosen to develop a foundational knowledge in the basic aspects of business, including accounting, finance, management, marketing, and management information systems.

The courses listed below constitute the 18 hours required for a minor in business.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles (or TCCNS ACCT 2301 or 2401)</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 209</td>
<td>Business Information Systems Concepts 1</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law (or Blinn College BUSI 2371) 2</td>
<td>3</td>
</tr>
<tr>
<td>FINC 409</td>
<td>Survey of Finance Principles 3</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management 3</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 409</td>
<td>Principles of Marketing 3</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

1 The Information Systems CLEP exam is available for students who have not taken ISTM 209 to demonstrate mastery of the course concepts. See http://testing.tamu.edu/Exams/CLEP (http://testing.tamu.edu/Exams/CLEP/).
2 MGMT 212 cannot be used to meet this requirement.
3 Course must be taken in residence at Texas A&M. No transfer courses or substitutions will be allowed.

Students must earn a grade of 'C' or better in each course listed above to be awarded the business minor and receive transcript recognition.

European Union Business - Certificate

The Certificate in European Business (EUB) is designed to provide Mays Business School undergraduate students seeking a BBA degree the opportunity to gain a better understanding of European business by studying its history, politics, and business models.

The EUB requires 21 credit hours of course work that can be integrated as part of the BBA business curriculum. Also, a European Union (EU) international experience is required along with demonstration of the ability to conduct business transactions in an EU language (other than English).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>One course on European business: 1</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 456</td>
<td>European Integration and Business</td>
<td></td>
</tr>
</tbody>
</table>

Select three of the following international business courses: 2

- ACCT 445/IBUS 445 International Accounting
- AGEC 452/3 International Trade and Agriculture
- AGEC 453 International Agribusiness Marketing 3
- FINC 445/IBUS 446 International Finance
- IBUS 455 Asian Business Environment
- IBUS 457/Global Entrepreneurship
- MGMT 457
- IBUS 459 Latin American Markets
- MGMT 450/International Environment of Business
- MGMT 452/International Management
- MKTG 401/Global Marketing
- MKTG 402/International Marketing: Study Abroad

Select three of the following electives focused on Europe: 9

- ECON 320 Economic Development of Europe
- HIST 336 Europe Since 1919
- HIST 338 The Rise of the European Middle Class
- HIST 339 Eastern Europe Since 1453
- HIST 421 European Intellectual History in the Twentieth Century
- HIST 477/WGST 477 Women and Gender in Modern European History
- POLS 322 Western European Government and Politics
- POLS 432 The Politics of European Union

Total Semester Credit Hours 21

1 IBUS 456 or another course that focuses specifically on conducting business in the European Union. Must have prior approval.
2 Three hours must be taken in the student's business major.
3 Either AGEC 452 or AGEC 453 is required for AGBU majors.

Approved European Union Experience

An approved international experience in an EU country. 1 month minimum. Options available include:

- Mays or university-wide reciprocal exchange program
- Mays or TAMU study abroad program or field trip.
- International internship (for IBUS 484 credit)
- Other study abroad or volunteer program (with prior approval)

Foreign Language Competence

To determine competence in a non-English European Union language, a student must pass an oral competency exam in their desired EU language.
as administered by a Mays faculty member, or pass a designated proficiency exam upon completion of the European Union experience.

International Business Studies - Certificate

The Certificate in International Business Studies (IBS) is designed to offer Mays Business School undergraduate students seeking a BBA degree the opportunity to study international business and other cultures to develop a knowledge foundation to meet global business challenges.

The IBS requires 18 credit hours of course work that can be integrated as part of the BBA business curriculum. Also, an international experience is required. Students who pursue the IBS certificate program must complete all requirements prior to graduation.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select four of the following international business courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 445/ IBUS 445</td>
<td>International Accounting</td>
<td>12</td>
</tr>
<tr>
<td>AGEC 452</td>
<td>International Trade and Agriculture Marketing</td>
<td>2</td>
</tr>
<tr>
<td>AGEC 453</td>
<td>International Agribusiness Marketing</td>
<td>2</td>
</tr>
<tr>
<td>FINC 445/ IBUS 446</td>
<td>International Finance</td>
<td></td>
</tr>
<tr>
<td>IBUS 455</td>
<td>Asian Business Environment</td>
<td></td>
</tr>
<tr>
<td>IBUS 456</td>
<td>European Integration and Business</td>
<td></td>
</tr>
<tr>
<td>IBUS 457/ MGMT 457</td>
<td>Global Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>IBUS 459</td>
<td>Latin American Markets</td>
<td></td>
</tr>
<tr>
<td>MGMT 450/IBUS 450</td>
<td>Business</td>
<td></td>
</tr>
<tr>
<td>MGMT 452/IBUS 452</td>
<td>International Management</td>
<td></td>
</tr>
<tr>
<td>MKTG 401/IBUS 401</td>
<td>Global Marketing</td>
<td></td>
</tr>
<tr>
<td>MKTG 402/IBUS 402</td>
<td>International Marketing: Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abroad</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following options:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Option 1:** Foreign language
- **Option 2:** Any two of the non-business international courses below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 452</td>
<td>International Trade and Agriculture</td>
<td></td>
</tr>
<tr>
<td>AGEC 453</td>
<td>International Agribusiness Marketing</td>
<td></td>
</tr>
<tr>
<td>ANTH 205</td>
<td>Peoples and Cultures of the World</td>
<td></td>
</tr>
<tr>
<td>ANTH 300</td>
<td>Cultural Change and Development</td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>ECON 320</td>
<td>Economic Development of Europe</td>
<td></td>
</tr>
<tr>
<td>ECON 330</td>
<td>Economic Development</td>
<td></td>
</tr>
<tr>
<td>FREN 301</td>
<td>French Society and Culture in Evolution</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 18

Program Requirements Table:

- | Code | Title |
- | FREN 322 | French Literature II |
- | FREN 336 | Politics, Culture and Society in Contemporary France |
- | FREN 418 | Seminar in French Civilization |
- | GEOG 202 | Geography of the Global Village |
- | GEOG 311 | Cultural Geography |
- | GEOG 320 | The Middle East |
- | GEOG 323 | Geography of Latin America |
- | GERM 322 | German Culture and Civilization II |
- | HIST 210 | Russian Civilization |
- | HIST 305 | Chicana/o History since 1848 |
- | HIST 336 | Europe Since 1919 |
- | HIST 339 | Eastern Europe Since 1453 |
- | HIST 342 | Latin America Since 1810 |
- | HIST 345/ AFST 345 | Modern Africa |
- | HIST 346/ AFST 346 | History of South Africa |
- | HIST 348 | Modern Middle East |
- | HIST 352/ ASIA 352 | Modern East Asia |
- | HIST 356/ ASIA 356 | Twentieth Century Japan |
- | HIST 402 | Germany Since 1815 |
- | HIST 407 | History of France Since 1815 |
- | HIST 412 | Soviet Union 1917-1991 |
- | HIST 439 | Twentieth Century Britain |
- | HIST 441 | History of Mexico, 1821 to the Present |
- | HIST 449 | History of Brazil, 1822 to the Present |
- | HIST 464 | International Developments Since 1918 |
- | HIST 477/ WGST 477 | Women and Gender in Modern European History |
- | POLS 322 | Western European Government and Politics |
- | POLS 323 | Political Systems of Latin America |
- | POLS 324 | Politics of Global Inequality |
- | POLS 338 | Government and Politics of the Former Soviet Union |
- | POLS 365 | Asian Governments and Politics |
- | SOCI 329 | Pacific Rim Behavior |
- | SPAN 312 | Hispanic Culture and Civilization: 18th Century to Present |
- | SPAN 320 | Introduction to Hispanic Literature |
- | SPAN 410 | Hispanic Film |
- | SPAN 411 | Contemporary Hispanic Society and Culture |
- | SPAN 412 | U.S. Hispanic Writers |
- | SPAN 421 | Spanish Language Poetry |
- | SPAN 450 | Contemporary Spanish and Spanish-American Literature |
Three hours must be taken in the student’s business major. Business courses taken through Mays and university-wide exchange may also be approved.

Either course is required for AGBU majors.

Must be the same language (e.g. SPAN 101 & SPAN 102) and taken at the university level. Credit-by-exam not allowed.

Non-business courses taken abroad as part of a TAMU faculty-led, semester exchange program, or through direct enrollment in a foreign institution may also be used to satisfy this requirement.

Approved International Experience

An approved international experience, one month minimum, is required. Options available include:

- Mays or university-wide reciprocal exchange program
- Mays or TAMU study abroad program or field trip
- International internship (for IBUS 484 credit)
- Other study abroad or volunteer program (with prior approval)

Latin American Business - Certificate

The Certificate in Latin American Business (LAB) is designed to provide Mays Business School undergraduate students seeking a BBA degree the opportunity to gain a better understanding of Latin American business by studying its history, politics and business models.

The LAB requires 21 credit hours of course work that can be integrated as part of the BBA business curriculum. Also, a Latin American international experience is required along with demonstration of the ability to conduct business transactions in Spanish or Portuguese.

Students who pursue the LAB certificate program must complete all requirements prior to graduation.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One course on Latin American business: ¹</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 459</td>
<td>Latin American Markets ¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three of the following international business courses: ²</td>
<td>9</td>
</tr>
<tr>
<td>ACCT 445</td>
<td>International Accounting</td>
<td></td>
</tr>
<tr>
<td>IBUS 445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINC 445</td>
<td>International Finance</td>
<td></td>
</tr>
<tr>
<td>IBUS 446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBUS 455</td>
<td>Asian Business Environment</td>
<td></td>
</tr>
<tr>
<td>IBUS 456</td>
<td>European Integration and Business</td>
<td></td>
</tr>
<tr>
<td>IBUS 484</td>
<td>International Business Internship</td>
<td></td>
</tr>
<tr>
<td>IBUS 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>MGMT 450/</td>
<td>International Environment of</td>
<td></td>
</tr>
<tr>
<td>IBUS 450</td>
<td>Business</td>
<td></td>
</tr>
<tr>
<td>MGMT 452/</td>
<td>International Management</td>
<td></td>
</tr>
<tr>
<td>IBUS 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGMT 453/</td>
<td>Emerging Economies: Brazil, Russia,</td>
<td></td>
</tr>
<tr>
<td>IBUS 453</td>
<td>India, China</td>
<td></td>
</tr>
<tr>
<td>MGMT 457/</td>
<td>Global Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>IBUS 457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTG 401/</td>
<td>Global Marketing</td>
<td></td>
</tr>
<tr>
<td>IBUS 401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MKTG 402/</td>
<td>International Marketing: Study</td>
<td></td>
</tr>
<tr>
<td>IBUS 402</td>
<td>Abroad</td>
<td></td>
</tr>
<tr>
<td>MKTG 403/</td>
<td>International Market Entry</td>
<td></td>
</tr>
<tr>
<td>IBUS 403</td>
<td>Strategies</td>
<td></td>
</tr>
<tr>
<td>SCMT 340</td>
<td>Global Supply Chain Management</td>
<td></td>
</tr>
</tbody>
</table>

Select three of the following electives focused on Latin America:

- AGEC 452 International Trade and Agriculture
- AGEC 453 International Agribusiness Marketing
- ANTH 308 Archaeology of Mesoamerica
- ECON 312 Poverty, Inequality and Social Policy
- ECON 330 Economic Development
- GEOG 323 Geography of Latin America
- HIST 304 Southwest Borderlands
- HIST 305 Chicana/o History since 1848
- HIST 341 Latin America to 1810
- HIST 342 Latin America Since 1810
- HIST 441 History of Mexico, 1821 to the Present
- POLS 323 Political Systems of Latin America
- POLS 362 Latin American Political Thought
- SPAN 311 Hispanic Culture and Civilization to the 18th Century
- SPAN 312 Hispanic Culture and Civilization: 18th Century to Present
- SPAN 410 Hispanic Film
- SPAN 411 Contemporary Hispanic Society and Culture

Total Semester Credit Hours 21

1. IBUS 459 or another course that focuses specifically on conducting business in Latin America (must have prior approval).
2. Three hours must be taken in the student’s business major.

Approved Latin American Experience

An approved international experience in a Latin American country, a minimum of 1 month. Options available include:

- Mays or university-wide reciprocal exchange program
- Mays or TAMU study abroad program or field trip
- International internship (for IBUS 484 credit)
- Other study abroad or volunteer program (with prior approval)

Foreign Language Competence

To determine competence in Spanish or Portuguese, a student must pass an oral competency exam administered by a Mays faculty member, or pass a designated proficiency exam upon completion of the Latin American experience.
Nonprofit and Social Innovation - Certificate

The Nonprofit and Social Innovation Certificate offers Mays Business School students the ability to tailor their education towards a career of service. The program provides students with high-impact educational opportunities that will equip them to contribute positively to nonprofit and social purpose organizations.

The certificate includes 13 hours of coursework and a required internship with a social purpose organization (nonprofit or for-profit) that will enhance a student’s undergraduate education to include preparation for occupations, service roles, and graduate study.

Not-for-profit organizations make up one of the fastest growing employment sectors in the country, and are actively looking for graduates who can use their skills to immediately make an impact. Also, organizations around the world are increasingly recognizing the importance of addressing societal challenges. This certificate allows students to contribute toward the goal of advancing the world’s prosperity.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSN 232</td>
<td>Resource Development 1</td>
<td>3</td>
</tr>
<tr>
<td>or BUSN 48</td>
<td>or Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>BUSN 302</td>
<td>Nonprofit Perspectives 2</td>
<td>1</td>
</tr>
<tr>
<td>MGMT 432</td>
<td>Managing the Nonprofit Organization</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses

Select two or more of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSN 489</td>
<td>Special Topics in... (Strategic Philanthropy)</td>
<td></td>
</tr>
<tr>
<td>MGMT 460</td>
<td>Managing Projects</td>
<td></td>
</tr>
<tr>
<td>MKTG 440</td>
<td>Services Marketing</td>
<td></td>
</tr>
<tr>
<td>MKTG 432</td>
<td>Corporate Social Responsibility</td>
<td></td>
</tr>
<tr>
<td>RPTS 308</td>
<td>Foundations of Community and Community Development</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 13

1. BUSN 489 Strategic Philanthropy.
2. The Nonprofit Sector or Business Solutions to Solve Social Problems.

An internship with a social purpose organization (nonprofit or for-profit) is required. The internship does not need to be taken for academic credit. An internship completed for a student’s major (e.g., MGMT 484, MKTG 484, FINC 484, ISTM 484, SCMT 484 or ACCT 484) may be applied to this certificate provided it is with a social purpose organization (nonprofit or for-profit). The internship must offer meaningful, professional-level opportunities to apply business knowledge and skills.

Exceptions based on course offerings require Certificate Coordinator approval.

James Benjamin Department of Accounting

The accounting profession continues to be recognized as one of the world's leading professions and as one offering many opportunities for a challenging career. The major challenge confronting the accounting profession today is the continuous development of accounting and information systems that can be utilized by business firms operating in an increasingly complex global environment. Within this environment, business firms and government units are generating and utilizing information at an accelerating rate.

A Bachelor of Business Administration (BBA) degree in accounting provides the opportunity for entry into a career offering a variety of different and challenging paths. Many accounting graduates are employed by public accounting firms that provide assurance, tax and other services to all types of organizations. Other accounting graduates pursue careers with business firms and financial institutions, within all levels of government, and as accounting educators. All of these careers provide an opportunity to earn the Certified Public Accountant (CPA) license and to serve society by maintaining the highest levels of integrity.

The American Institute of Certified Public Accountants (AICPA) recognizes the need for technically competent graduates entering the accounting profession. In response to the recommendations of the AICPA, other professional accounting organizations, and many professional accounting firms, the State of Texas requires candidates for the CPA examination to have a minimum of 150 semester hours of college coursework, including at least 30 hours of upper-division accounting courses. As a consequence, highly motivated students are encouraged to give serious consideration to pursuing advanced studies to enhance their potential for a successful accounting career. The BBA degree alone does not meet the requirements to sit for the CPA examination in Texas.

The James Benjamin Department of Accounting offers a 5-year combined professional program that students apply for admission to enter during their junior year. The Professional Program offers a curriculum integrating undergraduate and graduate education. Graduates receive a BBA and a Master of Science degree (MS) or receive a BBA and a Master of Financial Management (MFM). This program offers opportunities for successful and motivated students to pursue academic coursework that challenges both their interests and abilities. Courses are taught by experienced faculty with superior teaching and professional credentials and are limited in class size.

Objectives of the Professional Program include developing sound conceptual, technical, analytical and communication skills that are required for success in the accounting profession. The program develops decision making and teamwork skills through extensive use of discussions and case studies. Also, the program enables the student to select a specialization in assurance services/information management, information systems, financial management, marketing, entrepreneurship, taxation, and tax technology. Each track offers the student an opportunity to participate in a professional accounting internship which can be taken for course credit, should the student elect to do so.

The department also offers a traditional Master's Program (Master of Science in Accounting) that students enter after completion of the Bachelor's degree. For more details about the Professional Program or the Master's Program, refer to the Texas A&M University Graduate and
Professional Catalog or contact the director of the Professional Program in the James Benjamin Department of Accounting.

Students must be able to complete the coursework of any of the aforementioned programs in College Station, TX.

Please be advised that Texas A&M offers many programs that lead to an occupational license as defined under Texas Occupations Code 58.001. Licensing authorities may have guidelines concerning prior criminal convictions that would make an individual ineligible for issuance of a given license. Applicants are encouraged to review all eligibility requirements related to degrees resulting in a license. Note the following:

- An individual who has been convicted of an offense may be ineligible for issuance of an occupational license.
- Licensing authorities must establish and make available guidelines explaining why a particular offense is considered a basis for ineligibility for a particular license and other criterion that may affect the decision to grant or withhold a license.
- An individual has the right to request a criminal history evaluation letter regarding their eligibility for a license issued under Texas Occupations Code 53.102.

Questions related to eligibility requirements to take the CPA examination in Texas should be directed to the Texas State Board of Public Accountancy (http://txrules.elaws.us/rule/title22_chapter525_sec.525.1/) (or the licensing authority in other jurisdictions).

Faculty

Ahmed, Anwer S, Professor
Accounting
PHD, University of Rochester, 1992

Allen, Natalie L, Senior Lecturer
Accounting
MS, Texas A&M University, 1988

Amosky, Caroline, Lecturer
Accounting
BBA, Texas A&M University, 2015

Barrett, Jeannie, Senior Lecturer
Accounting
MBA, Sam Houston State University, 2002

Blasor, Tara N, Senior Lecturer
Accounting
BBA, Texas A&M University, 2007

Cline, Kayla M, Clinical Assistant Professor
Accounting
PHD, Texas A&M University, 2017

Cohen, Daniel, Professor
Accounting
PHD, Northwestern University, 2004

Diaz, Michelle C, Clinical Associate Professor
Accounting
PHD, Texas A&M University, 2005

Ege, Matthew S, Associate Professor
Accounting
PHD, The University of Texas of Austin, 2013

Farmer, Karen C, Lecturer
Accounting
MS, Texas A&M University, 2009

Flagg, James C, Associate Professor
Accounting
PHD, Texas A&M University, 1988

Foster, Courtney E, Lecturer
Accounting
BBA, Texas A&M University, 2008

Garza, Brent A, Assistant Professor
Accounting
PHD, University of Illinois-Urbana-Champaign, 2017

Green, Jeremiah, Associate Professor
Accounting
DBA, University of North Carolina - Chapel Hill, 2010

Grossman, Steven D, Associate Professor
Accounting
PHD, Tufts University, 1972

Harding, Michael, Lecturer
Accounting
BBA, Texas A&M University, 2019

Head, Michael J, Lecturer
Accounting
BS, University of Missouri - Columbia, 1980

Hepfer, Bradford F, Assistant Professor
Accounting
DBA, The University of Iowa, 2016

Kartapanis, Antonis, Assistant Professor
Accounting
PHD, The University of Texas at Austin, 2019

Knoop, Jacqueline D, Lecturer
Accounting
MS, Texas A&M University, 1997

Kolasinski, Ana Lucia, Lecturer
Accounting
MS, Texas A&M University, 2017

Larkin, Ryan E, Senior Lecturer
Accounting
MAC, University of Utah, 2002

Lassila, Dennis R, Professor
Accounting
PHD, University of Minnesota, 1981

Loudder, Martha L, Professor
Accounting
PHD, Arizona State University, 1990
McAnally, Mary L, Professor
Accounting
PHD, Stanford University, 2011

McElroy, Ted, Executive Professor
Accounting
MS, Texas A&M University, 1980

McGowan, Annie L, Associate Professor
Accounting
PHD, University of North Texas, 1994

McGuire, Sean T, Associate Professor
Accounting
PHD, University of Georgia, 2008

Moore, Morgan E, Lecturer
Accounting
MAC, University of Texas at Austin, 2008

Ray, Korok, Associate Professor
Accounting
PHD, Standard Graduate School of Business, 2004

Redman, Karen S, Executive Professor
Accounting
BBA, Texas A&M University, 1980

Rice, Sarah C, Associate Professor
Accounting
PHD, The Ohio State University, 2007

Robinson, John R, Professor
Accounting
PHD, University of Michigan, 1981
JD, University of Michigan, 1979

Sanders, Joan T, Senior Lecturer
Accounting
MS, Texas A&M University, 1990

Shafron, Emily, Assistant Professor
Accounting
PHD, The University of Georgia, 2019

Sharp, Nathan Y, Professor
Accounting
PHD, University of Texas, 2007

Shaub, Michael K, Clinical Professor
Accounting
PHD, Texas Tech University, 1989

Stasny, Mary A, Senior Lecturer
Accounting
PHD, Texas A&M University, 2010

Strawser, Jerry R, Professor
Accounting
PHD, Texas A&M University, 1985

Strawser, Robert H, Professor
Accounting
DBA, University of Maryland, 1969

Stuber, Sarah, Assistant Professor
Accounting
PHD, Michigan State University, 2019

Tse, Senyo Y, Professor
Accounting
PHD, University of California - Berkeley, 1983

Wang, Dechun, Professor
Accounting
PHD, University of Missouri - Columbia, 2004

Weaver, Andy, Lecturer
Accounting
MS, Texas A&M University, 1987

Weaver, Constance D, Professor
Accounting
PHD, Arizona State University, 1997

Wolfe, Christopher J, Professor
Accounting
PHD, Kent State University, 1984

Yust, Christopher G, Assistant Professor
Accounting
PHD, The University of Texas of Austin, 2015

Majors

- Bachelor of Business Administration in Accounting (p. 273)
- Bachelor of Business Administration in Accounting and Master of Financial Management, 5-Year Degree Program (p. 275)
- Bachelor of Business Administration in Accounting and Master of Science, 5-Year Degree Program (p. 277)

Certificates

- Energy Accounting Certificate (p. 278)
- Internal Audit Certificate (p. 279)

Accounting - BBA

A Bachelor of Business Administration (BBA) degree from an AACSB-Accredited (Association to Advance Collegiate Schools of Business) Accounting program prepares students for careers that offer numerous opportunities for growth and development. This degree program provides the minimum credentials necessary for entry into most accounting careers. However, the BBA degree does not meet the requirements to sit for the CPA examination in Texas.

Many accounting graduates are employed by public accounting firms that provide assurance, tax and other services to all types of organizations. Other accounting graduates pursue careers with business firms and financial institutions, within all levels of government, and as accounting educators.

Upper Level Entry Requirements

Admission to the upper level major of accounting requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).
Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- COMM 203 Public Speaking
- COMM 205 Communication for Technical Professions
- COMM 243 Argumentation and Debate
- ENGL 104 Composition and Rhetoric

Life and physical sciences (p. 26) - 3
Social and behavioral sciences (p. 30) - 3

Semester Credit Hours - 15

Spring

ECON 202 Principles of Economics - 3
MATH 142 Business Calculus - 3
American history (p. 29) - 3
Language, philosophy and culture (p. 27) - 3
Life and physical sciences (p. 26) - 3

Semester Credit Hours - 15

Second Year

Fall

ACCT 229 Introductory Accounting - 3
ECON 203 Principles of Economics - 3
ISTM 210 Fundamentals of Information Systems - 3
POLS 206 American National Government - 3

Select one of the following:

- COMM 203 Public Speaking
- COMM 205 Communication for Technical Professions
- COMM 243 Argumentation and Debate
- ENGL 104 Composition and Rhetoric

Semester Credit Hours - 15

Spring

ACCT 230 Introductory Accounting - 3
MGT 211 Legal and Social Environment of Business - 3
POLS 207 State and Local Government - 3
Creative arts (p. 29) - 3
Life and physical sciences (p. 26) - 3

Semester Credit Hours - 15

Total Semester Credit Hours - 60

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
2. For those students under ROTC contract, see Requirement 7 of the 'Requirements for a Baccalaureate Degree' (p. 31).
3. MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Accounting Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 327</td>
<td>Financial Reporting I</td>
<td>3</td>
</tr>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

International elective - 3

Semester Credit Hours - 15

Spring

ACCT 322 Professional Development Seminar – BBA - 1
ACCT 328 Financial Reporting II - 3
ACCT 329 Cost Management and Analysis - 3
ACCT 421 Critical Communication Skills for Accountants - 2
MGMT 363 Managing People in Organizations - 3
SCMT 364 Operations Management - 3

Semester Credit Hours - 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 405</td>
<td>Income Tax</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 427</td>
<td>Accounting and Financial Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 212</td>
<td>Business Law</td>
<td>3</td>
</tr>
</tbody>
</table>

General electives - 6

Semester Credit Hours - 15

Spring

ACCT 407 Auditing - 3
MGMT 466 Strategic Management - 3

International elective - 3

General electives - 6

Semester Credit Hours - 15

Total Semester Credit Hours - 60
Six hours required. A complete list of approved courses is available in the Undergraduate Program Office, Room 238, Wehner Building. In the BBA curricula, the 6 hours of approved international elective courses simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.

This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.

General elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply; see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

No more than 33 hours of accounting courses may be applied toward the undergraduate degree.

See Department of Accounting advisors for more information on the requirements to sit for the CPA examination.

Professional Program students will follow the degree plan coordinated by the Professional Program office.

Professional Program students will substitute ACCT 321 to replace 2 hours of General electives.

Accounting- 5-Year Bachelor of Business Administration in Accounting/Master of Financial Management

The James Benjamin Department of Accounting offers a combined 5-year, AACSB-accredited (Association to Advance Collegiate Schools of Business) Professional Program in Accounting. Professional Program graduates receive a Bachelor of Business Administration (BBA) in Accounting and a Master of Financial Management (MFM). Students must apply for admission and be accepted into the Professional Program to be eligible.

The objectives of the Professional Program include developing sound conceptual, technical, analytical and communication skills that are required for success in the accounting profession. Many accounting graduates are employed by public accounting firms that provide assurance, tax and other services to all types of organizations. Other accounting graduates pursue careers with business firms and financial institutions, within all levels of government, and as accounting educators.

Upper Level Entry Requirements

Admission to the upper level major of accounting requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences 1</td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus 3</td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 2</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 2</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours | 60

1 MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.

2 For those students under ROTC contract, see Requirement 7 of the 'Requirements for a Baccalaureate Degree' (p. 31).

Texas A&M University
MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 327</td>
<td>Financial Reporting I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 321</td>
<td>Professional Development Seminar</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ACCT 328</td>
<td>Financial Reporting II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACCT 329</td>
<td>Cost Management and Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACCT 421</td>
<td>Critical Communication Skills for Accountants</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 405</td>
<td>Income Tax</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCT 427</td>
<td>Accounting and Financial Information Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGMT 212</td>
<td>Business Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Elective</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACCT 407</td>
<td>Auditing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General Electives</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Fall</th>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graduate Coursework</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>Code</td>
<td>Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td></td>
<td>Graduate Coursework</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masters of Financial Management Degree Requirements</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>ACCT 628 Business Application Modeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCT 647/ FINC 647 Financial Statement Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCT 650 Accounting Ethics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCT 651 Development of Accounting Thought</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 629 Financial Management I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 632 Investment Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 641 Valuation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 642 Analysis of Money and Capital Markets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 645/ IBUS 645 International Finance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINC 665 Derivative Securities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accounting elective</td>
<td>7</td>
</tr>
</tbody>
</table>

1 Six hours required. A complete list of approved courses is available in the Undergraduate Program Office, Room 238, Wehner Building.

2 In the BBA curricula, the six hours of approved international elective courses simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.

3 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.

4 May also take MGMT 643.

5 General elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply; see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

6 May also take MGMT 680.

7 Students will follow the graduate coursework coordinated by the Professional Program office.

No more than 33 hours of accounting courses may be applied toward the undergraduate degree.

See Department of Accounting advisors for more information on the requirements to sit for the CPA examination.
The program includes a total of 156 hours which up to 6 hours may be applied toward both the Bachelor of Business Administration in Accounting and the Master of Financial Management.

Total Program Hours 156

Accounting - 5-Year Bachelor of Business Administration/Master of Science

The James Benjamin Department of Accounting offers a combined 5-year, AACSB-accredited (Association to Advance Collegiate Schools of Business) Professional Program in Accounting. Professional Program graduates receive a Bachelor of Business Administration (BBA) in Accounting and a Master of Science degree within a variety of business disciplines. Students must apply for admission and be accepted into the Professional Program to be eligible.

The objectives of the Professional Program include developing sound conceptual, technical, analytical and communication skills that are required for success in the accounting profession. Many accounting graduates are employed by public accounting firms that provide assurance, tax and other services to all types of organizations. Other accounting graduates pursue careers with business firms and financial institutions, within all levels of government, and as accounting educators.

Upper Level Entry Requirements

Admission to the upper level major of accounting requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus ³</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

¹ MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
² For those students under ROTC contract, see Requirement 7 of the 'Requirements for a Baccalaureate Degree' (p. 31).
³ MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSB 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Accounting Program

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 327</td>
<td>Financial Reporting I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
</table>
The Certificate in Energy Accounting (CEA) offers Mays BBA Accounting majors who have an interest in working within the energy sector an opportunity to set themselves apart and find a place in an exciting, competitive industry that provides a wide variety of opportunities – including international. The CEA program is designed to provide undergraduate accounting students high impact learning experiences related to the energy industry.

All CEA requirements must be completed prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

No more than 33 hours of accounting courses may be applied toward the undergraduate degree.

See Department of Accounting advisors for more information on the requirements to sit for the CPA examination.

The program includes a total of 156 hours which up to 6 hours could be applied toward both the Bachelor of Business Administration in Accounting and the Master of Science.

Total Program Hours 156

Energy Accounting - Certificate

The Certificate in Energy Accounting (CEA) offers Mays BBA Accounting majors who have an interest in working within the energy sector an opportunity to set themselves apart and find a place in an exciting, competitive industry that provides a wide variety of opportunities – including international. The CEA program is designed to provide undergraduate accounting students high impact learning experiences related to the energy industry.

All CEA requirements must be completed prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Degree Requirements</td>
<td></td>
</tr>
<tr>
<td>ACCT 628</td>
<td>Business Application Modeling</td>
<td>7</td>
</tr>
<tr>
<td>ACCT 646/IBUS 646</td>
<td>International Accounting</td>
<td>7</td>
</tr>
<tr>
<td>ACCT 647/FINC 647</td>
<td>Financial Statement Analysis</td>
<td>7</td>
</tr>
<tr>
<td>ACCT 650</td>
<td>Accounting Ethics</td>
<td></td>
</tr>
<tr>
<td>ACCT 651</td>
<td>Development of Accounting Thought</td>
<td>7</td>
</tr>
<tr>
<td>ACCT 684</td>
<td>Professional Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Track courses</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>One hour required. A complete list of approved courses is available in the Undergraduate Program Office, Room 238, Wehner Building. In the BBA curricula, the 3 hours of approved international elective courses simultaneously fulfill the University's International and Cultural Diversity Graduation requirement.</td>
<td></td>
</tr>
</tbody>
</table>

2 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.

3 May also take MGMT 643.

4 General elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply: see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

5 May also take MGMT 680.

6 Students will follow the graduate coursework coordinated by the Professional Program office.

7 Accounting courses are subject to change based on the track students select.

8 Track courses are specific to the individual track that is chosen once you are admitted into the Professional Program. Tracks other than Financial Management include Audit, Tax, Tax Technology, Entrepreneurial Leadership, Nonprofit, Management Information Systems, and Marketing.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 408</td>
<td>Internal Auditing</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 410</td>
<td>Fraud Examination 1</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 427</td>
<td>Accounting and Financial Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 450</td>
<td>Accounting Ethics 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1 Students may take ACCT 603 as an elective.
2 Course availability will vary each semester. For a complete list of prescribed electives, please contact an Academic Advisor or the Certificate in Energy Accounting coordinator.
3 May take ECON 633 as an elective.

International Audit - Certificate

Business students with a consulting mindset interested in serving an internal function with a broad focus on areas such as risk management, compliance, fraud investigation, and auditing for operational efficiency and effectiveness may be a good match for a career as an internal auditor.

To prepare students for such roles, the James Benham Department of Accounting offers an Internal Audit Certificate which is recognized by The Institute of Internal Auditors (https://na.theiia.org/Pages/IIAHome.aspx) (IIA). This certificate is available to undergraduate students enrolled at Texas A&M University. To be eligible for this certificate students must be pursuing a BBA in ACCT (includes students admitted in the Professional Program of Accounting), BHN, FINC, MGMT, Misy, MKTG, or SCMT. Students must apply and be accepted into the Internal Audit Program, to be eligible to take some of the coursework offered in this certificate.

To meet the program requirements, students must earn a grade of C or better in the required coursework. All requirements must be completed prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 484</td>
<td>Accounting Internship 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1 Students may use another course in lieu of the course listed if approved by an Internal Audit Program Director in advance of the student registering for the course.
2 An internship experience is required for the certificate and will be documented through registering and completing an internship course. If the student pursues an internship and earns less than three credit-hours in their internship course, an additional elective must be taken. Completing less than three credit-hours for the internship course and the selection of the appropriate elective must be approved in advance of registering for either course by an Internal Audit Program Director. At least 15 credit hours must be taken to earn the certificate.

Department of Finance

The Department of Finance at the Mays Business School is one of the country's top finance departments. The department's goal is to provide students with the theoretical and empirical tools necessary to achieve high levels of expertise in all areas of finance. The business enterprise must raise capital, use it to maximum advantage, and reward investors. Finance is the set of management challenges (and career opportunities) concerned with succeeding at these tasks.

The Department of Finance offers a Bachelor of Business Administration (BBA) in Finance. The Finance (FINC) major involves both required and elective courses in three areas.

- **Corporate Finance** encompasses the tools and techniques for valuing productive assets, choosing ways of funding them, and gauging financial success.
- **Investments** encompasses the theoretical and practical models that help assess risks and rewards of stocks, bonds, derivatives, and other "financial assets" (individually and in portfolios), as well as the financial health of firms and institutions offering them to the investing public.
- **Markets and Institutions** explores the ways in which bankers, brokers, and other financial institutions convert savings into productive capital.

Mays BBA FINC graduates with good academic records place well in all these areas, as well as in graduate and professional schools. They work in industry, on Wall Street, in major banking and consulting firms, and as wealth managers. Accordingly, the Department of Finance emphasizes scholarship in its faculty, professionalism in its programs, and innovation in its relationships with employers and mentors.

The Department of Finance offers five certificate programs for BBA business majors. Each program is designed to complement the student's degree by providing a concentrated course of study and participation in experiential learning opportunities or internships in the selected area. For more information visit the Department of Finance (https://mays.tamu.edu/department-of-finance/) website.

Faculty

Amos, Nicole, Lecturer
Finance
MER, Texas A&M University, 2005
Bouwman, Christa, Associate Professor
Finance
PHD, University of Michigan, 2005

Chen, Yong, Associate Professor
Finance
PHD, Boston College, 2007

Donnell, Cydney C, Executive Professor
Finance
MBA, Southern Methodist University, 1982

Dye, Richard T, Clinical Professor
Finance
PHD, Texas A&M University, 1993

Erturk, Bilal, Visiting Assistant Professor
Finance
PHD, Texas A&M University, 2006

Fitzgerald, Tristan, Assistant Professor
Finance
PHD, University of California, Berkeley, 2018

Gaspar, Julian, Clinical Professor
Finance
PHD, Georgetown University, 1981

Guyton, Sally C, Senior Lecturer
Finance
MBA, University of Texas, 1982

Halket, Jonathan Robert Levin, Assistant Professor
Finance
PHD, New York University, 2009

Hallermann, Detlef, Clinical Professor
Finance
PHD, Colorado School of Mines, 1999

Harris IV, T, Executive Professor
Finance
BBA, Texas A&M University, 1980

Hercot, Philippe, Executive Professor
Finance
MBA, Harvard Graduate School of Business Administration, 1993

Johnson, Shane A, Professor
Finance
PHD, Louisiana State University, 1991

Kim, Hwagyoun, Associate Professor
Finance
PHD, University of Chicago, 2003

Kolari, James, Professor
Finance
PHD, Arizona State University, 1980

Kolasinski, Adam C, Associate Professor
Finance
PHD, MIT, 2006

Liu, Xiaoding, Associate Professor
Finance
PHD, University of Florida, 2012

Liu, Yan, Assistant Professor
Finance
PHD, Duke University, 2014

Mahajan, Arvind, Regents Professor
Finance
PHD, Georgia State University, 1980

Martindale, Lanny R, Senior Lecturer
Finance
JD, South Texas College of Law, 1995

Medina Palma, Paolina Del Car, Assistant Professor
Finance
PHD, Northwestern University, 2017

Meitzen, Michael C, Lecturer
Finance
MER, Texas A&M University, 2001

Mohseni, Mahdi, Assistant Professor
Finance
PHD, Boston College, 2015

Moore, Kevin M, Executive Professor
Finance
MS, Johns Hopkins University, 2013

Peterson, John R, Clinical Assistant Professor
Finance
PHD, Texas A&M University, 2002

Rossi, Marco, Assistant Professor
Finance
PHD, Pennsylvania State University, 2010

Sharpe, Bradley, Lecturer
Finance
JD, Baylor University School of Law, 1997

Skeie, David R, Assistant Professor
Finance
PHD, Princeton, 2004

Sorescu, Sorin M, Professor
Finance
PHD, University of Florida, 1996

Tebeaux, William J, Executive Professor
Finance
MBA, University of Houston, 1971

White, Edward C, Executive Professor
Finance
MBA, University of Hawaii, 1972
Majors

- Bachelor of Business Administration in Finance (p. 281)

Certificates

- Capital Markets and Investments Certificate (p. 282)
- Commercial Banking Certificate (p. 282)
- Corporate Finance Certificate (p. 283)
- Investment Banking and Private Equity Certificate (p. 283)
- Investment Banking Certificate (p. 283)
- Trading, Risk and Investments Certificate (p. 283)

Finance - BBA

The Department of Finance offers a Bachelor of Business Administration (BBA) in Finance. Finance is the study of how individuals, companies, and governments allocate resources over time, under conditions of risk or uncertainty. The BBA Finance (FINC) major equips students in the core financial areas of corporate finance, investments, and markets and institutions.

In addition to earning a BBA FINC degree, majors may apply for one of six specialized fields of study:

- Aggies on Wall Street Investment Banking Certificate Program (AOWS)
- Corporate Finance Certificate Program (CFP)
- Commercial Banking Certificate Program (CBP)
- Trading, Risks and Investments Certificate Program (TRIP)
- Petroleum Ventures Certificate Program (PVP)
- Quantitative Finance Program (QFR).

Finance students also have access to applied finance courses including the Titans of Investing, which exposes students to a broad perspective of financial markets and global developments; the Tanner Fund, which allows students to manage real money for credit; and multiple commercial real estate analysis classes.

BBA FINC graduates are qualified for careers including investment bankers, commercial bankers, investment fund managers, traders, corporate treasurers, comptrollers, chief financial officers, investor relations officers, risk managers, investment analysts, and commercial real estate analysts.

Upper Level Entry Requirements

Admission to the upper level major of finance (FINC) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences ¹</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29) ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus ³</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29) ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government ²</td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government ²</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

¹ MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Finance Program

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 327 Financial Reporting I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FINC 341 Business Finance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FINC 350 Ethics in Financial Decision-Making</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MGMT 363 Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SCMT 303 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 351</td>
<td>3</td>
</tr>
<tr>
<td>FINC 361</td>
<td>3</td>
</tr>
<tr>
<td>FINC 381</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>3</td>
</tr>
<tr>
<td>International elective ²</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 328</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>Accounting elective (p. 871) ⁴</td>
<td>3</td>
</tr>
<tr>
<td>Finance elective (p. 993) ³</td>
<td>3</td>
</tr>
<tr>
<td>Finance elective (p. 993) ³</td>
<td>3</td>
</tr>
<tr>
<td>General elective ⁵</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466 Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>Finance elective (p. 993) ³</td>
<td>6</td>
</tr>
<tr>
<td>General elective ⁵</td>
<td>5</td>
</tr>
</tbody>
</table>

International elective ² | 3 |

Total Semester Credit Hours | 60 |

² For those students under ROTC contract, see Requirement 7 of the ‘Requirements for a Baccalaureate Degree’ (p. 31).
³ MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Capital Markets and Investments - Certificate

The Department of Finance offers the Capital Markets and Investments (CMI) Certificate. The CMI is designed to acquaint BBA FINC and BBA Business Honors/FINC students with the fundamentals of investing in the public equity and fixed income markets, managing capital risks, asset pricing and financial modeling and complying with the SEC (Securities Exchange Commission) and FINRA (Finance Industry Regulatory Authority) regulations.

Students who pursue the CMI must complete all program requirements prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 448</td>
<td>Advanced Investments</td>
<td>3</td>
</tr>
<tr>
<td>FINC 449</td>
<td>Financial Modeling</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FINC 422</td>
<td>Applied Investment Analysis</td>
<td></td>
</tr>
<tr>
<td>FINC 423</td>
<td>Options and Financial Futures</td>
<td></td>
</tr>
<tr>
<td>FINC 427</td>
<td>Titans of Investing</td>
<td></td>
</tr>
<tr>
<td>FINC 428</td>
<td>Fixed Income Analysis</td>
<td></td>
</tr>
<tr>
<td>FINC 446</td>
<td>Technical Analysis of Financial Markets</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours | 12 |

Commercial Banking - Certificate

The Department of Finance offers specialized study through the Commercial Banking Certificate Program (CBP). The CBP is designed to equip BBA FINC students with the banking and finance skills needed to
prepare for, and transition into, banking careers serving the personnel needs of the industry in the state of Texas and the United States.

The CBP requires completion of prescribed coursework and a paid summer internship with a member bank of the CBP Advisory Board. Business students must be U.S. citizens or permanent residents.

Students who pursue the CBP must complete all program requirements prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 462</td>
<td>Commercial Bank Management</td>
<td>3</td>
</tr>
<tr>
<td>FINC 463</td>
<td>Seminar in Commercial Banking</td>
<td>3</td>
</tr>
<tr>
<td>FINC 464</td>
<td>Commercial Credit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FINC 472</td>
<td>Real Estate Finance</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Corporate Finance - Certificate

The Department of Finance offers specialized study through the Corporate Finance Certificate Program (CFP). The CFP is designed to prepare BBA FINC students focused on a career in corporate finance.

The CFP requires completion of a set of guided finance and data analytics electives which have been selected to prepare students for the many roles available in world of corporate finance. Business students must be U.S. citizens or permanent residents.

Students who pursue the CFP must complete all program requirements prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 327</td>
<td>Cost Management and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FINC 443</td>
<td>Valuation</td>
<td>3</td>
</tr>
<tr>
<td>FINC 447/ACCT 447</td>
<td>Financial Statement Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FINC 449</td>
<td>Financial Modeling</td>
<td>3</td>
</tr>
</tbody>
</table>
| FINC 489 | Special Topics in... (Corporate Finance Boot Camp) | 1
FINC 489 | Special Topics in... (Corporate Finance Capstone) | 3
ISTM 489 | Special Topics in... (Foundations of Data Analytics for non-MIS Majors) | 3
| Total Semester Credit Hours | | 15 |

Investment Banking and Private Equity - Certificate

The Department of Finance offers the Investment Banking and Private Equity (IB/PE) Certificate. The IB/PE is designed to acquaint BBA FINC and BBA Business Honors/FINC students with the knowledge required to be successful as a junior professional in an investment bank or a private equity firm. Key themes include company valuation, issuance of debt and equity, mergers and acquisitions, financial modeling, as well as the private equity ecosystem.

Students who pursue the IB/PE must complete all program requirements prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 441</td>
<td>Private Equity: Insights, Industry Dynamics and Deal Making</td>
<td>3
FINC 449</td>
</tr>
</tbody>
</table>

Investment Banking - Certificate

The Department of Finance offers specialized study through the Investment Banking Program (AOWS iBank). The AOWS iBank was designed to acquaint BBA FINC and BBA Business Honors/FINC students with the fundamentals of valuing publicly and privately held firms, underwriting public and private offerings of debt and equity securities, managing capital market risks, complying with SEC (Securities and Exchange Commission) and FINRA (Finance Industry Regulatory Authority) regulations, and managing other financial services commonly offered by investment banks.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 462</td>
<td>Commercial Bank Management</td>
<td>3</td>
</tr>
<tr>
<td>FINC 463</td>
<td>Seminar in Commercial Banking</td>
<td>3</td>
</tr>
<tr>
<td>FINC 464</td>
<td>Commercial Credit Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FINC 472</td>
<td>Real Estate Finance</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
exceptional class instruction with hands-on internship-based experience. Three paid internships with different board member companies are required. Business students must be U.S. citizens or permanent residents.

Students who pursue TRIP must complete all program requirements prior to graduation. Upon graduation a certificate notation will be added to the official transcript.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 327</td>
<td>Financial Reporting I</td>
<td>3</td>
</tr>
<tr>
<td>BUSN 392</td>
<td>Cooperative Education in Business</td>
<td>4</td>
</tr>
<tr>
<td>FINC 368</td>
<td>Trade Floor Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>FINC 485</td>
<td>Directed Studies ((Final Presentation))</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Select three of the following:</td>
<td>9</td>
</tr>
<tr>
<td>FINC 422</td>
<td>Applied Investment Analysis</td>
<td></td>
</tr>
<tr>
<td>FINC 423</td>
<td>Options and Financial Futures</td>
<td></td>
</tr>
<tr>
<td>FINC 424</td>
<td>Trading Risk Management</td>
<td></td>
</tr>
<tr>
<td>FINC 425</td>
<td>Active Portfolio Management</td>
<td></td>
</tr>
<tr>
<td>FINC 427</td>
<td>Titans of Investing</td>
<td></td>
</tr>
<tr>
<td>FINC 428</td>
<td>Fixed Income Analysis</td>
<td></td>
</tr>
<tr>
<td>FINC 443</td>
<td>Valuation</td>
<td></td>
</tr>
<tr>
<td>FINC 446</td>
<td>Technical Analysis of Financial Markets</td>
<td></td>
</tr>
<tr>
<td>FINC 448</td>
<td>Advanced Investments</td>
<td></td>
</tr>
<tr>
<td>FINC 449</td>
<td>Financial Modeling</td>
<td></td>
</tr>
<tr>
<td>FINC 466</td>
<td>Wall Street, Investment Banking and the Financial Markets</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 20

1 BUSN 392, a 2-credit course, is repeatable and must be taken two times. This certificate program requires completion of two internships, with BUSN 392 enrollment required during each internship period. A total of 4 credits earned through BUSN 392 enrollment is required.

Department of Information and Operations Management

The Department of Information and Operations Management (https://mays.tamu.edu/department-of-information-and-operations-management/) (INFO) ranks among the top departments internationally in research productivity, impact and visibility. The INFO department offers two undergraduate degree programs: a Bachelor of Business (BBA) in Management Information Systems and a BBA in Supply Chain Management.

Management Information Systems (MISY) is a people-oriented field with an emphasis on service through technology. The BBA MISY degree program is the study of people, technology, organizations, and the relationships among them. MISY professionals help firms realize maximum benefit from investment in personnel, equipment, and business processes. This major is designed for students who have an interest in technology and have the desire to use technology to improve people’s lives.

Supply Chain Management (SCMT) includes all the activities that must take place to get the right product into the right consumer’s hands in the right quantity and at the right time — from raw materials extraction to consumer purchase. The BBA SCMT degree program is primarily concerned with the efficient integration of suppliers, factories, planning and forecasting, purchasing, product assembly, moving, storage, distribution, sales, and customer service. This major is designed for students who have an interest in problem solving, are detail-oriented, and a desire to help businesses achieve a sustainable competitive advantage by building and delivering products better, faster and cheaper.

In each degree program, students learn how to use technology to make businesses more efficient, effective, and competitive. Coursework includes both the technical and managerial aspects of MISY and SCMT to ensure that students are well-equipped for successful careers in the dynamic, global business environment.

A list of recommended courses for each degree program is available from the Department of Information and Operations Management (https://mays.tamu.edu/department-of-information-and-operations-management/advising/) undergraduate advisors, Room 330, Wehner Building.

Faculty

- **Abbey, James D, Associate Professor**
 Information & Operations Mgmt
 PHD, The Pennsylvania State University, 2013

- **Agrawal, Anupam, Associate Professor**
 Information & Operations Mgmt
 PHD, INSEAD France, 2008

- **Angelus, Alexandar, Assistant Professor**
 Information & Operations Mgmt
 PHD, Stanford University, 1997

- **Arreola-Risa, Antonio, Associate Professor**
 Information & Operations Mgmt
 PHD, Stanford University, 1989

- **Becker, Aaron C, Clinical Associate Professor**
 Information & Operations Mgmt
 PHD, University of Oklahoma, 2009

- **Boone II, Edward F, Senior Lecturer**
 Information & Operations Mgmt
 MS, Pennsylvania State University, 2000

- **Curtsinger, Wanda F, Lecturer**
 Information & Operations Mgmt
 PHD, Morehead State U., 2007

- **Darcey Louise, senior lecturer**
 Information & Operations Mgmt
 PHD, Texas A&M University, 1974

- **Geismar, Harry N, Professor**
 Information & Operations Mgmt
 PHD, University of Texas at Dallas, 2003
Management Information Systems - BBA

The Department of Information and Operations Management offers a Bachelor of Business Administration (BBA) degree in Management Information Systems (MISY). The MISY major addresses the impact of computer-based information systems in a variety of organizational settings. The degree program produces graduates who are both business analysts (i.e., professionals who understand accounting, marketing, finance, etc.) and information system specialists (i.e., professionals who can implement information systems strategies).

Graduates of the program possess the business, technical, and leadership skills to meet the challenges presented by rapidly evolving information technology and the need to effectively incorporate this technology into business strategy and day-to-day operations.

For more information visit the BBA Management Information Systems (https://mays.tamu.edu/bba-management-information-systems/overview/) website.

Upper-Level Entry Requirements

Admission to the upper level major of MISY requires satisfactory completion of specific coursework. To review requirements and
application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences 1</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29) 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 142</td>
<td>Business Calculus 3</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29) 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ISTM 281</td>
<td>Professional Development Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 310</td>
<td>Network Communications and Infrastructure</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 320</td>
<td>Business Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 315</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 410</td>
<td>Management of Information Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 481</td>
<td>Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>MKTG 321</td>
<td>Marketing 2</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>International elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MISY Directed elective 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 415</td>
<td>Information Systems Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 481</td>
<td>Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MISY Directed elective 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
2. For those students under ROTC contract, see Requirement 7 of the "Requirements for a Baccalaureate Degree" (p. 31).
3. MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems Program

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ISTM 281</td>
<td>Professional Development Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 310</td>
<td>Network Communications and Infrastructure</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 320</td>
<td>Business Systems Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 315</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 410</td>
<td>Management of Information Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 481</td>
<td>Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>MKTG 321</td>
<td>Marketing 2</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>International elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 415</td>
<td>Information Systems Capstone Project</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ISTM 481</td>
<td>Information Systems Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MISY Directed elective 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
Supply Chain Management - BBA

The Department of Information and Operations Management offers a Bachelor of Business Administration (BBA) degree in Supply Chain Management (SCMT). The SCMT major is primarily concerned with the efficient integration of suppliers, factories, warehouses, and retail outlets. Management Information Systems must add Programming Logic and Design (3 credits) to sophomore year curriculum.

The SCMT program produces graduates with strong analytical and problem-solving skills and the ability to work in and coordinate team activities. Graduates possess the business, technical, and leadership skills needed to meet the challenges of the rapidly evolving global marketplace.

For more information visit the BBA Supply Chain Management (https://mays.tamu.edu/bba-supply-chain-management/) website.

Upper-Level Entry Requirements

Admission to the upper level major of SCMT requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences ¹</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 206</td>
<td>American National Government ²</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Communication</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>POLS 207</td>
<td>State and Local Government ²</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 207</td>
<td>State and Local Government ²</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

| Semester Credit Hours | 60 |

¹ Students must take three semesters of ISTM 281 or ISTM 481 for a total of three credits.
² This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.
³ Students must take three semesters of ISTM 281 or ISTM 481 for a total of three credits.
⁴ Students must take three semesters of ISTM 281 or ISTM 481 for a total of three credits.
⁵ Elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, MATH 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply; see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.
the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Supply Chain Management Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing 1</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 340</td>
<td>Global Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 361</td>
<td>Operations Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>International elective 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SCMT Directed elective (p. 1137) 3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCMT 300</td>
<td>Business Communications I 1</td>
<td>1</td>
</tr>
<tr>
<td>SCMT 335</td>
<td>Sourcing and Procurement</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 345</td>
<td>Business Process Design</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SCMT Directed elective (p. 1137) 3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 465</td>
<td>Information Technology for Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>International elective 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SCMT Directed elective (p. 1137) 3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

- 60

1 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.

2 Elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply. See academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

3 Select in consultation with a supply chain management academic advisor. A list of acceptable courses is available in the department academic advising office, 330 Wehner.

4 A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six required hours simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.

Department of Management

The Department of Management at the Mays Business School is a distinguished leader in the field of management education and research. Our programs and curricula receive global recognition for their strength and continued contributions to the field of management. For more information visit the Department of Management (https://mays.tamu.edu/department-of-management/) website.

The Bachelor of Business Administration (BBA) degree in Management (MGMT) effectively incorporates theory and application in each student’s learning experiences. The degree program is designed to ensure that students gain the knowledge and competencies they will need to be valued employees in consulting firms, Fortune 500 companies, retail and service industries, non-profit and charitable entities, governmental agencies, new ventures and family businesses. The degree makes possible a broad range of career opportunities.

A MGMT student develops the ability to plan, organize, make decisions, communicate, and lead effectively in a variety of work settings. Written and verbal communication, teamwork, and problem solving are emphasized.

BBA MGMT majors pursue a specialization, also called directed elective track, which allows for a focused area of study. Students focus their specialization in one of the four following areas.

- **Consulting and General Management** - Designed for students interested in problem-solving and helping individuals or organizations as they maneuver the business environment, whether the student anticipates working in the consulting industry or in any managerial role.

- **Entrepreneurial Leadership** - Designed for students interested in learning the entrepreneurial process, the role of creativity in identifying and/or developing entrepreneurial opportunities, the elements of a business plan, and the leadership practices associated with successful organizations.

- **Human Resource Management** - Designed for students interested in learning how HR professionals develop and implement workplace policies and initiatives regarding employee recruiting, selection, compensation, training and development, performance management, career planning, and employee and labor relations. A career in human resources allows HR professionals to engage in the strategic management of an organization’s human capital.

- **Pre-Law** - Designed to expose students to opportunities that combine law and business, and could include careers in corporate law, international affairs, public policy, and conflict resolution, to name a few. Many students in this track will pursue a law or other advanced degree.

The BBA MGMT degree program allows the student to select from a variety of jobs, organizations and industries within the student’s specialization or more broadly in management. It also provides...
a solid foundation for pursuing graduate studies in business, law, and a variety of other disciplines.

Faculty

Barrick, Murray R, Distinguished Professor
Management
PHD, University of Akron, 1988

Bierman, Leonard, Professor
Management
JD, University of Pennsylvania Law School, 1978

Boivie, Steven R, Professor
Management
PHD, University of Texas at Austin, 2006

Boswell, Wendy R, Professor
Management
PHD, Cornell University, 2000

Buenger, Victoria L, Clinical Professor
Management
PHD, Texas A&M University, 1990

Call, Matthew L, Assistant Professor
Management
PHD, University of South Carolina, 2016

Cannella Jr, Albert A, Professor
Management
PHD, Columbia University, 1991

Chambers Bridgette, Executive Professor
Management
PHD, NorthCentral University, 2018

Chandler, Ronald S, Lecturer
Management
MS, Texas A&M University, 2001

Chawla, Nitya, Assistant Professor
Management
PHD, University of Arizona, 2020

Courtright, Stephen H, Associate Professor
Management
PHD, University of Iowa, 2012

Devers, Cynthia E, Professor
Management
PHD, Michigan State University, 2003

Dwivedi, Priyanka, Assistant Professor
Management
PHD, The Pennsylvania State University, 2017

Flint, Gerald David, Clinical Professor
Management
PHD, Texas A&M University, 1997

Griffin, Ricky W, Distinguished Professor
Management
PHD, University of Houston, 1978

Hailey, Camille E, Clinical Assistant Professor
Management
JD, South Texas College of Law, 1993

Howard, Michael D, Associate Professor
Management
PHD, University of Washington, 2012

Ireland, Robert D, Distinguished Professor
Management
PHD, Texas Tech University, 1977

Kim, Ji Young, Assistant Professor
Management
PHD, Arizona State University, 2019

Klotz, Anthony, Associate Professor
Management
PHD, University of Oklahoma, 2013

Koopman, Joel E, Associate Professor
Management
PHD, Michigan State University, 2014

Koufteros, Beth, Senior Lecturer
Management
CERT, HR Certification Institute, 2014

Lester, Richard H, Clinical Professor
Management
PHD, Texas A&M University, 2003

Lewis Jr, Donald H, Executive Professor
Management
MBA, Texas A&M International University, 1992

Li, Toby, Assistant Professor
Management
PHD, Rice University, 2019

Mahajan, Vanita, Senior Lecturer
Management
MBA, Texas A&M University, 1986

McFarland, Kenneth, Clinical Assistant Professor
Management
PHD, Pepperdine University, 2018

Pace William, Executive Professor
Management
PHD, Capella University, 2017

Paetzold, Ramona L, Professor
Management
JD, Indiana University, 1990
PHD, Indiana University, 1979

Panina, Daria, Clinical Associate Professor
Management
PHD, Rutgers University, 2002

Paruchuri, Srikanth, Professor
Management
PHD, Columbia University, 2004
Management - BBA, Consulting/General Management Track

The Department of Management offers a Bachelor of Business Administration (BBA) in Management. The BBA Management (MGMT) major equips students with the academic knowledge and professional skills they need to pursue rewarding careers in a variety of industries. Students select from one of four specializations, or tracks, that provide academic focus and career direction for student interests.

The BBA MGMT-Consulting and General Management track is designed for students interested in problem-solving and helping individuals or organizations as they maneuver the business environment, whether the student anticipates working in the consulting industry or in any managerial role. The curriculum will sharpen students problem-solving skills and teach how to help organizations or individuals manage the challenges and capitalize on opportunities they face.
Life and physical sciences (p. 26) 3

Semester Credit Hours 15

Total Semester Credit Hours 60

1 MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.

2 For those students under ROTC contract, see Requirement 7 of the 'Requirements for a Baccalaureate Degree' (p. 31).

3 MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Management Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 373</td>
<td>Managing Human Resources</td>
<td>1</td>
</tr>
<tr>
<td>MGMT 422</td>
<td>Management Consulting</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 372</td>
<td>Advanced Concepts in Organizational Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 424</td>
<td>Organizational Design, Change and Development</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
<td>3</td>
</tr>
<tr>
<td>Business elective</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Data analysis elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 450/IBUS 450</td>
<td>International Environment of Business</td>
<td>2</td>
</tr>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MGMT directed elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>60</td>
</tr>
</tbody>
</table>

1 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.

2 Six hours required. Management majors must take MGMT 450/IBUS 450 as three of these required credit hours. A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six required hours simultaneously fulfill the University's International and Cultural Diversity Graduation requirement.

3 Select in consultation with a management academic advisor. A list of acceptable courses is available in the department academic advising office, or in the Undergraduate Advising Office, Room 238, Wehner Building.

4 Elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply; see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

5 Any 300- or 400-level business course (ACCT, FINC, IBUS, ISTM, MKTG, SCMT) except MGMT 300-MGMT 499 (p. 1076), ACCT 484, ACCT 485, FINC 341, FINC 409, FINC 489, FINC 485, IBUS 301, IBUS 450/MGMT 450, IBUS 452/MGMT 452, IBUS 453/MGMT 453, IBUS 457/MGMT 457, IBUS 484, IBUS 485, ISTM 484, ISTM 485, MKTG 321, MKTG 409, MKTG 484, MKTG 485, SCMT 303, SCMT 309, SCMT 364.

6 Select in consultation with a management academic advisor. A list of acceptable courses is available in the department academic advising office, or in the Undergraduate Advising Office, Room 238, Wehner Building.

Management - BBA, Entrepreneurial Leadership Track

The Department of Management offers a Bachelor of Business Administration (BBA) in Management. The BBA Management (MGMT) major equips students with the academic knowledge and professional skills they need to pursue rewarding careers in a variety of industries. Students select from one of four specializations, or tracks, which provide academic focus and career direction for student interests.

The BBA MGMT-Entrepreneurial Leadership track is designed for students interested in learning the entrepreneurial process, the role of creativity in identifying and/or developing entrepreneurial opportunities, the elements of a business plan, and the leadership practices associated with successful organizations.

Upper Level Entry Requirements

Admission to the upper level major of management (MGMT) requires satisfactory completion of specific coursework. To review requirements
and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 60

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.

2. For those students under ROTC contract, see Requirement 7 of the 'Requirements for a Baccalaureate Degree' (p. 31).

3. MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Management Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 376/ SOCI 376</td>
<td>Entrepreneurial Perspectives</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 373</td>
<td>Managing Human Resources</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 450/ IBUS 450</td>
<td>International Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
<td>3</td>
</tr>
<tr>
<td>Business elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Data analysis elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>International elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>3</td>
</tr>
<tr>
<td>American history</td>
<td>2</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>American history</td>
<td>2</td>
</tr>
<tr>
<td>Language, philosophy and culture</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Creative arts</td>
<td>2</td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 60 |

Management - BBA, Human Resource Management Track

The Department of Management offers a Bachelor of Business Administration (BBA) in Management. The BBA Management (MGMT) major equips students with the academic knowledge and professional skills they need to pursue rewarding careers in a variety of industries. Students select from one of four specializations, or tracks, which provide academic focus and career direction for student interests.

The BBA MGMT-Human Resource Management track is designed for students interested in learning how HR professionals develop and implement workplace policies and initiatives regarding employee recruiting, selection, compensation, training & development, performance management, career planning, and employee & labor relations. A career in human resources allows HR professionals to engage in the strategic management of an organization’s human capital.

Upper Level Entry Requirements

Admission to the upper level major of management (MGMT) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).
Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Management Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing 1</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>Business Finance</td>
</tr>
<tr>
<td>MGMT 373</td>
<td>Managing Human Resources 1</td>
</tr>
<tr>
<td>MGMT 450/IBUS 450</td>
<td>International Environment of Business 2</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 425</td>
<td>Human Resource Selection 3</td>
</tr>
<tr>
<td>MGMT 430/WSGT 430 or MGMT 435</td>
<td>Employment Discrimination Law 3 or Labor Law and Policy</td>
</tr>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
</tr>
<tr>
<td>Business elective</td>
<td>3</td>
</tr>
<tr>
<td>Data analysis elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>General electives</td>
<td>6</td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 60

Management - BBA, Pre-Law Track

The Department of Management offers a Bachelor of Business Administration (BBA) in Management. The BBA Management (MGMT) major equips students with the academic knowledge and professional skills they need to pursue rewarding careers in a variety of industries. Students select from one of four specializations, or tracks, which provide academic focus and career direction for student interests.

The BBA MGMT-Pre-Law track is designed to expose students to opportunities that combine law and business, and could include careers in corporate law, international affairs, public policy, and conflict resolution, to name a few. Many students in this track will pursue a law or other advanced degree.

Upper Level Entry Requirements

Admission to the upper level major of management (MGMT) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences 1</td>
</tr>
</tbody>
</table>
the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Management Program

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 450/ IBUS 450</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
<td>3</td>
</tr>
<tr>
<td>Business elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Data analysis elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>General electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 60 |

1. This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.
2. Six hours required. Management majors must take MGMT 450/ IBUS 450 as three of these required credit hours. A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six required hours simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.
3. Select in consultation with a management academic advisor. A list of acceptable courses is available in the department academic advising office, or in the Undergraduate Advising Office, Room 238, Wehner Building.

Upper-Level Management Program

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 450/ IBUS 450</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
<td>3</td>
</tr>
<tr>
<td>Business elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Data analysis elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT 466</td>
<td>Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>General electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MGMT directed electives</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 60 |

1. This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.
2. Six hours required. Management majors must take MGMT 450/ IBUS 450 as three of these required credit hours. A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six required hours simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.
3. Select in consultation with a management academic advisor. A list of acceptable courses is available in the department academic advising office, or in the Undergraduate Advising Office, Room 238, Wehner Building.
Elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 209, MGMT 309, MKTG 409, SCMT 309. Additional restrictions may apply: see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.

Any 300- or 400-level business course (ACCT, FINC, IBUS, ISTM, MKTG, SCMT) except MGMT 300-MGMT 499 (p. 1076), ACCT 484, ACCT 485, FINC 341, FINC 409, FINC 484, FINC 485, IBUS 301, IBUS 450/MBAN 450, IBUS 452/MBAN 452, IBUS 453/MBAN 453, IBUS 457/MBAN 457, IBUS 484, IBUS 485, ISTM 484, ISTM 485, MKTG 321, MKTG 409, MKTG 484, MKTG 485, SCMT 303, SCMT 309, SCMT 364.

Select in consultation with a management academic advisor. A list of acceptable courses is available in the department academic advising office, or in the Undergraduate Advising Office, Room 238, Wehner Building.

Department of Marketing

The Department of Marketing at the Mays Business School is a distinguished leader in the field of marketing education and research. Our programs and curricula receive global recognition for their strength and continued contributions to the field of marketing. For more information visit the Department of Marketing (https://mays.tamu.edu/department-of-marketing/) website.

Marketing involves developing goods and services to satisfy customers' needs and then making them available at the right places, at the right times and at competitive prices. Marketing also provides information to help customers decide whether specific goods and services will meet their needs.

Recent changes in social and economic systems have created new challenges for marketing professionals. Increasingly, they must focus on both domestic and global opportunities and the explosive changes that new technology brings. They must also be continually responsive to cultural differences, quality concerns and ethical issues.

The Bachelor of Business Administration (BBA) in Marketing prepares students to work effectively in corporate and nonprofit organizations that are part of a global economy. A career path in marketing typically begins in an entry-level position in advertising, retailing, marketing analytics, marketing consulting, professional selling, or healthcare marketing. Opportunities are available in manufacturing, wholesale and retail, as well as nonprofit organizations such as universities, government agencies, relief agencies and charitable organizations.

Success in marketing requires understanding a number of fundamental concepts, principles, theories, tools and techniques. Courses are designed to help students acquire this knowledge and to develop competencies needed throughout a marketing career.

Marketing Academic Advising

Academic advising and career guidance for upper division marketing majors is available in the Department of Marketing office, Suite 220 Wehner Building. (979) 845-2309. Hannah Cole, hcole@mays.tamu.edu, is the academic advisor for the department.

Faculty

Berry, Leonard L, Distinguished Professor
Marketing
PHD, Arizona State University, 1968

Bridges, Cheryl H, Adjunct Professor
Marketing
BS, Texas Women's University, 1968

Busch, Paul S, Professor
Marketing
PHD, The Pennsylvania State University, 1974

Dikec, Altay, Clinical Assistant Professor
Marketing
PHD, Konkuk University - Miller Graduate School of Business, 2012

Griffith, David Andrew, Professor
Marketing
PHD, Kent State University, 1997

Jones III, Eli, Professor
Marketing
PHD, Texas A&M University, 1997

Kan, Christina S, Assistant Professor
Marketing
PHD, University of Colorado-Boulder, 2015

Lampo, Sandra S, Clinical Associate Professor
Marketing
PHD, Texas A&M University, 2001

Liu, Yan, Associate Professor
Marketing
PHD, Purdue University, 2010

Loring, Andrew J, Senior Lecturer
Marketing
MS, University of Maine, 2012

McDaniel, Stephen W, Professor
Marketing
PHD, University of Arkansas, 1979

Mittal, Chiraag, Assistant Professor
Marketing
PHD, University of Minnesota, 2016

Molhusen, Brian E, Executive Professor
Marketing
BBA, Texas A&M University, 1978

Olson, Nicholas John, Assistant Professor
Marketing
PHD, University of Minnesota, 2018

Parish, Janet T, Clinical Professor
Marketing
PHD, University of Alabama, 2002

Pride, William M, Professor
Marketing
PHD, Louisiana State University and A&M College, 1972
Texas A&M University

Majors

- Bachelor of Business Administration in Marketing, Advertising Strategy Track (p. 297)
- Bachelor of Business Administration in Marketing, Analytics and Consulting Track (p. 298)
- Bachelor of Business Administration in Marketing, Healthcare Marketing Track (p. 300)
- Bachelor of Business Administration in Marketing, Professional Selling and Sales Management Track (p. 301)
- Bachelor of Business Administration in Marketing, Strategic Retailing Track (p. 302)

Marketing - BBA, Advertising Strategy Track

The Department of Marketing offers a Bachelor of Business Administration (BBA) in Marketing. A career path in marketing typically begins in an entry-level position in advertising, retailing, marketing analytics, marketing consulting, professional selling, or healthcare marketing. Opportunities are available in manufacturing, wholesale and retail, as well as nonprofit organizations such as universities, government agencies, relief agencies and charitable organizations.

Success in marketing requires understanding a number of fundamental concepts, principles, theories, tools and techniques. Students select from one of five specializations, or tracks, which provide academic focus and career direction for student interests. Courses are designed to help students acquire this knowledge and to develop competencies needed throughout a marketing career.

The BBA Marketing (MKTG) Advertising Strategy track offers students interested in advertising several opportunities for building skills specific to this career path, and for networking with advertising professionals. In addition to taking advertising courses, students can attend professional conferences, participate in local, regional, and national advertising campaign competitions, and tour top advertising agencies.

The BBA MKTG-Advertising Strategy track supplements the degree by tailoring directed elective courses and building specific advertising skills. Also, it provides recruiters a means of identifying top students interested in advertising.

Students who complete the BBA MKTG-Advertising Strategy degree program are well-prepared for careers in advertising account services or brand management, or they may choose to specialize in related areas such as media planning, social and digital media, or public relations.

Upper Level Entry Requirements

Admission to the upper level major of marketing (MKTG) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

2

1

3
Life and physical sciences (p. 26) 3

Semester Credit Hours 15

Second Year

Fall
ACCT 229 Introductory Accounting 3
ECON 203 Principles of Economics 3
ISTM 210 Fundamentals of Information Systems 3
POL 206 American National Government 2 3

Communication
Select one of the following:
COMM 203 Public Speaking 3
COMM 205 Communication for Technical Professions 3
COMM 243 Argumentation and Debate 3
ENGL 104 Composition and Rhetoric 3

Semester Credit Hours 15

Spring
ACCT 230 Introductory Accounting 3
MGMT 211 Legal and Social Environment of Business 3
POL 207 State and Local Government 2 3

Creative arts (p. 29) 3
Life and physical sciences (p. 26) 3

Semester Credit Hours 15

Total Semester Credit Hours 60

1 MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
2 For those students under ROTC contract, see Requirement 7 of the ‘Requirements for a Baccalaureate Degree’ (p. 31).
3 MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community 1 (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower-level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Marketing Program

Third Year

Fall
FINC 341 Business Finance 3
MGMT 363 Managing People in Organizations 3
MKTG 321 Marketing 1 3

Semester Credit Hours 3

Fourth Year

Fall
Directed elective 3 3
International elective 2 3
General elective 5 3

Semester Credit Hours 15

Spring
MGMT 466 Strategic Management 3
MKTG 448 Marketing Strategy 1 3
Directed elective 3 3
Marketing elective 5 3
General elective 4 3

Semester Credit Hours 15

Total Semester Credit Hours 60

1 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.
2 Six hours required. A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six hours of approved international elective courses simultaneously fulfill the University’s International and Cultural Diversity Graduation requirement.
3 Nine hours required. Select from MKTG 345, MKTG 347, MKTG 445, MKTG 447 and MKTG 438.
4 Elective courses are open to any course offered for University credit, except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MGMT 207, MGMT 307, and MGMT 347. Additional restrictions may apply: see academic advisor for information. May be taken on a satisfactory/unsatisfactory basis.
5 Three hours required. Any MKTG (p. 1079) course (except required MKTG courses and MKTG 409) and IBUS 401-403 (p. 1027).

Marketing - BBA, Analytics and Consulting Track

The Department of Marketing offers a Bachelor of Business Administration (BBA) in Marketing. A career path in marketing typically begins in an entry-level position in advertising, retailing, marketing analytics, marketing consulting, professional selling, or healthcare marketing. Opportunities are available in manufacturing, wholesale and retail, as well as nonprofit organizations such as universities, government agencies, relief agencies and charitable organizations.
Success in marketing requires understanding a number of fundamental concepts, principles, theories, tools and techniques. Students select from one of five specializations, or tracks, which provide academic focus and career direction for student interests. Courses are designed to help students acquire this knowledge and to develop competencies needed throughout a marketing career.

The BBA Marketing (MKTG) Analytics and Consulting track offers students interested in analytics and consulting several opportunities for building skills specific to this career path, and for networking with analytics and consulting professionals. In addition to taking courses geared to analytics and consulting, students can attend professional conferences and participate in local, regional, and national consulting competitions.

The BBA MKTG-Analytics and Consulting track complements the student's degree and provides tangible evidence of rigorous academic and experiential preparation for a career in analytics or consulting. The curriculum emphasizes marketing analytics and marketing consulting as well as a consulting project in corporate social responsibility.

Students who complete the BBA MKTG-Analytics and Consulting degree program are well-prepared to work in marketing analytics or consulting positions for marketing, information systems, or organizational structure.

Upper Level Entry Requirements

Admission to the upper level major of marketing (MKTG) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).

Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MATH 140: Mathematics for Business and Social Sciences ¹</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29) ²</td>
</tr>
<tr>
<td>3</td>
<td>Communication</td>
</tr>
<tr>
<td></td>
<td>Select one of the following: COMM 203: Public Speaking</td>
</tr>
<tr>
<td></td>
<td>COMM 205: Communication for Technical Professions</td>
</tr>
<tr>
<td></td>
<td>COMM 243: Argumentation and Debate</td>
</tr>
<tr>
<td></td>
<td>ENGL 104: Composition and Rhetoric</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ECON 202: Principles of Economics</td>
</tr>
<tr>
<td>3</td>
<td>MATH 142: Business Calculus ³</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29) ²</td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FINC 341: Business Finance</td>
</tr>
<tr>
<td>3</td>
<td>MGMT 363: Managing People in Organizations</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 321: Marketing ¹</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 404: Data Visualization for Marketers</td>
</tr>
<tr>
<td>60</td>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1. MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.
2. For those students under ROTC contract, see Requirement 7 of the "Requirements for a Baccalaureate Degree" (p. 31).
3. MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSBN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSBN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective and a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Marketing Program

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FINC 341: Business Finance</td>
</tr>
<tr>
<td>3</td>
<td>MGMT 363: Managing People in Organizations</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 321: Marketing ¹</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 404: Data Visualization for Marketers</td>
</tr>
</tbody>
</table>

1. Requirements for a Baccalaureate Degree
Marketing - BBA, Healthcare Marketing Track

The Healthcare Marketing track complements the student's degree and provides tangible evidence of rigorous academic and experiential preparation for a career in healthcare marketing. The curriculum emphasizes healthcare service quality, the business of healthcare, and healthcare technology. Students who complete this track can work in healthcare marketing positions in service quality and healthcare technology. Students expecting to declare their upper level major in Marketing with the Healthcare Marketing track must meet the requirements.

Upper Level Entry Requirements

Admission to the upper level major of marketing (MKTG) requires satisfactory completion of specific coursework. To review requirements and application procedures see [Upper-Level Entry Requirements and Application Procedures](#).

Program Requirements

Upper-Level Marketing Program

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>FINC 341 Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>MGMT 363 Managing People in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 321 Marketing</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 404 Data Visualization for Marketers</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 303 Statistical Visualization for Marketers</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>MKTG 322 Consumer Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 323 Marketing Research</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 335 Professional Selling</td>
<td>3</td>
</tr>
<tr>
<td>SCMT 364 Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Marketing elective</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>MKTG 438 Strategic Digital Marketing</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Marketing elective</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>MGMT 466 Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 431 Marketing Analytics</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 448 Marketing Strategy</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>MKTG 443 The Business of Healthcare</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 444 HealthTech for Improving Customer Care</td>
<td>3</td>
</tr>
<tr>
<td>International elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>MGMT 466 Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 441 Service Quality in Healthcare</td>
<td>3</td>
</tr>
<tr>
<td>MKTG 448 Marketing Strategy</td>
<td>3</td>
</tr>
<tr>
<td>Marketing elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semesters Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1 This course is an approved writing-designated (W) or oral communication (C) business course. See your academic advisor for additional information.
2 Directed elective. Required courses MKTG 430, MKTG 431 and MKTG 438.
3 Six hours required. A complete list of approved courses is available in the Undergraduate Advising Office, 238 Wehner Building. The six hours of approved international elective courses simultaneously fulfill the University's International and Cultural Diversity Graduation requirement.
4 General electives are any courses offered for University credit except ACCT 209, ACCT 210, FINC 409, IBUS 301, ISTM 209, KINE 198, MKTG 409.
5 Three hours required. Any MKTG course (except required MKTG courses and MKTG 409).
Program Requirements

Lower-Level Business Program (BUAD)

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall

- **MATH 140**: Mathematics for Business and Social Sciences ³
- **American history (p. 29)** ²
- **Communication**: 3
- Select one of the following:
 - **COMM 203**: Public Speaking
 - **COMM 205**: Communication for Technical Professions
 - **COMM 243**: Argumentation and Debate
 - **ENGL 104**: Composition and Rhetoric
- **Life and physical sciences (p. 26)**: 3
- **Social and behavioral sciences (p. 30)**: 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Spring

- **ECON 202**: Principles of Economics
- **MATH 142**: Business Calculus ³
- **American history (p. 29)** ²
- **Language, philosophy and culture (p. 27)**: 3
- **Life and physical sciences (p. 26)**: 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Second Year

Fall

- **ACCT 229**: Introductory Accounting
- **ECON 203**: Principles of Economics
- **ISTM 210**: Fundamentals of Information Systems
- **POLS 206**: American National Government ²
- **Communication**: 3
- Select one of the following:
 - **COMM 203**: Public Speaking
 - **COMM 205**: Communication for Technical Professions
 - **COMM 243**: Argumentation and Debate
 - **ENGL 104**: Composition and Rhetoric

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Spring

- **ACCT 230**: Introductory Accounting
- **MGMT 211**: Legal and Social Environment of Business
- **POLS 207**: State and Local Government ²
- **Creative arts (p. 29)**: 3
- **Life and physical sciences (p. 26)**: 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Total Semester Credit Hours: 60

1. **MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.**

2. **For those students under ROTC contract, see Requirement 7 of the "Requirements for a Baccalaureate Degree" (p. 31).**

Marketing - BBA, Professional Selling and Sales Management Track

The Department of Marketing offers a Bachelor of Business Administration (BBA) in Marketing. A career path in marketing typically begins in an entry-level position in advertising, retailing, marketing analytics, marketing consulting, professional selling, or healthcare marketing. Opportunities are available in manufacturing, wholesale and retail, as well as nonprofit organizations such as universities, government agencies, relief agencies and charitable organizations.

Success in marketing requires understanding a number of fundamental concepts, principles, theories, tools and techniques. Students select from one of five specializations, or tracks, which provide academic focus and career direction for student interests. Courses are designed to help students acquire this knowledge and to develop competencies needed throughout a marketing career.

The BBA Marketing (MKTG) **Professional Selling and Sales Management** track offers students interested in sales several opportunities for building skills specific to that career, and for networking with sales professionals. In addition to taking sales courses, students can attend professional conferences, participate in local, regional, and national sales competitions, and network with sales partners through local events.

Students who are looking to expand their communication and relationship building skills should consider the BBA MKTG-**Professional Selling and Sales Management** track. Students in this program take three sales-related directed electives that provide real world scenarios and role-plays which help them build skills that are critical for a successful career in sales and marketing.

Students completing the BBA MKTG-**Professional Selling and Sales Management** degree will have enhanced their interpersonal communication skills in a business environment, giving them a distinct advantage in the job market regardless of the planned career path.

Upper Level Entry Requirements

Admission to the upper level major of marketing (MKTG) requires satisfactory completion of specific coursework. To review requirements and application procedures see Upper-Level Entry Requirements and Application Procedures (p. 262).
Management Information Systems: Students intending to major in Management Information Systems must add ISTM 250 Business Programming Logic and Design (3 credits) to sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Business Honors: Students admitted to Business Honors must add (1) BUSN 125 Business Learning Community I (3 credits) to the freshman year curriculum and (2) BUSN 225 Business Competency (3 credits) to the sophomore year curriculum in Business (lower level). The creative arts elective or a communication elective can be taken during the junior year.

Finance: Students intending to major in Finance must add FINC 210 to freshman year curriculum in Business (lower level). The general elective taken in the senior year can be reduced by 1 credit.

Upper-Level Marketing Program

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>FINC 341 Business Finance</td>
</tr>
<tr>
<td>3</td>
<td>MGMT 363 Managing People in Organizations</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 321 Marketing ¹</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 404 Data Visualization for Marketers</td>
</tr>
<tr>
<td>3</td>
<td>SCMT 303 Statistical Methods</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MKTG 322 Consumer Behavior</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 323 Marketing Research</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 335 Professional Selling</td>
</tr>
<tr>
<td>3</td>
<td>SCMT 364 Operations Management</td>
</tr>
<tr>
<td>3</td>
<td>International elective ²</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Directed elective ³</td>
</tr>
<tr>
<td>3</td>
<td>International elective ²</td>
</tr>
<tr>
<td>3</td>
<td>General elective ⁴</td>
</tr>
<tr>
<td>3</td>
<td>General elective ²</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MGMT 466 Strategic Management</td>
</tr>
<tr>
<td>3</td>
<td>MKTG 448 Marketing Strategy ¹</td>
</tr>
<tr>
<td>3</td>
<td>Directed elective ³</td>
</tr>
<tr>
<td>3</td>
<td>Marketing elective ⁵</td>
</tr>
<tr>
<td>3</td>
<td>General elective ⁴</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

| 60 | |
Students pursuing the Bachelor of Science in University Studies - BS, Business Concentration are encouraged to identify minors that complement the business concentration and reflect their individual interests and strengths.

- **Flexibility for the future:** Students who earn this degree find they have flexible options after graduation since they are prepared to pursue a wide range of careers and graduate programs.

Careers pursued by University Studies-Business graduates include financial advisor, account manager, marketing coordinator, sales representative, web developer, public relations specialist, consultant, and human resource specialist.

Majors

- Bachelor of Science in University Studies, Business Concentration (p. 303)

University Studies - BS, Business Concentration

The Bachelor of Science in University Studies is offered by Texas A&M University.

Students who earn a Bachelor of Science (BS) in University Studies are able to tailor their undergraduate coursework to align with future personal and career objectives. Specific requirements, course offerings, and restrictions exist for the University Studies-Business degree.

The University Studies-Business curriculum consists of a 24 credit hour business concentration and two minors of 15 to 18 hours each. The degree program offers a number of unique features and benefits:

- **Foundational knowledge:** The business concentration provides students with a firm grasp of the basic aspects of business including accounting, finance, management, management information systems, marketing and supply chain management.

- **Interdisciplinary study:** Students pursue two minors that involve coursework in other Texas A&M colleges and departments. Students are encouraged to identify minors that complement the business concentration and reflect their individual interests and strengths.

- **Flexibility for the future:** Students who earn this degree find they have flexible options after graduation since they are prepared to pursue a wide range of careers and graduate programs.

Careers pursued by University Studies-Business graduates include financial advisor, account manager, marketing coordinator, sales representative, web developer, public relations specialist, consultant, and human resource specialist.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Program Requirements

- **Foundational knowledge:** The business concentration provides students with a firm grasp of the basic aspects of business including accounting, finance, management, management information systems, marketing and supply chain management.

- **Interdisciplinary study:** Students pursue two minors that involve coursework in other Texas A&M colleges and departments. Students are encouraged to identify minors that complement the business concentration and reflect their individual interests and strengths.

University Studies Programs

The Bachelor of Science in University Studies is offered by Texas A&M University.

Students who earn a Bachelor of Science (BS) in University Studies are able to tailor their undergraduate coursework to align with future personal and career objectives. Specific requirements, course offerings, and restrictions exist for the University Studies-Business degree.

The University Studies-Business curriculum consists of a 24 credit hour business concentration and two minors of 15 to 18 hours each. The degree program offers a number of unique features and benefits:

- **Foundational knowledge:** The business concentration provides students with a firm grasp of the basic aspects of business including accounting, finance, management, management information systems, marketing and supply chain management.

- **Interdisciplinary study:** Students pursue two minors that involve coursework in other Texas A&M colleges and departments. Students are encouraged to identify minors that complement the business concentration and reflect their individual interests and strengths.

- **Flexibility for the future:** Students who earn this degree find they have flexible options after graduation since they are prepared to pursue a wide range of careers and graduate programs.

Careers pursued by University Studies-Business graduates include financial advisor, account manager, marketing coordinator, sales representative, web developer, public relations specialist, consultant, and human resource specialist.

Program Requirements

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Program Requirements

- **Foundational knowledge:** The business concentration provides students with a firm grasp of the basic aspects of business including accounting, finance, management, management information systems, marketing and supply chain management.

- **Interdisciplinary study:** Students pursue two minors that involve coursework in other Texas A&M colleges and departments. Students are encouraged to identify minors that complement the business concentration and reflect their individual interests and strengths.

- **Flexibility for the future:** Students who earn this degree find they have flexible options after graduation since they are prepared to pursue a wide range of careers and graduate programs.

Careers pursued by University Studies-Business graduates include financial advisor, account manager, marketing coordinator, sales representative, web developer, public relations specialist, consultant, and human resource specialist.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
Spring
- **MGMT 105** Introduction to Business 3
- American history (p. 29) 3
- Language, philosophy and culture (p. 27) 3
- Life and physical sciences (p. 26) 3
- Mathematics (p. 26) 3

| Semester Credit Hours | 15 |

Second Year
Fall
- **ISTM 209** Business Information Systems Concepts 3
- Communication (p. 26) 3
- Government/Political science (p. 30) 3
- Life and physical sciences (p. 26) 3
- Minor 1 3

| Semester Credit Hours | 15 |

Spring
- **ACCT 209** Survey of Accounting Principles 3
- **MGMT 209** Principles of Business Regulations and Law 3
- Creative arts (p. 29) 3
- Government/Political science (p. 30) 3
- Minor 1 3

| Semester Credit Hours | 15 |

Third Year
Fall
- **SCMT 309** Supply Chain Management Principles 3
- Minor 1 3
- Minor 1 3
- Minor or General elective 1,2,3 3

| Semester Credit Hours | 15 |

Spring
- **FINC 409** Survey of Finance Principles 3
- Minor 1 3
- Minor 1 3
- Minor or General elective 1,2,3 3

| Semester Credit Hours | 15 |

Fourth Year
Fall
- **MGMT 309** Survey of Management 3
- **MKTG 409** Principles of Marketing 3
- Minor 1 3
- Minor 1 3
- General elective 1,2,3 3

| Semester Credit Hours | 15 |

Spring
- Minor 1 3
- Minor 1 3
- General elective 1,2,3 3
- General elective 1,2,3 3

| Semester Credit Hours | 15 | Total Semester Credit Hours | 120 |

1. Two university approved minors are required for this degree program. The minors must be completed in colleges other than Mays Business School. Includes the 30-36 hours used to satisfy the two minor requirements.

2. 18-24 hours selected from any 100-499 course not used elsewhere.

3. Enrollment of University Studies majors in courses offered at Mays Business School is limited to the required business concentration courses plus the following courses to be used as electives: ACCT 210, BUSN 403, BUSN 481, FINC 201 and MGMT 212.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) coursework and 3 hours of Cultural Discourse (p. 46) coursework. A course satisfying a core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.
COLLEGE OF DENTISTRY

Administrative Officers

Dean - Lawrence E. Wolinsky, Ph.D., D.M.D.
Associate Dean, Academic Affairs - Paul C. Dechow, Ph.D.
Associate Dean, Research and Graduate Studies - Larry L. Bellinger, Ph.D.
Associate Dean, Student Affairs - Ernie S. Lacy, D.D.S.
Associate Dean, Clinical Affairs - Stephen J. Griffin, D.D.S.
Executive Director, Communications, Institutional Advancement and Alumni Affairs - Susan Mitchell Jackson, M.A.
Assistant Dean, Finance - Gail Parrigin-Clark, M.B.A.
Executive Director, Facilities Services and Planning - Dale A. Christensen, M.B.A.

General Statement

The College of Dentistry has been a distinguished resource for dental education in Texas for more than 100 years and is dedicated to combining higher education and research with community service.

Known internationally for producing excellent clinicians, the college opened in 1905. Since then, it has graduated more than 8,000 dentists and dental hygienists. Nearly one-third of all dentists in Texas are College of Dentistry graduates. The college also graduates a large number of dental hygienists with bachelor’s degrees in the state. In addition to a doctor of dental surgery and bachelor’s degree in dental hygiene, postdoctoral certificate and degree programs are offered.

Today, the college works toward innovative treatments, leading-edge technology and better ways to deliver care. It not only ensures that Texas has qualified generations of dentists, dental hygienists and scientists, but also provides care for patients who have no other access to oral health care.

This program prepares students for the opportunity to pursue an occupational license. Please refer to the Notification for Students Pursuing an Occupational License in our catalog for additional information. If you are unsure if your program is affected by the recent approval of this new law (HB 1508), you will need to contact the accrediting agency and inquire.

Location

The College of Dentistry is located in Dallas, Texas, adjacent to the rapidly expanding Baylor University Medical Center. The Dallas-Fort Worth metropole is an area noted for the vigor, optimism and friendliness of its population. The ever-changing skyline reflects the continuing growth of the area.

Opportunities for educational, cultural and religious enrichment are numerous. Within a 100-mile radius of Dallas are more than 40 colleges and universities. Dallas has professional theater, opera, symphony and dance companies. Among the many museums and galleries in the area, the Dallas Museum of Art has received international acclaim for both its design and its exhibits.

For sports enthusiasts, Dallas has professional and college football, basketball, baseball, hockey and soccer teams. The metroplex annually hosts competitions in golf, tennis, bowling, soccer and running that attract many of the world's best athletes. Numerous lakes and parks provide recreational opportunities for boating, fishing, swimming, jogging, biking and horseback riding.

Dallas is served by a variety of transportation modes, including several interstate highways, the Amtrak rail system and the Dallas Area Rapid Transit system. The Dallas/Fort Worth International Airport, with many major and feeder airline connections, is one of the busiest air terminals in the nation. Airline connections also can be made at nearby Love Field, which is a 20-minute car ride from the college.

The College of Dentistry is centrally located in the city of Dallas, about one mile east of the downtown business district. This is an area where restored historic homes and varied types of new construction create diverse neighborhoods. The Texas State Fairgrounds and the downtown arts district, with its world-class performance halls and art museum, help make this part of Dallas an exciting place to live and work. Living accommodations are located as close as one block from the campus.

Office of Recruitment and Admissions
College of Dentistry
3302 Gaston Ave.
Dallas, TX 75246
(214) 828-8231
https://dentistry.tamhsc.edu/

Majors

Caruth School of Dental Hygiene
• Bachelor of Science in Dental Hygiene (p. 306)

Masters

College of Dentistry
• Master of Science in Oral Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/dentistry/interdepartmental/oral-biology-ms/)

Doctoral

College of Dentistry
• Doctor of Philosophy in Oral Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/dentistry/interdepartmental/oral-biology-phd/)

Professional

College of Dentistry
• Doctor of Dental Surgery in Dentistry (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/dentistry/interdepartmental/dds/)

Caruth School of Dental Hygiene

The Caruth School of Dental Hygiene is an integral part of the College of Dentistry. The dental hygiene school was equipped in 1954 through a generous gift from the Caruth Foundation of Dallas and W.W. Caruth, Jr., in honor of W.W. Caruth, Sr., a pioneer Texas philanthropist.

The first dental hygiene students were accepted in fall 1955. At that time, there was no requirement for previous college experience. In 1964, the
Caruth School of Dental Hygiene established prerequisite courses prior to professional study. During the same year, the Bachelor of Science degree was offered in addition to the traditional certificate program. All graduates since 1973 have received the degree of Bachelor of Science in Dental Hygiene. In 1997, the Master of Science degree was added.

Purpose

The purpose of the Caruth School of Dental Hygiene is to educate preventive oral health professionals, eligible for licensure as dental hygienists, who are capable of providing educational, clinical and therapeutic services that support total health through the promotion of optimal oral health.

Opportunities

The services of a dental hygienist are offered in private dental practices and clinics, public health agencies, school systems, hospitals, nursing homes and corporate health facilities. Dental hygienists also teach in dental and dental hygiene programs and participate in health research. The baccalaureate degree offered through the Caruth School of Dental Hygiene by the College of Dentistry satisfies the educational requirement for eligibility for state licensure. Graduates are provided with diverse experiences to prepare for a variety of employment settings and to pursue graduate education. A Master of Science in Education for Healthcare Professionals with a focus in dental hygiene is also offered.

This program prepares students for the opportunity to pursue an occupational license. Please refer to the Notification for Students Pursuing an Occupational License in our catalog for additional information.

Faculty

Brown, Maureen D, Adjunct Assistant Professor
Dental Hygiene
BS, Baylor College of Dentistry, 2003

Cotter, Jane C, Assistant Professor
Dental Hygiene
MS, Caruth School of Dental Hygiene, 2009

Fox, Eric, Clinical Assistant Professor
Dental Hygiene
MS, Texas A&M University Baylor College of Dentistry, 2005

Garcia, Alejandra, Clinical Assistant Professor
Dental Hygiene
BS, Baylor College of Dentistry, 1997

Kabani, Faizan A, Assistant Professor
Dental Hygiene
PHD, University of North Texas Health Science Center, 2017

Kaz Frick, Emma, Adjunct Assistant Professor
Dental Hygiene
BA, Arizona State University, 2015

King, Tracy, Clinical Associate Professor
Dental Hygiene
MS, TX A&M College of Dentistry, 2002

Mallonee, Lisa F, Professor
Dental Hygiene
MPH, University of North Carolina at Chapel Hill, 2000

Muzzin, Kathleen B, Clinical Professor
Dental Hygiene
MS, University of Missouri - Kansas City, 1985

Reed, Kayla, Adjunct Assistant Professor
Dental Hygiene
MED, Texas A&M University, 2019

Spittle, Leah, Adjunct Assistant Professor
Dental Hygiene
MED, Texas A&M University, 2016

Vu, Mary T, Clinical Assistant Professor
Dental Hygiene
MS, Texas A&M University Baylor College of Dentistry, 2013

Wyatt, Leigh A, Executive Professor
Dental Hygiene
MS, Baylor College of Dentistry, 2014

Majors

- Bachelor of Science in Dental Hygiene (p. 306)

Dental Hygiene - BS

The Caruth School of Dental Hygiene is dedicated to delivering the most innovative techniques for educating future dental hygienists, as well as provide respectful public clinical services with the utmost integrity and ethical standards. Caruth fosters a sense of community, embraces a diverse group of students and faculty, and supports personal growth. Caruth School of Dental Hygiene is committed to being a national leader in dental hygiene education and with that our school takes pride in the students who choose to maintain a high level of diligence, are dedicated, and achieve success within our program.

The goals of the Dental Hygiene Program are:

- The curricular program will support student competency and prepare them for dental hygiene practice.
- The Dental Hygiene program facilitates student learning.
- The Dental Hygiene faculty will demonstrate participation in teaching, service and scholarly activity.
- The Dental Hygiene students will provide quality care to patients.

Dental hygiene offers an excellent opportunity to serve the community. The services of a dental hygienist are offered in private dental practices and clinics, public health agencies, school systems, hospitals, nursing homes and corporate health facilities. Dental hygienists also teach in dental and dental hygiene programs and participate in health research. The baccalaureate degree offered through the Caruth School of Dental Hygiene by Texas A&M University College of Dentistry satisfies the educational requirement for eligibility for state licensure. Graduates are provided with diverse experiences to prepare for a variety of employment settings and to pursue graduate education.

Registered dental hygienists assess a patient’s oral condition in order to offer patient-specific preventive and educational services. In addition to providing tailored treatment plans, dental hygienists motivate their patients to understand and improve their current oral conditions. A major role of a dental hygienist is to perform periodontal therapy which includes evaluating the current state of the oral cavity through periodontal
charting and providing treatment based upon the health of the gingival tissues and surrounding periodontium.

Dental Hygiene is an exciting career choice for anyone interested in promoting oral health. A dental hygienist is a licensed preventive oral health professional who provides educational, clinical and therapeutic services supporting total health through the promotion of optimal oral health.

This program in dental hygiene is accredited by the Commission on Dental Accreditation and has been granted the accreditation status of ‘approved without reporting requirements.’ The Commission is a specialized accrediting body recognized by the United States Department of Education. The Commission on Dental Accreditation can be contacted at (312)440-4653 or at 211 East Chicago Avenue, Chicago, IL 60611-2678. The Commission’s web address is http://www.ada.org/en/coda (https://www.google.com/url?q=http://www.ada.org/en/coda&sa=D&ust=1587048625665000&usg=AFQjCNGYIerTxGY73EApbQxsA9Wzc_DdXQ). The Commission on Dental Accreditation can be contacted at (312)440-4653 or at 211 East Chicago Avenue, Chicago, IL 60611-2678. The Commission’s web address is http://www.ada.org/en/coda (https://www.google.com/url?q=http://www.ada.org/en/coda&sa=D&ust=1587048625665000&usg=AFQjCNGYIerTxGY73EApbQxsA9Wzc_DdXQ).

The length of the program is two years. Application deadline is January 5 of the year of anticipated entrance into the program with a start term in the Fall.

The BS in Dental Hygiene is offered in Dallas, Texas.

Program Requirements

Coursework totaling 60 semester credit hours, including core courses for BS degree.

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>DDHS 3110</td>
<td>Introduction To Dentistry</td>
</tr>
<tr>
<td>DDHS 3120</td>
<td>Dental Anatomy</td>
</tr>
<tr>
<td>DDHS 3160</td>
<td>Preclinical Dental Hygiene</td>
</tr>
<tr>
<td>DDHS 3220</td>
<td>Oral Radiology</td>
</tr>
<tr>
<td>DDHS 3250</td>
<td>Biomedical Sciences I</td>
</tr>
<tr>
<td>DDHS 3425</td>
<td>Health Promotion and Disease Prevention</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>DDHS 3020</td>
<td>Theory of Dental Hygiene Practice I</td>
</tr>
<tr>
<td>DDHS 3220</td>
<td>Oral Radiology</td>
</tr>
<tr>
<td>DDHS 3340</td>
<td>Biomedical Sciences II</td>
</tr>
<tr>
<td>DDHS 3310</td>
<td>Health Education and Behavioral Science</td>
</tr>
<tr>
<td>DDHS 3410</td>
<td>Introduction to Pathology</td>
</tr>
<tr>
<td>DDHS 3325</td>
<td>Microbiology</td>
</tr>
<tr>
<td>DDHS 3530</td>
<td>Applied Dental Materials</td>
</tr>
<tr>
<td>DDHS 3830</td>
<td>Clinical Dental Hygiene I</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>DDHS 4110</td>
<td>Medical Emergencies</td>
</tr>
<tr>
<td>DDHS 4220</td>
<td>Comprehensive Care Seminar</td>
</tr>
<tr>
<td>DDHS 4310</td>
<td>Oral Radiography</td>
</tr>
<tr>
<td>DDHS 4510</td>
<td>Pediatric Dentistry</td>
</tr>
<tr>
<td>DDHS 4820</td>
<td>Clinical Dental Hygiene II</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>DDHS 4015</td>
<td>Pharmacology</td>
</tr>
<tr>
<td>DDHS 4025</td>
<td>Oral Pathology</td>
</tr>
<tr>
<td>DDHS 4110</td>
<td>Medical Emergencies</td>
</tr>
<tr>
<td>DDHS 4140</td>
<td>Clinical Dental Hygiene III</td>
</tr>
<tr>
<td>DDHS 4210</td>
<td>Professional Ethics</td>
</tr>
<tr>
<td>DDHS 4220</td>
<td>Comprehensive Care Seminar</td>
</tr>
<tr>
<td>DDHS 4310</td>
<td>Oral Radiography</td>
</tr>
<tr>
<td>DDHS 4410</td>
<td>Gerontology</td>
</tr>
<tr>
<td>DDHS 4530</td>
<td>Public and Community Health</td>
</tr>
<tr>
<td>DDHS 4610</td>
<td>Periodontics</td>
</tr>
<tr>
<td>DDHS 4620</td>
<td>Theory of Dental Hygiene Practice II</td>
</tr>
<tr>
<td>DDHS 4715</td>
<td>Research Methods</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>DDHS 4010</td>
<td>National Board Review</td>
</tr>
<tr>
<td>DDHS 4220</td>
<td>Comprehensive Care Seminar</td>
</tr>
<tr>
<td>DDHS 4240</td>
<td>Clinical Dental Hygiene IV</td>
</tr>
<tr>
<td>DDHS 4310</td>
<td>Oral Radiography</td>
</tr>
<tr>
<td>DDHS 4320</td>
<td>Perspectives in Dental Hygiene</td>
</tr>
<tr>
<td>DDHS 4530</td>
<td>Public and Community Health</td>
</tr>
<tr>
<td>DDHS 4710</td>
<td>Applied Research Methods</td>
</tr>
<tr>
<td>DDHS 4810</td>
<td>Local Anesthesia and Nitrous Oxide/Oxygen Sedation</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1 Scheduled by course director.
General Statement
The College of Education and Human Development is dedicated to transforming and enriching lives with programs built on the core Aggie values of leadership, excellence, integrity, loyalty, respect and selfless service.

Consistent with the land grant mission of our university, the teaching, research and service activities of the college foster innovation and development, influence policy and practice, and transform the lives of individuals in our state and across the nation. Using basic and applied research activities, the college aims to translate research findings into accessible models and structures that will fundamentally improve educational and health outcomes for all.

With outstanding faculty and students, the college creates a community of scholars who impact the world. Its faculty provide innovative, high-impact educational experiences with an emphasis on transformational learning opportunities.

The college has a history of preparing high-quality teachers and administrators and is consistently among the leading institutions in the state for producing the highest number of certified teachers in high-need areas. It continues this tradition of preparing professionals and leaders in education, sport, business, government, and health through programs in four academic departments: Educational Administration and Human Resource Development (EAHR), Educational Psychology (EPSY), Health and Kinesiology (HLKN), and Teaching, Learning and Culture (TLAC).

The college manages programs for the preparation of certified school personnel as well as human service professionals in the private sector, state and community agencies. Majors include interdisciplinary studies (certification) EC-6, middle school, bilingual and special education; technology management and human resource development; health (including school health education, community health, and allied health); kinesiology (including physical education certification); and sport management. Students interested in any elementary, middle school or secondary certification programs are responsible for meeting with a college advisor. Advisors have specific information available regarding all program options.

The College of Education and Human Development is required by Federal policy to make available the summary report of students’ scores on the TExES examination. This information is available from the Associate Dean for Academic Affairs.

Requirements for Admission to Teacher Education Programs
The State of Texas establishes standards for teacher education programs. All certification programs at Texas A&M are in compliance with these requirements. Students must meet state, University, College of Education and Human Development and department/program requirements for matriculation into a teacher education program. Students are responsible for contacting the departmental advisors to obtain information about specific requirements for their major and program areas.

Teacher Education Retention Policy
A student, after being admitted to teacher education, who fails to continue to meet all requirements, will be dropped from the program and may not continue in or register for any professional teacher education course. Any student removed from or who discontinues student teaching because of unsatisfactory performance will be dropped from the teacher education program. A student dropped from the teacher education program may apply through their respective department for readmission to the teacher education program.

Majors

Department of Educational Administration and Human Resource Development
- Bachelor of Science in Human Resource Development (p. 311)
- Bachelor of Science in Technology Management (p. 312)

Department of Educational Psychology
- Bachelor of Science in Interdisciplinary Studies, Bilingual Education-EC6 (p. 317)
- Bachelor of Science in Interdisciplinary Studies, Special Education-EC12 (p. 318)
- Bachelor of Science in University Studies, Child Professional Services Concentration (p. 320)

Department of Health and Kinesiology

Health
- Bachelor of Science in Community Health (p. 326)
- Bachelor of Science in Health, Allied Health Track (p. 327)
- Bachelor of Science in Health, School Health Track (p. 328)

Kinesiology
- Bachelor of Science in Kinesiology, All-Level Physical Education Teacher Certification Track (p. 329)
- Bachelor of Science in Kinesiology, Dance Science Track (p. 331)
- Bachelor of Science in Kinesiology, Exercise and Sport Science Track (p. 332)
- Bachelor of Science in Kinesiology, Exercise Science Track, Applied Exercise Physiology Concentration (p. 334)
- Bachelor of Science in Kinesiology, Exercise Science Track, Basic Exercise Physiology Concentration (p. 335)
• Bachelor of Science in Kinesiology, Exercise Science Track, Motor Behavior Concentration (p. 336)
• Bachelor of Science in Kinesiology and Master of Science in Athletic Training, 5-Year Degree Program (p. 337)
• Bachelor of Science in University Studies, Dance Concentration (p. 343)

Sports Management
• Bachelor of Science in Sport Management (p. 339)
• Bachelor of Science in Sport Management, Internship Track (p. 340)
• Bachelor of Science in Sport Management, Non-Internship Track (p. 342)

Department of Teaching, Learning and Culture
• Bachelor of Science in Interdisciplinary Studies, English Language Arts/Social Studies, Middle Grades Certification (p. 349)
• Bachelor of Science in Interdisciplinary Studies, Math/Science, Middle Grades Certification (p. 350)
• Bachelor of Science in Interdisciplinary Studies, Pre-K-6, Generalist Certification (p. 351)

Certification
• Secondary Graduate Certification Program (p. 352)

Minors

Department of Educational Administration and Human Resource Development
• Human Resource Development Minor (p. 314)
• Technology Management Minor (p. 314)

Department of Educational Psychology
• Creative Studies Minor (p. 321)

Department of Health and Kinesiology
• Coaching Minor (p. 344)
• Dance Minor (p. 345)
• Health Minor (p. 345)
• Sport Management Minor (p. 345)

Department of Teaching, Learning and Culture
• Applied Learning-Science, Technology, Engineering and Mathematics (STEM) Minor (p. 353)

Certificates

Department of Educational Psychology
• Interdisciplinary Studies Certificate (p. 321)

Masters

Department of Educational Administration and Human Resource Development
• Master of Education in Educational Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-administration-human-resource-development/administration-med/)
• Master of Science in Educational Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-administration-human-resource-development/administration-ms/)

Department of Educational Psychology
• Master of Education in Bilingual Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/bilingual-med/)
• Master of Education in Educational Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/med/)
• Master of Education in Educational Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/technology-med/)
• Master of Education in Special Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/special-education-med/)
• Master of Science in Bilingual Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/bilingual-ms/)
• Master of Science in Educational Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/ms/)
• Master of Science in Special Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/special-education-ms/)

Department of Health and Kinesiology
• Master of Science in Athletic Training (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/athletic-training-ms/)
• Master of Science in Health Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/health-education-ms/)
• Master of Science in Kinesiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/kinesiology-ms/)
• Master of Science in Nutrition (NUTR) and Master of Science in Kinesiology (KINE) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/agriculture-life-sciences/nutrition-food-science/combined-ms-nutr-ms-kine/)
• Master of Science in Sport Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/sport-management-ms/)

Department of Teaching, Learning and Culture

• Master of Education in Curriculum and Instruction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/teaching-learning-culture/curriculum-instruction-med/)
• Master of Science in Curriculum and Instruction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/teaching-learning-culture/curriculum-instruction-ms/)

Doctoral

Department of Educational Administration and Human Resource Development

• Doctor of Education in Educational Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-administration-human-resource-development/administration-edd/)
• Doctor of Philosophy in Educational Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-administration-human-resource-development/administration-phd/)
• Master of Public Service and Administration (PSAA) and Doctor of Philosophy (EDAD) Collaborative Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/government-public-service/public-service-administration/collaborative-psaa-edad/)

Department of Educational Psychology

• Doctor of Philosophy in Counseling Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/counseling-phd/)
• Doctor of Philosophy in Educational Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/phd/)
• Doctor of Philosophy in School Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/educational-psychology/school-psychology/phd/)

Department of Health and Kinesiology

• Doctor of Philosophy in Health Education (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/health-education/phd/)
• Doctor of Philosophy in Kinesiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/health-kinesiology/kinesiology/phd/)

Department of Teaching, Learning and Culture

• Doctor of Education in Curriculum and Instruction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/teaching-learning-culture/curriculum-instruction-edd/)
• Doctor of Philosophy in Curriculum and Instruction (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/education-human-development/teaching-learning-culture/curriculum-instruction-phd/)

Department of Educational Administration and Human Resource Development

The Department of Educational Administration and Human Resource Development prepares people for many professional careers associated with the broad fields of corporate education. The Bachelor of Science in Human Resource Development and the Bachelor of Science in Technology Management are designed to encourage students to achieve a bachelor’s degree and to enter the profession in their area of specialty. The programs prepare graduates to assume responsibility for enhancing technology, developing workplace competence and strengthening student achievement in their career paths.

Faculty

Alfred, Mary V, Professor
EduC Admn & Human Resource Dev
PHD, University of Texas, 1995

Bailey, Krista J, Clinical Associate Professor
EduC Admn & Human Resource Dev
PHD, Texas A&M University, 2011

Baumgartner, Lisa M, Associate Professor
EduC Admn & Human Resource Dev
PHD, The University of Georgia, 2000

Beyerlein, Michael M, Professor
EduC Admn & Human Resource Dev
PHD, Colorado State University, 1986

Bowen, Daniel H, Assistant Professor
EduC Admn & Human Resource Dev
PHD, University of Arkansas, 2013

Brown, Jerry M, Adjunct Assistant Professor
EduC Admn & Human Resource Dev
JD, South Texas College of Law, 1993

Davison, Chayla H, Assistant Professor
EduC Admn & Human Resource Dev
PHD, University of Denver, 2013

Dirani, Khalil M, Associate Professor
EduC Admn & Human Resource Dev
PHD, University of Illinois-Urbana Champaign, 2007
Dooley, Larry M, Associate Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1989

Fahrenwald, Carl, Clinical Assistant Professor
Educ Admn & Human Resource Dev
EDD, University of South Dakota, 1999

Fowler, Rhonda M, Clinical Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 2013

Holley, Susan P, Clinical Associate Professor
Educ Admn & Human Resource Dev
EDD, Baylor University, 1991

Irby, Beverly J, Professor
Educ Admn & Human Resource Dev
PHD, University of Mississippi, 1983

Lechuga III, Vicente M, Associate Professor
Educ Admn & Human Resource Dev
PHD, University of Southern California, 2005

Madsen, Jean A, Professor
Educ Admn & Human Resource Dev
PHD, The University of Kansas, 1986

Mai, Bin, Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Texas Dallas, 2006

Mark, Christine L, Instructional Associate Professor
Educ Admn & Human Resource Dev
PHD, The University of Southern Mississippi, 2014

McDonald, Brenda K, Assistant Lecturer
Educ Admn & Human Resource Dev
MED, Sam Houston State University, 2008

McDonald, Wendy, Assistant Lecturer
Educ Admn & Human Resource Dev
MSW, University of Texas at Arlington, 1998

McNaughten, Dennis Lee, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1993

Musoba, Glenda D, Associate Professor
Educ Admn & Human Resource Dev
PHD, Indiana University, 2004

Muyia, Machuma A, Clinical Professor
Educ Admn & Human Resource Dev
PHD, University of Arkansas, 2008

Nafukho, Fredrick M, Professor
Educ Admn & Human Resource Dev
PHD, Louisiana State University and A&M College, 1998

OPENGART, ROSE, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Georgia, 2003

Ponitzsch, Nicole L, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
EDD, Texas A&M University, 2013

Ponjuan, Luis, Associate Professor
Educ Admn & Human Resource Dev
PHD, University of Michigan, 2005

Roumell, Elizabeth A, Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Wyoming, 2009

Sandlin, Judy R, Clinical Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1993

Santos, Rose Anna, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 2013

Smith, Karen S, Clinical Associate Professor
Educ Admn & Human Resource Dev
EDD, Sam Houston State University, 2000

Stanley, Christine A, Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1990

Tolson, Homer, Senior Professor
Educ Admn & Human Resource Dev
PHD, Purdue University, 1968

Torres, Mario S, Professor
Educ Admn & Human Resource Dev
PHD, Pennsylvania State University, 2003

Wang, Jia, Professor
Educ Admn & Human Resource Dev
PHD, University of Georgia, 2004

Watson, Nancy T, Clinical Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1998

Webb-Hasan, Gwendolyn, Associate Professor
Educ Admn & Human Resource Dev
PHD, Illinois State University, 1994

Workman, Michael D, Associate Professor
Educ Admn & Human Resource Dev
PHD, Georgia State University, 2000

Majors
- Bachelor of Science in Human Resource Development (p. 311)
- Bachelor of Science in Technology Management (p. 312)

Minors
- Human Resource Development Minor (p. 314)
- Technology Management Minor (p. 314)

Human Resource Development - BS

The curricula for Human Resource Development provides students with the content and course sequence to enter the workforce in either...
education, business or industry. The program stresses application in real settings as well as strong foundations in knowledge, and has strong field-based components. The following courses have been combined to give students a well-rounded foundation in the roles and responsibilities in education and business settings.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 203</td>
<td>Foundations of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 210</td>
<td>Legal and Ethical Environment of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ISTM 209</td>
<td>Business Information Systems Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 372</td>
<td>Learning and Development in HRD</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 315</td>
<td>Applied Human Resource Development in the Workplace</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 481</td>
<td>Career Development Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 391</td>
<td>Measurement and Evaluation in Human Resource Development and Technology Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 408</td>
<td>Globalization and Diversity in the Workplace</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 413</td>
<td>Conflict Management and Dialogue</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 477</td>
<td>Project Management in Organizations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 490</td>
<td>Research in Human Resource Development/Technology Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MKTG 409</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>EHRD 484</td>
<td>Professional Internship</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 405</td>
<td>Principles and Practices of Leadership in Human Resource Development and Technology Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCG 402</td>
<td>Instructional Technology and Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1. To be chosen in consultation with academic advisor, if necessary
2. Writing or Communication Intensive course requirement
3. Professional Phase.
4. Online course offered

Students must have completed 60 hours to register for 300/400-level courses.

Three hours of International and Cultural Diversity (p. 47) and three hours of cultural discourse (p. 46) are required. Selection must be from courses on the approved list. Selection can be courses that also satisfy the requirement for social and behavioral sciences, creative arts, language, philosophy and culture, or electives.

Foreign Language Requirement - 2 years same foreign language in high school OR 1 full year (2 semesters) of same foreign language in college.

Technology Management - BS

Texas A&M University’s Technology Management (TCMG) program focuses on the profound importance of connecting people, information, and technology from a multidisciplinary perspective for the betterment of society.

The students of the Technology Management program can expect to obtain integrated knowledge of human development, management,
and technology competencies within a dynamic and rapidly evolving environment through innovative learning.

The Bachelor of Science degree in Technology Management will inculcate students with the knowledge, skills, abilities, and attitudes to leverage technology opportunities in all organizations. The BS-TCMG program will provide students with in-depth knowledge, hands-on experience, and practical skills of managing information technology and developing IT personnel to achieve organizational goals. Through our program, graduates will:

- Gain in-depth knowledge that covers the full spectrum of information technology, including database, networking, systems administration, data analytics, and information security;
- Obtain hands-on experience with a wide variety of technical tools commonly used in today’s IT industry;
- Understand the human decision making process and managerial implications when interacting with information technology; and
- Learn practical skills of managing the various technology, human, and business components in an organizational environment to achieve goals.

Our strong internship program provides graduates with direct experience in the development and management of information technology in a real-world organizational environment. These internships are designed to match the backgrounds and career interests of students.

The program could lead to a wide variety of careers in IT/data analytic fields, such as:

- IT Support,
- Business Analyst,
- Data analyst,
- User Experience Engineer,
- Information Security Analyst

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history elective (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts elective (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history elective (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences elective (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences elective (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 203</td>
<td>Foundations of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 272</td>
<td>Technology and End-User Support</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture elective (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences elective (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 209</td>
<td>Principles of Business Regulations and Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ISTM 209</td>
<td>Business Information Systems Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 274</td>
<td>Foundations of Networking in Education</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 371</td>
<td>Applied Learning Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 391</td>
<td>Measurement and Evaluation in Human Resource Development and Technology Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 481</td>
<td>Career Development Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 303</td>
<td>Unix System Administration Practices</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>FINC 409</td>
<td>Survey of Finance Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 477</td>
<td>Project Management in Organizations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 308</td>
<td>Cybersecurity and Digital Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 316</td>
<td>Database Systems Administration and Application</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 490</td>
<td>Research in Human Resource Development/Technology Management</td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td>MKTG 409</td>
<td>Principles of Marketing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TCMG 476</td>
<td>Technical Network Capstone</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TCMG 412</td>
<td>Contemporary Issues in Technology Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>TCMG 484</td>
<td>Professional Internship</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TCMG 402</td>
<td>Instructional Technology and Design</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>
1. To be selected from University Core Curriculum.
2. To be chosen in consultation with academic advisor, if necessary.
3. Writing or Communication Intensive course requirement.
4. Professional Phase.
5. Online course offered.

Students must have completed 60 hours to register for 300- to 400-level courses.

Three hours of International and Cultural Diversity (p. 47) and three hours of Cultural Discourse (p. 46) are required. Selection must be from courses on the approved list. Selection can be courses that also satisfy the requirement for social and behavioral sciences, creative arts, language, philosophy and culture, or electives.

Foreign Language Requirement - two years same foreign language in high school OR one full year (two semesters) of same foreign language in college.

Human Resource Development - Minor

Human Resource Development (HRD) is the process of improving learning and performance in individual, group and organization contexts through domains of expertise such as lifelong learning, career development, training and development, and organization development. A minor in HRD allows for a wider range of potential employment and accommodation to a diverse education professional experience.

Please refer to the webpage - https://eahr.tamu.edu/ - for information, requirements, and application deadlines for adding the minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHRD 203</td>
<td>Foundations of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td>EHRD 210</td>
<td>Legal and Ethical Environment of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td>EHRD 372</td>
<td>Learning and Development in HRD</td>
<td>3</td>
</tr>
<tr>
<td>EHRD 374</td>
<td>Organizational Development</td>
<td>3</td>
</tr>
<tr>
<td>Select 6 credit hours from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHRD 315</td>
<td>Applied Human Resource Development in the Workplace</td>
<td></td>
</tr>
<tr>
<td>EHRD 371</td>
<td>Applied Learning Principles</td>
<td></td>
</tr>
<tr>
<td>EHRD 405</td>
<td>Principles and Practices of Leadership in Human Resource Development and Technology Management</td>
<td></td>
</tr>
<tr>
<td>EHRD 408</td>
<td>Globalization and Diversity in the Workplace</td>
<td></td>
</tr>
<tr>
<td>EHRD 413</td>
<td>Conflict Management and Dialogue</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must make a grade of C or better in each course taken towards the minor.

Technology Management - Minor

The Technology Management minor is designed to provide the knowledge and skills to succeed in a variety of roles using technology applications. The minor allows for a wider range of potential employment and accommodation to a diverse education and professional experience.

Please refer to the webpage - https://eahr.tamu.edu/ - for information, requirements, and application deadlines for adding the minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCMG 272</td>
<td>Technology and End-User Support</td>
<td>3</td>
</tr>
<tr>
<td>TCMG 274</td>
<td>Foundations of Networking in Education</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three from the following: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCMG 303</td>
<td>Unix System Administration Practices</td>
<td></td>
</tr>
<tr>
<td>TCMG 308</td>
<td>Cybersecurity and Digital Ethics</td>
<td></td>
</tr>
<tr>
<td>TCMG 316</td>
<td>Database Systems Administration and Application</td>
<td></td>
</tr>
<tr>
<td>TCMG 412</td>
<td>Contemporary Issues in Technology Management</td>
<td></td>
</tr>
<tr>
<td>TCMG 476</td>
<td>Technical Network Capstone</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Minimum required GPA to declare minor is a 2.5.

Obtain a ‘C’ or better in each courses taken towards minor

Achieve overall GPA of 2.5 in approved minor coursework.

Students must enrolled after completing 12 hours at Texas A&M and a maximum of 75 hours total.

Department of Educational Psychology

The Department of Educational Psychology offer a Bachelor of Science (B.S.) degree in Interdisciplinary Studies with teacher certification concentrations in Bilingual Education or Special Education. The department also offers a B.S. in University Studies with a non-certification concentration in Child Professional Services. The department’s minor in Creative Studies focuses on developing and growing one’s creative thinking ability for personal and professional situations.
Requirements for Admission to Professional Phase

The undergraduate curricula in the Department of Educational Psychology are composed of two phases: the pre-professional phase and the professional phase. Upon acceptance into the department, all students enter the pre-professional phase and are assigned a lower-division classification (EDIS). The pre-professional phase consists of University Core Curriculum requirements and introductory courses to the major field of study. After successful completion of these requirements, students are eligible to apply for admission into the professional phase. Cohorts in bilingual and special education are limited in number and students are admitted on a competitive basis; meeting the minimum program prerequisites does not guarantee admission to the professional phase. If admitted to the professional phase of the program, students will be assigned an upper-level classification (INST). The professional phase consists of advanced work in the major field of study and professional development courses with field-based experiences.

Requirements for Admission to the Professional Phase of Teacher Education Programs

The State of Texas establishes standards for teacher education programs. All certification programs at Texas A&M are in compliance with these requirements. Students must meet state, University, College of Education and Human Development and department/program requirements for matriculation into a teacher education program. Below are the requirements for the traditional certification program. Students are responsible for contacting a departmental advisor to obtain information about specific requirements for majors and program areas, as some programs have requirements beyond those listed below. University-wide requirements for admission to teacher education include the following:

1. An approved degree plan or certification and teaching field plan(s).
2. Minimum GPR of 2.75 for the special education program and 2.75 for the bilingual education program based on all coursework completed at Texas A&M University. (See departmental advisor for additional grade requirements.)
3. Completion of all required University core courses.
4. A grade of B or higher in all certification courses. (See departmental advisor for additional grade requirements).
5. Satisfaction of English proficiency requirement by:
 a. Earning a grade of B or higher in ENGL 103 or ENGL 104 (or receiving credit by exam for the course); or
 b. Earning a grade of B or higher in ENGL 210, ENGL 235 or ENGL 241; and
 c. Earning no grade below C in any course taken in (a) or (b) above.
6. Pass the THEA, ACCUPLACER, ASSET or COMPASS test or show proof of exemption from the test with appropriate STAAR, SAT or ACT scores.
7. Oral interview required for admission to upper level for Hispanic Bilingual Education.
8. Documentation of foreign language and computer literacy requirements on file in the Texas A&M University Office of Admissions.
9. Transcripts from all institutions of higher education on file in the Texas A&M University Office of Admissions.

Requirements for Admission to Student Teaching

1. Successful admission to Professional Phase of Teacher Education.
2. Complete Application for Clinical Teaching by the given deadlines for each semester.
3. Completion of all courses listed on the degree plan. All coursework must have a grade of C or better. See departmental advisor for additional grade requirements.
4. A minimum GPR of 3.0 in upper-level courses in Special Education. See departmental advisor for additional grade requirements.
5. A minimum GPR of 2.75 on all coursework completed at Texas A&M. See departmental advisor for additional grade requirements.
6. Satisfaction of Spanish proficiency requirements (Hispanic Bilingual Education ONLY).
7. In addition to #6, satisfactory performance on the written and oral Spanish proficiency component of the Hispanic Bilingual Education program admission process.

Faculty

Acosta, Sandra T, Associate Professor
Educational Psychology
PHD, Texas A&M University, 2010

Alexander, Joyce M, Professor
Educational Psychology
PHD, University of Georgia, 1992

Ashcraft, Sandra M, Assistant Lecturer
Educational Psychology
MS, Texas A&M University, 1999

Baek, Eunkyeng, Assistant Professor
Educational Psychology
PHD, University of South Florida, 2015

Blake, Jamilia J, Professor
Educational Psychology
PHD, University of Georgia, 2007

Brossart, Dan F, Professor
Educational Psychology
PHD, University of Missouri - Columbia, 1996

Burke, Mack D, Professor
Educational Psychology
PHD, University of Oregon, 2001

Burke, Shanna H, Professor
Educational Psychology
PHD, University of Oregon, 1998

Byrns, Glenda E, Clinical Professor
Educational Psychology
PHD, Texas A&M University, 2007
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree</th>
<th>University</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castillo, Linda G</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Utah</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Castro Olivo, Sara M</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Oregon</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Dickey, Margot B</td>
<td>Adjunct Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Elliott, Timothy R</td>
<td>University Distinguished Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Missouri - Columbia</td>
<td>1987</td>
<td></td>
</tr>
<tr>
<td>Erbøl, Florina</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Ljubljana</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Ettekal, Idean</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Arizona State University</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>Fogarty, Melissa S</td>
<td>Clinical Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Gagne, Jeffrey R</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, Boston University</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Ganz, Jennifer</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Kansas</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Gilson, Carly B</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Vanderbilt University</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>Heath, Amy K</td>
<td>Adjunct Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Juntune, Joyce E</td>
<td>Instructional Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Kellogg, Katherine A</td>
<td>Assistant Lecturer</td>
<td>Educational Psychology</td>
<td>MED, Texas A&M University</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>Kwok, Oi-Man</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, Arizona State University</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Lara-Alecio, Rafael</td>
<td>Regents Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Utah</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Liew, Jeffrey C</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, Arizona State University</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Luo, Wen</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Montague, Marcia L</td>
<td>Visiting Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Newell, Kirsten</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Minnesota - Twin Cities</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>Ompendoguelet, Lizette O</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Missouri - Columbia</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Padron, Yolanda</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>EDD, University of Houston</td>
<td>1985</td>
<td></td>
</tr>
<tr>
<td>Page, Leanne B</td>
<td>Assistant Lecturer</td>
<td>Educational Psychology</td>
<td>MED, Texas A&M University</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Pedersen, Susan J</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Texas at Austin</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Perrott, Lisa J</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Virginia</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Ramos GarciaMartin, Hector</td>
<td>Lecturer</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Ramos, Suzanna J</td>
<td>Lecturer</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Riccio, Cynthia A</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Georgia</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>Ridley, Charles R</td>
<td>Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Minnesota</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td>Rivera, Hector H</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of California-Santa Cruz</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Schmid, Kelly D</td>
<td>Assistant Lecturer</td>
<td>Educational Psychology</td>
<td>MED, Texas A&M University</td>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>Simmons, Krystal T</td>
<td>Clinical Professor</td>
<td>Educational Psychology</td>
<td>PHD, Texas A&M University</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Smith, Leann</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Texas at Austin</td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>
Certificates

- Interdisciplinary Studies Certificate (p. 321)

Interdisciplinary Studies - BS, Bilingual Education EC-6

The Department of Educational Psychology offers an undergraduate degree program in Interdisciplinary Studies that includes certification in bilingual education and general elementary education, grades EC through 6. This program prepares teachers to instruct students who are served in bilingual classes at the elementary level. Students interested in certification in bilingual education should contact the EPSY undergraduate advisor in Heaton Hall.

Program Requirements

The following curriculum leads to the Bachelor of Science degree in Interdisciplinary Studies with certification in Bilingual Education, EC-6. Students are required to meet with their assigned academic advisor prior to registration each semester.

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 106</td>
<td>or History of the United States</td>
<td></td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts elective (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 210</td>
<td>or Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>HIST 226</td>
<td>History of Texas</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 365</td>
<td>Structure of Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 311</td>
<td>Hispanic Culture and Civilization to the 18th Century</td>
<td>3</td>
</tr>
<tr>
<td>or SPAN 312</td>
<td>or Hispanic Culture and Civilization: 18th Century to Present</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 6

Majors

- Bachelor of Science in Interdisciplinary Studies, Bilingual Education-EC-6 (p. 317)
- Bachelor of Science in Interdisciplinary Studies, Special Education-EC-12 (p. 318)
- Bachelor of Science in University Studies, Child Professional Services Concentration (p. 320)

Minors

- Creative Studies Minor (p. 321)

Sohn McCormick, Anita, Adjunct Associate Professor
Educational Psychology
PHD, Texas A&M University, 2000

Stackhouse, Elizabeth Wood, Lecturer
Educational Psychology
PHD, Texas A&M University, 2018

Stough, Laura M, Professor
Educational Psychology
PHD, University of Texas, 1993

Sweany, Noelle W, Clinical Professor
Educational Psychology
PHD, University of Texas at Austin, 1999

Thompson, Christopher G, Assistant Professor
Educational Psychology
PHD, Florida State University, 2016

Thompson, Julie L, Assistant Professor
Educational Psychology
PHD, University of North Carolina at Charlotte, 2014

Tong, Fuhui, Professor
Educational Psychology
PHD, Texas A&M University, 2006

Walichowski, Miranda F, Clinical Associate Professor
Educational Psychology
PHD, Texas A&M University, 2009

Whiteside, Erinn, Clinical Assistant Professor
Educational Psychology
PHD, University of Georgia, 2019

Woltering, Steven, Associate Professor
Educational Psychology
PHD, University of Toronto, 2012

Woodward, Robert S, Clinical Associate Professor
Educational Psychology
PHD, Texas A&M University, 2004

Yoon, Myeongsun, Associate Professor
Educational Psychology
PHD, Arizona State University, 2007

Zhang, Dan D, Professor
Educational Psychology
PHD, University of New Orleans, 1998
Second Year

Fall
- GEOG 202 Geography of the Global Village or GEOG 301 Geography of the United States (3)
- INST 210 Understanding Special Populations (3)
- SPAN 302 Advanced Grammar (3)
- TEFB 273 Introduction to Culture, Community, Society and Schools (3)
- Life and physical sciences elective (4)

Select one of the following:
- CHEM 106 Molecular Science for Citizens and Molecular Science for Citizens Laboratory (3)
- CHEM 119 Fundamentals of Chemistry I (3)
- GEOG 203 Planet Earth and Planet Earth Lab (3)
- PHYS 201 College Physics (3)
- PHYS 202 College Physics (3)
- GEOL 101 Principles of Geology (3)

Spring
- EDCI 364 Creativity and the Young Child (3)
- EDCI 353 Early Childhood through Adolescent Education (3)
- EPFB 210 Family Involvement and Empowerment (3)
- EPSY 320 Child Development or EPSY 321 Adolescent Development (3)
- KINE 120 The Science of Basic Health and Fitness (1)
- SPAN 303 Spanish Composition (3)

Summer
- EPSY 485 Directed Studies (1)
- MATH 366 Structure of Mathematics II (3)

Semester Credit Hours 16

Third Year

Fall
- BEFB 472 Bilingual and Dual Language Methodologies (3)
- BEFB 474 Biliteracy for Bilingual and Dual Language Classrooms (3)
- SPAN 320 Introduction to Hispanic Literature (3)
- RDNG 373 Teaching Reading Through Children’s Literature (3)
- TEFB 371 Dynamics and Management in Multicultural/Inclusionary Learning Environments (3)

Spring
- BEFB 470 Bilingual Assessment and Monitoring (3)
- BEFB 476 Content Area Instruction for Bilingual Programs (3)
- RDNG 351 Reading in the Elementary School (3)
- RDNG 473 Assessment in Reading Instruction (3)
- SPAN elective (3)

Semester Credit Hours 15

Fourth Year

Fall
- RDNG 467 Reading and the Language Arts (3)
- TEFB 410 Social Studies and the Humanities in the Elementary School (3)
- TEFB 412 Mathematics in the Elementary School (3)
- TEFB 413 Science in the Elementary School (3)

Semester Credit Hours 12

Spring
- BEFB 425 Student Teaching in Hispanic Bilingual Education (3)
- BEFB 426 Effective Instruction of Hispanic Students of Diverse Abilities (3)

Semester Credit Hours 6

Total Semester Credit Hours 124

Interdisciplinary Studies - BS, Special Education EC-12

The Department of Educational Psychology (EPSY) offers an undergraduate degree program in Interdisciplinary Studies that prepares students to be special educators. Completion of this program leads to teaching certifications in special education (EC through grade 12), general education (EC through grade 6), and English as a Second Language (ESL) within the constraints of the Texas Education Agency (TEA). The Special Education program focuses on preparing teachers to instruct students with disabilities in both general education and special education settings. Students interested in becoming special education teachers should contact the EPSY undergraduate advisor in Heaton Hall.

Program Requirements

The following curriculum leads to a Bachelor of Science degree in Interdisciplinary Studies with certification in Special Education K-12.
Students are required to meet with their assigned academic advisor prior to registration each semester.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>HIST 105 or HIST 106</td>
<td>History of the United States</td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>Life and physical sciences elective</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 226</td>
</tr>
<tr>
<td>INST 210</td>
</tr>
<tr>
<td>MATH 142</td>
</tr>
<tr>
<td>POLS 207</td>
</tr>
<tr>
<td>Life and physical sciences elective</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CHEM 106</td>
</tr>
<tr>
<td>& CHEM 116</td>
</tr>
<tr>
<td>CHEM 119</td>
</tr>
<tr>
<td>GEOL 101</td>
</tr>
<tr>
<td>GEOL 106</td>
</tr>
<tr>
<td>GEOG 203</td>
</tr>
<tr>
<td>& GEOG 213</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPFB 210</td>
<td>Family Involvement and Empowerment</td>
</tr>
<tr>
<td>EPSY 320 or EPSY 321</td>
<td>Child Development or Adolescent Development</td>
</tr>
<tr>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
</tr>
<tr>
<td>MATH 365</td>
<td>Structure of Mathematics I</td>
</tr>
<tr>
<td>TEFB 273</td>
<td>Introduction to Culture, Community, Society and Schools</td>
</tr>
<tr>
<td>Creative arts elective (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 214/ KINE 214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPFB 211</td>
<td>Teaching Skills I</td>
</tr>
<tr>
<td>SPED 310</td>
<td>Instructional Strategies for Students with Disabilities</td>
</tr>
<tr>
<td>SPED 312</td>
<td>Effective Reading Instruction for Students with Diverse Abilities</td>
</tr>
<tr>
<td>SPED 471</td>
<td>Classroom Management and Behavioral Interventions</td>
</tr>
<tr>
<td>TEFB 413</td>
<td>Science in the Elementary School</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPFB 401</td>
</tr>
<tr>
<td>SPED 311</td>
</tr>
<tr>
<td>SPED 314</td>
</tr>
<tr>
<td>SPED 414</td>
</tr>
<tr>
<td>SPED 442</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCI 365</td>
<td>Using Technology Classrooms</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>GEOG 301</td>
<td>Geography of the United States</td>
</tr>
<tr>
<td>GEOG 305</td>
<td>Geography of Texas</td>
</tr>
<tr>
<td>GEOG 355</td>
<td>Concepts in Geographic Education</td>
</tr>
<tr>
<td>INST 363</td>
<td>English as a Second Language Methods II</td>
</tr>
<tr>
<td>RDNG 372</td>
<td>Reading and Writing across the Middle Grades Curriculum</td>
</tr>
<tr>
<td>SEFB 420</td>
<td>Education and Employment Issues in Secondary Special Education</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEFB 425</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 124 |
University Studies - BS, Child Professional Services Concentration

The Department of Educational Psychology offers a Bachelor of Science (B.S.) in University Studies with an area of concentration in Child Professional Services. This non-certification degree has a flexible 120-hour program of study, enabling students to pursue a body of coursework closely aligned with their professional interests. The degree includes a prescribed concentration and two minors: one in Sociology and another in either Creative Studies or Human Resource Development. The Child Professional Services concentration does not allow students to seek teacher certification. However, it provides a strong foundation in child and adolescent development, instructional methods, educational psychology, kinesiology, human resource development, and sociology as a means of preparing graduates for careers in civic, social, or religious organizations; hospitals or non-profit organizations; or family and community services. Students interested in University Studies - Child Professional Services should contact the EPSY undergraduate advisor located in Heaton Hall.

Program Requirements

The following curriculum leads to a Bachelor of Science degree in University Studies with an area of concentration in Child Professional Services. Students are required to meet with their assigned academic advisor prior to registration each semester.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 141</td>
<td>or MATH 166</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and Physical sciences elective (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 131</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or HIST 226</td>
<td>or History of Texas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and Physical sciences elective (p. 26)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EHRD 203</td>
<td>Foundations of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INFS 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture elective (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS minor elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>EHRD 210</td>
<td>Legal and Ethical Environment of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EPFB 210</td>
<td>Family Involvement and Empowerment</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EPSY 435</td>
<td>Educational Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TEFB 273</td>
<td>Introduction to Culture, Community, Society and Schools</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI minor elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Creative arts elective (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCI minor elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 371</td>
<td>Applied Learning Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>KINE 214/</td>
<td>Health and Physical Activity for Children</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HLTH 214</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOCI minor elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 372</td>
<td>Learning and Development in HRD</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EPSY 320</td>
<td>Child Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SOCI minor elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EHRD 374</td>
<td>Organizational Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>EPSY 321</td>
<td>Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INST 301</td>
<td>Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Elective 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Creative Studies - Minor

The Department of Educational Psychology offers a 15 credit hour minor in Creative Studies. This minor provides students with increased knowledge and understanding of how creative and innovative thinking can be applied to one's professional and personal life.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSY 430</td>
<td>Creativity Theories and Research</td>
<td>3</td>
</tr>
<tr>
<td>EPSY 433</td>
<td>Lateral Thinking</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td></td>
</tr>
<tr>
<td>EPSY 431</td>
<td>Personal Creativity and Giftedness</td>
<td></td>
</tr>
<tr>
<td>EPSY 432</td>
<td>Creativity and Creative Problem Solving</td>
<td></td>
</tr>
<tr>
<td>EPSY 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td></td>
</tr>
<tr>
<td>EPSY 431</td>
<td>Personal Creativity and Giftedness</td>
<td></td>
</tr>
<tr>
<td>EPSY 432</td>
<td>Creativity and Creative Problem Solving</td>
<td></td>
</tr>
<tr>
<td>EPSY 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

1. Students will participate in at least two seminars per semester with the program director and graduate assistant. Seminars are a great way for students to continue to work on transition skills but more in-depth and in relation to living on a college campus. Seminars may include financial management, self-determination and advocacy, career awareness/readiness, technology, job shadowing, health and wellness, interpersonal skills, and decision making.

2. Five zero-credit courses are required. See Advisor for a complete list of electives.

Interdisciplinary Studies - Certificate

The Interdisciplinary Studies Certificate through the Department of Educational Psychology is designed for the Aggie ACHIEVE Program. Aggie ACHIEVE is a four-year postsecondary program for young adults with intellectual and developmental disabilities (IDD) at Texas A&M University. Aggie ACHIEVE aims to provide an inclusive and immersive college education and equip students for employment in the community. The program aligns coursework, internship opportunities, and extracurricular activities with each student's academic interests and employment goals. Please reference the program requirements tab for information on course of study requirements for the Interdisciplinary Studies certificate. For additional information about the program, please reference our website (https://aggieachieve.tamu.edu/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSY 284</td>
<td>Internship</td>
<td>4</td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>0</td>
</tr>
<tr>
<td>or INST 301</td>
<td>or Educational Psychology</td>
<td></td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>6</td>
</tr>
<tr>
<td>UGST 181</td>
<td>First Year Seminar</td>
<td>0</td>
</tr>
<tr>
<td>UGST 484</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminars 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 13

Department of Health and Kinesiology

The Department of Health and Kinesiology offers degrees in Health, Kinesiology, Sport Management and University Studies. Several tracks are offered for students who are interested in a career in these fields. All students majoring in the Department of Health and Kinesiology are assigned an advisor in accordance with their career choice.

The curricula in Health, Kinesiology, Sport Management and University Studies offer opportunities to obtain professional preparation for careers such as health and physical education teachers in public and private schools, coaches, sport administrators, community health educators, clinical and applied exercise physiologists, exercise scientists, recreational leaders (in non-school agencies), dance scientists, sports marketing professionals and athletic administrators. The department also
provides academic preparation for students interested in allied health and medical related professional schools, e.g., physical therapy, occupational therapy, physicians’ assistant, nursing, or medicine.

The Department of Health and Kinesiology offers minors in coaching, dance, health, and sport management. The coaching, dance, and health minors consist of 18 credit hours. The sport management minor is 15 credit hours. A list of courses and enrollment information regarding the minor may be obtained from the Advising Office in the Department of Health and Kinesiology.

In addition to undergraduate degrees, the department offers the Master of Education, Master of Science, Doctor of Education, and Doctor of Philosophy degrees.

Teacher Certification

Students majoring in either Health or Kinesiology may qualify for a Provisional Teaching Certificate after being admitted to teacher education, completing the prescribed requirements, and being recommended by the department to the Texas Education Agency through the University’s Council for Teacher Education. Completion of this degree and other academic requirements does not automatically assure that the student will be recommended for a teaching certificate. Students interested in Texas certification for a teaching career must apply for, and be admitted to, the professional phase of teacher education. Students should see an academic advisor for specific requirements and courses to be admitted to professional phase.

Non-Teacher Certification Tracks

Students may seek a career other than public school teaching. The department offers opportunities in allied health, community health, dance science, exercise science, motor behavior, and sport management. Students are encouraged to declare career intentions early so that appropriate coursework and field experiences may be planned. Students pursuing careers other than teaching are not eligible for teacher certification. These opportunities are briefly summarized in the descriptions of each track.

Departmental Advising

Because of the wide variety of careers in Health, Kinesiology, and Sport Management and the difference in course requirements for each, it is essential for students to take advantage of the advising opportunities offered by the department. Students are assigned to an academic advisor in accordance with their degree choice and are encouraged to consult with their advisor on course sequencing and timing for completion of degree plan requirements. It is recommended for students to declare career intentions early so appropriate coursework may be planned. All undergraduate advising matters are handled by the advisors in the department’s Advising Office. Information concerning entrance to professional schools in health-related fields is available from the Office of Professional School Advising.

Students are encouraged to become engaged in professional organizations and extracurricular activities that afford opportunities for involvement in their respective professions.

Faculty

Agnor, Dottiedee, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1992

Alvarez, Andrea, Instructional Assistant Professor
Health & Kinesiology
MFA, Case Western Reserve University, 2016

Apostolopoulos, Yiorgos, Associate Professor
Health & Kinesiology
PHD, University of Connecticut, 1994

Armstrong, Carisa L, Clinical Associate Professor
Health & Kinesiology
MFA, Case Western Reserve University, 2002

Baetge, Claire C, Clinical Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2014

Baetka, Dawn M, Instructional Assistant Professor
Health & Kinesiology
PHD, Sam Houston State University, 2006

Ballard, Danny J, Adjunct Professor
Health & Kinesiology
PHD, Oklahoma State University, 1982

Ballouli, Khalid W, Adjunct Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2011

Barry, Adam, Professor
Health & Kinesiology
PHD, Texas A&M University, 2007

Batista, Paul J, Associate Professor
Health & Kinesiology
JD, Baylor University, 1976

Bedford, Diane C, Clinical Associate Professor
Health & Kinesiology
MFA, The Florida State University, 2010

Bennett, Gregg R, Professor
Health & Kinesiology
PHD, Auburn University, 1997

Bergeron, Christine S, Clinical Professor
Health & Kinesiology
PHD, University of Wolverhampton, 2018
MFA, Florida State University, 1998

Berthot, Patricia A, Instructional Associate Professor
Health & Kinesiology
MED, Stephen F. Austin State University, 1990

Bloomfield, Susan A, Professor
Health & Kinesiology
PHD, Ohio State University, 1992

Bosquez, Janet M, Instructional Assistant Professor
Health & Kinesiology
MS, Texas A&M University, 1986

Boucher, Anthony M, Clinical Associate Professor
Health & Kinesiology
PHD, Texas Women’s University, 2008
Breaux, Wade J, Instructional Assistant Professor
Health & Kinesiology
MS, Texas A&M University, 2002

Breithaupt, Charles, Visiting Professor
Health & Kinesiology
EDD, University of Texas at Austin, 1996

Breken, Kirstin L, Instructional Professor
Health & Kinesiology
MS, Texas A&M University, 1982

Brison, Natasha T, Assistant Professor
Health & Kinesiology
PHD, University of Georgia, 2015
JD, University of Georgia School of Law, 1998

Buchanan, John J, Professor
Health & Kinesiology
PHD, Florida Atlantic University, 1996

Campbell, August J, Instructional Associate Professor
Health & Kinesiology
PHD, Texas State University, 2005

Campbell, Kelli R, Instructional Assistant Professor
Health & Kinesiology
BBA, Texas A&M University, 2000

Chen, Lei-Shih, Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2007

Coady, William J, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1992

Crouse, Stephen F, Professor
Health & Kinesiology
PHD, The University of New Mexico, 1984

Cunningham, George B, Professor
Health & Kinesiology
PHD, The Ohio State University, 2002

Dannenbaum III, Joseph H, Instructional Associate Professor
Health & Kinesiology
MS, Oklahoma State University, 2005

Darnell, Gayden S, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1997

Deutz, Nicolaas, Professor
Health & Kinesiology
MD, University of Amsterdam, 1988

Dixon, Marlene A, Professor
Health & Kinesiology
PHD, Ohio State University, 2002

Dixon, Stuart M, Instructional Associate Professor
Health & Kinesiology
MED, Concordia University Texas, 2009

Eliot, John F, Clinical Associate Professor
Health & Kinesiology
PHD, University of Virginia, 1997

Ellis, Robert B, Instructional Assistant Professor
Health & Kinesiology
BA, Oklahoma State University, 1964

Elza, Susan, Visiting Professor
Health & Kinesiology
EDD, Lamar University, Beaumont, 2014

Engelen, Marielle P, Professor
Health & Kinesiology
PHD, Maastricht University, Netherlands, 2000

Evans, Jennifer, Clinical Assistant Professor
Health & Kinesiology
PHD, University of Alabama, 2019

Fehr, Sara K, Clinical Assistant Professor
Health & Kinesiology
PHD, University of Cincinnati, 2015

Fluckey, James D, Professor
Health & Kinesiology
PHD, The Pennsylvania State University, 1995

Garney, Whitney R, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2015

Gilreath, Tamika D, Associate Professor
Health & Kinesiology
PHD, The Pennsylvania State University, 2007

Gomez, Daniel, Instructional Associate Professor
Health & Kinesiology
MED, Texas A&M University, 2010

Gomez, Lorinda B, Instructional Professor
Health & Kinesiology
MS, Texas A&M University, 2006

Goodson, Patricia, Professor
Health & Kinesiology
PHD, University of Texas, 1996

Green, John S, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 1996

Green, Lisa L, Adjunct Assistant Professor
Health & Kinesiology
PHD, Texas Women’s University, 2001

Greenwood, Lori, Clinical Professor
Health & Kinesiology
PHD, Oregon State University, 1995

Guinn III, James R, Instructional Assistant Professor
Health & Kinesiology
EDD, Abilene Christian University, 2017
Gunnels, Emily E, Lecturer
Health & Kinesiology
MS, Texas A&M University, 2005

Hanik, Bruce W, Instructional Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2011

Hanik, Kathleen, Visiting Lecturer
Health & Kinesiology
MFA, Florida State University, 2008

Hanik, Michael G, Instructional Assistant Professor
Health & Kinesiology
MS, Northwestern State University of Louisiana, 1996

Harvey, Idethia S, Associate Professor
Health & Kinesiology
DrPH, University of Pittsburgh, 2005

Heidtke, Jonathan, Professor of the Practice
Health & Kinesiology
BS, Texas A&M University, 1981

Henthorne, Mary B, Instructional Associate Professor
Health & Kinesiology
CERT, Yogafit Training System, 2018

Hodge, Courtney, Visiting Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2015

Hudson, Karen, Visiting Lecturer
Health & Kinesiology
MS, Texas A&M University, 1997

Hudson, Shane L, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 2007

Johnson, Donald, Lecturer
Health & Kinesiology
BS, Texas A&M University, 1955

Keiper, Paul, Clinical Associate Professor
Health & Kinesiology
EDD, Texas A&M University, 2002

Kennedy, Deanna M, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2015

Kniffin, Daniel A, Instructional Professor
Health & Kinesiology
MED, The University of Texas - Austin, 1987

Kreider, Richard, Professor
Health & Kinesiology
PHD, University of Southern Mississippi, 1987

Kuppersmith, Nicole, Visiting Lecturer
Health & Kinesiology
CERT, Zumba Instructor Network, 2019

Lawler, John, Professor
Health & Kinesiology
PHD, University of Florida, 1991

Lee, Hyun Woo, Assistant Professor
Health & Kinesiology
PHD, Florida State University, 2014

Lei, Yuming, Assistant Professor
Health & Kinesiology
PHD, University of Wisconsin - Milwaukee, 2015

Lemke, Michael K, Clinical Assistant Professor
Health & Kinesiology
PHD, Wichita State University, 2013

Lightfoot, John, Professor
Health & Kinesiology
PHD, University of Tennessee, 1986

Linz, Leah E, Instructional Assistant Professor
Health & Kinesiology
CERT, Schwinn Fitness, 2013

Liu, Jiling, Clinical Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2016

Locklear, Alyssa D, Instructional Professor
Health & Kinesiology
CERT, Yogafit Training System, 2012

Martin, Steven E, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2008

McNeill, Elisa H, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 2010

Milstein, Susan, Clinical Assistant Professor
Health & Kinesiology
PHD, Widener University, 2006

Moore, Melinda S, Professor
Health & Kinesiology
PHD, Ball State University, 1997

Muckleroy, Martha L, Instructional Professor
Health & Kinesiology
MED, Texas A&M University, 1994

Netherland, Beth M, Instructional Associate Professor
Health & Kinesiology
MS, Miami University, 2000

Nickson, Hildi M, Clinical Assistant Professor
Health & Kinesiology
PHD, The University of Texas, 2015

Patterson, Megan Stiefel, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2016
Pittman, Andrew T, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 1991

Pooley, Alexandra, Instructional Associate Professor
Health & Kinesiology
CERT, Texas A&M University, 2019

Rahn, Rhonda N, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2014

Riechman, Steven E, Associate Professor
Health & Kinesiology
PHD, University of Pittsburgh, 2000

Salaga, Steven, Clinical Assistant Professor
Health & Kinesiology
PHD, University of Michigan, 2012

Sandlin, Michael E, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 1992

Schakel, David J, Instructional Assistant Professor
Health & Kinesiology
MA, Ball State University, 1978

Sherman, Ledric D, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2013

Shipley, Meagan M, Clinical Associate Professor
Health & Kinesiology
PHD, Indiana University, 2014

Simmons, Kervin, Visiting Lecturer
Health & Kinesiology
MS, Texas A&M University, 2018

Singer, John N, Associate Professor
Health & Kinesiology
PHD, Ohio State University, 2002

Slagel, Kristin N, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 2002

Szucs, Leigh, Visiting Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2017

Szura, Jordan, Visiting Lecturer
Health & Kinesiology
MS, Texas A&M University, 2019

Templin, Mai Phuong L, Instructional Assistant Professor
Health & Kinesiology
MAR, University of Houston, 1992

Ten Have, Gabriella A, Research Assistant Professor
Health & Kinesiology
PHD, Maastricht University, 2017

Thelen, Lucinda, Instructional Assistant Professor
Health & Kinesiology
MED, Texas A&M University, 2010

Thomas, Francis E, Instructional Professor
Health & Kinesiology
PHD, Texas A&M University, 1980

Thornton, John H, Executive Professor
Health & Kinesiology
PHD, Texas A&M University, 1997

Thornton, Michael A, Clinical Assistant Professor
Health & Kinesiology
EDD, Texas A&M University, 2007

Tisone, Christine, Clinical Assistant Professor
Health & Kinesiology
PHD, Indiana University, 2004

Tomchesson, Michael A, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1994

Waite, Lucy J, Instructional Associate Professor
Health & Kinesiology
CERT, Athletics and Fitness Associations of America, 2019

Waltemyer, David S, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2006

Wenzel, Theresa M, Instructional Professor
Health & Kinesiology
MED, Baylor University, 1992

Wigfall, Lisa T, Assistant Professor
Health & Kinesiology
PHD, University of South Carolina, 2009

Williams, Dominique, Visiting Lecturer
Health & Kinesiology
PHD, Texas A&M University, 2019

Willingham, Kristen L, Instructional Assistant Professor
Health & Kinesiology
MS, Texas A&M University, 2014

Wilson, Kelly L, Professor
Health & Kinesiology
PHD, Texas A&M University, 2004

Wolfe, Joda, Instructional Assistant Professor
Health & Kinesiology
MS, Ohio University, 2012

Woodard, Denise, Instructional Assistant Professor
Health & Kinesiology
MS, University of Central Missouri, 2000

Woodman, Christopher R, Associate Professor
Health & Kinesiology
PHD, University of Arizona, 1995
Woosley, James R, Instructional Professor
Health & Kinesiology
MS, Western Illinois University, 1975

Wright, David L, Professor
Health & Kinesiology
PHD, Pennsylvania State University, 1989

Wright, Scott, Instructional Assistant Professor
Health & Kinesiology
MA, The University of Texas - Pan American, 1997

Xiang, Ping, Professor
Health & Kinesiology
PHD, Louisiana State University, 1996

Zimmer, Wendi, Visiting Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2019

Majors

Health
- Bachelor of Science in Community Health (p. 326)
- Bachelor of Science in Health, Allied Health Track (p. 327)
- Bachelor of Science in Health, School Health Track (p. 328)

Kinesiology
- Bachelor of Science in Kinesiology, All-Level Physical Education Teacher Certification Track (p. 329)
- Bachelor of Science in Kinesiology, Dance Science Track (p. 331)
- Bachelor of Science in Kinesiology, Exercise and Sport Science Track (p. 332)
- Bachelor of Science in Kinesiology, Exercise Science Track, Applied Exercise Physiology Concentration (p. 334)
- Bachelor of Science in Kinesiology, Exercise Science Track, Basic Exercise Physiology Concentration (p. 335)
- Bachelor of Science in Kinesiology and Master of Science in Athletic Training, 5-Year Degree Program (p. 337)

Sport Management
- Bachelor of Science in Sport Management (p. 339)
- Bachelor of Science in Sport Management, Internship Track (p. 340)
- Bachelor of Science in Sport Management, Non-Internship Track (p. 342)

University Studies
- Bachelor of Science in University Studies, Dance Concentration (p. 343)

Minors

The Department of Health and Kinesiology offers four minors to all students at the university. The coaching, dance, and health minors have admission requirements. Students should consult with an advisor in the Department of Health and Kinesiology for admission requirements.

- Coaching Minor (p. 344)
- Dance Minor (p. 345)
- Health Minor (p. 345)
- Sports Management Minor (p. 345)

Community Health - BS

The Bachelor of Science in Community Health prepares and educates students to serve as community health educators and promoters in a variety of government and private health agencies, clinical settings, nonprofit organizations, volunteer agencies and other community organizations. This program is unique in that it offers a wide range of approved electives permitting the student to develop a program according to his or her needs and interests. Each graduate will have knowledge enabling them to communicate health and health education needs, concerns, and resources.

In addition to classroom experience, the student is exposed to pre-professional training through a non-paid, full semester internship in the final semester. This internship program provides them with on-the-job experience and employment opportunities. Students are placed in a setting which best fits their professional goals.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 107 or BIOL 111</td>
<td>Zoology 1 or Introductory Biology I</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>HLTH 210</td>
<td>Introduction to the Discipline 1</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Health elective 1,4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry 1</td>
</tr>
<tr>
<td>COMM 203 or COMM 205</td>
<td>Public Speaking 1 or Communication for Technical Professions</td>
</tr>
<tr>
<td>HLTH 222</td>
<td>Concepts in Peer Health Education 1</td>
</tr>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles 1</td>
</tr>
<tr>
<td>Creative arts (p. 29) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 236</td>
<td>Introduction to Health Disparities and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 240/KINE 240</td>
<td>Computer Technology in Health and Kinesiology</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>2,3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>1,2</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>HLTH 342</td>
<td>Human Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>2,3</td>
<td>3</td>
</tr>
<tr>
<td>Health elective</td>
<td>1,4</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>HLTH 331</td>
<td>Community Health</td>
<td>3</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>1</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3,4</td>
<td>3</td>
</tr>
<tr>
<td>Health elective</td>
<td>1,4</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 335</td>
<td>Human Diseases</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 353</td>
<td>Drugs and Society</td>
<td>3</td>
</tr>
<tr>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>1,2</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 415</td>
<td>Health Education Methodology</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 425</td>
<td>Health Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 440</td>
<td>Contemporary Issues for Community Health Interns</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 482</td>
<td>Grant Writing in Health</td>
<td>1</td>
</tr>
<tr>
<td>Health elective</td>
<td>1,4</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 484</td>
<td>Community Health Internship</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1. Must make a grade of C or better.
2. Course should meet Core Curriculum requirement.
3. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement, if needed.
4. Select from the following courses: HLTH 216, HLTH 221, HLTH 333, HLTH 334, HLTH 354, HLTH 403, HLTH 405, HLTH 407, HLTH 410, HLTH 429; or NFSC 202.
5. Can be taken S/U or for a grade. Must make a C or better.
6. Course meets the University writing or communication requirement.
7. Must be taken S/U.

Health - BS, Allied Health Track

The goals of the curriculum leading to a Bachelor of Science in Health are to more effectively develop literate, informed professionals capable of making the world healthier and more humane. Students receive a general education through a broad exposure to information. They also receive a specialized education through coursework designed to help them develop as a professional, expand their knowledge and skills related to health education and prepare them for professional practice. The curriculum in health offers two options: the Allied Health track and the School Health track.

The Allied Health concentration gives students a strong background in health that serves them well if they choose to pursue additional schooling in an allied health area. This concentration provides an opportunity for students to take prerequisite courses for professional allied health schools such as nursing, PA, PT, OT, or other medical fields of study, as electives while receiving a background in the health education field. Students select electives from a list of prerequisites for specific professional school programs.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 415</td>
<td>Health Education Methodology</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 425</td>
<td>Health Program Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 440</td>
<td>Contemporary Issues for Community Health Interns</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 482</td>
<td>Grant Writing in Health</td>
<td>1</td>
</tr>
<tr>
<td>Health elective</td>
<td>1,4</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107 or BIOL 111</td>
<td>Zoology or Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 210</td>
<td>Introduction to the Discipline</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>1,3</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 205</td>
<td>Quantitative Reasoning</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 207</td>
<td>Introduction to Psychological Science</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>OR COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Course should meet Core Curriculum requirement.
Health - BS, School Health Track

The goals of the curriculum leading to a Bachelor of Science in Health are to more effectively develop literate, informed professionals capable of making the world healthier and more humane. Students receive a general education through a broad exposure to information. They also receive a specialized education through coursework designed to help them develop as a professional, expand their knowledge and skills related to health education, and prepare them for professional practice. The curriculum in health offers two options: the Allied Health track and the School Health track.

The School Health option provides a background in health education pedagogy and prepares educators to plan, implement, and evaluate health education in a variety of settings—with an emphasis on teaching health education in the school setting. Graduates have the ability to acquire K-12 teacher certification credentials, enabling them to teach health only in public or private schools, although students are encouraged to become certified in a support field through the use of core curriculum and support field electives. The degree plan provides the flexibility for students to take support field electives that also serve as course pre-requisites for professional schools such as nursing, occupational therapy, and other healthcare fields. Students complete appropriate course work in academic foundations and professional preparation as well as participate in several field-based learning experiences, representing a variety of grade levels and instructional types. The School Health option consists of three professional development phases with all students completing a full semester of clinical teaching in a public school setting as a culminating experience.

SOCI 205 Introduction to Sociology 1,2 3
Select one of the following:
CHEM 119 Fundamentals of Chemistry I 1
CHEM 107 General Chemistry for Engineering & CHEM 117 Students and General Chemistry for Engineering Students Laboratory
Professional development elective 1,3 3

Semester Credit Hours 16

Second Year
Fall
HLTH 236 Introduction to Health Disparities and Diversity 1,2 3
American history (p. 29) 2,4 3
Mathematics (p. 26) 1,4 3
Professional development elective 1,3 3
General elective 1 3

Semester Credit Hours 15

Spring
HLTH 240/ KINE 240 Computer Technology in Health and Kinesiology 1 3
American history (p. 29) 2,4 3
Mathematics (p. 26) 1,4 3
Professional development elective 1,3 3
General elective 1 3

Semester Credit Hours 15

Third Year
Fall
BIOL 319 Integrated Human Anatomy and Physiology I 1 4
HLTH 342 Human Sexuality 1,2 3
KINE 199 Required Physical Activity 5 1
POLY 206 American National Government 3
Creative arts (p. 29) 2,4 3

Semester Credit Hours 14

Spring
BIOL 320 Integrated Human Anatomy and Physiology II 1 4
HLTH 354 Medical Terminology for the Health Professions 1 3
KINE 120 The Science of Basic Health and Fitness 1 1
POLY 207 State and Local Government 3
Language, philosophy and culture (p. 27) 2,4 3

Semester Credit Hours 14

Fourth Year
Fall
HLTH 331 Community Health 1 3
HLTH 403 Consumer Health 1 3
HLTH 429 Environmental Health 1 3
HLTH 481 Seminar in Allied Health 6,7 1
Professional development elective 1,3 3
Professional development elective 1,3 3

Semester Credit Hours 16

1 Must make a grade of C or better.
2 Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement, if needed.
3 To be chosen in consultation with your academic advisor from BICh 303, BICH 410; BIOL 112 BIOL 206, BIOL 351, CHEM 120, CHEM 227, CHEM 237, CHEM 288, CHEM 328, GENE 301, GENE 302, GENE 310, GENE 312; HEBF 222/KNFB 222; KINE 307; NFSC 202, NFSC 320; PHIL 111, PHIL 251, PHYS 201, PHYS 202, PSYC 235/ NRSC 235, PSYC 306, PSYC 307; VTPB 409, or VTPP 425. Any Health course not used on the degree plan with the exception of HLTH 415, HLTH 425, HLTH 440 and HLTH 484.
4 Must meet Core Curriculum requirements.
5 May be taken S/U or for a grade. Must make a C or better.
6 Meets Core Curriculum writing requirement.
7 Must take S/U.
Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107</td>
<td>Zoology 1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1,2 or Composition and Rhetoric</td>
</tr>
<tr>
<td>HLTH 210</td>
<td>Introduction to the Discipline 1</td>
</tr>
<tr>
<td>American history (p. 29) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 1,3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry 1</td>
</tr>
<tr>
<td>COMM 203 or COMM 205</td>
<td>Public Speaking or Communication for Technical Professions</td>
</tr>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles 1</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>American history (p. 29) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEFB 222/ KNFB 222</td>
<td>Teaching and Schooling in Modern Society</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity 4</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 1,3</td>
<td>3</td>
</tr>
<tr>
<td>Support field elective 1,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology 1</td>
</tr>
<tr>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness 1</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
</tr>
<tr>
<td>Creative arts (p. 29) 2,3</td>
<td>3</td>
</tr>
<tr>
<td>Health elective 1,6</td>
<td>3</td>
</tr>
<tr>
<td>Support field elective 1,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 335</td>
<td>Human Diseases 1</td>
</tr>
<tr>
<td>HLTH 342</td>
<td>Human Sexuality 1,2</td>
</tr>
<tr>
<td>HLTH 415</td>
<td>Health Education Methodology 1,8</td>
</tr>
<tr>
<td>HLTH 421</td>
<td>Elementary School Health Instruction 1</td>
</tr>
<tr>
<td>HLTH 482</td>
<td>Grant Writing in Health 8,9</td>
</tr>
<tr>
<td>Directed elective 1,7</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HEFB 450/ KNFB 450</td>
<td>Supervised Student Teaching 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement.
3. Must meet core curriculum requirement.
4. Must be taken S/U or for a grade; C or better if for a grade.
5. To be chosen in consultation with academic advisor.
7. Choose from the following: EPSY 320, EPSY 321; HLTH 216, HLTH 221, HLTH 222, HLTH 236, HLTH 240/KINE 240, HLTH 285, HLTH 333, HLTH 334, HLTH 403, HLTH 405, HLTH 407, HLTH 410, HLTH 429; INST 210; NFSC 202, NFSC 222; SOCI 205.
8. Meets the University writing requirement.
9. Must be taken S/U.

Kinesiology - BS, All-Level Physical Education Teacher Certification Track

The Bachelor of Science degree in Kinesiology offers several options designed to prepare students for a variety of careers in public school education, exercise science and dance science. Some options also provide academic preparation for students interested in professional schools, e.g., physical therapy, occupational therapy, physician’s assistant or medicine. There are some common course requirements for all
kinesiology options. Additional hours for each option are specifically
designed to prepare students for that field of study. The sequencing
of courses should be determined in consultation with an appropriate
academic advisor.

The Physical Education Teacher Education option is offered to students
wishing to teach/coach physical education/physical activity/sports in
public or private schools. This all-level certification qualifies the recipient
to teach/coach preschool–12th grades. The degree plan will lead to
successful fulfillment of the certification requirements outlined by the
Texas Education Agency, and also allows simultaneous completion of
the coaching minor. Students can also be certified in a support teaching
field through the use of core curriculum and support field electives. The
rigorous degree plan includes a full semester of clinical teaching in a
public school setting after completion of all necessary coursework.
More program information is available on the Department of Health and
Kinesiology (https://hlkn.tamu.edu/academics/bs-pk12-pe-teacher-cert/)
website. Interested individuals can acquire additional information by
contacting the advising office in the department or the faculty members
of the program.

Program Requirements

This degree plan has been laid out showing students the number of hours
they must take each semester in order to complete the degree in four
years without attending summer school. This is a suggested plan and
does not have to be followed as laid out below. Students should use
this information in conjunction with advising documents available from
their advisor or the department website when scheduling courses each
semester to ensure they are meeting all prerequisites, taking courses
for admission to professional phase in a timely manner and meeting all
grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 107</td>
<td>Zoology 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 1,4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition (Select one of the following:)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) 4,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27) 4,5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 213</td>
<td>Foundations of Kinesiology 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 215</td>
<td>Fundamentals of Coaching 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>College Physics 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Support field elective 1,6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HLTH 421</td>
<td>Elementary School Health Instruction 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 308</td>
<td>Integrated Adventure Education 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KNFB 315</td>
<td>Elementary School Physical Activities 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Support field elective 1,6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 307</td>
<td>Lifespan Motor Development 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 121</td>
<td>Physical and Motor Fitness Assessment 1,3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 1,4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 1,4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>

American history (p. 29) 4,5

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
</table>
KINE 318 Athletic Injuries 1 3
KINE 425 Tests and Measurements 1 3
KINE 433 Physiology of Exercise 1 3
KNFB 324/ HEFB 324 Technology and Teaching Skills for the 21st Century Learner 1 3

| Semester Credit Hours | 16 |

Fourth Year

Fall

KNFB 325/ HEFB 325 Introduction to Secondary School Teaching 1, 8 3
KINE 426 Exercise Biomechanics 1 4
KINE 429 Adapted Physical Activity 1 3
KNFB 416 Middle and Secondary School Physical Activities 1, 8 3
PSYC 307 Developmental Psychology 1 3

| Semester Credit Hours | 16 |

| Semester Credit Hours | 6 |

| Total Semester Credit Hours | 120 |

1. Must make a grade of C or better.
2. Participation in band or athletics cannot be used for KINE 199 credit. KINE 199 activities cannot be repeated for credit and must be taken for a grade. Must be a majors section.
3. Must take at Texas A&M University.
4. Must meet Core Curriculum requirements.
5. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement if needed.
6. To be chosen in consultation with your academic advisor.
7. Meets Creative Arts core curriculum requirement.

Kinesiology - BS, Dance Science Track

The Bachelor of Science degree in Kinesiology offers several options designed to prepare students for a variety of careers in public school education, exercise science and dance science. Some options also provide academic preparation for students interested in professional schools, e.g., physical therapy, occupational therapy, physician’s assistant or medicine. There are some common course requirements for all kinesiology options. Additional hours for each option are specifically designed to prepare students for that field of study. The sequencing of courses should be determined in consultation with an appropriate academic advisor.

The Dance Science track for the BS in Kinesiology is offered to prepare and educate students to enter the field of dance science. Dance Scientists are professionals who are employed by dance companies and dance training facilities throughout the world to devise effective training programs as well as advise the dancers regarding nutrition, injury prevention/care, and dance psychology. Dance Scientists also become researchers, dance therapists, massage therapists, and better informed dancers and teachers.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107 Zoology 1, 2</td>
<td></td>
</tr>
<tr>
<td>DCED 222 Introduction to Dance Science 2</td>
<td></td>
</tr>
<tr>
<td>ENGL 103 Introduction to Rhetoric and Composition 2</td>
<td></td>
</tr>
<tr>
<td>or ENGL 104 Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>KINE 213 Foundations of Kinesiology 2</td>
<td></td>
</tr>
<tr>
<td>KINE 120 The Science of Basic Health and Fitness 1, 2</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3, 4</td>
<td></td>
</tr>
<tr>
<td>DCED 260 Ballet I</td>
<td></td>
</tr>
<tr>
<td>DCED 361 Ballet II</td>
<td></td>
</tr>
<tr>
<td>DCED 462 Ballet III</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 202 Dance Appreciation 2, 5, 6</td>
<td></td>
</tr>
<tr>
<td>KINE 201 Pilates Apparatus 2</td>
<td></td>
</tr>
<tr>
<td>PSYC 107 Introduction to Psychology 2, 6, 7</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3, 4</td>
<td></td>
</tr>
<tr>
<td>KINE 271 Movement Lab: Modern Dance I</td>
<td></td>
</tr>
<tr>
<td>KINE 372 Movement Lab: Modern Dance II</td>
<td></td>
</tr>
<tr>
<td>KINE 473 Movement Lab: Modern Dance III</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3, 4</td>
<td></td>
</tr>
<tr>
<td>KINE 260 Movement Lab: Ballet I</td>
<td></td>
</tr>
<tr>
<td>KINE 361 Movement Lab: Ballet II</td>
<td></td>
</tr>
<tr>
<td>KINE 462 Movement Lab: Ballet III</td>
<td></td>
</tr>
<tr>
<td>Professional Development Elective 2, 8</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 3 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319 Integrated Human Anatomy and Physiology 1 2</td>
<td></td>
</tr>
<tr>
<td>DCED 303 Health Practices for Dancers 2</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3, 4</td>
<td></td>
</tr>
<tr>
<td>DCED 271 Modern Dance I</td>
<td></td>
</tr>
<tr>
<td>DCED 372 Modern Dance II</td>
<td></td>
</tr>
<tr>
<td>DCED 473 Modern Dance III</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3, 4</td>
<td></td>
</tr>
<tr>
<td>DCED 260 Ballet I</td>
<td></td>
</tr>
<tr>
<td>DCED 361 Ballet II</td>
<td></td>
</tr>
</tbody>
</table>

1. Meets Core Curriculum writing requirement.
2. Must make a grade of C or better.
3. Participation in band or athletics cannot be used for KINE 199 credit. KINE 199 activities cannot be repeated for credit and must be taken for a grade. Must be a majors section.
4. Must take at Texas A&M University.
5. Must meet Core Curriculum requirements.
6. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement if needed.
7. To be chosen in consultation with your academic advisor.
8. Meets Creative Arts core curriculum requirement.
Kinesiology - BS, Exercise and Sport Science Track

The Bachelor of Science degree in Kinesiology offers several options designed to prepare students for a variety of careers in public school education, exercise science and dance science. Some options also provide academic preparation for students interested in professional schools, e.g., physical therapy, occupational therapy, physician’s assistant or medicine. There are some common course requirements for all kinesiology options. Additional hours for each option are specifically designed to prepare students for that field of study. The sequencing of courses should be determined in consultation with an appropriate academic advisor.

The Exercise and Sport Science option is offered to students wishing to pursue careers in exercise and sport training. A solid foundation in scientific principles related to the biology of sport along with the practical knowledge in physical activity pedagogy, coaching, and exercise training will prepare future coaches and trainers. This degree plan includes a full semester of practicum experience in appropriate environments.

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 401 or KINE 318</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 403</td>
</tr>
<tr>
<td>KINE 406</td>
</tr>
<tr>
<td>KINE 426</td>
</tr>
<tr>
<td>KINE 433</td>
</tr>
<tr>
<td>POLS 207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

1. Must meet Core Curriculum requirements.
2. Must make a grade of C or better
3. Must make a grade of B or better
4. To be chosen in consultation with your academic advisor.
5. Meets Creative Arts core curriculum requirement.
6. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) Graduation requirement if needed.
7. Meets Social Science core curriculum requirement
8. To be chosen in consultation with your academic advisor and selected from the following courses: Additional DCE/KINE tech courses; BIOL 112; CHEM 119, CHEM 120; DCE 301, DCE 304, DCE 400, DCE 402, DCE 405; HLTH 354, HLTH 421; INST 210 or KINE 429, KINE 175, KINE 210, KINE 305, KINE 407, KINE 427, KINE 435; KNFB 222/HEFB 222, KNFB 324/HEFB 324, KNFB 325/HEFB 325, KNFB 416, KNFB 450/HEFB 450; NFSC 202; PHYS 202; PSYC 307; STAT 301, STAT 302, STAT 303.
9. Meets the University Writing Requirement.

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 306</td>
<td>2</td>
</tr>
<tr>
<td>DCED 308</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
</tr>
<tr>
<td>DCED 271</td>
<td>2</td>
</tr>
<tr>
<td>DDEC 372</td>
<td>2</td>
</tr>
<tr>
<td>DCE 473</td>
<td>2</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 307</td>
</tr>
<tr>
<td>PHYS 201</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>MATH 142</td>
</tr>
<tr>
<td>MATH 147</td>
</tr>
<tr>
<td>MATH 151</td>
</tr>
<tr>
<td>MATH 171</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Professional development elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>
Additional program information is available on the Department of Health and Kinesiology website or by contacting the advising office in the department.

The options in exercise science expose students to a strong science background making them excellent candidates for employment opportunities in exercise related areas (cardiac rehabilitation, corporate or private fitness), advanced graduate studies (motor behavior, exercise physiology) or professional school (medical, dental or physical therapy). Course prerequisites for medical, dental or physical therapy professional schools are included in the various programs under this track.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 107</td>
<td>Zoology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104/103</td>
<td>Composition and Rhetoric/to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POLS 205</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSYC 207</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>NFSC 202</td>
<td>Fundamentals of Human Nutrition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIO 319</td>
<td>Integrated Human Anatomy and Physiology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 121</td>
<td>Physical and Motor Fitness Assessment</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 305</td>
<td>Sport Nutrition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 307</td>
<td>Lifespan Motor Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coaching minor elective</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>BIO 320</td>
<td>Integrated Human Anatomy and Physiology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 318</td>
<td>Athletic Injuries</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coaching minor elective</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>KINE 340</td>
<td>Essentials of Strength and Conditioning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 404</td>
<td>Coaching Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 433</td>
<td>Physiology of Exercise</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 435</td>
<td>Physiology of Exercise Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KNFB 315</td>
<td>Elementary School Physical Activities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coaching minor elective</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>KINE 406</td>
<td>Motor Learning and Skill Performance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 407</td>
<td>Motor Control and Learning Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 426</td>
<td>Exercise Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 483</td>
<td>Practicum in Kinesiology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 421</td>
<td>Legal Aspects of Sport</td>
<td>3</td>
</tr>
</tbody>
</table>
Kinesiology - BS, Exercise Science Track, Applied Exercise Physiology Concentration

The Bachelor of Science degree in Kinesiology offers several tracks designed to prepare students for a variety of careers. The Applied Exercise Physiology track prepares students to become clinical exercise physiologists working in cardiopulmonary rehabilitation programs. This program contains a strong science background making students excellent candidates for professional schools such as Physical Therapy School. Students can also prepare for immediate employment in clinical fields to include areas like cardiac and pulmonary rehabilitation, pharmaceutical sales and medical equipment sales and service. In addition, students also train for jobs as personal trainers or corporate/private fitness specialists. This track also enables students to continue their education in the fields such as clinical exercise physiology, sport physiology and nutrition.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Must meet Core Curriculum requirements.
3. Course selection should meet the International and Cultural Diversity (p. 47) (ICD) or the Cultural Discourse (p. 46) (CD) graduation requirement, if needed.
4. To be chosen in consultation with your advisor.
5. Must take Majors Resist Flex, Majors Team Sport, and Majors Individual/Dual Sport. Participation in band or athletics cannot be used for KINE 199 credit. KINE 199 activities cannot be repeated for credit and must be taken for a grade.
6. Must be taken at Texas A&M University.
8. Select from the following courses: KINE 312, KINE 314, KINE 317, KINE 321, KINE 351, and KINE 355.
9. Recommend KINE 199 Majors Aerobic Movement, KINE 199 Majors Resist Flex prior to registering.
10. Meets Core Curriculum writing requirement.

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>17</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>KINE 121</td>
<td>Physical and Motor Fitness Assessment</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>KINE 213</td>
<td>Foundations of Kinesiology</td>
</tr>
<tr>
<td>American history elective (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 16 |

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 18 |

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>KINE 318</td>
<td>Athletic Injuries</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>American history elective (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 21 |

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Professional development elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
</tr>
<tr>
<td>KINE 318</td>
<td>Athletic Injuries</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>American history elective (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

<p>| Total Semester Credit Hours | 18 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,6</td>
<td>1</td>
</tr>
<tr>
<td>KINE 307</td>
<td>Lifespan Motor Development 1</td>
<td>3</td>
</tr>
<tr>
<td>KINE 433</td>
<td>Physiology of Exercise 1</td>
<td>3</td>
</tr>
<tr>
<td>KINE 435</td>
<td>Physiology of Exercise Lab,1,7</td>
<td>1</td>
</tr>
<tr>
<td>KINE 439</td>
<td>Exercise Evaluation and Prescription 1,7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Professional development elective 1,3,5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 19</td>
<td></td>
</tr>
</tbody>
</table>

Spring

KINE 483	Practicum in Kinesiology 1	3
	Professional development elective 1,3,5	3
	Semester Credit Hours 16	

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours 9</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 484</td>
<td>Internship in Kinesiology 1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours 120</td>
<td></td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Must be taken at Texas A&M University.
3. Course selection should meet the International and Cultural Diversity (p. 47) (ICD) and/or Cultural Discourse (p. 46) (CD) graduation requirement, if needed.
4. Must meet Core Curriculum requirements.
5. To be chosen in consultation with your academic advisor from: BICH 410, BICH 411, BICH 412, BIOL 206, BIOL 213, BIOL 351, BIOL 405, BIOL 434, NRSC 434, BIOL 454, CHEM 227, CHEM 228, CHEM 237, CHEM 238; COMM 370; GENE 301, GENE 312, GENE 320/BIMS 320, GENE 310; HLTH 231, HLTH 335, HLTH 353, HLTH 354; KINE 285, KINE 305, KINE 485, KINE 491; NFSC 202, NFSC 203, NFSC 300-499 (p. 1090); PHIL 111, PHIL 251, PHIL 480; PSYC 300-499 (p. 1125); VTPB 409, VTPP 425; KINE 240/HLTH 240 or ISTM 209 or ISTM 210; PSYC 304 or SPMT 304; SOCI 205; STAT 302 or STAT 303.
6. Must take Majors Aerobic Movement and Majors Res/Flex.
7. Participation in band or athletics cannot be used for KINE 199 credit. KINE 199 activities cannot be repeated for credit and must be taken for a grade.

Kinesiology - BS, Exercise Science Track, Basic Exercise Physiology Concentration

The Bachelor of Science degree in Kinesiology offers several tracks designed to prepare students for a variety of careers. Basic Exercise Physiology provides a background in the physical and biological sciences required for additional graduate study in Exercise Physiology or entry into medical or dental professional school. Students pursuing medical or dental school use professional directed elective hours to meet professional school entrance requirements. Students planning to pursue a graduate degree in Exercise Physiology may enroll in independent study leading to an undergraduate research project.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111, Introductory Biology I 1</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104, Introduction to Rhetoric and Composition 1,2</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107, Introduction to Psychology 1</td>
<td>3</td>
</tr>
<tr>
<td>Select from the following: 1,2</td>
<td>3-4</td>
</tr>
<tr>
<td>MATH 140, Mathematics for Business and Social Sciences 1,2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 148, Calculus II for Biological Sciences 1,2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152, Engineering Mathematics II 1,2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 168, Finite Mathematics 1,2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172, Calculus II 1,2</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

BIOL 112, Introductory Biology II 1	4
CHEM 119, Fundamentals of Chemistry I 1	4
KINE 121, Physical and Motor Fitness Assessment 1,3	2
Select one of the following: 1,2	3-4
MATH 142, Business Calculus 1,2	4
MATH 147, Calculus I for Biological Sciences 1,2	4
MATH 151, Engineering Mathematics I 1,2	4
MATH 171, Calculus I 1,2	4
Professional development elective 1,4,5	3

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319, Integrated Human Anatomy and Physiology 1,3</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120, Fundamentals of Chemistry II 1,3</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following: 1,2</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203, Public Speaking 1,2</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205, Communication for Technical Professions 1,2</td>
<td>3</td>
</tr>
</tbody>
</table>
Program Requirements

The Bachelor of Science degree in Kinesiology offers several tracks designed to prepare students for a variety of careers. Motor Behavior prepares students to enter physical or occupational therapy, or other related professional schools. The course of study is designed to provide students a broad background with special emphasis on both the physiology and psychology of human movement. Professional directed electives allow students to obtain the prerequisites unique to the professional school of choice. This program also provides the background for students that wish to go to graduate school in motor neuroscience. These students, with the permission of the laboratory director, may enroll in independent study leading to an undergraduate research project in motor behavior (motor development, motor learning, or motor control).

Program Requirements

Kinesiology - BS, Exercise Science Track, Motor Behavior Concentration

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>KINE 406</td>
<td>Motor Learning and Skill Performance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 407</td>
<td>Motor Control and Learning Lab</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>KINE 426</td>
<td>Exercise Biomechanics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>KINE 427</td>
<td>Therapeutic Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) Graduation requirement, if needed.
3. Must be taken at Texas A&M University.
4. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) Graduation requirement, if needed.
5. To be chosen in consultation with your academic advisor. Select from: BICH 411, BICH 412, BICH 206, BICH 213, BICH 405, BICH 434/NSRC 434, BICH 454; COMM 370; GENE 310, GENE 320/BIMS 320; HLTH 231, HLTH 335, HLTH 353, HLTH 354; KINE 285, KINE 305, KINE 485 KINE 491; NFSC 202, NFSC 300-499 (p. 1090); PHIL 111, PHIL 251, PHIL 480, PSYC 300-499 (p. 1125); SOCI 205; SPMT 304; VTPB 409, VTPP 425; HLTH 240/KINE 240 or ISTM 209 or ISTM 210.
6. Activities should be chosen in consultation with advisor. Participation in band or athletics cannot be used for KINE 199 credit. KINE 199 activities cannot be repeated for credit and must be taken for a grade.
7. Meets Core Curriculum writing requirement.

Program Requirements

Kinesiology - BS, Exercise Science Track, Motor Behavior Concentration

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Course must meet Core Curriculum requirements.
3. Must be taken at Texas A&M University.
4. Course selection should meet the International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) Graduation requirement, if needed.
Kinesiology - 5-Year Bachelor of Science/Master of Science

The combined degree program (3+2) allows undergraduate Kinesiology students to enter the Master of Science in Athletic Training program the beginning of their fourth year at Texas A&M University and earn a Bachelor of Science in Kinesiology and a Master of Science in Athletic Training (MSAT) degree in five years.

Students will follow departmental requirements for admission into the professional phase of the BS in Kinesiology. Kinesiology majors who have at least a 3.25 GPA by the end of fall semester of their junior year and who will have completed all of their prescribed courses by the spring of their junior year will be eligible to apply for the five-year program.

Applicants to the five-year program will submit the same materials (including GRE scores) as other MSAT applicants by the spring deadline of their junior year, and those who meet all minimum requirements, including having earned a B or better in ATTR 201, ATTR 202, ATTR 301, ATTR 302, will receive placement in the MSAT program. The admissions criteria for the five-year program will be the same as for other MSAT students.
Students continuing into the 4th year of the 3+2 combined program must finish the entire 156 hours to obtain both the Bachelor's and Master's degrees. Students will be conferred with two degrees once they complete the 5th year of the concurrent program.

Students in the 3+2 combined program will be required to complete the same two-year, 60 hour curriculum as other students admitted to the MSAT program. Students will take 96 hours of undergraduate courses, and 60 hours of graduate course work, of which 24 hours will be applied to the undergraduate degree. Students are required to maintain a 3.25 GPA through the first 24 hours of graduate course work at which time the student must maintain a 3.0 GPA. Students continuing in the 3+2 program will change from U4 to G7 status when they complete 96 hours.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the program. The undergraduate portion of the plan is a suggested plan and should be followed closely. There may be some modifications in course order that can occur but students should consult with the departmental academic advisor for the combined degree program before changes are made in order to ensure they are meeting all requirements.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology 1</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition 1</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>KINE 121</td>
<td>Physical and Motor Fitness Assessment 1,2</td>
<td>2</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>KINE 213</td>
<td>Foundations of Kinesiology</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 201</td>
<td>Field Experience in Athletic Training I 3</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 1</td>
<td>4</td>
</tr>
<tr>
<td>HLTH 354</td>
<td>Medical Terminology for the Health Professions 1</td>
<td>3</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,4</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29) 5,6</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 202</td>
<td>Field Experience in Athletic Training II 3</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I 1,2</td>
<td>4</td>
</tr>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles 1</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29) 5,6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 5,6</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 301</td>
<td>Field Experience in Athletic Training I 3</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II 1,2</td>
<td>4</td>
</tr>
<tr>
<td>HLTH 216</td>
<td>First Aid 1</td>
<td>2</td>
</tr>
<tr>
<td>NFSC 202</td>
<td>Fundamentals of Human Nutrition 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29) 5,6</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 302</td>
<td>Field Experience in Athletic Training II 3</td>
<td>1</td>
</tr>
<tr>
<td>HLTH 482</td>
<td>Grant Writing in Health 7,8</td>
<td>1</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity 1,2,4</td>
<td>1</td>
</tr>
<tr>
<td>KINE 426</td>
<td>Exercise Biomechanics 1</td>
<td>4</td>
</tr>
<tr>
<td>KINE 433</td>
<td>Physiology of Exercise 1</td>
<td>3</td>
</tr>
<tr>
<td>KINE 435</td>
<td>Physiology of Exercise Lab 1,7</td>
<td>1</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 651</td>
<td>Clinical Education I 1,9</td>
<td>2</td>
</tr>
<tr>
<td>ATTR 660</td>
<td>Prevention and Care of Athletic Injuries 1,9</td>
<td>3</td>
</tr>
<tr>
<td>ATTR 661</td>
<td>Prevention and Care of Athletic Injuries Lab 1,9</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTR 652</td>
<td>Clinical Education II 1,9</td>
<td>3</td>
</tr>
<tr>
<td>ATTR 662</td>
<td>Clinical Examination and Diagnosis-Lower Extremity 1,9</td>
<td>3</td>
</tr>
</tbody>
</table>
Course selection should meet the core curriculum requirements.

Activities should be chosen in consultation with your advisor.

Participation in band or athletics cannot be used for credit and must be taken for a grade.

Course must meet core curriculum requirements.

Course selection should meet the International and Cultural Diversity requirement (p. 47) and/or Cultural Discourse requirement (p. 46).

Meets core curriculum writing requirement.

Students may elect to take PHYS or CHEM courses during the Summer semester between freshman and sophomore year to reduce the Fall load.

The program includes a total of 180 hours which up to 24 hours may be applied toward both the Bachelor of Science in Kinesiology and the Master of Science in Athletic Training.

Sport Management - BS

The Bachelor of Science degree in Sport Management is designed to prepare students for careers as administrators and managers in athletic, health, and country club industries, as well as entry-level management positions in college and professional athletic organizations. Through this program, students are prepared for diverse roles in the areas of sport marketing and promotions, facility management and planning, activity programming, and event management. The curriculum stays in tune with the sport industry to ensure graduating students are competitive in the field. Students complete their degree plan with a culminating experience that consists of four (4) options: (1) internship, (2) capstone project, (3) foreign program project, and (4) undergraduate research project. The internship, following coursework, provides students with on-the-job experience and networking opportunities. The capstone project is a multifaceted assignment that serves as a culminating academic and intellectual experience for students. The foreign program project is a unique blend of academic programming which provides students with global experience. The undergraduate research option provides an opportunity for students to develop and investigate their own research project under the guidance of SPMT faculty. The degree plan allows freedom for students to obtain a minor from a list of approved minors (i.e., business, journalism, speech communications, etc.).

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ATTR 655</td>
<td>Clinical Education V</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATTR 666</td>
<td>Physical Rehabilitation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATTR 667</td>
<td>Physical Rehabilitation Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ATTR 670</td>
<td>General Medical Conditions and Therapeutic Medication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATTR 673</td>
<td>Manual Therapy in Athletic Training</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KINE 685</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>Spring</td>
<td>ATTR 656</td>
<td>Clinical Education VI</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATTR 672</td>
<td>Professional Preparation and Issues in Athletic Training</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 629</td>
<td>Physiology of Strength and Conditioning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 685</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>156</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 260</td>
<td>Overview of Practices in Sport</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SPMT 270</td>
<td>Sport Marketing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SPMT 304 or SPMT 319/ SOCI 319</td>
<td>Sport Psychology Management and Practice or Sociology of Sport</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ATTR 657</td>
<td>Clinical Education VII</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATTR 668</td>
<td>Clinical Education VIII</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 628</td>
<td>Clinical Education IX</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KINE 686</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SPMT 262</td>
<td>Human Capital Management in Sport</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 272</td>
<td>Sport Marketing Issues</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 175</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 160</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 175</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 160</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 175</td>
<td>Calculus III</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. Must be taken at Texas A&M University.
3. Must make a grade of B or better.
4. Activities should be chosen in consultation with your advisor.
 Participation in band or athletics cannot be used for KINE 199 credit.
 KINE 199 activities cannot be repeated for credit and must be taken for a grade.
5. Course must meet core curriculum requirements.
6. Course selection should meet the International and Cultural Diversity requirement (p. 47) and/or Cultural Discourse requirement if needed.
7. Meets core curriculum writing requirement.
8. Must be taken S/U.
9. Course will count in undergraduate and graduate program.
The Bachelor of Science degree in Sport Management Internship Track is designed to prepare students for careers as administrators and managers in athletic, health and country clubs, as well as entry-level management positions in college and professional athletic organizations. Through this program, students are prepared for a diversity of roles in the areas of sport marketing and promotions, facility management and planning, activity programming and events management. Students electing this track are required to complete a twelve (12) credit internship. The internship, following coursework, provides students with on-the-job experience and networking opportunities. Students in this track may choose courses to fulfill a minor in approved departments. Please contact your advisor for a list of approved minors.

Program Requirements

Students who meet the University and college entrance requirements enter the Sport Management major as lower-level (EDSM) majors. Students are encouraged to complete the freshman, sophomore, and junior sequences of courses as listed under Curriculum in Sport Management. Enrollment of Sport Management students in senior-level courses is limited to those who have been admitted to upper-level (also referred to as upper division).

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition 1</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 217</td>
<td>Foundations of Sport Management</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 462</td>
<td>Leadership Application in Sport 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 265</td>
<td>Professional Communication for the Sport Industry 1</td>
<td>4</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>American History (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, Philosophy and Culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and Physical Sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 295</td>
<td>Introduction to the Culminating Experience 1</td>
<td>1</td>
</tr>
<tr>
<td>American History (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative Arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and Physical Sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 1,3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 360</td>
<td>Organizational Issues in Sport 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 362</td>
<td>Sport Leadership 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 364</td>
<td>Financial Management in Sport 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 366</td>
<td>Sport Facility and Event Management 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 370</td>
<td>Fan Behavior in Sport 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 372</td>
<td>Sales Strategies in Sport Organizations 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 374</td>
<td>Strategic Sport Marketing 1</td>
<td>3</td>
</tr>
<tr>
<td>Culminating experience 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 1,3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 460</td>
<td>Sport Business Planning 1</td>
<td>3</td>
</tr>
<tr>
<td>SPMT 470</td>
<td>Application of Marketing Strategies in Sport 1</td>
<td>3</td>
</tr>
<tr>
<td>Culminating experience 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed electives 1,3</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 462</td>
<td>Leadership Application in Sport 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

1 must make a grade of C or better.

2 The culminating experience has 4 unique options; these options are explained in the Culminating Experience seminar SPMT 295. The following courses, among other courses, may satisfy the completion of the culminating experience: SPMT 450, SPMT 483, SPMT 484, SPMT 485 and SPMT 491. Students will gain approval of additional courses through faculty.

3 Select from ACCT 209, ACCT 229, ACCT 210; ALED 340, ALED 341; COMM 205, COMM 210, COMM 315, COMM 320, COMM 340; ECON 203, EHRD 408; FINC 201, FINC 409, ISTM 209; MGMT 105, MGMT 209, MGMT 211, MGMT 212, MKTG 402/IBUS 402, MKTG 409, PSYC 107; RPTS 301, RPTS 302, RPTS 311, RPTS 340, RPTS 426; SPMT 220, SPMT 230, SPMT 285, SPMT 291, SPMT 316, SPMT 330, SPMT 331, SPMT 334, SPMT 336, SPMT 337, SPMT 340, SPMT 412, SPMT 420, SPMT 481, SPMT 483, SPMT 485, SPMT 489, SPMT 491; STAT 201; WGST 430/MGMT 430. As part of the directed electives, students may choose courses to fulfill a minor in approved departments. Please contact your advisor for a list of approved minors.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3-4</td>
</tr>
<tr>
<td>Spring</td>
<td>ECON 202 Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ECON 203 Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 120 The Science of Basic Health and Fitness or Introduction to the Science of Health and Fitness</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152 Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 168 Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172 Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3-4</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>SPMT 225 Practical Skills for Sport Professionals</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206 American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142 Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171 Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>1, 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>HLTH 240/ KINE 240/ ISTM 209 Kinesiology or Business Information Systems Concepts</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207 State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>1, 6</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>1, 4</td>
</tr>
<tr>
<td></td>
<td>Sport management elective</td>
<td>1, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>SPMT 304 Sport Psychology Management and Practice</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 319/ SOCI 319 Sociology of Sport</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>1, 6</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>1, 4</td>
</tr>
<tr>
<td>Spring</td>
<td>SPMT 484 Internship in Sport Management</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>SPMT 333 Sport Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 402 Sport Management Pre-Internship Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPMT 421 Legal Aspects of Sport</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 422 Financing Sport Operations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 423 Marketing Aspects of Sport</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 482 Professional Writing Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPMT 481 Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>1, 4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better
2. Course selection can meet International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement.
3. Must meet Core Curriculum requirements.
4. To be chosen in consultation with academic advisor. For SPMT-Internship students, choose from the following: Any 100-499 course associated with chosen required minor. For SPMT-Internship students, Minor Business is required. Courses must be selected from the following: ACCT 209 or ACCT 229; ISTM 209; MGMT 209 or MGMT 211; MGMT 309; MKTG 409; FINC 409; STAT 201.
5. SPMT-Internship students must take ISTM 209.
6. Choose from any of the following: Any SPMT 200-499 (p. 1151) course (except SPMT 217, SPMT 225, SPMT 304, SPMT 319/ SOCI 319, SPMT 333, SPMT 421, SPMT 422, SPMT 423, SPMT 402, SPMT 482, SPMT 484); ACCT 210; ALED 340, ALED 341; COMM 205, COMM 210, COMM 315, COMM 320, COMM 340; ECON 203; EHRD 408; FINC 201; MGMT 105, MGMT 212; MKTG 402/IBUS 402; PSYC 107; RPTS 300, RPTS 302; RPTS 311, RPTS 340, RPTS 426; WGST 430/MGMT 430.
7. May choose any SPMT 200-499 (p. 1151) course (except SPMT 217, SPMT 225, SPMT 304, SPMT 319/SOCI 319, SPMT 333, SPMT 421, SPMT 422, SPMT 423, SPMT 482, SPMT 402, SPMT 484).
8. To be chosen in consultation with academic advisor but may be any 100-499 course.
9. Course meets University writing requirement.
Sport Management - BS, Non-internship Track

The Bachelor of Science degree in Sport Management Non-internship Track is designed to prepare students for careers as administrators and managers in athletic, health and country clubs, as well as entry-level management positions in college and professional athletic organizations. Through this program, students are prepared for a diversity of roles in the areas of sport marketing and promotions, facility management and planning, activity programming and events management. The non-internship track allows students to study sport management from a specific perspective with the goal of continued educational experiences in graduate or professional school, obtaining a post-baccalaureate internship or securing an entry-level position in a sport organization. Students in the non-internship track must complete a minor from a list of approved minors (i.e., business, journalism, speech communications, etc.). The non-internship track allows for students to have academic flexibility with additional course work while not having the responsibility of completing an internship.

Program Requirements

Students who meet the University and college entrance requirements enter the Sport Management major as lower-level (EDSM) majors. Students are encouraged to complete the freshman, sophomore, and junior sequences of courses as listed under Curriculum in Sport Management. Enrollment of Sport Management students in senior-level courses is limited to those who have been admitted to upper-level (also referred to as upper division).

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SPMT 217</td>
<td>Foundations of Sport Management</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Creative arts (p. 29)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ECON 202 or ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>KINE 120 or KINE 223</td>
<td>The Science of Basic Health and Fitness</td>
<td>1-3</td>
</tr>
<tr>
<td>Spring</td>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>American history (p. 29)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td>2,3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SPMT 225</td>
<td>Practical Skills for Sport Professionals</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 171</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Minor elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SPMT 304</td>
<td>Sport Psychology Management and Practice</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SPMT 319/ SOCI 319</td>
<td>Sociology of Sport</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Minor elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Sport management elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Free elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Minor elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 90

1. Must make a grade of C or better
2. Course selection can meet International and Cultural Diversity (p. 47) and/or Cultural Discourse (p. 46) graduation requirement.
3. Must meet Core Curriculum requirements.
4. To be chosen in consultation with academic advisor. For SPMT-Non Internship students, choose from the following: Any 100-499 course associated with chosen required minor. For SPMT-Internship students, Business Minor is required. Courses must be selected from the following: ACCT 209 or ACCT 229; ISTM 209; MGMT 209 or MGMT 211; MGMT 309; MKTG 409; FINC 409; STAT 201.
5. SPMT-Internship students must take ISTM 209.
Choose from any of the following: Any SPMT 200-499 (p. 1151) course (except SPMT 217, SPMT 225, SPMT 304, SPMT 319/SCI 319, SPMT 333, SPMT 421, SPMT 422, SPMT 423, SPMT 402, SPMT 482, SPMT 484); ACCT 210; ALED 340, ALED 341; COMM 205, COMM 210, COMM 315, COMM 320, COMM 340; ECON 203; EHRS 408; FINC 201; MGMT 105, MGMT 212, MKTG 402/IBUS 402; PSYC 107; RPTS 301, RPTS 302, RPTS 311, RPTS 340, RPTS 426; WGST 430/MGMT 430.

May choose any SPMT 200-499 (p. 1151) course (except SPMT 217, SPMT 225, SPMT 304, SPMT 319/SCI 319, SPMT 333, SPMT 421, SPMT 422, SPMT 423, SPMT 402, SPMT 482, SPMT 484).

To be chosen in consultation with academic advisor but may be any 100-499 course.

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SPMT 333</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 421</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 422</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 481</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>SPMT 423</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SPMT 482</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sport management elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>30</td>
</tr>
</tbody>
</table>

9. Course meets University writing requirement.

University Studies - BS, Dance Concentration

The dance concentration curriculum leads to a Bachelor of Science in University Studies. It is designed to serve students who are in good academic standing with the University (2.0+ GPA) and are specifically seeking an interdisciplinary degree plan which provides preparation in dance history and production. Students complete courses in the foundations of dance, dance production, and dance composition, and technique courses in various forms of dance. Students choose two minors to complement the dance concentration. This concentration is housed in the Division of Kinesiology within the Department of Health and Kinesiology.

Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DCED 202</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 260</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 361</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 462</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
<tr>
<td>Spring</td>
<td>DCED 271</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DCED 372</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DCED 473</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>33</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Select one of the following:</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 260</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 271</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 361</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 462</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 473</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>DCED 203</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>2</td>
</tr>
</tbody>
</table>

1. Course meets University writing requirement.
Coaching - Minor

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 260</td>
<td>Movement Lab: Ballet I</td>
<td></td>
</tr>
<tr>
<td>KINE 271</td>
<td>Movement Lab: Modern Dance I</td>
<td></td>
</tr>
<tr>
<td>KINE 361</td>
<td>Movement Lab: Ballet II</td>
<td></td>
</tr>
<tr>
<td>KINE 372</td>
<td>Movement Lab: Modern Dance II</td>
<td></td>
</tr>
<tr>
<td>KINE 462</td>
<td>Movement Lab: Ballet III</td>
<td></td>
</tr>
<tr>
<td>KINE 473</td>
<td>Movement Lab: Modern Dance III</td>
<td></td>
</tr>
</tbody>
</table>

American history (p. 29) 3
Social and behavioral sciences (p. 30) 3
Minor 6

Semester Credit Hours 15

Third Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 306</td>
<td>Dance Composition I</td>
<td>2</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 17

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 400</td>
<td>Dance Composition II</td>
<td>2</td>
</tr>
</tbody>
</table>

KINE 120 or KINE 223 The Science of Basic Health and Fitness 7 or Introduction to the Science of Health and Fitness 1-3

POLS 207 State and Local Government 3

Minor 3

General elective 2,5

General elective 2,5

Semester Credit Hours 17

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 308</td>
<td>Safe Practices in Teaching Dance</td>
<td>3</td>
</tr>
</tbody>
</table>

Minor 3

Minor 3

General elective 2,5

General elective 2,5

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 405</td>
<td>Career Preparation in Dance</td>
<td>1</td>
</tr>
</tbody>
</table>

Minor 3

Minor 3

General elective 2,5

General elective 2,5

General elective 2,5

Semester Credit Hours 16

Total Semester Credit Hours 120

Students must make a grade of ‘C’ or better in all courses.

Coaching - Minor

This minor is designed for students who are pursuing a teaching career and are also interested in coaching. It is also useful to those who plan to work with youth in sports leagues. Admission to this minor is by application only and requires completion of BIOL 111. Consult with an advisor in the Department of Health and Kinesiology for admission requirements and application. Students should allow a minimum of three semesters to complete this minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity (with HKCO attribute)</td>
<td>1</td>
</tr>
<tr>
<td>KINE 215</td>
<td>Fundamentals of Coaching</td>
<td>1</td>
</tr>
<tr>
<td>HLTH 216</td>
<td>First Aid</td>
<td>2</td>
</tr>
<tr>
<td>KINE 302</td>
<td>Applied Exercise Physiology for Coaches</td>
<td>1</td>
</tr>
<tr>
<td>KINE 306</td>
<td>Functional Anatomy for Coaches</td>
<td>1</td>
</tr>
<tr>
<td>KINE 307</td>
<td>Lifespan Motor Development</td>
<td>3</td>
</tr>
<tr>
<td>KINE 318</td>
<td>Athletic Injuries</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following: 6

KINE 312 Coaching of Baseball
KINE 314 Coaching of Soccer
KINE 317 Coaching of Football
KINE 321 Coaching of Volleyball
KINE 351 Coaching of Basketball
KINE 355 Coaching of Track

Total Semester Credit Hours 18

Meets Core Curriculum Creative Arts requirement.

Some electives should be selected to meet the International and Cultural Diversity (http://catalog.tamu.edu/undergraduate/education-human-development/health-kinesiology/dance-university-studies-bs%20/undergraduate/general-information/degree-information/international-cultural-diversity-requirements/) and/or Cultural Discourse (p. 46) graduation requirement.

Must meet Core Curriculum requirements.

Must make a grade of B or better.

Must be 300 or 400 level course in order to meet university residency requirement.

Two university approved minors are required for this degree program. One of the two minors must be completed in a college outside of the college that provides the concentration for the student’s degree. See advisor for assistance.

Must be a specific activity. See advisor for required activity.

Must be taken at Texas A&M University.

Meets university writing requirement.
Dance - Minor

Admission to the Dance minor requires an audition. Refer to the Dance Program (http://tamudance.tamu.edu/) website for information on auditions.

A minor in dance can lead to numerous opportunities within the field of dance performance and education. Students can obtain the necessary tools to teach and choreograph in private studios or with dance/drill teams, or to utilize their minor studies to pursue degrees in dance. Dance is considered to be an important part of the visual and performing arts educational experience. Studies of dance performance, education, and history can enhance a student's academic experience.

Dance minor students are part of the Dance Program (http://tamudance.tamu.edu/), and have the opportunity to participate in events throughout the year.

Performance

Performance opportunities include: an annual dance concert (Perpetual Motion), Senior Concerts, informal performances, student organization concerts, performances throughout the community and on campus and state, regional, and national/international gala performances. Dance faculty often receive grants for other performances throughout the university in collaboration with faculty from other colleges. Students are also given the opportunity to attend various festivals and conferences.

The Dance Program also offers students the capability to work with guest artists (http://dance.tamu.edu/people/guest-artists/) in master classes, watching performances and learning repertory. This not only gives students an unique opportunity to build their resumes, but to work with a variety of professionals in the field.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 203</td>
<td>Dance Production</td>
<td>3</td>
</tr>
<tr>
<td>DCED 301</td>
<td>Dance History</td>
<td>3</td>
</tr>
<tr>
<td>DCED 306</td>
<td>Dance Composition I</td>
<td>2</td>
</tr>
<tr>
<td>DCED 405</td>
<td>Career Preparation in Dance</td>
<td>1</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Select four hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 361</td>
<td>Ballet II</td>
</tr>
<tr>
<td>DCED 462</td>
<td>Ballet III</td>
</tr>
<tr>
<td>KINE 361</td>
<td>Movement Lab: Ballet II</td>
</tr>
<tr>
<td>KINE 462</td>
<td>Movement Lab: Ballet III</td>
</tr>
</tbody>
</table>

Select four hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCED 372</td>
<td>Modern Dance II</td>
</tr>
<tr>
<td>DCED 473</td>
<td>Modern Dance III</td>
</tr>
<tr>
<td>KINE 372</td>
<td>Movement Lab: Modern Dance II</td>
</tr>
<tr>
<td>KINE 473</td>
<td>Movement Lab: Modern Dance III</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Must take Dance Improvisation or Pilates Mat.

Health - Minor

The health minor is designed for students who want to develop knowledge in health-related topics and engage in courses which complement or enhance the myriad of degree programs available at Texas A&M University. The majority of the courses for this minor are available online. Two courses in the health minor meet the International and Cultural Diversity requirements for core curriculum and one course meets the Cultural Discourse requirement.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 210</td>
<td>Introduction to the Discipline</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 236</td>
<td>Introduction to Health Disparities and Diversity 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLTH 331</td>
<td>Community Health</td>
</tr>
<tr>
<td>HLTH 333</td>
<td>Spirituality and Health</td>
</tr>
<tr>
<td>HLTH 334</td>
<td>Women's Health 1</td>
</tr>
<tr>
<td>HLTH 342</td>
<td>Human Sexuality 1</td>
</tr>
<tr>
<td>HLTH 403</td>
<td>Consumer Health</td>
</tr>
<tr>
<td>HLTH 405</td>
<td>Rural Health</td>
</tr>
<tr>
<td>HLTH 407</td>
<td>Global Health</td>
</tr>
<tr>
<td>HLTH 429</td>
<td>Environmental Health</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Course meets International and Cultural Diversity and/or Cultural Discourse graduation requirements

Students admitted to the Health Minor must have a minimum GPA of 2.0. All courses in the Health Minor must be completed with a grade of C or better.

Sport Management - Minor

The Sport Management Minor provides a foundational understanding of the multifarious sport industry from the perspectives of management, marketing, and other business principles. The minor provides an introductory understanding of the broadly defined sport management discipline and potential careers that can be leveraged in the sport industry.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPMT 217</td>
<td>Foundations of Sport Management</td>
<td>3</td>
</tr>
<tr>
<td>Elective: Any SPMT 200-499 courses 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives: Any SPMT 300-499 course 1</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1 Except SPMT 333, 402, 421, 423, 450, 482, 484

Students must make a grade of ‘C’ or better in all courses.
Department of Teaching, Learning and Culture

The Department of Teaching, Learning and Culture is responsible for undergraduate programs that lead to certification at the early childhood/elementary, middle and secondary levels. Note these exceptions:

1. students interested in teaching either health or physical education must major in the Department of Health and Kinesiology;
2. students interested in teaching agricultural science must major in the Department of Agricultural Education;
3. students interested in secondary certification can be certified through the secondary graduate certification program, the secondary accelerate certification program, the University Studies program or the Aggie Teach program.

Early Childhood/Elementary or Middle Grades Certification

Baccalaureate Degree Programs. Most students interested in early childhood/elementary (PreK-6) or middle school (4–8) certification pursue a program leading to the Bachelor of Science degree (BS) with a major in interdisciplinary studies (INST). The INST degree certification programs prepare students for the many diverse instructional roles assumed by public school teachers. A minimum of 123 credit hours is required for the INST degree. Within this program, students may focus on:

1. early childhood (PreK–grade 6);
2. middle school (grades 4–8 math and science); and
3. middle school (grades 4–8 English language arts and social studies).

For complete information, see an advisor in the Department of Teaching, Learning and Culture’s Office of Undergraduate Advising in Harrington Tower (EDCT 111).

There is another baccalaureate middle grades certification program available for students majoring in English. For information about this program, see an advisor in the Department of English, College of Liberal Arts.

Eligibility. Students must meet the requirements for a bachelor’s degree in the college and the department in which they are majoring. Further, they must meet specific admission and performance standards established by the Department of Teaching, Learning and Culture as well as requirements for professional education and certification established by the State of Texas. These requirements include admission to teacher education, admission to student teaching and qualification for initial certification. It is the responsibility of the student to contact the Department of Teaching, Learning and Culture’s Office of Undergraduate Advising for specific information pertaining to program changes.

Please see an advisor in the Department of Teaching, Learning and Culture’s Office of Undergraduate Advising for current information.

Requirements for Admission to Teaching Education

Early Childhood/Elementary and Middle Grades Education Program

1. Pass the THEA, ACCUPLACER, ASSET or COMPASS test or show proof of exemption from the test with appropriate STAAR, SAT or ACT scores.
2. Completion of a minimum 42 hours of pre-professional coursework from degree program (includes University Core Curriculum courses).
3. Completion of a minimum of 32 hours of University Core Curriculum courses with no grade lower than a C.
4. Completion of TEFB 273 or INST 210 with a grade of B or higher (equivalent courses from a community college may be substituted).
5. Completion of English Proficiency grade requirement by earning a B/C grade combination in ENGL 103 or ENGL 104 and one of the following courses: ENGL 203 or ENGL 210.
6. A GPR of 2.75 on all coursework on a degree plan with no grade lower than a C.
7. Transcripts for all institutions of higher education on file in the Texas A&M University Office of the Registrar.
8. Approved and signed degree plan on file in the Advising Office of the Department of Teaching, Learning and Culture.

These requirements must be seen as minimum standards only. Successful fulfillment of all of the above requirements does not guarantee admission to the program. Admission also depends upon the number of places available and the number of applications received each year. If more qualified students apply than the available number of spaces, admission may be based on selection factors at the time of application, such as GPA in pre-professional courses, number of hours needed to complete the program, and enrollment in prerequisite courses.

Graduate Certification Program

Four routes leading to initial teacher certification at the secondary level are available. These include the Aggie Teach program, the University Studies program, the graduate certification program and Accelerate (an alternative certification program). Complete information is available from the TLAC advising office in Heaton Hall.

Requirements for Admission to Clinical Teaching

1. Complete a student teaching application by the given deadlines and complete all coursework prior to senior methods. Students must see their advisors for deadlines.
2. Admission to teacher education.
3. Completion of all courses listed on the degree plan. All Education/Interdisciplinary Studies and professional courses with a grade of C or better.
4. All certification coursework must be completed. Each emphasis/teaching field must have a grade of C or better in each course with a minimum GPR of 2.75 in teacher emphasis/teaching field.
5. ENGL 203 or ENGL 210 must be completed with a grade of C or better.
6. A minimum of 2.75 on all coursework completed at Texas A&M.
7. A minimum of 2.75 on all coursework that applies to the degree plan, taken at Texas A&M.
8. A minimum of 2.75 on all coursework that applies to the emphasis/teaching field, taken at Texas A&M.

Faculty

Ashley, Candice R, Lecturer
Teaching, Learning & Culture
PhD, Capella University, 2014

Barrett, Julie, Lecturer
Teaching, Learning & Culture
EDD, Sam Houston State University, 2013

Burlbaw, Lynn M, Professor
Teaching, Learning & Culture
PhD, University of Texas, 1989

Butterfield, Vernee, Lecturer
Teaching, Learning & Culture
PhD, Texas A&M University, 2018

Cantrell, Emily S, Clinical Associate Professor
Teaching, Learning & Culture
PhD, Texas A&M University, 2008

Capraro, Mary M, Professor
Teaching, Learning & Culture
PhD, University of Southern Mississippi, 2000

Capraro, Robert M, Professor
Teaching, Learning & Culture
PhD, University of Southern Mississippi, 2000

Carter, Jeanne, Lecturer
Teaching, Learning & Culture
MS, University of North Texas, 2011

Clark, Robert M, Lecturer
Teaching, Learning & Culture
PhD, Texas A&M University, 2010

Clough, Michael P, Professor
Teaching, Learning & Culture
PhD, The University of Iowa, 1994

Craig, Cheryl J, Professor
Teaching, Learning & Culture
PhD, University of Alberta, Canada, 1992

Davis, Trina J, Associate Professor
Teaching, Learning & Culture
PhD, Texas A&M University, 2005

De Miranda, Michael A, Professor
Teaching, Learning & Culture
PhD, University of California, 1996

Díaz Beltran, Ana Carolina, Clinical Assistant Professor
Teaching, Learning & Culture
PhD, The Pennsylvania State University, 2019

Dixon, Laurie Q, Associate Professor
Teaching, Learning & Culture
PhD, Harvard University Graduate School of Education, 2004

Etchells, Matthew, Lecturer
Teaching, Learning & Culture
PhD, Texas A&M University, 2018

Fields, Susan S, Visiting Assistant Professor
Teaching, Learning & Culture
EDD, Boston University, 2017

Fleming, Kenneth J, Lecturer
Teaching, Learning & Culture
PhD, Texas A&M University, 2016

Griffith, Kere, Lecturer
Teaching, Learning & Culture
PhD, University of Mary Hardin-Baylor, 1993

Hammer, Janet E, Clinical Professor
Teaching, Learning & Culture
PhD, University of Texas, 2003

Herman, Benjamin, Associate Professor
Teaching, Learning & Culture
PhD, Iowa State University, 2010

Hernandez, Paul, Associate Professor
Teaching, Learning & Culture
PhD, University of Connecticut, 2011

Hill-Jackson, Valerie L, Clinical Professor
Teaching, Learning & Culture
PhD, St. Joseph's University, 2003

Howe, Roger, Professor
Teaching, Learning & Culture
PhD, University of California, Berkeley, 1969

Hutchins, Shaun D, Lecturer
Teaching, Learning & Culture
PhD, Colorado State University, 2015

James, Marlon C, Assistant Professor
Teaching, Learning & Culture
PhD, Texas A&M University, 2008

Jolly, Ashley G, Lecturer
Teaching, Learning & Culture
MED, Sam Houston State University, 2007

Joshi, R M, Professor
Teaching, Learning & Culture
PhD, University of South Carolina, 1976

Karmaniolou, Stavroula, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2015

Kelly, Larry J, Clinical Professor
Teaching, Learning & Culture
PhD, The University of Texas - Austin, 2002

Koh, Poh Wee, Assistant Professor
Teaching, Learning & Culture
PhD, University of Toronto, 2016
Li, Yeping, Professor
Teaching, Learning & Culture
PHD, University of Pittsburgh, 1999

Matthews, Sharon D, Clinical Associate Professor
Teaching, Learning & Culture
PHD, New Mexico State University, 2007

McKeown, Debra, Associate Professor
Teaching, Learning & Culture
PHD, Vanderbilt University, 2012

Neshyba, Monica V, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, University of Texas - Austin, 2012

Ogletree, Quinita D, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2012

Olson, Joanne K, Professor
Teaching, Learning & Culture
PHD, University of Southern California, 1999

Parker, Dawn R, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 1997

Ptomey, Sara, Lecturer
Teaching, Learning & Culture
EDD, Sam Houston State University, 2006

Rackley, Robin A, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2004

Rambo-Hernandez, Karen, Associate Professor
Teaching, Learning & Culture
PHD, University of Connecticut, 2011

Raven, Sara R, Assistant Professor
Teaching, Learning & Culture
PHD, University of Georgia, 2013

Rector, Amy S, Visiting Assistant Professor
Teaching, Learning & Culture
EDD, University of Cincinnati, 2017

Rife, Kimberly G, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2016

Rupley, William H, Professor
Teaching, Learning & Culture
PHD, University of Illinois at Urbana-Champaign, 1975

Schluens, Amber D, Lecturer
Teaching, Learning & Culture
MED, Sam Houston State University, Huntsville, TX, 2006

Shumbera, Kristen L, Lecturer
Teaching, Learning & Culture
MS, University of Florida, 2007

Simpson, Claudine L, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2005

Singleton, Julie A, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2011

Slattery Jr, George R Professor
Teaching, Learning & Culture
PHD, Louisiana State University, 1989

Stiles, Misty, Lecturer
Teaching, Learning & Culture
MED, Texas State University, 2003

Stillisano, Jacqueline G, Lecturer
Teaching, Learning & Culture
EDD, Ball State University, 2004

Taylor, Bart, Lecturer
Teaching, Learning & Culture
MED, Lamar University, 2011

Thomas, Rebecca S, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 1998

Viruru, Radhika, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 1998

Waxman, Hersholt C, Professor
Teaching, Learning & Culture
PHD, University of Illinois at Chicago, 1982

Wijekumar, Kausalai, Professor
Teaching, Learning & Culture
PHD, The Pennsylvania State University, 2000

Wilkins, Gwendolyn M, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2014

Williams, John, Assistant Professor
Teaching, Learning & Culture
PHD, The University of North Carolina at Charlotte, 2019
Williams, Kamala V, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2010

Yalvac, Bugrahan, Associate Professor
Teaching, Learning & Culture
PHD, Pennsylvania State University, 2005

Young, Jamaal, Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2011

Young, Jemimah, Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2013

Majors

- Bachelor of Science in Interdisciplinary Studies, English Language Arts/Social Studies, Middle Grades Certification (p. 349)
- Bachelor of Science in Interdisciplinary Studies, Math/Science, Middle Grades Certification (p. 350)
- Bachelor of Science in Interdisciplinary Studies, Pre-K-6, Generalist Certification (p. 351)

Certification

- Secondary Graduate Certification Program (p. 352)

Minors

- Applied Learning-Science, Technology, Engineering and Mathematics (STEM) Minor (p. 353)

Interdisciplinary Studies, BS, English Language Arts/Social Studies, Middle Grades Certification

The Department of Teaching, Learning and Culture (TLAC) offers a Bachelor of Science (B.S.) in Education. Completion of this program leads to teaching certification in reading/language arts and social studies for grades 4-8 and English as a second language within the constraints of the Texas Education Agency. Students interested in becoming a 4-8 grade reading/language arts and social studies teacher should contact a TLAC undergraduate advisor in Harrington Tower.

Programs in the Department of Teaching, Learning and Culture are based upon new State of Texas standards. You must consult with an advisor in the Department of Teaching, Learning and Culture (Heaton Hall) prior to enrolling in coursework each semester or term.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>or GEOG 202</td>
<td>or Geography of the Global Village</td>
<td></td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 168</td>
<td>or Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td>TEFB 273</td>
<td>Introduction to Culture, Community, Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Schools</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Society</td>
<td></td>
</tr>
<tr>
<td>GEOG 300-499</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 362</td>
<td>English as a Second Language Methods I</td>
<td>3</td>
</tr>
<tr>
<td>RDNG 372</td>
<td>Reading and Writing across the Middle Grades</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Curriculum</td>
<td></td>
</tr>
<tr>
<td>RDNG 468</td>
<td>Essential Foundations of Language and Literacy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>for All Learners</td>
<td></td>
</tr>
<tr>
<td>MASC 351</td>
<td>Problem Solving in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>or MASC 450</td>
<td>or Integrated Mathematics</td>
<td></td>
</tr>
</tbody>
</table>
Interdisciplinary Studies, BS, Math/Science, Middle Grades Certification

The Department of Teaching, Learning and Culture (TLAC) offers a Bachelor of Science (B.S.) in Education. Completion of this program leads to teaching certification in math and science for grades 4-8 and English as a second language within the constraints of the Texas Education Agency. Students interested in becoming a 4-8 grade math and science teacher should contact a TLAC undergraduate advisor in Harrington Tower.

Programs in the Department of Teaching, Learning and Culture are based upon new State of Texas standards. You must consult with an advisor in the Department of Teaching, Learning and Culture (Heaton Hall) prior to enrolling in coursework each semester or term.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 105 or HIST 106</td>
<td>History of the United States or History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140 or MATH 168</td>
<td>Mathematics for Business and Social Sciences or Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 273</td>
<td>Introduction to Culture, Community, Society and Schools</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 226</td>
<td>History of Texas</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Safe arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td>MASC 351</td>
<td>Problem Solving in Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 365</td>
<td>Structure of Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASC 420</td>
<td>Inquiries in Life and Earth Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 366</td>
<td>Structure of Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>RDNG 468</td>
<td>Essential Foundations of Language and Literacy for All Learners</td>
<td>3</td>
</tr>
<tr>
<td>STAT 303 or EPSY 435</td>
<td>Statistical Methods or Educational Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCI 365</td>
<td>Using Technology Classrooms</td>
<td>3</td>
</tr>
</tbody>
</table>

KINE 120 is recommended.

Must make a grade of C or better in each course.

Program Requirements

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Fall</td>
</tr>
<tr>
<td>3</td>
<td>EDCI 354</td>
</tr>
<tr>
<td>3</td>
<td>INST 363</td>
</tr>
<tr>
<td>3</td>
<td>MASC 320 or MASC 420</td>
</tr>
<tr>
<td>3</td>
<td>TEFB 371</td>
</tr>
<tr>
<td>3</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>3</td>
<td>HIST 300-499 (p. 1014)</td>
</tr>
<tr>
<td>3</td>
<td>POLS 300-499 (p. 1118)</td>
</tr>
<tr>
<td>15</td>
<td>Spring</td>
</tr>
<tr>
<td>3</td>
<td>MASC 420</td>
</tr>
<tr>
<td>3</td>
<td>MATH 366</td>
</tr>
<tr>
<td>3</td>
<td>RDNG 468</td>
</tr>
<tr>
<td>3</td>
<td>STAT 303 or EPSY 435</td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>3</td>
<td>HIST 226</td>
</tr>
<tr>
<td>3</td>
<td>MATH 142</td>
</tr>
<tr>
<td>3</td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>3</td>
<td>Safe arts (p. 29)</td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Summer</td>
</tr>
<tr>
<td>3</td>
<td>POLS 206</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>7</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>3</td>
<td>INST 210</td>
</tr>
<tr>
<td>3</td>
<td>INST 222</td>
</tr>
<tr>
<td>3</td>
<td>MASC 351</td>
</tr>
<tr>
<td>3</td>
<td>MATH 365</td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Spring</td>
</tr>
<tr>
<td>3</td>
<td>MASC 420</td>
</tr>
<tr>
<td>3</td>
<td>MATH 366</td>
</tr>
<tr>
<td>3</td>
<td>RDNG 468</td>
</tr>
<tr>
<td>3</td>
<td>STAT 303 or EPSY 435</td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Summer</td>
</tr>
<tr>
<td>3</td>
<td>POLS 207</td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>6</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>3</td>
<td>EDCI 365</td>
</tr>
</tbody>
</table>
Interdisciplinary Studies - BS, Pre-K-6, Generalist Certification

The Department of Teaching, Learning and Culture (TLAC) offers a Bachelor of Science (B.S.) in Education. Completion of this program leads to teaching certification in grades PreK-6 general education and English as a second language within the constraints of the Texas Education Agency. Students interested in becoming a PreK-6 grade teacher should contact a TLAC undergraduate advisor in Harrington Tower.

Programs in the Department of Teaching, Learning and Culture are based upon new State of Texas standards. Students should check with the advisors in the appropriate departments to receive the most current programs, policies and procedures.

KINE 120 is recommended.

Must make a grade of C or better in each course.
Secondary Graduate Certification Program

Secondary Graduate Certification Program

This program is designed for those candidates who have completed the baccalaureate degree and desire initial certification at the secondary level. Candidates are admitted upon recommendation of departmental advisors and progress through summer, fall and spring as a cohort. The certification program requires completion of 21 graduate semester credit hours and the successful completion of appropriate State examinations. A full public school year internship and the opportunity to apply all coursework toward the Master of Education degree are unique features of this program. The candidate may, upon approval by the department and a cooperating school district, serve as an intern in a full-time salaried teacher of record position, in a part-time salaried teaching position, or as a paid substitute teacher. All candidates will serve a full public school year internship whether in a salaried or non-salaried position.

Prerequisites

Completion of the following prior to the first summer session:

1. Baccalaureate degree from an accredited institution with a GPA of 2.75.
2. Code Title Semester Credit Hours

 | Nine (9) semester credit hours | 9 |
 | INST 210 Understanding Special Populations | |
 | TEFB 322 Teaching and Schooling in Modern Society | |
 | TEFB 324 Teaching Skills II | |
3. Coursework for one teaching field as approved by the teaching field advisor.
4. Pass the appropriate content area TExES exam.

Course of Study for Secondary Certification at the Post-Baccalaureate Level

Enrollment in the following courses is limited to candidates pursuing initial secondary certification in the post-baccalaureate program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDCI 611</td>
<td>Teaching English as a Second Language</td>
<td>3</td>
</tr>
<tr>
<td>TEED 602</td>
<td>Contemporary Perspectives on Education</td>
<td>3</td>
</tr>
<tr>
<td>TEED 649</td>
<td>Instructional Strategies in Academic Specialties in Middle and Senior HS: Principles & Applications</td>
<td>3</td>
</tr>
</tbody>
</table>

1. KINE 120 is recommended

Must make a grade of C or better in each course
competency in speech and technology, and passing scores on all State-required examinations, candidates will be recommended for certification.

NOTE: To complete the Master of Education degree, candidates will enroll in Teaching, Learning and Culture foundation courses and courses in their teaching field(s) as approved by their graduate advisory committee. The department also offers a "certification only" option for secondary certification. Contact the TLAC office for information about the accelerate option.

Secondary Certification Through Accelerate Online Program

This program is designed for those candidates who have completed the baccalaureate degree and desire initial certification at the secondary level. The program is designed to provide college graduates with a program of teacher preparation that can be completed in 12-18 months. The Accelerate Online program provides an individual with the flexibility of completing teacher certification through online instructional modules followed by a year-long paid internship in a secondary public school in Texas. Other information and additional program requirements can be obtained from Jane Rankin at janerankin@tamu.edu or (979) 862-1928.

Secondary Certification Through the Aggie Teach Program

Contact the Aggie Teach advisor in the office of the Associate Dean, College of Science.

Secondary Certification Through the University Studies Program

Contact the graduate TLAC advisors in Harrington Tower.

Applied Learning in Science, Technology, Engineering and Mathematics (STEM) Minor

The Department of Teaching, Learning and Culture (TLAC) offers a minor in Secondary Education to students with non-education majors. The minor requires 18 semester credit hours of education coursework, and 6 hours of clinical practice in the field, for students seeking teaching certification for middle and high school subject areas. Students must declare a major in a subject area for which teacher certification options are available in order to be eligible for this minor. Students interested in obtaining a minor in Secondary Education should contact a TLAC undergraduate advisor in Harrington Tower.

To meet Teacher Certification requirements, student must also successfully complete an approved internship or clinical teaching(MEFB 497-6 hours). A 2.5 GPA is required in minor courses to pursue teacher certification and a 2.75 cumulative GPR to be admitted to Teacher Education

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEED 302</td>
<td>Teaching/Learning Processes: Psychological Perspectives on Education</td>
<td>3</td>
</tr>
</tbody>
</table>
Program Requirements

The following curriculum leads to a Bachelor of Science degree in University Studies with an area of concentration in Child Professional Services. Students are required to meet with their assigned academic advisor prior to registration each semester.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103 or ENGL 104</td>
</tr>
<tr>
<td>Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>HIST 105</td>
</tr>
<tr>
<td>History of the United States</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>MATH 141 or MATH 166</td>
</tr>
<tr>
<td>or MATH 206</td>
</tr>
<tr>
<td>American National Government</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Life and Physical sciences elective (p. 26)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Spring

Select one of the following: 3

MATH 131
MATH 142
PHIL 240
INT 210
INT 222
HIST 106 or HIST 226
Life and Physical sciences elective (p. 26)

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHRD 203</td>
</tr>
<tr>
<td>Foundations of Human Resource Development</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>INST 210</td>
</tr>
<tr>
<td>Understanding Special Populations</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
</tr>
<tr>
<td>Foundations of Education in a Multicultural Society</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>KINE 120</td>
</tr>
<tr>
<td>The Science of Basic Health and Fitness</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Language, philosophy and culture elective (p. 27)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>SOCI minor elective 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Spring

EHRD 210
EHRD 222
HIST 208
Technical and Business Writing
Public Speaking

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Creative arts elective (p. 29)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>SOCI minor elective 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Elective 1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Elective 1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>EHRD 371</td>
</tr>
<tr>
<td>Applied Learning Principles</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Spring

KINE 214/HLTH 214
Health and Physical Activity for Children |
3
SOCI minor elective 2
3
Elective 1
3
Elective 1
3
EHRD 372
Learning and Development in HRD
3

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>EPSY 320</td>
</tr>
<tr>
<td>Child Development</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>SOCI minor elective 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Elective 1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Elective 1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>EHRD 374</td>
</tr>
<tr>
<td>Organizational Development</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Spring

EPSY 321
Adolescent Development |
3
INST 301
Educational Psychology |
3
Elective 1
3
EHRD 315 or EHRD 405 or EHRD 408 or EHRD 413
Applied Human Resource Development in the Workplace or Principles and Practices of Leadership in Human Resource Development and Technology Management or Globalization and Diversity in the Workplace or Conflict Management and Dialogue |
3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

1 Free elective can be chosen from any 300-400 level course of student's choice.
2 Sociology minor elective to be selected from approved list of courses in the Department of Sociology (p. 645).

University Studies - BS, Dance Concentration

The dance concentration curriculum leads to a Bachelor of Science in University Studies. It is designed to serve students who are in good academic standing with the University (2.0+ GPA) and are specifically seeking an interdisciplinary degree plan which provides preparation in dance history and production. Students complete courses in the foundations of dance, dance production, and dance composition, and technique courses in various forms of dance. Students choose two
Program Requirements

This degree plan has been laid out showing students the number of hours they must take each semester in order to complete the degree in four years without attending summer school. This is a suggested plan and does not have to be followed as laid out below. Students should use this information in conjunction with advising documents available from their advisor or the department website when scheduling courses each semester to ensure they are meeting all prerequisites, taking courses for admission to professional phase in a timely manner and meeting all grade requirements.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DCED 202</td>
<td>Dance Appreciation 1,2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 260</td>
<td>Ballet I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 361</td>
<td>Ballet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 462</td>
<td>Ballet III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 271</td>
<td>Modern Dance I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 372</td>
<td>Modern Dance II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 473</td>
<td>Modern Dance III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26) 3</td>
<td>3-4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following: 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 260</td>
<td>Movement Lab: Ballet I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 271</td>
<td>Movement Lab: Modern Dance I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 361</td>
<td>Movement Lab: Ballet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 372</td>
<td>Movement Lab: Modern Dance II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 462</td>
<td>Movement Lab: Ballet III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 473</td>
<td>Movement Lab: Modern Dance III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30) 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DCED 203</td>
<td>Career Preparation in Dance</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KINE 199</td>
<td>Required Physical Activity 7,8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 260</td>
<td>Movement Lab: Ballet I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 271</td>
<td>Movement Lab: Modern Dance I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 361</td>
<td>Movement Lab: Ballet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 372</td>
<td>Movement Lab: Modern Dance II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 462</td>
<td>Movement Lab: Ballet III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 473</td>
<td>Movement Lab: Modern Dance III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26) 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective 2,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DCED 260</td>
<td>Ballet I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following: 4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 260</td>
<td>Movement Lab: Ballet I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 271</td>
<td>Movement Lab: Modern Dance I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 361</td>
<td>Movement Lab: Ballet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 372</td>
<td>Movement Lab: Modern Dance II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 462</td>
<td>Movement Lab: Ballet III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 473</td>
<td>Movement Lab: Modern Dance III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30) 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>DCED 260</td>
<td>Ballet I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DCED 271</td>
<td>Modern Dance I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 361</td>
<td>Ballet II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 372</td>
<td>Modern Dance II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 462</td>
<td>Ballet III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCED 473</td>
<td>Modern Dance III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCED 400</td>
<td>Dance Composition II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness 7</td>
<td>1</td>
</tr>
<tr>
<td>or KINE 223</td>
<td>or Introduction to the Science of Health and Fitness</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KINE 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minors 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective 2,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective 2,5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCED 405</td>
<td>Career Preparation in Dance</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Minors 6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective 2,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective 2,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Meets Core Curriculum Creative Arts requirement.
2. Some electives should be selected to meet the International and Cultural Diversity [requirements](http://catalog.tamu.edu/undergraduate/education-human-development/health-kinesiology/dance-university-studies-bs/undergraduate/general-information/degree-information/international-cultural-diversity-requirements/) and/or Cultural Discourse (p. 46) graduation requirement.
3. Must meet Core Curriculum requirements.
4. Must make a grade of B or better.
5. Must be 300 or 400 level course in order to meet university residency requirement.
6. Two university approved minors are required for this degree program. One of the two minors must be completed in a college outside of the college that provides the concentration for the student's degree. See advisor for assistance.
7. Must be a specific activity. See advisor for required activity.
8. Must be taken at Texas A&M University.
The mission of the College of Engineering is to serve Texas, the nation, and the global community by providing engineering graduates who are well founded in engineering fundamentals, instilled with the highest standards of professional and ethical behavior, and prepared to meet the complex technical challenges of society.

To achieve this mission the College of Engineering is committed to:

- ensuring an academic environment conducive to our faculties achieving the highest levels of academic and research excellence;
- building upon our traditional partnerships with industry, engineering practitioners and former students, to enhance our impact on the profession of engineering;
- encouraging excellence, innovation and cross-disciplinary initiatives in education and research;
- providing national and international leadership in undergraduate and graduate engineering education;
- becoming the engineering college of choice for the increasingly diverse citizenry of the state; and
- encouraging and supporting opportunities for our students to grow beyond their chosen disciplines by participation in ethics courses, leadership programs, study-abroad programs and research.

A student engineer can pursue any one of several degree plans, according to personal ambitions, interests and abilities. The student may choose the traditional BS degree and consider advanced research-oriented graduate programs leading to the MS and PhD degrees. Alternatively, at the graduate level, the student may select the Master of Engineering or the Doctor of Engineering program which are directed toward professional engineering.

Within the College of Engineering, the undergraduate programs in aerospace, biological and agricultural, biomedical, chemical, civil, computer, electrical, industrial, mechanical, nuclear, ocean, and petroleum engineering are accredited by the Engineering Accreditation Commission of ABET, www.abet.org. The electronic systems engineering technology program, and manufacturing and mechanical engineering technology program are accredited by the Engineering Technology Accreditation Commission of ABET, www.abet.org. The Computer Science program is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Entrance and Enrollment Requirements

The minimum requirements for entrance to the University are listed in the earlier pages of this catalog. Because of the importance of science and mathematics to engineering, high school students who aspire to pursue a career in engineering are encouraged to take as many of these courses as possible. In particular, high school preparation should include four years of mathematics and four years of science emphasizing algebra, geometry, trigonometry, calculus, chemistry, physics and biology.

A critical step in an engineering education is proper individual placement in the first courses undertaken. The College of Engineering strongly recommends the following guidelines to students participating in the math advanced placement examinations in high school. Incoming engineering students can earn advanced placement (AP) credits for MATH 151 with a score of 4 on the Calculus AB exam or 3 on the BC exam, and for MATH 152. The Computer Science program is accredited by the Computing Accreditation Commission of ABET, www.abet.org.
exam are recommended to begin in MATH 151 or MATH 152. These conservative recommendations help ensure students have thoroughly mastered the content that is fundamental to the engineering curriculum. Students should discuss their choice with their assigned undergraduate academic advisor before registering for mathematics classes. New Student Conferences and associated Credit by Examination tests provide information to advisors so that students begin at a level which may differ from the printed curriculum, but is appropriate to their aptitudes and background. All freshmen admitted into engineering are required to complete the Math Placement Exam (MPE) at the New Student Conferences and should review algebra, trigonometry and geometry prior to taking the MPE.

Because of the importance of computing in the disciplines housed within the College of Engineering, all entering students are required to possess a portable, network-ready personal computer capable of running software appropriate to their academic program, effective Fall 2014. Details about the personal computer needed to meet the requirement can be found on our website. No student will be denied admission to Texas A&M University based on an inability to purchase a computer.

Freshmen in General Engineering (https://engineering.tamu.edu/admissions-and-aid/incoming-students/), Engineering at Galveston (https://engineering.tamu.edu/academics/engineering-at-galveston/), Engineering at McAllen (https://engineering.tamu.edu/admissions-and-aid/engineering-at-mcallen/), or Engineering Academy programs (https://engineering.tamu.edu/academies/) have a common first year engineering curriculum to allow time for students to learn about the various engineering degree granting majors. It is recognized that in most cases students are not made aware of all our engineering majors prior to joining Texas A&M. Students are introduced to the different engineering majors in the first year engineering courses, ENGR 102, ENGR 216/PHYS 216 and ENGR 217/PHYS 217. Students are encouraged to leverage additional resources, including the career center, faculty, and advisors to get even more information. Students must complete the following courses in at least two semesters before applying to an engineering major: two engineering courses, two math courses, and two science courses in the first year engineering curriculum. Exceptions will be made as needed for students entering with credit for the required courses. The entry-to-a-major process (https://engineering.tamu.edu/academics/undergraduate/entry-to-a-major/) is designed for students to take ownership of their future by identifying at least three majors that are a good match for their career goals and academic performance. The entry-to-a-major process (https://engineering.tamu.edu/academics/undergraduate/entry-to-a-major/) is designed to place students in the highest rank major possible based upon capacity and student performance. Students are encouraged to be in a major as early as possible. Students in the General Engineering (https://engineering.tamu.edu/admissions-and-aid/incoming-students/), Engineering at Galveston (https://engineering.tamu.edu/academics/engineering-at-galveston/), Engineering at McAllen (https://engineering.tamu.edu/admissions-and-aid/engineering-at-mcallen/) and the Engineering Academy programs (https://engineering.tamu.edu/academies/) must be in a major by the end of the fourth semester in engineering. Transfer students are admitted directly to a major degree granting program through the admissions process.

Freshman Curriculum

The freshman year is identical for all majors in the College of Engineering. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care and in consultation with an academic advisor to ensure that prerequisites for all courses are met.

Bring Your Own Device (BYOD) (https://engineering.tamu.edu/easa/areas/academics/byod/)

Just as students are required to have specific textbooks and supplies in order to gain the highest quality engineering educational experience, the College of Engineering requires students to purchase a computer to complement the course instruction. The vast majority of the students entering the College already bring some form of desktop or laptop computer with them when they begin school. Unfortunately, the variation in the types of computers makes it next to impossible for instructors to routinely ask students to use their own computers in the classroom. A computer designated by the College and purchased by entering students will provide students the convenience to explore course content anytime, anywhere.

While there are many computers available, the College can only guarantee performance and provide support for the specific computers identified by the College of Engineering. These computers will accommodate most of the needs of an engineering student throughout a four-year degree plan, balancing performance, cost and expected life of the computer. The computers have been negotiated with the various vendors, which are external to Texas A&M University, at a price point that is lower than what an individual would likely be able to negotiate. The price for each computer includes up to a four-year warranty.

ENGR

ENGR is a college-wide, zero-credit-hour required program that is composed of approved engineering-centric activities that meet the criteria of high-impact learning experiences. Undergraduate students can use their participation in one of these activities to satisfy in part their ENGR requirement. Full satisfaction of the ENGR requirement includes participating in an engineering-centric activity and submitting a meaningful, self-reflection that discusses the impact and overall experience on the student’s education.

Each department in the College of Engineering identifies the activities it will accept in satisfying a student’s ENGR requirement. Some activities may include the following:

- Education Abroad (https://abroad.tamu.edu/)
- Internship or Co-op Experience (http://careercenter.tamu.edu/current-students/)
- Grand Challenge Scholars Program (https://engineering.tamu.edu/student-life/gcsp/)
- The University, College, or Departmental Honors Program (http://honorsprograms.tamu.edu/)
- Aggies Invent (https://engineering.tamu.edu/student-life/aggies-invent/)
- AggieE_Challenge (https://engineering.tamu.edu/academics/undergraduate/aggie-challenge/)
- Startup Aggieland (https://mays.tamu.edu/mcferrin-center-for-entrepreneurship/startup-aggieland/)
- Undergraduate research (https://engineering.tamu.edu/academics/undergraduate/undergraduate-bridges.html)
• TAMU Minor or Certificate Programs, like the Zachry Leadership Program (https://engineering.tamu.edu/student-life/zachry-leadership-program/) or Engineering Honors Program (https://engineering.tamu.edu/academics/eh/)
• Department design competitions, like the High Altitude Balloon Club (https://astrocenter.tamu.edu/stem-outreach/high-altitude-balloon-club/)
• Leadership in student organizations (https://engineering.tamu.edu/student-life/student-orgs.html)

Financial Aid
For financial aid recipients, purchase of the computer device can be considered in the cost of attendance. To request this, please complete the Request to Change Cost of Attendance form (http://financialaid.tamu.edu/Forms/) for Scholarships & Financial Aid. Submission of documentation does not guarantee additional aid will be awarded. In certain situations, students may not be eligible for additional funding.

Undergraduate students entering the College are required to follow the BYOD policy of purchasing one of the configured devices designated by the College. No student will be denied admission to Texas A&M University based on an inability to purchase a computer.

For more information, including specific requirements, visit the Bring Your Own Device (BYOD) web page (http://engineering.tamu.edu/easa/areas/academics/byod/).

College Prerequisite Policy
The following prerequisite policy applies to any student in a College of Engineering undergraduate degree program and to any student who seeks admission to an undergraduate degree program in the College of Engineering. This policy is in addition to prerequisite policies imposed by the University (Texas A&M University Student Rules). For complete details concerning this policy, students should contact their Undergraduate Advising Office.

Students must earn a grade of C or better in all courses identified in each College of Engineering undergraduate degree program and any prerequisites for these courses. If a student earns a grade of D or F in any of these courses, the student is required to repeat the course before enrolling in a more advanced course that has the D/F course as a prerequisite. A student may attempt a course no more than three times, including courses graded Q or W but excluding those graded NG, unless approval has been received from their department. A student must complete all prerequisites for a course with a grade of C or better by the start of the semester in which the student plans to enroll in the course.

A student is responsible for checking the prerequisites for each course to ensure the prerequisite requirements have been satisfied. A student who registers for a course for which he/she lacks the necessary prerequisite course(s) and/or the prerequisite grade requirement will be required to drop the course. A student who is told to drop a course and is still enrolled by the deadline set each semester may be administratively dropped by their department. If a student is administratively dropped from a course, the student is responsible for all financial obligations associated with the drop. An administrative drop may adversely impact (including, but not limited to): health insurance benefits, financial aid, athletic eligibility, INS status, veterans’ benefits, and eligibility to participate in extracurricular activities.

Other Requirements
All required coursework must be taken for a grade to satisfy requirements for a degree in the College of Engineering. Courses cannot be taken on a satisfactory/unsatisfactory basis to satisfy this requirement.

Fast Track Program (https://engineering.tamu.edu/academics/fasttrack/)
This program allows students to begin making progress toward a master’s degree while completing the undergraduate program. Each participating department in the College of Engineering has streamlined its program for Fast Track participants by substituting specific graduate courses for selected undergraduate offerings. Academically qualified students take these 600-level courses during their senior year, earning graduate credit while fulfilling undergraduate requirements through “credit by exam.” The individual department sets its own grade and exam requirements for earning dual credit. The department also establishes the maximum number of credit hours allowed for acceleration, usually five to seven.

Industry-University Cooperative Education
Cooperative education is a study-work plan of education in which a student alternates periods of attendance in college or university with periods of employment in industry related to his or her major. Students who choose this degree plan must complete at least 12 months of experience in order to receive the cooperative education certificate. The practice of engineering is an art which is learned through practice as well as in the classroom. The cooperative education program provides the education that can be achieved from practice by having the student work with professional engineers on the job. Consequently, the student who graduates with the cooperative education certificate has both the academic background and the practical experience to qualify him or her for more meaningful employment in the profession of engineering. The cooperative education work periods also provide an income for students that allows them to pay for their school expenses.

Those who wish additional information concerning this program should contact the Associate Director of Cooperative Education (rblock@tamu.edu).

Advanced Study
Students who rank in the upper half of their undergraduate class should give serious consideration to developing their full intellectual potential in engineering by continuing with advanced studies at the graduate level. Two routes are available for students. The traditional master of science and doctor of philosophy degrees should be considered by students who wish to go into research fields. For those students interested in the practice of professional engineering, the master of engineering and doctor of engineering degrees should be given serious consideration. The professional doctor of engineering degree was established in the fall of 1974 to fill a need for better-educated engineers in the practice of engineering. Students may enter this program at any time after they receive the bachelor’s degree in engineering by applying and being accepted to a departmental graduate program within the College of Engineering. Master's level degrees require a minimum of one year of course work after the bachelor's, and the doctoral degrees require a minimum of an additional two years of coursework. The doctor of
philosophy also requires a dissertation based on research by the student, and the doctor of engineering requires at least one year of internship experience in industry or government.

For more information concerning these programs, please refer to the Texas A&M University Graduate and Professional Catalog or contact the Office of the Dean of Engineering.

The engineering programs also provide a foundation for further education in the fields of medicine, law or business. An engineering background will prepare the individual to understand, contribute to and embrace technical advances in these fields. An early assurance program called Engineering to Medicine (E2M) (https://medicine.tamu.edu/admissions/early-assurance/) is available for outstanding Texas A&M University College of Engineering students who are interested in obtaining a medical degree with the Texas A&M College of Medicine, ultimately pursuing a career as a physician or physician scientist.

The Texas A&M Engineering Academies

The Texas A&M Engineering Academies are co-enrollment programs between the College of Engineering and select two-year institutions. Students in the Engineering Academy program are Texas A&M engineering students, who take math, science, and core courses from the two-year institution and engineering courses from the College of Engineering. Except for the Engineering Academy-Blinn Bryan, the admission process for the Engineering Academies is unique to each partner institution, with the offer of admission to the Engineering Academy made by Texas A&M University. Students enrolled in a Texas A&M Engineering Academy, who satisfy the program GPA requirements, may be considered for entry to a major as early as the end of the first year.

Eligible students receive financial aid based upon their combined credit hours from both institutions.

For more information, including specific requirements for each of the partner institutions, visit Texas A&M Engineering Academies Texas A&M Engineering Academies (https://engineering.tamu.edu/academies/).

Majors

College of Engineering

- Bachelor of Science in Architectural Engineering, Mechanical Systems for Buildings Track (p. 364)
- Bachelor of Science in Architectural Engineering, Structural Systems for Buildings Track (p. 366)
- Bachelor of Science in Biological and Agricultural Engineering (p. 367)
- Bachelor of Science in Interdisciplinary Engineering (p. 369)
- Bachelor of Science in Interdisciplinary Engineering and Master of Public Health in Occupational Safety and Health, 5-Year Degree Program (p. 373)
- Bachelor of Science in Interdisciplinary Engineering and Juris Doctor, 6-Year Degree Program (p. 371)

Department of Aerospace Engineering

- Bachelor of Science in Aerospace Engineering (p. 382)

Department of Biomedical Engineering

- Bachelor of Science in Biomedical Engineering (p. 386)

Artie McFerrin Department of Chemical Engineering

- Bachelor of Science in Chemical Engineering (p. 391)

Zachry Department of Civil and Environmental Engineering

- Bachelor of Science in Civil Engineering, Coastal and Ocean Engineering Track (p. 397)
- Bachelor of Science in Civil Engineering, Construction Engineering and Management Track (p. 399)
- Bachelor of Science in Civil Engineering, Environmental Engineering Track (p. 401)
- Bachelor of Science in Civil Engineering, General Civil Engineering Track (p. 404)
- Bachelor of Science in Civil Engineering, Geotechnical Engineering Track (p. 406)
- Bachelor of Science in Civil Engineering, Structural Engineering Track (p. 408)
- Bachelor of Science in Civil Engineering, Transportation Engineering Track (p. 410)
- Bachelor of Science in Civil Engineering, Water Resources Engineering Track (p. 412)
- Bachelor of Science in Environmental Engineering (p. 415)

Department of Computer Science and Engineering

- Bachelor of Arts in Computing (p. 423)
- Bachelor of Science in Computer Engineering, Computer Science Track (p. 419)
- Bachelor of Science in Computer Science (p. 421)

Department of Electrical and Computer Engineering

- Bachelor of Science in Computer Engineering, Electrical Engineering Track (p. 428)
- Bachelor of Science in Electrical Engineering (p. 430)

Department of Engineering Technology and Industrial Distribution

- Bachelor of Science in Electronic Systems Engineering Technology (p. 435)
- Bachelor of Science in Industrial Distribution (p. 437)
- Bachelor of Science in Manufacturing and Mechanical Engineering Technology (p. 439)
- Bachelor of Science in Multidisciplinary Engineering Technology, Electro Marine Engineering Technology Track (p. 440)
- Bachelor of Science in Multidisciplinary Engineering Technology, Mechatronics Track (p. 442)
Department of Industrial and Systems Engineering
- Bachelor of Science in Industrial Engineering (p. 449)
- Bachelor of Science in Industrial Engineering and Master of Public Health in Occupational Safety and Health, 5-Year Degree Program (p. 450)
- Bachelor of Science in Industrial Engineering and Master of Science in Finance, 5-Year Degree Program (p. 452)

Department of Materials Science and Engineering
- Bachelor of Science in Materials Science and Engineering (p. 459)

J. Mike Walker '66 Department of Mechanical Engineering
- Bachelor of Science in Mechanical Engineering (p. 466)

Department of Nuclear Engineering
- Bachelor of Science in Nuclear Engineering (p. 470)

Department of Ocean Engineering
- Bachelor of Science in Ocean Engineering (p. 474)

Harold Vance Department of Petroleum Engineering
- Bachelor of Science in Petroleum Engineering (p. 477)

Minors

College of Engineering
- Cybersecurity Minor (p. 374)
- Engineering Concepts Minor (p. 376)
- Engineering Project Management Minor (p. 376)

Department of Aerospace Engineering
- Aerospace Engineering Minor (p. 383)

Department of Biomedical Engineering
- Biomedical Engineering Minor (p. 388)

Artie McFerrin Department of Chemical Engineering
- Chemical Engineering Minor (p. 393)

Department of Computer Science and Engineering
- Computer Science Minor (p. 424)
- Game Design and Development Minor (p. 424)

Department of Electrical and Computer Engineering
- Electrical Engineering Minor (p. 431)

Department of Engineering Technology and Industrial Distribution
- Embedded Systems Integration Minor (p. 446)

Department of Industrial and Systems Engineering
- Industrial Engineering Minor (p. 454)

Department of Materials Science and Engineering
- Materials Science and Engineering Minor (p. 460)

J. Mike Walker '66 Department of Mechanical Engineering
- Analysis, Design and Management of Energy Conversion Systems Minor (p. 468)
- Control of Mechanical Systems Minor (p. 468)
- Design and Simulation of Mechanical Systems Minor (p. 468)

Department of Nuclear Engineering
- Nuclear Engineering Minor (p. 472)
- Radiological Health Engineering Minor (p. 472)

Harold Vance Department of Petroleum Engineering
- Petroleum Engineering Minor (p. 479)

Certificates
The College of Engineering has designed the following certificate programs to offer ambitious students the opportunity to go beyond the traditional curriculum and gain specific knowledge in a concentration area. Students are required to consult with their academic advisor prior to submitting an application for a certificate. Enrolling and being accepted into a certificate program does not guarantee registration into required courses. Each certificate will be recognized on the candidate's transcript. A coordinator reviews each student's coursework via a certificate worksheet and requirements met prior to certification. Certificate coordinators are given the discretion to determine the eligibility of students in other colleges and/or majors to pursue College of Engineering certificates. For specific information on each certificate available, visit the College of Engineering website.

College of Engineering
- Engineering Concept, Creation, and Commercialization Certificate (p. 377)
- Holistic Leadership in Engineering Certificate (p. 377)
- International Engineering Certificate (p. 377)
• Polymer Specialty Certificate (p. 378)
• Safety Engineering Certificate (p. 379)

Department of Biomedical Engineering
• Quality Engineering for Regulated Medical Technologies Certificate (p. 389)

Department of Chemical Engineering
• Engineering Therapeutics Manufacturing Certificate (p. 393)

Department of Industrial and Systems Engineering
• Data Center Operations Engineering Certificate (p. 454)
• Engineering Systems Management Certificate (p. 455)

Department of Materials Science and Engineering
• Corrosion Science and Engineering Certificate (p. 461)

Harold Vance Department of Petroleum Engineering
• Energy Engineering Certificate (p. 479)
• Petroleum Ventures Certificate (p. 479)

Masters

College of Engineering
• Master of Engineering in Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/interdepartmental-degree-programs/meng/)
• Master of Engineering in Systems Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/interdepartmental-degree-programs/systems-engineering-meng/)
• Master of Science in Interdisciplinary Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/interdepartmental-degree-programs/systems-engineering-meng/)
• Master of Science in Safety Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/interdepartmental-degree-programs/safety-engineering-meng/)

Department of Aerospace Engineering
• Master of Engineering in Aerospace Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/aerospace/meng/)
• Master of Science in Aerospace Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/aerospace/ms/)

Department of Biomedical Engineering
• Master of Engineering in Biomedical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/biomedical/meng/)

Artie McFerrin Department of Chemical Engineering
• Master of Engineering in Chemical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/chemical/meng/)
• Master of Science in Chemical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/chemical/ms/)

Zachry Department of Civil and Environmental Engineering
• Master of Engineering in Civil Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/civil-environmental/meng/)
• Master of Science in Civil Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/civil-environmental/ms/)

Department of Computer Science and Engineering
• Master of Computer Science in Computer Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/computer-science/mcs/)
• Master of Engineering in Computer Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/computer-science/engineering-meng/)
• Master of Science in Computer Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/computer-science/engineering-ms/)
• Master of Science in Computer Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/computer-science/ms/)

Department of Electrical and Computer Engineering
• Master of Engineering in Computer Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/electrical-computer/computer-meng/)
• Master of Engineering in Electrical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/electrical-computer/electrical-meng/)
• Master of Science in Computer Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/electrical-computer/computer-ms/)
• Master of Science in Electrical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/electrical-computer/electrical-ms/)
Department of Engineering Technology and Industrial Distribution

- Master of Engineering Technical Management in Technical Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/technology-industrial-distribution/metm/)
- Master of Industrial Distribution in Industrial Distribution (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/technology-industrial-distribution/mid/)
- Master of Science in Engineering Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/technology-industrial-distribution/ms-entc/)

Department of Industrial and Systems Engineering

- Master of Engineering in Industrial Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/industrial-systems/meng/)
- Master of Science in Engineering Systems Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/industrial-systems/engineering-systems-management/ms/)
- Master of Science in Industrial Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/industrial-systems/ms/)

J. Mike Walker ’66 Department of Mechanical Engineering

- Master of Engineering in Mechanical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/mechanical/meng/)
- Master of Science in Mechanical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/mechanical/ms/)

Department of Nuclear Engineering

- Master of Engineering in Nuclear Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/nuclear/meng/)
- Master of Science in Nuclear Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/nuclear/ms/)
Department of Electrical and Computer Engineering

- Doctor of Philosophy in Computer Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/computer-science/phd/)
- Doctor of Philosophy in Electrical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/electrical-computer/electrical-phd/)

Department of Industrial and Systems Engineering

- Doctor of Philosophy in Industrial Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/industrial-systems/phd/)
- Doctor of Philosophy in Materials Science and Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/materials-science/phd/)

J. Mike Walker ‘66 Department of Mechanical Engineering

- Doctor of Philosophy in Mechanical Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/mechanical/phd/)

Department of Nuclear Engineering

- Doctor of Philosophy in Nuclear Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/nuclear/phd/)

Department of Ocean Engineering

- Doctor of Philosophy in Ocean Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/ocean/ocean-phd/)

Harold Vance Department of Petroleum Engineering

- Doctor of Philosophy in Petroleum Engineering (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/engineering/petroleum/phd/)

Architectural Engineering - BS, Mechanical Systems for Buildings Track

The BS in Architectural Engineering degree prepares graduates for professional engineering careers within the architectural, engineering and construction industry. Specifically, it prepares them to become licensed professional engineers, achieve leadership positions in consulting firms, suppliers or government agencies, as well as successfully complete graduate studies in engineering or other areas. The Mechanical Building Systems Track to fulfill the BS in Architectural Engineering degree prepares students for careers with more emphasis on energy efficiency, HVAC (Heating, Ventilation, and Air-Conditioning), building environmental controls, and building environment. The focus electives prepare students to design and analyze mechanical systems for buildings.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/ PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>
A grade of C or better is required.

Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 175/</td>
<td>Construction Graphics Communication</td>
<td>3</td>
</tr>
<tr>
<td>COSC 175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREN 200</td>
<td>Architectural Engineering Foundations</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 225</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions or</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>CVEN 302</td>
<td>Computer Applications in Engineering and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 315</td>
<td>Principles of Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- ARCH 249 Survey of World Architecture History I
- ARCH 250 Survey of World Architecture History II
- ARCH 345 History of Building Technology
- ARCH 350 History and Theory of Modern and Contemporary Architecture

Total Semester Credit Hours: 18

Summer

High Impact Experience

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 399</td>
<td>High Impact Experience for Architectural</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Engineers</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 300</td>
<td>Architectural Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>COSC 333</td>
<td>Project Management for Facility Managers</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 345</td>
<td>Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 344</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 18

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 330</td>
<td>Mechanical Systems for Buildings</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 437</td>
<td>Principles of Building Energy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 461</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 320</td>
<td>Lighting Engineering for Buildings</td>
<td>3</td>
</tr>
<tr>
<td>AREN 401</td>
<td>Architectural Engineering Design I</td>
<td>3</td>
</tr>
<tr>
<td>AREN 440</td>
<td>Architectural Engineering Heating, Ventilating</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>and Air Conditioning Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15

Total Semester Credit Hours: 97

6 All students must take at least two courses in their major that are designated as writing intensive (W). AREN 175/COSC 175 and AREN 200 taken at Texas A&M University satisfy this requirement. Other AREN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

7 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the AREN advising office.

8 Select from ARCH 328, ARCH 335, ARCH 421; COSC 253, COSC 325, COSC 326, COSC 443.

9 At least three (3) Technical electives must be engineering courses.

10 Select from MEEN 421, MEEN 436, MEEN 439, MEEN 463, MEEN 469, MEEN 477.
A grade of C or better is required in all science, mathematics, and engineering courses taken to satisfy degree requirements.

This curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.

Total Program Hours 128

Architectural Engineering - BS, Structural Systems for Buildings Track

The BS in Architectural Engineering degree prepares graduates for professional engineering careers within the architectural, engineering and construction industry. Specifically, it prepares graduates to become licensed professional engineers, achieve leadership positions in consulting firms, suppliers or government agencies, as well as successfully complete graduate studies in engineering or other areas. The Structural Building Systems Track to fulfill the BS in Architectural Engineering degree prepare students for careers with more emphasis on the structural design and safety of buildings. The focus electives prepare students to design and analyze structural systems for buildings.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is identical for degrees in aerospace engineering, chemical engineering, petroleum engineering, environmental engineering, and industrial engineering.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREN 175/ COSC 175</td>
<td>Construction Graphics Communication 6</td>
</tr>
<tr>
<td>AREN 200</td>
<td>Architectural Engineering Foundations 6</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>Engineering Mechanics: Statics</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 205 or ENGL 210</td>
<td>Communication for Technical Professions or Technical and Business Writing</td>
</tr>
<tr>
<td>CVEN 302</td>
<td>Computer Applications in Engineering and Construction</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
</tr>
</tbody>
</table>
CVEN 306 Materials Engineering for Civil Engineers 3
MATH 308 Differential Equations 3
Select one of the following:
 ARCH 249 Survey of World Architecture History I 3
 ARCH 250 Survey of World Architecture History II 3
 ARCH 345 History of Building Technology 3
 ARCH 350 History and Theory of Modern and Contemporary Architecture

Semester Credit Hours 18

Summer
High Impact Experience 7
 AREN 399 High Impact Experience for Architectural Engineers

Semester Credit Hours 0

Third Year
Fall
 AREN 300 Architectural Engineering Systems 3
 COSC 333 Project Management for Facility Managers 3
 CVEN 342 Materials of Construction 3
 CVEN 345 Theory of Structures 3
 MEEN 315 Principles of Thermodynamics 3
 or MMET 370 or Thermodynamics for Technologists
 University Core Curriculum (p. 25) 3

Semester Credit Hours 18

Spring
 AREN 330 Mechanical Systems for Buildings 3
 CVEN 311/311 Fluid Dynamics 3
 EVEN 311 3
 ECEN 215 Principles of Electrical Engineering 3
 MEEN 437 Principles of Building Energy Analysis 3
 University Core Curriculum (p. 25) 3

Semester Credit Hours 15

Fourth Year
Fall
 AREN 320 Lighting Engineering for Buildings 3
 AREN 401 Architectural Engineering Design I 3
 CVEN 444 Structural Concrete Design 3
 Technical elective 8,9 3
 University Core Curriculum (p. 25) 3

Semester Credit Hours 15

Spring
 AREN 402 Architectural Engineering Design II 3
 CVEN 446 Structural Steel Design 3
 Technical elective 9,10 3
 Technical elective 9,10 3
 University Core Curriculum (p. 25) 3

Semester Credit Hours 15

Total Semester Credit Hours 97

All students must take at least two courses in their major that are designated as writing intensive (W). AREN 175/ COSC 175 and AREN 200 taken at Texas A&M University satisfy this requirement. Other AREN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the AREN advising office.

Select from ARCH 327, ARCH 328, ARCH 335, ARCH 421, COSC 253, COSC 321, COSC 372, CVEN 343, CVEN 363, CVEN 365, CVEN 435, CVEN 445; MEEN 421, MEEN 439, MEEN 461, MEEN 463, MEEN 469, MEEN 477; AREN 440.

A grade of C or better is required in all science, mathematics, and engineering courses taken to satisfy degree requirements.

This curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.

Total Program Hours 128

Biological and Agricultural Engineering - BS

Graduates from the Biological and Agricultural Engineering program will:

- Successfully enter the biological and agricultural engineering profession as practicing engineers and consultants in the natural resources, machine systems, food processing, bioprocessing, and agricultural production and processing fields.
- Pursue graduate education and research at major universities in biological and agricultural engineering, and related fields.
- Advance into leadership positions in their chosen fields and professional societies.
- Engage in life-long learning through professional registration and professional development.

Students learn to apply fundamental knowledge of biological and physical sciences, mathematics, and engineering principles to formulate and solve engineering problems. Engineering design is integrated throughout the curriculum, along with opportunities to develop communication, learning, and teamwork skills, culminating in a capstone design experience. Electives in the curriculum allow the student to focus in one of the following areas:

- **Environmental and Natural Resources Engineering**—design and management of systems affecting soil, water, and air resources.
- **Renewable Energy Engineering**—design and development of biomass, wind and solar energy systems.
- **Food and Bioprocess Engineering**—design and development of systems for processing and handling of food and agricultural products and processes involving cells, enzymes, or other biological components.
- **Machine Systems Engineering**—design and development of machines and machine systems for food, feed and fiber production and processing.
Students select courses with the assistance of faculty advisors in an individualized advising system. Faculty members also assist with professional development and job placement for students.

The biological and agricultural engineering program is jointly administered by the College of Agriculture and Life Sciences and the College of Engineering, and the curriculum is fully accredited by the Engineering Accreditation Commission of ABET, Inc., www.abet.org. The department is one of the largest in North America and is consistently ranked as one of the top programs in the nation.

For graduates to become successful practicing biological and agricultural engineers, students need to acquire a set of skills, knowledge, and behaviors as they progress through the curriculum. We have established the following program outcomes outlining what students are expected to know and be able to do upon completion of the curriculum. At the time of graduation, students should have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29) 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGR 216/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PHYS 216</td>
<td>II - Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 201</td>
<td>Analysis of Biological and Agricultural Engineering Problems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MEEN 221</td>
<td>Statics and Particle Dynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 301</td>
<td>Biological and Agricultural Engineering Fundamentals I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 320</td>
<td>Engineering Thermodynamics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MEEN 222/</td>
<td>Materials Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSEN 222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 302</td>
<td>Biological and Agricultural Engineering Fundamentals II 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 340</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 354</td>
<td>Engineering Properties of Biological Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 375</td>
<td>Design Fundamentals for Agricultural Machines and Structures</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 365</td>
<td>Unit Operations for Biological and Agricultural Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 366</td>
<td>Transport Processes in Biological Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 370</td>
<td>Measurement and Control of Biological Systems and Agricultural Processes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics elective 4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 399</td>
<td>Professional Development 5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BAEN 479</td>
<td>Biological and Agricultural Engineering Design I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The BS in ITDE is comprised of 70 credit hours of standard components and 58 credit hours of interdisciplinary specialization. The 70 standard credits include:

1. common first-year engineering courses
2. an English/communication course
3. a ‘foundations of interdisciplinary engineering’ course
4. two semesters of senior capstone design
5. three additional math courses beyond first-year courses (from an approved list)
6. an additional math/science elective course
7. university core curriculum courses

The 58 remaining credits of specialization may either be determined through a pre-approved program of study or through a student-led design with approval from the ITDE Advisory Committee.

Many students enhance their education by participating in cooperative education and/or professional internships, which offer opportunities for employment in engineering positions while working toward a degree. Numerous study abroad programs are also available for gaining experience and perspectives in the international arena. Participation in student chapters of professional and honor societies provides leadership opportunities, collegial activities, and learning experiences outside the classroom. Many students also participate in research projects through individual directed studies courses with a professor.

Before commencing course work in the major, students must be admitted to the major or have the approval of the degree program.

The BS in ITDE degree is offered at the College Station, Galveston, and McAllen campuses.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CHEM 107 General Chemistry for Engineering Students <sup>1,4</sup></td>
</tr>
<tr>
<td>1</td>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory <sup>1,4</sup></td>
</tr>
</tbody>
</table>

Interdisciplinary Engineering - BS

Earning a Bachelor of Science (BS) degree in interdisciplinary engineering (ITDE) allows students to develop unique skill sets and specialize in areas that may not be provided in a traditional department degree program. Such specializations may be driven by emerging technical fields or by a student’s desire to have an immersive interdisciplinary experience. ITDE students graduate with a specific set of skills resulting from a unique program of study.

A grade of C or better is required for all math, science, and engineering courses.

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAEN 480 Biological and Agricultural Engineering Design II <sup>3</sup></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29) <sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29) <sup>2</sup></td>
</tr>
<tr>
<td></td>
<td>BAEN elective <sup>6</sup></td>
</tr>
<tr>
<td></td>
<td>Technical elective <sup>8</sup></td>
</tr>
</tbody>
</table>

1. Entering students will normally be given a placement test in mathematics. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
2. The three hours of international and cultural diversity (p. 47) and three hours of cultural discourse (p. 46) courses, as required for graduation, may be met by courses that also satisfy a core curriculum course.
3. All undergraduate students must take at least two (2) specific courses in their major designated as writing intensive.
4. Select from CHEN 320; CVEN 302; MATH 304; MATH 417; MEEN 357; STAT 211.
5. All engineering students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the BAEN advising office.
7. Select from BAEN 400-478 (p. 912), BAEN 485, BAEN 489; CHEN 451, CHEN 455/SENG 455, CHEN 460/SENG 460; CVEN 301/EVEN 301, CVEN 302, CVEN 303, CVEN 336, CVEN 339/EVEN 339, CVEN 402/EVEN 402, CVEN 450, CVEN 455, CVEN 458/EVEN 458, CVEN 462/EVEN 462; ENGR 333; ISEN 303; MEEN 363, MEEN 364, MEEN 441, MEEN 442, MEEN 444, MEEN 460, SENG 310, SENG 312, SENG 321; Other courses may be approved by request to the advising office.
8. Select from AGSM 473, ANSC 312, ANSC 320; BESC 320, BESC 357, BESC 367, BESC 401, BESC 402, BESC 403; BIOL 351, BIOL 451; ESSM 351/RENR 405, ESSM 444, ESSM 459; GEOG 390, GEOL 410; MME 307, NFSC 305, NFSC 307/ANSC 307, NFSC 312, NFSC 313, NFSC 326/ANSC 326, NFSC 327/ANSC 327, NFSC 406/POSC 406, NFSC 410, NFSC 457/ANSC 457, NFSC 470/ANSC 470, NFSC 487/ANSC 487; POSC 309, POSC 326, POSC 427; RENR 405/ESSM 351; SCSC 301, SCSC 311, SCSC 405. Other courses may be approved by request to the advising office.
ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition 1 3
ENGR 102 Engineering Lab I - Computation 1 2
MATH 151 Engineering Mathematics I 1, 2 4
University Core Curriculum (p. 25) 3 3
Semester Credit Hours 16

Spring
ENGR 216/ PHYS 216 Experimental Physics and Engineering Lab II - Mechanics 1 2
MATH 152 Engineering Mathematics II 1 4
PHYS 206 Newtonian Mechanics for Engineering and Science 1 3
University Core Curriculum (p. 25) 3 3
Select one of the following: 3-4
CHEM 120 Fundamentals of Chemistry II 4 1
University Core Curriculum (p. 25) 3, 5 3
Semester Credit Hours 15-16
Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year
Fall Semester Credit Hours
COMM 205 or ENGL 210 Communication for Technical Professions or Technical and Business Writing 3
ENGR 217/ PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism 1 2
ITDE 201 Foundations of Interdisciplinary Engineering 1 1
MATH 251 Engineering Mathematics III 1 3
PHYS 207 Electricity and Magnetism for Engineering and Science 1 3
Technical elective 1, 6 3
Semester Credit Hours 15

Spring
MATH 308 Differential Equations 1 3
University Core Curriculum (p. 25) 3 6
Technical electives 1, 6 9
Semester Credit Hours 18

Summer
ITDE 399 High Impact Experience for Interdisciplinary Engineers 0
Semester Credit Hours 0

Third Year
Fall Semester Credit Hours
Select one of the following: 3
MATH 304 Linear Algebra 1 3
MATH 311 Topics in Applied Mathematics I 1 3
MATH 323 Linear Algebra 1 3
MATH 401 Advanced Engineering Mathematics 1 3
University Core Curriculum (p. 25) 3 3
Technical electives 1, 6 9
Semester Credit Hours 12

Spring
Technical electives 1, 6 12
Math/Science elective 1, 7 3
Semester Credit Hours 15

Fourth Year
Fall
ENGR 401 Interdisciplinary Design 1 3
University Core Curriculum (p. 25) 3 3
Technical electives 1, 6 9
Semester Credit Hours 15

Spring
ENGR 402 Interdisciplinary Design II 1 3
ITDE 499 Degree Plan Approval for ITDE 0
Technical electives 1, 6 13
Semester Credit Hours 16
Total Semester Credit Hours 97

A total of 58 technical electives are required. To be selected with consultation with ITDE advisor.

Select from the following courses: ASTR 314; ATMO 363; BIOL 111, BIOL 113; CHEM 222, CHEM 227, CHEM 310, CHEM 311, CHEM 315, CHEM 316, CHEM 318, CHEM 322; GEOL 101, GEOL 104; MARS 408, MARS 410; MATH 304, MATH 311, MATH 323, MATH 401; OCNG 410; PHYS 222; RENR 205, RENR 375; STAT 211, STAT 414.

Total Program Hours 128
Interdisciplinary Engineering - 6-Year Bachelor of Science/Juris Doctor

The College of Engineering and School of Law offer a combination degree program leading to the BS in Interdisciplinary Engineering (ITDE) and Juris Doctor (JD) degrees. This program is structured to allow students to complete it in six academic years, reducing the typical time to completion for sequential degrees by one year.

This combined degree program educates students in engineering and technology as a precursor to studies and practice in the law. Areas of legal practice that require advanced understanding of the engineering and technology development process include patents and intellectual property law, environmental law, and workplace health and safety law, among others. This program allows a streamlining of studies with mutual reinforcement of the respective degree disciplines.

Students who enroll in the combined program complete their first three academic years at the College of Engineering on the College Station campus. Upon the conclusion of the spring semester of the third year, students begin coursework in the School of Law for the fourth and fifth academic years in Fort Worth. For the sixth and final year, students have their primary curricula with the School of Law with coursework taken from both the School of Law and the College of Engineering, and courses are taken on the College Station campus. Students must complete all curriculum requirements and all additional graduation requirements published in the applicable undergraduate and graduate catalogs for the BS-ITDE degree and the JD degree.

Students interested in this combined program are strongly advised to meet with an academic advisor in the BS in Interdisciplinary Engineering program as early as possible to understand issues related to admission to both the BS and JD programs, course scheduling, minimum academic performance standards, and others. Admission to the BS degree program does not guarantee admission to the JD portion, and students must apply to the School of Law in the third academic year in order to begin law studies in the fourth academic year.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 2</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 2</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 205 or ENGL 210</td>
<td>Communication for Technical Professions or Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>ITDE 201</td>
<td>Foundations of Interdisciplinary Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>Math/Science Elective</td>
<td>1, 7</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>1, 6</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>1, 6</td>
<td>6</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITDE 399</td>
<td>High Impact Experience for Interdisciplinary Engineers</td>
<td>0</td>
</tr>
</tbody>
</table>

Semester Credit Hours 18

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 304</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Topics in Applied Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 401</td>
<td>Advanced Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical electives</td>
<td>1, 6</td>
<td>10</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical electives</td>
<td>1, 6</td>
<td>12</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 7001</td>
<td>Analysis, Research, and Writing I</td>
<td>3</td>
</tr>
<tr>
<td>LAW 7005</td>
<td>Civil Procedure</td>
<td>4</td>
</tr>
<tr>
<td>LAW 7042</td>
<td>Torts</td>
<td>4</td>
</tr>
<tr>
<td>LAW 7110</td>
<td>Professional Identity</td>
<td>0.5</td>
</tr>
<tr>
<td>LAW 7418</td>
<td>Legislation and Regulation</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 14.5

Spring

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 7002</td>
<td>Analysis, Research, and Writing II</td>
<td>3</td>
</tr>
<tr>
<td>LAW 7007</td>
<td>Alternative Dispute Resolution Survey</td>
<td>1</td>
</tr>
<tr>
<td>LAW 7017</td>
<td>Contracts</td>
<td>4</td>
</tr>
<tr>
<td>LAW 7021</td>
<td>Criminal Law</td>
<td>3</td>
</tr>
<tr>
<td>LAW 7032</td>
<td>Property</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

LAW 7110 | Professional Identity | 0.5
Semester Credit Hours 15

Fifth Year

Fall

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAW 7010</td>
<td>Constitutional Law</td>
<td>4</td>
</tr>
<tr>
<td>LAW 7091</td>
<td>Professional Responsibility</td>
<td>3</td>
</tr>
<tr>
<td>Upper level LAW electives</td>
<td>8, 9</td>
<td>8</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper level LAW electives</td>
<td>8, 9</td>
<td>15</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Sixth Year

Fall

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 401</td>
<td>Interdisciplinary Design</td>
<td>1, 10</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>1, 6, 10</td>
<td>3</td>
</tr>
<tr>
<td>Upper level LAW electives</td>
<td>8, 9, 10</td>
<td>9</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 402</td>
<td>Interdisciplinary Design II</td>
<td>1, 10</td>
</tr>
<tr>
<td>ITDE 499</td>
<td>Degree Plan Approval for ITDE</td>
<td>0</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>1, 6, 10</td>
<td>3</td>
</tr>
<tr>
<td>Upper level LAW electives</td>
<td>8, 9, 10</td>
<td>9</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 157

6. A total of 40 semester credit hours of technical electives are required. To be selected in consultation with ITDE advisor.
7. Select from the following courses: ASTR 314; ATMO 363; BIOL 111, BIOL 113; CHEM 222, CHEM 227, CHEM 310, CHEM 311, CHEM 315, CHEM 316, CHEM 318, CHEM 322; GEOL 101, GEOL 102, GEOL 104; MARS 408, MARS 410; MATH 304, MATH 311, MATH 323; PHYS 222, PHYS 224; RENR 375; STAT 211, STAT 414, STAT 415.
8. Students must successfully complete a minimum of six credit hours in one or more upper-level experiential courses. As part of the six credit hours, the student must successfully complete an approved externship or a clinic that involves advising or representing one or more actual clients or serving as a third-party neutral. An experiential course must be a simulation course, a law clinic, or a field placement.
9. One LARW III course is required.
10. Courses taken for credit for both the undergraduate and professional degree for a combined total of 30 semester credit hours: ENGR 401, ENGR 402, 6 semester credit hours of technical electives, and 18 semester credit hours of upper level LAW electives. All double-counted elective courses are to be selected in consultation with both ITDE and LAW advisors.

The combined program includes a total of 188 semester credit hours, which includes 30 semester credit hours applied both to the Bachelor of Science in Interdisciplinary Engineering and Juris Doctor degrees.

The JD degree is conferred on students who satisfactorily complete the program with a cumulative grade point average of 2.33 or better in LAW classes. In addition, each student must complete an upper-level rigorous writing requirement, a six-hour experiential requirement, and a 30-hour pro bono requirement. Students must complete their degree requirements within 72 months of starting law school, which occurs at the start of the fourth year of this combined program.
Interdisciplinary Engineering - 5-Year Bachelor of Science /Master of Public Health in Occupational Safety and Health

The College of Engineering and School of Public Health offer a combination degree program leading to the BS in Interdisciplinary Engineering (ITDE) and Master of Public Health (MPH) in Occupational Safety and Health degrees. This program is structured to allow students to complete it in five academic years, reducing the typical time to completion for sequential degrees by one year.

This combined degree program will educate students in biomedical technology and public health aspects of occupational environments. It utilizes an interdisciplinary approach to integrate relevant aspects of human health monitoring, ergonomics and workplace design, and public education and intervention for the purpose of creating healthier and safer working environments. This program has developed from university interdisciplinary research initiatives that are addressing the grand challenge of overcoming the human and economic burden of diabetes, heart disease, and other chronic conditions in underserved communities.

Students who enroll in the combined program complete their first three academic years in the College of Engineering. Upon the conclusion of the spring semester of the third year, students begin concurrent coursework in the School of Public Health and College of Engineering for the fourth and fifth academic years. Students must complete all curriculum requirements and all additional graduation requirements published in the applicable undergraduate and graduate catalogs for the BS-ITDE degree and the MPH degree.

Students interested in this combined program are strongly advised to meet with an academic advisor in the BS in Interdisciplinary Engineering program as early as possible to understand issues related to admission to both the BS and MPH programs, course scheduling, minimum academic performance standards, and others. Admission to the BS degree program does not guarantee admission to the MPH portion, and students must apply to the School of Public Health in the third academic year in order to begin public health studies in the fourth academic year.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

| Semester Credit Hours |
|-----------------------|---|
| Fall |
| CHEM 107 | General Chemistry for Engineering Students 1,4 | 3
| CHEM 117 | General Chemistry for Engineering Students Laboratory 1,4 | 1
| ENGL 103 or ENGL 104 | Introduction to Rhetoric and Composition 1 or Composition and Rhetoric | 3
| ENGR 102 | Engineering Lab I - Computation 1 | 2
| MATH 151 | Engineering Mathematics I 1,2 | 4
| University Core Curriculum (p. 25) | 3
| |
| Spring |
| ENGR 216/PHYS 216 | Experimental Physics and Engineering Lab II - Mechanics 1 | 2
| MATH 152 | Engineering Mathematics II 1 | 4
| PHYS 206 | Newtonian Mechanics for Engineering and Science 1 | 3
| University Core Curriculum (p. 25) | 3
| |
| Select one of the following: | 3-4
| CHEM 120 | Fundamentals of Chemistry II 4 |
| University Core Curriculum (p. 25) | 3,5
| |
| Semester Credit Hours | 15-16
| Total Semester Credit Hours | 31-32

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 205 or ENGL 210</td>
<td>Communication for Technical Professions or Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>ITDE 201</td>
<td>Foundations of Interdisciplinary Engineering</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives 1, 6</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Technical electives 1, 6</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITDE 399</td>
<td>High Impact Experience for Interdisciplinary Engineers</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

Fall

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 304</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Topics in Applied Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 401</td>
<td>Advanced Engineering Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives 1, 6</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical electives 1, 6</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Math/Science elective 1, 7</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 401</td>
<td>Interdisciplinary Design</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 601</td>
<td>Thinking in Populations: The Public Health Mindset</td>
<td>2</td>
</tr>
<tr>
<td>SOPH 602</td>
<td>Investigation and Control: Acute Public Health Events</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 603</td>
<td>Assessment and Intervention: Wicked Problems in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHEO 618</td>
<td>Occupational Safety</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 402</td>
<td>Interdisciplinary Design II</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 604</td>
<td>Framing and Persuasion: Public Health in the Public Sphere</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEO 640</td>
<td>Industrial Hygiene</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives 1, 6</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEO 684</td>
<td>Practicum</td>
<td>3</td>
</tr>
</tbody>
</table>

Fifth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEO 630</td>
<td>Environmental/Occupational Diseases</td>
<td>3</td>
</tr>
<tr>
<td>PHEO 678</td>
<td>Occupational Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHEO 682</td>
<td>Industrial and System Safety</td>
<td>3</td>
</tr>
<tr>
<td>PHEO Electives 8</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEO 645</td>
<td>Health and Safety at Hazardous Waste Sites</td>
<td>3</td>
</tr>
<tr>
<td>PHEO 655</td>
<td>Human Factors</td>
<td>3</td>
</tr>
<tr>
<td>PHEO 679</td>
<td>Ergonomics of the Upper Extremities</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 680</td>
<td>Public Health Capstone</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours for Combination Program 161

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEO 618, PHEO 640, PHEO 678, PHEO 679.</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

The combined program includes a total of 161 semester credit hours, which includes 12 semester credit hours applied both to the Bachelor of Science in Interdisciplinary Engineering and Master of Public Health in Occupational Safety and Health.

Cybersecurity - Minor

The Cybersecurity Minor is designed to appeal to both less technically-oriented and more technically-oriented undergraduate students, across multiple departments, in multiple colleges. All students who enroll in the minor will acquire a basic understanding of programming, and a firmly grounded understanding of cybersecurity, to include cyber ethics. The inclusion of these courses in the minor will allow students to specialize in the area of cybersecurity that is most closely aligned with their respective interests and their degree plans.

Program Requirements

Select one of the following tracks:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 313</td>
<td>Introduction to Computer Systems</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering Track
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 410</td>
<td>Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 465</td>
<td>Computer and Network Security</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 402</td>
<td>Law and Policy in Cybersecurity</td>
<td></td>
</tr>
<tr>
<td>CSCE 451</td>
<td>Software Reverse Engineering</td>
<td></td>
</tr>
<tr>
<td>CSCE 463</td>
<td>Networks and Distributed Processing</td>
<td></td>
</tr>
<tr>
<td>CSCE 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>CYBR 403/CSCE 477</td>
<td>Cybersecurity Risk</td>
<td></td>
</tr>
<tr>
<td>CYBR 484</td>
<td>Professional Internship</td>
<td>1</td>
</tr>
<tr>
<td>CYBR 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>CYBR 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>ECEN 424</td>
<td>Fundamentals of Networking</td>
<td></td>
</tr>
<tr>
<td>ECEN 484</td>
<td>Professional Internship</td>
<td>1</td>
</tr>
<tr>
<td>ECEN 485</td>
<td>Directed Studies</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Interdisciplinary Track

Select 6 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 402</td>
<td>Law and Policy in Cybersecurity</td>
</tr>
<tr>
<td>or CYBR 30</td>
<td>Cybersecurity and Digital Ethics</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>ESET 269</td>
<td>Embedded Systems Development in C</td>
</tr>
</tbody>
</table>

Select 9 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 428/CSCE 461</td>
<td>Embedded Systems for Medical Applications</td>
</tr>
<tr>
<td>CSCE 402</td>
<td>Law and Policy in Cybersecurity 2</td>
</tr>
<tr>
<td>CSCE 436</td>
<td>Computer-Human Interaction</td>
</tr>
<tr>
<td>CSCE 465</td>
<td>Computer and Network Security</td>
</tr>
<tr>
<td>CYBR 403/CSCE 477</td>
<td>Cybersecurity Risk</td>
</tr>
<tr>
<td>ECEN 424</td>
<td>Fundamentals of Networking</td>
</tr>
<tr>
<td>ESET 315</td>
<td>Local-and-Metropolitan-Area Networks</td>
</tr>
<tr>
<td>ESET 349</td>
<td>Microcontroller Architecture</td>
</tr>
<tr>
<td>ESET 415</td>
<td>Advanced Network Systems and Security</td>
</tr>
<tr>
<td>ESET 455</td>
<td>Wireless Transmission Systems</td>
</tr>
<tr>
<td>FIVS 123</td>
<td>Forensic Investigations</td>
</tr>
<tr>
<td>FIVS 205</td>
<td>Introduction to Forensic and Investigative Sciences</td>
</tr>
<tr>
<td>GEOG 392</td>
<td>GIS Programming</td>
</tr>
<tr>
<td>ISTM 310</td>
<td>Network Communications and Infrastructure</td>
</tr>
<tr>
<td>ISTM 315</td>
<td>Database Programming</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

Technology track

Select 13 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 402</td>
<td>Law and Policy in Cybersecurity</td>
</tr>
<tr>
<td>CYBR 403/CSCE 477</td>
<td>Cybersecurity Risk</td>
</tr>
<tr>
<td>ESET 269</td>
<td>Embedded Systems Development in C</td>
</tr>
<tr>
<td>ESET 315</td>
<td>Local-and-Metropolitan-Area Networks</td>
</tr>
<tr>
<td>ESET 349</td>
<td>Microcontroller Architecture</td>
</tr>
<tr>
<td>ESET 419</td>
<td>Engineering Technology Capstone I</td>
</tr>
<tr>
<td>ESET 420</td>
<td>Engineering Technology Capstone II</td>
</tr>
<tr>
<td>ESET 456</td>
<td>Embedded Sensors and Internet of Things (IoT) Systems</td>
</tr>
<tr>
<td>TCMG 303</td>
<td>Unix System Administration Practices</td>
</tr>
<tr>
<td>TCMG 316</td>
<td>Database Systems Administration and Application</td>
</tr>
<tr>
<td>TCMG 476</td>
<td>Technical Network Capstone 1</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

1 Course must be approved by the Director of Interdisciplinary Engineering for inclusion in the minor and include applications in cybersecurity.

2 Course may be applied to latter category only if it is not applied above.

Minimum required GPA to declare minor is a 2.5.

Must make a grade of C or better in each course used towards minor.

Must achieve an overall GPA of 2.5 in approved minor coursework.

Minimum of 6 hours at 300-400 level.
Engineering Concepts - Minor

The Minor in Engineering Concepts is intended for students with majors outside the College of Engineering. The minor exposes them to the concepts of engineering design, analysis, and application so that they may work cooperatively and productively with engineers to improve society through technology and other advances.

Upon completion of this minor, students should be able to explain the general engineering design process and its components; differentiate respective engineering fields, their topical focuses, and typical applications; employ basic quantitative methods engineers commonly use to enhance understanding of problems; and relate engineering design process and analytical tools to at least 3 areas of major societal pursuit.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEN 101</td>
<td>Engineering Approaches to Problems</td>
<td>3</td>
</tr>
<tr>
<td>CLEN 201</td>
<td>Tools for Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CLEN 301</td>
<td>Humanity and Materials</td>
<td>3</td>
</tr>
<tr>
<td>CLEN 302</td>
<td>Survey of Nuclear Technology</td>
<td>3</td>
</tr>
<tr>
<td>CLEN 303</td>
<td>Renewable Energy and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>CLEN 304</td>
<td>Pushing the Limits of Construction - Taller, Stronger, Leaner</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Engineering Project Management - Minor

The Engineering Project Management minor is intended to help meet the requirements of industry by educating undergraduate engineering students to understand complex engineering projects, project organizations, and project management methods. Students completing this minor will be able to work effectively in multidisciplinary engineering projects immediately after completion and to advance more rapidly within the project management organization and profession. The management of projects entails technical knowledge, engineering skills, and management skills.

To earn the minor, a student must complete a total of 16 semester credit hours that include prerequisite introductory core courses (ENGR 333 and ENGR 380) and courses selected from the following 3 categories:

1. **Business management and leadership.** The courses listed under this category provide required skills to understand the key management principles and provide leadership in project planning and execution.
2. **Economics, systems, and decisions.** The courses listed under this category provide advanced understanding of the analytical tools required to support project planning and execution.
3. **Project management applications.** The courses listed under this category provide examples of the application of project management principles.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 333</td>
<td>Project Management for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 380</td>
<td>Seminar Series in Engineering Project Management</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 251</td>
<td>Creating a Self-Aware Leader</td>
<td>2-4</td>
</tr>
<tr>
<td>ENGR 350</td>
<td>Leading for Impact in Engineering, Business and Society</td>
<td>2-4</td>
</tr>
<tr>
<td>ENGR 351</td>
<td>The Role of Engineering and Business in Society</td>
<td>2-4</td>
</tr>
<tr>
<td>ENGR 450</td>
<td>Finding Your Leadership Qualities</td>
<td>2-4</td>
</tr>
<tr>
<td>ENGR 451</td>
<td>Leading for a Lifetime: Continual Learning and Influence</td>
<td>2-4</td>
</tr>
<tr>
<td>ESET 319</td>
<td>Engineering Leadership</td>
<td>2-4</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
<td>2-4</td>
</tr>
<tr>
<td>SOMS 380</td>
<td>Workshop in Leadership Education</td>
<td>2-4</td>
</tr>
<tr>
<td>SOMS 381</td>
<td>Workshop in Leadership Education II</td>
<td>2-4</td>
</tr>
<tr>
<td>SOMS 481</td>
<td>Seminar in Executive Leadership</td>
<td>2-4</td>
</tr>
<tr>
<td>SOMS 482</td>
<td>Seminar in Executive Leadership II</td>
<td>2-4</td>
</tr>
<tr>
<td>CHEN 430/SENG 430</td>
<td>Risk Analysis in Safety Engineering</td>
<td>2-9</td>
</tr>
<tr>
<td>CHEN 460/SENG 460</td>
<td>Quantitative Risk Analysis in Safety Engineering</td>
<td>2-9</td>
</tr>
<tr>
<td>CVEN 322</td>
<td>Civil Engineering Systems</td>
<td>2-9</td>
</tr>
<tr>
<td>ESET 329</td>
<td>Six Sigma and Applied Statistics</td>
<td>2-9</td>
</tr>
<tr>
<td>ISEN 302</td>
<td>Economic Analysis of Engineering Projects</td>
<td>2-9</td>
</tr>
<tr>
<td>ISEN 330</td>
<td>Human Systems Interaction</td>
<td>2-9</td>
</tr>
<tr>
<td>ISEN 350</td>
<td>Quality Engineering</td>
<td>2-9</td>
</tr>
<tr>
<td>ISEN 440</td>
<td>Systems Thinking</td>
<td>2-9</td>
</tr>
<tr>
<td>ISEN 442</td>
<td>Organizational Systems</td>
<td>2-9</td>
</tr>
<tr>
<td>MMET 320</td>
<td>Quality Assurance</td>
<td>2-9</td>
</tr>
<tr>
<td>PETE 353</td>
<td>Petroleum Project Evaluation</td>
<td>2-9</td>
</tr>
<tr>
<td>SENG 312</td>
<td>System Safety Engineering</td>
<td>2-9</td>
</tr>
<tr>
<td>BMEN 469</td>
<td>Entrepreneurial Pathways in Medical Devices</td>
<td>2-9</td>
</tr>
<tr>
<td>CSCE 482</td>
<td>Senior Capstone Design</td>
<td>2-9</td>
</tr>
<tr>
<td>CSCE 483</td>
<td>Computer Systems Design</td>
<td>2-9</td>
</tr>
<tr>
<td>CVEN 349</td>
<td>Civil Engineering Project Management</td>
<td>2-9</td>
</tr>
<tr>
<td>CVEN 400</td>
<td>Design Problems in Civil Engineering</td>
<td>2-9</td>
</tr>
<tr>
<td>CVEN 405</td>
<td>Construction Management of Field Operations</td>
<td>2-9</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>CVEN 473</td>
<td>Engineering Project Estimating and Planning</td>
<td></td>
</tr>
<tr>
<td>ECEN 403</td>
<td>Electrical Design Laboratory I</td>
<td></td>
</tr>
<tr>
<td>ECEN 404</td>
<td>Electrical Design Laboratory II</td>
<td></td>
</tr>
<tr>
<td>ENGR 401</td>
<td>Interdisciplinary Design</td>
<td></td>
</tr>
<tr>
<td>ENGR 402</td>
<td>Interdisciplinary Design II</td>
<td></td>
</tr>
<tr>
<td>ENGR 461</td>
<td>Engineering Product Lean Launch</td>
<td></td>
</tr>
<tr>
<td>ESET 419</td>
<td>Engineering Technology Capstone I</td>
<td></td>
</tr>
<tr>
<td>ESET 420</td>
<td>Engineering Technology Capstone II</td>
<td></td>
</tr>
<tr>
<td>ISEN 460</td>
<td>Capstone Senior Design</td>
<td></td>
</tr>
<tr>
<td>MEEN 401</td>
<td>Introduction to Mechanical Engineering Design</td>
<td></td>
</tr>
<tr>
<td>MEEN 402</td>
<td>Intermediate Design</td>
<td></td>
</tr>
<tr>
<td>MMET 429</td>
<td>Managing People and Projects in a Technological Society</td>
<td></td>
</tr>
<tr>
<td>MSEN 401</td>
<td>Materials Research and Design I</td>
<td></td>
</tr>
<tr>
<td>MSEN 402</td>
<td>Materials Research and Design II</td>
<td></td>
</tr>
<tr>
<td>PETE 402</td>
<td>Integrated Asset Development</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

Minimum required GPA to declare minor is a 2.5.

Must earn a grade of C or better in each course used towards minor.

Must achieve an overall GPA of 2.5 in approved minor coursework.

Engineering Concept, Creation, and Commercialization - Certificate

The Engineering Concept, Creation, and Commercialization Certificate provides students with the training and experience to develop their ideas, create/design solutions to solve customer needs, and to understand the process of commercializing developed solutions. The program will focus on developing an entrepreneurial mindset which will be valuable to the students as employees of companies or as creators of their own startup. Students from any engineering major may find great value in the knowledge and skills this certificate develops.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 262</td>
<td>Engineering Entrepreneurship Hour</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 462</td>
<td>Engineering Entrepreneurship Hour</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 461</td>
<td>Engineering Product Lean Launch</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>BMEN 406</td>
<td>Medical Device Path to Market</td>
<td></td>
</tr>
<tr>
<td>BMEN 469</td>
<td>Entrepreneurial Pathways in Medical Devices</td>
<td></td>
</tr>
<tr>
<td>ENDS 101</td>
<td>Design Process</td>
<td></td>
</tr>
<tr>
<td>ENGR 311</td>
<td>Enterprise Basics for Technical Entrepreneurs</td>
<td></td>
</tr>
<tr>
<td>ENGR 312</td>
<td>Sales, Operations and Manufacturing for Technology Companies</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Holistic Leadership in Engineering - Certificate

The Zachry Leadership Program focuses on helping you expand your perspective and gain an appreciation for the power of collaboration and the diversity of thought, while also learning to become more selfless.

By participating in this program, you will gain lasting friendships with peers and interact with accomplished professionals with remarkable backgrounds. You’ll also be exposed to art as part of an initiative to stimulate creativity and open your mind.

After five semesters, you’ll emerge from this experience with a strong understanding of capitalism and how businesses operate within a free enterprise system. You’ll also have strengthened leadership capabilities and will be confident in your ability to influence people, while never losing sight of the many ways individuals and organizations make meaningful contributions to society. The combination of traditional coursework, exposure to thought leaders and a wide range of other experiences will help develop the capabilities and insights necessary for you to lead a successful and rewarding career. These skills will also help you lead a rewarding life outside of your 9-to-5 job.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 251</td>
<td>Creating a Self-Aware Leader</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 350</td>
<td>Leading for Impact in Engineering, Business and Society</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 351</td>
<td>The Role of Engineering and Business in Society</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 450</td>
<td>Finding Your Leadership Qualities</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 451</td>
<td>Leading for a Lifetime: Continual Learning and Influence</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

International Engineering - Certificate

Today's engineering industry is global and interconnected with supply, demand and service providers located around the world. An effective engineer in this global environment is one that complements his/her core technical knowledge with excellent cross-cultural competencies and international exposure. Students completing the International Engineering Certificate will be better prepared to join the global job market they will face following graduation. The International Engineering Certificate is only available to undergraduate, engineering degree-seeking students within the Texas A&M University College of Engineering.
Students from the Texas A&M University-Qatar campus are also eligible to apply for the certificate. The certificate is annotated on the student’s permanent transcript. Students completing the International Engineering Certificate will be better prepared to work effectively (professional, productive and culturally sensitive) as an engineer in multicultural and multidisciplinary work environments. By completing the 15-credit certificate, students will learn to:

- Integrate and apply skills required to solve an engineering design problem considering different perspectives;
- Understand intercultural differences and similarities, and their relevance to effectiveness in the workplace;
- Apply intercultural knowledge for self-knowledge/improvement (Intrapersonal competence);
- Apply intercultural knowledge for effective teamwork (Interpersonal competence).

The International Engineering Certificate may be completed by students pursuing College of Engineering degree programs in College Station, Galveston, McAllen, and Qatar and requires completion of three credit hours of coursework with an international experience.

For additional information, contact the Halliburton Engineering Global Programs Office via email at engineeringglobalprograms@tamu.edu, via phone at (979) 862-5880, or in-person at the Zachry Engineering Education Complex, Suite 410.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global engineering design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ENGR 410</td>
<td>Global Engineering Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-approved 200 level or above engineering course with a significant international component 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International engineering experience 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural discourse 5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>International and cultural diversity 6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>International experience 7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language 8</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

1. No course may be used more than one (1) time to fulfill certificate requirements.
2. Course only offered in the Fall term.
3. Pre-approval must be requested and granted prior to course completion. The Director of Halliburton Engineering Global Programs, the respective course faculty, and the student must meet to determine the specific course content or project that will suffice the ‘significant international component’ requirement.
4. After the International experience component is satisfied, engineering course credit received on a study abroad program, international field trip, international internship, international research experience, or another approved course or field experience may be used to fulfill this requirement.
5. To be selected from approved Cultural Discourse (p. 46) courses.
6. To be selected from approved International and Cultural Diversity (p. 47) courses. Course listing can be found at icd.tamu.edu.
7. May be satisfied by course credit received on a study abroad program, international field trip, international internship, international research experience, or another approved course or field experience.
8. Three (3) credit hours of a 200-level or higher course in a single language. Students are not allowed to use English to fulfill this requirement unless the TOEFL was required for their admission to Texas A&M University. If the TOEFL was required for their admission, students may use ENGL 210 to fulfill this requirement. Students may obtain course credit for this requirement by accepting AP credits or credits obtained through the on-campus language proficiency exam onto their transcript.

Polymer Specialty - Certificate

The Polymer Specialty Certificate is designed to provide a strong interdisciplinary educational program for undergraduate engineering and suitably prepared science students interested in pursuing a polymer career. The certificate will also provide knowledge to reduce the training time required to turn Texas A&M students into productive members of the industrial workforce. This program is the first of its kind offered in the State of Texas and is administered by the Polymer Technology Center. No other universities in the State of Texas offer a formal polymer curriculum, despite the significant role the polymer industry plays in the state’s economy.

Why Should I Be Interested:

Benefits

- Gain an interdisciplinary education with an emphasis in polymers
- Be better prepared for jobs focusing on polymers
- Acquire an edge over students from other universities who have no documented polymer knowledge
- Obtain knowledge to foster entrepreneurial thinking
- Receive recognition on university transcript upon completion of certificate requirements and graduation
- Broaden your exposure to a diverse polymer science and engineering curriculum
- Expand employment horizons beyond the traditional industrial jobs

For additional information, contact the Polymer Specialty Certificate coordinator at 979-458-0918 or email at icantu@tamu.edu.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO 606</td>
<td>Multifunctional Materials</td>
<td></td>
</tr>
<tr>
<td>BMEN 482</td>
<td>Polymeric Biomaterials</td>
<td></td>
</tr>
<tr>
<td>CHEN 451</td>
<td>Introduction to Polymer Engineering</td>
<td></td>
</tr>
<tr>
<td>MEEN 455</td>
<td>Engineering with Plastics</td>
<td></td>
</tr>
<tr>
<td>MEEN 458</td>
<td>Processing and Characterization of Polymers</td>
<td></td>
</tr>
<tr>
<td>MEEN 607/</td>
<td>Polymer Physical Properties</td>
<td></td>
</tr>
<tr>
<td>MSEN 607</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To be selected from approved courses.
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENG 310</td>
<td>Industrial Hygiene Engineering</td>
<td>3</td>
</tr>
<tr>
<td>SENG 312</td>
<td>System Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or SENG 32</td>
<td>or Industrial Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>SENG 430/</td>
<td>Risk Analysis in Safety Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or SENG 460</td>
<td>or Quantitative Risk Analysis in Safety</td>
<td></td>
</tr>
<tr>
<td>CHEN 460</td>
<td>Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>or SENG 660</td>
<td>or Quantitative Risk Analysis</td>
<td></td>
</tr>
<tr>
<td>SENG 309/</td>
<td>Radiological Safety</td>
<td></td>
</tr>
<tr>
<td>NUEN 309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENG 312</td>
<td>System Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>SENG 321</td>
<td>Industrial Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>SENG 422</td>
<td>Fire Protection Engineering - Facilities Design</td>
<td></td>
</tr>
<tr>
<td>SENG 430/</td>
<td>Risk Analysis in Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>CHEN 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENG 455/</td>
<td>Process Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>CHEN 455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENG 477</td>
<td>Air Pollution Engineering</td>
<td></td>
</tr>
<tr>
<td>CHEN 460</td>
<td>Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Students should take at least 2 courses outside their department to receive the Polymer Certificate.

Safety Engineering - Certificate

The Safety Engineering Certificate prepares the graduate for positions in several areas of safety engineering. Students must complete 15 semester credit hours of specified courses to earn a Safety Engineering Certificate. The Safety Program (https://engineering.tamu.edu学术/ certificates/safety.html) coordinator reviews each student's coursework prior to certification.

Students should complete and submit a certificate application to the Mary Kay O'Connor Process Safety Center (246 Jack E. Brown Engineering Building) prior to registering for any of the certificate courses.

The mission of the Aerospace Engineering program is

1. to provide students with a quality undergraduate and graduate education for the State of Texas and the nation through an innovative educational program;
2. to advance the science and aerospace engineering knowledge base through basic and applied research, inventions, technologies and solutions to aerospace problems; and
3. to serve the aerospace engineering profession by preparing leaders for leadership in the creation, design and operation of the next generation aerospace systems.

To achieve this mission, the educational objectives established by the Aerospace Engineering undergraduate program are to produce graduates whose expected accomplishments within three to five years of graduation are...
1. to have successful careers in industry, private practice, or government, or have pursued advanced graduate studies;
2. to be skilled practitioners who apply their knowledge and skills to solve relevant engineering problems in the aerospace or a related profession; and
3. to function well in teams, communicate well, continue enhancing their professional competence, and understand the impact of engineering solutions.

To carry out these educational objectives, the goals of the program are
1. using a high quality faculty, to provide a comprehensive aerospace engineering education that develops in students the fundamental skills necessary for the design, synthesis, analysis and research development of aircraft, spacecraft and other high technology flight systems; and
2. to prepare students for the aerospace engineering profession and related fields by developing the attributes needed, so that they can contribute successfully to society and to the engineering profession now and in the future.

The Department offers a Bachelor of Science in Aerospace Engineering with Honors degree option. This option was proposed by our students and implemented for our students. Very few programs across the country offer this type of experience within Aerospace Engineering. You will be part of an honors community and be provided with the opportunity to enhance your learning experience through one-on-one research with a faculty mentor, introduction to advanced aerospace theories, and much more. The Department also offers a Fast Track program, which is tailored for high-achieving undergraduate students who wish to extend their knowledge and gain an edge by earning a Master of Engineering (ME) degree. Fast Track allows qualified students to earn up to nine hours of credit toward their Aerospace Engineering undergraduate and graduate degrees. Consequently, through Fast Track a student can earn a ME degree in two semesters beyond their undergraduate degree.

Laboratories supplement theoretical studies in the major disciplines in the Department. Numerous wind tunnels for low-speed and supersonic aerodynamic studies, a jet engine test facility, numerous research aircraft, a flight simulator, a satellite laboratory with Integrated Concurrent Engineering Capability, a robotics laboratory, and state-of-the-art materials and structures testing equipment are available, equipped with modern instrumentation. The Department and the University also provide an extensive array of computing resources.

Students are encouraged to enrich their undergraduate experience through a variety of ways in the Department, including co-op and internship positions, student competition design projects, and even undergraduate research. In addition, students have the opportunity to study abroad or participate in an international exchange program.

The Department also offers programs of study leading to the ME, MS, and PhD degrees (see the Texas A&M University Graduate and Professional Catalog). The Bachelor of Science in Aerospace Engineering degree is accredited by the Engineering Accreditation Commission of ABET, www.abet.org. Before commencing course work in the major, students must be admitted to the major or have the approval of the Department.

Faculty

Alfriend III, Kyle T, University Distinguished Professor
Aerospace Engineering
PHD, Virginia Polytechnic Institute and State University, 1967

Andrienko, Daniil Aleksandrovich, Assistant Professor
Aerospace Engineering
PHD, Wright State University, 2014

BenzerGa, Amine A, Professor
Aerospace Engineering

Bhattacharya, Raktim, Associate Professor
Aerospace Engineering
PHD, University of Minnesota, 2003

Bowersox, Rodney D, Professor
Aerospace Engineering
PHD, Virginia Tech, 1992

Boyd, James G, Associate Professor
Aerospace Engineering
PHD, Texas A&M University, 1994

Chakravorty, Suman, Associate Professor
Aerospace Engineering
PHD, University of Michigan, 2004

Chamitoff, Gregory E, Professor of the Practice
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 1992

Cizmas, Paul G, Professor
Aerospace Engineering
PHD, Duke University, 1995

Cruzado Garcia, Aitor, Lecturer
Aerospace Engineering
PHD, Mondragon University, 2013

DeMars, Kyle, Associate Professor
Aerospace Engineering
PHD, University of Texas at Austin, 2010

Diaz Artiles, Ana, Assistant Professor
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 2015

Donzis, Diego A, Associate Professor
Aerospace Engineering
PHD, Georgia Institute of Technology, 2007

Dunbar, Bonnie Jeanne, Professor
Aerospace Engineering
PHD, University of Houston, 1983

Gerakis, Alexandros, Assistant Professor
Aerospace Engineering
PHD, University College London, 2014

Girimaji, Sharath S, Professor
Aerospace Engineering
PHD, Cornell University, 1990
Hartl, Darren J, Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2009

Hurtado, John E, Professor
Aerospace Engineering
PHD, Texas A&M University, 1995

Jameson, Antony, Professor
Aerospace Engineering
PHD, University of Cambridge, 1963

Junkins, John L, Distinguished Professor
Aerospace Engineering
PHD, University of California, Los Angeles, 1969

Karaman, Ibrahim, Professor
Aerospace Engineering
PHD, University of Illinois - Urbana-Champaign, 2000

Karpetis, Adonios N, Associate Professor
Aerospace Engineering
PHD, Yale University, 1998

Kinra, Vikram K, Professor
Aerospace Engineering
PHD, Brown University, 1975

Kulatilaka, Waruna D, Associate Professor
Aerospace Engineering
DEN, Purdue University, 2006

Lagoudas, Dimitris C, University Distinguished Professor
Aerospace Engineering
PHD, Lehigh University, 1986

Langari, Gholamreza, Professor
Aerospace Engineering
PHD, University of California, Berkeley, 1991

Le Graverend, Jean-Briac B, Assistant Professor
Aerospace Engineering
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Limbach, Christopher M, Assistant Professor
Aerospace Engineering
PHD, Princeton University, 2015

Majji, Manoranjan, Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2009

Miles, Richard B, Professor
Aerospace Engineering
PHD, Stanford University, 1972

Mobie, Benedict, Associate Professor
Aerospace Engineering
PHD, University of Maryland, 2010

Mortari, Daniele, Professor
Aerospace Engineering
PHD, University La Sapienza of Rome, 1980

Naraghi, Mohammad, Associate Professor
Aerospace Engineering
PHD, University of Illinois at Urbana Champaign, 2009

Oran, Elaine, Professor
Aerospace Engineering
PHD, Yale University, 1972

Poludnenko, Oleksiy Y, Associate Professor
Aerospace Engineering
PHD, University of Rochester, 2004

Reddy, Junuthula N, University Distinguished Professor
Aerospace Engineering
PHD, University of Alabama at Huntsville, 1974

Reed, Helen L, Professor
Aerospace Engineering
PHD, Virginia Tech, 1981

Richard, Jacques C, Senior Lecturer
Aerospace Engineering
PHD, Rensselaer University, 1989

Saric, William S, Distinguished Professor
Aerospace Engineering
PHD, Illinois Institute of Technology, 1968

Scully, Marlan O, University Distinguished Professor
Aerospace Engineering
PHD, Yale University, 1966

Selva Valero, Daniel, Assistant Professor
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 2012

Shryock, Kristi J, Associate Professor
Aerospace Engineering
PHD, Texas A&M University, 2011

Skelton, Robert E, Professor
Aerospace Engineering
PHD, University of California, 1976

Strganac, Thomas W, Professor
Aerospace Engineering
PHD, Virginia Tech, 1987

Stroubugulis, Theofanis, Professor
Aerospace Engineering
PHD, University of Texas - Austin, 1986

Talreja, Ramesh R, Professor
Aerospace Engineering
PHD, The Technical University of Denmark, 1974

Tichenor, Nathan R, Research Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2010

Tropina, Albina, Research Professor
Aerospace Engineering
PHD, Kyiv Aviation University, 2012
PHD, V.N. Karazin Kharkiv National University, 2000
Vadali, Srinivas R, Professor
Aerospace Engineering
PHD, Virginia Tech, 1983

Valasek, John L, Professor
Aerospace Engineering
PHD, University of Kansas, 1995

Whitcomb, John D, Professor
Aerospace Engineering
PHD, Virginia Tech, 1988

White, Edward B, Professor
Aerospace Engineering
PHD, Arizona State University, 2000

Wong, Zi Jing, Assistant Professor
Aerospace Engineering
PHD, University of California, Berkeley, 2015

Majors
- Bachelor of Science in Aerospace Engineering (p. 382)

Minors
- Aerospace Engineering Minor (p. 383)

Aerospace Engineering - BS

Coursework in aerodynamics, structures and materials, propulsion, and dynamics and control provide a strong fundamental basis for advanced study and specialization, while technical electives offer a concentration of study in fields of special interest. Design philosophy and practice are developed throughout the curriculum to relate analysis to aerospace engineering design. The design of aerospace system components is particularly emphasized in the junior- and senior-level courses. A senior-level two-semester design sequence, involving specific goals, objectives, and constraints, integrates analysis and design tools and requires students working in small teams to design, build, test, and even fly an aerospace system, such as an aircraft, rocket, or spacecraft. Application of modern engineering and computational tools is required and emphasized in all courses.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics 1 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 5,6</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 201</td>
<td>Introduction to Flight</td>
<td>3</td>
</tr>
<tr>
<td>AERO 211</td>
<td>Aerospace Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 217</td>
<td>III - Electricity and Magnetism</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>1</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>1</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 212</td>
<td>Introduction to Aerothermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 214</td>
<td>Introduction to Aerospace Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>AERO 222</td>
<td>Introduction to Aerospace Computation</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>High Impact Experience</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AERO 299</td>
<td>Mid-Curriculum Professional Development</td>
<td>7</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 301</td>
<td>Theoretical Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 304</td>
<td>Aerospace Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>AERO 307</td>
<td>Aerospace Engineering Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>AERO 310</td>
<td>Aerospace Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 303</td>
<td>High Speed Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 306</td>
<td>Aerospace Structural Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>AERO 321</td>
<td>Dynamics of Aerospace Vehicles</td>
<td>3</td>
</tr>
<tr>
<td>AERO 351</td>
<td>Aerothermodynamics and Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 401</td>
<td>Aerospace Vehicle Design II</td>
<td>3</td>
</tr>
<tr>
<td>AERO 413</td>
<td>Aerospace Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>AERO 423</td>
<td>Orbital Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 430</td>
<td>Numerical Simulation or MATH 401 or Advanced Engineering Mathematics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 405</td>
<td>Aerospace Structural Design</td>
<td>3</td>
</tr>
<tr>
<td>AERO 417</td>
<td>Aerospace Propulsion</td>
<td>3</td>
</tr>
</tbody>
</table>

AERO 426 Space System Design

AERO 428 Electromagnetic Sensing for Space-Borne Imaging

AERO 451 Human Spaceflight Operations

AERO 472 Airfoil and Wing Design

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 402</td>
<td>Aerospace Vehicle Design II</td>
<td>2</td>
</tr>
<tr>
<td>AERO 422</td>
<td>Active Controls for Aerospace Vehicles</td>
<td>3</td>
</tr>
<tr>
<td>AERO 452</td>
<td>Heat Transfer and Viscous Flows</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 404</td>
<td>Mechanics of Advanced Aerospace Structures</td>
<td>6</td>
</tr>
<tr>
<td>AERO 405</td>
<td>Aerospace Structural Design</td>
<td>3</td>
</tr>
<tr>
<td>AERO 417</td>
<td>Aerospace Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>AERO 419</td>
<td>Chemical Rocket Propulsion</td>
<td>3</td>
</tr>
<tr>
<td>AERO 420</td>
<td>Aeroelasticity</td>
<td>3</td>
</tr>
<tr>
<td>AERO 424</td>
<td>Spacecraft Attitude Dynamics and Control</td>
<td>3</td>
</tr>
<tr>
<td>AERO 425</td>
<td>Flight Test Engineering</td>
<td>3</td>
</tr>
<tr>
<td>AERO 426</td>
<td>Space System Design</td>
<td>3</td>
</tr>
<tr>
<td>AERO 428</td>
<td>Electromagnetic Sensing for Space-Borne Imaging</td>
<td>3</td>
</tr>
<tr>
<td>AERO 430</td>
<td>Numerical Simulation</td>
<td>3</td>
</tr>
<tr>
<td>AERO 435</td>
<td>Aerothermochemistry</td>
<td>3</td>
</tr>
<tr>
<td>AERO 440</td>
<td>Cockpit Systems and Displays</td>
<td>3</td>
</tr>
<tr>
<td>AERO 445</td>
<td>Vehicle Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>AERO 451</td>
<td>Human Spaceflight Operations</td>
<td>3</td>
</tr>
<tr>
<td>AERO 455</td>
<td>Helicopter Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 472</td>
<td>Airfoil and Wing Design</td>
<td>3</td>
</tr>
<tr>
<td>AERO 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 421</td>
<td>Digital Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 385</td>
<td>Problems for Co-Op Students</td>
<td>3</td>
</tr>
</tbody>
</table>

University Core Curriculum (p. 25) | 3 |

Total Semester Credit Hours

17

6 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the AERO advising office.

7 A two-semester sequence is required.

Total Program Hours 128

Aerospace Engineering - Minor

The Department of Aerospace Engineering offers a minor to students within the College Of Engineering who are interested in Aerospace applications of engineering related to subsonic and supersonic aerodynamics, dynamics, vehicle stability and control, and aerospace structures. Eligible students must submit an application in order to be considered for and allowed to pursue a minor in Aerospace Engineering.

Requirements:

To earn a Minor in Aerospace Engineering, students must meet and adhere to the following requirements and guidelines:
• In good academic standing within major department.
• Approval to pursue the minor from Aerospace.
• Overall and Major GPA > 2.50 when entering the minor field of study.
• Maintain a cumulative 2.0 GPA in the AERO minor courses, including prerequisites.
• Must earn C or higher to count as a minor field of study.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 301</td>
<td>Theoretical Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 303</td>
<td>High Speed Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 304</td>
<td>Aerospace Structural Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>AERO 306</td>
<td>Aerospace Structural Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>AERO 310</td>
<td>Aerospace Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>AERO 321</td>
<td>Dynamics of Aerospace Vehicles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Additional Requirements

• Overall GPR > 2.50 when entering the minor field of study.
• Major GPR >2.50 when entering the minor field of study.
• Must earn C or higher to count as a minor field of study.

Prerequisites

• Approval to pursue the minor from Aerospace.

Department of Biomedical Engineering

The objectives of the Biomedical Engineering program are to produce high-quality graduates with a broad-based education in engineering, life sciences and natural sciences applied to the fields of biomechanics, biomaterials, bioinstrumentation, and biomolecular and cellular engineering who:

1. are well prepared for further graduate studies, careers in the biomedical or biotechnology industries or entry into medical or other professional schools;
2. will make significant contributions in biomedical industries, medicine and other sectors;
3. will apply acquired knowledge appropriately, work professionally with others, effectively communicate ideas and technical information and continue to learn and improve their knowledge base and skills.

These objectives are met through a modern and comprehensive curriculum taught by a well prepared, professionally active and dedicated faculty. In addition, the program actively supports professional development among the students through individual study and research opportunities, cooperative education and internships, and student society activities. These goals are measured by the success of the graduates in finding rewarding professional employment, and by admission to respected graduate and professional schools.

Design is an important part of biomedical engineering and design skills are emphasized throughout the curriculum, beginning the first year in the program, and culminating in the two-semester senior design course sequence that requires application of a wide range of engineering methods to a focused design project. Other courses in biomedical engineering and in supporting disciplines include examples of the application of the principles to design, as well as specific design exercises. The biomedical engineering curriculum is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Before commencing coursework in the department, students must be admitted to the major or minor.

Faculty

Adjei, Isaac, Assistant Professor
Biomedical Engineering
PHD, Case Western Reserve University, 2014

Alge, Daniel L, Associate Professor
Biomedical Engineering
PHD, Purdue University, 2010

Avazmohammadi, Reza, Assistant Professor
Biomedical Engineering
PHD, University of Pennsylvania, Philadelphia, PA, 2014

Biswas, Saurabh, Associate Professor of the Practice
Biomedical Engineering
PHD, Texas A&M University, 2011

Bukkapatnam, Satish T, Professor
Biomedical Engineering
PHD, Pennsylvania State University, 1997

Clubb Jr, Fred J, Professor
Biomedical Engineering
PHD, University of Alabama - Birmingham, 1983
DVM, Auburn University, 1971

Cote, Gerard L, Professor
Biomedical Engineering
PHD, University of Connecticut, 1990

Criscione, John C, Professor
Biomedical Engineering
PHD, The John Hopkins University School of Medicine, 2005

Fink, Rainer J, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 1995

Freed, Alan D, Professor
Biomedical Engineering
DEN, University of Wisconsin - Madison, 1985

Gaharwar, Akhilesh K, Associate Professor
Biomedical Engineering
PHD, Purdue University, 2011

Gibbs, Holly C, Lecturer
Biomedical Engineering
PHD, Texas A&M University, 2015

Gonezen, Sevan, Assistant Professor
Biomedical Engineering
PHD, Rensselaer Polytechnic Institute, 2011
Gregory, Carl A, Assistant Professor
Biomedical Engineering
PHD, University of Manchester, 1999

Grunlan, Melissa A, Professor
Biomedical Engineering
PHD, University of South Carolina, 2004

Guiseppi Elie, Anthony, Professor
Biomedical Engineering
PHD, Massachusetts Institute of Technology, 1983
DVM, University of the West Indies, Mona, Jamaica, 1979

Han, Arum, Professor
Biomedical Engineering
PHD, Georgia Institute of Technology, 2005

Haridas, Balakrishna, Professor of the Practice
Biomedical Engineering
PHD, University of Cincinnati, 2001

Hogan, Harry A, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 1984

Hwang, Wonmuk, Associate Professor
Biomedical Engineering
PHD, Boston University, 2001

Jafari, Roozbeh, Professor
Biomedical Engineering
PHD, University of California, 2006

Jain, Abhishek, Assistant Professor
Biomedical Engineering
PHD, Boston University, 2012

Jayaraman, Arul, Professor
Biomedical Engineering
PHD, University of California, Irvine, 1998

Jessen, Staci, Lecturer
Biomedical Engineering
PHD, Texas A&M University, 2016

Kaunas, Roland R, Associate Professor
Biomedical Engineering
PHD, University of California, San Diego, 2003

Keller, Brandis K, Lecturer
Biomedical Engineering
PHD, Politecnico di Milano, 2013

Lawley, Mark A, Professor
Biomedical Engineering
PHD, University of Illinois at Urbana-Champaign, 1995

MACHEK, JAMES E, Professor Of The Practice
Biomedical Engineering
BS, Gannon University, 1979

Mabbott, Samuel, Assistant Professor
Biomedical Engineering
PHD, University of Manchester, Manchester Interdisciplinary Biocentre, 2012

Maitland IV, Duncan J, Professor
Biomedical Engineering
PHD, Northwestern University, 1995

Maitland, Kristen D, Associate Professor
Biomedical Engineering
PHD, University of Texas, 2006

McDougall, Mary P, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 2004

McShane II, Michael J, Professor
Biomedical Engineering
PHD, Texas A&M University, 1999

Moreno, Michael R, Assistant Professor
Biomedical Engineering
PHD, Texas A&M University, 2009

Patrick, Charles, Professor of the Practice
Biomedical Engineering
PHD, Rice University, 1994

Peak, Charles W, Instructional Assistant Professor
Biomedical Engineering
PHD, Texas A&M University, 2018

Peterson, Donald, Professor
Biomedical Engineering
PHD, University of Connecticut, 1999

Quick, Christopher M, Associate Professor
Biomedical Engineering
PHD, Rutgers University, 1999

Raghavan, Shreya, Assistant Professor
Biomedical Engineering
PHD, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 2014

Rajagopal, Kumbakonam, Professor
Biomedical Engineering
PHD, University of Minnesota, 1978

Tian, Limei, Assistant Professor
Biomedical Engineering
PHD, Washington University in St. Louis, 2014

Trache, Andreea, Associate Professor
Biomedical Engineering
PHD, Institute of Atomic Physics, Romania, 1996

Ugaz, Victor M, Professor
Biomedical Engineering
PHD, Northwestern University, 1999

Walsh, Alexandra, Assistant Professor
Biomedical Engineering
PHD, Vanderbilt University, 2015

Wright, Steven M, Professor
Biomedical Engineering
PHD, University of Illinois, 1984
Yakovlev, Vladislav V, Professor
Biomedical Engineering
PHD, Moscow State University, 1990

Yeh, Alvin T, Associate Professor
Biomedical Engineering
PHD, University of California, Berkeley, 2000

Zhang, Xudong, Professor
Biomedical Engineering
PHD, University of Michigan Ann Arbor, 1997

Majors
- Bachelor of Science in Biomedical Engineering (p. 386)

Minors
- Biomedical Engineering Minor (p. 388)

Certificates
- Quality Engineering for Regulated Medical Technologies Certificate (p. 389)

Biomedical Engineering - BS

Department Head: M. McShane

Director of Undergraduate Programs: M. McDougall

Committed to solving the world’s greatest health problems through the exploration of new ideas, integrated research and innovation, the Department of Biomedical Engineering at Texas A&M University is producing the next generation of biomedical engineers in industry and at tier-one research institutions, developing new technologies and new jobs, and achieving revolutionary advancements for the future of health care.

The undergraduate curriculum in biomedical engineering involves the development and application of engineering science and technology for living and medical systems. Based around a basic core of courses, the bachelor’s degree is designed to prepare students for team involvement with other engineers and with physicians and life scientists to solve a wide array of biological and medical problems. Elective courses are included to accommodate individual student specialty interests within the fields of biomechanics, biomaterials, bioinstrumentation, and biomolecular and cellular engineering. Students interested in specialized professional school programs such as medical school can meet admission prerequisites through slight modifications and additions to the curriculum.

The department offers a Bachelor of Science degree and a minor. For more information, including degree requirements and application deadlines, visit http://engineering.tamu.edu/biomedical (http://engineering.tamu.edu/biomedical/).

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEN 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEN 117.

For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 101</td>
<td>Introduction to Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 207</td>
<td>Computing for Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 253</td>
<td>or Engineering Mathematics III</td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 434</td>
<td>Physiology for Bioengineers I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 211</td>
<td>Biomedical Applications of Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 253</td>
<td>Medical Device Design I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 435</td>
<td>Physiology for Bioengineers II</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 305</td>
<td>Bioinstrumentation</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 321</td>
<td>Biomedical Electronics</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 341</td>
<td>Biofluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 343</td>
<td>Introduction to Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 350</td>
<td>Statistics for Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BMEN 399</td>
<td>Engineering Professional Development</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 344</td>
<td>Biological Responses to Medical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 345</td>
<td>Biomaterials Lab</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 353</td>
<td>Medical Device Design II</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 361</td>
<td>Biosolid Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 452</td>
<td>Mass and Energy Transfer in Biosystems</td>
<td>3</td>
</tr>
<tr>
<td>BMEN 453</td>
<td>Analysis and Design Project I</td>
<td>2</td>
</tr>
<tr>
<td>BMEN 465</td>
<td>Biomechanics Experiential Learning Lab</td>
<td>1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 450</td>
<td>Case Studies</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 454</td>
<td>Analysis and Design Project II</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical electives</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 96

Total Program Hours 128

Bioinstrumentation

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 322</td>
<td>Biomedical Analysis</td>
<td>9</td>
</tr>
<tr>
<td>BMEN 401</td>
<td>Principles and Analysis of Biological Control Systems</td>
<td></td>
</tr>
<tr>
<td>BMEN 428/</td>
<td>Embedded Systems for Medical</td>
<td></td>
</tr>
<tr>
<td>CSCE 461</td>
<td>Applications</td>
<td></td>
</tr>
</tbody>
</table>

Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 291</td>
<td>Research</td>
<td>3-6</td>
</tr>
<tr>
<td>or BMEN 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>BMEN 402</td>
<td>Biomedical Optics Laboratory</td>
<td></td>
</tr>
<tr>
<td>BMEN 422</td>
<td>Bioelectromagnetism</td>
<td></td>
</tr>
<tr>
<td>BMEN 425</td>
<td>Biophotonics</td>
<td></td>
</tr>
<tr>
<td>BMEN 427</td>
<td>Magnetic Resonance Engineering</td>
<td></td>
</tr>
<tr>
<td>or ECEN 468</td>
<td>Magnetic Resonance Engineering</td>
<td></td>
</tr>
<tr>
<td>BMEN 448</td>
<td>Healthcare Technology in the Developing World</td>
<td></td>
</tr>
<tr>
<td>ECEN 411</td>
<td>Introduction to Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy</td>
<td></td>
</tr>
</tbody>
</table>
Biomedical Engineering - Minor

The Department of Biomedical Engineering offers a minor to students within the College of Engineering who are interested in biomedical applications of engineering related to the sub-specialty fields of biomechanics, biomaterials, or bioinstrumentation. Eligible students must submit an application in order to be considered for and allowed to pursue a minor in Biomedical Engineering.

Requirements

In order to earn a minor in Biomedical Engineering, students must meet and adhere to the following requirements and guidelines:

- Admitted into a College of Engineering major.
- In good academic standing within major department (GPA of 2.5 or higher).
- Maintain a cumulative 2.0 GPA in minor courses.
- Complete the courses listed for the selected Biomedical Engineering minor track.
- Following acceptance into a particular track, change of Biomedical Engineering minor track will not be permitted unless by petition and review by the Director of Undergraduate Programs.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIBS 243</td>
<td>Introductory Mammalian Histology</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 101</td>
<td>Introduction to Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 253</td>
<td>Medical Device Design I</td>
<td>1</td>
</tr>
<tr>
<td>BMEN 450</td>
<td>Case Studies</td>
<td>1</td>
</tr>
</tbody>
</table>

Select 12 hours from one area:

Biomaterials

- BMEN 480 Biomedical Engineering of Tissues
- BMEN 482 Polymeric Biomaterials
- BMEN 483 Polymeric Biomaterial Synthesis
- BMEN 486 Biomedical Nanotechnology
- BMEN 487 Drug Delivery

Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 291</td>
<td>Research</td>
<td>0-9</td>
</tr>
<tr>
<td>or BMEN 481 Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEN 451</td>
<td>Introduction to Polymer Engineering</td>
<td></td>
</tr>
<tr>
<td>MEEN 458</td>
<td>Processing and Characterization of Polymers</td>
<td></td>
</tr>
<tr>
<td>MSEN 410</td>
<td>Materials Processing</td>
<td></td>
</tr>
<tr>
<td>MSEN 420</td>
<td>Polymer Science</td>
<td></td>
</tr>
</tbody>
</table>

Biomechanics

- BMEN 432 Molecular and Cellular Biomechanics
- BMEN 450 Case Studies

Select up to one course from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 480</td>
<td>Biomedical Engineering of Tissues</td>
<td></td>
</tr>
<tr>
<td>BMEN 486</td>
<td>Biomedical Nanotechnology</td>
<td></td>
</tr>
<tr>
<td>BMEN 487</td>
<td>Drug Delivery</td>
<td></td>
</tr>
</tbody>
</table>

Select from the following to apply to any of the tracks above:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 640</td>
<td>Accounting Concepts and Procedures I</td>
<td></td>
</tr>
<tr>
<td>BMEN 400</td>
<td>History of Human and Veterinary</td>
<td></td>
</tr>
<tr>
<td>VTPP 401</td>
<td>Medicine in Europe</td>
<td></td>
</tr>
<tr>
<td>BMEN 404</td>
<td>FDA Good Laboratory and Clinical Practices</td>
<td></td>
</tr>
<tr>
<td>BMEN 469</td>
<td>Entrepreneurial Pathways in Medical Devices</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>VTPB 410</td>
<td>Cell Mechanisms of Disease</td>
<td></td>
</tr>
</tbody>
</table>

400-Level BMEN with department approval (p. 923)

Biomolecular and Cellular Engineering

- BMEN 321 Biomedical Electronics

Required courses 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 431</td>
<td>Biomolecular Engineering</td>
<td></td>
</tr>
<tr>
<td>BMEN 433</td>
<td>Biomolecular and Cellular Engineering Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMEN 291</td>
<td>Research</td>
<td>0-9</td>
</tr>
<tr>
<td>or BMEN 481 Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMEN 471</td>
<td>Numerical Methods in Biomedical Engineering</td>
<td></td>
</tr>
<tr>
<td>or BIOL 350r Computational Genomics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
or ECEN 389 or Electrical Circuit Theory
BMEN 420 Medical Imaging
Select 6 hours from the following:
BMEN 322 Biosignal Analysis
BMEN 401 Principles and Analysis of Biological Control Systems
BMEN 422 Bioelectromagnetism
BMEN 425 Biophotonics
BMEN 427 Magnetic Resonance Engineering
or ECEN 463 Magnetic Resonance Engineering
BMEN 428/CSCE 461 Embedded Systems for Medical Applications
BMEN 448 Healthcare Technology in the Developing World
ECEN 411 Introduction to Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy
ECEN 412 Ultrasound Imaging
ECEN 414 Biosensors
ECEN 447 Digital Image Processing

Biomaterials Area
BMEN 343 Introduction to Biomaterials
or MEEN 222 Materials Science
MSEN 222
BMEN 344 Biological Responses to Medical Devices
Select 6 hours from the following:
BMEN 480 Biomedical Engineering of Tissues
BMEN 482 Polymeric Biomaterials
BMEN 483 Polymeric Biomaterial Synthesis
BMEN 486 Biomedical Nanotechnology
BMEN 487 Drug Delivery
CHEM 466 Polymer Chemistry
CHEN 451 Introduction to Polymer Engineering
MEEN 458 Processing and Characterization of Polymers
MSEN 410 Materials Processing
MSEN 420 Polymer Science

Biomechanics Area
BMEN 341 Biofluid Mechanics
BMEN 361 Biosolid Mechanics
or MEEN 366 Solid Mechanics in Mechanical Design
Select 6 hours from the following:
BMEN 432 Molecular and Cellular Biomechanics
BMEN 457 Orthopedic Biomechanics
BMEN 458 Motion Biomechanics
BMEN 461 Cardiac Mechanics
BMEN 463 Soft Tissue Mechanics and Finite Element Methods
BMEN 471 Numerical Methods in Biomedical Engineering

MEEN Area
MEEN 363 Dynamics and Vibrations
MEEN 440 Bio-inspired Engineering Design
MEEN 441 Design of Mechanical Components and Systems
MEEN 442 Computer Aided Engineering
MEEN 444 Finite Element Analysis in Mechanical Engineering

| Total Semester Credit Hours | 15 |

1. Students must select courses exclusively from one of the three areas represented and not mixed.
2. Students may use no more than 6 hours from their home department to satisfy minor requirements. All substitutions must be approved by the BMEN academic advisor and director.

Students must be admitted to a degree sequence in the College of Engineering or to the degree sequence in Biological and Agricultural Engineering. Students should know that all tracks require completion of math through Differential Equations (MATH 308). Applications are available in the Biomedical Engineering Advising Office and will be reviewed on a competitive basis at the end of every fall and spring semester.

Quality Engineering for Regulated Medical Technologies - Certificate

Quality engineering principles are mandated by federal and state regulations for clinical facilities and for the design, testing and manufacture of medical technologies (such as pharmaceuticals and imaging, diagnostic and therapeutic devices). Completion of this certificate requires specific instruction in quality engineering and regulation of medical technologies; moreover, candidates must go beyond understanding concepts and demonstrate appropriate usage of quality engineering principles in a medically related career, candidates for this certificate are expected to be entering a high-growth job market for engineers.

For additional information, contact the Quality Engineering for Regulated Medical Technologies Certificate coordinator at bmen@tamu.edu.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Internship (must be approved by certificate faculty to meet experience needs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioinnovation I-Summer Clinical Fellowship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required Courses</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td>Select two or three from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMEN 404 FDA Good Laboratory and Clinical Practices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMEN 406 Medical Device Path to Market</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or BMEN 469 or Entrepreneurial Pathways in Medical Devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISEN 350 Quality Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Elective Courses
Artie McFerrin Department of Chemical Engineering

Chemical engineering is a broad field of engineering and thus requires a diverse preparation in science and engineering. Distinguishing chemical engineering from other engineering disciplines is its use of chemical and biochemical reactions to produce products and materials for society. Traditionally, chemical engineers have provided leadership in the petrochemical, refining, chemical, polymer, and food processing industries. Because of strengths in the foundation sciences of mathematics, chemistry, physics and biology, as well as in engineering, this leadership role has now extended to the biochemical, biomedical, high-tech materials, semi-conductor and microelectronics, nanotechnology, environmental quality, safety, and a host of other areas. Chemical engineers have consistently commanded starting salaries among the highest of all college graduates because of the combined breadth and depth of their education.

The mission of the Artie McFerrin Department of Chemical Engineering at Texas A&M is to educate and prepare students for national and international leadership roles in industry, government, and academia; to attract top students to chemical engineering; to define and develop new directions in chemical engineering fundamentals and practices, and in chemical engineering education and curricula; to be a valuable resource and service base to the State and to industry; and to provide leadership in solving problems of social and economic importance.

Objectives of the chemical engineering program are that

1. graduates will have successful chemical engineering careers in industry, academia or government,
2. graduates will obtain, apply and transfer knowledge across disciplines and into emerging areas of chemical engineering and related fields,
3. graduates will communicate effectively, be leaders in their fields and work competently in interdisciplinary teams, and
4. graduates will be professionally responsible and ethical and engage in professional activities to impact the society on a global scale.

To supplement coursework, well-equipped laboratories provide our students with experiences in operating and analyzing a variety of unit operations and process control equipment and in the use of the modern computational tools and software used in chemical engineering. The department offers vibrant undergraduate research, co-op and study abroad programs that provide students with additional enrichment and experiential opportunities.

The undergraduate program in Chemical Engineering at Texas A&M University is accredited by the Engineering Accreditation Commission of ABET, www.abet.org, and compares favorably with the best in the nation.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.
Isdale, Charles E, Senior Lecturer
Chemical Engineering
MBA, Southern Illinois University at Edwardsville, 1977

Jayaraman, Arul, Professor
Chemical Engineering
PHD, University of California, Irvine, 1998

Jeong, Hae-Kwon, Professor
Chemical Engineering
PHD, University of Minnesota, 2004

Kao, Katy C, Associate Professor
Chemical Engineering
PHD, University of California, Los Angeles, 2005

Karim, Muhammad N, Professor
Chemical Engineering
PHD, University of Manchester, 1977

Khosravianghadikolaei, Homa, Research Assistant Professor
Chemical Engineering
PHD, University of Illinois at Chicago, 2013

Kravaris, Costas, Professor
Chemical Engineering
PHD, California Institute of Technology, 1984

Kuo, Yue, Professor
Chemical Engineering
PHD, Columbia University, 1980

Kwon, Joseph, Assistant Professor
Chemical Engineering
PHD, University of California, Los Angeles, 2015

Lele, Pushkar P, Assistant Professor
Chemical Engineering
PHD, University of Delaware, Newark, 2010

Lutkenhaus, Jodie L, Associate Professor
Chemical Engineering
PHD, Massachusetts Institute of Technology, 2007

Mannan, Mahboobul, Professor
Chemical Engineering
PHD, University of Oklahoma, 1986

Masihaga, Chad V, Assistant Professor
Chemical Engineering
PHD, Michigan Technological University, 1999

Pistikopoulos, Efstratios, Professor
Chemical Engineering
PHD, Carnegie Mellon University, 1988

Raftery, Jonathan P, Lecturer
Chemical Engineering
PHD, Texas A&M University, 2017

Rogers, William J, Lecturer
Chemical Engineering
PHD, Ohio State University, 1976

Seminario, Jorge M, Professor
Chemical Engineering
PHD, Southern Illinois University Carbondale, 1987

Shahrashoob, Zahra, Lecturer
Chemical Engineering
PHD, University of Oklahoma, 2018

Sun, Qing, Assistant Professor
Chemical Engineering
PHD, University of Delaware, 2010

Tamamis, Phanourios, Assistant Professor
Chemical Engineering
PHD, University of Cyprus, 2010

Vaddiraju, Sreeram, Associate Professor
Chemical Engineering
PHD, University of Louisville, 2006

White, James D, Senior Lecturer
Chemical Engineering
BA, Texas A&M University, 1978

Wilhite, Benjamin A, Associate Professor
Chemical Engineering
PHD, University of Notre Dame, 2003

Wilson, Christin M, Lecturer
Chemical Engineering
PHD, The Ohio State University, 2012

Wu, Hung-Jen, Associate Professor
Chemical Engineering
PHD, Texas A&M University, 2006

Majors

• Bachelor of Science in Chemical Engineering (p. 391)

Minors

• Chemical Engineering Minor (p. 393)

Certificates

• Engineering Therapeutics Manufacturing Certificate (p. 393)

Chemical Engineering - BS

The chemical engineering curriculum provides a balanced education in virtually all aspects of chemical engineering principles and practice and includes education in economics, language, philosophy and culture and communication. Chemical engineering courses emphasize fundamentals and methods that are applicable to the analysis, development, design and operation of a wide variety of chemical engineering systems and processes, thereby providing the necessary background for entry into the wide array of activities described above. At the same time, specific example applications provide the student with insight into the ability of chemical engineers to work in such a variety of areas. The curriculum is structured to offer students an opportunity to extend and apply the fundamentals developed in the basic courses toward more focused areas of specialization. The sequence of courses converges in the senior year into a comprehensive capstone design course that includes elements of economics, safety and environmental issues. The course provides
an experience much like that of an industry design project. It is this philosophy of fundamentals, applications and design that has enabled our chemical engineering graduates to adapt readily to a dynamic and rapidly changing world and to solve problems they have not previously experienced.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar).

Students pursuing degrees in biological and agricultural engineering (Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar).

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring		
ENGR 216/ENGR 216/PHYS 216	Experimental Physics and Engineering Lab II - Mechanics 1	2
MATH 152	Engineering Mathematics II 1	4
PHYS 206	Newtonian Mechanics for Engineering and Science 1	3
University Core Curriculum (p. 25) 3	3	
Select one of the following:	3-4	
CHEM 120	Fundamentals of Chemistry II 4	4
University Core Curriculum (p. 25) 3,5	3	
Semester Credit Hours	15-16	
Total Semester Credit Hours	31-32	

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/ political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 227 & CHEM 237</td>
<td>Organic Chemistry I and Organic Chemistry Laboratory 1</td>
</tr>
<tr>
<td>CHEN 204</td>
<td>Elementary Chemical Engineering</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III 1</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring		
CHEM 228 & CHEM 238	Organic Chemistry II and Organic Chemistry Laboratory 1	4
CHEN 205	Chemical Engineering Thermodynamics I	3
ENGL 210	Technical and Business Writing	3
MATH 308	Differential Equations 1	3
University Core Curriculum (p. 25) 3	3	
Semester Credit Hours	16	

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 304</td>
<td>Chemical Engineering Fluid Operations</td>
</tr>
<tr>
<td>CHEN 320</td>
<td>Numerical Analysis for Chemical Engineers</td>
</tr>
<tr>
<td>CHEN 322</td>
<td>Chemical Engineering Materials</td>
</tr>
<tr>
<td>CHEN 354</td>
<td>Chemical Engineering Thermodynamics II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

| **Spring** | |
| CHEM 322 | Physical Chemistry for Engineers 1 | 3 |
Texas A&M University

CHEN 323 Chemical Engineering Heat Transfer Operations 3
CHEN 324 Chemical Engineering Mass Transfer Operations 3
CHEN 364 Kinetics and Reactor Design 3
University Core Curriculum (p. 25) 3
High Impact Experience 0
CHEN 399 Mid-Curriculum Professional Development 3

Fourth Year
Fall
CHEN 425 Process Integration, Simulation and Economics 3
CHEN 432 Chemical Engineering Laboratory I 2
CHEN 461 Process Dynamics and Control 3
CHEN 481 Seminar 1
CHEN 482 Bioprocess Engineering 3
CHEN specialty options 6 3
Semester Credit Hours 15

Spring
CHEN 426 Chemical Engineering Plant Design 3
CHEN 433 Chemical Engineering Laboratory II 2
CHEN 455/ SENG 455 Process Safety Engineering 3
University Core Curriculum (p. 25) 3
CHEN specialty options 6 3
Semester Credit Hours 15
Total Semester Credit Hours 30

Total Semester Credit Hours 96

For a list of approved specialty options, please see a chemical engineering advisor.

All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the CHEN advising office.

A grade of C or better is required in all CHEN courses.

Total Program Hours 128

Chemical Engineering - Minor

The Department of Chemical Engineering offers a minor for students interested in applied chemistry related to the large-scale production of chemicals (e.g., clean water, food, beverages, pharmaceuticals, specialty chemicals, plastics, fertilizer, gasoline, etc.). Eligible students must submit an application in order to be considered for a minor in Chemical Engineering.

In order to earn a minor in Chemical Engineering, students must meet and adhere to the following requirements and guidelines:

- In good academic standing within major department (GPA of 3.0 or higher)
- Minimum of 30 hours completed with no grade below a C
- No grade below a C in minor courses
- Complete the courses listed for the selected Chemical Engineering minor

Please see our undergraduate office for assistance pertaining to certain engineering majors that may have courses which may substitute for courses in the minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 322</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 204</td>
<td>Elementary Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 322</td>
<td>Chemical Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 324</td>
<td>Chemical Engineering Mass Transfer Operations</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 354</td>
<td>Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 364</td>
<td>Kinetics and Reactor Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum GPR of 3.0 with at least 30 hours of Texas A&M credits completed.

Engineering Therapeutics Manufacturing - Certificate

The Engineering Therapeutics Manufacturing Certificate is intended to meet the requirements of industry by educating engineering Bachelor of Science graduates how to economically, ecologically and safely design and operate equipment used for the production and separation of biological materials. By the end of the certificate program, students will be able to:

1. understand the processing of biological materials
2. analyze functions and properties of biological materials
3. understand the impact of the use/misuse of biological materials
4. understand the life cycle and evolution of biological materials
5. design, operate and optimize biological process units

For additional information, contact the Engineering Therapeutics Manufacturing Certificate coordinator or Engineering Academic and Student Affairs, 481 Zachry Engineering Education Complex, (979) 845-7200.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BAEN 302 Biological and Agricultural Engineering Fundamentals II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEN 482 Bioprocess Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISEN 360 Lean Thinking and Lean Engineering in the Process Industries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPP 435 Physiology for Bioengineers II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prescribed Electives

Select three of the following: 9

- BAEN 431/ Fundamentals in Bioseparations
- CHEN 431
Additionally, the department provides opportunities for enhancement of advances to facilitate the development of their problem-solving skills. Engineering principles and that will couple with the latest technological in the engineering profession by providing our students with a solid is to prepare our graduates to become professional engineers and leaders

Environmental engineers are also employed by consulting firms, public
minimizing the adverse effects of human activity on the environment.
Environmental engineers work to protect human health and welfare while
such as water treatment, waste management, and climate change.
Environmental engineers work to protect human health and welfare while
minimizing the adverse effects of human activity on the environment.
Environmental engineers are also employed by consulting firms, public
agencies, and start and operate their own businesses. Workplaces
range from construction sites to design offices. Most civil engineers work
with some engineering or construction aspect of private and/or public
facilities, such as airports, bridges, buildings, coastal structures, dams,
environmental remediation of contaminated sites, harbors, highways,
offshore structures, pipelines, railroads, transportation systems,
tunnels, water collection systems, water distribution systems, water and
wastewater treatment facilities, and waterways. Civil engineers are on the
forefront of applying the newest technology innovations in engineering
and construction.

Civil engineering projects are unique because they require individual
planning, analysis, design, construction supervision, performance
monitoring, management, and retrofitting. Civil engineering projects often
require technical, governmental, legal, financial, and social evaluations.
The primary objective is to provide the best service for the users while
minimizing costs and other undesirable impacts.

Environmental engineers use a multidisciplinary approach to solve
environmental challenges facing public and environmental health,
such as water treatment, waste management, and climate change.
Environmental engineers work to protect human health and welfare while
minimizing the adverse effects of human activity on the environment.
Environmental engineers are also employed by consulting firms, public
agencies, and start and operate their own businesses.
The mission of the Zachry Department of Civil and Environmental
Engineering (http://engineering.tamu.edu/civil/) at Texas A&M University
is to prepare our graduates to become professional engineers and leaders
in the engineering profession by providing our students with a solid
education that will enable them to integrate fundamental scientific
ingineering principles and that will couple with the latest technological
advances to facilitate the development of their problem-solving skills.
Additionally, the department provides opportunities for enhancement of

the students’ educational experience through meaningful interactions
with the profession. In summary, we expect our graduates to be fully
prepared for life-long learning experiences that will strengthen their
abilities to successfully and effectively solve the complex engineering
problems facing society.

The faculty of the Zachry Department of Civil and Environmental
Engineering strives to ensure that our ever-evolving educational programs
accomplish several objectives. First, our faculty must prepare the
students to address the current and future civil and environmental
engineering needs of the State of Texas, the nation and the world by
being able to recognize the important geopolitical and public policy
needs; and solve technical problems. In addition, the Department
provides a curriculum that integrates scientific and technical knowledge
with an appreciation for social, economic, and political concerns. The
curriculum and programs provide opportunities for our students to:

1. build leadership skills,
2. learn professionalism and ethical responsibility, and
3. develop an understanding of the need to engage in lifelong learning.

Finally, the faculty of the Zachry Department of Civil and Environmental
Engineering at Texas A&M University promotes the highest academic
standards of excellence, quality, and ethics in both our undergraduate and
graduate programs, and in doing so create both a culture of excellence
and a community of scholars. Through our programs, our faculty and
graduates provide local, state, national, and international leadership to
a profession that must solve the civil and environmental engineering
problems facing an increasingly complex society.

B.S. in Civil Engineering

The program educational objectives for the undergraduate civil
engineering program within the Department of Civil and Environmental
Engineering at Texas A&M University are to produce graduates:

1. who are prepared to enter civil engineering practice and/or continue
their education through study in graduate and professional programs,
2. most of whom will become practicing civil engineers with most of
these becoming licensed professional engineers, and
3. many of whom will pursue advanced studies.

The undergraduate program in civil engineering within the Zachry
Department of Civil and Environmental Engineering at Texas A&M
is accredited by the Engineering Accreditation Commission of
ABET, www.abet.org (http://www.abet.org)/.

Students pursuing a B.S. in Civil Engineering can follow a general
track or specialize in one of seven areas. Eight tracks are available for
undergraduate study within Civil Engineering as follows:

1. General Civil Engineering
2. Coastal Engineering
3. Construction Engineering and Management
4. Geotechnical Engineering
5. Environmental Engineering
6. Structural Engineering
7. Transportation Engineering
8. Water Resources Engineering

Before commencing course work in the major, students must be admitted
to the major or have the approval of the department.
Graduate programs in civil engineering are also available. These programs allow further specialization and offer more in-depth study to address more complex technical and management issues. Graduate degrees also offer additional employment opportunities.

B.S. in Environmental Engineering

The program educational objectives for the undergraduate environmental engineering program within the Department of Civil and Environmental Engineering at Texas A&M University are to produce graduates:

1. who are prepared to enter environmental engineering practice and/or continue their education through study in graduate and professional programs,
2. most of whom will become practicing environmental engineers with most of these becoming licensed professional engineers, and
3. many of whom will pursue advanced studies.

Our environmental engineering curriculum is unique in that it:

1. Has a specific focus on the protection of public and environmental health by solving environmental challenges;
2. Showcases a broad range of coursework to pursue specific environmental interests in natural or engineered systems;
3. Is multidisciplinary in every approach, melding earth science, life science, chemistry, social science and engineering;
4. Provides the tools to develop solutions to solve emerging and existing issues such as water treatment, climate change, and other environmental challenges.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Faculty

Appleton, Robert A, Associate Professor of the Practice
Civil Engineering
BS, Texas A&M University, 1984

Aubeny, Charles P, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 1992

Autenrieth, Robin L, Professor
Civil Engineering
PHD, Clarkson University, 1986

Banks, Margaret K, University Distinguished Professor
Civil Engineering
PHD, Duke University, 1989

Barroso, Luciana R, Associate Professor
Civil Engineering
PHD, Stanford University, 1999

Birely, Anna C, Associate Professor
Civil Engineering
PHD, University of Washington, 2012

Birgisson, Bjorn, Professor
Civil Engineering
PHD, University of Minnesota, 1996

Bracci, Joseph M, Professor
Civil Engineering
PHD, University at Buffalo - SUNY, 1992

Brackin, Michael S, Instructional Assistant Professor
Civil Engineering
PHD, Texas A&M University, 2017

Briand, Jean-Louis, University Distinguished Professor
Civil Engineering
PHD, University of Ottawa, Canada, 1979

Brumelow, James K, Associate Professor
Civil Engineering
PHD, Georgia Institute of Technology, 2001

Bullard, Jeffrey, Professor
Civil Engineering
PHD, University of California - Berkeley, 1993

Burris, Mark W, Professor
Civil Engineering
PHD, University of South Florida, 2001

Cahill, Anthony T, Associate Professor
Civil Engineering
PHD, Johns Hopkins University, 1998

Chang, Kuang-An, Professor
Civil Engineering
PHD, Cornell University, 1999

Chellam, Shankararaman, Professor
Civil Engineering
PHD, Rice University, 1995

Chen, Hamn C, Professor
Civil Engineering
PHD, University of Iowa, 1982

Chinn, Timothy D, Professor of the Practice
Civil Engineering
BS, Texas A&M University, 1980

Chu, Kung-Hui, Professor
Civil Engineering
PHD, University of California, Berkeley, 1998

Damnjanovic, Ivan, Associate Professor
Civil Engineering
PHD, University of Texas, 2006

England, Peter S, Instructional Associate Professor
Civil Engineering
PHD, Texas Tech University, 2011

Ford, David N, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 1995

Gao, Huilin, Associate Professor
Civil Engineering
PHD, Princeton University, 2005
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>University</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zachry, Nasir G</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>University of Illinois, 1997</td>
<td></td>
</tr>
<tr>
<td>Grasley, Zachary C</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Illinois Urbana Champaign, 2006</td>
<td></td>
</tr>
<tr>
<td>Hawkins Jr, Harvey E</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 1993</td>
<td></td>
</tr>
<tr>
<td>Hueste, Marybeth D</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Michigan, 1997</td>
<td></td>
</tr>
<tr>
<td>Hurlebaus, Stefan</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Stuttgart, Germany, 2002</td>
<td></td>
</tr>
<tr>
<td>Hutchinson, Richard N</td>
<td>Instructional Assistant Professor</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 2015</td>
<td></td>
</tr>
<tr>
<td>Kaihatu, James M</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Delaware, 1994</td>
<td></td>
</tr>
<tr>
<td>Keating, Peter B</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>Lehigh University, 1987</td>
<td></td>
</tr>
<tr>
<td>Kim, Yong-Rak</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 2003</td>
<td></td>
</tr>
<tr>
<td>Koliou, Maria</td>
<td>Assistant Professor</td>
<td>Civil Engineering</td>
<td>University of Buffalo - The State University of New York, 2014</td>
<td></td>
</tr>
<tr>
<td>Little, Dallas N</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 1979</td>
<td></td>
</tr>
<tr>
<td>London, Mara R</td>
<td>Instructional Associate Professor</td>
<td>Civil Engineering</td>
<td>University of Texas at Austin, 2009</td>
<td></td>
</tr>
<tr>
<td>Lord, Dominique</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Toronto, 2000</td>
<td></td>
</tr>
<tr>
<td>Lowery Jr, Lee L</td>
<td>Senior Professor</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 1967</td>
<td></td>
</tr>
<tr>
<td>Lyle, Stacey</td>
<td>Associate Professor Of The Practice</td>
<td>Civil Engineering</td>
<td>University of Georgia, 2003</td>
<td></td>
</tr>
<tr>
<td>Lytton, Robert L</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Texas - Austin, 1967</td>
<td></td>
</tr>
<tr>
<td>Ma, Xingmao</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>Missouri University of Science and Technology, 2004</td>
<td></td>
</tr>
<tr>
<td>Mander, John B</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of Canterbury, 1984</td>
<td></td>
</tr>
<tr>
<td>Martin, Amy E</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>University of California, Berkeley, 1997</td>
<td></td>
</tr>
<tr>
<td>McKay, Garrett</td>
<td>Assistant Professor</td>
<td>Civil Engineering</td>
<td>University of Colorado Boulder, 2017</td>
<td></td>
</tr>
<tr>
<td>Medina Cetina, Zenon</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>John Hopkins University, 2007</td>
<td></td>
</tr>
<tr>
<td>Mercier, Richard S</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>Massachusetts Inst of Technology, 1985</td>
<td></td>
</tr>
<tr>
<td>Miller, Gretchen R</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>University of California, Berkeley, 2009</td>
<td></td>
</tr>
<tr>
<td>Mostafavidarani, Ali</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>Purdue University, 2013</td>
<td></td>
</tr>
<tr>
<td>Niedzwiecki, John M</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>The Catholic University of America, 1977</td>
<td></td>
</tr>
<tr>
<td>Noshadrvan, Arash</td>
<td>Assistant Professor</td>
<td>Civil Engineering</td>
<td>University of Southern California, 2011</td>
<td></td>
</tr>
<tr>
<td>Olivera, Francisco</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>University of Texas, 1996</td>
<td></td>
</tr>
<tr>
<td>Paal, Stephanie G</td>
<td>Assistant Professor</td>
<td>Civil Engineering</td>
<td>Georgia Institute of Technology, 2013</td>
<td></td>
</tr>
<tr>
<td>Pittman, Leslie W</td>
<td>Associate Professor of the Practice</td>
<td>Civil Engineering</td>
<td>Colorado State University, 1978</td>
<td></td>
</tr>
<tr>
<td>Puppala, Anand</td>
<td>Professor</td>
<td>Civil Engineering</td>
<td>Louisiana State University, 1993</td>
<td></td>
</tr>
<tr>
<td>Quadrifoglio, Luca</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>University of Southern California, 2005</td>
<td></td>
</tr>
<tr>
<td>Rogers Jr, Alton G</td>
<td>Associate Professor of the Practice</td>
<td>Civil Engineering</td>
<td>Texas A&M University, 1976</td>
<td></td>
</tr>
</tbody>
</table>
Bachelors

- Bachelor of Science in Civil Engineering, Environmental Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/environmental-engineering-track/)
- Bachelor of Science in Civil Engineering, General Civil Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/general-civil-engineering-track/)
- Bachelor of Science in Civil Engineering, Geotechnical Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/geotechnical-engineering-track/)
- Bachelor of Science in Civil Engineering, Structural Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/structural-engineering-track/)
- Bachelor of Science in Civil Engineering, Transportation Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/transportation-engineering-track/)
- Bachelor of Science in Civil Engineering, Water Resources Engineering Track (https://currcatalog.tamu.edu/undergraduate/engineering/civil/bs/water-resources-engineering-track/)
- Bachelor of Science in Environmental Engineering (https://currcatalog.tamu.edu/undergraduate/engineering/civil/environmental-engineering-bs/)

Civil Engineering - BS, Coastal and Ocean Engineering Track

The Coastal and Ocean Engineering Track to fulfill the BS in Civil Engineering degree emphasizes breadth across civil engineering with a focus on coastal and offshore engineering. The track electives prepare students to analyze and design systems for shallow and deep water environments. The track is appropriate for a career related to coastal and offshore engineering, and for those planning on further specialization in graduate studies.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

Complete Table

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>General Chemistry for Engineering Students</td>
<td>1, 4</td>
<td></td>
</tr>
</tbody>
</table>
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 207</td>
<td>Introduction to the Civil Engineering Profession</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 250</td>
<td>Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 216/</td>
<td>Fundamentals of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

| University Core Curriculum (p. 25) | 3 |

Total Semester Credit Hours: 15-16

| Semester Credit Hours | 31-32 |

1 A grade of C or better is required.

2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied byCHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 302</td>
<td>Computer Applications in Engineering and Construction</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 303</td>
<td>Civil Engineering Measurement</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 306</td>
<td>Materials Engineering for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 311/</td>
<td>Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>EVEN 311</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CVEN 322</td>
<td>Civil Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 345</td>
<td>Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 363</td>
<td>Engineering Mechanics: Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 399</td>
<td>Mid-Curriculum Professional Development</td>
<td>0</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 424</td>
<td>Civil Engineering Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 482/</td>
<td>Ethics and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 482</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 97

6 A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.
All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Coastal and Ocean Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Coastal and Ocean Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (11 semester credit hours), FOCUS courses (18 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE Course (3 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREADTH Courses (11 Semester Credit Hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 365</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 444</td>
<td>Structural Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>or CVEN 446</td>
<td>Structural Steel Design</td>
<td></td>
</tr>
<tr>
<td>OCEN 410</td>
<td>Ocean Engineering Laboratory</td>
<td>2</td>
</tr>
</tbody>
</table>

Choose 3 Semester Credit Hours From:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/ EVEN 301</td>
<td>Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 339/ EVEN 339</td>
<td>Water Resources Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 342</td>
<td>Materials of Construction</td>
<td></td>
</tr>
<tr>
<td>CVEN 343</td>
<td>Portland Cement Concrete Materials for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>CVEN 349</td>
<td>Civil Engineering Project Management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCUS Courses (18 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCEN 300</td>
<td>Ocean Engineering Wave Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>OCEN 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Select 9 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 362</td>
<td>Hydromechanics</td>
<td></td>
</tr>
<tr>
<td>OCEN 400</td>
<td>Basic Coastal Engineering</td>
<td></td>
</tr>
<tr>
<td>OCEN 402</td>
<td>Principles of Naval Architecture</td>
<td></td>
</tr>
<tr>
<td>OCEN 403</td>
<td>Dynamics of Offshore Structures</td>
<td></td>
</tr>
<tr>
<td>OCEN 407</td>
<td>Design of Ocean Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or CVEN 401</td>
<td>or Design Problems in Civil Engineering</td>
<td></td>
</tr>
</tbody>
</table>

1 Up to 2 hours of CVEN 485 or CVEN 491 may be used.

Civil Engineering - BS, Construction Engineering and Management Track

The Construction Engineering and Management Track to fulfill the BS in Civil Engineering degree emphasizes specialized coursework in the fundamentals of construction engineering and project management. The Track blends the principles of basic science, engineering, and technology with a strong component of business coursework. The Track is appropriate for students interested in a career in the construction industry.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees
in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 107 General Chemistry for Engineering Students 1.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory 1.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 Introduction to Rhetoric and Composition 1 or ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 102 Engineering Lab I - Computation 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I 1.2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 152 Engineering Mathematics II 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>CHEM 120 Fundamentals of Chemistry II 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1. A grade of C or better is required.

2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVEN 207 Introduction to the Civil Engineering Profession</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CVEN 221 Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 250 Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab II - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 251 Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>CVEN 302 Computer Applications in Engineering and Construction</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 303 Civil Engineering Measurement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 305 Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 311/EVEN 311 Fluid Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210 Technical and Business Writing or COMM 205 or Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 308 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVEN 306 Materials Engineering for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 322 Civil Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 345 Theory of Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 363 Engineering Mechanics: Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical coursework 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>CVEN 399 Mid-Curriculum Professional Development</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical coursework 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>12</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVEN 424 Civil Engineering Professional Practice 7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical coursework 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>
A total of 32 hours of technical coursework is required. Technical coursework is divided into four categories: science courses, breadth courses, design courses, and focus courses. The total number of hours between breadth, focus and design courses must add up to 29 hours. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student's advisor and/or the Civil and Environmental Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied.

All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

Capstone course: Capstone design courses must include more than one civil engineering context. A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements, and all courses in those areas must be taken for a letter grade.

Total Program Hours 128

Construction Engineering and Management Track - Technical Coursework

Technical coursework for the BS in Civil Engineering, Construction Engineering and Management Track is composed of BREADTH courses (12 semester credit hours), DESIGN courses (12 semester credit hours), and FOCUS courses (5 semester credit hours), a SCIENCE course (3 semester credit hours), as delineated below, for a total of 32 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil and Environmental Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 307</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 342</td>
<td>Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>or CVEN 343</td>
<td>or Portland Cement Concrete Materials for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>CVEN 349</td>
<td>Civil Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 365</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Code | Title | Semester Credit Hours |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 405</td>
<td>Construction Management of Field Operations</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 444</td>
<td>Structural Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 446</td>
<td>Structural Steel Design</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 473</td>
<td>Engineering Project Estimating and Planning</td>
<td>3</td>
</tr>
</tbody>
</table>

FOCUS

Select 5 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAEN 320</td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td>CVEN 315</td>
<td>Sensor Technology for the Built Environment</td>
</tr>
<tr>
<td>CVEN 336</td>
<td>Fluid Dynamics Laboratory</td>
</tr>
<tr>
<td>CVEN 403</td>
<td>Applied Civil Engineering Surveying</td>
</tr>
<tr>
<td>CVEN 450</td>
<td>AutoCAD in Civil Engineering</td>
</tr>
<tr>
<td>CVEN 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>CVEN 491</td>
<td>Research</td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
</tr>
<tr>
<td>MEEN 315</td>
<td>Principles of Thermodynamics</td>
</tr>
<tr>
<td>MGMT 309</td>
<td>Survey of Management</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
</tr>
</tbody>
</table>

SCIENCE

Select 3 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
</tr>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
</tr>
<tr>
<td>BIOL 113</td>
<td>Essentials in Biology</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
</tr>
<tr>
<td>GEOL 320</td>
<td>Geology for Civil Engineers</td>
</tr>
<tr>
<td>GEOS 105</td>
<td>Introduction to Environmental Geoscience</td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
</tr>
<tr>
<td>RENR 345</td>
<td>Park Ecology and Management</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 32

1 Up to 2 hours of CVEN 485 or CVEN 491 may be used.

Civil Engineering - BS, Environmental Engineering Track

The Environmental Engineering Track to fulfill the BS in Civil Engineering degree emphasizes specialized coursework in water and waste water treatment, air and water quality management, solid and hazardous wastes, ground water protection and remediation, and environmental policy. The track is appropriate for those wishing to pursue careers in protecting the natural environment from human activities, protecting human populations from the effects of adverse environmental factors and improving the environmental quality for human health and well-being.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering,
computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 216</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3-5</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15-16</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 207</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 250</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 302</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 303</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 306</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 210/COMM 205</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 311/EVEN 311</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 322</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 345</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 363</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 399</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
Texas A&M University

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 424</td>
<td>Civil Engineering Professional Practice</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 482/ ENGR 482</td>
<td>Ethics and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 97

6 A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.

7 All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Environmental Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Environmental Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (8-14 semester credit hours), FOCUS courses (15-21 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Environmental Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Environmental Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (8-14 semester credit hours), FOCUS courses (15-21 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.
The General Civil Engineering Track to fulfill the BS in Civil Engineering degree emphasizes breadth across the civil engineering field. Students take courses in all major sub-disciplines of civil engineering with an advanced focus elective allowing deeper learning in one area. The track is appropriate for a career in any area of civil engineering, with particular relevance for those interested in public works, land development, and general civil, and for those planning on further specialization in graduate studies.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering technology, nuclear engineering, ocean engineering, and petroleum engineering. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/117.

For BS-PETE, allocate 3 hours to core communications course (ENGL 210, or COMM 203, or COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Civil Engineering - BS, General Civil Engineering Track

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 485</td>
<td>Directed Studies</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 491</td>
<td>Research</td>
<td>2</td>
</tr>
</tbody>
</table>

Capstone Design Course (3 Semester Credit Hours Required)

| CVEN 400 | Design Problems in Civil Engineering | 3 |

1. The sum of semester credit hours of Breadth and Focus courses must be at least 29.
2. Up to 2 hours of CVEN 485 or CVEN 491 may be used.

<table>
<thead>
<tr>
<th>University Core Curriculum (p. 25)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3,5</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15-16 |

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/117.

5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

First Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 207</td>
<td>Introduction to the Civil Engineering Profession</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 250</td>
<td>Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15-16 |
A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

General Civil Engineering Track -
Technical Electives

Technical electives for the BS in Civil Engineering, General Civil Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (24 semester credit hours), a FOCUS course (5 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVEN 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 307</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 339/</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EVEN 339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 342/</td>
<td>Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>or CVEN 343</td>
<td>or Portland Cement Concrete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 349</td>
<td>Civil Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 365</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 444</td>
<td>Structural Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 446</td>
<td>Structural Steel Design</td>
<td>3</td>
</tr>
</tbody>
</table>

6 A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.

7 All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.
Civil Engineering - BS, Geotechnical Engineering Track

The Geotechnical Engineering Track to fulfill the BS in Civil Engineering degree emphasizes specialized coursework in applied soil mechanics and foundation engineering, as well as civil engineering sub-disciplines with strong geotechnical engineering connections such as structures, water resources, construction, transportation, environmental, coastal and ocean engineering. The track is appropriate for those wishing to pursue careers in engineering design and management of infrastructure in a wide array of sectors that can include energy, transportation, and water resources.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102 Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II 1</td>
</tr>
<tr>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science 1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

1 CVEN 403 is a 2 semester credit hour course.
2 Up to 2 hours of CVEN 485 or CVEN 491 may be used.
Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

For BS-PETE, allocate 3 hours to core communications (UCC elective. For BS-MEEN, allocate 3 hours to core communications course (p. 47) courses and/or 3 hours to UCC elective.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 207</td>
<td>Introduction to the Civil Engineering Profession</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>Engineering Mechanics: Statics</td>
</tr>
<tr>
<td>CVEN 250</td>
<td>Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 302</td>
<td>Computer Applications in Engineering and Construction</td>
</tr>
<tr>
<td>CVEN 303</td>
<td>Civil Engineering Measurement</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
</tr>
<tr>
<td>CVEN 306</td>
<td>Materials Engineering for Civil Engineers</td>
</tr>
<tr>
<td>ENGL 210 or COMM 205</td>
<td>Technical and Business Writing or Communication for Technical Professions</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVEN 311/EVEN 311</td>
</tr>
<tr>
<td>CVEN 322</td>
<td>Civil Engineering Systems</td>
</tr>
<tr>
<td>CVEN 345</td>
<td>Theory of Structures</td>
</tr>
<tr>
<td>CVEN 363</td>
<td>Engineering Mechanics: Dynamics</td>
</tr>
</tbody>
</table>

A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.

All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Geotechnical Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Geotechnical Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (18 semester credit hours), FOCUS courses (11 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 320</td>
<td>Geology for Civil Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>
Civil Engineering - BS, Structural Engineering Track

The Structural Engineering track to fulfill the BS in Civil Engineering degree provides coursework in the areas of structural analysis and structural design that equip the student to analyze and design the frameworks that support buildings, bridges, offshore installations and civil infrastructure projects. This track is appropriate for careers related to the structural design of engineered facilities to safely resist the forces found in their environment, and for those planning on further specialization in graduate studies.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/401</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 339/401</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 342/401</td>
<td>Materials of Construction or Portland Cement Concrete Materials for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 349/401</td>
<td>Civil Engineering Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 365/401</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 444/401</td>
<td>Structural Concrete Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Select 8 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 307/401</td>
<td>Transportation Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 336/401</td>
<td>Fluid Dynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td>CVEN 403/401</td>
<td>Applied Civil Engineering Surveying</td>
<td></td>
</tr>
<tr>
<td>CVEN 405/401</td>
<td>Construction Management of Field Operations</td>
<td></td>
</tr>
<tr>
<td>CVEN 417/401</td>
<td>Bituminous Materials</td>
<td></td>
</tr>
<tr>
<td>CVEN 418/401</td>
<td>Highway Materials and Pavement Design</td>
<td></td>
</tr>
<tr>
<td>CVEN 435/401</td>
<td>Geotechnical Engineering Design</td>
<td></td>
</tr>
<tr>
<td>CVEN 450/401</td>
<td>AutoCAD in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 446/401</td>
<td>Structural Steel Design</td>
<td></td>
</tr>
<tr>
<td>CVEN 463/401</td>
<td>Engineering Hydrology</td>
<td></td>
</tr>
<tr>
<td>CVEN 463</td>
<td>Engineering Hydrology</td>
<td></td>
</tr>
<tr>
<td>CVEN 485/401</td>
<td>Directed Studies</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 491/401</td>
<td>Research</td>
<td>2</td>
</tr>
<tr>
<td>OCEN 400/401</td>
<td>Basic Coastal Engineering</td>
<td></td>
</tr>
<tr>
<td>GEOL 410/401</td>
<td>Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>GEOL 440/401</td>
<td>Engineering Geology</td>
<td></td>
</tr>
</tbody>
</table>

CAPSTONE DESIGN Course (3 Semester Credit Hours Required)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 400/401</td>
<td>Design Problems in Civil Engineering or Analysis and Design of Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

1 CVEN 403 is a 2 semester credit hour course.
2 Up to 2 hours of CVEN 485 or CVEN 491 may be used.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CVEN 207 Introduction to the Civil Engineering Profession</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CVEN 221 Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 250 Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 251 Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>CVEN 302 Computer Applications in Engineering and Construction</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 303 Civil Engineering Measurement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 305 Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 306 Materials Engineering for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210 Technical and Business Writing or Communication for Technical Professions</td>
<td>3</td>
</tr>
</tbody>
</table>

A grade of C or better is required. A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context. All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

Total Program Hours 128

Structural Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Structural Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (20 semester credit hours), FOCUS courses (9 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours).
credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE Course (3 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select 3 hours from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATMO 201 Weather and Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATMO 363 Introduction to Atmospheric Chemistry and Air Pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BESC 201 Introduction to Bioenvironmental Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 113 Essentials in Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 203 Planet Earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 320 Geology for Civil Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 410 Hydrogeology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS 105 Introduction to Environmental Geoscience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 410 Physical Oceanography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENR 205 Fundamentals of Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENR 375 Conservation of Natural Resources</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREADTH Courses (20 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 342 Materials of Construction</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or CVEN 341 or Portland Cement Concrete Materials for Civil Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 349 Civil Engineering Project Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 365 Introduction to Geotechnical Engineering</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Select 6-9 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/ Environmental Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 307 Transportation Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 339/ Water Resources Engineering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select 2-5 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 315 Sensor Technology for the Built Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 336 Fluid Dynamics Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 403 Applied Civil Engineering Surveying</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CVEN 423 Geomatics for Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 435 Geotechnical Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 436 Case Histories in Geotechnical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 450 AutoCAD in Civil Engineering</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CVEN 451 Public Works Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 473 Engineering Project Estimating and Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 485 Directed Studies</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCUS Courses (9 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 444 Structural Concrete Design</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 445 Matrix Methods of Structural Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 446 Structural Steel Design</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPSTONE DESIGN Course (3 Semester Credit Hours Required)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN 483 Analysis and Design of Structures</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1. CVEN 403 is a 2 semester credit hour course.
2. CVEN 450 is a 1 semester credit hour course.
3. Up to 2 hours of CVEN 485 or CVEN 491 may be used.

Civil Engineering - BS, Transportation Engineering Track

The Transportation Engineering Track to fulfill the BS in Civil Engineering degree emphasizes specialized coursework in transportation engineering areas of planning, design, and operations, as well as civil engineering sub-disciplines with strong transportation connections such as water resources, construction, and geotechnical. The track is appropriate for those wishing to pursue careers in engineering related to the planning, design, construction, operation, and maintenance of various elements of the transportation system, including roads, rail, transit, and aviation.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.
Select one of the following:

- University Core Curriculum (p. 25) \(^3\) 3

Spring

- ENGR 216/PHYS 216: Experimental Physics and Engineering Lab II - Mechanics \(^1\) 2
- MATH 152: Engineering Mathematics II \(^1\) 4
- PHYS 206: Newtonian Mechanics for Engineering and Science \(^1\) 3

University Core Curriculum (p. 25) \(^3\) 3

Select one of the following: 3-4

- CHEM 120: Fundamentals of Chemistry II \(^4\) 1
- University Core Curriculum (p. 25) \(^3,5\) 3

Total Semester Credit Hours 15-16

A grade of C or better is required.

1. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

2. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

3. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHM 117.

4. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.

All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Transportation Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering.

Transportation Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (12-18 semester credit hours), FOCUS courses (11-17 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCIENCE Course (3 Semester Credit Hours Required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 3 hours from:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATM0 201 Weather and Climate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BESC 201 Introduction to Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 203 Planet Earth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOL 320 Geology for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 105 Introduction to Environmental Geoscience</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BREADTH Courses (12-18 Semester Credit Hours Required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 307 Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 342 Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or CVEN 343 or Portland Cement Concrete Materials for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 444 Structural Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FOCUS Courses (11-17 Semester Credit Hours Required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 454 Urban Planning for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 457 Urban Traffic Facilities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 5-11 hours from:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 336 Fluid Dynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 403 Applied Civil Engineering Surveying</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CVEN 417 Bituminous Materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 418 Highway Materials and Pavement Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 423 Geomatics for Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 450 AutoCAD in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 451 Public Works Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 455 Urban Stormwater Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 485 Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CVEN 491 Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ISEN 330 Human Systems Interaction</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAPSTONE DESIGN Course (3 Semester Credit Hours Required)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVEN 456 Highway Design</td>
<td>3</td>
</tr>
</tbody>
</table>

1. The sum of semester credit hours of Breadth and Focus courses must be at least 29.
2. CVEN 403 is a 2 semester credit hour course.
3. Up to 2 hours of CVEN 485 or CVEN 491 may be used.

Civil Engineering - BS, Water Resources Engineering Track

The Water Resources Engineering Track to fulfill the BS in Civil Engineering degree emphasizes specialized coursework in applied hydraulics and hydrology as well as civil engineering sub-disciplines with strong water resources connections such as environmental, transportation, geotechnical, and coastal engineering. The track is appropriate for those wishing to pursue careers in engineering design and management for water quantity and quality issues.
Program Requirements

The freshman year is identical for degrees in aerospace engineering,
architectural engineering, civil engineering, computer engineering,
computer science, electrical engineering, electronic systems engineering
technology, environmental engineering, industrial distribution, industrial
engineering, interdisciplinary engineering, manufacturing and mechanical
engineering technology, nuclear engineering, ocean engineering, and
petroleum engineering (Note: not all programs listed are offered in
Qatar). The freshman year is slightly different for chemical engineering,
bioengineering and materials science and engineering degrees
in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.
Students pursuing degrees in biological and agricultural engineering
should refer to the specific curriculum for this major. It is recognized that
many students will change the sequence and number of courses taken in
any semester. Deviations from the prescribed course sequence, however,
should be made with care to ensure that prerequisites for all courses are
met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15-16

Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results
will be used in selecting the appropriate starting course which may
be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3
must be from creative arts, 3 from social and behavioral sciences
(see IDIS curriculum for more information), 3 from language,
philosophy and culture (see CVEN, EVEN and PETE curriculum for
more information), 6 from American history and 6 from government/
political science. The required 3 hours of international and cultural
diversity and 3 hours of cultural discourse may be met by courses
satisfying the creative arts, social and behavioral sciences, language,
philosophy and cultural, and American history requirements if they
are also on the approved list of international and cultural diversity
(p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry,
which may be satisfied by CHEM 119 or CHEM 107/CHEM 117
and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus
CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN,
CHEN and MSEN should take CHEM 120 second semester freshman
year. CHEM 120 will substitute for CHEM 107/117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to
UCC elective. For BS-MEEN, allocate 3 hours to core communications
course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC
elective.

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 207</td>
<td>Introduction to the Civil Engineering Profession</td>
<td>2</td>
</tr>
<tr>
<td>CVEN 221</td>
<td>Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 250</td>
<td>Introduction to Graphics and Visualization Applications in Civil Engineering Design</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 18

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 302</td>
<td>Computer Applications in Engineering and Construction</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 303</td>
<td>Civil Engineering Measurement</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 306</td>
<td>Materials Engineering for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210 or COMM 205</td>
<td>Technical and Business Writing or Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 18

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 311/313</td>
</tr>
<tr>
<td>CVEN 322</td>
</tr>
<tr>
<td>CVEN 345</td>
</tr>
<tr>
<td>CVEN 363</td>
</tr>
</tbody>
</table>
Technical elective 6
Semester Credit Hours 3

Spring
CVEN 399 Mid-Curriculum Professional Development 0
University Core Curriculum (p. 25) 3
Technical elective 6 12
Semester Credit Hours 15

Fourth Year
Fall
CVEN 424 Civil Engineering Professional Practice 7 2
University Core Curriculum (p. 25) 3 3
Technical elective 6 11
Semester Credit Hours 16

Spring
PHIL 482/ENGR 482 Ethics and Engineering 3
University Core Curriculum (p. 25) 3 3
Technical elective 6 9
Semester Credit Hours 15

Total Semester Credit Hours 97

6 A total of 35 hours of technical electives is required. Technical electives are divided into four categories: science courses, breadth courses, focus courses, and capstone design courses. The choice of courses to be taken in each of the four categories depends on the track chosen and must be made in consultation with the student’s advisor and/or the Civil Engineering Undergraduate Student Services Office to ensure pre- and co-requisites are satisfied. Capstone design courses must include more than one civil engineering context.

7 All students must take at least two courses in their major that are designated as writing intensive (W). CVEN 207 and CVEN 424 taken at Texas A&M satisfy this requirement. Other CVEN courses may be approved as W courses at a later date. A grade of C or better is required in these courses.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128

Water Resources Engineering Track - Technical Electives

Technical electives for the BS in Civil Engineering, Water Resources Engineering Track are composed of a SCIENCE course (3 semester credit hours), BREADTH courses (15 semester credit hours), FOCUS courses (14 semester credit hours), and a CAPSTONE DESIGN course (3 semester credit hours), as delineated below, for a total of 35 semester credit hours. A substitution for any course in the track must be approved in writing by the Civil Engineering Undergraduate Student Services Office.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 206</td>
<td>Introductory Microbiology</td>
<td></td>
</tr>
<tr>
<td>GEOL 320</td>
<td>Geology for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td></td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/ EVEN 301</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 307</td>
<td>Transportation Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 339/EVEN 339</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 342</td>
<td>Materials of Construction</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 343</td>
<td>or Portland Cement Concrete Materials for Civil Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 365</td>
<td>Introduction to Geotechnical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 301/EVEN 301</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 455</td>
<td>Urban Stormwater Management</td>
<td></td>
</tr>
<tr>
<td>CVEN 458/EVEN 458</td>
<td>Hydraulic Engineering of Water Distribution Systems</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 462/EVEN 462</td>
<td>Engineering Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>CVEN 463/EVEN 463</td>
<td>Engineering Hydrology</td>
<td></td>
</tr>
</tbody>
</table>

FOCUS Courses (14 Semester Credit Hours Required)

Select 6-12 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 402/EVEN 402</td>
<td>Engineered Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>CVEN 336</td>
<td>Fluid Dynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td>CVEN 403</td>
<td>Applied Civil Engineering Surveying</td>
<td>1</td>
</tr>
<tr>
<td>CVEN 406/EVEN 406</td>
<td>Environmental Protection and Public Health</td>
<td></td>
</tr>
<tr>
<td>CVEN 413/EVEN 413</td>
<td>Natural Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>CVEN 423</td>
<td>Geomatics for Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 450</td>
<td>AutoCAD in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 454</td>
<td>Urban Planning for Engineers</td>
<td></td>
</tr>
<tr>
<td>CVEN 485</td>
<td>Directed Studies 2</td>
<td></td>
</tr>
<tr>
<td>CVEN 491</td>
<td>Research 2</td>
<td></td>
</tr>
<tr>
<td>OCEN 336</td>
<td>Fluid Dynamics Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCEN 400</td>
<td>Basic Coastal Engineering</td>
<td></td>
</tr>
</tbody>
</table>

CAPSTONE DESIGN Course (3 Semester Credit Hours Required)

Select 3 hours from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td></td>
</tr>
</tbody>
</table>
Environmental Engineering - BS

The BS in Environmental Engineering degree coursework is specifically designed to educate students to solve environmental challenges facing public and environmental health, such as water treatment, waste management and climate change. The degree offers a broad range of coursework in the natural sciences and engineering, providing a multidisciplinary approach that merges with engineering principles to solve emerging and existing environmental issues. The program is appropriate for those who wish to protect human health and welfare while minimizing the adverse effects of human activity on the environment.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102 Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

University Core Curriculum (p. 25)

<table>
<thead>
<tr>
<th>Select one of the following:</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>

University Core Curriculum (p. 25)

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1. CVEN 403 is a 2 semester credit hour course.
2. Up to 2 hours of CVEN 485 or CVEN 491 may be used.
3. A grade of C or better is required.
4. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
5. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 221 Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab II - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>EVEN 201 Introduction to the Environmental Engineering Profession</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251 Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>Biological science</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 113 Essentials in Biology</td>
<td></td>
</tr>
<tr>
<td>RENR 205 Fundamentals of Ecology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 302 Computer Applications in Engineering and Construction</td>
<td>3</td>
</tr>
<tr>
<td>EVEN 301/CVEN 301 Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>EVEN 304/</td>
<td>Environmental Engineering Lab</td>
</tr>
<tr>
<td>CVEN 304</td>
<td></td>
</tr>
<tr>
<td>EVEN 311/</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>CVEN 311</td>
<td></td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>Earth science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
</tr>
<tr>
<td>GEOS 210</td>
<td>Climate Change</td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>and Oceanography Laboratory</td>
</tr>
<tr>
<td>SCSC 301</td>
<td>Soil Science</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BAEN 320</td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td>CHEM 222</td>
<td>Elements of Organic and Biological Chemistry</td>
</tr>
<tr>
<td>CVEN 322</td>
<td>Civil Engineering Systems</td>
</tr>
<tr>
<td>EVEN 339/</td>
<td>Water Resources Engineering</td>
</tr>
<tr>
<td>CVEN 339</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>High Impact Experience 6</td>
</tr>
<tr>
<td>EVEN 399</td>
<td>Mid-Curriculum Professional Development</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions or</td>
</tr>
<tr>
<td>or ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>EVEN 402/</td>
<td>Engineered Environmental Systems</td>
</tr>
<tr>
<td>CVEN 402</td>
<td></td>
</tr>
<tr>
<td>EVEN 404</td>
<td>Environmental Unit Operations Laboratory</td>
</tr>
<tr>
<td>EVEN 406</td>
<td>Environmental Protection and Public Health</td>
</tr>
<tr>
<td>EVEN 413/</td>
<td>Natural Environmental Systems</td>
</tr>
<tr>
<td>CVEN 413</td>
<td></td>
</tr>
<tr>
<td>Engineering science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CHEN 204</td>
<td>Elementary Chemical Engineering</td>
</tr>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials</td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
</tr>
<tr>
<td>MEEN 222/</td>
<td>Materials Science</td>
</tr>
<tr>
<td>MSEN 222</td>
<td></td>
</tr>
<tr>
<td>MSEN 201</td>
<td>Fundamentals of Materials Science and Engineering</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BAEN 477</td>
<td>Air Pollution Engineering</td>
</tr>
<tr>
<td>CVEN 423</td>
<td>Geomatics for Civil Engineering</td>
</tr>
<tr>
<td></td>
<td>Environmental Engineering I</td>
</tr>
<tr>
<td>Environmental engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
</tr>
<tr>
<td>BAEN 465</td>
<td>Design of Biological Waste Treatment Systems</td>
</tr>
<tr>
<td>BAEN 469</td>
<td>Water Quality Engineering</td>
</tr>
<tr>
<td>EVEN 458/</td>
<td>Hydraulic Engineering of Water Distribution</td>
</tr>
<tr>
<td>CVEN 458</td>
<td>Systems</td>
</tr>
<tr>
<td>EVEN 462/</td>
<td>Engineering Hydrogeology</td>
</tr>
<tr>
<td>CVEN 462</td>
<td></td>
</tr>
<tr>
<td>EVEN 463/</td>
<td>Engineering Hydrogeology</td>
</tr>
<tr>
<td>CVEN 463</td>
<td></td>
</tr>
<tr>
<td>EVEN 466</td>
<td>Sustainability and Life Cycle Analysis</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective 8</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>97</td>
</tr>
</tbody>
</table>

6 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the EVEN advising office.

7 All students must take at least two courses in their major that are designated as writing intensive (W) or communications intensive (C). EVEN 201 and EVEN 400 taken at Texas A&M satisfy this requirement. Other EVEN courses may be approved as W/C courses at a later date. A grade of C or better is required in these courses.

8 Select from ATMO 363; BAEN 464, BAEN 468; BESC 357, BESC 367, BESC 402, BESC 403; BICH 303; CVEN 306, CVEN 307, CVEN 315, CVEN 454, CVEN 455; ESSM 420; GEOG 467; GEOS 410; OCEN 362; OCNG 350; SCSC 405; SENG 310.

A grade of C or better is required in all science, mathematics and engineering courses taken to satisfy degree requirements.

Total Program Hours 128
Department of Computer Science and Engineering

Computing devices are all around us and computer algorithms support almost every aspect of our daily activities, decisions, and transactions. Our majors are at the center of these exciting activities; in envisioning new forms of services, in applications to address existing or emerging needs, in formulation and evaluation of algorithms to build the necessary computer and networking systems, and in development of the necessary software infrastructures to deploy the resulting solutions. In this, they rely on skills learned in our degree programs; skills that include algorithm design and analysis, programming languages, computer system design, artificial intelligence and machine learning, graphics, human-computer interaction, and many more. Our graduates are found in a wide range of industries, both public and private, reflecting the ubiquity of computing in society.

The Department of Computer Science and Engineering prepares our students to become computing experts who are equipped to address the many and varying challenges that they will encounter in their careers. We offer three degree programs, which are designed to address a variety of student goals and industry demands.

Mission

The mission of the Department of Computer Science is to develop the human and intellectual resources needed to meet the future technological challenges in the field of computing. This includes developing computer scientists and computer engineers for positions of leadership in industry, government, and academia.

BS in Computer Science

The curriculum in Computer Science is designed to prepare students to enter the rapidly expanding computer field. Curricula and courses are based upon recommendations by the Institute of Electrical and Electronic Engineering Computer Society and the Association for Computing Machinery. The Computer Science program is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

BS in Computer Engineering

The Computer Engineering curricula provide a balanced view of hardware, software, hardware-software trade-offs, analysis, design, and implementation techniques. It is a dynamic and broadly interdisciplinary field that continues to experience rapid growth that impacts every area of human endeavor. The Computer Engineering program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

BA in Computing

The Bachelor of Arts in Computing allows students to couple foundational skills in computing, both theoretical and practical, with a sound knowledge of an intersecting area of interest.

Faculty

Ahmed, Sarker T, Instructional Assistant Professor
Computer Science & Engineering
PHD, Texas A&M University, 2016

Akleman, Ergun, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1992

Amato, Nancy M, Professor
Computer Science & Engineering
PHD, University of Illinois, 1995

Bettati, Riccardo, Professor
Computer Science & Engineering
PHD, University of Illinois, 1994

Caverlee, James B, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 2007

Chai, Jinxiang, Associate Professor
Computer Science & Engineering
PHD, Carnegie Mellon University, 2006

Chaspari, Theodora, Assistant Professor
Computer Science & Engineering
PHD, University of Southern California, 2017

Chen, Jianer, Professor
Computer Science & Engineering
PHD, Columbia University, 1987

Choe, Yoonsuck, Professor
Computer Science & Engineering
PHD, University of Texas, 2001

Da Silva, Dilma M, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1997

Daugherity, Walter C, Senior Lecturer
Computer Science & Engineering
PHD, Harvard University, 1977

Davis, Timothy A, Professor
Computer Science & Engineering
PHD, University of Illinois - Urbana Champaign, 1989

Dewitte, Paula S, Associate Professor of the Practice
Computer Science & Engineering
JD, St. Mary’s University School of Law, 2008
PHD, Texas A&M University, 1989

Dongarra, Jack J, Visiting Professor
Computer Science & Engineering
JD, St. Mary’s University School of Law, 2008
PHD, Texas A&M University, 1989

Duffield, Nicholas G, Professor
Computer Science & Engineering
PHD, Queen Mary College, Univ. of London, 1987

Furuta, Richard K, Professor
Computer Science & Engineering
PHD, University of Washington, 1986

Garay, Juan A, Professor
Computer Science & Engineering
PHD, The Pennsylvania State University, 1989
Goldberg, Daniel W, Assistant Professor
Computer Science & Engineering
PHD, University of Southern California, 2010

Gooch, Bruce S, Associate Professor
Computer Science & Engineering
PHD, University of Utah, 2003

Gratz, Paul V, Associate Professor
Computer Science & Engineering
PHD, University of Texas, 2008

Gu, Guofei, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 2008

Guerra Nakamura, Fabiola, Senior Lecturer
Computer Science & Engineering
PHD, Federal University of Minas Gerais, 2010

Gutierrez-Osuna, Ricardo, Professor
Computer Science & Engineering
PHD, North Carolina State University, 1998

Hammond, Tracy A, Professor
Computer Science & Engineering
PHD, Massachusetts Inst of Technology, 2007

Houngninou, David Kebo, Instructional Assistant Professor
Computer Science & Engineering
PHD, Southern Methodist University, 2017

Hu, Jiang, Professor
Computer Science & Engineering
PHD, University of Minnesota, 2001

Hu, Xia, Associate Professor
Computer Science & Engineering
PHD, Arizona State University, 2015

Huang, Ruihong, Assistant Professor
Computer Science & Engineering
PHD, University of Utah, 2014

Huang, Shaoming, Assistant Professor
Computer Science & Engineering
PHD, Hong Kong University of Science and Technology, 2012

Ioerger, Thomas R, Professor
Computer Science & Engineering
PHD, University of Illinois, 1996

Jiang, Anxiao, Professor
Computer Science & Engineering
PHD, California Institute of Technology, 2004

Jimenez, Daniel A, Professor
Computer Science & Engineering
PHD, University of Texas at Austin, 2002

Kerne, Andrew, Professor
Computer Science & Engineering
PHD, New York University, 2001

Keyser, John C, Professor
Computer Science & Engineering
PHD, University of North Carolina at Chapel Hill, 2000

Kim, Eun J, Associate Professor
Computer Science & Engineering
PHD, Pennsylvania State University, 2003

Klappenecker, Andreas, Professor
Computer Science & Engineering
PHD, Universitat Karlsruhe, 1998

Kum, Hye Chung, Associate Professor
Computer Science & Engineering
PHD, University of North Carolina - Chapel Hill, 2004

Lee, Hyunyoung, Senior Lecturer
Computer Science & Engineering
PHD, Texas A&M University, 2001

Leyk, Teresa S, Senior Lecturer
Computer Science & Engineering
PHD, Australian National University, 1998

Lightfoot, Robert H, Lecturer
Computer Science & Engineering
MS, Southern Methodist University, 1995

Liu, Jyh C, Professor
Computer Science & Engineering
PHD, University of Michigan - Ann Arbor, 1989

Loguinov, Dmitri, Professor
Computer Science & Engineering
PHD, City University of New York, 2002

Lupoli, Shawn V, Instructional Assistant Professor
Computer Science & Engineering
MS, Towson University, 2004

Mahapatra, Rabinarayan, Professor
Computer Science & Engineering
PHD, Indian Institute of Technology, Kharagpur, 1992

Moore, John Michael, Instructional Assistant Professor
Computer Science & Engineering
PHD, Texas A&M University, 2007

Mortazavi, Jack B, Assistant Professor
Computer Science & Engineering
PHD, University of California - Los Angeles, 2014

Murphy, Robin R, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1992

Nakamura, Eduardo F, Visiting Associate Professor
Computer Science & Engineering
PHD, Federal University of Minas Gerais, 2007

Narayanan, Krishna R, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1998
Quek, Francis K, Professor
Computer Science & Engineering
PHD, University of Michigan, 1990

Quinn, Michael D, Associate Professor of the Practice
Computer Science & Engineering
MS, University of Southern California at Los Angeles, 1978

Ragsdale, Daniel J, Professor of the Practice
Computer Science & Engineering
PHD, Texas A&M University, 2001

Rauchwerger, Lawrence, Professor
Computer Science & Engineering
PHD, University of Illinois, 1995

Ritchey, Philip C, Instructional Assistant Professor
Computer Science & Engineering
PHD, Purdue University, 2015

Rojas, Joseph M, Professor
Computer Science & Engineering
PHD, University of California, Berkeley, 1995

Sarin, Vivek, Associate Professor
Computer Science & Engineering
PHD, University of Illinois, 1997

Schaefer, Scott D, Professor
Computer Science & Engineering
PHD, Rice University, 2006

Sharon, Guni, Assistant Professor
Computer Science & Engineering
PHD, Ben-Gurion University, 2015

Shell, Dylan A, Associate Professor
Computer Science & Engineering
PHD, University of Southern California, 2008

Shipman III, Frank M, Professor
Computer Science & Engineering
PHD, University of Colorado, 1993

Song, Dezhen, Professor
Computer Science & Engineering
PHD, University of California, Berkeley, 2004

Song, Fang, Assistant Professor
Computer Science & Engineering
PHD, Penn State, 2013

Stoleru, Radu, Professor
Computer Science & Engineering
PHD, University of Virginia, 2007

Sueda, Shinjiro, Assistant Professor
Computer Science & Engineering
PHD, University of British Columbia, 2010

Sze, Sing H, Associate Professor
Computer Science & Engineering
PHD, University of Southern California, 2000

Tyagi, Aakash, Professor of the Practice
Computer Science & Engineering
PHD, University of Louisiana, 1993

Walker, Duncan M, Professor
Computer Science & Engineering
PHD, Carnegie Mellon University, 1986

Wang, Zhangyang, Assistant Professor
Computer Science & Engineering
PHD, University of Illinois at Urbana-Champaign, 2016

Ward, Ronald G, Senior Lecturer
Computer Science & Engineering
PHD, Texas A&M University, 1973

Welch, Jennifer L, Professor
Computer Science & Engineering
PHD, Massachusetts Institute of Technology, 1988

Yum, Ki H, Senior Lecturer
Computer Science & Engineering
PHD, The Pennsylvania State University, 2002

Majors

- Bachelor of Arts in Computing (p. 423)
- Bachelor of Science in Computer Engineering, Computer Science Track (p. 419)
- Bachelor of Science in Computer Science (p. 421)

Minors

- Computer Science Minor (p. 424)
- Game Design and Development Minor (p. 424)

Computer Engineering - BS, Computer Science Track

The curriculum is designed to cover the engineering aspects of both hardware and software—a total computer systems perspective. All computer engineering students take courses in the following areas: electrical circuits, electronics, digital circuits, computer architecture ranging from microcomputers to mainframes, interfacing, programming languages ranging from assembler to high level, data structures, analysis of algorithms, operating systems, software engineering and microcomputer systems. A solid foundation in the basic sciences of physics, chemistry and mathematics is used to support these courses.

There are two distinct tracks in this curriculum, the Electrical Engineering track and the Computer Science track, both culminating in the same Computer Engineering degree. The tracks are substantially similar, each providing a broad coverage of the computer engineering discipline, but each has a slightly different emphasis. Students in the Computer Science track often have a stronger interest in the software-related aspects of computer engineering, and students in the Electrical Engineering track often are more focused on the hardware-related aspects of the field. Note, however, that students in either track can take courses from the other as electives, or they can use their electives to further specialize within their own track. Although students are required to select a track immediately upon entering the Computer Engineering program, it is usually possible to change tracks as late as the junior year.
The Computer Science track of the Computer Engineering degree provides students the freedom to enhance their knowledge in the broad range of topics comprising Computer Engineering: computer networks, computer architecture, artificial intelligence, computer graphics, robotics, cybersecurity, computer languages, microcomputers, VLSI, and large-scale hardware and software systems. The track is administered by the Department of Computer Science and Engineering and encompasses nearly all of the core material of the Computer Science degree, but its greater emphasis on design and engineering fundamentals prepares the student for registration as a professional engineer.

Program Mission
The mission of the Computer Engineering program is to provide students with an education that ensures an excellent understanding of hardware and software systems and the necessary system design and development skills, and that fosters professional curiosity and imagination that drives them throughout their career.

The program will stimulate and challenge the students with an exceptional, highly motivated faculty that shares its knowledge and excitement about Computer Engineering, well designed undergraduate and graduate curricula, research opportunities at all levels, and a first-class educational infrastructure.

The program strives to produce graduates who are well prepared to excel in industry, academia and government, and who will take on leadership roles in shaping the technological landscape of the future.

Program Objectives
1. Graduates of the program will have the necessary knowledge, both in breadth and depth, to pursue the practice, or advanced study, of Computer Engineering.
2. Graduates of the program will understand the importance of life-long learning, and be prepared to learn and understand new technological developments in their field.
3. Graduates of the program will understand the technical, social and ethical context of their engineering contributions.
4. Graduates of the program will develop the communication, teamwork, and leadership skills necessary to carry on the legacy of excellence of an Aggie Engineer.

Program Requirements
The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15-16 |

| Total Semester Credit Hours | 31-32 |

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/ CHEM 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Year</td>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECEN 248</td>
<td>Introduction to Digital Systems Design 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab III</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Engineering Mathematics III 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 221</td>
<td>Data Structures and Algorithms 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCE 222/</td>
<td>Discrete Structures for Computing 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 222</td>
<td>Multi-Computer Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 214</td>
<td>Electrical Circuit Theory 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ECEN 303</td>
<td>or Random Signals and Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td>3rd Year</td>
<td>CSCE 313</td>
<td>Introduction to Computer Systems 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCE 350/</td>
<td>Computer Architecture and Design 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECEN 350</td>
<td>Engineering Mathematics III 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 314</td>
<td>Signals and Systems 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 311</td>
<td>Topics in Applied Mathematics I 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 315</td>
<td>Programming Studio 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSCE 462</td>
<td>Microcomputer Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSCE 481</td>
<td>Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ECEN 325</td>
<td>Electronics 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECEN 454</td>
<td>Digital Integrated Circuit Design 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>High Impact Experience</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 399</td>
<td>High-Impact Experience</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td>4th Year</td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area elective 5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering elective 7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 483</td>
<td>Computer Systems Design 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total Program Hours 128

Computer Science - BS

The four-year undergraduate curriculum in Computer Science at Texas A&M provides a sound preparation in computing, as well as in science, mathematics, English, and statistics. Students take a broad set of core computer science courses in the early semesters, which exposes them to the main concepts in computing. During the later semesters, students take elective computer science courses drawn from four tracks (algorithms and theory, computer systems, software, and information and intelligent systems) to provide both breadth and depth. The electives can be used to tailor the curriculum to match the student’s interests. Graduate courses may be taken by qualified students for some of the electives.

A major in Computer Science includes a 12-hour area of concentration. This allows students to design a course of study that complements their computer science coursework and takes advantage of opportunities offered by other departments across the university.

Program Mission

The mission of the Computer Science program at Texas A&M University is to prepare intellectual, professional, and ethical graduates, capable of meeting the diverse and changing challenges in the field of computer science.

Program Objectives

1. Graduates who choose to enter the workforce will become productive and valuable professionals in their fields.
2. Graduates who choose to pursue advanced degrees will gain admission to graduate programs and will become successful graduate students.
3. Graduates will understand the importance of life-long learning to adapt to new technologies, tools, and methodologies with the ability to respond to a changing world.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering,
biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3.5</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>CSCE 181</td>
<td>Introduction to Computing</td>
</tr>
<tr>
<td>CSCE 222/ECEN 222</td>
<td>Discrete Structures for Computing</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>Science elective</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 221</td>
<td>Data Structures and Algorithms</td>
</tr>
<tr>
<td>CSCE 312</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>CSCE 314</td>
<td>Programming Languages</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>Concentration area elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 313</td>
<td>Introduction to Computer Systems</td>
</tr>
<tr>
<td>CSCE 315</td>
<td>Programming Studio</td>
</tr>
<tr>
<td>CSCE 481</td>
<td>Seminar</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Concentration area elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 411</td>
<td>Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
</tr>
<tr>
<td>High Impact Experience</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 399</td>
<td>High-Impact Experience</td>
</tr>
<tr>
<td>Computer science elective (p. 946)</td>
<td>9</td>
</tr>
<tr>
<td>Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 411</td>
<td>Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>Computer science elective (p. 946)</td>
<td>9</td>
</tr>
</tbody>
</table>
Program Requirements

The mission of the Computing program at Texas A&M University is to prepare intellectual, professional, and ethical graduates, capable of meeting the diverse and changing challenges in the field of computing.

Total Program Hours 126
Computing - BA

The Bachelor of Arts degree with a major in Computing provides students with the opportunity to obtain computing knowledge and skills to be coupled with their non-computing interests in a wide variety of areas such as liberal arts, science, education, business, data science, robotics, etc. The degree allows students to build up strong computational fundamentals that are custom-fit to domains of interest that require such skills. The degree program is designed to provide flexibility in the choice of courses, both in computing and in the students’ field of interest, so that students, after graduation, can have a broader range of career options, both in industry and in academia, reflecting the increasing demand for interdisciplinary talent where computing plays a major role.

Program Mission

Total Semester Credit Hours 95

Spring
CSCE 482 Senior Capstone Design 3 3
University Core Curriculum (p. 25) 1 6
Computer science elective (p. 946) 3 3
Concentration area elective 8 3
Semester Credit Hours 15

Total Semester Credit Hours 25

If the student takes ENGR 217/PHYS 217 and PHYS 207, the 3 hours of PHYS 207 go towards the science requirement along with 1 hour of ENGR 217/PHYS 217. The other hour of ENGR 217/PHYS 217 can be used as general elective.

See advisor for list of acceptable science courses.

The concentration area should be chosen only after consultation with a departmental advisor who will help the student arrange a program appropriate to his or her plans following graduation. Students should file a degree plan before taking minor courses to ensure their use in the degree plan.

Computer science electives are to be selected from tracks. See advisor for list of acceptable course choices.

All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the CSCE advising office.

Second Year
Fall
CSCE 221 Data Structures and Algorithms 1 4
CSCE 222/ECEN 222 Discrete Structures for Computing 3
Select one of the following: 3
STAT 211 Principles of Statistics I 3
STAT 301 Introduction to Biometry 3
STAT 302 Statistical Methods 3
STAT 303 Statistical Methods 3
Semester Credit Hours 16

Spring
CSCE 312 Computer Organization 1 4
CSCE 314 Programming Languages 1 3
Select one of the following: 3
COMM 203 Public Speaking 3
COMM 205 Communication for Technical Professions 3
COMM 243 Argumentation and Debate 3
Semester Credit Hours 16

Third Year
Fall
CSCE 313 Introduction to Computer Systems 1 4
CSCE 315 Programming Studio 1 3
CSCE 481 Seminar 1 1
University Core Curriculum (p. 25) 2 3
Semester Credit Hours 16

Fall
CSCE 181 Introduction to Computing 1 1
ENGL 103 Introduction to Rhetoric and Composition 3
or ENGL 104 Composition and Rhetoric 3
Select one of the following: 1 4
CSCE 110 Programming I 4

Semester Credit Hours 14

Third Year
Fall
First Year
Fall
Spring
Computer Science - Minor

The minor in Computer Science provides the student with an introduction to the fundamentals of this area of study. The minor, available to students in all majors (except for CPSC, COMP, CECN, and CEEN), focuses on developing a basic foundation in computing, including components of programming, data structures and algorithm analysis, and computer architecture. The minor is administered by the Department of Computer Science and Engineering. Eligible students must submit an application in order to be considered for and allowed to pursue a minor in Computer Science.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 120 & CSCE 121</td>
<td>Program Design and Concepts or Introduction to Program Design and Concepts</td>
<td>3-4</td>
</tr>
<tr>
<td>CSCE 221</td>
<td>Data Structures and Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 222/ECEN 222</td>
<td>Discrete Structures for Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 312</td>
<td>Computer Organization</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 313</td>
<td>Introduction to Computer Systems</td>
<td>3-4</td>
</tr>
<tr>
<td>CSCE 482</td>
<td>Senior Capstone Design</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concentration elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concentration elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Prescribed elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

- University Core Curriculum (p. 25) | 3
- Concentration elective | 3
- Concentration elective | 3
- Prescribed elective | 3

Spring

- CSCE 482 Senior Capstone Design | 3
- University Core Curriculum (p. 25) | 3
- Concentration elective | 3
- Concentration elective | 3
- Prescribed elective | 3

Total Semester Credit Hours 120

1. All CSCE courses (excluding the prescribed electives) require a grade of C or better.
2. Of the 30 hours shown as University Core Curriculum electives, 9 must be from life and physical sciences, 3 from creative arts, 3 from language, philosophy and culture, 3 from social and behavioral sciences, 6 from American history and 6 from government/political science. The required 3 hours of International and Cultural diversity and 3 hours of Cultural Discourse may be met by courses also satisfying the creative arts, language, philosophy and culture, social and behavioral sciences and American history requirements if they are also on the approved list of International and Cultural diversity (p. 47) and Cultural Discourse (p. 46).
3. To be selected in consultation of with major advisor.
4. Select from CSCE 310, CSCE 400#470 (p. 946), CSCE 489.

Game Design and Development - Minor

The Minor in Game Design and Development is offered in cooperation with the Department of Visualization. Enrollment in the minor is managed through the Department of Visualization. The minor offers students the opportunity to develop the knowledge and skills associated with the aesthetic and technical aspects of game creation. The minor provides a foundation in the principles of game design and software development. Students develop core competencies, collaborate on the design and development of game projects, and engage in authentic, situated creative problem-solving to broaden their horizons as interdisciplinary team members.

Requirements: In order to earn a Minor in Game Design and Development, students must meet and adhere to the following requirements and guidelines:

- Minimum GPA of 3.2 for admittance into the minor.
- A grade of C or better for all courses used towards the minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 110 & CSCE 111</td>
<td>Programming I and Introduction to Computer Science Concepts and Programming</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 441</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 443/ VIST 487</td>
<td>Game Development</td>
<td>3</td>
</tr>
<tr>
<td>Select two from:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>COMM 230/Communication Technology Skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 453 Communication and Video Games</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 436</td>
<td>Computer-Human Interaction</td>
<td></td>
</tr>
</tbody>
</table>
Department of Electrical and Computer Engineering

Almost any technology that distinguishes the 20th and 21st centuries from previous history has the imprint of electrical and computer engineering - electric power, radio, television, radar, satellite communication, global positioning system, medical diagnostic and procedure systems, sophisticated domestic appliances, cell phones, computers and sophisticated sensors and control systems used in underwater, space exploration and national security. Electrical and computer engineering has advanced national and global prosperity through research, development and application of electrical and computer technologies and sciences for the benefit of humanity, and has helped create the global village. By choosing electrical or computer engineering our graduates embark on an exciting and productive career with endless opportunities and help in shaping a better future for mankind.

The curriculum is designed to prepare the undergraduate for work in the highly diverse electrical and computer engineering profession. A solid foundation in physics, chemistry and mathematics is used to support courses in the fundamentals of electrical and computer engineering. The use of computers is integrated throughout the curriculum, and basic studies in circuits, electronics, electromagnetic fields and digital logic lead to a flexible program of electives in the junior and senior year. Electives may be chosen from the broad fields of analog and mixed-signal electronics, biomedical imaging, sensing and genomic signal processing, computer engineering and systems, device science and nanotechnology, electric power systems and power electronics, electromagnetics and microwaves, and information science and systems. Laboratory work is structured to first familiarize the student with the basic concepts and then to apply these concepts to solve engineering problems.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Mission
Activities of the Electrical and Computer Engineering Department including research, teaching, and professional and community service revolve around the fourfold mission of the department:

• To create new knowledge and challenge young minds by participation in the process of discovery and invention
• To educate electrical and computer engineers with a solid background of fundamentals, stretching their imagination
• To prepare graduates for an exciting future
• To serve the society through research, education and outreach activities

Undergraduate education plays a major part in helping the department to achieve its mission. The Electrical and Computer Engineering programs are accredited by the Engineering Accreditation Commission of ABET, www.abet.org. More information on these efforts can be found at the Department of Electrical and Computer Engineering (http://engineering.tamu.edu/electrical/) website by clicking on the link for ABET Accreditation.

Faculty
Annapareddy, Narasimha, Professor
Electrical & Computer Eng
PHD, University of Illinois at Urbana-Champaign, 1990

Balog Jr, Robert S, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2006

Begovic, Miroslav M, Professor
Electrical & Computer Eng
PHD, Virginia Polytechnic Institute, 1989

Bhattacharyya, S P, Professor
Electrical & Computer Eng
PHD, Rice University, 1971

Braga Neto, Ulisses, Professor
Electrical & Computer Eng
PHD, John Hopkins University, 2002

Butler-Purry, Karen L, Professor
Electrical & Computer Eng
PHD, Howard University, 1994

Cantrell Jr, Pierce E, Senior Associate Professor
Electrical & Computer Eng
PHD, Georgia Institute of Technology, 1981

Chamberland-Tremblay, Jean-Francois, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2004

Choi, Seong G, Associate Professor
Electrical & Computer Eng
PHD, University of Illinois, 1994

Datta, Aniruddha, Professor
Electrical & Computer Eng
PHD, University of Southern California, 1991

Davis, Katherine M, Assistant Professor
Electrical & Computer Eng
PHD, University of Illinois at Urbana-Champaign, 2011

Dougherty Jr, Edward R, University Distinguished Professor
Electrical & Computer Eng
PHD, Rutgers State University of New Jersey, 1974

Duffield, Nicholas G, Professor
Electrical & Computer Eng
PHD, Queen Mary College, Univ. of London, 1987

Ehsani, Mehrdad, Professor
Electrical & Computer Eng
PHD, University of Wisconsin - Madison, 1981

Enjeti, Prasad N, Professor
Electrical & Computer Eng
PHD, Concordia University, Montreal, 1984
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entesari, Kamran</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Michigan, 2006</td>
</tr>
<tr>
<td>Georghiades, Costas N</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Washington University in St. Louis, 1985</td>
</tr>
<tr>
<td>Gratz, Paul V</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Texas, 2008</td>
</tr>
<tr>
<td>Han, Arum</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Georgia Institute of Technology, 2005</td>
</tr>
<tr>
<td>Harris, Harlan R</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Texas Tech University, 2003</td>
</tr>
<tr>
<td>Heidarzadeh, Anoosheh</td>
<td>Visiting Assistant Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Carleton University, 2012</td>
</tr>
<tr>
<td>Hemmer, Philip R</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Massachusetts Inst of Technology, 1984</td>
</tr>
<tr>
<td>Hou, I-Hong</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Illinois Urbana Champaign, 2011</td>
</tr>
<tr>
<td>Hoyos, Sebastian</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Delaware, 2004</td>
</tr>
<tr>
<td>Hu, Jiang</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Minnesota, 2001</td>
</tr>
<tr>
<td>Huang, Garng M</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Washington University in St. Louis, 1980</td>
</tr>
<tr>
<td>Ji, Jim X</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Illinois, 2003</td>
</tr>
<tr>
<td>Kalafatis, Stavros</td>
<td>Professor of the Practice</td>
<td>Electrical & Computer Eng</td>
<td>MS</td>
<td>University of Arizona, 1991</td>
</tr>
<tr>
<td>Kameoka, Jun</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Cornell University, 2002</td>
</tr>
<tr>
<td>Karsilayan, Aydin I</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Portland State University, 2000</td>
</tr>
<tr>
<td>Katehi-Tseregounis, Linda</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of California, 1984</td>
</tr>
<tr>
<td>Kezunovic, Mladen</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Kansas, 1980</td>
</tr>
<tr>
<td>Khatri, Sunil P</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of California, Berkeley, 1999</td>
</tr>
<tr>
<td>Kish, Laszlo B</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Uppsala University, Sweden, 1994</td>
</tr>
<tr>
<td>Kumar, Panganamala R</td>
<td>University Distinguished Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Washington University in St. Louis, 1977</td>
</tr>
<tr>
<td>Li, Peng</td>
<td>Adjunct Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Carnegie Mellon University, 2003</td>
</tr>
<tr>
<td>Lin, Paotai</td>
<td>Assistant Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Northwestern University, 2009</td>
</tr>
<tr>
<td>Liu, Tie</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Illinois, 2006</td>
</tr>
<tr>
<td>Lu, Mi</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Rice University, 1987</td>
</tr>
<tr>
<td>Lusher, John D</td>
<td>Associate Professor Of The Practice</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Texas A&M University, 2018</td>
</tr>
<tr>
<td>Madsen, Christi K</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Rutgers State University of New Jersey, 1996</td>
</tr>
<tr>
<td>Manisseri Kalathil, Dileep</td>
<td>Assistant Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of California at Berkeley, 2014</td>
</tr>
<tr>
<td>Michalski, Krzysztof A</td>
<td>Associate Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Kentucky, 1981</td>
</tr>
<tr>
<td>Miller, Scott L</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of California, San Diego, 1988</td>
</tr>
<tr>
<td>Moreira-Tamayo, Oscar</td>
<td>Professor of the Practice</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Texas A&M University, 1996</td>
</tr>
<tr>
<td>Narayanan, Krishna R</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>Georgia Institute of Technology, 1998</td>
</tr>
<tr>
<td>Nevels, Robert D</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PhD</td>
<td>University of Mississippi, 1979</td>
</tr>
</tbody>
</table>
Nguyen, Cam Van, Professor
Electrical & Computer Eng
PHD, University of Central Florida, 1990

Nowka, Kevin J., Professor Of The Practice
Electrical & Computer Eng
PHD, Stanford University, 1995

Overbye, Thomas J, Professor
Electrical & Computer Eng
PHD, University of Wisconsin, 1991

Palermo, Samuel M, Professor
Electrical & Computer Eng
PHD, Stanford University, 2007

Park, Hanguie, Assistant Professor
Electrical & Computer Eng
PHD, Georgia Institute of Technology, 2017

Park, Sung I, Assistant Professor
Electrical & Computer Eng
PHD, Stanford University, 2014

Qian, Xiaoning, Associate Professor
Electrical & Computer Eng
PHD, Yale University, 2005

Rahimian, Mina M, Senior Lecturer
Electrical & Computer Eng
PHD, Texas A&M University, 2011

Rajendran, Jeyavijayan, Assistant Professor
Electrical & Computer Eng
PHD, New York University, 2015

Rentzepis, Peter M, Professor
Electrical & Computer Eng
PHD, University of Cambridge, 1963

Righetti, Raffaella, Associate Professor
Electrical & Computer Eng
PHD, University of Houston, 2005

Russell Jr, Billy D, Distinguished Professor
Electrical & Computer Eng
PHD, University of Oklahoma, 1975

Sanchez-Sinencio, Edgar, University Distinguished Professor
Electrical & Computer Eng
PHD, University of Illinois, 1973

Savari, Serap A, Associate Professor
Electrical & Computer Eng
PHD, Massachusetts Inst of Technology, 1996

Serpedin, Erchin, Professor
Electrical & Computer Eng
PHD, University of Virginia, 1999

Shakkottai, Srinivas G, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2007

Shen, Yang, Assistant Professor
Electrical & Computer Eng
PHD, Boston University, 2008

Shi, Weiping, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1992

Silva-Martinez, Jose E, Professor
Electrical & Computer Eng
PHD, Katholieke Universiteit Leuven, 1992

Singh, Chanan, Professor
Electrical & Computer Eng
PHD, University of Saskatchewan, 1972

Sprintson, Alexander, Professor
Electrical & Computer Eng
PHD, Israel Institute of Technology, 2003

Tian, Chao, Associate Professor
Electrical & Computer Eng
PHD, Cornell University, 2005

Toliyat, Hamid A, Professor
Electrical & Computer Eng
PHD, University of Wisconsin - Madison, 1991

Tyler Jr, John E, Senior Lecturer
Electrical & Computer Eng
MS, University of Central Texas, 1979

Villarel, Samuel S, Senior Lecturer
Electrical & Computer Eng
PHD, Texas A&M University, 1999

Watson, Karan L, Senior Professor
Electrical & Computer Eng
PHD, Texas Tech University, 1982

Weichold, Mark H, Professor
Electrical & Computer Eng
PHD, Texas A&M University, 1983

Williams, Richard, Professor
Electrical & Computer Eng
PHD, University of California at Berkeley, 1978

Wright, Steven M, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1984

Xie, Le, Professor
Electrical & Computer Eng
PHD, Carnegie Mellon University, 2009

Xiong, Zixiang, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1996

Yoon, Byung-Jun, Associate Professor
Electrical & Computer Eng
PHD, California Institute of Technology, 2007
Zhang, Xi, Professor
Electrical & Computer Eng
PHD, University of Michigan, 2002

Zou, Jun, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2002

Majors

- Bachelor of Science in Computer Engineering, Electrical Engineering Track (p. 428)
- Bachelor of Science in Electrical Engineering (p. 430)

Minors

- Electrical Engineering Minor (p. 431)

Computer Engineering - BS, Electrical Engineering Track

The Department of Electrical and Computer Engineering at Texas A&M University offers a Bachelor of Science degree option to its undergraduate students desiring to major in Computer Engineering.

The curriculum is designed to cover the engineering aspects of both hardware and software—a total computer systems perspective. All computer engineering students take courses in the following areas: electrical circuits, electronics, digital circuits, computer architecture ranging from microcomputers to mainframes, interfacing, programming languages ranging from assembler to high level, data structures, analysis of algorithms, operating systems, software engineering and microcomputer systems. A solid foundation in the basic sciences of physics, chemistry and mathematics is used to support these courses.

There are two distinct tracks in this curriculum, the Electrical Engineering Track and the Computer Science Track, both culminating in the same Computer Engineering degree. The tracks are substantially similar, each providing a broad coverage of the computer engineering discipline, but each has a slightly different emphasis. Note that students in either track can take courses from the other as electives, or they can use their electives to further specialize within their own track. Although students are required to select a track immediately upon entering the Computer Engineering program, it is usually possible to change tracks as late as the junior year.

The Electrical Engineering track of the Computer Engineering degree places stronger emphasis on digital Very Large Scale Integrated (VLSI) circuits and systems, microprocessor interfacing and system design, computer system architecture, hardware-software interaction and embedded systems. The track is primarily administered by the Department of Electrical and Computer Engineering and is designed to encompass nearly all of the core material of the Electrical Engineering degree, but provides much more depth in computing. Students studying Computer Engineering can readily apply their knowledge to the design of digital circuits and software in various areas, including cell phones, computers, computer networks, computer vision, pattern recognition and embedded systems.

The bachelor's degree program in computer engineering has been accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org/). With ABET accreditation, students, parents, employers and the society we serve can be confident that a program meets the quality standards that produce graduates prepared to enter a global workforce.

Mission Statement

This mission of the Computer Engineering Program is threefold;

- The Computer Engineering program provides students with an education that ensures an excellent understanding of hardware and software systems and the necessary system design and development skills, and that fosters professional curiosity and imagination that drives them throughout their career.
- The program will stimulate and challenge the students with an exceptional, highly motivated faculty that shares its knowledge and excitement about computer engineering, well designed undergraduate and graduate curricula, research opportunities at all levels and a first-class educational infrastructure.
- The program strives to produce graduates who are well prepared to excel in industry, academia and government, and who will take on leadership roles in shaping the technological landscape of the future.

Program Educational Objectives

1. Graduates who choose to pursue a career in industry or government will become productive and valuable computer engineers.
2. Graduates who choose to pursue advanced degrees will be able to gain admission and succeed in top graduate programs.
3. In keeping with the legacy of an Aggie engineer, graduates will be successful in attaining positions of leadership in their professional careers.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Students must refer to the specific curriculum for this major.
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition¹</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation¹</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I¹,²</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics¹</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II¹</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science¹</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II⁴</td>
<td>3-4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³⁵</td>
<td></td>
<td>15-16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>31-32</td>
</tr>
</tbody>
</table>

¹ A grade of C or better is required.
² Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
³ Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and culture, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
⁴ BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
⁵ For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts¹</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 248</td>
<td>Introduction to Digital Systems Design¹</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III¹</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science¹</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 217/ENGR 217</td>
<td>Experimental Physics and Engineering Lab II - Electricity and Magnetism¹</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 211</td>
<td>Data Structures and Algorithms¹</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 222/ECEN 222</td>
<td>Discrete Structures for Computing¹</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 214</td>
<td>Electrical Circuit Theory¹</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations¹</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics (1,6) or Random Signals and Systems³</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 313</td>
<td>Introduction to Computer Systems¹</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 314</td>
<td>Signals and Systems¹</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 350/CSCE 350</td>
<td>Computer Architecture and Design¹</td>
<td>4</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Topics in Applied Mathematics I¹</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 315</td>
<td>Programming Studio¹</td>
<td>3</td>
</tr>
<tr>
<td>CSCE 481</td>
<td>Seminar¹</td>
<td>1</td>
</tr>
<tr>
<td>ECEN 325</td>
<td>Electronics¹</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 449</td>
<td>Microprocessor Systems Design¹</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 454</td>
<td>Digital Integrated Circuit Design¹</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 403</td>
<td>Electrical Design Laboratory I¹</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Area elective⁷</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Engineering elective⁷</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>High Impact Experience⁸</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ECEN 399</td>
<td>High Impact Professional Development</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 404</td>
<td>Electrical Design Laboratory II¹</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)³</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Area elective⁷</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

⁶ Students intending to specialize in Communications are encouraged to take ECEN 303.
⁷ See advising office for a listing of approved electives.
All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the ECEN advising office.

Total Program Hours 128

Electrical Engineering - BS

The Department of Electrical and Computer Engineering at Texas A&M University offers a Bachelor of Science degree option to its undergraduate students desiring to major in Electrical Engineering.

Electrical engineers design, develop, test and supervise the manufacture of sophisticated electrical and electronic systems such as: cell phones, iPods, digital TVs, medical imaging, smart appliances, automobiles and advanced satellite systems. Many electrical engineers also work in areas closely related to computers. Areas of specialization include analog and mixed-signal electronics; biomedical imaging, sensing and genomic signal processing; computer engineering and systems; device science and nanotechnology; energy and power; electromagnetics and microwaves; and information science and systems.

The bachelor’s degree program in electrical engineering has been accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org/). With ABET accreditation, students, parents, employers and the society we serve can be confident that a program meets the quality standards that produce graduates prepared to enter a global workforce.

Program Educational Objectives

The educational objectives of the Electrical Engineering program are to produce graduates whose expected accomplishments within two to five years of graduation are:

1. Graduates who choose to pursue a career in industry or government will become productive and valuable engineers.
2. Graduates who choose to pursue advanced degrees will be able to gain admission to graduate programs and succeed in top graduate programs.
3. In keeping with the legacy of an Aggie Engineer, graduates will be successful in attaining positions of leadership in their professional careers.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department. The full bachelors program is offered on College Station and Qatar campuses. All electrical engineering undergraduate coursework is offered on both campuses.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.

Students pursing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition 1</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 104</td>
<td>or Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Select one of the following:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 15-16

Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 248</td>
<td>Introduction to Digital Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 217/ENGR 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 214</td>
<td>Electrical Circuit Theory</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Topics in Applied Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

Third Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 314</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 322</td>
<td>Electric and Magnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 325</td>
<td>Electronics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 222</td>
<td>Modern Physics for Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 303</td>
<td>Random Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 340</td>
<td>Electric Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 350/CSCE 350</td>
<td>Computer Architecture and Design</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 370</td>
<td>Electronic Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Student elective 6

Total Semester Credit Hours 16

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 403</td>
<td>Electrical Design Laboratory I</td>
<td>3</td>
</tr>
<tr>
<td>ECEN elective (p. 959)</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>High Impact Experience</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>ECEN 399</td>
<td>High Impact Professional Development</td>
<td>0</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 404</td>
<td>Electrical Design Laboratory II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 17

Total Program Hours 128

Electrical Engineering - Minor

The Department of Electrical and Computer Engineering offers a minor to students who are interested in electrical engineering applications related to circuits, signals and systems, electronics, instrumentation, and digital systems. Students interested in the Electrical Engineering minor should contact the undergraduate advising office of the Electrical and Computer Engineering Department for further information.

Requirements: In order to earn a Minor in Electrical Engineering, students must meet and adhere to the following requirements and guidelines:

- A grade of C or better for all courses used towards the minor.
- A minimum cumulative 2.75 GPA to enter the minor.
- Complete the courses listed for the selected Electrical Engineering minor track.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 214</td>
<td>Electrical Circuit Theory</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 248</td>
<td>Introduction to Digital Systems Design</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 314</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>ECEN 325</td>
<td>Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ECEN 370</td>
<td>Electronic Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Select course from ECEN 300-499 (p. 959) except ECEN 314, ECEN 325, and ECEN 485.

Students must make a grade of ‘C’ or better in all courses.

Further Requirements: A minimum grade point average of 2.75 is required for entering the minor. Prerequisite coursework includes the calculus sequence, MATH 308, and PHYS 208 or equivalents. Students majoring in Computer Engineering will not be permitted to minor in Electrical Engineering since the coursework prescribed for the minor is required coursework for the Computer Engineering degree.

Department of Engineering Technology and Industrial Distribution

The Department of Engineering Technology and Industrial Distribution offers four baccalaureate degree programs in electronics systems engineering technology, industrial distribution, manufacturing and
mechanical engineering technology, and multidisciplinary engineering technology. While these degrees are distinct, they share several common features including a sound foundation of mathematics and basic sciences, a strong core of technical courses, and an emphasis on written and oral communications. The curricula emphasize the latest state-of-the-art technologies, innovation and entrepreneurship. Finally, all four degrees are designed to prepare students for careers in industry with strong opportunities for advancement. Because these programs are highly applied and have a focus on project-based learning and experiential education, most of the department’s courses have hands-on laboratories that allow students to put theory to practice.

The mission of the Department of Engineering Technology and Industrial Distribution is to:

- maintain nationally recognized programs in engineering technology and industrial distribution
- focus on educating highly-qualified students with hands-on skills, providing them with experiences in advanced integration of both conventional and emerging technologies, a unique understanding of management and business practices, and an entrepreneurial point of view
- provide leadership within the COE and university in interdisciplinary applied research, to include the development and deployment of new technology
- promote and develop long term partnerships with industry and government that foster enhancements and interactions in education, research, and professional development

Electronic Systems Engineering Technology (ESET)

Electronic Systems Engineering Technology (ESET) prepares graduates for careers in electronic product and system development across a diverse range of industries that include the information/communication technologies, computer, power, oil & gas, automotive, medical and quality of life sectors.

The Electronic Systems Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org/(http://www.abet.org/). For more information about the Electronic Systems Engineering Technology program including the mission and program educational objectives, please see the program requirements (p. 439).

Graduates are awarded the Bachelor of Science in Electronic Systems Engineering Technology.

Industrial Distribution (IDIS)

Industrial Distribution (IDIS) prepares graduates for sales engineering, technical sales, supply chain management, operations management, sales management and other managerial positions. Industry segments include: automation solutions; building materials; chemical and petrochemical; electrical; electronics and semiconductors; fluid power; heating and air conditioning, mechanical power; plumbing; safety equipment; welding; oil and gas; defense; material handling; healthcare; automotive; heavy equipment; packaging; and logistics. The day-to-day challenges faced by the industrial distributor or the manufacturer’s representative require the person to be a professional with many capabilities. For more information about the Industrial Distribution program, please see the program requirements (p. 437).

Graduates are awarded the Bachelor of Science in Industrial Distribution.

Manufacturing and Mechanical Engineering Technology (MMET)

Manufacturing and Mechanical Engineering Technology (MMET) prepares students for dynamic careers in a wide range of industries ranging from oil and gas, to aerospace, and food and beverage. These careers involve design, manufacturing, maintenance, and sometimes sales. Graduates are versatile and effective in diverse areas that require understanding of the dependencies among material properties, product design, costs, manufacturing systems, and process technologies.

The Manufacturing and Mechanical Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org/(http://www.abet.org/). For more information about the Manufacturing and Mechanical Engineering Technology program including the mission and program educational objectives, please see the program requirements (p. 439).

Graduates are awarded the Bachelor of Science in Manufacturing and Mechanical Engineering Technology.

Multidisciplinary Engineering Technology (MXET)

Multidisciplinary Engineering Technology (MXET) combines core concepts from the electronics and mechanical engineering technology disciplines and provides students with a strong background in embedded systems, electronic system design, instrumentation, controls, statics, dynamics, thermodynamics, mechanical system design, and project management. The curriculum is then augmented through a 29-hour technical focus area. The Mechatronics and STEM Education focus areas are currently available and additional focus areas will be identified and created. The Mechatronics focus prepares graduates for diverse careers in aerospace, automotive, oil and gas, medical and communications industries where entry-level employees require a broad-based education in system-level design, development, documentation and delivery of new and innovative products. The STEM Education focus prepares graduates to teach math, science, and/or engineering at the secondary education level.

For more information about the Multidisciplinary Engineering Technology program including the mission and program educational objectives, please see the program requirements here (p. 442) and here (p. 444).

Graduates are awarded the Bachelor of Science in Multidisciplinary Engineering Technology.

Department Academic Policies

The Department of Engineering Technology and Industrial Distribution (ETID) imposes academic requirements in addition to those imposed by the University (Texas A&M University Student Rules) and college. For complete details concerning these and other academic policies, students should contact the ETID Undergraduate Advising Office and are referred to the ETID (http://engineering.tamu.edu/etid/) website.

A student must complete all prerequisites for a course with a grade of C or better by the start of the semester in which the student plans to enroll in the course. A student is responsible for checking the prerequisites for each course to ensure the prerequisite requirements have been satisfied. A student who registers for a course for which he/she lacks the necessary prerequisite course(s) and/or the prerequisite grade requirement will be required to drop the course. A student who is told to drop a course and is still enrolled by the deadline set each semester may be administratively dropped by the department. If a student is administratively dropped from a course, the student is responsible for
all financial obligations associated with the drop. An administrative drop may adversely impact (including, but not limited to): health insurance benefits, financial aid, athletic eligibility, INS status, veterans’ benefits, and eligibility to participate in extracurricular activities.

The department encourages students to participate in industrial internships or the Cooperative Education Program to acquire practical experience to complement their engineering technology education.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Faculty

Abdelaal, Ahmed, Instructional Assistant Professor
Eng Tech & Ind Distribution
DEN, University of Toledo, 2017

Alvarado, Jorge L, Professor
Eng Tech & Ind Distribution
PHD, University of Illinois, 2004

Anderson, Bryan, Lecturer
Eng Tech & Ind Distribution
MSW, Columbia University School of Social Work, 2013

Asadi, Amir, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Manitoba, 2013

Assad, Chahriar, Senior Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1994

Aucoin, Bruce, Senior Lecturer
Eng Tech & Ind Distribution
DEN, Texas A&M University, 1982

Borsh Jr, Robert M, Associate Professor of the Practice
Eng Tech & Ind Distribution
MID, Texas A&M University, 2003

Bosshard, John C, Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2012

Buchanan, Walter W, Professor
Eng Tech & Ind Distribution
PHD, Indiana University, 1993
JD, Indiana University, 1973

Butler, Scott N, Lecturer
Eng Tech & Ind Distribution
MS, Sam Houston State University, 1986

Capar, Ismail, Associate Professor
Eng Tech & Ind Distribution
PHD, Mississippi State University, 2007

Cavdar, Bahar, Assistant Professor
Eng Tech & Ind Distribution
DEN, Georgia Institute of Technology, 2014

Chang, Yanling, Assistant Professor
Eng Tech & Ind Distribution
PHD, Georgia Institute of Technology, 2015

Clark Jr, Norman L, Instructional Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2015

Conrad, Craig E, Senior Lecturer
Eng Tech & Ind Distribution
BS, Northern Illinois University, 1975

Crosby, Garth, Associate Professor
Eng Tech & Ind Distribution
DEN, Florida International University, 2007

Fang, Gwo-Ping, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1996

Fink, Rainer J, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1995

Frymire, Read, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1983

Golla, Michael R, Senior Lecturer
Eng Tech & Ind Distribution
MBA, Texas A&M University, 2002

Goulart, Ana E, Associate Professor
Eng Tech & Ind Distribution
PHD, Georgia Institute of Technology, 2005

Hajjat, Jumanah, Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2018

Hale, Charles, Senior Lecturer
Eng Tech & Ind Distribution
BBA, Ohio University, 1987

Handy, Michael, Senior Lecturer
Eng Tech & Ind Distribution
BS, The University of Oklahoma, 2001

Hsieh, Sheng-Jen, Professor
Eng Tech & Ind Distribution
PHD, Texas Tech University, 1995

Hung, Nguyen P, Associate Professor
Eng Tech & Ind Distribution
PHD, University of California, Berkeley, 1987

Hur, Byul, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Florida, 2011

Iakovou, Eleftherios, Professor
Eng Tech & Ind Distribution
PHD, Cornell University, 1992
Johnson III, John W, Lecturer
Eng Tech & Ind Distribution
MBA, Texas A&M University, 2001

Johnson, Mark H, Associate Professor of the Practice
Eng Tech & Ind Distribution
MS, Central Michigan University, 1991

Johnson, Michael D, Professor
Eng Tech & Ind Distribution
PHD, Massachusetts Institute of Technology, 2004

KIM, Jeonghee, Assistant Professor
Eng Tech & Ind Distribution
PHD, Georgia Institute of Technology, 2018

Keblis, Matthew F, Associate Professor
Eng Tech & Ind Distribution
PHD, University of Michigan, 1995

Kuttolamadom, Mathew A, Associate Professor
Eng Tech & Ind Distribution
PHD, Clemson University, 2012

Lawrence, Frederick B, Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1999

Lee, Kiju, Associate Professor
Eng Tech & Ind Distribution
PHD, Johns Hopkins University, 2009

Leon, Victor J, Professor
Eng Tech & Ind Distribution
PHD, Lehigh University, 1991

Leonard, Matthew J, Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1987

Ma, Chao, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of California, 2015

Mahoney, John, Lecturer
Eng Tech & Ind Distribution
BS, University of Phoenix, 2004

Marini, Marc Alan, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1987

Mody, Rustom, Senior Lecturer
Eng Tech & Ind Distribution
MBA, University of Houston, 1986

Munns, Thomas G, Senior Lecturer
Eng Tech & Ind Distribution
CERT, St Edwards University, 2009

Nagarathnam, Bharani B, Instructional Assistant Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2016

Natarajarathinam, Malini, Associate Professor
Eng Tech & Ind Distribution
PHD, University of Alabama, 2007

Nepal, Bimal P, Professor
Eng Tech & Ind Distribution
PHD, Wayne State University, 2005

Nie, Xiaofeng, Associate Professor
Eng Tech & Ind Distribution
PHD, University at Buffalo (SUNY), 2008

Obeidat, Suleiman M, Instructional Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Oklahoma, 2008

Pajand, Armin, Senior Lecturer
Eng Tech & Ind Distribution
MS, HEC Paris, 2007

Porter, Jay R, Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1993

Porter, Logan, Instructional Assistant Professor
Eng Tech & Ind Distribution
DEN, Lamar University, 2014

Price, Angie H, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1999

Rey, Danny, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1990

Sarker, Nripendra, Senior Lecturer
Eng Tech & Ind Distribution
DEN, Texas A&M University, 1993

Song, Xingyong, Associate Professor
Eng Tech & Ind Distribution
PHD, University of Minnesota, Twin Cities, 2011

Speed, Fred, Senior Lecturer
Eng Tech & Ind Distribution
JD, Ohio State University, 1995

Spence, Elizabeth, Senior Lecturer
Eng Tech & Ind Distribution
MA, Gonzaga University, 2010

Srivastava, Anupam, Senior Lecturer
Eng Tech & Ind Distribution
MBA, INSEAD, 1998

Thompson, Steve, Senior Lecturer
Eng Tech & Ind Distribution
PHD, University of Dundee, 1976

Vadali, Sharada, Senior Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1996
The Electronic Systems Engineering Technology Program at Texas A&M University prepares graduates for immediate impact and long-term career success by providing a real-world experiential education coupled with personalized undergraduate experiences in electronics product development, test, system integration, and engineering research.

ESET Program Educational Objectives

The Electronic Systems Engineering Technology Program at Texas A&M University has as its primary educational objectives to produce graduates who, after three to five years:

- possess the technical skills to be productive, innovative, and have successful careers in regional, state, national and/or global electronic product and system development industries.
- demonstrate increasing levels of leadership, teamwork, and ability to communicate technical information to technical and non-technical stakeholders during their careers.
- exhibit a commitment to professional ethics in their careers.
- display a desire for a life time of further challenges and learning, and flexibility to adapt to a fast-changing environment in engineering industries.

A continuous cycle of assessment and program improvement is used to ensure that these objectives are being met. Through interactions with industry and academic partners, the Electronic Systems Engineering Technology program continues to offer a state-of-the-art curriculum that produces successful graduates.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary

Majors

- Bachelor of Science in Electronic Systems Engineering Technology (p. 435)
- Bachelor of Science in Industrial Distribution (p. 437)
- Bachelor of Science in Manufacturing and Mechanical Engineering Technology (p. 439)
- Bachelor of Science in Multidisciplinary Engineering Technology, Electro Marine Engineering Technology Track (p. 440)
- Bachelor of Science in Multidisciplinary Engineering Technology, Mechatronics Track (p. 442)
- Bachelor of Science in Multidisciplinary Engineering Technology, STEM Education Track (p. 444)

Minors

- Embedded Systems Integration Minor (p. 446)

Electronic Systems Engineering Technology - BS

Electronic Systems Engineering Technology (ESET) prepares graduates for careers in electronic product and system development across a diverse range of industries that include the medical, computer, power, automotive, oil & gas, information/communication technologies and quality of life sectors. While graduates of the program receive a rigorous technical education and take engineering and technology positions within industry, they are also well prepared for positions in technical sales and project management. The ESET curriculum is based on a strong underpinning of engineering math and science courses followed by a core technical sequence. This core includes analog and digital electronics, embedded systems design, software development using C and assembly language, wired/wireless communications, electronics test, statistical tools for engineers, instrumentation and control systems. Throughout their curriculum, students work on multiple open-ended projects to design, implement, test, and evaluate hardware and software systems. One of the most unique aspects of the Electronic Systems Engineering Technology program is that almost every technical course provides a hands-on laboratory experience using facilities equipped with state-of-the-art computer systems, test equipment, and industry-standard computer-aided design and analysis packages. The technical curriculum is augmented with coursework in written and oral communications, product/system development, device/system testing and technical project management. A team-based industry-sponsored capstone design sequence provides a challenging opportunity to apply technical, managerial, and communications skills to solving a real-world problem.

The Electronic Systems Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org/.
engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 103 Introduction to Rhetoric or ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ENGR 102 Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>MATH 151 Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td>4</td>
<td>MATH 152 Engineering Mathematics II</td>
</tr>
<tr>
<td>3</td>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>4</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>1</td>
<td>CHEM 120 Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>15-16</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>31-32</td>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
</tr>
<tr>
<td>4</td>
<td>ESET 210 Circuit Analysis</td>
</tr>
<tr>
<td>3</td>
<td>ESET 219 Digital Electronics</td>
</tr>
<tr>
<td>3</td>
<td>ESET 259 Embedded Systems Development in C</td>
</tr>
<tr>
<td>3</td>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESET 211 Power Systems and Circuit Applications</td>
</tr>
<tr>
<td>4</td>
<td>ESET 315 Local-and-Metropolitan-Area Networks</td>
</tr>
<tr>
<td>3</td>
<td>ESET 329 Six Sigma and Applied Statistics</td>
</tr>
<tr>
<td>4</td>
<td>ESET 349 Microcontroller Architecture</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics (p. 1066)</td>
</tr>
<tr>
<td>17</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESET 319 Engineering Leadership</td>
</tr>
<tr>
<td>3</td>
<td>ESET 333 Product Development</td>
</tr>
<tr>
<td>4</td>
<td>ESET 350 Analog Electronics</td>
</tr>
<tr>
<td>4</td>
<td>ESET 355 Electromagnetics and High Frequency Systems</td>
</tr>
<tr>
<td>4</td>
<td>ESET 369 Embedded Systems Software</td>
</tr>
<tr>
<td>18</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ENTC 399 High Impact Experience</td>
</tr>
<tr>
<td>4</td>
<td>ESET 352 Electronics Testing</td>
</tr>
<tr>
<td>4</td>
<td>ESET 359 Electronic Instrumentation</td>
</tr>
<tr>
<td>3</td>
<td>ESET 415 Advanced Network Systems and Security</td>
</tr>
<tr>
<td>4</td>
<td>ESET 455 Wireless Transmission Systems</td>
</tr>
<tr>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>18</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ESET 419 Engineering Technology Capstone</td>
</tr>
<tr>
<td>4</td>
<td>ESET 462 Control Systems</td>
</tr>
<tr>
<td>3</td>
<td>Technical elective</td>
</tr>
<tr>
<td>3</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 210 Technical and Business Writing</td>
</tr>
</tbody>
</table>

4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
Mission
Industrial Distribution has as its mission to:

- Prepare graduates for sales engineering, sales management, supply chain operations and logistics management mid-management positions with wholesale distributors, who purchase, warehouse, sell, distribute and service a wide variety of products, and with manufacturers who sell through distributors,

- Conduct applied research and develop new best practices in industrial distribution, logistics, and supply chain management that mutually benefit the university and its industrial, governmental, and academic collaborators,
- Provide service and leadership in the promotion and advancement of the department, the university and the industrial distribution profession.

Program Educational Objectives
The Industrial Distribution Program at Texas A&M has as its program educational objectives to produce graduates who, after three to five years:

- Demonstrate the technical and managerial skills to have successful careers in designing, integrating and implementation of technical sales, operations and customer service management systems in industrial distribution and supply chain management related industries.
- Exhibit a commitment to professional ethics in their professional career.
- Demonstrate increasing levels of leadership and responsibility during their careers.
- Display a desire for life-long learning and sustainable productivity in a dynamic work environment.

Program Requirements
The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16
Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 217/</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td></td>
</tr>
<tr>
<td>IDIS 240</td>
<td>3</td>
</tr>
<tr>
<td>MMET 201</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201/ or STAT 303</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15-16

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEN 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEN 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>III - Mechanics</td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Materials</td>
<td>4</td>
</tr>
<tr>
<td>Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>Elementary Statistical Inference or Statistical Methods</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 330</td>
<td>4</td>
</tr>
<tr>
<td>IDIS 340</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 343</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 399</td>
<td>0</td>
</tr>
<tr>
<td>ESET 300</td>
<td>4</td>
</tr>
<tr>
<td>IDIS 344</td>
<td>4</td>
</tr>
<tr>
<td>MMET 301</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective</td>
<td>7</td>
</tr>
<tr>
<td>Technical elective</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 17

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESET 400</td>
<td>4</td>
</tr>
<tr>
<td>IDIS 424</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 433</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 464</td>
<td>3</td>
</tr>
<tr>
<td>MMET 401</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDIS 434</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 444</td>
<td>3</td>
</tr>
<tr>
<td>IDIS 450</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

Total Semester Credit Hours: 95

1. Students in Industrial Distribution satisfy the 3 hour social and behavioral sciences by taking ECON 202 as a required course. Instead, IDIS students must take a 3 hour course from the Language, Philosophy and Culture list. They may also use this course to satisfy one of their ICD courses.
2. See a departmental advisor for a list of acceptable directed electives and technical electives.
3. All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the ETID advising office.

The curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.
Total Program Hours 126
Manufacturing and Mechanical Engineering Technology - BS

Manufacturing and Mechanical Engineering technology (MMET) prepares students for dynamic careers in industry. Graduates are versatile and effective in diverse areas that require understanding of the dependencies among material properties, product design, costs, manufacturing systems, and process technologies. The student views manufacturing from an enterprise and system perspective, recognizing the importance of customer and supplier interactions. To meet these diverse needs, this degree program provides a foundation of mathematics, science, and specialized technical courses, as well as preparation in oral and written communication. The three main areas of concentration are product design, manufacturing systems integration and automation, and quality assessment. Studies in these areas are supported by a solid foundation in materials and manufacturing processes.

The Manufacturing and Mechanical Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of ABET, http://www.abet.org/.

Program Mission
The mission of the Manufacturing and Mechanical Engineering Technology program at Texas A&M University is to provide a high-quality, application-oriented education producing professionals who can effectively contribute to leadership, the advancement of manufacturing and mechanical engineering technology, and improved performance of industrial endeavors. The educational mission is complemented by applied research and the development of new interdisciplinary technology that mutually benefits the university and its industrial, governmental, and academic collaborators. The people in the program are committed to providing service and leadership in the promotion and advancement of the University and the profession.

Program Educational Objectives
The MMET program prepares students who after a few years after graduation:

• Demonstrate manufacturing and mechanical technical knowledge, problem solving skills, and implementation skills for careers in design, installation, operations, technical sales, or service functions in industry;
• Demonstrate increasing level of leadership and responsibility;
• Exhibit both immediate and sustainable productivity in a dynamic work environment.

Program Requirements
The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year
Fall	Semester Credit Hours
CHEM 107 | General Chemistry for Engineering Students 1,4 | 3
CHEM 117 | General Chemistry for Engineering Students Laboratory 1,4 | 1
ENGL 103 or ENGL 104 | Introduction to Rhetoric or Composition 1 | 3
ENGR 102 | Engineering Lab I - Computation 1 | 2
MATH 151 | Engineering Mathematics I 1,2 | 4
University Core Curriculum (p. 25) 3 | 3

Select one of the following:

ENGR 216/PHYS 216 | Experimental Physics and Engineering Lab II - Mechanics 1 | 2
MATH 152 | Engineering Mathematics II 1 | 4
PHYS 206 | Newtonian Mechanics for Engineering and Science 1 | 3
University Core Curriculum (p. 25) 3 | 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
</tr>
</tbody>
</table>

Select one of the following:

CHEM 120 | Fundamentals of Chemistry II 4 | 3
University Core Curriculum (p. 25) 3,5 | 4

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-16</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
Multidisciplinary Engineering Technology - BS, Electro Marine Engineering Technology Track

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 217</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MMET 105</td>
<td>Manufacturing and Assembly Processes I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 181</td>
<td>Nonmetallic Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>MMET 207</td>
<td>Metallic Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 275</td>
<td>Mechanics for Technologists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 281</td>
<td>Manufacturing and Assembly Processes II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ISEN 302</td>
<td>Economic Analysis of Engineering Projects</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Fall</td>
<td>ESET 300</td>
<td>Industrial Electricity</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 303</td>
<td>Fluid Mechanics and Power</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 376</td>
<td>Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 380</td>
<td>Computer-Aided Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>MMET 320</td>
<td>Quality Assurance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 361</td>
<td>Product Design and Solid Modeling</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 363</td>
<td>Mechanical Design Applications I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 383</td>
<td>Manufacturing Information Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Impact Experience</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENTC 399</td>
<td>High Impact Experience</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Fall</td>
<td>MMET 370</td>
<td>Thermodynamics for Technologists</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 402</td>
<td>Inspection Methods and Procedures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 410</td>
<td>Manufacturing Automation and Robotics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 429</td>
<td>Managing People and Projects in a Technological Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 463</td>
<td>Mechanical Design Applications II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MNET 412</td>
<td>Production and Inventory Planning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MNET 422</td>
<td>Manufacturing Technology Projects</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Semester Credit Hours</td>
<td>97</td>
</tr>
</tbody>
</table>

Multidisciplinary Engineering Technology (MXET) prepares students for careers requiring an understanding of technical problems and systems that combine principles from two or more engineering technology disciplines. The degree is designed to be flexible, giving the student a strong background in electronic and mechanical systems, which is then augmented with a 29-hour focus area. Graduates of the program receive a rigorous technical education and typically take engineering and technology positions appropriate to their focus area of study. The MXET curriculum is based on a strong underpinning of engineering math and science courses followed by a core technical sequence. This core includes mechanical, electronic and embedded systems/software fundamentals, principles and design concepts. Throughout their curriculum, students work on multiple open-ended projects to design, implement, test, and evaluate mechanical and electronic hardware and software systems. One of the most unique aspects of the Multidisciplinary Engineering Technology program is that most technical courses provide a hands-on laboratory experience using state-of-the-art equipment and industry-standard design and analysis software. The technical curriculum is augmented with courses in written/oral communications and technical project management. A team-based industry-sponsored capstone design sequence provides a challenging opportunity to apply technical, managerial, and communications skills to solve a real-world problem.

MXET Program Mission

The Multidisciplinary Engineering Technology Program at Texas A&M University prepares graduates for immediate impact and long-term career success by providing a real-world experiential education coupled with personalized undergraduate experiences in mechanical, electronic,
control, computer and communication systems, as well as engineering
design and development.

MXET Program Educational Objectives

The program educational objectives of the BS MXET degree program are
to produce graduates who, within two to five years after graduation, will:

- Possess and demonstrate technical knowledge of the design,
 manufacture, sales, and service of complex systems that span
 multiple engineering technology disciplines.
- Demonstrate an increasing level of leadership and responsibility.
- Exhibit productivity in a dynamic work environment through a
 commitment to lifelong learning.
- Exhibit a commitment to professional ethics in their professional
careers.

A continuous cycle of assessment and program improvement is used
to ensure that these objectives are being met. Through interactions
with industry and academic partners, the Multidisciplinary Engineering
Technology program offers a state-of-the-art curriculum that produces
successful graduates.

MXET Tracks

The MXET program has a common core of courses and 29 additional
credit hours that allow students to gain further experience with the focus
area of choice. Currently, there are three focus areas, each represents
a track of the MXET program. These tracks are mechatronics, STEM
education, and electro marine engineering technology. The MXET
program is offered at three distinct locations: College Station, Galveston,
and McAllen.

Electro Marine Engineering Technology Track

The Electro Marine Engineering Technology track has an emphasis
in marine mechatronics, a multidisciplinary field that includes a
combination of electrical, mechanical, communications, control, and
marine engineering technology topics. Students interested in wireless
communications, automation, instrumentation and/or robotics will
gain hands-on experience with a focus on marine electronic systems.
Additionally, students graduating with this degree and possessing a
license will be well prepared to become an electronic technology officer
(ETO). In the near future, at least one ETO will be required on each sailing
vessel.

This program is approved to be offered at the Texas A&M University at
Galveston campus.

Program Requirements

The freshman year is identical for degrees in aerospace engineering,
arboricultural engineering, civil engineering, computer engineering,
computer science, electrical engineering, electronic systems engineering
technology, environmental engineering, industrial distribution, industrial
engineering, interdisciplinary engineering, manufacturing and mechanical
engineering technology, mechanical engineering, multidisciplinary
engineering technology, nuclear engineering, ocean engineering, and
petroleum engineering (Note: not all programs listed are offered in
Qatar). The freshman year is slightly different for chemical engineering,
biochemical engineering and materials science and engineering degrees
in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.
Students pursuing degrees in biological and agricultural engineering
should refer to the specific curriculum for this major. It is recognized that
many students will change the sequence and number of courses taken in
any semester. Deviations from the prescribed course sequence, however,
should be made with care to ensure that prerequisites for all courses are
met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 107 General Chemistry for Engineering Students 1,4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory 1,4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 102 Engineering Lab I - Computation 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I 1,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS 216/</td>
<td>ENGR 216 Experimental Physics and Engineering Lab II - Mechanics 1</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 216</td>
<td>MATH 152 Engineering Mathematics II 1</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15-16 |

Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results
will be used in selecting the appropriate starting course which may
be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3
must be from creative arts, 3 from social and behavioral sciences
(see IDIS curriculum for more information), 3 from language,
philosophy and culture (see CVEN, EVEN and PETE curriculum for
more information), 6 from American history and 6 from government/
political science. The required 3 hours of international and cultural
diversity and 3 hours of cultural discourse may be met by courses
satisfying the creative arts, social and behavioral sciences, language,
philosophy and cultural, and American history requirements if they
are also on the approved list of international and cultural diversity
(p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry,
which may be satisfied by CHEM 119 or CHEM 107/CHEM 117
and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus
CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN,
CHEN and MSEN should take CHEM 120 second semester freshman
year. CHEM 120 will substitute for CHEM 107/CHEM 117.
Multidisciplinary Engineering Technology - BS, Mechatronics Track

Multidisciplinary Engineering Technology (MXET) prepares students for careers requiring an understanding of technical problems and systems that combine principles from two or more engineering technology disciplines. The degree is designed to be flexible, giving the student a strong background in electronic and mechanical systems, which is then augmented with a 29-hour focus area. Graduates of the program receive a rigorous technical education and typically take engineering and technology positions appropriate to their focus area of study. The MXET curriculum is based on a strong underpinning of engineering math and science courses followed by a core technical sequence. This core includes mechanical, electronic and embedded systems/software fundamentals, principles and design concepts. Throughout their curriculum, students work on multiple open-ended projects to design, implement, test, and evaluate mechanical and electronic hardware and software systems. One of the most unique aspects of the Multidisciplinary Engineering Technology program is that most technical courses provide a hands-on laboratory experience using state-of-the-art equipment and industry-standard design and analysis software. The technical curriculum is augmented with courses in written/oral communications and technical project management. A team-based industry-sponsored capstone design sequence provides a challenging opportunity to apply technical, managerial, and communications skills to solve a real-world problem.

MXET Program Mission

The Multidisciplinary Engineering Technology Program at Texas A&M University prepares graduates for immediate impact and long-term career success by providing a real-world experiential education coupled with personalized undergraduate experiences in mechanical, electronic,
control, computer and communication systems, as well as engineering design and development.

MXET Program Educational Objectives

The program educational objectives of the BS MXET degree program are to produce graduates who, within two to five years after graduation, will:

- Possess and demonstrate technical knowledge of the design, manufacture, sales, and service of complex systems that span multiple engineering technology disciplines.
- Demonstrate an increasing level of leadership and responsibility.
- Exhibit productivity in a dynamic work environment through a commitment to lifelong learning.
- Exhibit a commitment to professional ethics in their professional careers.

A continuous cycle of assessment and program improvement is used to ensure that these objectives are being met. Through interactions with industry and academic partners, the Multidisciplinary Engineering Technology program offers a state-of-the-art curriculum that produces successful graduates.

MXET Tracks

The MXET program has a common core of courses and 29 additional credit hours that allow students to gain further experience with the focus area of choice. Currently, there are three focus areas, each represents a track of the MXET program. These tracks are mechatronics, STEM education, and electro marine engineering technology. The MXET program is offered at three distinct locations: College Station, Galveston, and McAllen.

Mechatronics Track

The Mechatronics track prepares students to design, develop, and support products and systems that combine mechanical, electronic, robotics, automation, communication, control, and embedded computing principles.

This program is approved to be offered at the Texas A&M Higher Education Center in McAllen, Texas.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

For PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BMEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics 1 1,2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BMEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR 217/PHYS 217: Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ESET 210: Circuit Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ESET 219: Digital Electronics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 207: Metallic Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207: Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ESET 269: Embedded Systems Development in C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ESET 350: Analog Electronics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 275: Mechanics for Technologists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 376: Strength of Materials</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Fall</td>
<td>ESET 349: Microcontroller Architecture</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 303: Fluid Mechanics and Power</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 361: Product Design and Solid Modeling</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MXET 375: Applied Dynamic Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Math elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>ENTC 399: High Impact Experience</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ESET 359: Electronic Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ESET 369: Embedded Systems Software</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MMET 363: Mechanical Design Applications I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MMET 370: Thermodynamics for Technologists</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MXET 300: Mechatronics I – Mobile Robotic Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td>Fall</td>
<td>ESET 419 or MMET 429: Engineering Technology Capstone I or Managing People and Projects in a Technological Society</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ESET 462: Control Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MXET 400: Mechatronics II – Industrial Robotic Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>ESET 420 or MMET 422: Engineering Technology Capstone II or Manufacturing Technology Projects</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 203: Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205: Communication for Technical Professions</td>
<td></td>
</tr>
</tbody>
</table>

Total Program Hours 127

Multidisciplinary Engineering Technology (MXET) prepares students for careers requiring an understanding of technical problems and systems that combine principles from two or more engineering technology disciplines. The degree is designed to be flexible, giving the student a strong background in electronic and mechanical systems, which is then augmented with a 29-hour focus area. Graduates of the program receive a rigorous technical education and typically take engineering and technology positions appropriate to their focus area of study. The MXET curriculum is based on a strong underpinning of engineering math and science courses followed by a core technical sequence. This core includes mechanical, electronic and embedded systems/software fundamentals, principles and design concepts. Throughout their curriculum, students work on multiple open-ended projects to design, implement, test, and evaluate mechanical and electronic hardware and software systems. One of the most unique aspects of the Multidisciplinary Engineering Technology program is that most technical courses provide a hands-on laboratory experience using state-of-the-art equipment and industry-standard design and analysis software. The technical curriculum is augmented with courses in written/oral communications and technical project management. A team-based industry-sponsored capstone design sequence provides a challenging opportunity to apply technical, managerial, and communications skills to solve a real-world problem.

MXET Program Mission

The Multidisciplinary Engineering Technology Program at Texas A&M University prepares graduates for immediate impact and long-term career success by providing a real-world experiential education coupled with personalized undergraduate experiences in mechanical, electronic, control, computer and communication systems, as well as engineering design and development.

MXET Program Educational Objectives

6. Meets the 29 hour Mechatronics focus area requirements.
7. See a departmental advisor for a list of approved electives.
8. All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the ETID advising office.

This curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.
The program educational objectives of the BS MXET degree program are to produce graduates who, within two to five years after graduation, will:

- Possess and demonstrate technical knowledge of the design, manufacture, sales, and service of complex systems that span multiple engineering technology disciplines.
- Demonstrate an increasing level of leadership and responsibility.
- Exhibit productivity in a dynamic work environment through a commitment to lifelong learning.
- Exhibit a commitment to professional ethics in their professional careers.

A continuous cycle of assessment and program improvement is used to ensure that these objectives are being met. Through interactions with industry and

MXET Tracks

The MXET program has a common core of courses and 29 additional credit hours that allow students to gain further experience with the focus area of choice. Currently, there are three focus areas, each represents a track of the MXET program. These tracks are mechatronics, STEM education, and electro marine engineering technology. The MXET program is offered at three distinct locations: College Station, Galveston, and McAllen.

STEM Education Track

The STEM education track has been established through a partnership with the College of Education and Human Development and includes twenty-nine credit hours of coursework in education. These courses, including a semester-long practicum, specifically prepare graduates to teach at the secondary education level. Graduates from this program will be qualified to take the State of Texas math, physical science, and engineering teaching certification exam.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select one of the following:</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.

2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR 216/</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 216</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>
Embedded Systems Integration - Minor

PHYS 207 Electricity and Magnetism for Engineering and Science 1 3

<table>
<thead>
<tr>
<th>Spring</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESET 269</td>
<td>Embedded Systems Development in C</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ESET 319</td>
<td>Engineering Leadership 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ESET 350</td>
<td>Analog Electronics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MMET 275</td>
<td>Mechanics for Technologists</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

<table>
<thead>
<tr>
<th>Summer</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Elective 1,7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MMET 370</td>
<td>Thermodynamics for Technologists 1</td>
<td>4</td>
</tr>
<tr>
<td>MXET 375</td>
<td>Applied Dynamic Systems 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TEFB 322</td>
<td>Teaching and Schooling in Modern Society 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TEFB 324</td>
<td>Teaching Skills II 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective 1,8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 17 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTC 399</td>
<td>High Impact Experience 9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESET 359</td>
<td>Electronic Instrumentation 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ESET 419</td>
<td>Engineering Technology Capstone I 1 or MMET 429</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or Managing People and Projects in a Technological Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMET 363</td>
<td>Mechanical Design Applications I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TEFB 406</td>
<td>Science in the Middle and Secondary School 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective 1,8</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Summer</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>EDCI 358</td>
<td>Instructional Methods in Engineering and Technology Education 1,6</td>
<td>3</td>
</tr>
<tr>
<td>ESET 420 or MMET 422</td>
<td>Engineering Technology Capstone II 1 or Manufacturing Technology Projects</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RDNG 465</td>
<td>Reading in the Middle and Secondary Grades 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TEFB 407</td>
<td>Mathematics in the Middle and Senior School 1,6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 17 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEFB 497</td>
<td>Supervised Clinical Teaching 1,6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 96 |

Students must make a grade of 'C' or better in all courses.

Total Program Hours 127

Embedded Systems Integration - Minor

Our cars, cell phones, health care devices, every-day appliances and physical devices that are connected to form the internet-of-things (IoT) operate based on small “computers” that sense the environment, make decisions, communicate, and control operations; essentially making our devices “smart.” These ‘computers’ or embedded processors/microcontrollers are a fundamental component in most modern products and systems and are used across a wide range of industries that include medical, oil/gas, process control, automotive, communications, and quality of life.

The Embedded Systems Integration minor offered by the Department of Engineering Technology and Industrial Distribution teaches students about embedded systems hardware and software development and how these systems are used in modern products. The minor requires five courses (18 hours) and is available to not only engineering students but also students outside the College of Engineering who are interested in studying technology and understanding the devices that power our lives.

Students interested in an Embedded Systems Integration minor should see an advisor in Engineering Technology and Industrial Distribution for more information.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESET 219</td>
<td>Digital Electronics</td>
<td>4</td>
</tr>
<tr>
<td>ESET 269</td>
<td>Embedded Systems Development in C</td>
<td>3</td>
</tr>
<tr>
<td>ESET 333</td>
<td>Product Development</td>
<td>3</td>
</tr>
<tr>
<td>ESET 349</td>
<td>Microcontroller Architecture</td>
<td>4</td>
</tr>
<tr>
<td>ESET 369</td>
<td>Embedded Systems Software</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 18 |

Meet the 29 hour STEM Education focus area requirements.
See a departmental advisor for a list of approved electives.
The 6 hours of technical electives will be satisfied by taking ESET 329 and ESET 333. All other options must be approved in advance by the MXET program coordinator.
All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the ETID advising office.
Department of Industrial and Systems Engineering

Industrial and systems engineering is an engineering discipline devoted to the design, installation, improvement and control of integrated systems of people, materials, and facilities in a wide range of organizations that produce goods or render services. Like other engineering fields, industrial engineering is concerned with solving problems through the application of specialized knowledge in mathematics and science, as well as the principles of engineering. Two major distinctions of our discipline, among the engineering disciplines, is the unique focus of industrial and systems engineering on human factors and the quantification and systematic removal of uncertainty from production systems. Industrial and systems engineering has five major focus areas: advanced manufacturing, operations research, data sciences and machine learning, health and human systems, and systems engineering.

An important characteristic of industrial and systems engineering is its systems approach to integrate the basic resources of production and service systems and other relevant resources, such as information and energy, in such a way as to create a smooth, efficient and competitive operation within an enterprise. Industrial and systems engineers are needed in virtually all types of enterprises, ranging from industries such as manufacturing, distribution, logistics, transportation, and construction; service sectors such as health care, telecommunications, retail, banking, and engineering consulting to government agencies, military, and non-profit organizations.

The mission of the Industrial and Systems Engineering program is to serve the state, nation, and global community by educating industrial engineering students to be well founded in engineering fundamentals and to have the knowledge and skills required to design, develop, improve, implement and control sophisticated production and service systems in an environment characterized by complex technical and social challenges. Throughout this educational process, students will be instilled with the highest standards of professional and ethical behavior. It is the intent of the undergraduate industrial engineering program to equip its graduates to achieve the following accomplishments a few years after graduation:

1. Graduates will be successful in improving operations by solving complex industrial and systems engineering problems.
2. Graduates will demonstrate professional leadership.
3. Graduates will be instilled with the motivation and ability to accomplish professional life-long learning.

The undergraduate program in Industrial Engineering at Texas A&M University is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Industrial and Systems Engineering students may participate in the Undergraduate Minor Program offered by Texas A&M. This program is usually comprised of 15 to 18 hours, some of which may be substituted as technical electives. The most common minors are math, business and economics. The department also has a Fast Track Program for academically qualified students who want to take selected graduate courses and receive both graduate and undergraduate credit by meeting specific requirements. The department encourages students to participate in industrial internships or the Cooperative Education Program to acquire practical experience to complement their industrial engineering education. Internships are generally encouraged during the summer months only. Students who participate in the Co-op program during three academic semesters may count the three credit hours as a technical elective in their curriculum.

Graduate degrees including the Master of Science (MS), Master of Engineering (M.Eng.), and Doctor of Philosophy (PhD) are also offered by the department in addition to the Bachelor of Science in Industrial Engineering. For graduate degree information, please see the Texas A&M University Graduate Catalog.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Faculty

Aprahamian, Hrayer, Assistant Professor
Industrial & Systems Eng
PHD, Virginia Tech, 2018

Banerjee, Amarnath P, Professor
Industrial & Systems Eng
PHD, University of Illinois at Chicago, 1999

Benden, Mark E, Associate Professor
Industrial & Systems Eng
PHD, Texas A&M University, 2006

Bennett Jr, George K, Senior Professor
Industrial & Systems Eng
PHD, Texas Tech University, 1970

Bukkapatnam, Satish T, Professor
Industrial & Systems Eng
PHD, Pennsylvania State University, 1997

Butenko, Sergiy I, Professor
Industrial & Systems Eng
PHD, University of Florida, 2003

Currie-Gregg, Nancy J, Professor of the Practice
Industrial & Systems Eng
PHD, University of Houston, 1997

Curry, Guy L, Senior Professor
Industrial & Systems Eng
PHD, University of Arkansas, 1971

Ding, Yu, Professor
Industrial & Systems Eng
PHD, University of Michigan, 2001

Eksin, Ceyhun, Assistant Professor
Industrial & Systems Eng
PHD, University of Pennsylvania, 2015

Elwany, Alaa Mohamed H, Assistant Professor
Industrial & Systems Eng
PHD, Georgia Institute of Technology, 2009

Erraguntla, Madhav, Associate Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 1996
Feldman, Richard M, Senior Professor
Industrial & Systems Eng
PHD, Northwestern University, 1975

Ferris, Thomas K, Associate Professor
Industrial & Systems Eng
PHD, University of Michigan - Ann Arbor, 2010

Garcia, Alfredo A, Professor
Industrial & Systems Eng
PHD, University of Michigan, 1997

Gautam, Natarajan, Professor
Industrial & Systems Eng
PHD, University of North Carolina at Chapel Hill, 1997

Geunes, Joseph P, Professor
Industrial & Systems Eng
PHD, Pennsylvania State University, 1999

Graul, Michael H, Associate Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 1995

Graves, Gregory H, Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 2006

Johnson, Andrew L, Professor
Industrial & Systems Eng
PHD, Georgia Institute of Technology, 2006

Kianfar, Kiavash, Associate Professor
Industrial & Systems Eng
PHD, North Carolina State University, 2007

Koppa, Rodger J, Senior Associate Professor
Industrial & Systems Eng
PHD, Texas A&M University, 1979

Kum, Hye Chung, Associate Professor
Industrial & Systems Eng
PHD, University of North Carolina - Chapel Hill, 2004

Kumar, Panganamala R, Professor
Industrial & Systems Eng
PHD, Washington University in St. Louis, 1977

Lawley, Mark A, Professor
Industrial & Systems Eng
PHD, University of Illinois at Urbana-Champaign, 1995

Leon, Victor J, Professor
Industrial & Systems Eng
PHD, Lehigh University, 1991

Malave, Ceasar, Professor
Industrial & Systems Eng
PHD, University of South Florida, 1987

Mayer, Richard John, Adjunct Professor
Industrial & Systems Eng
PHD, Texas A&M University, 1998

McDonald, Anthony D, Assistant Professor
Industrial & Systems Eng
PHD, University of Wisconsin - Madison, 2014

Mehta, Ranjana K, Associate Professor
Industrial & Systems Eng
PHD, Virginia Tech, 2011

Momcilovic, Petar, Associate Professor
Industrial & Systems Eng
PHD, Columbia University, 2003

Moreno Centeno, Erick, Associate Professor
Industrial & Systems Eng
PHD, University of California, Berkeley, 2010

Ntai, Lewis, Professor
Industrial & Systems Eng
PHD, University of Arizona, 2004

Pei, Zhijian, Professor
Industrial & Systems Eng
PHD, University of Illinois, 1995

Peres, S Camille, Assistant Professor
Industrial & Systems Eng
PHD, Rice University, 2005

Pickens, Adam W, Assistant Professor
Industrial & Systems Eng
PHD, Texas Tech University, 2008

Sagapura, Dinakar, Assistant Professor
Industrial & Systems Eng
PHD, Purdue University, 2013

Sasangohar, Farzan, Assistant Professor
Industrial & Systems Eng
PHD, University of Toronto, 2015

Shahram, Shahin, Assistant Professor
Industrial & Systems Eng
PHD, University of Pennsylvania, 2015

Smith, Donald R, Senior Associate Professor
Industrial & Systems Eng
PHD, University of Arkansas, 1973

Tuo, Rui, Assistant Professor
Industrial & Systems Eng
PHD, Chinese Academy of Sciences, 2013

Valdez Flores, Ciria, Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 1987

Vazquez, Jose A, Senior Lecturer
Industrial & Systems Eng
MA, University of Iowa, 1986

Wang, Shiren, Associate Professor
Industrial & Systems Eng
PHD, Florida State University, 2006
Wang, Yen J, Instructional Assistant Professor
Industrial & Systems Eng
DEN, Northwestern University, 1991

Wortman, Martin A, Senior Professor
Industrial & Systems Eng
PHD, Virginia Tech, 1988

Zahabi, Maryam, Assistant Professor
Industrial & Systems Eng
PHD, North Carolina State University, 2017

Zeng, Li, Assistant Professor
Industrial & Systems Eng
PHD, University of Wisconsin, Madison, 2009

Zhang, Xudong, Professor
Industrial & Systems Eng
PHD, University of Michigan Ann Arbor, 1997

Zou, Na, Instructional Assistant Professor
Industrial & Systems Eng
PHD, Arizona State University, 2015

Majors

• Bachelor of Science in Industrial Engineering (p. 449)
• Bachelor of Science in Industrial Engineering and Master of Public Health in Occupational Safety and Health, 5-Year Degree Program (p. 450)
• Bachelor of Science in Industrial Engineering and Master of Science in Finance, 5-Year Degree Program (p. 452)

Minors

• Industrial Engineering Minor (p. 454)

Certificates

• Data Center Operations Engineering Certificate (p. 454)
• Engineering Systems Management Certificate (p. 455)

Industrial Engineering - BS

Industrial and systems engineering is a discipline devoted to the design, installation, improvement and control of integrated systems of people, materials, and facilities across a wide range of organizations that produce goods or render services. Like other engineering fields, industrial and systems engineering is concerned with solving problems through the application of specialized knowledge in mathematics and science, as well as the principles of engineering. Two major distinctions of our discipline, among the engineering disciplines, is the unique focus of industrial and systems engineering on human factors and the quantification and systematic removal of uncertainty from production systems. Industrial and systems engineering has five major focus areas: advanced manufacturing, operations research, data sciences and machine learning, health and human systems, and systems engineering.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

```
First Year
Fall
CHEM 107 General Chemistry for Engineering Students 1,4 3
CHEM 117 General Chemistry for Engineering Students Laboratory 1,4 1
ENGL 103 or ENGL 104 Introduction to Rhetoric or Composition 1 3
ENGR 102 Engineering Lab I - Computation 1 2
MATH 151 Engineering Mathematics I 1,2 4
University Core Curriculum (p. 25) 3 3
Total Semester Credit Hours 16

Spring
ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics 1 2
MATH 152 Engineering Mathematics II 1 4
PHYS 206 Newtonian Mechanics for Engineering and Science 1 3
University Core Curriculum (p. 25) 3 3
Select one of the following: 3-4
CHEM 120 Fundamentals of Chemistry II 4
University Core Curriculum (p. 25) 3,5 3
Total Semester Credit Hours 15-16
Total Semester Credit Hours 31-32
```

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

4 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism 1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>MMET 181</td>
<td>Manufacturing and Assembly Processes I</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science 1</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 304</td>
</tr>
<tr>
<td>ISEN 210</td>
</tr>
<tr>
<td>ISEN 230</td>
</tr>
<tr>
<td>MEEN 222/ MSEN 222</td>
</tr>
<tr>
<td>MEEN 221</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 310</td>
<td>Uncertainty Modeling for Industrial Engineering</td>
</tr>
<tr>
<td>ISEN 320</td>
<td>Operations Research I</td>
</tr>
<tr>
<td>ISEN 330</td>
<td>Human Systems Interaction</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>BAEN 320</td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td>ECEN 215</td>
<td>Principles of Electrical Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEEN 315</th>
<th>Principles of Thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 340</td>
</tr>
<tr>
<td>ISEN 350</td>
</tr>
<tr>
<td>ISEN 355</td>
</tr>
<tr>
<td>ISEN 370</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
<tr>
<td>High Impact Experience 6</td>
</tr>
<tr>
<td>ISEN 399</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 460</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

The Bachelor of Science degree in Industrial Engineering requires a grade of C or better for required industrial engineering (ISEN) courses. If a course is repeated, only the most recent grade is used in fulfilling this requirement.

Total Program Hours 128

Industrial Engineering - 5-Year Bachelor of Science/Master of Public Health in Occupational Safety and Health

The National Science Foundation (NSF) Engineering Research Center (ERC) on Precise Advanced Technologies and Health Systems for Underserved Populations (PATHS-UP), has a goal of addressing the grand challenge of overcoming the human and economic burden of diabetes and heart disease in underserved communities. The proposed combined program, BS in Industrial Engineering and MPH in Occupational Safety & Health, helps satisfy the need for engineers with formal education in health to bolster the quality of life to the public in underserved areas. In particular, our engineers will be immersed in the practical health related issues prevalent in these areas and help engineer technologies that can overcome the barriers usually faced by point-of-care devices. A second goal of the PATHS-UP program is to recruit and educate a diverse group of scientists and engineers who will lead the future in developing
enabling technologies to improve health in underserved communities. This combined program is targeted at accomplishing this second goal, thus enabling the first.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is identical for degrees in aerospace engineering, computer engineering, and mechanical engineering technology. However, students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
<td>CHEM 117 General Chemistry for Engineering Students</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students</td>
<td>1</td>
<td>ENGL 103 Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGR 102 Engineering Lab I - Computation</td>
<td>2</td>
<td>MATH 151 Engineering Mathematics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab II - Electricity and Magnetism</td>
<td>2</td>
<td>ISEN 310 Uncertainty Modeling for Industrial Engineering</td>
</tr>
<tr>
<td>MATH 251 Engineering Mathematics III</td>
<td>3</td>
<td>ISEN 210 Fundamentals of Industrial Engineering Design</td>
</tr>
<tr>
<td>MMET 181 Manufacturing and Assembly Processes I</td>
<td>3</td>
<td>ISEN 230 Informatics for Industrial Engineers</td>
</tr>
<tr>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
<td>MATH 304 Linear Algebra</td>
</tr>
<tr>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
<td>MEEN 221 Statics and Particle Dynamics</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
<td>CSCE 206 Structured Programming in C</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Notes

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEN 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEN 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER CREDIT HOURS</td>
<td>Fall</td>
</tr>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students</td>
<td>1</td>
</tr>
<tr>
<td>ENGR 102 Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER CREDIT HOURS</td>
<td>Fall</td>
</tr>
<tr>
<td>ENGR 217/PHYS 217 Experimental Physics and Engineering Lab II - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251 Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MMET 181 Manufacturing and Assembly Processes I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A grade of C or better is required.</td>
<td>1</td>
</tr>
<tr>
<td>Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.</td>
<td>2</td>
</tr>
</tbody>
</table>
Third Year

Fall
- ISEN 320 Operations Research I \(^1\)
- ISEN 330 Human Systems Interaction \(^1\)
- MATH 308 Differential Equations
- MSEN 222/MEEN 222 Materials Science
- Select one of the following:
 - PHEO 678 Principles of Thermodynamics
 - ECEN 215 Principles of Electrical Engineering
 - ISEN 399 Professional Development
- Semester Credit Hours 15

Spring
- ISEN 340 Operations Research II \(^1\)
- ISEN 350 Quality Engineering \(^1\)
- ISEN 355 System Simulation \(^1\)
- ISEN 370 Production Systems Engineering \(^1\)
- High Impact Experience \(^7\)
- ISEN 399 Professional Development
- University Core Curriculum (p. 25) \(^6\)
- Semester Credit Hours 18

Fourth Year

Fall
- PHEO 618 Occupational Safety
- SOPH 601 Thinking in Populations: The Public Health Mindset
- SOPH 602 Investigation and Control: Acute Public Health Events
- SOPH 603 Assessment and Intervention: Wicked Problems in Public Health
- Technical elective
- Semester Credit Hours 17

Spring
- ISEN 460 Capstone Senior Design \(^1\)
- PHEO 640 Industrial Hygiene
- PHEO 678 Occupational Biomechanics \(^6\)
- SOPH 604 Framing and Persuasion: Public Health in the Public Sphere
- University Core Curriculum (p. 25) \(^3\)
- Semester Credit Hours 13

Summer
- SOPH 684 Practicum
- University Core Curriculum (p. 25)
- Semester Credit Hours 3

Fifth Year

Fall
- ISEN 630 Human Operator in Complex Systems
- or ISEN 631 or Cognitive Systems Engineering
- PHEO 630 Environmental/Occupational Diseases
- PHEO 682 Industrial and System Safety
- PHEB 602 Biostatistics I
- Semester Credit Hours 12

6. Courses taken for credit in both the undergraduate and graduate degree for a combined total of 12 hours: PHEO 618, PHEO 640, PHEO 678, PHEO 679.

7. All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the INEN advising office.

8. ISEN/PHEO electives are approved by the BS/MPH program director and graduate advisor.

The program includes a total of 170 hours which up to 12 hours may be applied toward both the Bachelor of Science in Industrial Engineering and the Master of Public Health in Occupational Safety and Health.

Total Program Hours 170

Industrial Engineering - 5-year Bachelor of Science/Master of Science in Finance

Industrial and systems engineering has a long-standing history and unique place among engineering majors as the academic discipline responsible for the economic viability of productive systems across industries. Industrial engineers are keenly aware of the goals and objectives of the enterprise. Additionally, industrial engineers receive a core curriculum in the rigorous underpinnings requisite for the quantification of uncertainty and the mitigation of financial risk to the enterprise. This 3+2 degree ensures that the successful graduate from the Mays School of Business, department of finance, has a solid background in both the stochastic processes used to characterize and model the uncertainty coupled with the financial acumen requisite to ensure the economic viability of the enterprise. Students of the industrial and systems engineering program will take advantage of a series of internships and practicums that expose the undergraduate to various facets of financial stability and instability in industry. This program will produce a select and skilled group of industrial leaders that will take their place in the industrial world ensuring the viability of productive organizations around the globe.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in
Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

For BS-PTE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 210, ENGR 210, or COMM 205) and/or 3 hours to UCC elective.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3,5</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251</td>
<td>3</td>
</tr>
<tr>
<td>MMET 181</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 121</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 206</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 640</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 210</td>
<td>4</td>
</tr>
<tr>
<td>ISEN 230</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 320</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 221</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>19</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 601</td>
<td>3</td>
</tr>
<tr>
<td>FINC 602</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 327</td>
<td>3</td>
</tr>
<tr>
<td>FINC 601</td>
<td>1</td>
</tr>
<tr>
<td>ISEN 310</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 320</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 330</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 340</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 350</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 355</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 370</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
</tbody>
</table>

Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.
Industrial Engineering - Minor

The program includes a total of 164 hours which up to 9 hours may be applied toward both the Bachelor of Science in Industrial Engineering and the Master of Science in Finance.

Total Program Hours 164

Industrial Engineering - Minor

The minor in Industrial and Systems Engineering provides students with the knowledge, skills, and experience related to several of the core areas of ISEN including: operations research, data analytics, human systems design, and production system engineering. Quantification of uncertainty, mathematical modeling, decision making, and process design are skills endemic to ISEN. The electives reflect the diverse nature of the discipline and are aligned with the needs of industry. Industrial and systems engineering, based on the latest Bureau of Labor Statistics numbers, stands as the second largest engineering discipline in the U.S. Industrial and systems engineers are employed across the nearly 450 industry types as identified in the Standard Industrial Classification system. Industrial and systems engineering is focused on the economic viability of productive organizations within those industries. This minor provides the student with a highly marketable knowledge base and skillset that is in high demand in today's global economy.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 310</td>
<td>Uncertainty Modeling for Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 320</td>
<td>Operations Research I</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 370</td>
<td>Production Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ISEN 230</td>
<td>Informatics for Industrial Engineers</td>
<td></td>
</tr>
<tr>
<td>ISEN 330</td>
<td>Human Systems Interaction</td>
<td></td>
</tr>
<tr>
<td>ISEN 340</td>
<td>Operations Research II</td>
<td></td>
</tr>
<tr>
<td>ISEN 350</td>
<td>Quality Engineering</td>
<td></td>
</tr>
<tr>
<td>ISEN 355</td>
<td>System Simulation</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must make a grade of 'C' or better in all courses.

Data Center Operations Engineering - Certificate

With the rapid acceleration of technology through innovation on a global basis, industries recognize the need for young engineers who possess base line knowledge in areas of data system management and an understanding of the system level of complex data center processing systems. In both government and industry there is a growing need for undergraduate engineering students that possess the requisite knowledge and skill sets pertaining to complex data systems management and this certificate program includes a set of courses to assure students develop this knowledge and skill set. Completion of this certificate requires completion of the following educational outcomes:

1. to know and apply principles of engineering management
2. to understand principles of systems level engineering and their application to specific data center system operations
3. to be able to go beyond understanding concepts and demonstrate appropriate usage of systems engineering principles in a design context

For additional information, contact the Data Center Operations Engineering Certificate coordinator or Engineering Academic and Student Affairs, EABB, (979) 845-7200.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEN 440</td>
<td>Systems Thinking</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 438</td>
<td>Distributed Systems</td>
<td></td>
</tr>
<tr>
<td>CSCE 444</td>
<td>Structures of Interactive Information</td>
<td></td>
</tr>
<tr>
<td>CSCE 470</td>
<td>Information Storage and Retrieval</td>
<td></td>
</tr>
<tr>
<td>ECEN 455</td>
<td>Digital Communications</td>
<td></td>
</tr>
<tr>
<td>ISEN 340</td>
<td>Operations Research II</td>
<td></td>
</tr>
<tr>
<td>ISEN 350</td>
<td>Quality Engineering</td>
<td></td>
</tr>
<tr>
<td>ISEN 414</td>
<td>Total Quality Engineering</td>
<td></td>
</tr>
<tr>
<td>ISEN 442</td>
<td>Organizational Systems</td>
<td></td>
</tr>
<tr>
<td>ISEN 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>MEEN 461</td>
<td>Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>MEEN 436</td>
<td>Principles of Heating, Ventilating and Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>MEEN 421</td>
<td>Thermal-Fluids Analysis and Design</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Department of Materials Science and Engineering

The Department of Materials Science and Engineering is jointly operated by the College of Engineering and College of Science.

The department offers Bachelor of Science, Master of Engineering, Master of Science and Doctor of Philosophy degrees. This multidisciplinary department includes faculty members from several disciplines, including aerospace engineering, biology, biomedical engineering, chemical engineering, chemistry, electrical engineering, mechanical engineering, nuclear engineering and physics. Many of today's most pressing scientific problems stem from the limitations of materials currently available, and this department is at the forefront of new knowledge and discovery at Texas A&M University.

What is Materials Science and Engineering?

Materials science and engineering involves the characterization of the physical and chemical properties of solid materials—metals and alloys, ceramics, magnetic materials, polymers, optical materials, semiconductors, superconductors, and composites—for the purpose of using, changing, or enhancing inherent properties to create or improve end products. Materials science and engineering involves examining how the microstructure (crystalline or amorphous) of a material can be changed to influence the strength, electrical conductivity, optical, or magnetic properties of a material. This field is inherently multidisciplinary, encompassing mechanical, chemical, biomedical, civil, electrical, and aerospace engineering; physics; and chemistry.

Materials science comprises the study of materials from the macro to the atomic scale—from highway building materials to carbon nanotubes—but, independent of scale, the study of materials is concerned fundamentally with the effect of structure and chemistry on the properties of materials. Materials have historically been so important that different eras of civilization were named according to the materials from which tools were fabricated; for example, the Stone Age, the Bronze Age, and the Iron Age. The development of the semiconductor spawned the modern era of information technology often called the Silicon Age. Advances in
Materials science might make this new millennium the Biomaterials/Nanomaterials/Optical Materials Age.

What do Materials Scientists and Engineers do?

In industry, materials scientists and engineers work with natural or synthetic materials and, most often, with combinations of materials, to improve existing products or to develop novel products. For instance, at Intel, the developer of the processing chip used in most PCs, materials scientists optimize the materials used in chip packaging, balancing differing coefficients of thermal expansion, head dissipation, brittleness and compliance, and cost for optimum performance and economic feasibility.

Other materials scientists are on the forefront of the revolution in biotechnology, developing materials for the components of artificial joints, heart valves, and other replacement body parts. Smart materials show a tremendous potential in medical and dental applications, such as compressible stents that reform to their intended shape upon contact with body heat once inserted into an artery, ceramic cement for bone repair, or shape-memory alloys to correct misplaced teeth or spine curvature. (Smart materials have one or more properties that can be dramatically altered, such as multiviscosity oil, with a viscosity that varies with temperature.)

Related research involves developing smaller and more reliable components, such as ferromagnetic activators acting as tiny machines in military and other applications. In aerospace engineering, materials scientists are developing airframe and fuselage materials with high strength-to-weight ratios, as well as developing smart materials into integrated sensors and actuators for reconfigurable wings and other adaptive structures.

For more information, visit the Department of Materials Science and Engineering (http://engineering.tamu.edu/materials/) website.

Faculty

Akbulut, Mustafa, Associate Professor
Materials Science & Engr
PHD, University of California, Santa Barbara, 2007

Alge, Daniel L, Assistant Professor
Materials Science & Engr
PHD, Purdue University, 2010

Arroyave, Raymundo, Professor
Materials Science & Engr
PHD, Massachusetts Inst of Technology, 2004

Asadi, Amir, Assistant Professor
Materials Science & Engr
PHD, University of Manitoba, 2013

Atli, Kadri Can, Research Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2011

Balbuena, Perla B, Professor
Materials Science & Engr
PHD, University of Texas, 1996

Banerjee, Sarbajit, Professor
Materials Science & Engr
PHD, State University of New York at Stony Brook, 2004

Batteas, James D, Professor
Materials Science & Engr
PHD, University of California, Berkeley, 1995

Bazzi, Hassan, Professor
Materials Science & Engr
PHD, McGill University, 2003

Benzeraga, Amine A, Professor
Materials Science & Engr

Bullard, Jeffrey, Professor
Materials Science & Engr
PHD, University of California - Berkeley, 1993

Cagin, Tahir, Professor
Materials Science & Engr
PHD, Clemson University, 1988

Case, Raymundo P, Professor of the Practice
Materials Science & Engr
PHD, University of Manchester Institute of Science and Technology, 2002

Castaneda-Lopez, Homero, Associate Professor
Materials Science & Engr
PHD, Penn State University, 2001

Cheng, Zheng Dong, Professor
Materials Science & Engr
PHD, Princeton University, 1999

Creasy, Terry S, Associate Professor
Materials Science & Engr
PHD, University of Delaware, 1997

Demkowicz, Michal J, Associate Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2005

Elabd, Yossef A, Professor
Materials Science & Engr
PHD, Johns Hopkins University, 2001

Elwany, Alaa Mohamed, Assistant Professor
Materials Science & Engr
PHD, Georgia Institute of Technology, 2009

Fang, Lei, Assistant Professor
Materials Science & Engr
PHD, Northwestern University, 2010

Gaharwar, Akhilesh K, Assistant Professor
Materials Science & Engr
PHD, Purdue University, 2011

Grasley, Zachary C, Professor
Materials Science & Engr
PHD, University of Illinois Urbana Champaign, 2006

Green, Micah, Associate Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2007
Grunlan, Jaime C, Professor
Materials Science & Engr
PHD, University of Minnesota, 2001

Grunlan, Melissa A, Professor
Materials Science & Engr
PHD, University of South Carolina, 2004

Guo, Bing, Assistant Professor
Materials Science & Engr
PHD, Tsinghua University, China, 1998

Harris, Harlan R, Associate Professor
Materials Science & Engr
PHD, Texas Tech University, 2003

Hartl, Darren, Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2009

Hemmer, Philip R, Professor
Materials Science & Engr
PHD, Massachusetts Inst of Technology, 1984

Hipwell, M Cynthia, Professor
Materials Science & Engr
PHD, University of California-Berkeley, 1996

Hwang, Wonmuk, Associate Professor
Materials Science & Engr
PHD, Boston University, 2001

Jeong, Hae-Kwon, Associate Professor
Materials Science & Engr
PHD, University of Minnesota, 2004

Kameoka, Jun, Professor
Materials Science & Engr
PHD, Cornell University, 2002

Kane, Matthew H, Associate Professor
Materials Science & Engr
PHD, Georgia Institute of Technology, 2007

Karaman, Ibrahim, Professor
Materials Science & Engr
PHD, University of Illinois - Urbana-Champaign, 2000

Katehi-Tseregounis, Linda, Professor
Materials Science & Engr
PHD, University of California, 1984

Kolluru, Pavan, Assistant Professor
Materials Science & Engr
PHD, University of Illinois - Urbana-Champaign, 2014

Kuo, Yue, Associate Professor
Materials Science & Engr
PHD, Columbia University, 1980

Kuttolamadom, Mathew A, Assistant Professor
Materials Science & Engr
PHD, Clemson University, 2012

Lagoudas, Dimitris C, Professor
Materials Science & Engr
PHD, Lehigh University, 1986

Le Graverend, Jean-Briac B, Associate Professor
Materials Science & Engr
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Liang, Hong, Professor
Materials Science & Engr
PHD, Stevens Institute of Technology, 1992

Lin, Paotai, Assistant Professor
Materials Science & Engr
PHD, Northwestern University, 2009

Lutkenhaus, Jodie, Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2007

Ma, Chao, Assistant Professor
Materials Science & Engr
PHD, University of California, 2015

Mansoor, Bilal, Assistant Professor
Materials Science & Engr
PHD, University of Michigan, 2010

McDeavitt, Sean M, Associate Professor
Materials Science & Engr
PHD, Purdue University, 1992

McShane II, Michael J, Professor
Materials Science & Engr
PHD, Texas A&M University, 1999

Michaudel, Quentin, Assistant Professor
Materials Science & Engr
PHD, The Scripps Research Institute, 2015

Naraghi, Mohammad, Assistant Professor
Materials Science & Engr
PHD, University of Illinois at Urbana Champaign, 2009

Naugle, Donald G, Professor
Materials Science & Engr
PHD, Texas A&M University, 1965

Needleman, Alan, University Distinguished Professor
Materials Science & Engr
PHD, Harvard University, 1971

Nyakiti, Luke O, Assistant Professor
Materials Science & Engr
PHD, Texas Tech University, 2008

Ozmetin, Ali E, Research Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2009

Pentzer, Emily, Associate Professor
Materials Science & Engr
PHD, Northwestern University, 2010
Pharr IV, George M, Professor
Materials Science & Engr
PHD, Stanford University, 1979

Pharr, George, Assistant Professor
Materials Science & Engr
PHD, Harvard University, 2014

Qian, Xiaofeng, Assistant Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2008

Radovic, Miladin, Professor
Materials Science & Engr
PHD, Drexel University, 2001

Reddy, Junuthula, Professor
Materials Science & Engr
PHD, University of Alabama at Huntsville, 1974

Ross Jr, Joseph H, Professor
Materials Science & Engr
PHD, University of Illinois at Urbana-Champaign, 1986

Sagapuram, Dinakar, Assistant Professor
Materials Science & Engr
PHD, Purdue University, 2013

Seminario, Jorge M, Professor
Materials Science & Engr
PHD, Southern Illinois University Carbondale, 1987

Shamberger, Patrick J, Assistant Professor
Materials Science & Engr
PHD, University of Washington, 2010

Shao, Lin, Professor
Materials Science & Engr
PHD, University of Houston, 2001

Sheldon, Matthew T, Assistant Professor
Materials Science & Engr
PHD, University of California, Berkeley, 2010

Srivastava, Ankit, Assistant Professor
Materials Science & Engr
PHD, University of North Texas, 2013

Su, Hung-Jue, Professor
Materials Science & Engr
PHD, University of Michigan - Ann Arbor, 1988

Sukhishvili, Svetlana A, Professor
Materials Science & Engr
PHD, Lomonosov Moscow State University, 1989

Talreja, Ramesh R, Professor
Materials Science & Engr
PHD, The Technical University of Denmark, 1974

Teizer, Winfried, Associate Professor
Materials Science & Engr
PHD, University of Massachusetts - Amherst, 1998

Thomas, Edwin L, Visiting Professor
Materials Science & Engr
PHD, Cornell, 2018

Tu, Qing, Assistant Professor
Materials Science & Engr
PHD, Duke University, 2017

Vaddiraju, Sreeram, Associate Professor
Materials Science & Engr
PHD, University of Louisville, 2006

Wang, Jyhwen, Professor
Materials Science & Engr
PHD, Northwestern University, 1991

Wang, Shiren, Associate Professor
Materials Science & Engr
PHD, Florida State University, 2006

Whitcomb, John D, Professor
Materials Science & Engr
PHD, Virginia Tech, 1988

Wilkerson, Justin, Assistant Professor
Materials Science & Engr
PHD, Johns Hopkins University, 2014

Williams, Richard, Professor
Materials Science & Engr
PHD, University of California at Berkeley, 1978

Wong, Zi Jing, Assistant Professor
Materials Science & Engr
PHD, University of California, Berkeley, 2015

Wooley, Karen L, Professor
Materials Science & Engr
PHD, Cornell University, 1993

Wu, Wenhao, Associate Professor
Materials Science & Engr
PHD, University of Chicago, 1992

Xie, Yu Xuan, Assistant Professor
Materials Science & Engr
PHD, University of Sydney, 2013

Yu, Chongho, Associate Professor
Materials Science & Engr
PHD, University of Texas - Austin, 2004

Zhou, Hongcai J, Professor
Materials Science & Engr
PHD, Texas A&M University, 2000

Majors
- Bachelor of Science in Materials Science and Engineering (p. 459)

Minors
- Materials Science and Engineering Minor (p. 460)
Certificates

- Corrosion Science and Engineering Certificate (p. 461)

Materials Science and Engineering - BS

Materials Science and Engineering is an interdisciplinary field centered on understanding the physical properties of matter and designing materials with specific properties to serve a desired function. Materials scientists study the connections between the synthesis and processing of a material, its underlying structure and its resulting properties. Materials engineers develop materials and manufacturing techniques and integrate these materials into commercial products.

Program Highlights

1. Flexibility to engage in one or more of several defined concentration areas, or with guidance of a faculty mentor, create a custom concentration area.

2. Opportunities to participate in internships with industry partners or research in academic labs.

3. Integration of laboratory experience with computational simulation.

4. Preparation for employment as a professional engineer across a range of industries including energy, biomedical, semiconductor, and defense sectors.

The curriculum builds on a strong foundation in chemistry, physics and mathematics to explore the fundamental concepts and techniques critical to the field of materials science and engineering. Students have the flexibility to explore interdisciplinary studies or to focus in greater depth on one or more areas of concentration in the allotted nine hours of technical electives and nine hours of free electives.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td></td>
<td>ENGL 103/ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td></td>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td></td>
<td>ENGL 103/ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td></td>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- CHEM 120 | Fundamentals of Chemistry II | 4 |

Total Semester Credit Hours: 15-16

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 31-32

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGR 210, or COMM 205) and/or 3 hours to UCC elective.
Materials Science and Engineering - Minor

The Department of Materials Science and Engineering minor (http://engineering.tamu.edu/materials/academics/degrees/undergraduate/minor/) degree program is designed to provide a strong materials science educational program for undergraduate science and engineering majors and to integrate a materials focus into their undergraduate training. It is intended for students who are interested in broadening their understanding of materials processing and structure–property relationships to complement their major degree. Students will have the flexibility to select relevant coursework in order to customize this program of study to best suit the particular student’s intended area of focus through consultation with an MSEN faculty advisor.

The minor program in materials science and engineering consists of a minimum of five (5) three-hour courses for a total of 15 credit hours, with up to 6 credit hours in materials courses within their major. All students are required to have completed a prerequisite, such as MSEN 222/MEEN 222—Materials Science (or an equivalent course)—prior to applying for the minor. One (1), three-hour course (3 credit hours) is selected from one of two core MSEN courses. The remaining four courses (12 credit hours) are selected from upper-level materials focused technical electives. With the permission of the MSEN faculty advisor, students may substitute up to two technical electives with courses from their major department with a primary focus on materials science and engineering. Completion of the minor will be recorded on the student’s university transcript.

For more information, visit the Department of Materials Science and Engineering website (http://engineering.tamu.edu/materials/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEN 210</td>
<td>Thermodynamics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>or MSEN 260 or Structure of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MSEN 200-499 (p. 1085)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Select two of the following</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

1. This is a writing intensive course.
2. Select from any MSEN 300-499 (p. 1085) course not used elsewhere. Students may use up to 3 hours each of MSEN 491, MSEN 485, and MSEN 484.
3. Select in consultation with advisor from MSEN 300-499 (p. 1085); AERO 300-499 (p. 873); BAEN 300-499 (p. 912); BMEN 300-499 (p. 923); CHEN 300-499 (p. 932); CVEN 300-499 (p. 950); CSCE 110, CSCE 300-499 (p. 946); ECEN 300-499 (p. 959); ENGR 300-499 (p. 976); ISEN 300-499 (p. 1032); MEEN 221, MSEN 300-499 (p. 1071); NUC 300-499 (p. 1095); BIL 300-499 (p. 919); CHEM 220, CHEM 227, CHEM 228, CHEM 300-499 (p. 929); MATH 300-499 (p. 1066); PHYS 222, PHYS 300-499 (p. 1115); STAT 211, STAT 212, STAT 300-499 (p. 1154); MGST 309, MKTG 409, FINC 409. All non-MSEN specialty electives must be approved by the Undergraduate Advising Office, on the basis of satisfying one or more of the MSEN BSE program outcomes (e.g., integrating scientific and engineering principles across disciplines).
Corrosion Science and Engineering - Certificate

The Certificate in Corrosion Science and Engineering requires completion of five courses (15 credit hours) and was designed in response to industry demand and the national need in strategic sectors, such as infrastructure renewal, energy (extraction, conversion and transportation), utilities (in particular water), transportation, production and manufacturing.

The curriculum incorporates:

1. cross-disciplinary components on materials science and engineering, thermodynamics, kinetics, and electrochemistry;
2. interdisciplinary, integrative courses on the forms of corrosion, the electrochemical and degradation processes in extreme environments, and the control and mitigation strategies to prevent these processes in specific environments; and
3. elective courses related to different engineering disciplines and applications as well as professional internships in industry and national laboratories.

The goals of the corrosion science and engineering certificate program are to train the next generation of scientists and engineers:

1. who will serve as a trained, advanced workforce for industry, academia, and government agencies with a basic understanding of environmental degradation assets required to optimize asset life cycle, production efficiency, and worker safety;
2. are familiar with the technological and computational tools and methods for corrosion and material degradation evaluation, inspection, detection, and prevention;
3. have interdisciplinary collaborative experience in materials preservation and degradation, with individuals from different science and engineering disciplines;
4. contribute to interdisciplinary efforts while developing a comprehensive understanding of the potentials and limitations of corrosion science and engineering; and
5. acquire skills necessary to thrive in their chosen career path.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEN 440</td>
<td>Materials Electrochemistry and Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>MSEN 444</td>
<td>Corrosion and Electrochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>MSEN 446</td>
<td>Corrosion Prevention and Control Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AERO 413</td>
<td>Aerospace Materials Science</td>
<td></td>
</tr>
<tr>
<td>BMEN 344</td>
<td>Biological Responses to Medical Devices</td>
<td></td>
</tr>
<tr>
<td>CHEN 322</td>
<td>Chemical Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CVEN 306</td>
<td>Materials Engineering for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>MSEN 201</td>
<td>Fundamentals of Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>MSEN 222</td>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td>MEEN 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUEN 265</td>
<td>Materials Science for Nuclear Energy Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AERO 411</td>
<td>Applications of Fracture Mechanics to Aerospace Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must make a grade of C or better in all courses.

Student must achieve an overall GPA of 2.5 in approved minor courses.

Corrosion Science and Engineering - Certificate

The Certificate in Corrosion Science and Engineering requires completion of five courses (15 credit hours) and was designed in response to industry demand and the national need in strategic sectors, such as infrastructure renewal, energy (extraction, conversion and transportation), utilities (in particular water), transportation, production and manufacturing.

The curriculum incorporates:

1. cross-disciplinary components on materials science and engineering, thermodynamics, kinetics, and electrochemistry;
2. interdisciplinary, integrative courses on the forms of corrosion, the electrochemical and degradation processes in extreme environments, and the control and mitigation strategies to prevent these processes in specific environments; and
3. elective courses related to different engineering disciplines and applications as well as professional internships in industry and national laboratories.

The goals of the corrosion science and engineering certificate program are to train the next generation of scientists and engineers:

1. who will serve as a trained, advanced workforce for industry, academia, and government agencies with a basic understanding of environmental degradation assets required to optimize asset life cycle, production efficiency, and worker safety;
2. are familiar with the technological and computational tools and methods for corrosion and material degradation evaluation, inspection, detection, and prevention;
3. have interdisciplinary collaborative experience in materials preservation and degradation, with individuals from different science and engineering disciplines;
4. contribute to interdisciplinary efforts while developing a comprehensive understanding of the potentials and limitations of corrosion science and engineering; and
5. acquire skills necessary to thrive in their chosen career path.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEN 440</td>
<td>Materials Electrochemistry and Corrosion</td>
<td>3</td>
</tr>
<tr>
<td>MSEN 444</td>
<td>Corrosion and Electrochemistry Lab</td>
<td>3</td>
</tr>
<tr>
<td>MSEN 446</td>
<td>Corrosion Prevention and Control Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AERO 413</td>
<td>Aerospace Materials Science</td>
<td></td>
</tr>
<tr>
<td>BMEN 344</td>
<td>Biological Responses to Medical Devices</td>
<td></td>
</tr>
<tr>
<td>CHEN 322</td>
<td>Chemical Engineering Materials</td>
<td></td>
</tr>
<tr>
<td>CVEN 306</td>
<td>Materials Engineering for Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>MSEN 201</td>
<td>Fundamentals of Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>MSEN 222</td>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td>MEEN 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUEN 265</td>
<td>Materials Science for Nuclear Energy Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AERO 411</td>
<td>Applications of Fracture Mechanics to Aerospace Structures</td>
<td>3</td>
</tr>
</tbody>
</table>

Students must make a grade of C or better in all courses.

Student must achieve an overall GPA of 2.5 in approved minor courses.
The objectives of the Mechanical Engineering program are to produce graduates who will:

- have successful careers, and become leaders, in industry and the public sector;
- appropriately apply acquired knowledge, work well with other people, effectively communicate ideas and technical information, and continue to learn and improve; and
- successfully pursue advanced studies, if they so choose, opportunities, and subsequently contribute to the development of advanced concepts and leading edge technologies.

Mechanical engineers should possess a thorough understanding of engineering science as well as analytical and practical skills in one of many basic mechanical engineering specialties. The mechanical engineering curriculum at Texas A&M requires students to develop and apply logical thinking, innovative approaches, and ethical standards as a prerequisite for professional competence. The curriculum consists of basic theory courses complemented by laboratory experiences in dynamic systems and controls, design, experimentation, fluid mechanics, heat transfer, manufacturing, and materials. Elective courses are offered in numerous areas including air conditioning, automotive engineering, computer-aided design, control systems, corrosion, energy conversion, internal combustion engines, manufacturing, materials, mechanical design, polymers, mechatronics, metallurgy, power generation, robotics, stress analysis, fluid mechanics, turbomachinery, and others. The selection of elective courses is dictated by the interests and goals of the student, working with departmental advisors and within the curriculum guidelines.

Many students enhance their education by participating in cooperative education and/or professional internships, which offer opportunities for employment in engineering positions while working toward a degree. Numerous study abroad programs are also available for gaining experience and perspectives in the international arena. Participation in student chapters of professional and honor societies provides leadership opportunities, collegial activities, and learning experiences outside the classroom. Many students also participate in research projects through individual directed studies courses with a professor. The mechanical engineering program culminates with a senior capstone design course sequence highlighted by real-life projects sponsored by various industries. Students benefit from the challenges and gratification that come through direct interaction with practicing engineers.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department. The full bachelor's program is offered on College Station and Qatar campuses. All mechanical engineering undergraduate coursework is offered on both campuses, whereas some coursework is offered synchronously via distance learning.

Faculty

- Allaire, Douglas L, Associate Professor
 Mechanical Engineering
 PHD, Massachusetts Institute of Technology, 2009

- Alvarado, Jorge L, Professor
 Mechanical Engineering
 PHD, University of Illinois, 2004

- Anand, Nagamangala, Professor
 Mechanical Engineering
 PHD, Purdue University, 1983
Antao, Dion S, Assistant Professor
Mechanical Engineering
PHD, Drexel University, 2013

Arroyave, Raymundo, Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 2004

Asadi, Amir, Assistant Professor
Mechanical Engineering
PHD, University of Manitoba, 2013

Balas, Mark, Professor
Mechanical Engineering
PHD, University of Denver, 1974

Balawi, Shadi Omar, Instructional Associate Professor
Mechanical Engineering
PHD, University of Cincinnati, 2007

Banerjee, Debjyoti, Professor
Mechanical Engineering
PHD, University of California, Los Angeles, 1999

Benjamin, Chandler C, Research Assistant Professor
Mechanical Engineering
PHD, University of Wisconsin - Madison, 2017

Borazjani, Iman, Associate Professor
Mechanical Engineering
PHD, University of Minnesota, 2008

Caton, Jerald A, Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1980

Charoenphol, Phapanin, Research Assistant Professor
Mechanical Engineering
DEN, University of Michigan, 2012

Claridge, David E, Professor
Mechanical Engineering
PHD, Stanford University, 1976

Cope, Dale A, Associate Professor of the Practice
Mechanical Engineering
PHD, Wichita State University, 2002

Corleto, Carlos Roberto, Professor of the Practice
Mechanical Engineering
PHD, Texas A&M University, 1990

Darbha, Swaroop V, Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1994

Demkowicz, Michal J, Associate Professor
Mechanical Engineering
PHD, Massachusetts Institute of Technology, 2005

Erdemir, Ali, Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 1986

Felts, Jonathan R, Associate Professor
Mechanical Engineering
DEN, University of Illinois Urbana Champaign, 2013

Freed, Alan D, Professor
Mechanical Engineering
DEN, University of Wisconsin - Madison, 1985

Gao, Huajian, Visiting Professor
Mechanical Engineering
PHD, Harvard University, 1988

Girimaji, Sharath S, Professor
Mechanical Engineering
PHD, Cornell University, 1990

Gonezen, Sevan, Assistant Professor
Mechanical Engineering
PHD, Rensselaer Polytechnic Institute, 2011

Gopalswamy, Swaminathan, Professor of the Practice
Mechanical Engineering
PHD, University of California, 1991

Grunlan, Jaime C, Professor
Mechanical Engineering
PHD, University of Minnesota, 2001

Haglund, John S, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 2003

Hajimirza, Shima, Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2013

Han, Je C, Distinguished Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1977

Hasnain, Zohaib, Research Assistant Professor
Mechanical Engineering
PHD, University of Maryland, 2014

Hassan, Yassin A, Professor
Mechanical Engineering
PHD, University of Illinois, 1980

Hipwell, M Cynthia, Professor
Mechanical Engineering
PHD, University of California-Berkeley, 1996

Hogan, Harry A, Professor
Mechanical Engineering
PHD, Texas A&M University, 1984

Hsieh, Sheng-Jen, Professor
Mechanical Engineering
PHD, Texas Tech University, 1995

Hubbard Jr, James, Professor
Mechanical Engineering
PHD, Massachusetts Institute of Technology, 1982
Hung, Nguyen P, Associate Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1987

Hur, Pilwon, Assistant Professor
Mechanical Engineering
DEN, University of Illinois at Urbana-Champaign, 2010

Jacobs, Timothy J, Professor
Mechanical Engineering
PHD, University of Michigan, 2005

Jarrahbashi, Dorrin, Assistant Professor
Mechanical Engineering
PHD, University of California Irvine, 2014

Jones, Walter, Professor of the Practice
Mechanical Engineering
PHD, Clemson University, 1982

Karaman, Ibrahim, Professor
Mechanical Engineering
PHD, University of Illinois - Urbana-Champaign, 2000

Kim, Haejune, Assistant Professor
Mechanical Engineering
PHD, University of Wisconsin - Milwaukee, 2014

Kim, Won-Jong, Associate Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1997

Kim, Yong-Joe, Associate Professor
Mechanical Engineering
PHD, Purdue University, 2003

Kimber, Mark, Assistant Professor
Mechanical Engineering
PHD, Purdue University, 2008

Kulatilaka, Waruna D, Associate Professor
Mechanical Engineering
DEN, Purdue University, 2006

Lacy, Thomas E., Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 1998

Lan, Shoufeng, Assistant Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2017

Layton, Astrid C, Assistant Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2014

Lee, ChaBum, Assistant Professor
Mechanical Engineering
PHD, Gwangju Institute of Science and Technology, 2012

Lee, Kiju, Associate Professor
Mechanical Engineering
PHD, Johns Hopkins University, 2009

Lewis, Heather S, Lecturer
Mechanical Engineering
MEN, North Carolina State University, 2000

Li, Ying, Professor
Mechanical Engineering
PHD, University of Florida, 2007

Liang, Hong, Professor
Mechanical Engineering
PHD, Stevens Institute of Technology, 1992

Ma, Chao, Assistant Professor
Mechanical Engineering
PHD, University of California, 2015

Malak Jr, Richard J, Associate Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2008

Mathieu, Olivier E, Research Associate Professor
Mechanical Engineering
PHD, University of Orleans, 2006

McAdams II, Daniel A, Professor
Mechanical Engineering
PHD, University of Texas - Austin, 1999

McVay, Matilda W, Instructional Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 1996

Mohiuddin, Mohammad W, Research Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2008

Moreno, Michael R, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 2009

Muliana, Hanifah, Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2004

Needleman, Alan, Professor
Mechanical Engineering
PHD, Harvard University, 1971

O'Neill, Zheng, Associate Professor
Mechanical Engineering
PHD, Oklahoma State University, 2004

Pagilla, Prabhakar R, Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1996

Palazzolo, Alan B, Professor
Mechanical Engineering
PHD, University of Virginia, 1981

Pate, Michael B, Professor
Mechanical Engineering
PHD, Purdue University, 1982
Petersen, Eric L, Professor
Mechanical Engineering
PhD, Stanford University, 1998

Pharr, George, Assistant Professor
Mechanical Engineering
PhD, Harvard University, 2014

Polycarpou, Andreas A, Professor
Mechanical Engineering
PhD, Suny University at Buffalo, 1994

Radovic, Miladin, Associate Professor
Mechanical Engineering
PhD, Drexel University, 2001

Rajagopal, Kumbakonam, Distinguished Professor
Mechanical Engineering
PhD, University of Minnesota, 1978

Rasmusen, Bryan P, Professor
Mechanical Engineering
PhD, University of Illinois, 2005

Rathinam, Sivakumar, Associate Professor
Mechanical Engineering
PhD, University of California, Berkeley, 2007

Reddy, Junuthula N, Distinguished Professor
Mechanical Engineering
PhD, University of Alabama at Huntsville, 1974

Robbins, Andrew B, Visiting Assistant Professor
Mechanical Engineering
PhD, Texas A&M University, 2018

Sanandres, Luis A, Professor
Mechanical Engineering
PhD, Texas A&M University, 1985

Saripalli, Srikanth, Professor
Mechanical Engineering
PhD, University of Southern California, 2007

Schobeiri, Taher M, Senior Professor
Mechanical Engineering
PhD, Technische Universitat Darmstadt, Germany, 1979

Scully, Marlan O, Professor
Mechanical Engineering
PhD, Yale University, 1966

Seets, David, Professor of the Practice
Mechanical Engineering
PhD, University of Texas, 1997

Song, Xingyong, Assistant Professor
Mechanical Engineering
PhD, University of Minnesota, Twin Cities, 2011

Srinivasa, Arun R, Professor
Mechanical Engineering
PhD, University of California, Berkeley, 1991

Staack, David A, Associate Professor
Mechanical Engineering
PhD, Drexel University, 2008

Su, Hung-Jue, Professor
Mechanical Engineering
PhD, University of Michigan - Ann Arbor, 1988

Suh, Chii-Der, Associate Professor
Mechanical Engineering
PhD, Texas A&M University, 1997

Tai, Li-Jung, Associate Professor
Mechanical Engineering
PhD, University of Michigan Ann Arbor, 2011

Tsenn, Joanna N, Instructional Assistant Professor
Mechanical Engineering
PhD, Texas A&M University, 2016

Tseregounis, Spyros, Professor of the Practice
Mechanical Engineering
PhD, University of California, Los Angeles, 1984

Vinayak, Fnu, Assistant Professor
Mechanical Engineering
PhD, Purdue University, 2016

Walsh, Michael, Associate Professor of the Practice
Mechanical Engineering
MFA, University of Southern California, 2001

Wang, Jyhwen, Professor
Mechanical Engineering
PhD, Northwestern University, 1991

Wang, Ya, Associate Professor
Mechanical Engineering
PhD, Virginia Tech, 2012

Wen, Sy-Bor, Associate Professor
Mechanical Engineering
PhD, University of California, Berkeley, 2006

Wilkerson, Justin W, Assistant Professor
Mechanical Engineering
PhD, Johns Hopkins University, 2014

Wright, Lesley M, Associate Professor
Mechanical Engineering
PhD, Texas A&M University, 2006

Yu, Choongho, Associate Professor
Mechanical Engineering
PhD, University of Texas - Austin, 2004

Zambrano-Roman, Byron Alfonso, Research Assistant Professor
Mechanical Engineering
PhD, Michigan State University, 2017

Zhang, Xudong, Professor
Mechanical Engineering
PhD, University of Michigan Ann Arbor, 1997
The mission of the Department of Mechanical Engineering is to serve the students of Texas A&M University, the State of Texas, and the nation by:

- <Referrer: Bachelor of Science in Mechanical Engineering (p. 466)

Minors

- Analysis, Design and Management of Energy Conversion Systems Minor (p. 468)
- Control of Mechanical Systems Minor (p. 468)
- Design and Simulation of Mechanical Systems Minor (p. 468)

Mechanical Engineering - BS

Mechanical engineering is a highly diversified profession. The mechanical engineer designs machines, devices, various products and control systems, and works with the generation, conversion, transmission, and utilization of mechanical and thermal power. Assignments often include analysis and synthesis of mechanical, thermal, and fluid systems. Mechanical engineers are also responsible for characterization, specification, and analysis of materials used in design and manufacturing. Manufacturing systems, robotics, electromechanical devices, and control systems are also the purview of the mechanical engineer. Graduates in mechanical engineering are among the most versatile engineers and enjoy professional employment in industry, government, consulting, and research organizations. The undergraduate program in Mechanical Engineering at Texas A&M University is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

The work of mechanical engineers varies from general engineering to numerous, narrow specialties, as required by the wide variety of employers. A general list, though not in any way exhaustive, of the areas of professional employment opportunities available to mechanical engineers includes: design, construction, controls, materials specification and evaluation, analysis of thermal systems, fluid and solid mechanics, manufacturing, plant engineering, research and development, and technical sales. Many mechanical engineers are promoted to management and administrative positions as well.

The mission of the Department of Mechanical Engineering is to serve the students of Texas A&M University, the State of Texas, and the nation by:

- providing quality education that is well-grounded in the fundamental principles of engineering, fostering innovation and preparing students for leadership positions and successful careers in industry, government, and academia;
- advancing the knowledge base of mechanical engineering to support the competitiveness of existing industry and to spawn new economic development in Texas and the nation through active involvement in basic and applied research in a global context; and
- successfully pursue life-long learning and advanced study opportunities, and subsequently contribute to the development of advanced concepts and leading edge technologies.

The objectives of the Mechanical Engineering program are to produce graduates who will:

- have successful careers, and become leaders, in industry and the public sector;
- appropriately apply acquired knowledge, work well with other people, effectively communicate ideas and technical information, and continue to learn and improve; and
- successfully pursue advanced studies, if they so choose, opportunities, and subsequently contribute to the development of advanced concepts and leading edge technologies.

Mechanical engineers should possess a thorough understanding of engineering science as well as analytical and practical skills in one of many basic mechanical engineering specialties. The mechanical engineering curriculum at Texas A&M requires students to develop and apply logical thinking, innovative approaches, and ethical standards as a prerequisite for professional competence. The curriculum consists of basic theory courses complemented by laboratory experiences in dynamic systems and controls, design, experimentation, fluid mechanics, heat transfer, manufacturing, and materials. Elective courses are offered in numerous areas including air conditioning, automotive engineering, computer-aided design, control systems, corrosion, energy conversion, internal combustion engines, manufacturing, materials, mechanical design, polymers, mechatronics, metallurgy, power generation, robotics, stress analysis, fluid mechanics, turbomachinery, and others. The selection of elective courses is dictated by the interests and goals of the student, working with departmental advisors and within the curriculum guidelines.

Many students enhance their education by participating in cooperative education and/or professional internships, which offer opportunities for employment in engineering positions while working toward a degree. Numerous study abroad programs are also available for gaining experience and perspectives in the international arena. Participation in student chapters of professional and honor societies provides leadership opportunities, collegial activities, and learning experiences outside the classroom. Many students also participate in research projects through individual directed studies courses with a professor. The mechanical engineering program culminates with a senior capstone design course sequence highlighted by real-life projects sponsored by various industries. Students benefit from the challenges and gratification that come through direct interaction with practicing engineers.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120.

Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.
First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102 Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/ PHYS 216 Experimental Physics and Engineering Lab II - Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 15-16

Total Semester Credit Hours: 31-32

1. A grade of C or better is required.

2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/ CHEM 117.

5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
468 Analysis, Design and Management of Energy Conversion Systems - Minor

MEEN 464 Heat Transfer Laboratory 1 1
University Core Curriculum (p. 25) 3 3
Technical elective 7 6
Semester Credit Hours 16

Spring
MEEN 402 Intermediate Design 3 3
Technical electives: See the Mechanical Engineering Academic Advisor’s Office for lists of approved courses. Students must take at least three MEEN technical electives of which at least one course is from the Thermofluids Systems area and at least one course is from Mechanical & Manufacturing Systems area.
Technical elective 7 6
Semester Credit Hours 15
Total Semester Credit Hours 97

6 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the MEEN advising office.
7 Technical electives: See the Mechanical Engineering Academic Advisor’s Office for lists of approved courses. Students must take at least three MEEN technical electives of which at least one course is from the Thermofluids Systems area and at least one course is from Mechanical & Manufacturing Systems area.
8 Select from any 300-499 course.

This curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.

Total Program Hours 128
Analysis, Design and Management of Energy Conversion Systems - Minor

The objectives of the Mechanical Engineering (MEEN) minor in Analysis, Design and Management of Energy Conversion Systems are to expand the working knowledge of mechanical engineering principles to broader engineering activities and to provide non-MEEN students with a specialized aspect of mechanical engineering to enhance their skillset and capabilities within their discipline-specific field. Candidates for a Mechanical Engineering minor must be high-achieving in their own discipline. Students may apply for the minor as early as their fourth semester of college but before their seventh semester of college.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 363</td>
<td>Dynamics and Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 364</td>
<td>Dynamic Systems and Controls</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 431</td>
<td>Advanced System Dynamics and Controls</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 408</td>
<td>Mechanics of Robotic Manipulators</td>
</tr>
<tr>
<td>MEEN 411</td>
<td>Mechanical Controls</td>
</tr>
<tr>
<td>MEEN 432</td>
<td>Automotive Engineering</td>
</tr>
<tr>
<td>MEEN 433</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MEEN 434</td>
<td>Dynamics and Modeling of Mechatronic System</td>
</tr>
<tr>
<td>MEEN 459</td>
<td>Sound and Vibration Measurements</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Minimum of 6 hours at 300- to 400-level.

3.5 minimum overall GPA.

Prerequisites of required and elective courses must have a grade of ‘C’ or better even if not counting toward degree or minor.

Design and Simulation of Mechanical Systems - Minor

The objectives of the Mechanical Engineering (MEEN) minor in Design and Simulation of Mechanical Systems are to expand the working knowledge of mechanical engineering principles to broader engineering activities and to provide non-MEEN students with a specialized aspect of mechanical engineering to enhance their skill set and capabilities within their discipline-specific field. Candidates for a Mechanical Engineering minor must be high-achieving in their own discipline. Students may apply for the minor as early as their fourth semester of college but before their seventh semester of college.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 344</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 421</td>
<td>Thermal-Fluids Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 461</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two from:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 410</td>
<td>Internal Combustion Engines</td>
</tr>
<tr>
<td>MEEN 436</td>
<td>Principles of Heating, Ventilating and Air Conditioning</td>
</tr>
<tr>
<td>MEEN 437</td>
<td>Principles of Building Energy Analysis</td>
</tr>
<tr>
<td>MEEN 472</td>
<td>Gas Dynamics</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Minimum of 6 hours at 300- to 400-level.

3.5 minimum overall GPA.

Prerequisites of required and elective courses must have a grade of ‘C’ or better even if not counting toward degree or minor.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 363</td>
<td>Dynamics and Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 368</td>
<td>Solid Mechanics in Mechanical Design</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 475</td>
<td>Materials in Design</td>
<td>3</td>
</tr>
<tr>
<td>Select two from:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MEEN 441</td>
<td>Design of Mechanical Components and Systems</td>
<td></td>
</tr>
<tr>
<td>MEEN 442</td>
<td>Computer Aided Engineering</td>
<td></td>
</tr>
<tr>
<td>MEEN 444</td>
<td>Finite Element Analysis in Mechanical Engineering</td>
<td></td>
</tr>
<tr>
<td>MEEN 460</td>
<td>Corrosion Engineering</td>
<td></td>
</tr>
<tr>
<td>MEEN 467</td>
<td>Mechanical Behavior of Materials</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Minimum of 6 hours at 300- to 400-level.

3.5 minimum overall GPA.

Prerequisites of required and elective courses must have a grade of 'C' or better even if not counting toward degree or minor.

Department of Nuclear Engineering

Nuclear Engineering

Nuclear engineering deals with the application and utilization of nuclear processes and radiations. The use of nuclear energy for the production of electrical power is a mature industry. Nuclear engineers work on all aspects of the nuclear fuel cycle and for many different types of employers such as government and private labs, regulatory agencies, reactor vendors, utilities and architect engineers. In addition, nuclear energy for space applications is a rapidly expanding field. Radionuclide technology in industry and medicine requires a large number of well-trained radiological health engineers. To supply qualified engineers, the Department of Nuclear Engineering offers curricula leading to the Bachelor of Science degree in Nuclear Engineering and is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

The missions of the Department of Nuclear Engineering are:

- to produce high-quality graduates from the undergraduate through the doctoral levels to help meet the technical manpower needs of our state, region, nation, and the international community;
- to conduct research, including collaboration with research in related fields, to advance the state of knowledge in these disciplines in support of the needs of society; and
- to perform service in these disciplines for many constituencies including our College and University, industry, government and national laboratories, professional organizations, and the public.

In fulfilling these missions, the objective of the undergraduate program is to prepare students for success in their professional endeavors following the baccalaureate degree. These endeavors may include direct employment in the private or public sectors, graduate studies in engineering or science, professional studies in medicine, business, law or public administration, service in the military, or entrepreneurial activities. To achieve this purpose, four principal educational objectives are identified. Graduates of our Bachelor of Science program in Nuclear Engineering:

1. will work on the challenges of maintenance, improvement, innovation, education, and research in nuclear power and industrial utilization of nuclear radiation and radionuclides. In this work, they will fulfill independent assignments, engage in collaborations, and manage the work of others with effective communications characterizing all phases of their responsibilities;
2. will conduct their professional activities with full recognition of the choices and challenges implicit to their work, to its ethical dimensions, and to their implications for matters beyond their immediate tasks;
3. will take the local, global, historical, social, economic, and political settings into account in both their domestic and international endeavors; and
4. will recognize and utilize both the accumulated body of results from prior work and the continuing evolution of science and technology as essential resources for the effective conduct of their work.

The nuclear engineering baccalaureate degree programs stress engineering science fundamentals and mathematics. However, considerable numbers of elective hours are available in the curriculum to permit students to broaden their educations as desired.

Most of the facilities used in the MS and PhD programs are also used in the undergraduate degree programs. These facilities make the Department of Nuclear Engineering one of the best equipped in the United States. Texas A&M is now the only University in the United States with two nuclear reactors on its campus.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Faculty

Adams, Marvin L, Professor
Nuclear Engineering
PhD, University of Michigan - Ann Arbor, 1986

Ahmed, Karim E, Assistant Professor
Nuclear Engineering
PhD, Purdue University, 2015

Chirayath, Sunil S, Associate Professor
Nuclear Engineering
PhD, University of Madras, 2005

Dewji, Shaheen Azim, Assistant Professor
Nuclear Engineering
PhD, Georgia Institute of Technology, 2014

Ford, John R, Associate Professor
Nuclear Engineering
PhD, University of Tennessee, 1992

Fulvio, Pasquale, Research Assistant Professor
Nuclear Engineering
PhD, Kent State University, 2009

Hassan, Yassin A, Professor
Nuclear Engineering
PhD, University of Illinois, 1980
Kimber, Mark L, Assistant Professor
Nuclear Engineering
PHD, Purdue University, 2008

Kirkland, Karen V, Professor
Nuclear Engineering
PHD, The University of Tokyo, 1999

Kurwitz, Richard C, Senior Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2009

Marianno, Craig M, Assistant Professor
Nuclear Engineering
PHD, Oregon State University, 2000

Marlow, William H, Senior Professor
Nuclear Engineering
PHD, University of Texas, 1973

McDeavitt, Sean M, Professor
Nuclear Engineering
PHD, Purdue University, 1992

Miller, Warren, Professor of the Practice
Nuclear Engineering
PHD, Northwestern University, 1973

Morel, Jim E, Professor
Nuclear Engineering
PHD, The University of New Mexico, 1979

Nastasi, Michael, Professor
Nuclear Engineering
PHD, Cornell University, 1986

Nguyen, Duy T, Research Assistant Professor
Nuclear Engineering
DEN, Ritsumeikan University, 2010

Ostrovskaya, Natela G, Senior Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2005

Peddicord, Kenneth L, Professor
Nuclear Engineering
PHD, University of Illinois, 1972

Prasad, Shikha, Assistant Professor
Nuclear Engineering
PHD, University of Michigan, Ann Arbor, 2012

Ragusa, Jean C, Professor
Nuclear Engineering
PHD, Institut National Polytechnique de Grenoble, France, 2002

Shao, Lin, Professor
Nuclear Engineering
PHD, University of Houston, 2001

Tano Retamales, Mauricio, Visiting Assistant Professor
Nuclear Engineering
PHD, IMEP-2 Doctoral School of Grenoble INP, 2018

Tsvetkov, Pavel V, Associate Professor
Nuclear Engineering
PHD, Texas A&M University, 2002

Tsvetkova, Galina V, Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2003

Vaghetto, Rodolfo, Research Assistant Professor
Nuclear Engineering
PHD, Texas A&M University, 2013

Waer, Richard, Associate Professor of the Practice
Nuclear Engineering
BS, The University of Arizona, 1989

Majors

- Bachelor of Science in Nuclear Engineering (p. 470)

Minors

- Nuclear Engineering Minor (p. 472)
- Radiological Health Engineering Minor (p. 472)

Nuclear Engineering - BS

The Bachelor of Science in Nuclear Engineering degree program aims to educate and prepare future nuclear engineering professionals, researchers and leaders in the fields of nuclear science and nuclear technologies, including nuclear reactor design/operation/simulation/maintenance, nuclear energy production, radiation detection, radiological health technologies, computational method developments, nuclear materials, nuclear security and nuclear policies. The program is built upon a solid foundation and training from physics, mathematics and mechanical engineering. The program integrates fundamentals, applications and hands-on practices in nuclear-specific topics. Upon graduation, students are ready for jobs in academic fields, national laboratories, industry and professional schools. Students can expect to be instilled with the highest standards of professional and ethical behavior, and prepared to meet the complex challenges associated with nuclear science and engineering.

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.
Select one of the following:

- University Core Curriculum
- PHYS 206
- MATH 152
- PHYS 217

Spring

- ENGR 216/PHYS 216: Experimental Physics and Engineering Lab II - Mechanics
- MATH 152: Engineering Mathematics II
- PHYS 206: Newtonian Mechanics for Engineering and Science

University Core Curriculum (p. 25) 3

Select one of the following:

- CHEM 120: Fundamentals of Chemistry II

University Core Curriculum (p. 25) 3,5

Semester Credit Hours: 15-16

Total Semester Credit Hours: 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4 BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEN 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEN 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
NUEN 481 Seminar 1
University Core Curriculum (p. 25) 6
NUEN Technical elective (p. 1095) 3
Technical elective 3
Semester Credit Hours 17
Total Semester Credit Hours 94

All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the NUEN advising office.

Power Option alternative. Students who intend to work in the nuclear power industry immediately upon completion of the BS degrees have the option of substituting NUEN 460. If this choice is made, then the student must also select NUEN 418 as a technical elective.

As approved by departmental advisor.

Total Program Hours 125

Nuclear Engineering - Minor

The nuclear engineering minor program will provide students with a complementary understanding of nuclear engineering principles that will introduce them to concepts of nuclear reactor theory, isotope detection, reactor analysis, and an approach to nuclear engineering experiments. The minor is ideal for those wanting to further expand their knowledge in a complex discipline, or for those that seek a basic understanding of nuclear engineering principles for work within industry.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUEN 301</td>
<td>Nuclear Reactor Theory</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 302</td>
<td>Introduction to Nuclear Engineering II</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 303</td>
<td>Nuclear Detection and Isotope Technology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 304</td>
<td>Nuclear Reactor Analysis</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 405</td>
<td>Nuclear Engineering Experiments</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students must make a grade of ‘C’ or better in all courses.</td>
<td></td>
</tr>
</tbody>
</table>

Radiological Health Engineering - Minor

The Department of Nuclear Engineering offers a minor in Radiological Health Engineering. Expanding and emerging nuclear applications have created a strong demand for specialists in radiological health engineering. Well-educated individuals are, and will be, required in all aspects of the nuclear power industry from mining all the way to disposal of wastes from spent fuel. There are needs for radiological health specialists in government, hospitals, educational institutions and private industry. This program at Texas A&M is designed to give students a broad background so they will be able to assume positions in any area of the nuclear industry.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUEN 309/SENG 309</td>
<td>Radiological Safety</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 475</td>
<td>Environmental Nuclear Engineering</td>
<td>3</td>
</tr>
<tr>
<td>NUEN 479</td>
<td>Radiation Protection Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students must make a grade of ‘C’ or better in all courses.</td>
<td></td>
</tr>
</tbody>
</table>

Department of Ocean Engineering

Ocean Engineering

Ocean engineering is the application of basic engineering principles to the analysis, design, construction, and management of systems that operate in the ocean environment or near shore. Typical ocean engineering application areas include: beach protection and nourishment, coastal structures and erosion, wave and current structure interaction, development of ocean energy resources, instrumentation for coastal and offshore measurements, marine dredging and dredged material placement, ocean mining, offshore petroleum recovery, offshore structures and vessels, marine hydrodynamics, maritime risers, moored and towed systems, numerical and physical modeling, ports and harbors, remotely operated and autonomous underwater vehicles, renewable ocean energy systems, search and salvage, suspended and dissolved constituent transport, subsea pipelines and cables, seafloor pipeline and umbilical layouts, flow assurance, submersible vehicles, sustainable and resilient ocean systems, and underwater acoustics. Employment opportunities exist with private industry, defense contractors, consulting firms, and government agencies. Ocean engineering students are encouraged to pursue summer internships and study abroad program and may participate in the University cooperative education program. The undergraduate program in ocean engineering in the Department of Ocean Engineering at Texas A&M University is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

The mission of the Ocean Engineering Program is to conduct research, serve the public, and educate students in a broad program of instruction encompassing traditional and emerging areas of ocean engineering. Graduates are prepared for entering engineering practice, continuing onto graduate study, life-long learning and professional development. Students develop a sense of professionalism and an appreciation for the obligations of a professional engineer. The Program offers ocean engineering continuing education activities for the people and marine industry of the state, nation and international community. The Program serves the public and engineering profession in Texas and the nation through participation of faculty and students in public and professional activities. Applied and fundamental research is conducted that contributes to the better understanding of ocean engineering and supports student educational development.
The program educational objectives of the Ocean Engineering Program are:

1. Graduates contribute to the ocean engineering profession and society.
2. Graduates gain employment in ocean engineering and related engineering fields with private and government organizations.
3. Graduates advance to positions of increased responsibility and develop professionally through training, technical conferences, and continuing education activities.
4. Some graduates become professional engineers and members of ocean engineering related professional societies.
5. Some graduates pursue graduate studies in ocean engineering and related fields and receive post baccalaureate degrees.

The Department of Ocean Engineering is a two-campus department with campuses located in College Station and Galveston, Texas. The laboratory facilities accessible to the Department of Ocean Engineering are among the most comprehensive in the nation for testing offshore, underwater, and coastal systems. The College Station facilities are located in the Offshore Technology Research Center, Zachry Engineering Education Complex, and the Haynes Engineering Building. These facilities include a large deep water wave basin, a wave channel, fluid dynamics laboratory equipment, and data acquisition systems. The facilities in Galveston include naval architecture, fluid dynamics, and geotechnical experimental equipment, and two wave channels. The Galveston campus also provides access to the Gulf of Mexico through the use of small boats and research vessels that are available for education and research. Additional information is available on the Department of Ocean Engineering website: http://engineering.tamu.edu/ocean (http://engineering.tamu.edu/ocean/).

Before commencing course work in the major, students must be admitted to the major or have the approval of the department head.

Faculty

Allen, David, Senior Lecturer
Ocean Engineering
PHD, Texas A&M University, 1980

Amini, Noushin, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2011

Chang, Kuang-An, Professor
Ocean Engineering
PHD, Cornell University, 1999

Chen, Hamn C, Professor
Ocean Engineering
PHD, University of Iowa, 1982

Chung, Jin-Sug, Associate Professor Of The Practice
Ocean Engineering
PHD, University of Michigan, 1991

Cordes, Laurrie, Assistant Lecturer
Ocean Engineering
MS, Texas A&M University, 1993

Duran Vincent, Orencio, Assistant Professor
Ocean Engineering
PHD, University of Stuttgart, 2007

Falzarano, Jeffrey M, Professor
Ocean Engineering
PHD, University of Michigan, Ann Arbor, 1990

Figlus, Jens, Associate Professor
Ocean Engineering
PHD, University of Delaware, 2010

Girimaji, Sharath S, Professor
Ocean Engineering
PHD, Cornell University, 1990

Horrillo, Juan J, Associate Professor
Ocean Engineering
PHD, University of Alaska at Fairbanks, 2006

Jameson, Antony, Professor
Ocean Engineering
PHD, University of Cambridge, 1963

Kang, Heonyong, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2014

Kim, MooHyun, Professor
Ocean Engineering
PHD, Massachusetts Institute of Technology, 1988

Koola, Paul M, Professor of the Practice
Ocean Engineering
PHD, Indian Institute of Technology, Madras, 1991

Panchang, Vijaykumar G, Regents Professor
Ocean Engineering
PHD, University of Maine, 1985

Paredes Tobar, Lenin Marcelo, Assistant Professor
Ocean Engineering
PHD, University of Sao Paulo, Sao Paulo, Brazil, 2012

Parihar, Arun, Assistant Lecturer
Ocean Engineering
MEN, University of Houston, 2008

Perlin, Marc, Professor
Ocean Engineering
PHD, University of Florida Gainesville, 1989

Rodriguez, Ignacio J, Distinguished Professor
Ocean Engineering
PHD, Colorado State University, 1967

Sekaran, Aarthi, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2012

Skelton, Robert E, Professor
Ocean Engineering
PHD, University of California, 1976
Subramanian, Rahul, Lecturer
Ocean Engineering
PHD, University of Michigan, 2012

Sweetman, John A, Professor
Ocean Engineering
PHD, Stanford University, 2001

Witherden, Freddie, Assistant Professor
Ocean Engineering
PHD, Imperial College London, UK, 2015

Wood, Amanda L, Instructional Associate Professor
Ocean Engineering
PHD, University of Houston, 2010

Majors

- Bachelor of Science in Ocean Engineering (p. 474)

Ocean Engineering - BS

The BS in Ocean Engineering degree emphasizes breadth across the various fields of ocean engineering field. Students take courses in all major sub-disciplines of ocean engineering with advanced electives allowing for deeper learning in focus areas. The degree is appropriate for any discipline of ocean engineering, with particular relevance for those interested in coastal works, off-shore energy (Oil & Gas and renewables), naval architecture, underwater robotics, and for those planning on further specialization in graduate studies. This degree program is offered on College Station and Galveston campuses.

For more information please see https://engineering.tamu.edu/ocean/index.html (https://engineering.tamu.edu/ocean/)

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
<td></td>
</tr>
</tbody>
</table>

1. A grade of C or better is required.
2. Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3. Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.
4. BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5. For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 201</td>
<td>Introduction to Ocean Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 221</td>
<td>Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MEEN 315</td>
<td>or Principles of Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ECEN 215</td>
<td>or Principles of Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 213</td>
<td>Principles of Materials Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 214</td>
<td>Mechanics of Deformable Bodies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>OCEN 261</td>
<td>Applied Numerical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 311</td>
<td>Fluid Statics and Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 345</td>
<td>Theory of Ocean Engineering Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 336</td>
<td>Fluid Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>OCEN 265</td>
<td>Introduction to Geotechnical Engineering or Offshore Structure Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 300</td>
<td>Ocean Engineering Wave Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 362</td>
<td>Hydromechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 363</td>
<td>Dynamics and Vibrations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>High Impact Experience</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCEN 399</td>
<td>Leadership and Experience</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>OCEN 400</td>
<td>Basic Coastal Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 402</td>
<td>Principles of Naval Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 403</td>
<td>Dynamics of Offshore Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 406</td>
<td>Capstone Design I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technical elective II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>OCEN 401</td>
<td>Underwater Acoustics for Ocean Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCEN 407</td>
<td>Design of Ocean Engineering Facilities II</td>
<td>3</td>
</tr>
</tbody>
</table>

A grade of C or better is required in all required mathematics (MATH), civil engineering (CVEN) and ocean engineering (OCEN) courses taken to satisfy degree requirements.

Total Program Hours 128

Harold Vance Department of Petroleum Engineering

Petroleum Engineering is concerned primarily with the safe and economic extraction of oil, gas, and other natural resources from the earth. Oil and gas is produced through the design, drilling and operation of wells and well systems, and the integrated management of the underground reservoirs in which the resources are found.

The mission of the Petroleum Engineering Department is to create, preserve, integrate, transfer and apply petroleum engineering knowledge and to enhance the human capability of its practitioners. The Petroleum Engineering Program has two educational objectives:

- graduates will have the technical depth and breadth to be successful professionals early in their careers; and
- graduates will have the broad technical knowledge and soft skills needed to rise to positions of professional leadership.

In essence, the goal of the Petroleum Engineering curriculum is to provide a modern engineering education with proper balance between fundamentals and practice, and to graduate engineers capable of being productive contributors immediately who are also prepared for life-long learning. The curriculum includes study of:

- design and analysis of well systems and procedures for drilling and completing wells;
- characterization and evaluation of subsurface geological formations and their resources;
- design and analysis of systems for producing, injecting and handling fluids;
- application of reservoir engineering principles and practices for optimizing resource development and management; and
use of project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty.

There is a heavy emphasis on mathematics, computer applications, communication skills and interdisciplinary problem solving. As a result, Aggie petroleum engineers are in high demand in the industry, and their starting salaries are consistently among the top in the University and the nation.

The department is well known for its curriculum, facilities and faculty, and its undergraduate program was recognized as one of the top petroleum engineering programs in the United States. The faculty comprises more than 39 professors and lecturers, many of them widely known and globally involved in the petroleum industry. Two (2) of the faculty are members of the prestigious National Academy of Engineering, and 20 are Distinguished Members of the Society of Petroleum Engineers. The Bachelor of Science program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Students must work as interns within the Energy Industry. A minimum of one internship, six weeks of approved experience, is required for graduation. The department also participates in the Cooperative Education Program.

In addition to the Bachelor of Science degree in Petroleum Engineering, the department also offers both masters and doctoral degrees, including Master of Science, Master of Engineering, and Doctor of Philosophy (see the Texas A&M University Graduate and Professional Catalog).

The department offers a combined program designed to help students complete both a Bachelor's degree and a Master's degree within 5 years. For more information, please contact the advising office.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

Faculty

Abedi Mashhadimighani, Sara, Assistant Professor
Petroleum Engineering
PHD, University of Southern California, 2012

Akkutlu, Ibrahim Y, Professor
Petroleum Engineering
PHD, University of Southern California, 2002

Banerjee, Debjyoti, Professor
Petroleum Engineering
PHD, University of California, Los Angeles, 1999

Barrufet, Maria A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1987

Bastian, Peter A, Professor of the Practice
Petroleum Engineering
MS, Texas A&M University, 1983

Blasingame, Thomas A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1989

Cunha, Jose, Professor of the Practice
Petroleum Engineering
PHD, The University of Tulsa, 1995

Dattagupta, Akhil, University Distinguished Professor
Petroleum Engineering
PHD, University of Texas, 1992

Diyashev, Iskander, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1998

Gildin, Eduardo, Associate Professor
Petroleum Engineering
PHD, University of Texas, 2006

Hascakir, Berna, Associate Professor
Petroleum Engineering
PHD, Middle East Technical University, 2008

Hill, Alfred D, Professor
Petroleum Engineering
PHD, University of Texas, 1978

Jochen, John E, Senior Lecturer
Petroleum Engineering
MS, Texas A&M University, 1993

Jochen, Valerie Ann, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1994

Killough, John E, Professor
Petroleum Engineering
PHD, Rice University, 1986

Kim, Jihoon, Associate Professor
Petroleum Engineering
PHD, Stanford University, 2010

King, Michael J, Professor
Petroleum Engineering
PHD, Syracuse University, 1980

Laprea Bigott, Marcelo, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1979

Lee, William J, Professor
Petroleum Engineering
PHD, Georgia Institute of Technology, 1963

Liang, Jenn T, Professor
Petroleum Engineering
PHD, The University of Texas at Austin, 1988

Maggard, Bryan, Senior Lecturer
Petroleum Engineering
PHD, Texas A&M University, 2000

McVay, Duane A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1994

Medina Cetina, Zenon, Associate Professor
Petroleum Engineering
PHD, John Hopkins University, 2007
Petroleum Engineering - BS

Petroleum Engineering is concerned primarily with the safe and economic extraction of oil, gas, and other natural resources from the earth. Oil and gas is produced through the design, drilling and operation of wells and well systems, and the integrated management of the underground reservoirs in which the resources are found.

The mission of the Petroleum Engineering Department is to create, preserve, integrate, transfer and apply petroleum engineering knowledge and to enhance the human capability of its practitioners. The Petroleum Engineering Program has two educational objectives:

- graduates will have the technical depth and breadth to be successful professionals early in their careers; and
- graduates will have the broad technical knowledge and soft skills needed to rise to positions of professional leadership.

In essence, the goal of the Petroleum Engineering curriculum is to provide a modern engineering education with proper balance between fundamentals and practice, and to graduate engineers capable of being productive contributors immediately who are also prepared for life-long learning. The curriculum includes study of:

- design and analysis of well systems and procedures for drilling and completing wells;
- characterization and evaluation of subsurface geological formations and their resources;
- design and analysis of systems for producing, injecting and handling fluids;
- application of reservoir engineering principles and practices for optimizing resource development and management; and
- use of project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty.

There is a heavy emphasis on mathematics, computer applications, communication skills and interdisciplinary problem solving. As a result, Aggie petroleum engineers are in high demand in the industry, and their starting salaries are consistently among the top in the University and the nation.

The department is well known for its curriculum, facilities and faculty, and its undergraduate program was recognized as one of the top petroleum
engineering programs in the United States. The Bachelor of Science program is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org/).

Program Requirements

The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, petroleum engineering (Note: not all programs listed are offered in Qatar). The freshman year is slightly different for chemical engineering, biomedical engineering and materials science and engineering degrees in that students take CHEM 119 or CHEM 107/ CHEM 117 and CHEM 120. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students 1,4 3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory 1,4 1</td>
</tr>
<tr>
<td>ENGL 103 or ENGL 104</td>
<td>Introduction to Rhetoric and Composition 1 or Composition and Rhetoric 3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1 2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1,2 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ENGR 216/ PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics 1 2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1 4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1 3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3-4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II 4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 3,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15-16</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31-32</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.

Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see CVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and cultural, and American history requirements if they are also on the approved list of international and cultural diversity (p. 47) courses and cultural discourse (p. 46) courses.

BMEN, CHEN and MSEN require 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 plus CHEM 120; or 8 hours of CBE for CHEM 119 and CHEM 120. BMEN, CHEN and MSEN should take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.

For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.
PETE 325 Petroleum Production Systems 3
PETE 337 Junior Student Paper Contest 0
PETE 355 Drilling Engineering 3

Semester Credit Hours 16

Fourth Year

Fall
PETE 300 Summer Practice 0
PETE 401 Reservoir Simulation 2
PETE 404 Integrated Reservoir Modeling 3
PETE 410 Production Engineering 3
PETE 435 Technical Presentations II 1

University Core Curriculum (p. 25) 3

Semester Credit Hours 15

Spring
PETE 402 Integrated Asset Development 3
PETE 437 Senior Student Paper Contest 0
PHIL 482/ ENGR 482 Ethics and Engineering 3

Technical elective 6

University Core Curriculum (p. 25) 3

Semester Credit Hours 18

Total Semester Credit Hours 97

6 See the Petroleum Engineering Academic Advising Office for lists of approved technical elective courses.

A grade of C or better is required in all courses.

Total Program Hours 128

Petroleum Engineering - Minor

The Harold Vance Department of Petroleum Engineering offers a minor to students within the College of Engineering who are interested in a better understanding of petroleum engineering. Students pursuing the minor will take courses covering different component areas within petroleum engineering, such as drilling and production. Eligible students must submit an application in order to be considered for a minor in Petroleum Engineering.

Additional Requirements:

Minimum of 3.0 GPA with at least 30 hours of Texas A&M resident credit is required to enter the minor.

A grade of C or better is required in minor courses.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>PETE 225</td>
<td>Introduction to Drilling Systems</td>
<td>3</td>
</tr>
<tr>
<td>PETE 310</td>
<td>Reservoir Fluids</td>
<td>4</td>
</tr>
<tr>
<td>PETE 311</td>
<td>Reservoir Petrophysics</td>
<td>4</td>
</tr>
<tr>
<td>PETE 325</td>
<td>Petroleum Production Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

Energy Engineering - Certificate

The mission of the Energy Engineering Certificate program is to prepare graduates of the College of Engineering to face world energy supply and demand challenges, and to be effective in ensuring a sustainable energy future. To earn the Energy Engineering Certificate, a student must complete a minimum of 13 semester credit hours which includes one required course and three additional courses to be selected from a specified list. An overall GPA of 3.0 must be achieved to be awarded the certificate. Completion of the certificate will be recorded on the student’s University transcript.

For additional information, contact the Energy Engineering Certificate coordinator (https://engineering.tamu.edu/academics/certificates/energy.html).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 101</td>
<td>Energy: Resources, Utilization and Importance to Society</td>
<td>4</td>
</tr>
<tr>
<td>PETE 201 & GEOG 201</td>
<td>Introduction to Petroleum and Introduction to Human Geography</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 421</td>
<td>Energy and Sustainable Architecture</td>
<td></td>
</tr>
<tr>
<td>CHEN 455/ SENG 455</td>
<td>Process Safety Engineering</td>
<td></td>
</tr>
<tr>
<td>ECEN 459</td>
<td>Power System Fault Analysis and Protection</td>
<td></td>
</tr>
<tr>
<td>ECEN 460</td>
<td>Power System Operation and Control</td>
<td></td>
</tr>
<tr>
<td>ESET 444</td>
<td>Building Energy Management Systems</td>
<td></td>
</tr>
<tr>
<td>MEEN 410</td>
<td>Internal Combustion Engines</td>
<td></td>
</tr>
<tr>
<td>MEEN 436</td>
<td>Principles of Heating, Ventilating and Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>MEEN 437</td>
<td>Principles of Building Energy Analysis</td>
<td></td>
</tr>
<tr>
<td>NUEN 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>PETE 353</td>
<td>Petroleum Project Evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

Petroleum Ventures - Certificate

The Petroleum Ventures Certificate Program (PVP) sets Aggie petroleum engineers apart by giving them unparalleled exposure to business concepts, entrepreneurship, industry leaders and case-based learning opportunities where they work together with business students to solve problems and study real world energy companies. This interdisciplinary environment prepares them for leadership and expanded technical roles within the industry. The program is set up in collaboration with the Finance Department of the Mays Business School. PVP certificate holders are viewed as students who are committed to working hard to
further their education and to better prepare themselves for integrated roles in the industry.

The Petroleum Ventures Certificate Program (PVP) impacts the following student groups:

- Undergraduate petroleum engineering and finance students who have a desire to work in Energy Finance, Petroleum Investment Management, or have a goal of senior management of an oil and gas company and/or a goal of one day creating and managing their own energy company.
- Petroleum engineers and finance undergraduate students who are seeking specialized training.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 409</td>
<td>Survey of Finance Principles</td>
<td>3</td>
</tr>
<tr>
<td>or FINC 341</td>
<td>Business Finance</td>
<td></td>
</tr>
<tr>
<td>PETE 201</td>
<td>Introduction to Petroleum Engineering</td>
<td>1</td>
</tr>
<tr>
<td>FINC 351</td>
<td>Investment Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FINC 361</td>
<td>Managerial Finance I</td>
<td>3</td>
</tr>
<tr>
<td>PETE 353</td>
<td>Petroleum Project Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PETE 402</td>
<td>Integrated Asset Development</td>
<td>3</td>
</tr>
<tr>
<td>PETE 418</td>
<td>Deterministic Reserves Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>Prescribed Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Select from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINC 423</td>
<td>Options and Financial Futures</td>
<td></td>
</tr>
<tr>
<td>FINC 424</td>
<td>Trading Risk Management</td>
<td></td>
</tr>
<tr>
<td>FINC 443</td>
<td>Valuation</td>
<td></td>
</tr>
<tr>
<td>FINC 449</td>
<td>Financial Modeling</td>
<td></td>
</tr>
<tr>
<td>FINC 489</td>
<td>Special Topics in...</td>
<td>1</td>
</tr>
<tr>
<td>MGMT 439</td>
<td>Negotiations</td>
<td></td>
</tr>
<tr>
<td>PETE 408</td>
<td>Probabilistic Reserves Evaluation</td>
<td></td>
</tr>
<tr>
<td>PETE 453</td>
<td>Petroleum Entrepreneurship</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

1 Refer to an Academic Advisor for specific topics offered.
College of Geosciences

Administrative Officers
Dean - Deborah J. Thomas, Ph.D.
Associate Dean for Research - Ping Yang, Ph.D.
Associate Dean for Academic Affairs - Christian Brannstrom, Ph.D.
Assistant Dean for Diversity and Climate - Ishara Casellas Connors, Ph.D.
Assistant Dean for Finance and Administration - Barbara Bayer

General Statement
Planet Earth is our home. Humans live on land which occupies only 29 percent of Earth’s surface. The remainder is covered by ocean. An envelope of air surrounds Earth. These realms—the lithosphere, hydrosphere, and atmosphere—form the environment for life on this planet. The study of these realms and their interactions with the biosphere and human systems, comprises the Geosciences—Atmospheric Sciences, Geography, Geology and Geophysics, and Oceanography.

The College of Geosciences is home to four academic departments in these disciplines and interdisciplinary academic offerings in Environmental Programs and Water Management and Hydrological Sciences. To sustain human society into the future will depend on the innovation and application of discovery in the geosciences. The interdisciplinarity of our field is essential to solving today’s grand challenges—understanding global climate change, maintaining air and water quality, and producing adequate energy and food supplies for all people.

Geography studies humans and their interactions with the environment from a spatial perspective using a range of methods and geospatial technologies. As an interdisciplinary field, it synthesizes knowledge from the other geosciences as well as from the social and biological sciences. Geology and Geophysics deals with the processes and forces acting at the surface and within Earth: with the materials of Earth, its forms and structures, the history of its development and the evolution of life on its surface and in its waters, and the physics of solid Earth. This includes the measurement and understanding of its internal structure, physical properties, and plate motions and their effect on continents and ocean basins. It also includes the detection of natural resources through remote sensing. Atmospheric Sciences includes studies of weather/meteorology, climate and climate change, and air quality through the disciplines of atmospheric dynamics, atmospheric physics, and atmospheric chemistry. Oceanography is the study of the marine environment and its inhabitants. The distribution and nature of marine life, the development of ocean basins, the chemistry of ocean waters, and the dynamics of water masses are the major elements of Oceanography.

Atmospheric Sciences, Geography, Geology and Geophysics, and Oceanography offer BS, MS, and PhD degrees; a BA is also available in Geology. The College offers two interdisciplinary BS degrees through Environmental Programs: a BS in Environmental Studies and a BS in Environmental Geosciences. In addition, Geography offers a BS in Geographic Information Science and Technology and two University Studies BS degrees (concentrations in Geography and Geographic Information Science and Technology). The College offers an online Master of Geosciences degree with specialized tracks in Geographic Information Science and Technology, Petroleum Data Management, and ocean data science, in addition to hosting a graduate program leading to an MS and PhD in Water Management and Hydrological Sciences.

College of Geosciences faculty members participate in research on a broad front of both basic and applied subjects. The College is the Science Operator for the International Ocean Discovery Program (http://iodp.tamu.edu/), which is the largest geosciences research program in the world and explores the structure and history of sediments and crust beneath the sea floor. The College also hosts the Texas Sea Grant program. Other coordinated research programs in the College include the Geochemical and Environmental Research Group, the Center for Tectonophysics, the Berg-Hughes Center for Petroleum and Sedimentary Systems, the Center for Atmospheric Chemistry and the Environment and the Texas Center for Climate Studies. Field work takes both faculty and students around the world to learn about the wide range of environments and processes affecting Earth and its inhabitants. Consequently, faculty bring to their classes the excitement of discovery, state-of-the-art scientific equipment, a knowledge of useful applications to human problems, and good working relations with industry and governments, all of which can help the undergraduate prepare for a rewarding career.

Career opportunities for graduates in the Geosciences are evolving dynamically—in industry, business, education, and government at all levels. Geosciences professionals apply highly desirable and marketable skills in several areas: research essential to understanding an increasingly unpredictable Earth; search for sustainable energy, mineral, and water resources; prediction and mitigation of natural hazards; deployment of geospatial techniques in numerous domains; informing wise environmental policy development and decision-making; and teaching in high schools, colleges, and universities.

Double Major
Students in the College of Geosciences may elect to have two major fields of study within the College, or they may elect to have a major in the College of Geosciences in conjunction with a major in another college provided that both majors lead to the same baccalaureate degree; that is, both must lead to a BA or to a BS. Approval is required by the Associate Dean for Academic Affairs in the College of Geosciences, the current major department, and the proposed major department. Additional permissions may be required if a student elects a double major in two different colleges. Students seeking to double major must have a 3.0 overall GPA and a 3.0 in the current major at the time of application. Students pursuing a double major must:

1. satisfy all University and College requirements;
2. successfully complete departmental requirements in each major, if both majors are in the College of Geosciences; and
3. in cases where one major is in the College of Geosciences and the other is in another college, the student must successfully meet the major field of study requirements for each area as determined by each college.

Minors
Students may choose to complete a minor in the College of Geosciences. All minors will require not less than 15 hours and not more than 18 hours in the discipline; at least 6 hours must be upper-division courses in the discipline. Each student choosing to complete a minor must contact the department offering the minor to determine if specific courses are required.
Change of Major and Transfer Students

Change of Major students are welcomed in the College of Geosciences. Students seeking entry from another major must be in good academic standing, meet approval of the Associate Dean and have shown interest in their new intended major by taking at least one course in the subject. To begin the Change of Major process, students should first contact the academic advisor in the department to which they wish to change. If the student meets minimum criteria, he or she will be referred to the Associate Dean for approval and processing.

Students are welcomed to transfer into the College of Geosciences from other universities and community colleges. Overall, the College of Geosciences requires a prospective student to have completed, or be in progress of completing, a minimum of 24 hours from a list of courses specific to each major outlined on page 56 of this catalog with a cumulative minimum GPA of 2.5. The College of Geosciences is also participating in the Program for Transfer Admission as well as the Program for System Admission in cooperation with Prairie View A&M University, Tarleton State University, Texas A&M International University, Texas A&M University-Commerce, Texas A&M University—Corpus Christi, Texas A&M University—Kingsville, West Texas A&M University and Texas A&M University–Texarkana.

Teacher Certification

The need for highly qualified teachers is high in the state of Texas. Students in the College of Geosciences are encouraged to consider pursuing a career in teaching. A number of pathways to certification are available. Interested students should consult with their advisors early in their programs and consult options outlined on the certification website. The college collaborates with the College of Science and the College of Education and Human Development on the aggieTEACH Program (http://aggieteach.tamu.edu) and in the University Studies degree program in secondary science teaching. Students in Geography may obtain composite social studies certification with a specialty in Geography through the Secondary Post-Baccalaureate Certification Program (8-12) or alternative certification options.

University Honors Programs

The College of Geosciences participates in the University Honors Programs, which is described in detail at Honors and Undergraduate Research (p. 115).

International and Cultural Diversity Requirement

Texas A&M University requires its students to meet an International and Cultural Diversity requirement as part of the Graduation requirements. Meeting this requirement will require the careful selection of courses. The student is directed to Requirements for a Baccalaureate Degree (p. 31) section of this catalog for detailed information regarding this requirement and is also encouraged to seek the advice of the student's academic advisor.

Curricula — College of Geosciences

Environmental Geosciences
Environmental Studies
Geographic Information Science and Technology
Geography
Geology
Geophysics
Meteorology
Oceanography
University Studies—Geography
University Studies—GIST

Majors

College of Geosciences

- Bachelor of Science in Environmental Geoscience (p. 483)
- Bachelor of Science in Environmental Geoscience and Master of Ocean Science and Technology, 5-Year Degree Program (p. 487)
- Bachelor of Science in Environmental Studies (p. 488)

Atmospheric Sciences

- Bachelor of Science in Meteorology (p. 493)
- Bachelor of Science in Meteorology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 495)

Geography

- Bachelor of Science in Geographic Information Science and Technology, Computation, Design and Analysis Track (p. 498)
- Bachelor of Science in Geographic Information Science and Technology, Earth Systems and Analysis Track (p. 499)
- Bachelor of Science in Geographic Information Science and Technology, Human Systems and Society Track (p. 502)
- Bachelor of Science in Geography (p. 504)
- Bachelor of Science in University Studies, Geographic Information Science and Technology Concentration (p. 505)
- Bachelor of Science in University Studies, Geography Concentration (p. 506)

Geology and Geophysics

- Bachelor of Arts in Geology (p. 510)
- Bachelor of Arts in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 511)
- Bachelor of Science in Geology (p. 513)
- Bachelor of Science in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 514)
- Bachelor of Science in Geology and Master of Science in Geology, 5-Year Degree Program (p. 516)
- Bachelor of Science in Geophysics (p. 517)
- Bachelor of Science in Geophysics and Master of Science in Geophysics, 5-Year Degree Program (p. 518)

Oceanography

- Bachelor of Science in Oceanography, Marine Ecosystem Science and Health Track (p. 521)
- Bachelor of Science in Oceanography, Marine Ecosystem Science and Health Track and Master of Ocean Science and Technology, 5-Year Degree Program (p. 524)
- Bachelor of Science in Oceanography, Ocean Climate Track (p. 522)
- Bachelor of Science in Oceanography, Ocean Climate Track and Master of Ocean Science and Technology, 5-Year Degree Program
- Bachelor of Science in Oceanography, Ocean Observing Science and Technology Track (p. 523)
Minors

College of Geosciences
- Climate Change Minor (p. 491)
- Earth Sciences Minor (p. 491)
- Environmental Geosciences Minor (p. 492)

Department of Atmospheric Sciences
- Meteorology Minor (p. 496)

Department of Geography
- Geographic Information Science and Technology Minor (p. 508)
- Geography Minor (p. 508)

Department of Geology and Geophysics
- Geology Minor (p. 519)
- Geophysics Minor (p. 520)

Department of Oceanography
- Oceanography Minor (p. 528)

Masters

College of Geosciences
- Master of Geoscience in Geoscience (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/interdepartmental-degree-programs/mgsc/)

Department of Atmospheric Sciences
- Master of Science in Atmospheric Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/atmospheric-sciences/ms/)

Department of Geography
- Master of Science in Geography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geography/ms/)

Department of Geology and Geophysics
- Master of Science in Geology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geology-geophysics/geology-ms/)
- Master of Science in Geophysics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geology-geophysics/geophysics-ms/)

Department of Oceanography
- Master of Ocean Science and Technology in Ocean Science and Technology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/most/)
- Master of Science in Oceanography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/ms/)

Doctoral

Department of Atmospheric Sciences
- Doctor of Philosophy in Atmospheric Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/atmospheric-sciences/phd/)

Department of Geography
- Doctor of Philosophy in Geography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geography/phd/)

Department of Geology and Geophysics
- Doctor of Philosophy in Geology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geology-geophysics/geology-phd/)
- Doctor of Philosophy in Geophysics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/geology-geophysics/geophysics-phd/)

Department of Oceanography
- Doctor of Philosophy in Oceanography (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/geosciences/oceanography/phd/)

Environmental Geoscience - BS

The increasing demands that population growth and affluence put on the natural resources and the Earth's environment require greater numbers of trained professionals and informed citizens. The BS degree in Environmental Geosciences embraces all the disciplines of geosciences to give the student a rigorous interdisciplinary education including issues associated with environmental policy. The degree trains students for employment by industry, environmental and engineering consulting firms, non-governmental organizations, and governmental regulatory agencies, among other entities. Students focus coursework in a particular environmental theme: coastal and marine environments, water, human impact on the environment, climate change, or biosphere.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
</tr>
<tr>
<td>GEOS 105</td>
<td>Introduction to Environmental Geoscience</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 14 |
Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td></td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>and Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| **Semester Credit Hours** | | **14** |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td></td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>and Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| **Semester Credit Hours** | | **14** |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td>3</td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>5</td>
</tr>
<tr>
<td>or STAT 211</td>
<td>or Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>& PHYS 226</td>
<td>and Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:		
ATMO 321	Computer Applications in the Atmospheric Sciences	
ATMO 441	Satellite Meteorology and Remote Sensing	
ATMO 464	Laboratory Methods in Atmospheric Sciences	
GEOG 312	Data Analysis in Geography	
GEOG 361	Remote Sensing in Geosciences	
GEOG 380	Workshop in Environmental Studies	
GEOG 450	Field Geography	
GEOG 462/	Advanced GIS Analysis for Natural Resources	
ESSM 462	Management	
GEOG 467	Dynamic Modeling of Earth and Environmental Systems	

| **American history (p. 29)** | | **3** |

| **Environmental theme elective** | | **3** |

| **Semester Credit Hours** | | **14** |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>8</td>
</tr>
<tr>
<td>GEOL 420</td>
<td>Environmental Geology</td>
<td>3</td>
</tr>
<tr>
<td>Environmental policy elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:		
AGEC 350	Environmental and Natural Resource Economics	
BESC 367	U.S. Environmental Regulations	
ECON 202	Principles of Economics	
ECON 203	Principles of Economics	
ECON 323	Microeconomic Theory	
GEOL 304	Economic Geography	
GEOL 306	Introduction to Urban Geography	
GEOL 309	Geography of Energy	
GEOL 401	Political Geography	
GEOL 406	Geographic Perspectives on Contemporary Urban Issues	
GEOL 430	Environmental Justice	
PHIL 314	Environmental Ethics	
POLS 347	Politics of Energy and the Environment	
RENR 470	Environmental Impact Assessment	
SOCI 328	Environmental Sociology	
URPN 202	Building Better Cities	
URPN 360	Issues in Environmental Quality	
URPN 361	Urban Issues	
URPN 371	Environmental Health Planning and Policy	
URPN 460	Sustainable Communities	
American history (p. 29)		**3**

| **Environmental theme elective** | | **3** |

| **Semester Credit Hours** | | **16** |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 470</td>
<td>Data Analysis Methods in Geosciences</td>
<td>4</td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:		
ATMO 321	Computer Applications in the Atmospheric Sciences	
ATMO 441	Satellite Meteorology and Remote Sensing	
ATMO 464	Laboratory Methods in Atmospheric Sciences	
GEOG 475	Advanced Topics in GIS (Geographic Information Systems)	
GEOG 476	GIS Practicum	
GEOL 306	Sedimentology and Stratigraphy	
GEOL 309	Introduction to Geological Field Methods	
GEOL 330	Geologic Field Trips	
GEOL 352/	GNSS in the Geosciences	
GEOG 451	Mathematical Modeling of Ocean Climate	

| **American history (p. 29)** | | **3** |

| **Environmental theme elective** | | **3** |

<p>| Semester Credit Hours | | 16 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 527</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
<tr>
<td>ATM 464</td>
<td>Laboratory Methods in Atmospheric Sciences</td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
</tr>
<tr>
<td>GEOG 380</td>
<td>Workshop in Environmental Studies</td>
</tr>
<tr>
<td>GEOG 450</td>
<td>Field Geography</td>
</tr>
<tr>
<td>GEOG 462/</td>
<td>Advanced GIS Analysis for Natural</td>
</tr>
<tr>
<td>ESSM 462</td>
<td>Resources Management</td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
</tr>
<tr>
<td>GEOL 309</td>
<td>Introduction to Geological Field Methods</td>
</tr>
<tr>
<td>GEOL 330</td>
<td>Geologic Field Trips</td>
</tr>
<tr>
<td>GEOL 352</td>
<td>GNSS in the Geosciences</td>
</tr>
<tr>
<td>GEOG 352</td>
<td>Near-surface Geophysics</td>
</tr>
<tr>
<td>OCN 451</td>
<td>Mathematical Modeling of Ocean Climate</td>
</tr>
</tbody>
</table>

Environmental theme elective \(^6 \) \(6 \) Semester Credit Hours \(16 \)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 405</td>
<td>Environmental Geosciences</td>
</tr>
<tr>
<td>Environmental policy elective (^9) (3)</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
</tr>
<tr>
<td>GEOS 304</td>
<td>Economic Geography</td>
</tr>
<tr>
<td>GEOS 306</td>
<td>Introduction to Urban Geography</td>
</tr>
<tr>
<td>GEOS 309</td>
<td>Geography of Energy</td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Political Geography</td>
</tr>
<tr>
<td>GEOS 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
</tr>
<tr>
<td>GEOS 430</td>
<td>Global Science and Policy Making</td>
</tr>
<tr>
<td>PHIL 314</td>
<td>Environmental Ethics</td>
</tr>
<tr>
<td>POLS 347</td>
<td>Politics of Energy and the Environment</td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>SOCI 328</td>
<td>Environmental Sociology</td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
</tr>
<tr>
<td>URPN 360</td>
<td>Issues in Environmental Quality</td>
</tr>
<tr>
<td>URPN 361</td>
<td>Urban Issues</td>
</tr>
<tr>
<td>URPN 371</td>
<td>Environmental Health Planning and Policy</td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
</tr>
<tr>
<td>Environmental theme elective (^6) (6)</td>
<td></td>
</tr>
<tr>
<td>Technical elective (^7) (3)</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ATMO 321</td>
<td>Computer Applications in the Atmospheric Sciences</td>
</tr>
<tr>
<td>ATMO 441</td>
<td>Satellite Meteorology and Remote Sensing</td>
</tr>
<tr>
<td>ATMO 464</td>
<td>Laboratory Methods in Atmospheric Sciences</td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
</tr>
<tr>
<td>GEOG 380</td>
<td>Workshop in Environmental Studies</td>
</tr>
<tr>
<td>GEOG 450</td>
<td>Field Geography</td>
</tr>
<tr>
<td>GEOG 462/</td>
<td>Advanced GIS Analysis for Natural</td>
</tr>
<tr>
<td>ESSM 462</td>
<td>Resources Management</td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
</tr>
<tr>
<td>GEOL 309</td>
<td>Introduction to Geological Field Methods</td>
</tr>
<tr>
<td>GEOL 330</td>
<td>Geologic Field Trips</td>
</tr>
<tr>
<td>GEOL 352</td>
<td>GNSS in the Geosciences</td>
</tr>
<tr>
<td>GEOG 352</td>
<td>Near-surface Geophysics</td>
</tr>
<tr>
<td>OCN 451</td>
<td>Mathematical Modeling of Ocean Climate</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours \(120 \)

1 Freshmen entering the program take a first year seminar, GEOS 101. The choice is not restricted. Students transferring or changing majors into the program, who have not taken GEOS 101, are required to take GEOS 481 in their junior or senior year.

2 The graduation requirements include three hours of international and cultural diversity courses and three hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

3 Choose one introductory College of Geosciences course in the first semester and an additional one in the second semester of the sophomore year. Seek guidance from the academic advisor for Environmental Programs in Geosciences (ENVP) or your faculty mentor.

4 PHYS 206 & PHYS 226 is recommended for the Coastal and Marine Environment Theme.

5 STAT 211 is recommended for the Coastal and Marine Environment Theme.

6 Choose 18 hours of theme courses in your junior and senior years in consultation with your academic advisor or faculty mentor from the list below.

7 GEOS 484 can be taken for up to 6 credits and will normally be used as an adjustment to theme electives, but depending on the content of the internship credit, it can be applied as an adjustment to your technical electives or policy electives. Seek guidance from the ENVP academic advisor.

8 Other courses which match the Environmental Programs' technical electives definition will be allowed by adjustment. Guidance about technical electives (including the definition used by the Environmental Programs in Geosciences) can be found on the programs' website. Seek guidance about choices from the ENVP academic advisor or faculty mentor.

9 GEOG 390 is a required technical elective.
Seek guidance about choices from the ENVP academic advisor or faculty mentor.

Two courses in the degree plan must be writing intensive courses designated by the Environmental Programs in the schedule of classes. Also, international and cultural diversity electives (3 hours) and cultural discourse electives (3 hours) must be incorporated into the degree.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>Environmental Theme Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS 210</td>
<td>Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 444</td>
<td>The Science and Politics of Global Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td>3</td>
</tr>
<tr>
<td>Select the remaining courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATMO 324</td>
<td>Physical and Regional Climatology</td>
<td>3</td>
</tr>
<tr>
<td>or GEOG 324</td>
<td>Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 463</td>
<td>Air Quality</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 442/</td>
<td>Past Climates</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 442</td>
<td>Past Climates</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 305</td>
<td>Paleobiology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 451</td>
<td>Introduction to Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Polar Regions of the Earth: Science, Society and Discovery</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 410</td>
<td>Global Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 442/</td>
<td>Past Climates</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 442</td>
<td>Past Climates</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 484</td>
<td>Internship</td>
<td>6</td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 440</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Coastal and Marine Environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 370/</td>
<td>Coastal Processes</td>
<td>3</td>
</tr>
<tr>
<td>MARS 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select the remaining courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 440</td>
<td>Engineering Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Polar Regions of the Earth: Science, Society and Discovery</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 444</td>
<td>The Science and Politics of Global Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 484</td>
<td>Internship</td>
<td>6</td>
</tr>
<tr>
<td>OCNG 350</td>
<td>Marine Pollution</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 425</td>
<td>Microbial Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 430</td>
<td>Geological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 440</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 418</td>
<td>Ecology of the Coastal Zone</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 425</td>
<td>Marine Fisheries</td>
<td>3</td>
</tr>
<tr>
<td>WFSC 428</td>
<td>Wetland Ecosystem Management</td>
<td>4</td>
</tr>
<tr>
<td>Human Impact on the Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS 410</td>
<td>Global Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 430</td>
<td>Environmental Justice</td>
<td>3</td>
</tr>
<tr>
<td>Select the remaining courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATMO 326</td>
<td>Environmental Atmospheric Science</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>GEG 309</td>
<td>Geography of Energy</td>
<td>3</td>
</tr>
<tr>
<td>GEG 360</td>
<td>Natural Hazards</td>
<td>3</td>
</tr>
<tr>
<td>GEG 401</td>
<td>Political Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 301</td>
<td>Mineral Resources</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 440</td>
<td>Engineering Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 451</td>
<td>Introduction to Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Polar Regions of the Earth: Science, Society and Discovery</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 430</td>
<td>Global Science and Policy Making</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 444</td>
<td>The Science and Politics of Global Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 484</td>
<td>Internship</td>
<td>6</td>
</tr>
<tr>
<td>OCNG 350</td>
<td>Marine Pollution</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 425</td>
<td>Microbial Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEG 434</td>
<td>Hydrology and Environment</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td>3</td>
</tr>
<tr>
<td>Select the remaining courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGSM 335</td>
<td>Water and Soil Management</td>
<td>3</td>
</tr>
<tr>
<td>AGSM 337</td>
<td>Technology for Environmental and Natural Resource Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 251</td>
<td>Weather Observation and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 335</td>
<td>Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 352</td>
<td>Severe Weather and Mesoscale Forecasting</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 443</td>
<td>Radar Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 324</td>
<td>Physical and Regional Climatology</td>
<td>3</td>
</tr>
<tr>
<td>or GEOG 324</td>
<td>Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td>ESSM 301</td>
<td>Wildland Watershed Management</td>
<td>3</td>
</tr>
<tr>
<td>ESSM 306</td>
<td>Plant Functional Ecology and Adaptation</td>
<td>3</td>
</tr>
<tr>
<td>GEG 331</td>
<td>Geomorphology</td>
<td>3</td>
</tr>
<tr>
<td>GEG 360</td>
<td>Natural Hazards</td>
<td>3</td>
</tr>
<tr>
<td>GEG 400</td>
<td>Arid Lands Geomorphology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 440</td>
<td>Engineering Geology</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 451</td>
<td>Introduction to Geochemistry</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Polar Regions of the Earth: Science, Society and Discovery</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 484</td>
<td>Internship</td>
<td>6</td>
</tr>
<tr>
<td>OCNG 350</td>
<td>Marine Pollution</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 425</td>
<td>Microbial Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>
Environmental Geoscience - 5-Year Bachelor of Science/Master of Ocean Science and Technology

The combined program offers motivated and exceptional students the opportunity to achieve aspirations in an efficient program at Texas A&M, completing the Bachelor of Science (B.S.) degree in the Environmental Geosciences program and the Master of Ocean Science and Technology degree in 5 years. There will be two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program will enable these motivated students to coordinate the required B.S. coursework (120 undergraduate credit hours including 6 dual credit graduate hours) and Master of Ocean Science and Technology coursework (36 credit hours including the 6 dual credit graduate hours) to complete the required credit hours for each degree without diminishing scope or quality of work within 5 years.

Application and Eligibility:

- Applications to the combined program will be submitted by June 15 after the completion of the student's junior year. Applications submitted after that time will be evaluated on a case by case basis. GRE scores are not required for admission to the program.
- Applicants must have a minimum undergraduate GPA of 3.25. Applicants should also earn a C or better in all Chemistry, Calculus and Physics courses. Once admitted to the program, students must maintain a minimum 3.0 GPA on all graduate coursework.
- A faculty advisor will be assigned to each student. Students may seek additional mentors, but a formal committee is not required.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor's and Master's degrees. Students will graduate at the completion of the 5th year of the combined program coursework (150 credit hours) with both Bachelor's and Master's degrees.
- Students admitted to the program will change from U4 to G7 status when they are admitted having completed at least 90 hours (end of spring semester, year 3).
- Students not accepted or not allowed to continue with the combined program will complete the 120-hour Bachelor’s degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.

Program Requirements

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 111 Introductory Biology I</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>1</td>
<td>GEOS 101 Introduction to the Geosciences</td>
</tr>
<tr>
<td>3</td>
<td>GEOS 105 Introduction to Environmental Geoscience</td>
</tr>
<tr>
<td>4</td>
<td>MATH 151 Engineering Mathematics I</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 112 Introductory Biology II</td>
</tr>
<tr>
<td>4</td>
<td>MATH 152 Engineering Mathematics II</td>
</tr>
<tr>
<td>3</td>
<td>POLS 206 American National Government</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>17</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>3</td>
<td>ATMO 201 Weather and Climate</td>
</tr>
<tr>
<td>3</td>
<td>& ATMO 202 and Weather and Climate Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>GEOS 203 Planet Earth</td>
</tr>
<tr>
<td>3</td>
<td>& GEOG 213 and Planet Earth Lab</td>
</tr>
<tr>
<td>3</td>
<td>GEOL 101 Principles of Geology</td>
</tr>
<tr>
<td>3</td>
<td>& GEOL 102 and Principles of Geology Laboratory</td>
</tr>
<tr>
<td>3</td>
<td>OCNG 251 Oceanography</td>
</tr>
<tr>
<td>3</td>
<td>& OCNG 252 and Oceanography Laboratory</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Policy Elective</td>
</tr>
<tr>
<td>17</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 120 Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>3</td>
<td>POLS 207 State and Local Government</td>
</tr>
<tr>
<td>4</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td>3</td>
<td>ATMO 201 Weather and Climate</td>
</tr>
<tr>
<td>3</td>
<td>& ATMO 202 and Weather and Climate Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>GEOS 203 Planet Earth</td>
</tr>
<tr>
<td>3</td>
<td>& GEOG 213 and Planet Earth Lab</td>
</tr>
</tbody>
</table>
Environmental Studies - BS

The increasing demands that population growth and affluence put on Earth’s natural resources and environment require greater numbers of trained professionals and informed citizens. The Bachelor of Science degree in Environmental Studies blends an interdisciplinary understanding of Earth’s surface processes and environmental problems, along with the policy and decision-making components of human interactions with the environment. The degree is designed to educate students about the scientific, human-dimension and policy aspects of environmental issues facing our state and nation as they work in regulatory agencies, industry, and non-governmental organizations to resolve problems. Students focus upper division coursework in one of five environmental themes: 1) urban environment, 2) occupational health and safety, 3) environmental regulation and compliance, 4) Geographic Information Science and Technology (GIST), and 5) global environment.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOL 101 & GEOL 102</td>
<td>Principles of Geology and Principles of Geology Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 251 & OCNG 252</td>
<td>Oceanography and Oceanography Laboratory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Coastal and Marine Environments theme elective 3, 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

Fall
- GEOG 330: Resources and the Environment 3
- PHYS 206: Newtonian Mechanics for Engineering and Physics of Motion Laboratory for the Sciences 4
- STAT 211: Principles of Statistics I 3
- Coastal and Marine Environments theme elective 3, 4 6
- Semester Credit Hours 16

Spring
- GEOL 420: Environmental Geology 3
- GEOS 470: Data Analysis Methods in Geosciences 4
- PHYS 207: Electricity and Magnetism for Engineering and Communication Sciences 4
- Creative Arts (p. 29) 2 3
- Environmental Policy elective 3 3
- Semester Credit Hours 17

Fourth Year

Fall
- GEOG 390: Principles of Geographic Information Systems 4 7
- GEOS 405: Environmental Geosciences 3
- OCNG 604: Ocean Observing Systems 4, 6 3
- OCNG 608: Physical Oceanography 4, 5, 6 3
- OCNG 603: Communicating Ocean Science 3
- Semester Credit Hours 16

Spring
- OCNG 657: Data Methods and Graphical Representation in Oceanography 5 3
- Fundamentals of Ocean Science Course 6
- Select two of the following: 5
 - OCNG 620: Biological Oceanography
 - OCNG 630: Geological Oceanography
 - OCNG 640: Chemical Oceanography
- Coastal and Marine Environments theme elective 3, 4 3
- Technical elective 3 5
- Semester Credit Hours 17

Fifth Year

Fall
- Advanced specialized OCNG graduate course 3
- Advanced specialized OCNG graduate course 3
- Advanced specialized OCNG graduate course 3
- Semester Credit Hours 9

Total Semester Credit Hours
- 150

1. Freshmen entering the program take a first year seminar, GEOS 101. The choice is not restricted. Students transferring or changing majors into the program, who have not taken GEOS 101, are required to take GEOS 481 in their junior or senior year.
2. The graduation requirements include three hours of international and cultural diversity (p. 47) courses and three hours of cultural discourse (p. 46) courses.
3. Select in consultation with advisor.
4. If students use nine credits of allowed OCNG courses (e.g., OCNG 350, OCNG 451, OCNG 485) as Coastal and Marine Environments theme electives, they will receive an OCNG minor with their BS in ENGS degree. If one of the Introductory Geoscience course and associated labs listed in Year Two is OCNG 251 with OCNG 252, then only two credits (6 credits) of the theme electives needs to be from OCNG to still get the minor.
5. Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (e.g. OCNG 440/OCNG 640; GEOS 470/OCNG 655).
6. These two graduate courses will be taken for dual undergraduate/graduate credit and may contribute to a minor or technical elective.
7. Fulfills a technical elective.

Two courses in the degree plan must be writing intensive courses designated by the Environmental Programs in the schedule of classes. Also, international and cultural diversity electives (3 hours) and cultural discourse (3 hours) must be incorporated into the degree.

Any of the required courses may be taken during the summer sessions to diminish the heavy semester loads during Years 2 and 3.

The program includes a total of 156 hours with 6 hours being applied toward both the Bachelor of Science in Environmental Geosciences and the Master of Ocean Science and Technology.
Program Requirements

First Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 105</td>
<td>Introduction to Environmental Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 168</td>
<td>or Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td></td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>and Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td></td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>and Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>Creative arts elective (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 210</td>
<td>Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 205</td>
<td>Environmental Geosciences Cornerstone</td>
<td>1</td>
</tr>
<tr>
<td>Life and physical sciences elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td></td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>Communication elective (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>
Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 380</td>
<td>Workshop in Environmental Studies</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 314</td>
<td>Environmental Ethics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Theme elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 350</td>
<td>Environmental and Natural Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>GEOS 444</td>
<td>The Science and Politics of Global Climate Change</td>
<td>3</td>
</tr>
<tr>
<td>Environmental policy elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td></td>
</tr>
<tr>
<td>GEOS 306</td>
<td>Introduction to Urban Geography</td>
<td></td>
</tr>
<tr>
<td>GEOS 309</td>
<td>Geography of Energy</td>
<td></td>
</tr>
<tr>
<td>GEOS 401</td>
<td>Political Geography</td>
<td></td>
</tr>
<tr>
<td>GEOS 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 430</td>
<td>Environmental Justice</td>
<td></td>
</tr>
<tr>
<td>GEOS 484</td>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>POLS 347</td>
<td>Politics of Energy and the Environment</td>
<td></td>
</tr>
<tr>
<td>SOCI 328</td>
<td>Environmental Sociology</td>
<td></td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td></td>
</tr>
<tr>
<td>URPN 360</td>
<td>Issues in Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>URPN 361</td>
<td>Urban Issues</td>
<td></td>
</tr>
<tr>
<td>URPN 371</td>
<td>Environmental Health Planning and Policy</td>
<td></td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>GEOS 431</td>
<td>Environmental Regulatory Compliance in Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>Theme Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 430</td>
<td>Global Science and Policy Making</td>
<td>3</td>
</tr>
<tr>
<td>American history elective (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective 5</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- ATMO 321: Computer Applications in the Atmospheric Sciences
- ATMO 464: Laboratory Methods in Atmospheric Sciences
- GEOG 312: Data Analysis in Geography
- GEOG 361: Remote Sensing in Geosciences
- GEOG 450: Field Geography
- GEOG 467: Dynamic Modeling of Earth and Environmental Systems
- GEOG 475: Advanced Topics in GIS (Geographic Information Systems)
- GEOL 309: Introduction to Geological Field Methods
- GEOG 352/GEOL 352 or GEOG 352/GEOL 352: GNSS in the Geosciences
- GEOG 470: Data Analysis Methods in Geosciences

General elective 6: 3
Theme elective 4: 3

Semester Credit Hours: 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 405</td>
<td>Environmental Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>American history elective (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective 6</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Theme elective 4</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Total Semester Credit Hours: 120

1. Choose one introductory College of Geosciences course in the first semester and an additional one in the second semester of the freshman year.
2. It is recommended to select a course that also fulfills an international and cultural diversity (p. 47) and/or cultural discourse (p. 46) requirement. The graduation requirements include three hours of international and cultural diversity courses and three hours of cultural discourse courses.
3. Choose one Life and Physical Science Elective in the first semester and an additional one in the second semester of the sophomore year.
4. Choose 15 hours of courses in your chosen environmental theme from the list below.
5. Other courses which match the Environmental Programs' technical electives definition will be allowed by adjustment. Seek guidance regarding potential adjustments from the ENVP academic advisor.
6. KINE 199, MATH 102, MATH 150, and lower level AERS (p. 876), MLSC (p. 1081), NVSC (p. 1100), and SOMS (p. 1146) courses cannot be used as general electives.

Two courses in the degree plan must be writing intensive courses designated by the Environmental Programs in the schedule of classes.

Also, international and cultural diversity electives (3 hours) and cultural discourse (3 hours) must be incorporated into the degree.

Environmental Theme Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 306</td>
<td>Introduction to Urban Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEO 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues or ATMO 326 or Environmental Atmospheric Science</td>
<td></td>
</tr>
<tr>
<td>URPN 202</td>
<td>Building Better Cities</td>
<td>3</td>
</tr>
<tr>
<td>URPN 361</td>
<td>Urban Issues</td>
<td>3</td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
<td>3</td>
</tr>
</tbody>
</table>

Occupational Health and Safety

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHLT 330</td>
<td>The Environment and Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 331</td>
<td>Occupational Safety and Health I</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 334</td>
<td>Fire Safety and Workplace Hazards</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 335</td>
<td>Hazardous Materials</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 432</td>
<td>Human Factors and Ergonomic Health and Safety</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 434</td>
<td>Project Cost Benefit and Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

Environmental Regulation and Compliance

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 431</td>
<td>Environmental Regulatory Compliance in Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td>3</td>
</tr>
<tr>
<td>GEO 430</td>
<td>Environmental Justice</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 350</td>
<td>Marine Pollution</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose the remaining courses from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 484</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
<td>3</td>
</tr>
<tr>
<td>BESC 411</td>
<td>Environmental Health and Safety Compliance</td>
<td>3</td>
</tr>
</tbody>
</table>

Geographic Information Science and Technology (GIST)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 352/</td>
<td>GNSS in the Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>GEO 352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO 361</td>
<td>Remote Sensing in Geosciences</td>
<td>4</td>
</tr>
</tbody>
</table>

Choose the remaining courses from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 392</td>
<td>GIS Programming</td>
<td>4</td>
</tr>
<tr>
<td>GEO 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td>4</td>
</tr>
<tr>
<td>GEO 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
</tr>
<tr>
<td>GEO 477</td>
<td>Terrain Analysis and Mapping</td>
<td>4</td>
</tr>
<tr>
<td>GEO 478</td>
<td>WebGIS</td>
<td>4</td>
</tr>
<tr>
<td>GEO 479</td>
<td>Principles of Geocomputation</td>
<td>4</td>
</tr>
</tbody>
</table>

Global Environment

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO 410</td>
<td>Global Change</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 350</td>
<td>Marine Pollution</td>
<td>3</td>
</tr>
</tbody>
</table>
Climate Change - Minor

Climate change is one of the most pressing issues of our time. It will impact every aspect of our lives, and unless our economies take aggressive action to reduce emissions, today’s students will live through climate change unprecedented in modern human history. The minor in climate change aims to provide an overview of how the climate system works from an earth systems sciences perspective and how humans and the environment interact within it. The Climate Change minor draws on multiple courses exploring the science of climate change as well as the multitude of impacts ranging from farming and food production, water availability, ocean acidification to the potential of sustainable energy to replace fossil fuels, as well as the policy decisions governments are making. Students learn about climate change and how to understand and forecast its potential impacts from varied disciplinary and interdisciplinary perspectives, while getting a firm grounding in the basic physical, ecological and social sciences.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 210</td>
<td>Climate Change</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select the remaining courses from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATMO 201 Weather and Climate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or GEOS 101 Introduction to Environmental Geoscience</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATMO 324 Physical and Regional Climatology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 309 Geography of Energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 324 Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOG 442/ Past Climates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 442</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 401 Polar Regions of the Earth: Science, Society and Discovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 410 Global Change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 444 The Science and Politics of Global Climate Change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOS 481 Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

Students choosing to complete a minor in Climate Change must meet the following requirements:

- A minimum cumulative GPR of 2.0 must be achieved for all courses in the minor.
- Take a minimum of 16 hours of coursework, of which 3 hours of GEOS 210 Climate Change are required.
- The remaining 13 hours must include at least 3 hours of 400-level coursework and another 3 hours of upper-level (300- or 400-level) coursework from the list.
- Students with majors in the College of Geosciences must select only courses outside of their home department.
- ENGS students may not select this minor.

Earth Sciences - Minor

The minor in Earth Sciences encompasses a broad interdisciplinary scientific study of the origin and evolution of the Earth system and its life forms. This branch of science explores the physical and chemical processes of the Earth focusing on the interactions across the four main branches of study, the lithosphere, the hydrosphere (fresh water and the oceans), the atmosphere, and the biosphere. The Earth Sciences minor embraces a wide range of topics including, earth-surface processes, the behavior of oceans and atmosphere, geologic disasters, sustainable energy, remote sensing of the Earth, and the impact of humans on the environment. The minor exposes students to Earth system processes and problems, environmental problems, and training in problem-solving skills.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td>15</td>
</tr>
<tr>
<td>ATMO 202</td>
<td>Weather and Climate Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATMO 324</td>
<td>Physical and Regional Climatology</td>
<td></td>
</tr>
<tr>
<td>ATMO 441</td>
<td>Satellite Meteorology and Remote Sensing</td>
<td></td>
</tr>
</tbody>
</table>

Group 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td></td>
</tr>
<tr>
<td>GEOG 309</td>
<td>Geography of Energy</td>
<td></td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td></td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 370/ MARS 370</td>
<td>Principles of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 400</td>
<td>Arid Lands Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 434</td>
<td>Hydrology and Environment</td>
<td></td>
</tr>
<tr>
<td>GEOG 462/ ESSM 462</td>
<td>Advanced GIS Analysis for Natural Resources Management</td>
<td></td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
<td></td>
</tr>
</tbody>
</table>

Group 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>or GEOL 101</td>
<td>Physical Geology</td>
<td></td>
</tr>
</tbody>
</table>
Environmental Geosciences - Minor

The minor in Environmental Geosciences embraces all geosciences disciplines to give the student a rigorous interdisciplinary education including issues associated with environmental policy. Coursework centers on atmospheric sciences and air quality, resources and the environment, oceanography and marine pollution, environmental geology, and climate change. The minor prepares students for careers in industry, environmental and engineering consulting firms, non-governmental organizations, and governmental regulatory agencies, among other entities.

Program Requirements

Some of the courses have prerequisites so make sure to check the catalog before enrolling in the course.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 105</td>
<td>Introduction to Environmental Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>Select remaining courses from at least three of the following five groups.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>ATMO 326 Environmental Atmospheric Science</td>
<td></td>
</tr>
</tbody>
</table>

At least 6 hours must be upper level, 3 of which must be 400 level.

ENGS and ENST students may not select this minor.

Environmental Geosciences - Minor

The minor in Environmental Geosciences embraces all geosciences disciplines to give the student a rigorous interdisciplinary education including issues associated with environmental policy. Coursework centers on atmospheric sciences and air quality, resources and the environment, oceanography and marine pollution, environmental geology, and climate change. The minor prepares students for careers in industry, environmental and engineering consulting firms, non-governmental organizations, and governmental regulatory agencies, among other entities.

Program Requirements

Some of the courses have prerequisites so make sure to check the catalog before enrolling in the course.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 105</td>
<td>Introduction to Environmental Geoscience</td>
<td>3</td>
</tr>
<tr>
<td>Select remaining courses from at least three of the following five groups.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>ATMO 326 Environmental Atmospheric Science</td>
<td></td>
</tr>
</tbody>
</table>

At least 6 hours must be upper level, 3 of which must be 400 level.

ENGS and ENST majors may not select this minor.

Department of Atmospheric Sciences

Atmospheric sciences is an interdisciplinary field encompassing the physics and chemistry of the atmosphere, along with its interaction with the Earth's surface and oceans. Scientists in this field use their knowledge to improve weather forecasts, model cloud and precipitation processes, understand the climate system, observe the atmosphere with radar and satellites, and probe atmospheric chemistry and air quality. The study of this field is based on principles from physics, chemistry and mathematics, and well prepared students will have a solid grounding in all three disciplines.

Students in the Department of Atmospheric Sciences benefit from relatively small classes and low student-to-teacher ratios. Many opportunities are available for participating in faculty-led research programs, including national and international field campaigns, often culminating in presentations at national conferences.

Faculty

Bowman, Kenneth P. Professor
Atmospheric Sciences
PhD, Princeton University, 1984
Brooks, Sarah D, Professor
Atmospheric Sciences
PhD, University of Colorado, 2002

Conlee, Don T, Instructional Professor
Atmospheric Sciences
PhD, Texas A&M University, 1994

Dessler, Andrew E, Professor
Atmospheric Sciences
PhD, Harvard University, 1994

Epifanio, Craig C, Associate Professor
Atmospheric Sciences
PhD, University of Washington, 1999

Korty, Robert L, Associate Professor
Atmospheric Sciences
PhD, Massachusetts Institute of Technology, 2005

Liu, Xiaohong, Professor
Atmospheric Sciences
PhD, Nanjing University, P. R. China, 1992

Logan, Timothy S, Assistant Professor
Atmospheric Sciences
PhD, University of North Dakota, 2014

Nielsen-Gammon, John W, Professor
Atmospheric Sciences
PhD, Massachusetts Institute of Technology, 1990

North, Jerry R, Research Professor
Atmospheric Sciences
PhD, University of Wisconsin, 1966

Nowotarski, Christopher J, Associate Professor
Atmospheric Sciences
PhD, Pennsylvania State University, 2013

Panetta, Richard L, Professor
Atmospheric Sciences
PhD, University of Wisconsin, 1978

Rapp, Anita D, Assistant Professor
Atmospheric Sciences
PhD, Colorado State University, 2004

Sanger, Neil, Lecturer
Atmospheric Sciences
PhD, Naval Postgraduate School, CA, 2014

Saravanan, Ramalingam, Professor
Atmospheric Sciences
PhD, Princeton University, 1990

Schade, Gunnar W, Associate Professor
Atmospheric Sciences
PhD, Johannes Gutenberg Universitat, Germany, 1997

Schumacher, Courtney, Professor
Atmospheric Sciences
PhD, University of Washington, 2003

Sznuyogh, Istvan, Professor
Atmospheric Sciences
PhD, Hungarian Academy of Sciences, 1994

Winkley, Shel, Lecturer
Atmospheric Sciences
BS, Texas A&M University, 2007

Xu, Yangyang, Assistant Professor
Atmospheric Sciences
PhD, University of California, San Diego, 2014

Yang, Ping, Professor
Atmospheric Sciences
PhD, University of Utah, 1995

Zhang, Renyi, University Distinguished Professor
Atmospheric Sciences
PhD, Massachusetts Institute of Technology, 1994

Majors

- Bachelor of Science in Meteorology (p. 493)
- Bachelor of Science in Meteorology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 495)

Minors

- Meteorology Minor (p. 496)

Facilities

The Department of Atmospheric Sciences occupies the upper floors of the 15-story Oceanography and Meteorology Building. The Doppler weather radar on the roof of the building is a campus landmark and is used for both research and teaching. The department also operates a mobile Doppler radar for use in research projects. The department has four state-of-the-art chemistry labs, in which phenomena from ozone to aerosols are studied, as well as facilities for modeling the chemical environment. A continuous, comprehensive stream of meteorological data is received from ground stations, balloons, aircraft, radars, and satellites around the world. Two well-equipped computer labs are regularly upgraded to provide state-of-the-art educational equipment.

Meteorology - BS

The Department of Atmospheric Sciences offers the Bachelor of Science degree in Meteorology. The undergraduate curriculum in meteorology emphasizes weather and weather forecasting, but also includes courses in climatology, atmospheric chemistry, cloud physics and remote sensing of the atmosphere with radar and satellites. As the curriculum makes clear, the study of these subjects relies on a foundation of physics, chemistry and mathematics. Meteorology also has connections to oceanography and other geosciences disciplines, which may be taken as elective courses.

Students who receive BS degrees in Meteorology often obtain employment with the National Weather Service, private meteorological consulting and weather forecasting companies, air quality consulting firms, airlines, TV stations, energy trading companies, universities, state governments, agricultural firms and computer-related industries. Some students choose to enter the military services as weather officers. Positions in teaching and research normally require a graduate degree.
Students interested in cooperative educational arrangements and internships should contact the department’s academic advisor for information.

In the curriculum presented, students are advised to note the prerequisites for the courses in ATMO, which often depend on courses in mathematics, physics or chemistry.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 171</td>
<td>or Calculus I</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 203</td>
<td>Weather Forecasting Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 172</td>
<td>or Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 251</td>
<td>Weather Observation and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 321</td>
<td>Computer Applications in the Atmospheric Sciences</td>
<td>3</td>
</tr>
<tr>
<td>or CSCE 206</td>
<td>or Structured Programming in C</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 324</td>
<td>Physical and Regional Climatology</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 335</td>
<td>Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 336</td>
<td>Atmospheric Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric sciences or technical elective</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 435</td>
<td>Synoptic-Dynamic Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 205</td>
<td>or Communication for Technical Professions</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language, philosophy and culture elective (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Atmospheric sciences or technical elective</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 446</td>
<td>Physical Meteorology</td>
<td>3</td>
</tr>
<tr>
<td>ATMO 441</td>
<td>Satellite Meteorology and Remote Sensing</td>
<td>3</td>
</tr>
<tr>
<td>or ATMO 443</td>
<td>or Radar Meteorology</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social and behavioral science elective (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Atmospheric sciences or technical elective</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General elective</td>
<td>2,3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative arts elective (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Atmospheric sciences or technical electives</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>General elective</td>
<td>2,3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

1 | A grade of C or better is required.

2 | General electives may not include CAEN 101-499; CAEX 101-499; DEVS 101-499; ENG 103; KINE 198-199 (p. 1041); MATH 102, MATH 141-142 (p. 1066), MATH 150-152 (p. 1066), MATH 171-172 (p. 1066), MATH 221, MATH 251, MATH 253; PHYS 101, PHYS 201-202 (p. 1115), PHYS 218-219 (p. 1115); AERS 100-499 (p. 876); MLSC 100-499 (p. 1081); NVSC 100-499 (p. 1100); SOMS 100-499 (p. 1146).

3 | MLSC, NVSC and AERS courses can be used as general electives if a minor is completed in Military Science. See an academic advisor for more information.

4 | All students enter as Lower Level Meterology (METL) until completion of ATMO 335 and ATMO 336 and the associated prerequisite courses. Once students have completed these courses, their major will be changed to Upper Level Meterology (METR), and they will be eligible to take upper-level electives. This change should occur following Fall of the junior year.
Select in consultation with faculty academic advisor. Select from ATMO 281, 300-499 (except ATMO 321); GEOG 400-499; GEOS 400-499; MATH 311, 400-499; OCNG 400-499. Up to 3 hours may be ATMO 484-Broadcast Internship and up to 6 hours may be ATMO 484-NWS Internship. SCSC 301; BESC 403; BIOL 111; CHEM 227, CHEM 237; ESSM 308, ESSM 309. Only 6 hours of 484 and 491 courses may apply towards this requirement.

Meteorology - 5-Year Bachelor of Science/Master of Ocean Science and Technology

The combined program offers motivated and exceptional students the opportunity to achieve aspirations in an efficient program at Texas A&M, completing both the Bachelor of Science degree in the Department of Atmospheric Sciences Meteorology Program and the Master of Ocean Science and Technology degree in 5 years. There will be two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program will enable these motivated students to coordinate the required B.S. coursework (120 undergraduate credit hours, including 6 dual credit graduate hours) and Master of Ocean Science and Technology coursework (36 credit hours, including the 6 dual credit graduate hours) to complete the required credit hours for each degree without diminishing scope or quality of work and within 5 years.

Application and Eligibility

- Applications to the combined program will be submitted by June 15 after the completion of the student’s junior year. Applications submitted after that time will be evaluated on a case by case basis. GRE scores are not required for admission to the program.
- Applicants must have a minimum undergraduate GPA of 3.25. Applicants should also earn a C or better in all Chemistry, Calculus and Physics courses. Once admitted to the program, students must maintain a minimum 3.0 GPA on all graduate coursework.
- A faculty advisor will be assigned to each student. Students may seek additional mentors, but a formal committee is not required.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor’s and Master’s degrees. Students will graduate at the completion of the 5th year in the combined program coursework (150 credit hours) with both Bachelor’s and Master’s degrees.
- Students admitted to the program will change from U4 to G7 status when they are admitted having completed at least 90 hours (end of spring semester, year 3).
- Students not accepted or not allowed to continue with the combined program will complete the 120-hour Bachelor’s degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ATMO 251</td>
<td>Weather Observation and Analysis</td>
</tr>
<tr>
<td>ATMO 321</td>
<td>Computer Applications in the Atmospheric Sciences</td>
</tr>
<tr>
<td>ATMO 321 or CSCE 206</td>
<td>or Structured Programming in C</td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>Select one of the following: 4</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2,5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 324</td>
<td>Physical and Regional Climatology</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering Science and Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
<tr>
<td>Select one of the following: 4</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Poltical science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ATMO 335</td>
<td>Atmospheric Thermodynamics</td>
</tr>
<tr>
<td>ATMO 336</td>
<td>Atmospheric Dynamics</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>Select one of the following: 4</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Poltical science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2,5</td>
<td>3</td>
</tr>
</tbody>
</table>

![Texas A&M University](#)
Spring
ATMO 435 Synoptic-Dynamic Meteorology 3
COMM 203 Public Speaking 3
or COMM 205 or Communication for Technical Professions
Select two of the following: 7,8,9
 Technical elective
 Creative arts (p. 29) 3
 Language, philosophy and culture (p. 27) 3
Semester Credit Hours 18

Fourth Year
Fall
ATMO 446 Physical Meteorology 3
ATMO 441 Satellite Meteorology and Remote Sensing 3
or ATMO 443 or Radar Meteorology
OCNG 604 Ocean Observing Systems 8,9,10 3
OCNG 608 Physical Oceanography 8,9,10 3
Select one of the following: 7,8,9
 Atmospheric sciences elective
 Technical elective
Select one of the following: 9,10
 OCNG 620 Biological Oceanography
 OCNG 630 Geological Oceanography
 OCNG 640 Chemical Oceanography
Semester Credit Hours 18

Spring
OCNG 603 Communicating Ocean Science 3
OCNG 657 Data Methods and Graphical Representation in Oceanography 3
Select one of the following: 7,8,9
 Atmospheric sciences elective
 Technical elective
Select one of the following: 9,10
 OCNG 620 Biological Oceanography
 OCNG 640 Chemical Oceanography
 OCNG 630 Geological Oceanography
General elective 2,5 3
Semester Credit Hours 15

Fifth Year
Fall
Advanced specialized OCNG graduate courses 6 9
Semester Credit Hours 9

Spring
OCNG 661 Advanced Oceanographic Data Analysis and Communication 3
Advanced specialized OCNG graduate courses 6 6
Semester Credit Hours 9
Total Semester Credit Hours 150

A grade of C or better is required.
2 General electives may not include CAEN 101-499; CAEX 101-499; DEVS 101-499; ENGL 103; KINE 198-199 (p. 1041); MATH 102, MATH 131, MATH 141-142 (p. 1066), MATH 150-152 (p. 1066), MATH 171-172 (p. 1066), MATH 221, MATH 251, MATH 253; PHYS 101, PHYS 201-202 (p. 1115), PHYS 208, PHYS 218-219 (p. 1115); AERS 100-499 (p. 876); MLSC 100-499 (p. 1081); NVSC 100-499 (p. 1100); SOMS 100-499. (p. 1146)
3 GEOS 101 recommended.
4 Students must complete 6 credit hours of American history and 6 credit hours of government/political science.
5 MLSC, NVSC and AERS courses can be used as general electives if a minor is completed in Military Science. See an academic advisor for more information.
6 All students enter as Lower Level Meteorology (METL) until completion of ATMO 335 and ATMO 336 and the associated prerequisite courses. Once students have completed these courses, their major will be changed to Upper Level Meteorology (METR), and they will be eligible to take upper-level electives. This change should occur following Fall of the junior year.
7 Select in consultation with faculty academic advisor. Select from ATMO 281, 300-499 (except ATMO 321); GEOG 400-499; GEOS 400-499; MATH 311, MATH 400-499; OCNG 400-499. Up to 3 hours may be ATMO 484-Broadcast Internship and up to 6 hours may be ATMO 484-NWS Internship. SCSC 301; BESC 403; BIOL 111; CHEM 227, CHEM 237, ESSM 308, ESSM 309. Only 6 hours of 484 and 491 courses may apply towards this requirement.
8 If students use nine credits of allowed OCNG courses (e.g. OCNG 251, OCNG 252, OCNG 350, OCNG 451, OCNG 485) as technical electives and general electives, they will receive an OCNG minor with their BS in METR degree.
9 Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (e.g. OCNG 440/OCNG 640).
10 Two graduate courses will be taken for dual undergraduate/graduate credit and will contribute to the technical electives.

The program includes a total of 156 hours with 6 hours being applied toward both the Bachelor of Science in Meteorology and the Master of Ocean Science and Technology.

Meteorology - Minor

The minor in Meteorology begins with a broad survey of the atmospheric sciences and associated weather analysis, followed by a more detailed introduction to at least one subdiscipline of the atmospheric sciences, such as atmospheric chemistry, dynamics, computer applications, or severe weather. The minor also introduces students to related Earth systems topics, such as oceanography, Earth-surface processes, or atmosphere-biosphere interactions. Students interested in pursuing the minor are encouraged to meet with the department's academic advisor to identify appropriate courses.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

300-level requirement
Select from the following: 6
ATMO 300 to 399 (p. 910)
GEOS 300 to 399 (p. 1008)

400-level requirement

Select from the following: 3

- ATMO 400 to 499 (p. 910)
- GEOS 400 to 499 (p. 1008)

Electives

Select from the following: 7

- ATMO 100 to 499 (p. 910)
- GEOS 300 to 499 (p. 1008)

Total Semester Credit Hours 16

Must maintain a minimum GPR of 2.000 in order to pursue this minor.

At least 9 hours of ATMO courses are required and a minimum of 3 hours at the 400 level.

Department of Geography

Geography is the study of the relationships between people and their environment, relationships that vary from place to place over the Earth. Geography students assess those factors responsible for the variable and changing character of Earth’s systems, which over time have been transformed into human habitat. Geography integrates physical science, social science, and the humanities. The Department requires that students understand both the physical and human components, and develop the spatial analytical skills to study these systems.

Physical geography emphasizes a systematic and interdisciplinary approach to the study of landforms, climate, soils, and vegetation. Human geography seeks to describe and explain the spatial patterns of human activities on Earth. These range from economic activities such as the distribution of retail sales and industrial production to cultural landscapes, which often have strong historical roots. Geographic Information Science (GIS), quantitative methods, and remote sensing provide geographers with the analytical techniques to study spatial phenomena.

Faculty

Allen, George H, Assistant Professor
Geography
PHD, University of North Carolina at Chapel Hill, 2017

Bishop, Michael P, Professor
Geography
PHD, Indiana State University, 1987

Bombardi, Rodrigo J, Assistant Professor
Geography
PHD, University of California Santa Barbara, 2013

Brannstrom, Christian, Professor
Geography
PHD, University of Wisconsin - Madison, 1998

Cairns, David M, Professor
Geography
PHD, University of Iowa, 1995

Casellas Connors, John Patrick, Assistant Professor
Geography
PHD, Arizona State University, 2015

Filippi, Anthony M, Associate Professor
Geography
PHD, University of South Carolina, 2003

Frauenfeld, Oliver W, Associate Professor
Geography
PHD, University of Virginia, 2003

Goldberg, Daniel W, Associate Professor
Geography
PHD, University of Southern California, 2010

Guneralp, Burak, Assistant Professor
Geography
PHD, University of Illinois at Urbana-Champaign, 2006

Guneralp, Inci, Associate Professor
Geography
PHD, University of Illinois at Urbana-Champaign, 2007

Jepson, Wendy E, Professor
Geography
PHD, University of California - Los Angeles, 2003

Klein, Andrew G, Professor
Geography
PHD, Cornell University, 1997

Lafon, Charles W, Professor
Geography
PHD, University of Tennessee, Knoxville, 2000

Loisel, Julie, Assistant Professor
Geography
PHD, Lehigh University, 2012

Lyle, Stacey D, Associate Professor Of The Practice
Geography
PHD, University of Georgia, 2003

O’Reilly, Kathleen M, Professor
Geography
PHD, University of Iowa, 2002

Prout, Erik, Instructional Associate Professor
Geography
PHD, Louisiana State University, 2001

Roark, Erin B, Associate Professor
Geography
PHD, University of California, Berkeley, 2005

Smith, Jonathan, Professor
Geography
PHD, Syracuse University, 1991

Tchakerian, Vatche P, Professor
Geography
PHD, UCLA, 1989

Thompson, Courtney M, Assistant Professor
Geography
PHD, University of Idaho, 2017
growth in geospatial technology-related degrees are projected by the U.S. Department of Labor. Students have employment opportunities with the following corporate and government entities:

- Government agencies (federal, state, county, and city): management and planning of urban infrastructure, inventory and assessment of natural resources including agriculture, forestry, and water resources.
- Energy industry: assessing biofuel production and identifying locations suitable for renewable energy resources and mineral exploration.
- Health science industry: determine hotspots of health events and explore causes.
- Military and intelligence community: numerous opportunities exist in military branches and agencies such as the Central Intelligence Agency, National Security Agency, and other intelligence organizations.
- Commercial industries: business analytics and marketing, as spatial information can be used to target marketing campaigns, and suitable site assessment to locate companies.
- Geospatial industries: software development, geotechnical engineering, and technology development.

Students select courses with the assistance of the academic advisor in an individualized advising system.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>4</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
</tr>
<tr>
<td>ATMO 201 & ATMO 202</td>
<td>Weather and Climate and Weather and Climate Laboratory</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>GEOL 101 & GEOL 102</td>
<td>Principles of Geology and Principles of Geology Laboratory</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>Life and physical sciences</td>
<td>4</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
</tr>
<tr>
<td>BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Historical Geology</td>
</tr>
</tbody>
</table>
PHYS 202 College Physics
OCNG 251 Oceanography
& OCNG 252 and Oceanography Laboratory
Communication (p. 26) 3

Semester Credit Hours 16

Second Year

Fall
GEOG 232 Cartography and Visualization 3
POLS 207 State and Local Government 3
Select one of the following:
CSCE 110 Programming I 3
CSCE 111 Introduction to Computer Science Concepts and Programming 3

American history (p. 29) 3
Social and behavioral sciences (p. 30) 3

Semester Credit Hours 16

Spring
GEOG 352/ GNSS in the Geosciences 3
GEOL 352
STAT 303 Statistical Methods 3
Select one of the following:
GEOG 324 Global Climatic Regions 3
GEOG 331 Geomorphology 3
GEOG 335 Pattern and Process in Biogeography 3

American history (p. 29) 3
Language, philosophy and culture (p. 27) 3

Semester Credit Hours 15

Third Year

Fall
GEOG 361 Remote Sensing in Geosciences 3
GEOG 390 Principles of Geographic Information Systems 3
GEOG 392 GIS Programming 4

Creative arts (p. 29) 3

Semester Credit Hours 15

Spring
ESSM 459 or GEOG 391 Programming for Spatial Data Applications or Geodatabases 3
GEOG 312 Data Analysis in Geography 3
GEOG 475 Advanced Topics in GIS (Geographic Information Systems) 4

Directed elective 4

Semester Credit Hours 14

Fourth Year

Fall
Human Geography 3
Select one of the following:
GEOG 304 Economic Geography 3
GEOG 306 Introduction to Urban Geography 3
GEOG 311 Cultural Geography 3

Select from the following:
GEOG 306 Introduction to Urban Geography 3

Semester Credit Hours 15

Total Semester Credit Hours 120

1 Department requires that you take two in the same discipline to meet this requirement.
3 Track electives comprise 6 hours of focused coursework. The track and specific courses within the track are to be chosen in consultation with the advisor and/or faculty mentor.

Two courses in the degree plan must be Writing Intensive courses designated by the department in the schedule of classes. Also, International and Cultural Diversity Elective (3 hours) and Cultural Discourse (3 hours) must be incorporated into the degree.

Geographic Information Science and Technology - BS, Earth Systems Analysis Track

The BS degree in Geographic Information Science and Technology (GIST) requires coursework in either the Computation, Design, and Analysis (CDA) track, Earth Systems Analysis (ESA) track, or the Human Systems and Society (HSS) track.

The Earth Systems and Analysis (ESA) track is designed to attract students interested in applying GIST to physical geography. It applies
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>3</td>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GEOL 101</td>
<td>Principles of Geology</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Spring</td>
<td>reintroduction to Human Geography</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Life and physical sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Select from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 106</td>
<td>Historical Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCN 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCN 252</td>
<td>Oceanography Laboratory</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Second Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>3</td>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GEOG 352/</td>
<td>GNSS in the Geosciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>STAT 303</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 324</td>
<td>Global Climatic Regions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 331</td>
<td>Geomorphology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 335</td>
<td>Pattern and Process in Biogeography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Third Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>4</td>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 304</td>
<td>Economic Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 311</td>
<td>Cultural Geography</td>
</tr>
</tbody>
</table>

geospatial technologies to the study of the Geosciences and assessing the Earth's natural resources by providing students with a foundation in biogeography, climate, geomorphology, soil science, geology, ecosystem science, as well as a strong grounding in GIST.

Students will receive a rigorous and modern-day education and training in GIST with application knowledge in physical and human geography. Employers require problem solvers, not button pushers, to address problems in various application domains. The B.S. in GIST is designed to:

- Provide modern-day exposure to the rapidly changing field of GIST
- Balance education and training with a focus on competency
- Provide application and problem-solving experiences
- Support student activities and research
- Provide students with professional experience
- Produce high-quality geographers with strong GIST knowledge and skills

Geospatial technology graduates are in extremely high demand and, according to the U.S. Department of Labor, are one of the highest growth areas in the federal government, particularly in homeland security activities, as well as in energy, software and engineering firms, biomedical and biohazard research, among many others. A 35% annual rate of growth in geospatial technology-related degrees are projected by the U.S. Department of Labor. Students have employment opportunities with the following corporate and government entities:

- Government agencies (federal, state, county, and city): management and planning of urban infrastructure, inventory and assessment of natural resources including agriculture, forestry, and water resources.
- Energy industry: assessing biofuel production and identifying locations suitable for renewable energy resources and mineral exploration.
- Health science industry: determine hotspots of health events and explore causes.
- Military and intelligence community: numerous opportunities exist in military branches and agencies such as the Central Intelligence Agency, National Security Agency, and other intelligence organizations.
- Commercial industries: business analytics and marketing, as spatial information can be used to target marketing campaigns, and suitable site assessment to locate companies.
- Geospatial industries: software development, geotechnical engineering, and technology development.

Students select courses with the assistance of the academic advisor in an individualized advising system.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>GEOG 203</td>
<td>Planet Earth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& GEOG 213</td>
<td>and Planet Earth Lab</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Life and physical sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Select from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATMO 201</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>& ATMO 202</td>
<td>and Weather and Climate Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 101</td>
<td>Principles of Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select from the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 107</td>
<td>Zoology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 106</td>
<td>Historical Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCN 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCN 252</td>
<td>Oceanography Laboratory</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Second Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>3</td>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Spring</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GEOG 352/</td>
<td>GNSS in the Geosciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>STAT 303</td>
<td>Statistical Methods</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 324</td>
<td>Global Climatic Regions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 331</td>
<td>Geomorphology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOL 335</td>
<td>Pattern and Process in Biogeography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Third Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td>4</td>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 304</td>
<td>Economic Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GEOG 311</td>
<td>Cultural Geography</td>
</tr>
</tbody>
</table>
Select one of the following:
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSM 459 or GEOG 391</td>
<td>Programming for Spatial Data Applications or Geodatabases</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
</tr>
</tbody>
</table>

Direct elective

Select one of the following:
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
<td></td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td></td>
</tr>
<tr>
<td>ESSM 308</td>
<td>Fundamentals of Environmental Decision-Making</td>
<td></td>
</tr>
<tr>
<td>ESSM 309</td>
<td>Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 416</td>
<td>Fire Ecology and Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 440</td>
<td>Wetland Delineation</td>
<td></td>
</tr>
<tr>
<td>ESSM 464</td>
<td>Spatial Project Management</td>
<td></td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td></td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
<td>4</td>
</tr>
</tbody>
</table>

Directed elective

Select two of the following:
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
<td></td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td></td>
</tr>
<tr>
<td>ESSM 308</td>
<td>Fundamentals of Environmental Decision-Making</td>
<td></td>
</tr>
<tr>
<td>ESSM 309</td>
<td>Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 416</td>
<td>Fire Ecology and Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 440</td>
<td>Wetland Delineation</td>
<td></td>
</tr>
<tr>
<td>ESSM 464</td>
<td>Spatial Project Management</td>
<td></td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td></td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
<td>3</td>
</tr>
</tbody>
</table>

Directed elective

Select three of the following:
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 201</td>
<td>Introduction to Bioenvironmental Sciences</td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
<td></td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td></td>
</tr>
<tr>
<td>ESSM 308</td>
<td>Fundamentals of Environmental Decision-Making</td>
<td></td>
</tr>
<tr>
<td>ESSM 309</td>
<td>Forest Ecology</td>
<td></td>
</tr>
<tr>
<td>ESSM 351/RENR 405</td>
<td>Geographic Information Systems for Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 406</td>
<td>Natural Resources Policy</td>
<td></td>
</tr>
<tr>
<td>ESSM 416</td>
<td>Fire Ecology and Natural Resource Management</td>
<td></td>
</tr>
<tr>
<td>ESSM 440</td>
<td>Wetland Delineation</td>
<td></td>
</tr>
</tbody>
</table>
growth in geospatial technology-related degrees are projected by the U.S. and biohazard research, among many others. A 35% annual rate of activities, as well as in energy, software and engineering firms, biomedical areas in the federal government, particularly in homeland security according to the U.S. Department of Labor, are one of the highest growth problems in various application domains. The BS in GIST is designed to:

Employers require problem solvers, not button pushers, to address in GIST with application knowledge in physical and human geography. Students will receive a rigorous and modern-day education and training provides students a solid grounding in GIST.

The Human Systems and Society (HSS) track is designed to attract students interested in applying GIST to human geography. It emphasizes social sciences, human-environment relationships, and the planning and management of human resources and urban environments, as well as provides students a solid grounding in GIST.

Students will receive a rigorous and modern-day education and training in GIST with application knowledge in physical and human geography. Employers require problem solvers, not button pushers, to address problems in various application domains. The BS in GIST is designed to:

• Provide modern-day exposure to the rapidly changing field of GIST
• Balance education and training with a focus on competency
• Provide application and problem-solving experiences
• Support student activities and research
• Provide students with professional experience
• Produce high-quality geographers with strong GIST knowledge and skills

Geospatial technology graduates are in extremely high demand and, according to the U.S. Department of Labor, are one of the highest growth areas in the federal government, particularly in homeland security activities, as well as in energy, software and engineering firms, biomedical and biohazard research, among many others. A 35% annual rate of growth in geospatial technology-related degrees are projected by the U.S.

Department of Labor. Students have employment opportunities with the following corporate and government entities:

• Government agencies (Federal, state, county, and city): management and planning of urban infrastructure, inventory and assessment of natural resources including agriculture, forestry, and water resources.
• Energy industry: assessing biofuel production and identifying locations suitable for renewable energy resources and mineral exploration.
• Health science industry: determine hotspots of health events and explore causes.
• Military and intelligence community: numerous opportunities exist in military branches and agencies such as the Central Intelligence Agency, National Security Agency, and other intelligence organizations.
• Commercial industries: business analytics and marketing, as spatial information can be used to target marketing campaigns, and suitable site assessment to locate companies.
• Geospatial industries: software development, geotechnical engineering, and technology development.

Two courses in the degree plan must be Writing Intensive courses designated by the department in the schedule of classes. Also, International and Cultural Diversity Elective (2 hours) and Cultural Discourse (3 hours) must be incorporated into the degree.

Geographic Information Science and Technology - BS, Human Systems and Society Track

The BS degree in Geographic Information Science and Technology (GIST) requires coursework in either the Computation, Design, and Analysis (CDA) track, Earth Systems Analysis (ESA) track, or the Human Systems and Society (HSS) track.

The Human Systems and Society (HSS) track is designed to attract students interested in applying GIST to human geography. It emphasizes social sciences, human-environment relationships, and the planning and management of human resources and urban environments, as well as provides students a solid grounding in GIST.

Students select courses with the assistance of the academic advisor in an individualized advising system.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td></td>
</tr>
<tr>
<td>GEOL 410</td>
<td>Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>RENR 205</td>
<td>Fundamentals of Ecology</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1 8 hours required. Department requires that you take two in the same discipline to meet this requirement.
2 Track electives comprise 6 hours of focused coursework. The track and specific courses within the track are to be chosen in consultation with the advisor and/or faculty mentor.
3 19 hours required. To be selected from the following or chosen in consultation with an advisor.

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>First Year</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>GEOG 203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>Planet Earth and Planet Earth Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MATH 140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences elective</td>
<td>Semester Credit Hours</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATMO 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>Weather and Climate Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introductory Biology I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOL 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>Principles of Geology and Principles of Geology Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>College Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Life and physical sciences elective</td>
<td>Semester Credit Hours</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 107</td>
<td>Zoology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOL 106</td>
<td>Historical Geology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 202</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>OCNG 251 & OCNG 252</td>
<td>Oceanography and Oceanography Laboratory Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 352/GEOG 352</td>
<td>GNSS in the Geosciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 478</td>
<td>WebGIS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ESSM 459 or GEOG 391</td>
<td>Programming for Spatial Data Applications or Geodatabases</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Directed elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select from the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESSM 305</td>
<td>Watershed Analysis and Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ESSM 308</td>
<td>Fundamentals of Environmental Decision-Making</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RENR 375</td>
<td>Conservation of Natural Resources</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RENR 470</td>
<td>Environmental Impact Assessment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>URPN 325</td>
<td>Introduction to GIS in Urban and Regional Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>URPN 326</td>
<td>Advanced GIS in Urban and Regional Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>URPN 369</td>
<td>Transportation and Urban Form</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>URPN 440</td>
<td>Urban and Regional Economic Development</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>URPN 460</td>
<td>Sustainable Communities</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Track elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 392</td>
<td>GIS Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 404</td>
<td>Spatial Thinking, Perception and Behavior</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 410</td>
<td>Environmental Justice</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 410</td>
<td>Spatial Thinking, Perception and Behavior</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 410</td>
<td>Spatial Thinking, Perception and Behavior</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOG 430</td>
<td>Environmental Justice</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 478</td>
<td>WebGIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Directed elective
- Select from the following:
 - ESSM 305: Watershed Analysis and Planning
 - ESSM 308: Fundamentals of Environmental Decision-Making
 - RENR 375: Conservation of Natural Resources
 - RENR 470: Environmental Impact Assessment
 - STAT 211: Principles of Statistics I
 - STAT 212: Principles of Statistics II
 - URPN 325: Introduction to GIS in Urban and Regional Planning
 - URPN 326: Advanced GIS in Urban and Regional Planning
 - URPN 369: Transportation and Urban Form
 - URPN 440: Urban and Regional Economic Development
 - URPN 460: Sustainable Communities

Directed elective
- Select from the following:
 - ESSM 305: Watershed Analysis and Planning
 - ESSM 308: Fundamentals of Environmental Decision-Making
 - RENR 375: Conservation of Natural Resources
 - RENR 470: Environmental Impact Assessment
 - STAT 211: Principles of Statistics I
 - STAT 212: Principles of Statistics II
 - URPN 325: Introduction to GIS in Urban and Regional Planning
 - URPN 326: Advanced GIS in Urban and Regional Planning
 - URPN 369: Transportation and Urban Form
 - URPN 440: Urban and Regional Economic Development
 - URPN 460: Sustainable Communities

Spring
- GEOG 476: GIS Practicum

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
</tr>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
</tr>
</tbody>
</table>

1. 8 hours required. Department requires that you take two in the same discipline to meet this requirement.
2. Track electives comprise 6 hours of focused coursework. The track and specific courses within the track are to be chosen in consultation with the advisor and/or faculty mentor.

19:20 hours required. To be selected from the following or chosen in consultation with Advisor.

Two courses in the degree plan must be Writing Intensive courses designated by the department in the schedule of classes. Also, International and Cultural Diversity Elective (3 hours) and Cultural Discourse (3 hours) must be incorporated into the degree.

Geography - BS

A student seeking a Bachelor of Science degree in Geography is expected to complete a minimum curriculum of 48 hours, with 42 of those hours in Geography including 9 hours chosen from any upper-level course in Human Geography, Geography of the Natural Environment, Human-Environment Interactions, or Geographic Information Science and Technology. Geography courses may include field trips outside scheduled class hours, including study abroad experiences.

Geography graduates apply their knowledge and analytical skills for jobs applying locational and environmental analysis for rewarding careers in education, business, or industry, local, state, and federal agencies, as well as nonprofit organizations. Advanced degrees provide greater career opportunities.

For students interested in a career in education, the Department of Geography works closely with the Department of Teaching, Learning, and Culture. Geography is part of a Social Studies composite degree program that prepares students to teach at middle and high school levels.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOG 215</td>
<td>Geospatial Cornerstone</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences¹</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:
- OCNG 251 & OCNG 252: Oceanography and Oceanography Laboratory
- GEOL 101 & GEOL 102: Principles of Geology and Principles of Geology Laboratory
- BIOL 111: Introductory Biology I
- CHEM 119: Fundamentals of Chemistry I
- PHYS 201: College Physics

American history (p. 29) | 3
Communication (p. 26) | 3

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Life and physical sciences¹ | 4
Select one of the following:
- ATMO 201 & ATMO 202: Weather and Climate and Weather and Climate Laboratory
- GEOL 106: Historical Geology
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td></td>
</tr>
</tbody>
</table>

Human geography elective

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOG 232 Cartography and Visualization</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142 Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206 American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 303 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical geography elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 207 State and Local Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human geography elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical geography elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall GEOG 390 Principles of Geographic Information Systems</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

American history (p. 29)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geography elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geography elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall GEOG 450 Field Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 440 History and Nature of Geography</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 352/ GEOL 352</td>
<td>GNSS in the Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
</tr>
</tbody>
</table>

Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td>6-8</td>
</tr>
<tr>
<td>ESSM 459</td>
<td>Programming for Spatial Data Applications</td>
<td></td>
</tr>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td></td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 392</td>
<td>GIS Programming</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td></td>
</tr>
</tbody>
</table>

1 8 hours required. Department requires that you take two in the same discipline to meet this requirement.
2 Select from GEOG 301, GEOG 304, GEOG 305, GEOG 306, GEOG 309, GEOG 311, GEOG 320, GEOG 323, GEOG 325, GEOG 327, GEOG 330, GEOG 401, GEOG 406, GEOG 420, GEOG 430.
3 Select from GEOG 324, GEOG 331, GEOG 335, GEOG 360, GEOG 370/MARS 370, GEOG 400, GEOG 434, GEOG 435, GEOG 442/GEOS 442.
4 Courses to be selected in consultation with advisor. Select any courses from 100-499 not used elsewhere. (Except AERS 100-499 (p. 876); ASCC 100-499 (p. 908); ENGL 103, KINE 198, KINE 199; MATH 102-104, 131, 141-142, 150-151, 166, 171 (p. 1066); MLSC 100-499 (p. 1081); NVSC 100-499 (p. 1100); SOMS 100-499 (p. 1146); STAT 211, STAT 302, STAT 303.;)
5 Choose from any 300 or 400-level geography course.

University Studies - BS, Geographic Information Science and Technology Concentration

The broad objective of the academic discipline of Geography is to understand and improve the human environment: Earth. Understanding Earth requires a consideration of both natural and social processes, hence Geography is by nature interdisciplinary. Human-Environment interactions are of particular interest in Geography. The area of concentration in Geographic Information Science and Technology offers students a broad perspective of Earth as a human habitat, while permitting them to complete two supporting minors in other disciplines. The area of concentration is flexible in that numerous courses are included to permit a student to build a course of study in geography that is tailored to his or her interests. Ideally, the minors would be in related fields to build depth and breadth around themes that the student wishes to emphasize.
University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Life and Physical Sciences elective 8

Select one of the following:
- ATMO 201 Weather and Climate
- & ATMO 202 Weather and Climate
- & OCNG 251 Laboratory
- & OCNG 257 and Oceanography
- and Oceanography Laboratory

BIOL 101 Botany
- & BIOL 107 and Zoology

BIOL 111 Introductory Biology I
- & BIOL 112 and Introductory Biology II

CHEM 119 Fundamentals of Chemistry I
- & CHEM 120 and Fundamentals of Chemistry II

GEOL 101 Principles of Geology
- & GEOL 102 and Principles of Geology
- & GEOL 106 Laboratory
- and Historical Geology

PHYS 201 College Physics
- & PHYS 202 and College Physics

American history (p. 29) 6

Communication (p. 26) 6

Creative arts (p. 29) 3

Cultural discourse (p. 46) 2

International and cultural diversity (p. 47) 2

Language, philosophy and culture (p. 27) 3

Social and behavioral sciences (p. 30) 3

Minor 1 15-18

Minor 2 15-18

General electives 26

Total Semester Credit Hours 120

1 Department requires that you take 8 hours of Life & Physical Sciences in the same discipline to meet this requirement.

2 A graduation requirement includes 3 hours of International and Cultural Diversity (p. 47) course and 3 hours of Cultural Discourse (p. 46). A course satisfying a University Core category, a college/department requirement, or a general elective may be used to satisfy this requirement.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:
- GEOG 232 Cartography and Visualization
- GEOG 304 Economic Geography
- GEOG 306 Introduction to Urban Geography
- GEOG 309 Geography of Energy
- GEOG 311 Cultural Geography
- GEOG 312 Data Analysis in Geography
- GEOG 324 Global Climatic Regions
- GEOG 330 Resources and the Environment
- GEOG 331 Geomorphology
- GEOG 335 Pattern and Process in Biogeography
- GEOG 352/ GNSS in the Geosciences
- GEOL 352
- GEOG 355 Concepts in Geosciences
- GEOG 360 Natural Hazards
- GEOG 361 Remote Sensing in Geosciences
- GEOG 370/ Coastal Processes
- MARS 370
- GEOG 380 Workshop in Environmental Studies
- GEOG 390 Principles of Geographic Information Systems
- GEOG 398 Interpretation of Aerial Photographs
- GEOG 400 Arid Lands Geomorphology
- GEOG 401 Political Geography
- GEOG 404 Spatial Thinking, Perception and Behavior
- GEOG 406 Geographic Perspectives on Contemporary Urban Issues
- GEOG 420 Geography of Terrorism
- GEOG 430 Environmental Justice
- GEOG 434 Hydrology and Environment
- GEOG 435 Principles of Plant Geography
- GEOG 440 History and Nature of Geography
- GEOG 442/ Past Climates
- GEOS 442
- GEOG 450 Field Geography
- GEOG 462/ Advanced GIS Analysis for Natural
- ESSM 462 Resources Management
- GEOG 467 Dynamic Modeling of Earth and Environmental Systems

University Studies - BS, Geography Concentration

The broad objective of the academic discipline of Geography is to understand and improve the human environment: Earth. Understanding Earth requires a consideration of both natural and social processes, hence Geography is by nature interdisciplinary. Human-Environment interactions are of particular interest in Geography. The area of concentration in Geography offers students a broad perspective of Earth as a human habitat, while permitting them to complete two supporting minors in other disciplines. The area of concentration is flexible in that numerous courses are included to permit a student to build a course of study in Geography that is tailored to his or her interests. Ideally, the minors would be in related fields to build depth and breadth around themes that the student wishes to emphasize.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
</tr>
<tr>
<td>GEOG 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>GEOG 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td>GEOG 491</td>
<td>Research</td>
</tr>
</tbody>
</table>

Select two of the following: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 400</td>
<td>Arid Lands Geomorphology</td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
</tr>
<tr>
<td>GEOG 404</td>
<td>Spatial Thinking, Perception and Behavior</td>
</tr>
<tr>
<td>GEOG 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
</tr>
<tr>
<td>GEOG 420</td>
<td>Geography of Terrorism</td>
</tr>
<tr>
<td>GEOG 430</td>
<td>Environmental Justice</td>
</tr>
<tr>
<td>GEOG 434</td>
<td>Hydrology and Environment</td>
</tr>
<tr>
<td>GEOG 435</td>
<td>Principles of Plant Geography</td>
</tr>
<tr>
<td>GEOG 442</td>
<td>Past Climates</td>
</tr>
<tr>
<td>GEOS 442</td>
<td>Past Climates</td>
</tr>
<tr>
<td>GEOG 450</td>
<td>Field Geography</td>
</tr>
<tr>
<td>GEOG 462</td>
<td>Advanced GIS Analysis for Natural Resources Management</td>
</tr>
<tr>
<td>ESSM 462</td>
<td>Resources Management</td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
</tr>
<tr>
<td>GEOG 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>GEOG 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td>GEOG 491</td>
<td>Research</td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab 1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences 3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus 3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 3</td>
</tr>
<tr>
<td>Life and Physical Science electives 2</td>
<td>8</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate</td>
</tr>
<tr>
<td>& ATMO 202</td>
<td>and Weather and Climate</td>
</tr>
<tr>
<td>& OCNG 251</td>
<td>Laboratory</td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>Oceanography</td>
</tr>
<tr>
<td>& Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
</tr>
<tr>
<td>& BIOL 107</td>
<td>and Zoology</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>& BIOL 112</td>
<td>and Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>& CHEM 120</td>
<td>and Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology</td>
</tr>
<tr>
<td>& GEOL 106</td>
<td>Laboratory</td>
</tr>
<tr>
<td>& Historical Geology</td>
<td></td>
</tr>
</tbody>
</table>
PHYS 201 College Physics & PHYS 202 and College Physics

American History (p. 29) 6
Communication (p. 26) 6
Creative Arts (p. 29) 3
Language, Philosophy and Culture (p. 27) 3
Social and Behavioral Sciences (p. 30) 3
Minor 1 15-18
Minor 2 15-18
General Electives 18-24

Total Semester Credit Hours 120

1. Geographic Information Science and Technology (GIST): minimum of 15 credits in the discipline at 300-400 level.
2. Minimum of 6 credits must be taken in residence at either Texas A&M University or Texas A&M at Galveston.
3. Students must meet with the department’s advisor for minor programs for approval of courses selected (any substitutions must be approved by the department head).
4. Minimum cumulative GPR of 2.0 must be achieved for all courses in the minor.

Geography - Minor

Geography explores the relationships between people and their environment, which vary from place to place over the Earth. Geographers compare and quantify the drivers of the variable and changing character of Earth’s systems, which have been transformed into human habitat and are thus being changed by humans. Geography coursework for the minor integrates physical sciences, social sciences, and the humanities.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>4</td>
</tr>
<tr>
<td>& GEOG 213</td>
<td>Planet Earth Lab</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>400-level GEOG course (p. 1001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Select from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td></td>
</tr>
<tr>
<td>GEOG 301</td>
<td>Geography of the United States</td>
<td></td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 305</td>
<td>Geography of Texas</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 309</td>
<td>Geography of Energy</td>
<td></td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 320</td>
<td>The Middle East</td>
<td></td>
</tr>
<tr>
<td>GEOG 323</td>
<td>Geography of Latin America</td>
<td></td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 355</td>
<td>Concepts in Geographic Education</td>
<td></td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td></td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 370/ MARS 370</td>
<td>Coastal Processes</td>
<td></td>
</tr>
<tr>
<td>GEOG 370/ MARS 370</td>
<td>Coastal Processes</td>
<td></td>
</tr>
<tr>
<td>GEOG 380</td>
<td>Workshop in Environmental Studies</td>
<td></td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td></td>
</tr>
<tr>
<td>GEOG 400</td>
<td>Arid Lands Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 405</td>
<td>Field Trips</td>
<td></td>
</tr>
</tbody>
</table>

General Requirements

1. Geographic Information Science and Technology (GIST): minimum of 15 credits in the discipline at 300-400 level.
2. Minimum of 6 credits must be taken in residence at either Texas A&M University or Texas A&M at Galveston.
3. Students must meet with the department’s advisor for minor programs for approval of courses selected (any substitutions must be approved by the department head).
4. Minimum cumulative GPR of 2.0 must be achieved for all courses in the minor.

Geographic Information Science and Technology - Minor

Geographic Information Science and Technology (GIST) is used to solve problems associated with land administration, environment and natural resource management, planning and population studies, as well as traditional surveying and mapping applications. GIST uses GIS, remote sensing, and global positioning mapping to collect, analyze, and display spatial information.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 352/ GEOL 352</td>
<td>GNSS in the Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences 1</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOG 392</td>
<td>GIS Programming</td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems) 2</td>
<td></td>
</tr>
<tr>
<td>GEOG 477</td>
<td>Terrain Analysis and Mapping</td>
<td></td>
</tr>
<tr>
<td>GEOG 478</td>
<td>WebGIS</td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1. Fall semester course
2. Spring semester course
GEOG 420 Geography of Terrorism
GEOG 435 Principles of Plant Geography
GEOG 440 History and Nature of Geography
GEOG 450 Field Geography
GEOG 489 Special Topics in...

Total Semester Credit Hours 16

The selection of courses must be made in agreement with the geography department advisor for minor programs.

Minimum GPA of 2.000 must be maintained in the minor coursework. 6 hours must be upper division courses, 3 of which must be at the 400-level.

General Requirements
1. Geography Minor: minimum of 16 credits in the discipline with at least 6 hours in upper-division courses, 3 hours of which must be at the 400 level.
2. Minimum of 6 credits must be taken in residence at either Texas A&M University or Texas A&M at Galveston.
3. Students must meet with the department’s advisor for minor programs for approval of courses selected (any substitutions must be approved by the department head).
4. Minimum cumulative GPR of 2.0 must be achieved for all courses in the minor.

Department of Geology and Geophysics

Geology
The field of geology includes the scientific study of all aspects of the solid Earth and the fluids within it, including the fundamental processes that shape it and the stewardship of its resources that benefits society. The undergraduate curricula in geology foster critical thinking, and the application of scientific skills to the study of Earth materials (rocks, minerals, fossils, structures, landforms and subsurface fluids) and geologic processes. Courses provide a broad background in geology, emphasize knowledge transfer from other sciences to geologic problems and emphasize hands-on application of knowledge through laboratories and field trips and promote application to practical problems in petroleum exploration, environmental management and civil engineering.

The Department of Geology and Geophysics offers two undergraduate programs in geology, the Bachelor of Arts and the Bachelor of Science. The BS program is appropriate for students seeking careers as geologists or preparing for graduate school in geology, whereas the BA program is designed for students wishing to combine geology with other disciplines. Details of the two programs are given below.

To remain in satisfactory academic standing, students must maintain a 2.0 or better GPA in all technical courses (geology, geophysics, chemistry, math and physics).

Geophysics
Geophysics includes all areas of scientific inquiry that deal with the physical state of Earth and other planets and the dynamic processes that act on and within planetary bodies. The Bachelor of Science in Geophysics is for students who wish to combine a proficiency in mathematics with an interest in Earth. The objective of this program is to develop a physically-motivated approach to the study of Earth phenomena, with an emphasis on collection and analysis of geophysical data for probing and imaging the Earth’s interior. Graduates will be well-prepared for careers in the energy and environmental industries, and for advanced study at top-ranked graduate programs.

To remain in satisfactory academic standing, students must maintain a 2.0 or better GPA in all technical courses (geology, geophysics, chemistry, math and physics).

Minors in Geology and Geophysics
The Department of Geology and Geophysics offers minors in two separate programs: Geology, Geophysics. Minors provide opportunities for broadening a student’s background and tailoring the curriculum to specific career goals. A minor in Geology or Geophysics may be especially beneficial to students majoring in fields that deal directly or indirectly with geological processes, such as agriculture, anthropology, archaeology, architecture, business, education, engineering, and soil science, to name a few.

Faculty
Bapst, David W, Instructional Assistant Professor
Geology & Geophysics
PHD, University of Chicago, 2013

Becker, Mauro R, Research Professor
Geology & Geophysics
PHD, University of Texas - Austin, 1996

Belanger, Christina L, Assistant Professor
Geology & Geophysics
PHD, University of Chicago, IL, 2011

Benavides Iglesias, Alfonso, Lecturer
Geology & Geophysics
PHD, Texas A&M University, 2007

Bhatia, Mukul R, Executive Professor
Geology & Geophysics
PHD, The Australian National University, 1982

Chester, Frederick M, Professor
Geology & Geophysics
PHD, Texas A&M University, 1988

Chester, Judith S, Professor
Geology & Geophysics
PHD, Texas A&M University, 1992

Clement, Brad M, Professor
Geology & Geophysics
PHD, Columbia University, 1985

Donovan, Arthur D, Professor of the Practice
Geology & Geophysics
PHD, Colorado School of Mines, 1985

Duan, Benchun, Professor
Geology & Geophysics
PHD, University of California, Riverside, 2006
Everett, Mark E, Professor
Geology & Geophysics
PHD, University of Toronto, 1991

Ewing, Ryan C, Professor
Geology & Geophysics
PHD, The University of Texas - Austin, 2009

Giardino, John R, Professor
Geology & Geophysics
PHD, University of Nebraska, Lincoln, 1979

Grossman, Ethan L, Professor
Geology & Geophysics
PHD, University of Southern California, 1982

Hu, Lin Ying, Professor of the Practice
Geology & Geophysics
PHD, Mines Paris Tech, 1988

Kenderes, Elizabeth, Instructional Assistant Professor
Geology & Geophysics
PHD, University of Missouri, 2018

Kitajima, Hiroko, Associate Professor
Geology & Geophysics
PHD, Texas A&M University, 2010

Knappett, Peter S, Assistant Professor
Geology & Geophysics
PHD, University of Tennessee at Knoxville, 2010

Kronenberg, Andreas K, Professor
Geology & Geophysics
PHD, Brown University, 1983

Lamb, William M, Professor
Geology & Geophysics
PHD, University of Wisconsin - Madison, 1987

Laya Pereira, Juan Carlos, Assistant Professor
Geology & Geophysics
PHD, Durham University, United Kingdom, 2012

Marcantonio, Franco, Professor
Geology & Geophysics
PHD, Columbia University, 1994

Miller, Brent V, Professor
Geology & Geophysics
PHD, Dalhousie University, Canada, 1997

Newman, Julie, Professor
Geology & Geophysics
PHD, University of Rochester, 1993

Perez, Nicholas D, Assistant Professor
Geology & Geophysics
PHD, University of Texas at Austin, 2015

Pope, Michael, Professor
Geology & Geophysics
PHD, Virginia Tech, 1995

Raymond, Anne L, Professor
Geology & Geophysics
PHD, University of Chicago, 1983

Reece, Julia S, Assistant Professor
Geology & Geophysics
PHD, University of Texas, 2011

Reece, Robert S, Associate Professor
Geology & Geophysics
PHD, The University of Texas - Austin, 2012

Riggs, Eric A, Professor
Geology & Geophysics
PHD, University of California-Riverside, 2000

Sparks, David W, Professor
Geology & Geophysics
PHD, Brown University, 1992

Sun, Yuefeng, Professor
Geology & Geophysics
PHD, Columbia University, 1994

Yancey, Thomas E, Professor
Geology & Geophysics
PHD, University of California, Berkeley, 1971

Yu, Alan Zhihuai, Professor of the Practice
Geology & Geophysics
PHD, University of South Carolina, 1992

Zhan, Hongbin, Professor
Geology & Geophysics
PHD, University of Nevada, Reno, 1996

Majors

- Bachelor of Arts in Geology (p. 510)
- Bachelor of Arts in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 511)
- Bachelor of Science in Geology (p. 513)
- Bachelor of Science in Geology and Master of Ocean Science and Technology, 5-Year Degree Program (p. 514)
- Bachelor of Science in Geology and Master of Science in Geology, 5-Year Degree Program (p. 516)
- Bachelor of Science in Geophysics (p. 517)
- Bachelor of Science in Geophysics and Master of Science in Geophysics, 5-Year Degree Program (p. 518)

Minors

- Geology Minor (p. 519)
- Geophysics Minor (p. 520)

Geology - BA

The Bachelor of Arts in Geology provides a foundation in geology for students who are not planning a career as a geologist. This program provides a basis for science-related careers, such as environmental law, pre-college teaching, science journalism, and resource management and marketing. Graduates will supplement their curriculum in geology with a minor designed around their career goals. The minor requires a minimum
of 15 credit hours in one discipline, to be chosen in consultation with an advisor.

Because the BA program has less rigorous mathematics and physics requirements and less comprehensive geology requirements, the BS is considered the appropriate option for students considering graduate study in geology.

Program Requirements

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119 Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 104 Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 168 Finite Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120 Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 106 Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142 Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171 Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication elective (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Second Year</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEOL 203 Mineralogy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOP 341 Fundamentals of Geophysics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 201 College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>GEOL 302 Introduction to Petrology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 309 Introduction to Geological Field Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 202 College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Third Year</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geology elective (p. 1005)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Minor elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral science elective (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>GEOL 306 Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 311 Principles of Geological Writing</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GEOL 312 Structural Geology and Tectonics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Select one of the following:
- American history (p. 29)
- Government/Political science (p. 30)
- Geology elective (p. 1005)
- Minor elective
- Social and behavioral science elective (p. 30)
- Technical elective

Total Semester Credit Hours 120

1. Fifteen hours of electives must be selected in a minor. Electives must be chosen in consultation with advisor.
2. Any 300- or 400-level geology or geophysics course not already required.
3. Any science, math, engineering or social science course that augments the degree with the approval of the advisor.
4. Three hours must be selected from courses that also satisfy the International and Cultural Diversity (p. 47) requirement and three hours must be selected from courses that also satisfy the Cultural Discourse (p. 46) requirement.
5. General electives may not include STLC 100-499; SLCX 100-499; DEVS 100-499; ENGL 100-499; KINE 198, KINE 199; MATH 102, MATH 142, MATH 150, MATH 151, MATH 168, MATH 171; AERS 100-499 (p. 876); MLSC 100-499 (p. 1081); NVSC 100-499 (p. 1100); SOMS 100-499 (p. 1146).

Geology - 5-Year Bachelor of Arts/Master of Ocean Science and Technology

The program offers motivated and exceptional students the opportunity to achieve aspirations in an efficient 5-year combined program at Texas A&M, completing either the Bachelor of Science (B.S.) or Bachelor of Arts (B.A.) degree (in the Department of Geology and Geophysics) and the non-thesis Master of Ocean Science and Technology (in the
Department of Oceanography). There will be two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program will enable these motivated students to coordinate the required B.A./B.S. coursework (120 undergraduate credit hours including 6 dual credit graduate hours) and Master of Ocean Science and Technology coursework (36 credit hours including the 6 dual credit graduate hours) to complete the required credit hours for each degree without diminishing scope or quality of work and within 5 years.

Application and Eligibility:

- Applications to the combined program will be submitted by June 15 after the completion of the student’s junior year. Applications submitted after that time will be evaluated on a case by case basis. GRE scores are not required for admission to the program.
- Applicants must have a minimum undergraduate GPA of 3.25. Applicants should also earn a C or better in all Chemistry, Calculus and Physics courses. Once admitted to the program, students must maintain a minimum 3.0 GPA on all graduate coursework.
- A faculty advisor will be assigned to each student. Students may seek additional mentors, but a formal committee is not required.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor’s and Master’s degrees. Students will graduate at the completion of the 5th year in the combined program coursework (150 credit hours) with both Bachelor’s and Master’s degrees.
- Students admitted to the program will change from U4 to G7 status when they are admitted having completed at least 90 hours (end of spring semester, year 3).
- Students not accepted or not allowed to continue with the combined program will complete the 120-hour Bachelor’s degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1,2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 203</td>
<td>Mineralogy</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 311</td>
<td>Principles of Geological Writing</td>
<td>1</td>
</tr>
<tr>
<td>GEOP 341</td>
<td>Fundamentals of Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 218</td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Minor elective 1,2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 302</td>
<td>Introduction to Petrology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 208</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor elective 1,2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 330</td>
<td>Geologic Field Trips</td>
<td>3</td>
</tr>
<tr>
<td>GEOL elective 2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor elective 1,2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Minor elective 1,2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free elective 1,2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 604</td>
<td>Ocean Observing Systems 1,5,6</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 608</td>
<td>Physical Oceanography 1,5,6</td>
<td>3</td>
</tr>
<tr>
<td>Select one from: 2,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>OCNG 620</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td>OCNG 630</td>
<td>Geological Oceanography</td>
<td></td>
</tr>
<tr>
<td>OCNG 640</td>
<td>Chemical Oceanography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>OCNG 603</td>
<td>Communicating Ocean Science</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 657</td>
<td>Data Methods and Graphical Representation in Oceanography 5</td>
<td>3</td>
</tr>
</tbody>
</table>
Planning a research or university teaching career should pursue a PhD degree. Particular selections of electives can be used to refine the degree.

Some of society's most pressing problems, including groundwater contamination and remediation, water resources, and geologic hazards such as landslides, flooding and subsidence are addressed in the field of environmental geology. Environmental geologists typically find careers with environmental and engineering consulting companies and other industrial corporations, governmental agencies or academia. Students are well-prepared for the Association of State Boards of Geology (ASBOG) Fundamentals of Geology exam, which is required for appointment as a Professional Geologist or Geoscientist in many states. Specific elective classes recommended include CVEN 365, GEOG 331, GEOS 390, GEOL 410, GEOL 420, GEOL 440, GEOS 410 and approved classes in other departments including Soil Science, Chemistry, Physics and Civil Engineering.

Many geologists go on to employment in the field of petroleum exploration and extraction. Some of the required geology classes prepare students for this field. Additional recommended classes including GEOL 404, PETE 311, PETE 321, PETE 324 and PETE 402. Qualified students (GPA of 3.0 or higher with dean's permission) may also take related graduate courses during the senior year. Such classes include GEOL 619, GEOL 622, GEOL 623, GEOL 624, GEOL 668, and GEOP 629. These classes prepare students for graduate study, as well as provide training for those who may be interested in service jobs in the oil and gas industry between their undergraduate and graduate education.

To remain in satisfactory academic standing, students must maintain a 2.0 or better GPA in all technical courses (geology, geophysics, chemistry, math and physics). Some courses require field trips. Students must pay expenses incurred on such trips.

Program Requirements

Geology - BS

The BS in Geology is considered the preparatory degree for careers in geological science. Graduates typically go on to careers in the energy and environmental industries, and advanced study at top-ranked graduate programs. The first two years of the BS program in Geology provide students with the basics of geology and the supporting fields of chemistry, physics and mathematics. The junior and senior years involve more advanced study in the field of geology and the opportunity to concentrate study in specific disciplines through the selection of technical electives. The Geology and Geophysics Department offers summer field camp (GEOL 350) in the Western US, in which students apply their geologic knowledge to collecting data and solving real problems during a four-week field season. Seniors will participate in a group research capstone course (GEOL 450), in which they work in teams with a faculty advisor to solve a current problem and communicate their findings and experience. Students also have opportunities to become involved in individual research problems with faculty members and can receive course credit for this activity through GEOL 291 and GEOL 491.

The BS is the appropriate degree for students intending to pursue graduate study in geology. Students desiring employment in the petroleum industry are encouraged to pursue an MS degree. Students planning a research or university teaching career should pursue a PhD degree. Particular selections of electives can be used to refine the degree.

Some of society's most pressing problems, including groundwater contamination and remediation, water resources, and geologic hazards such as landslides, flooding and subsidence are addressed in the field of environmental geology. Environmental geologists typically find careers with environmental and engineering consulting companies and other industrial corporations, governmental agencies or academia. Students are well-prepared for the Association of State Boards of Geology (ASBOG) Fundamentals of Geology exam, which is required for appointment as a Professional Geologist or Geoscientist in many states. Specific elective classes recommended include CVEN 365, GEOG 331, GEOS 390, GEOL 410, GEOL 420, GEOL 440, GEOS 410 and approved classes in other departments including Soil Science, Chemistry, Physics and Civil Engineering.

Many geologists go on to employment in the field of petroleum exploration and extraction. Some of the required geology classes prepare students for this field. Additional recommended classes including GEOL 404, PETE 311, PETE 321, PETE 324 and PETE 402. Qualified students (GPA of 3.0 or higher with dean's permission) may also take related graduate courses during the senior year. Such classes include GEOL 619, GEOL 622, GEOL 623, GEOL 624, GEOL 668, and GEOP 629. These classes prepare students for graduate study, as well as provide training for those who may be interested in service jobs in the oil and gas industry between their undergraduate and graduate education.

To remain in satisfactory academic standing, students must maintain a 2.0 or better GPA in all technical courses (geology, geophysics, chemistry, math and physics). Some courses require field trips. Students must pay expenses incurred on such trips.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 150</td>
<td>Introduction to the Solid Earth</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 180</td>
<td>Introduction to Geology and Geophysics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 152</td>
<td>History of the Earth</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>GEOL 203</td>
<td>Mineralogy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 210</td>
<td>Geological Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 250</td>
<td>Geological Field Methods</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 304</td>
<td>Igneous and Metamorphic Petrology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 341</td>
<td>Fundamentals of Geophysics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 312</td>
<td>Structural Geology and Tectonics</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 314</td>
<td>Paleontology and Geobiology</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical elective 2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 350</td>
<td>Summer Field Geology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 450</td>
<td>Geology Senior Project</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical elective 2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective 2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

1. The Graduation requirements include a requirement for three hours of International and Cultural Diversity (p. 47) courses and three hours of Cultural Discourse (p. 47) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
2. Any science, math or engineering course that augments the degree with the approval of the advisor.

Geology - 5-Year Bachelor of Science/Master of Ocean Science and Technology

The program offers motivated and exceptional students the opportunity to achieve aspirations in an efficient 5-year combined program at Texas A&M, completing either the Bachelor of Science (BS) or Bachelor of Arts (BA) degree (in the Department of Geology and Geophysics) and the non-thesis Master of Ocean Science and Technology (in the Department of Oceanography). There will be two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program will enable these motivated students to coordinate the required BA/BS coursework (120 undergraduate credit hours including 6 dual credit graduate hours) and Master of Ocean Science and Technology coursework (36 credit hours including the 6 dual credit graduate hours) to complete the required credit hours for each degree without diminishing scope or quality of work within 5 years.

Application and Eligibility:

- Applications to the combined program will be submitted by June 15 after the completion of the student’s junior year. Applications submitted after that time will be evaluated on a case by case basis. Once admitted to the program, students must maintain a minimum 3.0 GPA on all graduate coursework.
- Applicants must have a minimum undergraduate GPA of 3.25. Applicants should also earn a C or better in all Chemistry, Calculus and Physics courses. Once admitted to the program, students must maintain a minimum 3.0 GPA on all graduate coursework.
- A faculty advisor will be assigned to each student. Students may seek additional mentors, but a formal committee is not required.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor’s and Master’s degrees. Students will graduate at the completion of the 5th year in the combined program coursework (150 credit hours) with both Bachelor’s and Master’s degrees.
- Students admitted to the program will change from U4 to G7 status when they are admitted having completed at least 90 hours (end of spring semester, year 3).
- Students not accepted or not allowed to continue with the combined program will complete the 120-hour Bachelor’s degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.
Program Requirements

First Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 106</td>
<td>Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Second Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 203</td>
<td>Mineralogy 1</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 311</td>
<td>Principles of Geological Writing 1,2</td>
<td>1</td>
</tr>
<tr>
<td>GEOP 341</td>
<td>Fundamentals of Geophysics 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 218</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 302</td>
<td>Introduction to Petrology 1</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 208</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Third Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 304</td>
<td>Igneous and Metamorphic Petrology 1</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 305</td>
<td>Paleobiology 1</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 451</td>
<td>Introduction to Geochemistry 1</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 18

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 309</td>
<td>Introduction to Geological Field Methods</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 312</td>
<td>Structural Geology and Tectonics 1,2</td>
<td>4</td>
</tr>
<tr>
<td>GEOL Elective 1,2,4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Technical elective 4</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 17

Fourth Year
Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 604</td>
<td>Ocean Observing Systems 5</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 608</td>
<td>Physical Oceanography 5</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 603</td>
<td>Communicating Ocean Science</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 657</td>
<td>Data Methods and Graphical Representation in Oceanography 6</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Select one from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 620</td>
<td>Biological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 630</td>
<td>Geological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 640</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical elective 4 1

Semester Credit Hours: 15

Fifth Year
Fall

Advanced specialized OCNG graduate courses 9

Semester Credit Hours: 9

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 661</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
<td>3</td>
</tr>
</tbody>
</table>

Advanced specialized OCNG graduate courses 6

Semester Credit Hours: 9

Total Semester Credit Hours: 150

1. Any of the required courses may be taken during the Summer Sessions to diminish the heavy semester loads during Years Two and Three.
2. A second W course is required. GEOL 312 is offered as a W option when taught by Dr. Julie Newman, and other GEOL electives also fulfill the W requirement (including GEOL 491 when arranged with the permission of the instructor).
3. Students must complete 6 credit hours of American history and 6 credit hours of government/political science.
4. Select in consultation with advisor.
5. Two graduate courses will be taken for dual undergraduate/graduate credit.
Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (e.g. OCNG 410/OCNG 608, OCNG 440/OCNG 640).

Geology - 5-Year Bachelor of Science/Master of Science in Geology

The combined program in Geology is a 5-year path leading to a Bachelor of Science (BS) and a thesis option Master of Science (MS) in Geology. This program is designed to quickly prepare exceptional students who would like to either enter into the job market with an advanced degree or apply to PhD programs. Because the MS degree requires a thesis, it is highly recommended that interested students become involved in research project early in the undergraduate career. Areas of opportunity for research at both the undergraduate and MS levels include groundwater flow and use, paleontology and paleoecology, stratigraphy, structural geology, tectonophysics, petrology, geomorphology, environmental geology and geochemistry.

There are 150 total credit hours in the two degrees: 120 at the undergraduate level and 32 at the graduate level, including two hours of dual credit.

Application and Eligibility

- Students may apply for entrance to the graduate program when they reach 90 hours applied to their degree program, normally in the spring of their junior year.
- Applicants to this program are not required to submit GRE, but they must submit two letters of advocacy from faculty members, one of whom is willing to serve as the MS thesis advisor.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor's and Master's degrees. These students will be conferred with two degrees once they complete all requirements.
- Students not accepted into the combined program will complete the 120 hour Bachelor's degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>GEO 150</td>
<td>Introduction to the Solid Earth</td>
</tr>
<tr>
<td>GEO 180</td>
<td>Introduction to Geology and Geophysics</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>GEO 152</td>
<td>History of the Earth</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOL 203</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>GEOL 210</td>
<td>Geological Communication</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>Government/Political Science (p.)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOL 250</td>
<td>Geological Field Methods</td>
</tr>
<tr>
<td>GEOL 304</td>
<td>Igneous and Metamorphic Petrology</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences (Technical Electives)</td>
</tr>
<tr>
<td>Technical electives</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>Technical electives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOL 306</td>
<td>Sedimentology and Stratigraphy</td>
</tr>
<tr>
<td>GEOP 341</td>
<td>Fundamentals of Geophysics</td>
</tr>
<tr>
<td>American History (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political Science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOL 312</td>
<td>Structural Geology and Tectonics</td>
</tr>
<tr>
<td>GEOL 314</td>
<td>Paleontology and Geobiology</td>
</tr>
<tr>
<td>GEOL 350</td>
<td>Summer Field Geology</td>
</tr>
<tr>
<td>Technical electives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>American History (p.)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOL 450</td>
<td>Geology Senior Project</td>
</tr>
<tr>
<td>Creative Arts (p.)</td>
<td>1</td>
</tr>
<tr>
<td>Social and behavioral science (p.)</td>
<td>3</td>
</tr>
<tr>
<td>Technical electives</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geophysicists contribute to the field of environmental science by studying physical processes in the Earth's crust and atmosphere. Students must pay expenses incurred on such trips. Some courses in geophysics require field trips.

2.0 or better GPA in all technical courses (geology, geophysics, chemistry, mathematics). Courses during the junior and senior years emphasize theory with electives that focus on subsurface structures and processes and industry techniques. These students will be prepared for graduate study, as well as service jobs in the oil and gas industry between their undergraduate and graduate education. Additional recommended classes include GEOL 410, GEOL 420 and GEOL 440.

Many geophysicists find eventual employment in the petroleum industry, in which reflection seismology is the primary subsurface exploration tool. Students aiming for this field will supplement their background in seismic theory with electives that focus on subsurface structures and processes and industry techniques. These students will be prepared for graduate study, as well as service jobs in the oil and gas industry between their undergraduate and graduate education. Additional recommended classes include GEOL 306, GEOL 404 and PETE 311. Qualified students may also take related graduate courses during the senior year, including GEOP 629, GEOP 631 and GEOP 620. Students interested in seismic theory may take additional math classes, such as MATH 417, MATH 407 and MATH 414.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 150</td>
<td>Introduction to the Solid Earth</td>
</tr>
<tr>
<td>GEOL 180</td>
<td>Introduction to Geology and Geophysics</td>
</tr>
<tr>
<td>CHEM 107 & CHEM 117</td>
<td>General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Communication elective (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 203</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>GEOL 210</td>
<td>Geological Communication</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 304</td>
<td>Igneous and Metamorphic Petrology</td>
</tr>
<tr>
<td>GEOL 250</td>
<td>Geological Field Methods</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Geophysics - BS

Graduates with a BS in Geophysics go on to careers in the energy and environmental industries, and advanced study at top-ranked graduate programs. The first two years are similar to the BS in Geology, providing students with the fundamentals of geology, chemistry, physics, and mathematics. Courses during the junior and senior years emphasize knowledge transfer from the fields of math and physics to techniques and problems in both theoretical and applied geophysics. Technical electives allow students to focus on specific career objectives. Students are also encouraged to become involved in research problems with faculty members and can receive course credit for this activity through GEOP 291 and GEOP 491.

While graduates from the Geophysics program will have employment opportunities in industry, the rigor of this degree is designed to prepare students for advanced study. The MS degree is generally considered to be the preferred entry degree for professionals in the petroleum industry. Students interested in teaching in a university or research in an academic, government or industrial laboratory should seek the PhD.

To remain in satisfactory academic standing, students must maintain a 2.0 or better GPA in all technical courses (geology, geophysics, chemistry, math and physics). Some courses in geophysics require field trips. Students must pay expenses incurred on such trips.

Geophysicists contribute to the field of environmental science by working on traditional and emerging methods used for hydrogeological, structural and stratigraphic characterization of the uppermost 100 meters, with applications to shallow resource and groundwater assessment and the solution of environmental and engineering problems. Environmental geophysicists typically work as independent environmental consultants or with industrial corporation or government agencies. Other recommended classes include GEOL 410, GEOL 420 and GEOL 440.

The program includes a total of 152 or 156 hours which up to 2 or 6 hours may be applied toward both the Bachelor of Science in Geology and the Master of Science in Geology.
Geophysics - 5-Year Bachelor of Science/Master of Science in Geophysics

The combined program in Geophysics is a 5-year path leading to a Bachelor of Science (BS) and a thesis option Master of Science (MS) in Geophysics. This program is designed to quickly prepare exceptional students who would like to either enter into the job market with an advanced degree or apply to PhD programs. Because the MS degree requires a thesis, it is highly recommended that interested students become involved in research project early in the undergraduate career. Areas of opportunity for research at both the undergraduate and MS levels include earthquake mechanisms and seismic wave propagation, theoretical and experimental studies of deformation of rocks and soft sediment, petrophysics and reservoir physics, marine studies of the structure of the oceanic crust and continental margins, near surface applied geophysics and archaeological geophysics.

There are 150 total credit hours in the two degrees: 120 at the undergraduate level and 32 at the graduate level, including two hours of dual credit.

Application and Eligibility

- Students may apply for entrance to the graduate program when they reach 90 hours applied to their degree program, normally in the spring of their junior year.
- Applicants to this program are not required to submit GRE, but they must submit two letters of advocacy from faculty members, one of whom is willing to serve as the MS thesis advisor.
- Students admitted into the combined program must finish the entire 150 credit hours to obtain both the Bachelor’s and Master’s degrees. These students will be conferred with two degrees once they complete all requirements.
- Students not accepted into the combined program will complete the 120 hour Bachelor’s degree under the standard 4 year curriculum. These students may still apply to the traditional graduate program.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOL 150</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 107</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td>MATH 150</td>
<td>4</td>
</tr>
<tr>
<td>MATH 180</td>
<td>1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p.)</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

1. Any science, math or engineering course that augments the degree with the approval of the advisor.

2. The Graduation requirements include a requirement for three hours of international and cultural diversity courses and three hours of cultural discourse courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

3. Any approved 400-level geophysics course not already required.

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOL 152</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p.)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 150</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 180</td>
<td>1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p.)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOL 152</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>4</td>
</tr>
<tr>
<td>Communication (p.)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>GEOL 312</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 313</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 361</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Technical elective 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Creative arts elective (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral science elective (p. 30) 2</td>
<td>3</td>
</tr>
<tr>
<td>Geophysics elective 3</td>
<td></td>
</tr>
<tr>
<td>Technical electives 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

Technical electives

- Select one of the following:
 - American history (p. 29)
 - Government/Political science (p. 30)
 - Technical elective (p. 29)

American history (p. 29)

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>GEOP 341</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 306</td>
<td>4</td>
</tr>
<tr>
<td>MATH 311</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOL 312</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 313</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 361</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Technical elective 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>GEOP 421</td>
<td>4</td>
</tr>
<tr>
<td>GEOP 413</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 450</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture elective (p. 27) 2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Select one of the following: 3</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Creative arts elective (p. 29) 2</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral science elective (p. 30) 2</td>
<td>3</td>
</tr>
<tr>
<td>Geophysics elective 3</td>
<td></td>
</tr>
<tr>
<td>Technical electives 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>
Government/Political Science (p. 3) 3

Semester Credit Hours 14

Second Year
Fall
GEOL 203 Mineralogy 4
GEOL 210 Geological Communication 3
MATH 251 Engineering Mathematics III 3
PHYS 206 Newtonian Mechanics for Engineering and Science 3
PHYS 226 Physics of Motion Laboratory for the Sciences 1
American history (p. 29) 3

Semester Credit Hours 17

Spring
GEOL 250 Geological Field Methods 4
GEOL 304 Igneous and Metamorphic Petrology 4
MATH 308 Differential Equations 3
PHYS 207 Electricity and Magnetism for Engineering and Science 3
PHYS 227 Electricity and Magnetism Laboratory for the Sciences (Technical Electives) 1
Technical electives 2 1

Semester Credit Hours 16

Summer
American history (p. 29) 3

Semester Credit Hours 3

Third Year
Fall
GEOL 306 Sedimentology and Stratigraphy 4
GEOP 341 Fundamentals of Geophysics 3
MATH 311 Topics in Applied Mathematics I 3
PHYS 221 Optics and Thermal Physics 3
Government/Political Science (p. 30) 3

Semester Credit Hours 16

Spring
GEOL 312 Structural Geology and Tectonics 4
GEOP 313 Geophysical Field Methods 4
GEOP 361 Geophysical Signal Processing 3
Language, philosophy and culture (p. 27) 1 3
Social and behavioral science (p. 1) 1 3

Semester Credit Hours 17

Summer
Technical elective 2 3

Semester Credit Hours 3

Fourth Year
Fall
GEOL 450 Geology Senior Project 3
GEOP 421 Seismology 4
GEOP 413 Near-surface Geophysics 3
Creative arts (p. 1) 1 3
Geophysics elective 3 3
Technical electives 2

Semester Credit Hours 11

Spring
Graduate electives 4 9

Semester Credit Hours 9

Fifth Year
Fall
Graduate electives 4 9

Semester Credit Hours 9

Total Semester Credit Hours 150

1 The Graduation requirements include a requirement for three hours of International and Cultural Diversity courses and three hours of Cultural Discourse courses. A course satisfying a Core category, a college/departmental requirement, or a free elective can be used to satisfy this requirement. See academic advisor.
2 Any science, math or engineering course that augments the degree with the approval of the advisor. At least four credits should be GEOL 491 Research.
3 Any Geophysics course, GEOP 1xx-GEOP 6xx
4 The MS degree is either Non-Thesis Option (36 total hours, with 6 hours double-counting with the undergraduate Technical Electives) or Thesis Option (32 hours, with 2 hours double-counting with Technical Electives). Graduate courses may be in Geology, Geophysics or a supporting math or science area, chosen with approval of the student's advisory committee. Students in the Thesis Option may include up to 8 hours of Research courses.

The program includes a total of 152 or 156 hours which up to 2 or 6 hours may be applied toward both the Bachelor of Science in Geophysics and the Master of Science in Geophysics.

Geology - Minor

A minor in Geology requires 15 hours of Geology or Geophysics courses, and may be especially beneficial to students majoring in fields that deal directly or indirectly with geological processes. These include agriculture, anthropology, archaeology, architecture, business, education, engineering, and soil science, to name a few.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>GEOL 320</td>
<td>Geology for Civil Engineers</td>
<td>1</td>
</tr>
<tr>
<td>GEOL 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>GEOL 100-499</td>
<td>GEOP 1xx-GEOP 6xx</td>
<td></td>
</tr>
</tbody>
</table>

Technical electives

Select from the following:
GEOL 100-499 (p. 1005) 2
GEOP 100-499 (p. 1008)

Total Semester Credit Hours 15
A minor in Geophysics requires 15 hours of Geology or Geophysics courses, with a minimum of 9 hours in Geophysics. The minor in geophysics may be especially useful to those in related technical fields who wish to apply their skills to problems in Earth science, such as mathematics, physics, and to those whose careers naturally intersect with the physics of earth materials, such as petroleum and civil engineering.

Program Requirements
1. Minimum of 15 credit hours in Geology or Geophysics.
2. Minimum of 6 credits must be taken in residence at either Texas A&M in College Station or Texas A&M in Galveston.
3. Minimum of 9 credit hours in Geophysics.
4. Maximum of 4 credits may be from selected courses in Geography or Oceanography, with approval of advisor. Any substitutions must be approved by the department head.
5. Minimum of 6 credits at the 300-400 level.
6. Minimum of 2.0 cumulative GPA for all courses in the minor.

Department of Oceanography

Studies in Oceanography
Oceanography is an interdisciplinary science that focuses on the oceans, their contents and their boundaries. Degree programs include BS in Oceanography, MS (thesis option) in Oceanography, PhD in Oceanography and a Master of Ocean Science and Technology (MOST) a non-thesis professional degree. In addition, qualified undergraduate students may participate in a 15-credit minor in Oceanography.

The BS in Oceanography provides students with an interdisciplinary education and training in one of three areas of ocean science: Ocean Observing Systems and Technology (OOST), Ocean Climate (OC) and Marine Ecosystem Science and Health (MESH). All students will gain skill in handling, evaluating and analyzing large datasets.

The Department of Oceanography also has a combined 5-year Bachelor's/ MOST Program in conjunction with Environmental Geosciences, Atmospheric Sciences and Geology. These combined programs offer motivated and exceptional students the opportunity to achieve aspirations in an efficient program at Texas A&M, completing a Bachelor's degree in one of these majors: Environmental Geosciences (B.S.), Meteorology (B.S.), Geology (B.S. or B.A.) and the Master of Ocean Science and Technology degree in 5 years. There are only two courses used for dual credit in this program. There is a total of 150 hours of coursework. The concurrent degree program enables these motivated students to coordinate the required B.S coursework (114 undergraduate credit hours plus 6 dual credit graduate courses) and MOST coursework (36 credit hours including the 6 dual credit graduate courses) to complete the required credit hours for each degree without diminishing scope or quality of work within 5 years.

Faculty
Baldauf, Jack G, Professor
Oceanography
PHD, University of California, Berkeley, 1985

Campbell, Lisa, Professor
Oceanography
PHD, State University of New York at Stony Brook, 1985

Chang, Ping, Professor
Oceanography
PHD, Princeton University, 1988

Chapman, Piers, Research Professor
Oceanography
PHD, University of Wales, UK, 1983

Dimarco, Steven F, Professor
Oceanography
PHD, University of Texas at Dallas, 1991

Fitzsimmons, Jessica N, Associate Professor
Oceanography
PHD, Massachusetts Institute of Technology, 2013

Gardner, Wilford D, Senior Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1978

Gold Bouchot, Gerardo, Professor
Oceanography
PHD, CINVESTAV Merida, 1991

Henrichs, Darren, Instructional Assistant Professor
Oceanography
PHD, Texas A&M University, 2012

Hetland, Robert D, Professor
Oceanography
PHD, Florida State University, 1999

Jochens, Ann E, Professor Of The Practice
Oceanography
PHD, Texas A&M University, 1997

Knap, Anthony H, Professor
Oceanography
PHD, University of South Hampton, 1978

Orsi, Alejandro H, Professor
Oceanography
PHD, Texas A&M University, 1993

Petrik, Colleen, Research Assistant Professor
Oceanography
PHD, Massachusetts Institute of Technology, 2011
Minors

- Oceanography Minor (p. 528)

Oceanography - BS, Marine Ecosystem Science and Health Track

This track in Oceanography provides students with an interdisciplinary education and training in Marine Ecosystem Science and Health (MESH). Compared to the other OCNG BS tracks, the MESH track provides more emphasis in biology and chemistry as applied to ocean systems. All students will gain skill in handling, evaluating and analyzing large datasets.

The BS in Oceanography curriculum: 1) Provides students with an interdisciplinary understanding of the oceans and the processes affecting them for use in careers in marine science or other related fields; 2) Provides students with the skills to retrieve, evaluate, and analyze large oceanographic datasets such as those generated from long term oceanographic studies and observing systems; and 3) Emphasizes critical thinking and problem solving skills.

Students planning on attending graduate school are encouraged to also complete a minor in a STEM field. Many graduates will obtain jobs in a variety of fields including marine technical support, energy and transportation industries, insurance industries, hazard mitigation, marine operations, homeland security, oil spill response, etc.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
<td>1</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>OCNG 252</td>
<td>Oceanography Laboratory</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>

American history (p. 29) | 3 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
<td>1</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>
Oceanography - BS, Ocean Climate Track

This track in Oceanography provides students with an interdisciplinary education and training in Ocean Climate (OC). Compared to the other OCNG BS tracks, the OC track provides more emphasis in advanced math skills that can be applied to understanding ocean climate interactions. All students will gain skill in handling, evaluating and analyzing large datasets.

The BS in Oceanography curriculum: 1) Provides students with an interdisciplinary understanding of the oceans and the processes affecting them for use in careers in marine science or other related fields; 2) Provides students with the skills to retrieve, evaluate, and analyze large oceanographic datasets such as those generated from long term oceanographic studies and observing systems; and 3) Emphasizes critical thinking and problem solving skills.

Students planning on attending graduate school are encouraged to also complete a minor in a STEM field. Many graduates will obtain jobs in a variety of fields including marine technical support, energy and transportation industries, insurance industries, hazard mitigation, marine operations, homeland security, oil spill response, etc.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td>& OCNG 252</td>
<td>Oceanography Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>& PHYS 226</td>
<td>and Physics of Motion Laboratory for the Sciences</td>
</tr>
</tbody>
</table>

American history (p. 29) 3

Semester Credit Hours 120
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
<td>1</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>COMM 203 or COMM 205</td>
<td>Public Speaking or Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science or Electricity and Magnetism Laboratory for the Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 456 or OCNG 469</td>
<td>MATLAB Programming for Ocean Sciences or Python for Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Track elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 303</td>
<td>Professional Communication in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 443</td>
<td>Oceanographic Field and Laboratory Methods</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical elective 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Track elective 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Oceanography - BS, Ocean Observing Science and Technology Track

This track in Oceanography provides students with an interdisciplinary education and training in Ocean Observing Science and Technology (OOST). Compared to the other OCNG BS tracks, the OOST track provides more emphasis in statistics and ocean observing systems. All students will gain skill in handling, evaluating and analyzing large datasets.

The BS in Oceanography curriculum: 1) Provides students with an interdisciplinary understanding of the oceans and the processes affecting them for use in careers in marine science or other related fields; 2) Provides students with the skills to retrieve, evaluate, and analyze large oceanographic datasets such as those generated from long term oceanographic studies and observing systems; and 3) Emphasizes critical thinking and problem solving skills.

Students planning on attending graduate school are encouraged to also complete a minor in a STEM field. Many graduates will obtain jobs in a variety of fields including marine technical support, energy and transportation industries, insurance industries, hazard mitigation, marine operations, homeland security, oil spill response, etc.
Oceanography - BS, Marine Ecosystem Science and Health Track - 5-Year Bachelor of Science/Master of Ocean Science and Technology

The Department of Oceanography offers a 5-year (3+2) combined degree program that allows a Bachelor of Science in Oceanography major with a track in Marine Ecosystem Science and Health to enter the Master of Ocean Science and Technology at the start of their senior year (typically year four) at Texas A&M University. This enables students to receive their Oceanography undergraduate degree (BS) and a Master of Ocean Science and Technology (MOS) graduate degree in five years. For additional information, please visit https://ocean.tamu.edu/.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 404</td>
<td>Ocean Observing Systems</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>COMM 203 or COMM 205</td>
<td>Public Speaking or Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 456</td>
<td>MATLAB Programming for Ocean Sciences or Python for Geosciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Track elective 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>GEOS 470</td>
<td>Data Analysis Methods in Geosciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 430</td>
<td>Geological Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 440</td>
<td>Chemical Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Government/Pollitical science (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Track elective 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>OCNG 303</td>
<td>Professional Communication in Oceanography</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 443</td>
<td>Oceanographic Field and Laboratory Methods</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OCNG 481</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Technical elective 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Track elective 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 151</td>
<td>Engineering Mathematics I 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCNG 251</td>
<td>Oceanography</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>OCNG 252</td>
<td>Oceanography Laboratory</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Department</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Summer</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fall</td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking or Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or COMM 205</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fall</td>
<td>OCNG 420</td>
<td>Biological Oceanography or Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or OCNG 440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OCNG 456</td>
<td>MATLAB Programming for Ocean Sciences or Python for Geosciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or OCNG 469</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Track elective</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>GEOS 470</td>
<td>Data Analysis Methods in Geosciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>OCNG 430</td>
<td>Geological Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Track elective</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fall</td>
<td>OCNG 303</td>
<td>Professional Communication in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 443</td>
<td>Oceanographic Field and Laboratory Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 608</td>
<td>Physical Oceanography 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 655</td>
<td>Experimental Design and Analysis in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>OCNG 461</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 620 or OCNG 640</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 657</td>
<td>Data Methods and Graphical Representation in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Track elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fall</td>
<td>OCNG 604</td>
<td>Ocean Observing Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 656 or OCNG 669</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced specialized OCNG graduate course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced specialized OCNG graduate course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spring</td>
<td>OCNG 603</td>
<td>Communicating Ocean Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OCNG 661</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced specialized OCNG graduate course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Advanced specialized OCNG graduate course</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

1. A grade of C or better is required.
2. Select from ATMO 363; BIOL 213, BIOL 214, BIOL 351; CHEM 315, CHEM 362, CHEM 383, CHEM 415; GENE 302; OCNG 350, OCNG 425, OCNG 453, OCNG 456, OCNG 469.
3. Select from OCNG 400-499 (p. 1104), ATMO 201, ATMO 203, ATMO 251, ATM 300-499 (p. 910); BIOL 213, BIOL 214, BIOL 300-399 (p. 919); BICH 300-499 (p. 916); CHEM 300-499 (p. 929); CVEN 221; GENE 300-499 (p. 999); GEOG 442/GEOS 442, GEOG 361, GEOG 370/MARS 370, GEOG 390; GEOS 442/GEOS 442, GEOS 444; MATH 251; MATH 300-499 (p. 1066); PHYS 221; PHYS 300-499 (p. 1115); OCEN 300-499 (p. 1101); STAT 212, STAT 400-499 (p. 1154).
4. Applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.

Any of the required courses may be taken during the Summer Sessions to diminish the heavy semester loads during Years 2 and 3.

Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (OCNG 440/OCNG 640; GEOS 470/OCNG 655)

The program includes a total of 156 hours with 6 hours being applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.
The Department of Oceanography offers a 5-year (3+2) combined degree program that allows a Bachelor of Science in Oceanography major with a track in Ocean Climate to enter the Master of Ocean Science and Technology at the start of their senior year (typically year four) at Texas A&M University. This enables students to receive their Oceanography undergraduate degree (BS) and a Master of Ocean Science and Technology (MOS) graduate degree in five years. For additional information, please visit https://ocean.tamu.edu/.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td>OCNG 252</td>
<td>Oceanography Laboratory</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Second Year</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking or Communication for Technical Professions</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>or OCNG 440</td>
<td>Chemical Oceanography</td>
</tr>
<tr>
<td>OCNG 456</td>
<td>MATLAB Programming for Ocean Sciences</td>
</tr>
<tr>
<td>or OCNG 469</td>
<td>Python for Geosciences</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Poliical science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td>Track elective</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>GEOS 470</td>
<td>Data Analysis Methods in Geosciences</td>
</tr>
<tr>
<td>OCNG 430</td>
<td>Geological Oceanography</td>
</tr>
<tr>
<td>OCNG 481</td>
<td>Seminar</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Track elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>OCNG 303</td>
<td>Professional Communication in Oceanography</td>
</tr>
<tr>
<td>OCNG 443</td>
<td>Oceanographic Field and Laboratory Methods</td>
</tr>
<tr>
<td>OCNG 608</td>
<td>Physical Oceanography</td>
</tr>
<tr>
<td>OCNG 655</td>
<td>Experimental Design and Analysis in Oceanography</td>
</tr>
<tr>
<td>Track elective</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>OCNG 461</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
</tr>
<tr>
<td>OCNG 620</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>or OCNG 640</td>
<td>Chemical Oceanography</td>
</tr>
<tr>
<td>OCNG 657</td>
<td>Data Methods and Graphical Representation in Oceanography</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Track elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>OCNG 656</td>
<td>MATLAB Programming for Ocean Sciences</td>
</tr>
<tr>
<td>or OCNG 669</td>
<td>Python for Geosciences</td>
</tr>
<tr>
<td>OCNG 604</td>
<td>Ocean Observing Systems</td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>OCNG 603</td>
<td>Communicating Ocean Science</td>
</tr>
</tbody>
</table>
Oceanography - BS, Ocean Observing Science and Technology Track - 5-Year Bachelor of Science/Master of Ocean Science and Technology

The Department of Oceanography offers a 5-year (3+2) combined degree program that allows a Bachelor of Science in Oceanography major with a track in Ocean Observing Science and Technology to enter the Master of Ocean Science and Technology at the start of their senior year (typically year four) at Texas A&M University. This enables students to receive their Oceanography undergraduate degree (BS) and a Master of Ocean Science and Technology (MOS) graduate degree in five years. For additional information, please visit https://ocean.tamu.edu/.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>GEOS 101</td>
<td>Introduction to the Geosciences</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I (^1)</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography</td>
</tr>
</tbody>
</table>

\(^1\) A grade of C or better is required.

\(^2\) Select from ATMO 363; BIOL 213, BIOL 214, BIOL 351; CHEM 315, CHEM 362, CHEM 383, CHEM 415; GENE 302; OCNG 350, OCNG 425, OCNG 453, OCNG 456, OCNG 469.

\(^3\) Select from OCNG 400-499 (p. 1104), ATMO 201, ATMO 203, ATMO 251, ATMO 300-499 (p. 910); BIOL 213, BIOL 214, BIOL 300-399 (p. 919); BICH 300-499 (p. 916); CHEM 300-499 (p. 929); CVEN 221; GENE 300-499 (p. 999); GEOG 442/GEOS 442, GEOG 461, GEOG 370/MARS 370, GEOG 390, GEOS 442/GEOS 442, GEOS 444; MATH 251; MATH 300-499 (p. 1066); PHYS 221, PHYS 300-499 (p. 1115); OCEN 300-499 (p. 1101); STAT 212, STAT 400-499 (p. 1154).

\(^4\) Applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.

Any of the required courses can be taken during the Summer Sessions to diminish the heavy semester loads during Years 2 and 3.

Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses due to the content and learning outcomes being too similar (OCNG 440/400, OCNG 450/455, GEOS 470/475).

The program includes a total of 156 hours with 6 hours being applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>OCNG 203</td>
<td>Communicating Oceanography</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective (^3)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>COMM 203 or COMM 205</td>
<td>Public Speaking or Communication for Technical Professions</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
</tr>
<tr>
<td>Track elective (^2)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>OCNG 404</td>
<td>Ocean Observing Systems</td>
</tr>
<tr>
<td>OCNG 456 or OCNG 469</td>
<td>MATLAB Programming for Ocean Sciences or Python for Geosciences</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Track elective (^2)</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective (^3)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 430</td>
<td>Geological Oceanography</td>
</tr>
<tr>
<td>GEOS 470</td>
<td>Data Analysis Methods in Geosciences</td>
</tr>
<tr>
<td>OCNG 481</td>
<td>Seminar</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Track elective (^2)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>OCNG 303</td>
<td>Professional Communication in Oceanography</td>
</tr>
</tbody>
</table>
Oceanography - Minor

Oceanography is an interdisciplinary science that focuses on the oceans, their contents and their boundaries. Degree programs are offered at the graduate level, leading to the Master of Science and the Doctor of Philosophy degrees in oceanography. In addition, various undergraduate courses are offered, and qualified undergraduate students may participate in a 15-credit minor in Oceanography. A minor consists of at least 15 hours from any of the undergraduate OCNG courses. At least 6 hours must be upper division courses in the minor.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCNG 443</td>
<td>Oceanographic Field and Laboratory Methods</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 420 or OCNG 440</td>
<td>Biological Oceanography or Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 608</td>
<td>Physical Oceanography</td>
<td>4</td>
</tr>
<tr>
<td>OCNG 655</td>
<td>Experimental Design and Analysis in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Semiannual Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 461</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 620 or OCNG 640</td>
<td>Biological Oceanography or Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 657</td>
<td>Data Methods and Graphical Representation in Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Track elective 2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fifth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 604</td>
<td>Ocean Observing Systems</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 656 or OCNG 669</td>
<td>MATLAB Programming for Ocean Sciences (whichever course NOT taken at 400 level)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semiannual Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCNG 603</td>
<td>Communicating Ocean Science</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 661</td>
<td>Advanced Oceanographic Data Analysis and Communication</td>
<td>3</td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced specialized OCNG graduate course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semiannual Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Select from ATMO 363; BIOL 213, BIOL 214, BIOL 351; CHEM 315, CHEM 362, CHEM 383, CHEM 415; GENE 302; OCNG 350, OCNG 425, OCNG 453, OCNG 456, OCNG 469.
3 Select from OCNG 400-499 (p. 1104), ATMO 201, ATMO 203, ATMO 251, ATMO 300-499 (p. 910); BIOL 213, BIOL 214, BIOL 300-399 (p. 919); BICH 300-499 (p. 916); CHEM 300-499 (p. 929); CVEN 221; GENE 300-499 (p. 999); GEOG 442/GEOG 442, GEOG 361, GEOG 370/MARS 370, GEOG 390; GEOG 423/GEOG 442, GEOG 444; MATH 251; MATH 300-499 (p. 1066); PHYS 221; PHYS 300-499 (p. 1115); OCEN 300-499 (p. 1101); STAT 212, STAT 400-499 (p. 1154).
4 Applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.

Any of the required courses may be taken during the Summer Sessions to diminish the heavy semester loads during Years 2 and 3.

Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (OCNG 440/OCNG 640; GEOS 470/OCNG 655).

The program includes a total of 156 hours with 6 hours being applied toward both the Bachelor of Science in Oceanography and the Master of Ocean Science and Technology.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 15 semester credits from the following:</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Any OCNG 100 - 499 1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 At least 6 hours must be upper division courses.

University Studies Programs

The College of Geosciences offers degrees in University Studies. A University Studies degree differs from a traditional “major” in that it consists of a concentration of 26 hours and two minors of 15-18 hours each. The University Studies degree format was created to provide students the flexibility to combine areas of study that are of special interest.

Majors

- Bachelor of Science in University Studies, Geographic Information Science and Technology Concentration (p. 505)
- Bachelor of Science in University Studies, Geography Concentration (p. 506)

University Studies - BS, Geographic Information Science and Technology Concentration

The broad objective of the academic discipline of Geography is to understand and improve the human environment: Earth. Understanding Earth requires a consideration of both natural and social processes, hence Geography is by nature interdisciplinary. Human-Environment interactions are of particular interest in Geography. The area of concentration in Geographic Information Science and Technology offers students a broad perspective of Earth as a human habitat, while permitting them to complete two supporting minors in other disciplines. The area of concentration is flexible in that numerous courses are included to permit a student to build a course of study in geography that
is tailored to his or her interests. Ideally, the minors would be in related fields to build depth and breadth around themes that the student wishes to emphasize.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td>4</td>
</tr>
<tr>
<td>GEOG 352/GEOL 352</td>
<td>GNSS in the Geosciences</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
</tr>
</tbody>
</table>

Select from the following: 6-8

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>ESSM 459</td>
<td>Programming for Spatial Data Applications</td>
<td></td>
</tr>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td></td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 392</td>
<td>GIS Programming</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 461</td>
<td>Digital Image Processing in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td></td>
</tr>
<tr>
<td>GEOG 479</td>
<td>Principles of Geocomputation</td>
<td></td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Life and Physical Sciences elective</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Select one of the following: 1

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMO 201</td>
<td>Weather and Climate & ATMO 20:and Weather and Climate</td>
<td></td>
</tr>
<tr>
<td>& OCNG 251Laboratory & OCNG 25:and Oceanography and Oceanography Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 101</td>
<td>Botany & BIOL 107 and Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I & BIOL 112 and Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I & CHEM 120and Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology & GEOL 102and Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 106Laboratory and Historical Geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics & PHYS 202and College Physics</td>
<td></td>
</tr>
</tbody>
</table>

American history (p. 29) | 6

Communication (p. 26) | 6

Creative arts (p. 29) | 3

Cultural discourse (p. 46) | 2

International and cultural diversity (p. 47) | 2

Language, philosophy and culture (p. 27) | 3

Social and behavioral sciences (p. 30) | 3

Minor 1 | 15-18

Minor 2 | 15-18

General electives | 26

Total Semester Credit Hours | 120

1 Department requires that you take 8 hours of Life & Physical Sciences in the same discipline to meet this requirement.

2 A graduation requirement includes 3 hours of International and Cultural Diversity (p. 47) course and 3 hours of Cultural Discourse (p. 46). A course satisfying a University Core category, a college/department requirement, or a general elective may be used to satisfy this requirement.

University Studies - BS, Geography Concentration

The broad objective of the academic discipline of Geography is to understand and improve the human environment: Earth. Understanding Earth requires a consideration of both natural and social processes, hence Geography is by nature interdisciplinary. Human-Environment interactions are of particular interest in Geography. The area of concentration in Geography offers students a broad perspective of Earth as a human habitat, while permitting them to complete two supporting minors in other disciplines. The area of concentration is flexible in that numerous courses are included to permit a student to build a course of study in Geography that is tailored to his or her interests. Ideally, the minors would be in related fields to build depth and breadth around themes that the student wishes to emphasize.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 201</td>
<td>Introduction to Human Geography</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 232</td>
<td>Cartography and Visualization</td>
<td></td>
</tr>
<tr>
<td>GEOG 304</td>
<td>Economic Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 306</td>
<td>Introduction to Urban Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 309</td>
<td>Geography of Energy</td>
<td></td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 312</td>
<td>Data Analysis in Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
<td></td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
<td></td>
</tr>
<tr>
<td>GEOG 331</td>
<td>Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 335</td>
<td>Pattern and Process in Biogeography</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>GEOG 352/GEOL 352</td>
<td>GNSS in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 355</td>
<td>Concepts in Geographic Education</td>
<td></td>
</tr>
<tr>
<td>GEOG 360</td>
<td>Natural Hazards</td>
<td></td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 370/MARS 370</td>
<td>Coastal Processes</td>
<td></td>
</tr>
<tr>
<td>GEOG 380</td>
<td>Workshop in Environmental Studies</td>
<td></td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 398</td>
<td>Interpretation of Aerial Photographs</td>
<td></td>
</tr>
<tr>
<td>GEOG 400</td>
<td>Arid Lands Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 404</td>
<td>Spatial Thinking, Perception and Behavior</td>
<td></td>
</tr>
<tr>
<td>GEOG 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
<td></td>
</tr>
<tr>
<td>GEOG 420</td>
<td>Geography of Terrorism</td>
<td></td>
</tr>
<tr>
<td>GEOG 430</td>
<td>Environmental Justice</td>
<td></td>
</tr>
<tr>
<td>GEOG 434</td>
<td>Hydrology and Environment</td>
<td></td>
</tr>
<tr>
<td>GEOG 435</td>
<td>Principles of Plant Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 440</td>
<td>History and Nature of Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 442</td>
<td>Past Climates</td>
<td></td>
</tr>
<tr>
<td>GEOG 450</td>
<td>Field Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 462/ESSM 462</td>
<td>Advanced GIS Analysis for Natural Resources Management</td>
<td></td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td></td>
</tr>
<tr>
<td>GEOG 476</td>
<td>GIS Practicum</td>
<td></td>
</tr>
<tr>
<td>GEOG 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>GEOG 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>GEOG 491</td>
<td>Research</td>
<td></td>
</tr>
</tbody>
</table>

Select two of the following: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 400</td>
<td>Arid Lands Geomorphology</td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
</tr>
<tr>
<td>GEOG 404</td>
<td>Spatial Thinking, Perception and Behavior</td>
</tr>
<tr>
<td>GEOG 406</td>
<td>Geographic Perspectives on Contemporary Urban Issues</td>
</tr>
<tr>
<td>GEOG 420</td>
<td>Geography of Terrorism</td>
</tr>
<tr>
<td>GEOG 430</td>
<td>Environmental Justice</td>
</tr>
<tr>
<td>GEOG 434</td>
<td>Hydrology and Environment</td>
</tr>
<tr>
<td>GEOG 435</td>
<td>Principles of Plant Geography</td>
</tr>
<tr>
<td>GEOG 440</td>
<td>History and Nature of Geography</td>
</tr>
<tr>
<td>GEOG 442</td>
<td>Past Climates</td>
</tr>
<tr>
<td>GEOG 450</td>
<td>Field Geography</td>
</tr>
<tr>
<td>GEOG 462/ESSM 462</td>
<td>Advanced GIS Analysis for Natural Resources Management</td>
</tr>
<tr>
<td>GEOG 467</td>
<td>Dynamic Modeling of Earth and Environmental Systems</td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
</tr>
</tbody>
</table>
GEOG 476 GIS Practicum
GEOG 485 Directed Studies
GEOG 489 Special Topics in...
GEOG 491 Research

University and College Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 213</td>
<td>Planet Earth Lab</td>
<td>1</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Life and Physical Science electives</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- ATMO 201 Weather and Climate
- ATMO 202 and Weather and Climate
- OCNG 251 Laboratory
- OCNG 252 and Oceanography
- and Oceanography Laboratory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>Botany</td>
<td></td>
</tr>
<tr>
<td>& BIOL 107</td>
<td>and Zoology</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>& BIOL 112</td>
<td>and Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td></td>
</tr>
<tr>
<td>& CHEM 120</td>
<td>and Fundamentals of Chemistry II</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 102</td>
<td>and Principles of Geology</td>
<td></td>
</tr>
<tr>
<td>& GEOL 106</td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>and Historical Geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>& PHYS 202</td>
<td>and College Physics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History (p. 29)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Creative Arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language, Philosophy and Culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and Behavioral Sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 1</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>Minor 2</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>General Electives</td>
<td>18-24</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1 GEOG 301 and GEOG 305 cannot be used in combination to meet this requirement.
2 Department requires that you take 8 hours Life & Physical Sciences in the same discipline to meet this requirement.
3 Any 100-499 course not used elsewhere.

Two courses that meet the writing requirement are required.

A graduation requirement includes 3 hours of international and cultural diversity (p. 47) course and 3 hours of cultural discourse (p. 46). A course satisfying a University Core category, a college/department requirement, or a free elective may be used to satisfy this requirement.
COLLEGE OF LIBERAL ARTS

Administrative Officers
Dean - Pamela R. Matthews, Ph.D.
Associate Dean - Violet Johnson, Ph.D.
Associate Dean - Steven M. Oberhelman, Ph.D.
Associate Dean - Maria C. Escobar-Lemmon, Ph.D.
Associate Dean - Leroy Dorsey, Ph.D.
Associate Dean - Paul Wellman, Ph.D.
Assistant Dean - Kristine Brisco

General Statement
The College of Liberal Arts offers students an opportunity to explore the intellectual achievements of humankind through a disciplined and responsible study of issues that have been of enduring importance to people. Thus, courses in liberal arts help students develop a sensitivity to the questions and values that confront them in their daily lives. At the same time, skills are built which can be put to use in solving complex problems. One of the program's principal objectives is to achieve the hallmark of an educated person: a fundamental knowledge of the forces that have shaped and continue to direct our cultural identity.

The purpose of the undergraduate program in the College of Liberal Arts is to foster independent, critical thinking by offering students a broad education. To achieve this, the college supports the aims of the University Core Curriculum, which requires all students to engage in specific studies intended to promote an awareness of their heritage, their culture, and their environment. Students who choose to major in one of the Liberal Arts disciplines will complete a curriculum designed to promote this breadth of understanding while providing a focus through concentration in one specific area of study.

The first two years of undergraduate study in the College of Liberal Arts introduce students to the full range of arts, humanities, science, mathematics and social science areas that are established in the University Core Curriculum. During the last two years, students concentrate on their major and minor fields of study and complete their program with appropriate elective hours. Throughout the program, skills in critical thinking, problem-solving, collaboration, and communication are developed, strengthened and polished.

Many graduates with bachelor's degrees in liberal arts continue their study at the graduate level in an academic discipline or in a profession such as medicine or law. The majority go directly into the job market. Studies have shown that liberal arts graduates are very successful in a variety of activities in commerce, business, or public service because the knowledge and skills sets in critical thinking, communication, writing, problem-solving, and analytical thinking they have developed are valuable in today's world. Many businesses actively recruit liberal arts majors. Whether as a foundation for further study or as a broad education preparatory to positions in business, industry, and the public domain, a liberal arts degree has intrinsic worth and enduring value in providing knowledge for life.

General Degree Requirements
Degree requirements for Liberal Arts majors are organized into:

1. General Requirements, including University Core Curriculum requirements and College of Liberal Arts requirements
2. Requirements of the Major Field of Study
3. Requirements of the Minor Field of Study (if appropriate)
4. Electives

A minimum of 120 acceptable hours of coursework is required for the baccalaureate degree. A minimum of 36 hours of 300- or 400-level coursework must be completed at Texas A&M University.

General Requirements
The areas listed below include University Core Curriculum requirements and College of Liberal Arts requirements. The completion of requisite hours in these areas will thus satisfy both University Core Curriculum and college requirements.

Bachelor of Arts Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
</tbody>
</table>

Literature Directed Elective
Select two of the following: 6

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 202</td>
<td>Environmental Literature</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
</tr>
<tr>
<td>ENGL 204/</td>
<td>Introduction to African-American Literature</td>
</tr>
<tr>
<td>AFST 204</td>
<td></td>
</tr>
<tr>
<td>ENGL 205/</td>
<td>Introduction to Africana Literature</td>
</tr>
<tr>
<td>AFST 205</td>
<td></td>
</tr>
<tr>
<td>ENGL 206</td>
<td>Twenty-first Century Literature and Culture</td>
</tr>
<tr>
<td>ENGL 212</td>
<td>Shakespeare</td>
</tr>
<tr>
<td>ENGL 219</td>
<td>Literature and the Other Arts</td>
</tr>
<tr>
<td>ENGL 221/</td>
<td>World Literature</td>
</tr>
<tr>
<td>MODL 221</td>
<td></td>
</tr>
<tr>
<td>ENGL 222/</td>
<td>World Literature</td>
</tr>
<tr>
<td>MODL 222</td>
<td></td>
</tr>
<tr>
<td>ENGL 227</td>
<td>American Literature: The Beginnings to Civil War</td>
</tr>
<tr>
<td>ENGL 228</td>
<td>American Literature: Civil War to Present</td>
</tr>
<tr>
<td>ENGL 231</td>
<td>Survey of English Literature I</td>
</tr>
<tr>
<td>ENGL 232</td>
<td>Survey of English Literature II</td>
</tr>
<tr>
<td>ENGL 313</td>
<td>Medieval English Literature</td>
</tr>
<tr>
<td>ENGL 314</td>
<td>The English Renaissance</td>
</tr>
<tr>
<td>ENGL 315</td>
<td>Seventeenth-Century Literature</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ENGL 316</td>
<td>Eighteenth-Century Literature and Culture</td>
</tr>
<tr>
<td>ENGL 317</td>
<td>Early British Drama</td>
</tr>
<tr>
<td>ENGL 321</td>
<td>Nineteenth-Century Literature (Romantic)</td>
</tr>
<tr>
<td>ENGL 322</td>
<td>Nineteenth-Century Literature (Victorian)</td>
</tr>
<tr>
<td>ENGL 323</td>
<td>The American Renaissance</td>
</tr>
<tr>
<td>ENGL 329/AFST 329</td>
<td>African-American Literature & Pre-1930</td>
</tr>
<tr>
<td>ENGL 330</td>
<td>Arthurian Literature</td>
</tr>
<tr>
<td>ENGL 331</td>
<td>Fantasy Literature</td>
</tr>
<tr>
<td>ENGL 333/AFST 333</td>
<td>Lesbian, Gay, Bisexual, Transgender and Queer Literature</td>
</tr>
<tr>
<td>ENGL 334</td>
<td>Science Fiction Present and Past</td>
</tr>
<tr>
<td>ENGL 336</td>
<td>Life and Literature of the Southwest</td>
</tr>
<tr>
<td>ENGL 337</td>
<td>Life and Literature of the American South</td>
</tr>
<tr>
<td>ENGL 338</td>
<td>American Ethnic Literature</td>
</tr>
<tr>
<td>ENGL 339/AFST 339</td>
<td>African-American Literature & Post-1930</td>
</tr>
<tr>
<td>ENGL 340</td>
<td>Modern and Contemporary Drama</td>
</tr>
<tr>
<td>ENGL 350</td>
<td>Twentieth-Century Literature to World War II</td>
</tr>
<tr>
<td>ENGL 352</td>
<td>Literature, World War II to Present.</td>
</tr>
<tr>
<td>ENGL 356/</td>
<td>Literature and Film</td>
</tr>
<tr>
<td>FILM 356</td>
<td></td>
</tr>
<tr>
<td>ENGL 357</td>
<td>Native American Rhetorics and Literatures</td>
</tr>
<tr>
<td>ENGL 360</td>
<td>Literature for Children</td>
</tr>
<tr>
<td>ENGL 361</td>
<td>Young Adult Literature</td>
</tr>
<tr>
<td>ENGL 362/</td>
<td>Latino/a Literature</td>
</tr>
<tr>
<td>HISP 362</td>
<td></td>
</tr>
<tr>
<td>ENGL 365/</td>
<td>The Bible as Literature</td>
</tr>
<tr>
<td>RELS 360</td>
<td></td>
</tr>
<tr>
<td>ENGL 372</td>
<td>American Poetry</td>
</tr>
<tr>
<td>ENGL 373</td>
<td>American Realism and Naturalism</td>
</tr>
<tr>
<td>ENGL 374/</td>
<td>Women Writers</td>
</tr>
<tr>
<td>WGST 374</td>
<td></td>
</tr>
<tr>
<td>ENGL 375</td>
<td>Nineteenth-Century American Novel</td>
</tr>
<tr>
<td>ENGL 376</td>
<td>The American Novel Since 1900</td>
</tr>
<tr>
<td>ENGL 377</td>
<td>The British Novel to 1870.</td>
</tr>
<tr>
<td>ENGL 378</td>
<td>The British Novel, 1870 to Present.</td>
</tr>
<tr>
<td>ENGL 379/</td>
<td>Postcolonial Literatures</td>
</tr>
<tr>
<td>AFST 379</td>
<td></td>
</tr>
<tr>
<td>ENGL 390</td>
<td>Studies in British Literature</td>
</tr>
<tr>
<td>ENGL 391</td>
<td>Folklore, Literature, and World Cultures</td>
</tr>
<tr>
<td>ENGL 392/</td>
<td>Studies in Literature, Religion and</td>
</tr>
<tr>
<td>RELS 392</td>
<td>Culture</td>
</tr>
<tr>
<td>ENGL 393/</td>
<td>Studies in Africana Literature and</td>
</tr>
<tr>
<td>AFST 393</td>
<td>Culture</td>
</tr>
<tr>
<td>ENGL 394</td>
<td>Studies in Genre</td>
</tr>
<tr>
<td>ENGL 396</td>
<td>Studies in American Literature</td>
</tr>
<tr>
<td>ENGL 412</td>
<td>Studies in Shakespeare</td>
</tr>
<tr>
<td>ENGL 414</td>
<td>Milton</td>
</tr>
<tr>
<td>ENGL 415</td>
<td>Studies in a Major Author</td>
</tr>
<tr>
<td>ENGL 431</td>
<td>Chaucer</td>
</tr>
<tr>
<td>ENGL 474/</td>
<td>Studies in Women Writers</td>
</tr>
<tr>
<td>WGST 474</td>
<td></td>
</tr>
<tr>
<td>AFST 204/</td>
<td>Introduction to African-American</td>
</tr>
<tr>
<td>ENGL 204</td>
<td>Literature</td>
</tr>
<tr>
<td>AFST 205/</td>
<td>Introduction to Africana Literature</td>
</tr>
<tr>
<td>ENGL 205</td>
<td></td>
</tr>
<tr>
<td>AFST 329/</td>
<td>African-American Literature</td>
</tr>
<tr>
<td>ENGL 329</td>
<td>Pre-1930</td>
</tr>
<tr>
<td>AFST 339/</td>
<td>African-American Literature</td>
</tr>
<tr>
<td>ENGL 339</td>
<td>Post-1930</td>
</tr>
<tr>
<td>AFST 379/</td>
<td>Postcolonial Literatures</td>
</tr>
<tr>
<td>ENGL 379</td>
<td></td>
</tr>
<tr>
<td>AFST 393/</td>
<td>Studies in Africana Literature and</td>
</tr>
<tr>
<td>ENGL 393</td>
<td>Culture</td>
</tr>
<tr>
<td>FILM 356/</td>
<td>Literature and Film</td>
</tr>
<tr>
<td>ENGL 356</td>
<td></td>
</tr>
<tr>
<td>HISP 362/</td>
<td>Latino/a Literature</td>
</tr>
<tr>
<td>ENGL 362</td>
<td></td>
</tr>
<tr>
<td>MODL 221/</td>
<td>World Literature</td>
</tr>
<tr>
<td>ENGL 221</td>
<td></td>
</tr>
<tr>
<td>MODL 222/</td>
<td>World Literature</td>
</tr>
<tr>
<td>ENGL 222</td>
<td></td>
</tr>
<tr>
<td>RELS 392/</td>
<td>Studies in Literature, Religion and</td>
</tr>
<tr>
<td>ENGL 392</td>
<td>Culture</td>
</tr>
<tr>
<td>WGST 333/</td>
<td>Lesbian, Gay, Bisexual, Transgender and Queer</td>
</tr>
<tr>
<td>ENGL 333</td>
<td>Literatures</td>
</tr>
<tr>
<td>WGST 374/</td>
<td>Women Writers</td>
</tr>
<tr>
<td>ENGL 374</td>
<td></td>
</tr>
<tr>
<td>WGST 474/</td>
<td>Studies in Women Writers</td>
</tr>
<tr>
<td>ENGL 474</td>
<td></td>
</tr>
<tr>
<td>Foreign Language</td>
<td>3</td>
</tr>
<tr>
<td>Option 1</td>
<td>14</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ARAB 101</td>
<td>Beginning Arabic I</td>
</tr>
<tr>
<td>& ARAB 102</td>
<td>Beginning Arabic II</td>
</tr>
<tr>
<td>CHIN 101</td>
<td>Beginning Chinese I</td>
</tr>
<tr>
<td>& CHIN 102</td>
<td>Beginning Chinese II</td>
</tr>
<tr>
<td>CLAS 101</td>
<td>Beginning Classical Greek I</td>
</tr>
<tr>
<td>& CLAS 102</td>
<td>Beginning Classical Greek II</td>
</tr>
<tr>
<td>CLAS 121</td>
<td>Beginning Latin I</td>
</tr>
<tr>
<td>& CLAS 122</td>
<td>Beginning Latin II</td>
</tr>
<tr>
<td>FREN 101</td>
<td>Beginning French I</td>
</tr>
<tr>
<td>& FREN 102</td>
<td>Beginning French II</td>
</tr>
<tr>
<td>GERM 101</td>
<td>Beginning German I</td>
</tr>
<tr>
<td>& GERM 102</td>
<td>Beginning German II</td>
</tr>
<tr>
<td>ITAL 101</td>
<td>Beginning Italian I</td>
</tr>
<tr>
<td>& ITAL 102</td>
<td>Beginning Italian II</td>
</tr>
<tr>
<td>JAPN 101</td>
<td>Beginning Japanese I</td>
</tr>
<tr>
<td>& JAPN 102</td>
<td>Beginning Japanese II</td>
</tr>
<tr>
<td>RUSS 101</td>
<td>Beginning Russian I</td>
</tr>
<tr>
<td>& RUSS 102</td>
<td>Beginning Russian II</td>
</tr>
<tr>
<td>SPAN 101</td>
<td>Beginning Spanish I</td>
</tr>
<tr>
<td>& SPAN 102</td>
<td>Beginning Spanish II</td>
</tr>
</tbody>
</table>
Select one of the following:

- ARAB 201 Intermediate Arabic I
- & ARAB 202 and Intermediate Arabic II
- CHIN 201 Intermediate Chinese I
- & CHIN 202 and Intermediate Chinese II
- CLAS 211 Intermediate Greek
- or CLAS 314r Advanced Greek: New Testament
- or CLAS 314r Advanced Classical Greek
 - Poetry
- or CLAS 314r Advanced Classical Greek
 - Prose
- CLAS 221 Intermediate Latin I
- & CLAS 222 and Intermediate Latin II
- FREN 201 Intermediate French I
- & FREN 202 and Intermediate French II
- or FREN 222 Field Studies I and Field Studies
 & FREN 202
- GERM 201 Intermediate German I
- & GERM 202 and Intermediate German II
- or GERM or Field Studies I and Field Studies
 & GERM II
- ITAL 201 Intermediate Italian I
- & ITAL 202 and Intermediate Italian II
- JAPN 201 Intermediate Japanese I
- & JAPN 202 and Intermediate Japanese II
- RUSS 201 Intermediate Russian I
- & RUSS 202 and Intermediate Russian II
- or RUSS 222 Field Studies I and Field Studies
 & RUSS 202
- SPAN 201 Intermediate Spanish I
- & SPAN 202 and Intermediate Spanish II
- or SPAN or Field Studies Abroad I and Field
 & SPAN 222

Option 2
Foreign language placement test results determine foreign language course levels required

Option 3
Advanced Placement or Reading Achievement foreign language test results determine foreign language course levels required

Mathematics
Mathematics (3 hours must be in MATH) (p. 26)

Life and Physical Sciences
Life and physical sciences (p. 26)

Creative Arts and Language, Philosophy and Culture
Creative arts (p. 29)

Language, philosophy and culture (p. 27)

Language, philosophy and culture or creative arts (p. 27)

Social and Behavioral Sciences
Social and behavioral sciences (p. 30)

American History
American history (p. 29)

Government/Political Science
Government/Political science (p. 30)

International Cultures and Diversity
Cultural discourse (p. 46)

International and cultural diversity (p. 47)

Total Semester Credit Hours

1 Students must demonstrate the ability to express themselves in acceptable written English. The College requirement is satisfied if a student earns a grade of C or better in ENGL 203. Students who do not meet this standard must repeat the course prior to completing 60 hours and earn a grade of C or better or must immediately arrange with the director of the writing laboratory to be certified as competent in writing.

2 ENGL 203 will count toward the Communication requirement or the Literature in English requirement, but will not count toward both requirements.

3 Students must take a foreign language placement test if they:
 - intend to enroll for the first time in a college Spanish, French, German, Russian, Arabic, Chinese, Japanese, Classical Greek, Italian, or Latin course and
 - have knowledge of the language acquired in any way

The placement test serves as a basis for credit by examination. Placement tests are offered throughout the calendar year by the Department of Hispanic Studies for Spanish and by the Department of International Studies for all other languages. Students who have taken the Advanced Placement (AP) test or the Reading Achievement test in their foreign language of choice may substitute the test results for the placement exam.

4 No course used to fulfill this requirement may fulfill any other college or University requirement except in the minor field of study.

5 Minimum of 3 and maximum of 6 semester credit hours in Creative Arts.

6 Courses in military, air or naval science may not be substituted for University requirement except in the minor field of study.

7 The list of approved courses is available in the degree audit for each major.

Bachelor of Science Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
</tbody>
</table>

Literature Directed Elective

Select two of the following:

- ENGL 202 Environmental Literature
- ENGL 203 Writing about Literature
- ENGL 204/ Introduction to African-American
- AFST 204 Literature
ENGL 205/ AFST 205 Introduction to Africana Literature
ENGL 206 Twenty-first Century Literature and Culture
ENGL 212 Shakespeare
ENGL 219 Literature and the Other Arts
ENGL 221/ MODL 221 World Literature
ENGL 222/ MODL 222 World Literature
ENGL 227 American Literature: The Beginnings to Civil War
ENGL 228 American Literature: Civil War to Present
ENGL 231 Survey of English Literature I
ENGL 232 Survey of English Literature II
ENGL 313 Medieval English Literature
ENGL 314 The English Renaissance
ENGL 315 Seventeenth-Century Literature
ENGL 316 Eighteenth-Century Literature and Culture
ENGL 317 Early British Drama
ENGL 321 Nineteenth-Century Literature (Romantic)
ENGL 322 Nineteenth-Century Literature (Victorian)
ENGL 323 The American Renaissance
ENGL 329/ AFST 329 African-American Literature
AFST 329 Pre-1930
ENGL 330 Arthurian Literature
ENGL 331 Fantasy Literature
ENGL 333/ WGST 333 Lesbian, Gay, Bisexual, Transgender and Queer Literatures
ENGL 334 Science Fiction Present and Past
ENGL 336 Life and Literature of the Southwest
ENGL 337 Life and Literature of the American South
ENGL 338 American Ethnic Literature
ENGL 339/ AFST 339 African-American Literature
AFST 339 Post-1930
ENGL 340 Modern and Contemporary Drama
ENGL 350 Twentieth-Century Literature to World War II
ENGL 352 Literature, World War II to Present.
ENGL 356/ FILM 356 Literature and Film
ENGL 357 Native American Rhetorics and Literatures
ENGL 360 Literature for Children
ENGL 361 Young Adult Literature
ENGL 362/ HISP 362 Latino/a Literature
ENGL 365/ RELS 360 The Bible as Literature
ENGL 372 American Poetry
ENGL 373 American Realism and Naturalism
ENGL 374/ WGST 374 Women Writers
ENGL 375 Nineteenth-Century American Novel
ENGL 376 The American Novel Since 1900
ENGL 377 The British Novel to 1870.
ENGL 378 The British Novel, 1870 to Present.
ENGL 379/ AFST 379 Postcolonial Literatures
ENGL 390 Studies in British Literature
ENGL 391 Folklore, Literature, and World Cultures
ENGL 392/ RELS 392 Studies in Literature, Religion and Culture
ENGL 393/ AFST 393 Studies in Africana Literature and Culture
ENGL 394 Studies in Genre
ENGL 396 Studies in American Literature
ENGL 412 Studies in Shakespeare
ENGL 414 Milton
ENGL 415 Studies in a Major Author
ENGL 431 Chaucer
ENGL 474/ WGST 474 Studies in Women Writers
AFST 204/ ENGL 204 Introduction to African-American Literature
ENGL 204 Literature
AFST 205/ ENGL 205 Introduction to Africana Literature
ENGL 205
AFST 329/ ENGL 329 African-American Literature
ENGL 329 Pre-1930
AFST 339/ ENGL 339 African-American Literature
ENGL 339 Post-1930
AFST 379/ ENGL 379 Postcolonial Literatures
ENGL 379
AFST 393/ ENGL 393 Studies in Africana Literature and Culture
FILM 356/ ENGL 356 Literature and Film
ENGL 356
HISP 362/ ENGL 362 Latino/a Literature
ENGL 362
MODL 221/ ENGL 221 World Literature
ENGL 221
MODL 222/ ENGL 222 World Literature
ENGL 222
RELS 392/ ENGL 392 Studies in Literature, Religion and Culture
ENGL 392
WGST 333/ ENGL 333 Lesbian, Gay, Bisexual, Transgender and Queer Literatures
ENGL 333
WGST 374/ ENGL 374 Women Writers
ENGL 374
WGST 474/ ENGL 474 Studies in Women Writers
ENGL 474

Foreign Language 3
Select one of the following: 8
ARAB 101 Beginning Arabic I
& ARAB 102 Beginning Arabic II
CHIN 101 Beginning Chinese I
& CHIN 102 Beginning Chinese II
CLAS 101 Beginning Classical Greek I
& CLAS 102 Beginning Classical Greek II
CLAS 121 Beginning Latin I
& CLAS 122 Beginning Latin II
FREN 101 Beginning French I
& FREN 102 Beginning French II
GERM 101 Beginning German I
& GERM 102 Beginning German II
ITAL 101 Beginning Italian I
& ITAL 102 Beginning Italian II
JAPN 101 Beginning Japanese I
& JAPN 102 Beginning Japanese II
RUSS 101 Beginning Russian I
& RUSS 102 Beginning Russian II
SPAN 101 Beginning Spanish I
& SPAN 102 Beginning Spanish II
Mathematics
Mathematics (3 hours must be in MATH) (p. 26) 6
Life and Physical Sciences
Life and physical sciences (p. 26) 9
Creative Arts and Language, Philosophy and Culture 4
Creative arts (p. 29) 5
Language, philosophy and culture (p. 27) 3
Language, philosophy and culture or creative arts (p. 27) 4
Social and Behavioral Sciences
Social and behavioral sciences (p. 30) 4
American History
American history (p. 29) 6
Government/Political Science
Goverment/Political science (p. 30) 6
International and Cultural Diversity and Cultural Discourse
Cultural discourse (p. 46) 7
International and cultural diversity (p. 47) 7
Prescribed courses by major department 6
Total Semester Credit Hours 74

1 Students must demonstrate the ability to express themselves in acceptable written English. The College requirement is satisfied if a student earns a grade of C or better in ENGL 203. Students who do not meet this standard must repeat the course prior to completing 60 hours and earn a grade of C or better or must immediately arrange with the director of the writing laboratory to be certified as competent in writing.

2 ENGL 203 will count toward the Communication requirement or the Literature in English requirement, but will not count toward both requirements.

3 Two years of high school foreign language may be used to satisfy this requirement unless specified by major.

4 No course used to fulfill this requirement may fulfill any other college or university requirement except in the minor field of study.

5 Minimum of 3 and maximum of 6 semester credit hours in Creative Arts.

6 Courses in military, air or naval science may not be substituted for required courses.

7 The list of approved courses is available in the degree audit for each major.

Major Field of Study
Each department sets its own requirements for the major, including no fewer than 27 hours of coursework and no more than 33 hours. At least 12 semester hours in the major must be completed in advanced courses (300- and 400-level), and at least 12 semester hours in the major field must be completed in residence at Texas A&M. A grade of C or higher is required in a course to be counted toward the major.

Minor Field of Study
Completion of a minor is not a requirement of the College of Liberal Arts; however, individual departments may require their majors to have a minor. Students should consult with an advisor in their major department to determine if a minor is required. The minor program comprises 15–18 hours with a minimum of 6 hours in residence at the 300- to 400-level. Minor programs are recognized on the official transcript after graduation, but not on the diploma. A grade of C or higher is required if a course is to be counted toward the minor field. Each student who is required to complete a minor, or who chooses to do so, should contact the department that offers the minor to determine which specific courses are mandated. No student may have more than two minors. The student’s home department is responsible for advising after the student receives signed approval from the department, program, or college granting the minor program.

Electives
To enhance the traditionally broad background of the liberal arts graduate, undergraduate students are allowed to include in their degree program a minimum of 9 semester hours of free elective courses. These courses may be chosen from any field within the University. (See section on “Requirements for a Baccalaureate Degree” in this catalog.) All other elective hours must be selected with the approval of the student’s advisor and dean.

- ASCC 289 and ASCC 101 may only be taken on an S/U basis.
- Lower level (100 and 200 level) military science coursework (AERS, MLSC, NVSC) does not apply to degree requirements in the College of Liberal Arts.
- No more than 14 semester credit hours combined of KINE 199 and upper-level Military Science or SOMS courses may be used as electives.
- Any undergraduate student may take up to four semester credit hours of KINE 199 on an S/U basis.
- In the College of Liberal Arts, students who have less than a 2.0 GPR and who enroll in KINE 199 must enroll in the course on an S/U basis.

Combined Degree Plan, Double Degree and Double Major
Students may pursue a program to qualify for two bachelor’s degrees, either a Bachelor of Arts and a Bachelor of Science degree from different departments, or two Bachelor of Arts or two Bachelor of Science degrees,
with the second degree from another college. Alternatively, instead of a major and a minor field, students in the College of Liberal Arts may elect to have two Liberal Arts major fields of study. Both majors may be within the college, or one major may be outside the college, provided both majors lead to the same baccalaureate degree. It is critical for any student wishing to pursue a double degree or double major to see her adviser early because there is a time limit on declaration (see below).

Students who are enrolled in a University Studies degree are not eligible for a double major or a double degree.

Students must declare the double degree no later than the semester in which they will complete 90 hours. Students must have and maintain at least a 3.0 GPA cumulative and in the majors (or the minimum departmental GPA requirement in the major, whichever is higher), with at least a 3.0 GPA in at least 9 hours in the second field of study at the time of declaration. Before declaring the double degree, students should consult with the appropriate advisors to formulate the combined degree plan. The following requirements must be met: the student must

1. satisfy all University and college requirements
2. complete all required courses in each major, if both majors are in the College of Liberal Arts (i.e., take all courses that are specifically listed in each regular degree program)
3. in cases where one major is in the College of Liberal Arts and the other major is in another college, the student shall take in his or her liberal arts major field of study the same number of credit hours required of regular majors in that field and also satisfy whatever conditions are set by the other college for its major field

Candidates for a double bachelor's degree must have been in residence at least two academic years and must complete all essential work of the second curriculum not covered in the first. To qualify for the double degree, the student must complete a minimum of 30 semester credit hours more than the higher number of semester credit hours required for either degree.

Curricular Options

International and Intercultural Experiences

The International and Cultural Diversity requirement encourages all students to learn about attitudes and cultures different from their own. All students are required to select from a list of approved courses that foster greater awareness of our interdependent and diverse world.

Students also may select, as free electives, courses which address cultural diversity issues in the United States. Courses in this area encourage students to focus on issues of race, ethnicity and gender and to develop a broader understanding of the diverse cultures and traditions in the United States.

Further opportunity to increase international and national intercultural awareness can be accomplished through study abroad and internship programs. More information on these programs is available from the college's study abroad programs manager, who is housed in the Undergraduate Programs Office of the College of Liberal Arts.

Liberal Arts Honors Program

The College of Liberal Arts encourages qualified majors to participate in its Honors Program, which is designed for academically talented high school graduates who have distinguished secondary school records (top 10%) and high scores on achievement tests (1250 SAT or 28 ACT). Students may also become Honors eligible once they establish a Texas A&M GPA of at least 3.5.

Students accepted into the program take courses that foster an interdisciplinary outlook characteristic of the Liberal Arts and that synthesize knowledge from other courses. Participants work in small classes with some of the most distinguished faculty at Texas A&M University. Students develop their own interests and have the option to write an honors thesis under the direct supervision of a professor with whom they have chosen to work. For information about Texas A&M Honors Program and Fellows Program (i.e., the senior thesis), see the Honors and Undergraduate Research (http://honors.tamu.edu) website. Individual departments may have their own Honors program for their majors.

Interdisciplinary Minors

Interdisciplinary minors are offered in Africana Studies, Asian Studies, Comparative Cultural Studies, Film Studies, Hispanic Studies for Community Engagement, Journalism Studies, Latino/a Mexican American Studies, Religious Studies, and Women's and Gender Studies. Specific course requirements and options are available from each interdisciplinary program director.

Cooperative Education Program

Cooperative education enables students to gain practical work experience and a salary while completing academic requirements. During the four-year academic program, co-op students complete two to four periods of work away from campus, gaining experience through on-the-job training and thus improving their opportunities for future employment.

An advisor in the cooperative education office provides additional information about this program.

Government Service (MPA Programs)

Most graduate programs in public administration recommend a broad background of knowledge and skills in the following areas: the political, social, economic and legal context of administration; analytical tools; individual, group and organizational dynamics; policy analysis; administrative/management processes; and arts and science foundation skills. Students are best prepared for an MPA program if their undergraduate programs are multidisciplinary in nature, drawing upon political science, economics, the behavioral sciences, the quantitative sciences, and administrative and managerial sciences.

Law

Most law school admissions committees require a student to have a baccalaureate degree, or equivalent, as well as an acceptable score on the Law School Admissions Test (LSAT). In general, law schools prefer that a student seek a diverse college education rather than one which is narrowly specialized. They favor thorough learning in some broad cultural field of a student's choice, such as history, economics, political science, philosophy, mathematics, science, literature, or the classics. Admissions committees rarely favor concentration in specialized, technical curricula unless such study is adequately supplemented by advanced work in the social sciences and humanities. The Law School Admissions Test Council and the Council of the Section on Legal Education and Admissions of the American Bar Association both advise against the taking of satisfactory/unsatisfactory courses by students intending to go to law school.

The college now offers a University Studies degree with a concentration in pre-law (B.A. in Society, Ethics and Law). Advising for pre-law students regardless of major, including application forms for taking the Law School
Admissions Test, may be obtained from the Office of Professional School Advising.

Medicine

Advising for all pre-health students, including medical and dental students, may be obtained from the Office of Professional School Advising. Students are urged to stop by the office to pick up information on professional schools and talk with an advisor very early in their collegiate career.

Teacher Certification

Students majoring in one of the departments of the College of Liberal Arts and working toward a teaching certificate must meet the minimum requirements described in the College of Education and Human Development section under secondary teacher certification. Because many certification requirements are determined by the State of Texas and thus are subject to periodic change, students working toward certification should maintain frequent contact with advisors in the College of Education and Human Development.

Theology

The American Association of Theological Schools recommends that students planning to enter a theological seminary include in their undergraduate curriculum the following subjects.

- English (6 semesters)
- History (3 semesters)
- Philosophy (3 semesters)
- Natural science (2 semesters)
- Social science (6 semesters)
- Foreign language (4 semesters): Latin, German or French
- Religion (3 semesters).

Courses taught at Texas A&M in religion include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 365/RELS 360</td>
<td>The Bible as Literature</td>
<td>3</td>
</tr>
<tr>
<td>HUMA 304/RELS 304</td>
<td>Indian and Oriental Religions</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 331/RELS 331</td>
<td>Philosophy of Religion</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 326/RELS 326</td>
<td>Sociology of Religion</td>
<td>3</td>
</tr>
</tbody>
</table>

For more information, see the Director of the Religious Studies Program in the college.

Majors

College of Liberal Arts

- Bachelor of Arts in University Studies, Race, Gender, Ethnicity Concentration (p. 655)
- Bachelor of Arts in University Studies, Religious Thought, Practices and Cultures Concentration (p. 656)
- Bachelor of Arts in University Studies, Society, Ethics and Law Concentration (p. 657)
- Bachelor of Arts in Women’s and Gender Studies (p. 541)
- Bachelor of Science in University Studies, Health Humanities Concentration (p. 659)
- Bachelor of Science in University Studies, Liberal Arts Concentration (p. 660)
- Bachelor of Science in University Studies, Race, Gender, Ethnicity Concentration (p. 661)
- Bachelor of Science in Women’s and Gender Studies (p. 542)

Department of Anthropology

- Bachelor of Arts in Anthropology, General Track (p. 550)
- Bachelor of Arts in Anthropology, Archaeology Track (p. 552)
- Bachelor of Science in Anthropology (p. 553)

Department of Communication

- Bachelor of Arts in Communication (p. 558)
- Bachelor of Arts in Telecommunication Media Studies (p. 561)
- Bachelor of Arts in University Studies, Journalism Studies Concentration (p. 565)
- Bachelor of Science in Communication (p. 560)
- Bachelor of Science in Telecommunication Media Studies (p. 563)

Department of Economics

- Bachelor of Arts in Economics (p. 571)
- Bachelor of Arts in Economics and Master of International Affairs, 5-Year Degree Program (p. 572)
- Bachelor of Arts in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 574)
- Bachelor of Science in Economics (p. 575)
- Bachelor of Science in Economics and Master of International Affairs, 5-Year Degree Program (p. 576)
- Bachelor of Science in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 578)
- Bachelor of Science in Economics and Master of Science in Economics, 5-Year Degree Program (p. 579)

Department of English

- Bachelor of Arts in English (p. 584)
- Bachelor of Arts in English, Middle School Teaching Certification (p. 586)
- Bachelor of Arts in English and Master of Arts in English, 5-Year Degree Program (p. 587)

Department of Hispanic Studies

- Bachelor of Arts in Spanish (p. 591)

Department of History

- Bachelor of Arts in History (p. 596)

Department of International Studies

- Bachelor of Arts in Classics, Classical Civilization Track (p. 600)
- Bachelor of Arts in Classics, Language and Literature Track (p. 601)
- Bachelor of Arts in International Studies, Global Cultural Studies Track (p. 602)
• Bachelor of Arts in International Studies, International Commerce Track (p. 604)
• Bachelor of Arts in International Studies, International Communication and Media Track (p. 606)
• Bachelor of Arts in International Studies, International Environmental Studies Track (p. 607)
• Bachelor of Arts in International Studies, International Geographic Information Systems Track (p. 609)
• Bachelor of Arts in International Studies, International Politics and Diplomacy Track (p. 611)
• Bachelor of Arts in International Studies and Master of Public International Affairs, 5-Year Degree Program (p. 613)
• Bachelor of Arts in Modern Languages, French Option (p. 615)
• Bachelor of Arts in Modern Languages, German Option (p. 616)
• Bachelor of Arts in Modern Language, Russian Option (p. 618)

Department of Performance Studies
• Bachelor of Arts in Performance Studies (p. 624)

Department of Philosophy and Humanities
• Bachelor of Arts in Philosophy (p. 627)

Department of Political Science
• Bachelor of Arts in Political Science (p. 632)
• Bachelor of Arts in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 633)
• Bachelor of Science in Political Science (p. 634)
• Bachelor of Science in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 636)

Department of Psychological and Brain Sciences
• Bachelor of Arts in Psychology (p. 640)
• Bachelor of Science in Neuroscience, Behavioral and Cognitive Neuroscience Track (p. 639)
• Bachelor of Science in Psychology (p. 642)

Department of Sociology
• Bachelor of Arts in Sociology (p. 647)
• Bachelor of Arts in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 649)
• Bachelor of Science in Sociology (p. 650)
• Bachelor of Science in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 652)

Minors

College of Liberal Arts
• Africana Studies Minor (p. 543)
• Comparative Cultural Studies-U.S. Minor (p. 546)
• Film Studies Minor (p. 546)
• Global Culture and Society Minor (p. 547)
• Latino/a and Mexican-American Studies Minor (p. 547)
• Religious Studies Minor (p. 548)
• Women’s and Gender Studies Minor (p. 548)

Department of Anthropology
• Anthropology Minor (p. 555)
• Museum Studies Minor (p. 555)

Department of Communication
• Communication Minor (p. 566)
• Journalism Minor (p. 566)

Department of Economics
• Economics Minor (p. 580)

Department of English
• English Minor (p. 589)

Department of Hispanic Studies
• Hispanic Studies for Community Engagement Minor (p. 593)
• Spanish Minor (p. 594)

Department of History
• History Minor (p. 597)

Department of International Studies
• Arabic Studies Minor (p. 619)
• Asian Studies Minor (p. 620)
• Chinese Minor (p. 621)
• Classical Studies Minor (p. 621)
• Comparative Cultural Studies-International Minor (p. 544)
• French Minor (p. 621)
• German Minor (p. 622)
• Italian Minor (p. 622)
• Japanese Minor (p. 622)
• Russian Minor (p. 623)

Department of Performance Studies
• Performance Studies Minor (p. 626)

Department of Philosophy
• Philosophy Minor (p. 629)

Department of Psychological Brain Sciences
• Psychology Minor (p. 644)

Department of Sociology
• Sociology Minor (p. 654)
Certificates

College of Liberal Arts
- Diversity Certificate (p. 549)

Department of Communication
- Communication, Diversity and Social Justice Certificate (p. 567)
- Communication and Global Media Certificate (p. 567)
- Communication Leadership and Conflict Management Certificate (p. 568)
- Health Communication Certificate (p. 568)
- Social Media Certificate (p. 568)
- Strategic Communication Certificate (p. 569)

Department of Economics
- Business Economics Certificate (p. 581)
- Quantitative Economic Methods (p. 581)

Department of International Studies
- Proficiency in Arabic Certificate (p. 623)

Department of Philosophy and Humanities
- Philosophy Pre-Law Certificate (p. 629)

Department of Psychological and Brain Sciences
- Applied Behavioral Health Certificate (p. 644)
- Healthy Development Certificate (p. 644)
- Psychology of Diversity Certificate (p. 645)
- Work and Organizations Certificate (p. 645)

Masters

Department of Anthropology
- Master of Arts in Anthropology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/anthropology/ma/)
- Master of Science in Maritime Archaeology and Conservation (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/anthropology/maritime-archaeology-conservation-ms/)

Department of Communication
- Master of Arts in Communication (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/communication/ma/)

Department of Economics
- Master of Science in Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/economics/ma/)

Department of English
- Master of Arts in English (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/english/ma/)

Department of Hispanic Studies
- Master of Arts in Hispanic Studies (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/hispanic-studies/ma/)

Department of History
- Master of Arts in History (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/history/ma/)

Department of Performance Studies
- Master of Arts in Performance Studies (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/performance-studies/ma/)

Department of Philosophy and Humanities
- Master of Arts in Philosophy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/philosophy-humanities/ma/)

Department of Psychological and Brain Sciences
- Master of Science in Psychological Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/psychological-and-brain-sciences/ms/)

Department of Sociology
- Master of Science in Sociology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/sociology/ms/)

Doctoral

Department of Anthropology
- Doctor of Philosophy in Anthropology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/anthropology/phd/)

Department of Communication
- Doctor of Philosophy in Communication (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/communication/phd/)

Department of Economics
- Doctor of Philosophy in Economics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/economics/phd/)

Department of English
- Doctor of Philosophy in English (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/english/phd/)
Department of Hispanic Studies
- Doctor of Philosophy in Hispanic Studies (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/hispanic-studies/phd/)

Department of History
- Doctor of Philosophy in History (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/history/phd/)

Department of Philosophy and Humanities
- Doctor of Philosophy in Philosophy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/philosophy-humanities/phd/)

Department of Political Science
- Doctor of Philosophy in Political Science (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/political-science/phd/)

Department of Psychological and Brain Sciences
- Doctor of Philosophy in Clinical Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/psychological-and-brain-sciences/clinical-psychology/phd/)
- Doctor of Philosophy in Industrial/Organizational Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/psychological-and-brain-sciences/industrial-organizational-psychology/phd/)
- Doctor of Philosophy in Psychology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/psychological-and-brain-sciences/phd/)

Department of Sociology
- Doctor of Philosophy in Sociology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/liberal-arts/sociology/phd/)

Women's and Gender Studies - BA

Women's and Gender Studies is a flexible interdisciplinary program devoted to the critical analysis of gender and the pursuit of knowledge about women throughout history and around the world. Combining the methods and insights of traditional liberal arts disciplines with the special insights of scholarship on women's and gender studies, our courses yield fresh perspectives on the nature of gender as it intersects with race, ethnicity, class, religion, and nation, and encourage students to look beyond their own culture and era in examining gender's role in shaping society. Through interdisciplinary breadth and an emphasis on critical thinking, women's and gender studies prepares students to employ critical learning in their private lives as well as in public roles as citizens and members of a diverse and complex workforce.

Majors in Women's and Gender Studies receive training in both humanities and social sciences approaches and are required to complete coursework that focuses on material beyond dominant U.S. culture. Core courses in Women's and Gender Studies have both theoretical and applied focuses; upper-division core courses in Women's and Gender Studies emphasize writing and research skills. Students enrolled in the BA are directed to complete several humanities-focused courses in Women's and Gender Studies, while also selecting their coursework in social sciences or humanities for their electives within their major.

Because gender has far-reaching influence on daily life, world culture, and public policy, this major equips students to enter a wide range of fields. As a liberal arts degree, women's and gender studies is attractive to employers looking for recruits trained in critical thinking, organizational skills, reading, writing, and presenting in a wide range of subject areas. Expertise in women's and gender issues is increasingly important to businesses, governmental agencies, and other organizations dealing with matters such as sexual harassment, flex-time, parental leave, and pay equity, just as specialists in women's and gender studies find opportunities in education, law, health care, social work, counseling, media, public policy, and a wide range of other fields.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WGST 200</td>
<td>Introduction to Women's and Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Spring

- Select one of the following:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>WGST 320</td>
<td>Feminist Inquiry and Research Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WGST elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Women's and Gender Studies - BS

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

33 hours of WGST coursework required for the BA degree.

A minimum 2.0 GPR and a minimum grade of C for a course to count in the major. Completion of distribution requirements in the major as outlined.

At least 12 semester hours in the major must be completed in advanced courses (300- and 400-level), and at least 12 semester hours in the major field must be completed in residence at Texas A&M.

College and University Requirements

Students must complete a minimum of 36 hours of 300- or 400-level course work at Texas A&M University.

Women's and Gender Studies - BS

Women's and Gender Studies is a flexible interdisciplinary program devoted to the critical analysis of gender and the pursuit of knowledge about women throughout history and around the world. Combining the methods and insights of traditional liberal arts disciplines with the special insights of scholarship on women's and gender studies, our courses yield fresh perspectives on the nature of gender as it intersects with race, ethnicity, class, religion, and nation, and encourage students to look beyond their own culture and era in examining gender's role in shaping society. Through interdisciplinary breadth and an emphasis on critical thinking, women's and gender studies prepares students to employ critical learning in their private lives as well as in public roles as citizens and members of a diverse and complex workforce.

Majors in Women's and Gender Studies receive training in both humanities and social sciences approaches and are required to complete course work that focuses on material beyond dominant U.S. culture. Core courses in Women's and Gender Studies have both theoretical and applied focuses; upper-division core courses in Women's and Gender Studies emphasize writing and research skills. Students enrolled in the BS are directed to complete several science and social science-focused courses in Women's and Gender Studies, while also selecting their coursework in social sciences or humanities for their electives within their major. Students in the WGST BS also complete numerous science courses in their degree, allowing them to compare traditional perspectives with feminist critiques of science.

Because gender has far-reaching influence on daily life, world culture, and public policy, this major equips students to enter a wide range of fields. As a liberal arts degree, women's and gender studies is attractive to employers looking for recruits trained in critical thinking, organizational skills, reading, writing, and presenting in a wide range of subject areas. Expertise in women's and gender issues is increasingly important to businesses, governmental agencies, and other organizations dealing with matters such as sexual harassment, flextime, parental leave, and pay equity. The BS in Women's and Gender Studies is particularly useful for students interested in science-oriented fields such as health and medicine, environmental studies, urban planning, food security, or data science, and also excellent preparation for engaging in public policy, law, and education in science fields.

1. A minimum grade of C is required.
2. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
4. Select from WGST 100-499 (p. 1173).
5. Any 100-499 not used elsewhere.
6. WGST course may not be used to fulfill this requirement.
Program Requirements

First Year

Fall
ENGL 104 Composition and Rhetoric 1 3
WGST 200 Introduction to Women’s and Gender Studies 3
American history (p. 29) 3
Life and physical sciences (p. 26) 3
Mathematics (p. 26) 3
Semester Credit Hours 15

Spring
American history (p. 29) 3
Communication (p. 26) 3
Mathematics (p. 26) 3
Life and physical sciences (p. 26) 3
WGST elective 2 3
Semester Credit Hours 15

Second Year

Fall
WGST 320 Feminist Inquiry and Research Methods 3
WGST 100-499 (p. 1173) 3
Government/Political science (p. 30) 3
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 4 3
Semester Credit Hours 15

Spring
WGST 100-499 (p. 1173) 3
Government/Political science (p. 30) 3
Science elective 3 3
WGST elective 2 3
General elective 3
Semester Credit Hours 15

Third Year

Fall
WGST 100-499 (p. 1173) 3
Creative Arts (p. 29) 4 3
Language, philosophy and culture (p. 27) 4 3
Science elective 3 3
General elective 3
Semester Credit Hours 15

Spring
WGST 401 Feminist Theory 3
WGST 100-499 (p. 1173) 3
Social and behavioral sciences (p. 30) 4 3
Literature directed elective (p. 532) 4 3
General elective 3
Semester Credit Hours 15

Fourth Year

Fall
WGST 481 Senior Seminar 3

Literature directed elective (p. 532) 4 3
Science elective 3 3
General elective 3
Semester Credit Hours 15

Spring
Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGST 484 Internship in Women’s and Gender Studies</td>
<td>3</td>
</tr>
<tr>
<td>WGST 485 Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>WGST 491 Research</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27) 4</td>
<td>3</td>
</tr>
<tr>
<td>Science elective 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective 3</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 120

1 A minimum grade of C is required.
3 A minimum grade of C is required.
4 See WGST program advisor for list of additional science courses.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

33 hours of WGST coursework required for the BS degree.
A minimum 2.0 GPR and a minimum grade of C for a course to count in the major.
At least 12 semester hours in the major must be completed in advanced courses (300- and 400-level), and at least 12 semester hours in the major field must be completed in residence at Texas A&M.

College and University Requirements

Students must complete a minimum of 36 hours of 300- or 400-level course work at Texas A&M University.

Africana Studies - Minor

The interdisciplinary minor in Africana Studies provides students with a unique opportunity to think critically about the cultural, historical, and social contributions and experiences of people from Africa and of African descent across ethnic, regional, and national boundaries. Africana Studies courses are a comingling of traditional approaches to the field and cutting edge scholarship that challenges stereotypical portrayals of blacks the world over.

Because the Africana Studies minor is interdisciplinary, students can draw on courses from across the College of Liberal Arts. Students also complete core classes in the Africana Studies discipline. The interdisciplinary nature of the program provides students opportunities to understand Africana Studies through different lenses, including art,
Comparative Cultural Studies International - Minor

The minor in Comparative Cultural Studies – International focuses on how culture and politics affect societies across the world. The program's strong interdisciplinary approach in the humanities and social sciences gives students the skills and competencies they need to address complex and critical global issues. The minor provides students with tools to better understand diverse cultural perspectives around the world. The comparative and transnational focus encourages students to learn about other cultures and social systems, to reflect back on their own societies, and to discover how they want to position themselves as globally engaged citizens.

The courses recommended for the minor examine such issues as racial and gender politics; media, power, and politics; nationalism, ethnicity, and ethnic conflict; literature, film, performance, and politics; globalization, international development, and community mobilization; human trafficking; global public health; and diaspora, migration, and displacement. The coursework gives students the opportunity to gain expertise in areas or peoples outside of the United States and allows them to develop comparative and international perspectives valued by public and private employers. It is critical for contemporary students to understand the impact of politics and policies on people's lives and global social injustice, inequality, and conflict.

The minor will assist students who are seeking a wide variety of jobs, ranging from U.S. government positions to social and popular media, to private business ventures, cultural organizations, and non-profit organizations. It is also beneficial for students who are pursuing a wide range of graduate and professional degrees, including law, education, non-profit administration, public policy, public health, communication, cultural studies, environmental studies, media studies, anthropology, social work, and business.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 211/</td>
<td>Foundations in Cultural Studies</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 201</td>
<td>Introduction to Africana Studies</td>
<td>6</td>
</tr>
<tr>
<td>AFST 302</td>
<td>Gateway Course</td>
<td></td>
</tr>
<tr>
<td>AFST 481</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 200-499 (p. 877)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>POLS 320</td>
<td>Race and Politics in the United States</td>
<td></td>
</tr>
<tr>
<td>SOCI 319/</td>
<td>Sociology of Sport</td>
<td></td>
</tr>
<tr>
<td>SPMT 319</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Students must make a grade of C or better.

At least 6 hours must be at the 300-400 level.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 245</td>
<td>Difficult Dialogues on Power, Privilege, and Difference</td>
</tr>
<tr>
<td>COMM 338</td>
<td>Critical Race Discourse</td>
</tr>
<tr>
<td>AFST 338</td>
<td></td>
</tr>
<tr>
<td>COMM 343</td>
<td>Communication and Cultural Discourse</td>
</tr>
<tr>
<td>COMM 346</td>
<td>Media, Culture and Identity</td>
</tr>
<tr>
<td>COMM 365</td>
<td>International Communication</td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
</tr>
<tr>
<td>EURO 300-499</td>
<td>(p. 989)</td>
</tr>
<tr>
<td>ENGL 206</td>
<td>Twenty-first Century Literature and Culture</td>
</tr>
<tr>
<td>ENGL 207</td>
<td>Human Thinking and Digital Culture</td>
</tr>
<tr>
<td>ENGL 306</td>
<td>Transnational Literature and Culture</td>
</tr>
<tr>
<td>ENGL 342</td>
<td>The Rhetoric of Gender and Health</td>
</tr>
<tr>
<td>ENGL 351</td>
<td>Advanced Film</td>
</tr>
<tr>
<td>FILM 351</td>
<td></td>
</tr>
<tr>
<td>ENGL 354</td>
<td>Modern Rhetorical Theory</td>
</tr>
<tr>
<td>ENGL 356</td>
<td>Literature and Film</td>
</tr>
<tr>
<td>FILM 356</td>
<td></td>
</tr>
<tr>
<td>ENGL 379</td>
<td>Postcolonial Literatures</td>
</tr>
<tr>
<td>AFST 379</td>
<td></td>
</tr>
<tr>
<td>ENGL 391</td>
<td>Folklore, Literature, and World Cultures</td>
</tr>
<tr>
<td>ENGL 392</td>
<td>Studies in Literature, Religion and Culture</td>
</tr>
<tr>
<td>RELS 392</td>
<td></td>
</tr>
<tr>
<td>ENGL 393</td>
<td>Studies in Africana Literature and Culture</td>
</tr>
<tr>
<td>AFST 393</td>
<td></td>
</tr>
<tr>
<td>ENGL 401</td>
<td>Contemporary Literary Theory</td>
</tr>
<tr>
<td>ENGL 403</td>
<td>Language and Gender</td>
</tr>
<tr>
<td>FILM 343</td>
<td>Sex, Gender and Cinema</td>
</tr>
<tr>
<td>WGST 343</td>
<td></td>
</tr>
<tr>
<td>FILM 351</td>
<td>Advanced Film</td>
</tr>
<tr>
<td>ENGL 351</td>
<td></td>
</tr>
<tr>
<td>FILM 356</td>
<td>Literature and Film</td>
</tr>
<tr>
<td>ENGL 356</td>
<td></td>
</tr>
<tr>
<td>FILM 394</td>
<td>Studies in Film Genre</td>
</tr>
<tr>
<td>FILM 398</td>
<td>Africana Cinema</td>
</tr>
<tr>
<td>AFST 398</td>
<td></td>
</tr>
<tr>
<td>FILM 400-499</td>
<td>(p. 991)</td>
</tr>
<tr>
<td>FREN 301</td>
<td>French Society and Culture in Evolution</td>
</tr>
<tr>
<td>FREN 321-399</td>
<td>(p. 998)</td>
</tr>
<tr>
<td>FREN 400-499</td>
<td>(p. 998)</td>
</tr>
<tr>
<td>GEOG 311</td>
<td>Cultural Geography</td>
</tr>
<tr>
<td>GERM 313-399</td>
<td>(p. 1010)</td>
</tr>
<tr>
<td>GERM 400-499</td>
<td>(p. 1010)</td>
</tr>
<tr>
<td>HISP 250</td>
<td>Contemporary Spanish Culture</td>
</tr>
<tr>
<td>HISP 260</td>
<td>Contemporary Mexican Culture</td>
</tr>
<tr>
<td>HISP 352</td>
<td>Hispanic Literature and Film</td>
</tr>
<tr>
<td>HISP 363</td>
<td>Borderlands: U.S. and Mexico</td>
</tr>
<tr>
<td>HISP 471</td>
<td>Hispanic Religions</td>
</tr>
<tr>
<td>RELS 471</td>
<td></td>
</tr>
<tr>
<td>HIST 418-429</td>
<td>(p. 1014)</td>
</tr>
<tr>
<td>INTS 215</td>
<td>Global Cinema</td>
</tr>
<tr>
<td>FILM 215</td>
<td></td>
</tr>
<tr>
<td>INTS 251</td>
<td>Contemporary Issues in the Middle East</td>
</tr>
<tr>
<td>INTS 301</td>
<td>Theories of Globalization</td>
</tr>
<tr>
<td>INTS 321</td>
<td>Political Islam and Jihad</td>
</tr>
<tr>
<td>INTS 409</td>
<td>Culture, Neoliberalism and Globalism</td>
</tr>
<tr>
<td>ITAL 400-499</td>
<td>(p. 1037)</td>
</tr>
<tr>
<td>JAPN 400-499</td>
<td>(p. 1038)</td>
</tr>
<tr>
<td>MODL 221</td>
<td>World Literature</td>
</tr>
<tr>
<td>ENGL 221</td>
<td></td>
</tr>
<tr>
<td>MODL 222</td>
<td>World Literature</td>
</tr>
<tr>
<td>ENGL 222</td>
<td></td>
</tr>
<tr>
<td>PERF 301</td>
<td>Performance in World Cultures</td>
</tr>
<tr>
<td>PERF 325</td>
<td>Dance in World Cultures</td>
</tr>
<tr>
<td>PERF 327/</td>
<td>Popular Musics in the African</td>
</tr>
<tr>
<td>AFST 327</td>
<td>Diaspora</td>
</tr>
<tr>
<td>PERF 328</td>
<td>Japanese Traditional Performing Arts</td>
</tr>
<tr>
<td>PERF 450-461</td>
<td>(p. 1105)</td>
</tr>
<tr>
<td>PHIL 283</td>
<td>Latin American Philosophy</td>
</tr>
<tr>
<td>PHIL 331/</td>
<td>Philosophy of Religion</td>
</tr>
<tr>
<td>RELS 331</td>
<td></td>
</tr>
<tr>
<td>PHIL 352/</td>
<td>Africana Philosophy</td>
</tr>
<tr>
<td>AFST 352</td>
<td></td>
</tr>
<tr>
<td>PHIL 353/</td>
<td>Radical Black Philosophies of Race and Racism</td>
</tr>
<tr>
<td>AFST 353</td>
<td></td>
</tr>
<tr>
<td>PHIL 371</td>
<td>Philosophy of Literature</td>
</tr>
<tr>
<td>PHIL 375</td>
<td>Philosophy of the Visual Media</td>
</tr>
<tr>
<td>PHIL 376/</td>
<td>Philosophy, Film and Evil</td>
</tr>
<tr>
<td>FILM 376</td>
<td></td>
</tr>
<tr>
<td>PHIL 409/</td>
<td>Studies in Gender and Philosophy</td>
</tr>
<tr>
<td>WGST 409</td>
<td></td>
</tr>
<tr>
<td>PHIL 419</td>
<td>Current Continental Philosophy</td>
</tr>
<tr>
<td>RUSS 322</td>
<td>Masterpieces of Russian Literature</td>
</tr>
<tr>
<td>RUSS 400-499</td>
<td>(p. 1136)</td>
</tr>
<tr>
<td>SPAN 312</td>
<td>Hispanic Culture and Civilization: 18th Century to Present</td>
</tr>
<tr>
<td>SPAN 320-332</td>
<td>(p. 1147)</td>
</tr>
<tr>
<td>SPAN 341</td>
<td>Spanish-American Literature from 1492 to 1821</td>
</tr>
<tr>
<td>SPAN 342</td>
<td>Spanish-American Literature from 1821 to 1935</td>
</tr>
<tr>
<td>SPAN 409</td>
<td>Photography in the Hispanic World</td>
</tr>
<tr>
<td>SPAN 410</td>
<td>Hispanic Film</td>
</tr>
<tr>
<td>SPAN 411</td>
<td>Contemporary Hispanic Society and Culture</td>
</tr>
<tr>
<td>SPAN 413</td>
<td>Hispanic Culture through Art</td>
</tr>
<tr>
<td>SPAN 414</td>
<td>Mexican Cinema and Culture</td>
</tr>
<tr>
<td>SPAN 421</td>
<td>Spanish Language Poetry</td>
</tr>
<tr>
<td>SPAN 423</td>
<td>Soccer in the Hispanic World</td>
</tr>
<tr>
<td>SPAN 445</td>
<td>Cervantes</td>
</tr>
<tr>
<td>SPAN 450</td>
<td>Contemporary Spanish and Spanish-American Literature</td>
</tr>
</tbody>
</table>
Comparative Cultural Studies U.S. - Minor

The minor in Comparative Cultural Studies U.S. focuses on how culture and politics affect American society. The program’s strong interdisciplinary approach in the humanities and social sciences gives students the skills and competencies they need to address complex and critical national problems and issues. The minor provides students with tools to better understand diverse cultures within the United States. The United States is one of the most culturally diverse countries in the world. Nearly every region of the world has influenced American culture: first, the English, then the cultures of Native Americans, Latin Americans, Africans and Asians.

The courses recommended for the minor examine such issues as racial and gender politics; media, power, and politics; language; religion and religious practices; literature, film, performance; politics; food; and sports. The coursework gives students the opportunity to understand the various cultural groups which compose the kaleidoscope that is America.

The minor will assist students who are seeking a wide variety of jobs, ranging from U.S. government positions to social and popular media, to private business ventures, cultural organizations, and non-profit organizations. It is also beneficial for students who are pursuing a wide range of graduate and professional degrees, including law, education, non-profit administration, public policy, public health, communication, cultural studies, environmental studies, media studies, anthropology, social work, and business.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select two of the following:</td>
<td></td>
</tr>
<tr>
<td>ENGL 338</td>
<td>American Ethnic Literature</td>
<td>6</td>
</tr>
<tr>
<td>HIST 319</td>
<td>U.S. Immigration and Ethnicity</td>
<td></td>
</tr>
<tr>
<td>SOCI 317</td>
<td>Racial and Ethnic Relations</td>
<td></td>
</tr>
<tr>
<td>AFST 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three of the following not already taken:</td>
<td></td>
</tr>
<tr>
<td>ENGL 338</td>
<td>American Ethnic Literature</td>
<td>9</td>
</tr>
<tr>
<td>HIST 319</td>
<td>U.S. Immigration and Ethnicity</td>
<td></td>
</tr>
<tr>
<td>SOCI 317</td>
<td>Racial and Ethnic Relations</td>
<td></td>
</tr>
<tr>
<td>AFST 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 301</td>
<td>Indians of North America</td>
<td></td>
</tr>
<tr>
<td>COMM 327</td>
<td>American Oratory</td>
<td></td>
</tr>
<tr>
<td>COMM 407</td>
<td>Gender, Race and Media</td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425</td>
<td>Rhetoric of the Civil Rights</td>
<td></td>
</tr>
<tr>
<td>AFST 425</td>
<td>Movement</td>
<td></td>
</tr>
<tr>
<td>ENGL 336</td>
<td>Life and Literature of the Southwest</td>
<td></td>
</tr>
<tr>
<td>ENGL 337</td>
<td>Life and Literature of the American South</td>
<td></td>
</tr>
<tr>
<td>ENGL 339</td>
<td>African-American Literature</td>
<td></td>
</tr>
<tr>
<td>AFST 339</td>
<td>Post-1930</td>
<td></td>
</tr>
<tr>
<td>ENGL 340</td>
<td>Modern and Contemporary Drama</td>
<td></td>
</tr>
<tr>
<td>ENGL 350</td>
<td>Twentieth-Century Literature to World War II</td>
<td></td>
</tr>
<tr>
<td>ENGL 362</td>
<td>Latino/a Literature</td>
<td></td>
</tr>
<tr>
<td>HISP 362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 474</td>
<td>Studies in Women Writers</td>
<td></td>
</tr>
<tr>
<td>WGST 474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 301</td>
<td>Geography of the United States</td>
<td></td>
</tr>
<tr>
<td>HIST 301</td>
<td>Blacks in the United States Since</td>
<td></td>
</tr>
<tr>
<td>AFST 301</td>
<td>1877</td>
<td></td>
</tr>
<tr>
<td>HIST 305</td>
<td>Chicana/o History since 1848</td>
<td></td>
</tr>
<tr>
<td>HIST 307</td>
<td>Latinx History</td>
<td></td>
</tr>
<tr>
<td>HIST 451</td>
<td>Southern Identities and Cultures Since Reconstruction</td>
<td></td>
</tr>
<tr>
<td>HIST 459</td>
<td>American Society and Culture to 1877</td>
<td></td>
</tr>
<tr>
<td>MUSC 200</td>
<td>Topics in Music</td>
<td></td>
</tr>
<tr>
<td>POLS 318</td>
<td>Theories of International Relations</td>
<td></td>
</tr>
<tr>
<td>SOCI 316</td>
<td>Sociology of Gender</td>
<td></td>
</tr>
<tr>
<td>WGST 316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 323</td>
<td>Sociology of African Americans</td>
<td></td>
</tr>
<tr>
<td>AFST 323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 403</td>
<td>Sociology of Latinos</td>
<td></td>
</tr>
<tr>
<td>SPAN 412</td>
<td>U.S. Hispanic Writers</td>
<td></td>
</tr>
</tbody>
</table>

Capstone course (selected in consultation with program coordinator) 3

Total Semester Credit Hours 18

Students must make a grade of 'C' or better in all courses.

Film Studies - Minor

The Interdisciplinary Minor in Film Studies prepares undergraduate students to think and write critically about film and media from multiple perspectives. The minor offers courses in the history, criticism, and theory of film and media, and provides opportunities to pursue analyses of the aesthetic, cultural, economic, technological, and international dimensions of film. The foundational courses, FILM 251/ENGL 251 and FILM 299, set the stage for advanced courses in Film. A major goal of the program is to connect the student's major field of study with an understanding of film's cultural and social significance. Drawing from the expertise of affiliated faculty across the College of Liberal Arts, the minor can be tailored to the student's interests.

The minor in Film Studies supports student development for any career field because it provides opportunities for students to obtain skills that are critical to success in today's workplaces: critical thinking, problem solving, oral and visual communication, writing, research, cultural understanding, and global perspectives. The Film Studies minor builds foundational skills for student success, leadership in the workplace, future graduate studies, and becoming an informed citizen.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required courses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILM 251/ENGL 251</td>
<td>Introduction to Film Analysis</td>
<td>3</td>
</tr>
<tr>
<td>FILM 299</td>
<td>History of Film</td>
<td>3</td>
</tr>
<tr>
<td>FILM 300-499 (p. 991)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>FILM 481</td>
<td>Seminar in Film Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILM 300-499 (p. 991)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HIST 460</td>
<td>American Society and Culture Since 1877</td>
<td></td>
</tr>
<tr>
<td>SPAN 410</td>
<td>Hispanic Film</td>
<td></td>
</tr>
<tr>
<td>SPAN 414</td>
<td>Mexican Cinema and Culture</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Students must make a grade of C or better in all courses.

At least 9 credits must be at the 300-400 level.

Global Culture and Society - Minor

The minor in Global Culture and Society is awarded to students who study abroad at one of the official Texas A&M study centers: Santa Chiara (Italy), Santa Clara (Mexico), or Soltis Center (Costa Rica). All the requirements for the minor must be completed during a fall or spring semester when 15 credit hours are available for student enrollment at one of the centers. Please reference the program requirements tab to view the required courses for this minor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio ¹</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>Survey of World Architecture</td>
<td>3</td>
</tr>
<tr>
<td>or ANTH 21</td>
<td>Social and Cultural Anthropology</td>
<td></td>
</tr>
<tr>
<td>or GEOG 20</td>
<td>Geography of the Global Village</td>
<td></td>
</tr>
<tr>
<td>Select twelve hours from the following: ²</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>ARTS 350</td>
<td>The Arts and Civilization</td>
<td></td>
</tr>
<tr>
<td>CARC 311</td>
<td>Field Studies in Design Communication</td>
<td></td>
</tr>
<tr>
<td>CARC 331</td>
<td>Field Studies in Design Philosophy</td>
<td></td>
</tr>
<tr>
<td>HIST 362</td>
<td>History of Science</td>
<td></td>
</tr>
<tr>
<td>Other courses approved by student's college</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

¹ Portfolio in global culture and society may be completed either during the long semester abroad or upon return to College Station.

² Must be taken in a single fall or spring semester at a TAMU-affiliated facility such as Santa Chiara or Soltis Center.

Students must make a grade of 'C' or better in all courses.

Latino/a and Mexican-American Studies - Minor

The Latino/a and Mexican American Studies minor (or LMAS) at Texas A&M University encourages students across the university to investigate the experiences and contributions of Latino/as in the United States and abroad. Students minoring in LMAS will receive instruction from interdisciplinary faculty across the College of Liberal Arts and the University. LMAS courses draw on disciplines including, but not limited to, the areas of History, Sociology, English, Anthropology, Psychology, Communications, Political Science, Geography, Education, and Hispanic Studies. The courses provide students with broad knowledge about Latino/as frequently omitted from the common curriculum and centered in the experiences of Latino/as.

The LMAS minor addresses topics such as race, ethnicity, gender, politics, religion, education, labor, immigration, and civil rights, among others. These topics include both historical and contemporary perspectives and draw on a variety of approaches, including literature, history, individual and interpersonal experiences, performance, policy analysis, and psychological research.

The LMAS minor complements any degree and future career by providing students with a strong foundation in key workplace skills: critical thinking, perspective taking, social and personal responsibility, communication, research, writing, and cultural understanding.

Additionally, the LMAS minor prepares students to address societal changes that will occur as the state of Texas becomes a majority-minority state and continues to navigate its southern border. The LMAS minor prepares students to address some of the most crucial societal issues today: health policy, justice and law reform, civil rights, and labor and immigration practices.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select at least six hours from the following ¹,²</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ENGL 362/</td>
<td>Latino/a Literature</td>
<td></td>
</tr>
<tr>
<td>HISP 362</td>
<td>Borderlands: U.S. and Mexico</td>
<td></td>
</tr>
<tr>
<td>HIST 307</td>
<td>Latinx History</td>
<td></td>
</tr>
<tr>
<td>LMAS 201</td>
<td>Introduction to Latino/Mexican American Studies</td>
<td></td>
</tr>
<tr>
<td>POLS 304</td>
<td>Latino Politics in the United States</td>
<td></td>
</tr>
<tr>
<td>SOCI 403</td>
<td>Sociology of Latinos</td>
<td></td>
</tr>
<tr>
<td>SPAN 412</td>
<td>U.S. Hispanic Writers</td>
<td></td>
</tr>
<tr>
<td>Select the remaining hours from the following: ²</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>AFST 325</td>
<td>Africana Humanities</td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 323</td>
<td>Geography of Latin America</td>
<td></td>
</tr>
<tr>
<td>HISP 204</td>
<td>Spanish and Spanish American Literature in Translation</td>
<td></td>
</tr>
<tr>
<td>HIST 258</td>
<td>American Indian History</td>
<td></td>
</tr>
<tr>
<td>HIST 304</td>
<td>Southwest Borderlands</td>
<td></td>
</tr>
<tr>
<td>HIST 305</td>
<td>Chicana/o History since 1848</td>
<td></td>
</tr>
<tr>
<td>HIST 316</td>
<td>Latino/a Labor in the United States</td>
<td></td>
</tr>
</tbody>
</table>

¹ Must be taken in a single fall or spring semester at a TAMU-affiliated facility such as Santa Chiara or Soltis Center.

² Students must make a grade of 'C' or better in all courses.
Religious Studies - Minor

The interdisciplinary Religious Studies minor at Texas A&M University encourages students to explore the many ways people experience and articulate the sacred. The Religious Studies minor offers students the opportunity to better understand how religion addresses core concerns about human existence across cultures.

Students who minor in Religious Studies select from a range of courses that match their interests and goals from a variety of disciplines in the College of Liberal Arts. Students have the opportunity to study specific religious traditions, to approach religion through the study of rituals, symbols, and literature, and to approach religion as a human phenomenon situated in culture and history. Topics of study include the history of religious traditions, religion in contemporary life, religion in the arts and literature, and many other topics. Students gain perspective on the complexity of religious thought and practices in world cultures.

The Religious Studies minor emphasizes a number of skills that are important to success in the workplace and as a citizen of the world: critical thinking, problem solving, cultural understanding, and written, oral, and visual communication. The ability to understand the significance of religion at individual, interpersonal, social, and cultural levels can serve students on nearly every career path, even those that do not focus on religion. The skills that students learn through the study of religion as a human endeavor provides an intellectual foundation for any future career.

Program Requirements

Code	**Title**	**Semester Credit Hours**
		15
	Select up to five of the following: 2	
RELS 200-499 (p. 1129)		15

Total Semester Credit Hours 15

1 Up to six semester credit hours may be in approved languages, including: ARAB 201, ARAB 202, ARAB 301, ARAB 302; CLAS 211, CLAS 221, CLAS 222, CLAS 311, CLAS 312, CLAS 313, CLAS 321, CLAS 322

Students must make a grade of C or better in all courses.

At least 9 semester credit hours must be 300-400 level courses.

Women's and Gender Studies - Minor

Women's and Gender Studies is a flexible interdisciplinary program devoted to the critical analysis of gender and the pursuit of knowledge about women throughout history and around the world. Combining the methods and insights of traditional liberal arts disciplines with the special insights of scholarship on women's and gender studies, our courses yield fresh perspectives on the nature of gender as it intersects with race, ethnicity, class, religion, and nation, and encourage students to look beyond their own culture and era in examining gender's role in shaping society. Through interdisciplinary breadth and an emphasis on critical thinking, women's and gender studies prepares students to employ critical learning in their private lives as well as in public roles as citizens and members of a diverse and complex workforce.

Minors in women's and gender studies receive training in both humanities and social sciences approaches and are required to complete coursework that focuses on material beyond dominant U.S. culture; core courses have both theoretical and applied focuses.

Because gender has far-reaching influence on daily life, world culture, and public policy, this minor supports students in a wide range of fields. As a liberal arts degree, women's and gender studies is attractive to employers looking for recruits trained in critical thinking, organizational skills, reading, writing, and presenting in a wide range of subject areas. Expertise in women's and gender issues is increasingly important to businesses, governmental agencies, and other organizations dealing with matters such as sexual harassment, flex-time, parental leave, and pay equity, just as specialists in women's and gender studies find opportunities in education, law, health care, social work, counseling, media, public policy, and a wide range of other fields.

Program Requirements

Code	**Title**	**Semester Credit Hours**
		3

Required Courses:

WGST 200 Introduction to Women’s and Gender Studies

WGST 401 Feminist Theory

or WGST 481 or Senior Seminar
Program Requirements

Orientation Session

Academic Component

Select twelve hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 100 to 499 (p. 896)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 100 to 499 (p. 877)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 100 to 499 (p. 937)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 100 to 499 (p. 965)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 100 to 499 (p. 970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILM 100 to 499 (p. 991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISP 100 to 499 (p. 1013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 100 to 499 (p. 1014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 100 to 499 (p. 1030)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMAS 100 to 499 (p. 1048)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERF 100 to 499 (p. 1105)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

9

Co-Curricular Component

Minimum of 10 hours participation in diversity related co-curricular activities, which will consist of at least 20 hours of involvement in an approved project. Students will also be able to perceive and articulate any given event from a multicultural, diverse environment.

Service Learning Component

Consists of 20 hours of involvement in an approved project.

Capstone Retreat

Students must complete a minimum of twelve hours to include nine hours of diversity related courses from the College of Liberal Arts plus an additional three hours chosen in consultation with the certificate advisers. The additional three hours could consist of a research project, internship, directed study or other option, including a regular approved course. Students will be provided with a sample list of courses and advice about the most appropriate choices for their long term goals. Certificate advisers may approve additional courses not on the sample list to count toward the completion of this requirement. The core courses required for this certificate may also count toward other degree requirements.

Department of Anthropology

Anthropology is the study of what it means to be human in the broadest sense, through an examination of culture and society (sociocultural and linguistic anthropology), the biology and evolution of humans and our closest relatives (biological anthropology) and the study of past human communities and material culture (archaeology). Students develop an appreciation of the value of physical and cultural differences at the local, national and global levels, and learn critical thinking skills that support them in careers that involve working with individuals of diverse national or ethnic backgrounds.

The aim of the anthropology major is to provide a background in behavioral studies for students who desire a broad education in either the biological or the social sciences. Anthropology majors can obtain research experience in science and the humanities through ethnographic or biological research, or archaeology field schools. Most undergraduates in Anthropology at TAMU select this major because of the opportunity it affords them to acquire a sound liberal education.

The curriculum is ideal for students who want to pursue professional careers or graduate study in anthropology and archaeology. However, students will also find the curriculum fully suitable to prepare them for employment opportunities or careers in: secondary or higher education; medicine; law; museum and foundation settings; the local, state and federal government (such as the National Park Service, Bureau of Indian Affairs, National Institute of Health and others); non-governmental organizations and non-profit organizations; foreign service with government agencies (such as the Agency for International Development, United Nations organizations and others); private archaeological research
institutions; and nontraditional opportunities emerging in business and management.

Faculty

Alvard, Michael S, Associate Professor
Anthropology
PHD, University of New Mexico, 1993

Athreya, Sheela, Associate Professor
Anthropology
PHD, Washington University in St. Louis, 2003

Bryant Jr, Vaughn M, Regents Professor
Anthropology
PHD, The University of Texas - Austin, 1969

Carlson, Deborah N, Associate Professor
Anthropology
PHD, University of Texas at Austin, 2004

Crisman, Kevin J, Professor
Anthropology
PHD, University of Pennsylvania, 1989

De Ruiter, Darryl J, Professor
Anthropology
PHD, University of the Witwatersrand, South Africa, 2001

Dostal, Christopher M, Assistant Professor
Anthropology
PHD, Texas A&M University, 2017

Goebel, Frank E, Professor
Anthropology
PHD, University of Alaska Fairbanks, 1993

Graft, Kelly E, Associate Professor
Anthropology
PHD, University of Nevada, Reno, 2008

Gursky, Sharon, Professor
Anthropology
PHD, State University of New York at Stony Brook, 1997

Hopkins, Allison L, Assistant Professor
Anthropology
PHD, University of Florida, 2009

Laporte, Catharina M, Instructional Associate Professor
Anthropology
PHD, Texas A&M University, 2013

Lemus Sevilla, Sergio, Visiting Assistant Professor
Anthropology
PHD, University of Illinois at Urbana-Champaign, 2016

Linderholm, Anna E, Associate Professor
Anthropology
PHD, Stockholm University - Sweden, 2008

Lynch, Darrell W, Lecturer
Anthropology
PHD, University of Tennessee, 2014

Pulak, Cemalettin M, Professor
Anthropology
PHD, Texas A&M University, 1996

Thakar, Heather B, Assistant Professor
Anthropology
PHD, University of California Santa Barbara, 2014

Thoms, Alston V, Professor
Anthropology
PHD, Washington State University, 1989

Vieira-De-Castro, Luis, Professor
Anthropology
PHD, Texas A&M University, 2001

Wachsmann, Shelley A, Professor
Anthropology
PHD, Institute of Archaeology, Hebrew University, 1991

Waters, Michael R, University Distinguished Professor
Anthropology
PHD, The University of Arizona, 1980

Werner, Cynthia A, Professor
Anthropology
PHD, Indiana University, 1997

Winking, Jeffery W, Associate Professor
Anthropology
PHD, The University of New Mexico, 2005

Wright, Lori E, Professor
Anthropology
PHD, University of Chicago, 1994

Majors

- Bachelor of Arts in Anthropology (p. 550)
- Bachelor of Arts in Anthropology, Archaeology Track (p. 552)
- Bachelor of Science in Anthropology (p. 553)

Minors

- Anthropology Minor (p. 555)
- Museum Studies Minor (p. 555)

Anthropology - BA

Anthropology majors pursuing the general anthropology track receive foundations in the archaeology, biological anthropology and cultural anthropology subfields of anthropology as well as options to pursue upper-level courses in each of the subfields.

Anthropology is the study of what it means to be human in the broadest sense, through an examination of culture and society (sociocultural and linguistic anthropology), the biology and evolution of humans and our closest relatives (biological anthropology) and the study of past human communities and material culture (archaeology). Students develop an appreciation of the value of physical and cultural differences at the local, national and global levels, and learn critical thinking skills that support them in careers that involve working with individuals of diverse national or ethnic backgrounds.
The aim of the anthropology major is to provide a background in behavioral studies for students who desire a broad education in either the biological or the social sciences. Anthropology majors can obtain research experience in science and the humanities through ethnographic or biological research, or archaeological field schools. Most undergraduates in Anthropology at TAMU select this major because of the opportunity it affords them to acquire a sound liberal education.

The curriculum is ideal for students who want to pursue professional careers or graduate study in anthropology and archaeology. However, students will also find the curriculum fully suitable to prepare them for careers or graduate study in anthropology and archaeology. However, students will also find the curriculum fully suitable to prepare them for employment opportunities or careers in: secondary or higher education; medicine; law; museum and foundation settings; the local, state and federal government (such as the National Park Service, Bureau of Indian Affairs, National Institute of Health and others); non-governmental organizations and non-profit organizations; foreign service with government agencies (such as the Agency for International Development, United Nations organizations and others); private archaeological research institutions; and nontraditional opportunities emerging in business and management.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANTH 202</td>
<td>Introduction to Archaeology ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>ANTH 225 & ANTH 226</td>
<td>Introduction to Biological Anthropology and Introduction to Biological Anthropology Laboratory ¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANTH 210</td>
<td>Social and Cultural Anthropology ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Archaeological anthropology ¹,⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANTH 410 or ANTH 412</td>
<td>Anthropological Theory ¹ or Archaeological Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:⁵</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 153</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>STAT 302 or STAT 303</td>
<td>Statistical Methods or Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Biological anthropology ¹,⁶</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Anthropology elective ¹,⁸</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Cultural anthropology ¹,⁷</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Anthropology elective ¹,⁸</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Anthropology elective ¹,⁸</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Anthropology elective ¹,⁸</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

¹ Must make a grade of C or better.
² Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
³ No anthropology course will satisfy this requirement.
⁴ Select from ANTH 302, ANTH 308, ANTH 313, ANTH 316, ANTH 317/RELS 317, ANTH 318, ANTH 323, ANTH 330, ANTH 350, ANTH 351, ANTH 353/CLAS 353, ANTH 354/CLAS 354, ANTH 360, ANTH 401, ANTH 402, ANTH 417/CLAS 417, ANTH 418, ANTH 419, ANTH 444/CLAS 444, ANTH 446, ANTH 447, ANTH 461, ANTH 485, ANTH 489.
Required prerequisite for STAT 302 or STAT 303

Select from ANTH 312, ANTH 405, ANTH 423, ANTH 424, ANTH 425, ANTH 426, ANTH 427, ANTH 485, ANTH 489.

Select from ANTH 300, ANTH 301, ANTH 324/MUSC 324, ANTH 335, ANTH 340/RELS 340, ANTH 370, ANTH 403/RELS 403, ANTH 404/WGST 404, ANTH 419, ANTH 424, ANTH 430, ANTH 434, ANTH 440, ANTH 445, ANTH 485, ANTH 489.

Select from ANTH 200-499 (p. 896). Up to 6 hours may be selected for ANTH 200-299 (p. 896), 3 to 9 hours required from ANTH 300-499 (p. 896).

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Writing Courses

All students in each track are required to take two courses with the writing attribute, also known as “W-courses”, from the department. Substitutions with W-courses from other departments are not allowed. Please see the academic advisor for the most current list of Anthropology W-courses.

Minor Requirements

Anthropology majors may select a minor field of study from departments or divisions within or outside the College of Liberal Arts or in a particular area of interest (as with interdisciplinary minors or career opportunity minors). The minor will consist of 15-18 hours of coursework, at least 6 of which must be at the upper-division level. A grade of C or higher is required if a course is to count in the minor. A minor should be declared before the student has completed 90 credit hours.

College and University Requirements

Other courses may qualify for this category. Students should consult the approved lists of courses available through the academic advisor in the Department of Anthropology or in the Undergraduate Student Services Office in the College of Liberal Arts. The following list incorporates University Core Curriculum requirements. No course can be counted in more than one category. To promote the opportunity for anthropology majors to acquire a broad educational experience, anthropology students must satisfy their University requirements for language, philosophy and culture, social and behavioral sciences, and the sciences with courses other than those offered by anthropology.

Students must complete a minimum of 36 hours of 300- or 400-level coursework at Texas A&M University.

Anthropology - BA, Archaeology Track

Students who elect to pursue the archaeology track take the foundation courses but also have the opportunity to take multiple upper-level courses which focus on specific topics in archaeology. In addition, majors receive a broad yet rigorous liberal arts education.

Anthropology is the study of what it means to be human in the broadest sense, through an examination of culture and society (sociocultural and linguistic anthropology), the biology and evolution of humans and our closest relatives (biological anthropology) and the study of past human communities and material culture (archaeology). Students develop an appreciation of the value of physical and cultural differences at the local, national and global levels, and learn critical thinking skills that support them in careers that involve working with individuals of diverse national or ethnic backgrounds.

The aim of the anthropology major is to provide a background in behavioral studies for students who desire a broad education in either the biological or the social sciences. Anthropology majors can obtain research experience in science and the humanities through ethnographic or biological research, or archaeology field schools. Most undergraduates in Anthropology at Texas A&M select this major because of the opportunity it affords them to acquire a sound liberal education.

The curriculum is ideal for students who want to pursue professional careers or graduate study in anthropology and archaeology. However, students will also find the curriculum fully suitable to prepare them for employment opportunities or careers in: secondary or higher education; medicine; law; museum and foundation settings; the local, state and federal government (such as the National Park Service, Bureau of Indian Affairs, National Institute of Health and others); non-governmental organizations and non-profit organizations; foreign service with government agencies (such as the Agency for International Development, United Nations organizations and others); private archaeological research institutions; and nontraditional opportunities emerging in business and management.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANTH 202</td>
<td>Introduction to Archaeology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ANTH 225 & ANTH 226</td>
<td>Introduction to Biological Anthropology and Introduction to Biological Anthropology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ANTH 210</td>
<td>Social and Cultural Anthropology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ANTH 316</td>
<td>Nautical Archaeology</td>
<td>3</td>
</tr>
</tbody>
</table>
Creative arts (p. 29) 3 3
Foreign language 2 3
Government/Psychological science (p. 30) 3
General elective 3

Semester Credit Hours 15

Third Year
Fall
ANTH 412 Archaeological Theory 1 3
Select one of the following: 4
MATH 140 Mathematics for Business and Social Sciences 3
MATH 142 Business Calculus 3
MATH 147 Calculus I for Biological Sciences 3
MATH 150 Functions, Trigonometry and Linear Systems 3
MATH 151 Engineering Mathematics I 3
MATH 168 Finite Mathematics 3
MATH 171 Calculus I 3
Government/Psychological science (p. 30) 3
Literature directed elective (p. 532) 3
General elective 3

Semester Credit Hours 15

Spring
STAT 302 Statistical Methods or Statistical Methods 3
Life and physical sciences (p. 26) 3
Archaeology elective 1,5 3
Literature directed elective (p. 532) 3
General elective 3

Semester Credit Hours 15

Fourth Year
Fall
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 3
Archaeology elective 1,6 3
Archaeology elective 1,5 3
General elective 3

Semester Credit Hours 15

Spring
Select one of the following: 3
ANTH 304 Archaeology Roadshow 3
ANTH 330 Field Research in Anthropology 3
ANTH 485 Directed Studies 3
ANTH 491 Research 3
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 3
Archaeology elective 1,5 3
General elective 3

Semester Credit Hours 15

Total Semester Credit Hours 120

1 Must make a grade of C or better.
2 Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
3 No anthropology course will satisfy this requirement.
4 Math prerequisites for STAT 302 or STAT 303.
6 Select from ANTH 300-499 (p. 896).

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Writing Courses
All students in each track are required to take two courses with the writing attribute, also known as "W-courses", from the department. Substitutions with W-courses from other departments are not allowed. Please see the academic advisor for the most current list of Anthropology W-courses.

Minor Requirements
Anthropology majors may select a minor field of study from departments or divisions within or outside the College of Liberal Arts or in a particular area of interest (as with interdisciplinary minors or career opportunity minors). The minor will consist of 15-18 hours of coursework, at least 6 of which must be at the upper-division level. A grade of C or higher is required if a course is to count in the minor. A minor should be declared before the student has completed 90 credit hours.

College and University Requirements
Other courses may qualify for this category. Students should consult the approved lists of courses available through the academic advisor in the Department of Anthropology or in the Undergraduate Student Services Office in the College of Liberal Arts. The following list incorporates University Core Curriculum requirements. No course can be counted in more than one category. To promote the opportunity for anthropology majors to acquire a broad educational experience, anthropology students must satisfy their University requirements for language, philosophy and culture, social and behavioral sciences, and the sciences with courses other than those offered by anthropology.

Students must complete a minimum of 36 hours of 300- or 400-level coursework at Texas A&M University.

Anthropology - BS
Anthropology is the study of what it means to be human in the broadest sense, through an examination of culture and society (sociocultural and linguistic anthropology), the biology and evolution of humans and our closest relatives (biological anthropology) and the study of past human communities and material culture (archaeology). Students develop an
Program Requirements

First Year

Fall
ANTH 202 Introduction to Archaeology \(^1\) \hfill 3
ENGL 104 Composition and Rhetoric \hfill 3
American history (p. 29) \hfill 3
Language, philosophy and culture (p. 27) \(^2\) \hfill 3
Life and physical sciences (p. 26) \(^2\) \hfill 3

Spring
ANTH 225 Introduction to Biological Anthropology
ANTH 226 and Introduction to Biological Anthropology Laboratory \(^1\) \hfill 4
American history (p. 29) \hfill 3
Communication (p. 26) \hfill 3
Creative arts (p. 29) \(^2\) \hfill 3
Mathematics (p. 26) \hfill 3

Second Year

Fall
ANTH 210 Social and Cultural Anthropology \(^1\) \hfill 3
Select one of the following: \(^3\) \hfill 3
MATH 140 Mathematics for Business and Social Sciences
MATH 142 Business Calculus
MATH 147 Calculus I for Biological Sciences
MATH 150 Functions, Trigonometry and Linear Systems
MATH 151 Engineering Mathematics I

Spring
ANTH 410 Anthropological Theory \(^1\)
ANTH 412 or Anthropological Theory \(^1\)
Social and behavioral sciences (p. 30) \(^2\) \hfill 3
Additional Science elective \(^5\) \hfill 3
Anthropology elective \(^1,4\) \hfill 3
General elective \hfill 3
General elective \hfill 3

Semester Credit Hours \hfill 15

Third Year

Fall
STAT 302 Statistical Methods \hfill 3
or STAT 303 or Statistical Methods \hfill 3
Additional Science elective \(^5\) \hfill 3
Anthropology elective \(^1,4\) \hfill 3
General elective \hfill 3
General elective \hfill 3

Semester Credit Hours \hfill 15

Fourth Year

Fall
ANTH 448 Quantitative Methods in Anthropology \(^1\)
ANTH 458 or Quantitative Ethnographic Methods \(^1\)
Social and behavioral sciences (p. 30) \(^2\) \hfill 3
Additional Science elective \(^5\) \hfill 3
Anthropology elective \(^1,4\) \hfill 3
General elective \hfill 3

Semester Credit Hours \hfill 15

Spring
Select one of the following: \(^1,6\) \hfill 3
ANTH 304 Archaeology Roadshow
ANTH 330 Field Research in Anthropology
ANTH 402 Archaeological Artifact Conservation
ANTH 421 Advanced Museum Studies
ANTH 425 Human Osteology
ANTH 437 Ethnobotany
ANTH 446 Ceramic Artifact Analysis
ANTH 447 Lithic Artifact Analysis
ANTH 461 Environmental Archaeology
Social and behavioral sciences (p. 30) \(^2\) \hfill 3
Additional Science elective \(^5\) \hfill 3

Semester Credit Hours \hfill 15

Appreciation of the value of physical and cultural differences at the local, national and global levels, and learn critical thinking skills that support them in careers that involve working with individuals of diverse national or ethnic backgrounds.

The aim of the anthropology major is to provide a background in behavioral studies for students who desire a broad education in either the biological or the social sciences. Anthropology majors can obtain research experience in science and the humanities through ethnographic or biological research, or archaeology field schools. Most undergraduates in Anthropology at TAMU select this major because of the opportunity it affords them to acquire a sound liberal education.

The curriculum is ideal for students who want to pursue professional careers or graduate study in anthropology and archaeology. However, students will also find the curriculum fully suitable to prepare them for employment opportunities or careers in: secondary or higher education; medicine; law; museum and foundation settings; the local, state and federal government (such as the National Park Service, Bureau of Indian Affairs, National Institute of Health and others); non-governmental organizations and non-profit organizations; foreign service with government agencies (such as the Agency for International Development, United Nations organizations and others); private archaeological research institutions; and nontraditional opportunities emerging in business and management.
and many of the natural sciences. Anthropology minors learn about complements majors within all of the social sciences, humanities, sociocultural, biological, and archaeological anthropology. It The anthropology minor introduces students to the subfields coursework at Texas A&M University.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Writing Courses
All students are required to take two courses with the writing attribute, also known as “W-courses”, from the department. Substitutions with W-courses from other departments are not allowed. Please see the academic advisor for the most current list of Anthropology W-courses.

Minor Requirements
Anthropology majors have the option of selecting a minor field of study from departments or divisions within or outside the College of Liberal Arts or in a particular area of interest (as with interdisciplinary minors or career opportunity minors). Minors typically consist of 15-18 hours or coursework, at least 6 of which must be at the upper-division level. A minor should be declared before the student has completed 90 credit hours.

College and University Requirements
Other courses may qualify for this category. Students should consult the approved lists of courses available through the academic advisor in the Department of Anthropology or in the Undergraduate Student Services Office in the College of Liberal Arts. The following list incorporates University Core Curriculum requirements. No course can be counted in more than one category, with the exception of courses used for the international and cultural diversity (p. 47) or the cultural discourse (p. 46) requirement. To promote the opportunity for anthropology majors to acquire a broad educational experience, anthropology students must satisfy their University requirements for language, philosophy and culture, social and behavioral sciences, and the sciences with courses other than those offered by anthropology.

Students must complete a minimum of 36 hours of 300- or 400-level coursework at Texas A&M University.

Anthropology - Minor
The anthropology minor introduces students to the subfields of sociocultural, biological, and archaeological anthropology. It complements majors within all of the social sciences, humanities, and many of the natural sciences. Anthropology minors learn about issues relating to the human condition within a holistic, comparative and evolutionary context. They will develop the skills of scientific inquiry and will also learn critical thinking skills that support them in careers that involve working with individuals of diverse national or ethnic backgrounds, in fields such as education, law, medicine, government and non-government organizations, and nontraditional opportunities emerging in business and management.

The minor consists of 15 hours of coursework in anthropology, 6 of which must be at the 300-400 level and taken in residence.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 421</td>
<td>Advanced Museum Studies</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 484</td>
<td>Anthropology Internship</td>
<td>3</td>
</tr>
<tr>
<td>or MAST 48</td>
<td>or Undergraduate Internship</td>
<td></td>
</tr>
<tr>
<td>MUST 221/</td>
<td>Foundations of Museum Studies</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 221</td>
<td>or MAST 220 or Introduction to Museums and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation</td>
<td></td>
</tr>
</tbody>
</table>

Minor Electives
Select from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 313</td>
<td>Historical Archaeology</td>
</tr>
<tr>
<td>ANTH 402</td>
<td>Archaeological Artifact Conservation</td>
</tr>
<tr>
<td>ARTS 330</td>
<td>The Arts of America</td>
</tr>
<tr>
<td>MAST 252</td>
<td>Crafts of the Maritime World</td>
</tr>
<tr>
<td>MAST 340</td>
<td>Museums and the Construction of Identities</td>
</tr>
<tr>
<td>MAST 365</td>
<td>Material Culture</td>
</tr>
</tbody>
</table>
communication media, sports communication, entertainment and related areas of business, industry, government, and non-profit organizations.

Degree requirements: depending on the path chosen may include the study of rhetorical and communication theories, media theories, media history, media industries, media writing, the study of communication research methods, and the use of those theories, research methods and skills in a variety of communication and media contexts. Such contexts include health communication, intercultural communication, interpersonal communication, mass media and new communication technologies, journalism, organizational communication, political rhetoric, religious communication, sports communication and others. Students use their communication and media skills to become leaders in all areas of business, social and political life.

Career options abound: While some students choose advanced degrees in communication, law, business, or religion, many go straight into the work world to pursue careers in a vast array of areas. Typical choices include positions in strategic communication, public relations, marketing, advertising, promotions and sales, training and human resources, social media, journalism, digital communication, leadership and management, health fields related to communication, organizations and public policy, entertainment and related areas of business, industry, government, and non-profit organizations.

Honors Program
The Department of Communication offers courses in many areas of the discipline: Health Communication, Media Studies, Organizational Communication, Rhetoric and Public Affairs, Journalism, Leadership and Civic Dialogue, Communication and Diversity, Social Media, Strategic Communication and Digital Communication, Media Literacy with significant focus in Intercultural and International communication across each area.

Certificates
The Department of Communication offers six certificates. While these certificates are optional, they permit a student to focus studies in one of six areas. The certificate is also noted on the student’s transcript. The certificates in Communication and Global Media, in Communication Leadership and Conflict Management, Communication and Digital Communication, Media Literacy with significant focus in Intercultural and International communication across each area.
Leadership and Conflict Management, in Health Communication and in Communication, Diversity and Social Justice are open to students in the Department of Communication and in any major across the University. The certificates in Strategic Communication and in Social Media are offered to students majoring in Communication, Telecommunication Media Studies or University Studies-Journalism Studies only.

Faculty

Aschenbeck, Stacy H, Instructional Assistant Professor
Communication
MA, Texas State University, 1999

Barge, James K, Professor
Communication
PHD, University of Kansas, 1985

Blanton, Hart C, Professor
Communication
PHD, Princeton University, 1994

Braman, Sandra, Professor
Communication
PHD, University of Minnesota - Twin Cities, 1988

Burkart, Patrick C, Professor
Communication
PHD, University of Texas, 2000

Burton, Thomas, Lecturer
Communication
BS, University of Florida, 1982

Campbell, Heidi A, Professor
Communication
PHD, The University of Edinburgh, 2002

Conrad, Charles R, Professor
Communication
PHD, Kansas University, 1972

Coombs, William T, Professor
Communication
PHD, Purdue University, 1990

Crick, Nathan A, Professor
Communication
PHD, University of Pittsburgh, 2005

Donaldson, David, Lecturer
Communication
JD, The University of Texas School of Law, 1976

Dorsey, Leroy G, Professor
Communication
PHD, Indiana University, 1993

Dubriwny, Tasha N, Associate Professor
Communication
PHD, University of Georgia, 2005

Dunaway, Johanna L, Associate Professor
Communication
PHD, Rice University, 2006

Gammon, Angelique, Instructional Assistant Professor
Communication
BA, Texas A&M University, 1982

Goidel, Robert K, Professor
Communication
PHD, University of Kentucky, 1993

Guajardo, Jonathan, Lecturer
Communication
MA, University of the Incarnate Word, 2014

Havens, Jessica M, Lecturer
Communication
MA, Colgate University, 2012

Heatly, Kyra, Lecturer
Communication
MA, Texas Tech University, 2019

Henson, Bryce, Visiting Assistant Professor
Communication
PHD, University of Illinois, 2016

Holladay, Sherry J, Professor
Communication
PHD, Purdue University, 1992

Ito, Miwa, Lecturer
Communication
MS, North Dakota State University, 2014

La Pastina, Antonio C, Associate Professor
Communication
PHD, The University of Texas - Austin, 1999

Lopez, Joseph, Associate Professor of the Practice
Communication
PHD, The University of Texas at Austin, 2010

Lueck, Jennifer A, Assistant Professor
Communication
PHD, University of Minnesota, 2016

Means Coleman, Robin Renee, Professor
Communication
PHD, Bowling Green State University, 1996

Mercieca, Jennifer R, Associate Professor
Communication
PHD, University of Illinois at Urbana - Champaign, 2003

Miller, Jeremy R, Lecturer
Communication
PHD, Texas A&M University, 2012

Munson, David N, Lecturer
Communication
PHD, Texas A&M University, 2018

Parish, Nancy B, Instructional Assistant Professor
Communication
PHD, University of Florida, 2013
Poirot, Kristan A, Associate Professor
Communication
PHD, University of Georgia, 2004

Ramasubramanian, Srividya, Professor
Communication
PHD, Pennsylvania State University, 2004

Rice, Dale, Instructional Associate Professor
Communication
BA, Syracuse University, 1973

Rold, Michael F, Lecturer
Communication
PHD, Louisiana State University, 2014

Rowe, Sara M, Lecturer
Communication
MA, Texas A&M University, 2012

Song, Xiaofei, Lecturer
Communication
PHD, Washington State University, 2019

Stephenson, Michael, Professor
Communication
PHD, University of Kentucky, 1999

Street Jr, Richard L, Professor
Communication
PHD, The University of Texas at Austin, 1980

Street, Nancy A, Instructional Professor
Communication
MA, University of Texas, 1980

Sumpter, Randall S, Associate Professor
Communication
PHD, University of Texas, 1996

Tang, Lu, Associate Professor
Communication
PHD, University of Southern California, 2007

Tarvin, David T, Senior Lecturer
Communication
PHD, Louisiana State University, 2013

Wallis, Cara J, Associate Professor
Communication
PHD, University of Southern California, 2008

Wesner, Kylene J, Instructional Assistant Professor
Communication
PHD, Texas A&M University, 2014

Wolfe, Anna W, Associate Professor
Communication
PHD, Ohio University, 2013

Majors
• Bachelor of Arts in Communication (p. 558)
• Bachelor of Arts in Telecommunication Media Studies (p. 561)
• Bachelor of Arts in University Studies, Journalism Studies Concentration (p. 565)
• Bachelor of Science in Communication (p. 560)
• Bachelor of Science in Telecommunication Media Studies (p. 563)

Minors
• Communication Minor (p. 566)
• Journalism Minor (p. 566)

Certificates
• Communication, Diversity and Social Justice Certificate (p. 567)
• Communication and Global Media Certificate (p. 567)
• Communication Leadership and Conflict Management Certificate (p. 568)
• Health Communication Certificate (p. 568)
• Social Media Certificate (p. 568)
• Strategic Communication Certificate (p. 569)

Communication - BA
Students who want to transform the world through communication choose the Bachelor of Arts in Communication as a major. The Bachelor of Arts in Communication teaches how to influence and persuade others through the use of language, visual images and other media. This is a major that affords a broad based, Liberal Arts education that draws from coursework from across the College of Liberal Arts, and from across the Texas A&M University. In the Communication major, we pursue coursework giving students a background in the processes and theories of communication as well as in the marketable skills that are so valuable in the working world.

Coursework for incoming Freshmen begins with a dedicated first semester experience which introduces them to the breadth of the field of Communication and of Media while also involving them in small groups and acquainting them with Texas A&M University, our resources and our opportunities. We also welcome Transfer students, meeting them where they are and integrating them into the Communication family. All Communication majors take a core of required courses that establish a firm foundation in the field and then select additional coursework that suits their interests and needs. Students who wish to focus their studies further, may choose to earn a certificate in Health Communication, Strategic Communication, Leadership and Conflict Management, Global Media, Social Media, or Diversity and Social Justice.

With over a thousand students in the major, there is not one particular career path that they all choose. Many go into careers in public relations, advertising, sales, promotions and marketing. Others work in leadership positions in corporations, or in political, religious or social non-profits. Still others work in tactics of communication such as spokespersons, event managers, market influencers, graphic designers or digital specialists. Other popular options are careers in sports, social media, international business, and health.

All B.A. COMM students choose a minor. A minor area of study fits within the 120 hours required for the degree and helps to further define and focus the student’s interests. When making a choice of majors, remember that one can major in Communication and minor in a related area or in a widely divergent area.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 100-499 (p. 937)</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>PHIL 240 Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td>STAT 201 Elementary Statistical Inference</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203 or ENGL 210 Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 210 Group Communication and Discussion</td>
<td></td>
</tr>
<tr>
<td>COMM 215/ JOUR 215 Interviewing: Principles and Practice</td>
<td></td>
</tr>
<tr>
<td>COMM 230/ JOUR 230 Communication Technology Skills</td>
<td></td>
</tr>
<tr>
<td>COMM 240 Rhetorical Criticism</td>
<td></td>
</tr>
<tr>
<td>COMM 245 Difficult Dialogues on Power, Privilege, and Difference</td>
<td></td>
</tr>
<tr>
<td>COMM 250/ JOUR 250 New Media and the Independent Voice</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>PHIL 240 Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td>STAT 201 Elementary Statistical Inference</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 301 Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 308 Research Methods in Communication</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 305 Theories of Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 300-level (p. 937)</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 100-499 (p. 937)</td>
<td>2</td>
</tr>
<tr>
<td>COMM 401 to 480 (p. 937)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
</tbody>
</table>

| General elective | 1 |

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 401 to 480 (p. 937)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 120

1. First semester, first time in college students must take COMM 101 and COMM 291.
2. Minimum grade of C required.
3. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
4. ENGL 203 will count toward the Communication requirement or the Literature directed elective requirement, but not both.
5. COMM course may not be used to fulfill this requirement.
Minor to be selected from among approved university minors. Consult with advisor regarding how to declare desired minor. Courses fulfilling core curriculum requirements may apply to the minor and therefore some of these courses may become electives. Minors will range between 15 and 18 hours.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Included in graduation requirements are the following stipulations:

1. A minimum of 2.0 GPR
2. Minimum grade of C in each course applied to the major
3. Minimum of 12 hours of upper-level COMM coursework at Texas A&M

Teaching Certification

Students desiring certification to teach communication in secondary schools of Texas may either major in communication (College of Liberal Arts) or in another field, but in either case, they must include the following courses in their degree plans:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 305</td>
<td>Theories of Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or COMM 35: Communication and Popular Culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or COMM 4: Rhetoric of Television and Film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILM 445</td>
<td></td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature.</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Additional education courses are required. More complete information on the requirements for teacher certification may be found in the College of Education and Human Development section under secondary teacher certification.

Communication - BS

The Bachelor of Science in Communication harnesses the power of collaborative communication to solve problems through the very essence of this degree, communication intervention. Communication intervention is the skill of collaborating with others effectively to modify outcomes, conditions and processes while also preventing harm with the goal of transforming system functioning. It draws from a transdisciplinary Liberal Arts and STEM knowledge base. It is a critical key to analyzing and addressing 21st century challenges. We address problem-solving by integrating the critical thinking and perspective taking skills embraced by the Liberal Arts with the analytical and quantitative proficiencies of STEM (science, technology, engineering and math.) The Bachelor of Science in Communication provides a marketable set of skills aimed toward communication intervention in areas such as business, health communication, media, politics, non-profits and social issues. In addition to core curriculum required by the University and the State of Texas, Bachelor of Science students will take foundation coursework in the social scientific study of communication and intervention, communication technology, communication research methods, acquisition, analysis and visualization of data, team facilitation and collaboration, and the design, implementation and assessment of communication interventions.

The field of communication is supremely diverse and varied as are the careers pursued by our majors. We address both the science and art of communication in human interactions. Embracing cutting-edge applications, communication specialists are found selling products and promoting initiatives, engaging in public relations, advertising, marketing strategies, digitizing messages, launching and sustaining new media entrepreneurial ventures, facilitating the relationship of doctors and patients, mounting health campaigns and measuring their effects, working on political campaigns, mobilizing the vote, analyzing the ROI of social media initiatives, leading interactions to heal public discord, managing and leading organizations, disseminating concepts, and describing, interpreting and evaluating a wide range of communication phenomena.

The BS is contrasted with the BA in the following ways. First, within the major coursework, the courses central to the degree are social scientific in nature. Second, instead of a foreign language requirement, BS students pursue a set of quantitative courses which includes statistics, computer applications and two research methods courses. Third, instead of a required minor, BS students are required to select and complete a certificate from the Department of Communication. The certificate will provide context and expertise for the communication intervention science focus. Currently, students may choose from a focus in Social Media, Strategic Communication, Leadership and Conflict Management, Global Media, Health Communication or Diversity and Social Justice.

Similar to the Bachelor of Arts in Communication, coursework for incoming Freshmen begins with a dedicated first semester experience which introduces them to the breadth of the field of Communication and of Media while also involving them in small groups and acquainting them with Texas A&M University, our resources and our opportunities. We also welcome Transfer students, meeting them where they are and integrating them into the Communication family. All Communication majors take a specified core of required courses that establishes a firm foundation in the field and then select additional coursework that suits their interests and needs.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 100-499</td>
<td>(p. 937) 1,2</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 200/COMM 210 (p. 47) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 101 (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 400-480 (p. 937) 2.7</td>
</tr>
<tr>
<td></td>
<td>General Elective 3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30) 4</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 210 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 100-499 (p. 937) 2</td>
</tr>
<tr>
<td></td>
<td>MATH 152 (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>MATH 142 (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>MATH 140 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>STAT 201 (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>Law and public policy (p. 26) 3</td>
</tr>
<tr>
<td>Second Year</td>
<td>Semester Credit Hours 15</td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 210 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 100-499 (p. 937) 2</td>
</tr>
<tr>
<td></td>
<td>STAT 201 or STAT 303 3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30) 4</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 303 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 308 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>ISTM 209 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532) 3</td>
</tr>
<tr>
<td>Third Year</td>
<td>Semester Credit Hours 15</td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 310 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 100-499 (p. 937) 2</td>
</tr>
<tr>
<td></td>
<td>American history (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>Certificate course elective 3</td>
</tr>
<tr>
<td></td>
<td>General Elective 3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 305 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>COMM 309 (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>Certificate course elective 3</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Semester Credit Hours 15</td>
</tr>
<tr>
<td>Fall</td>
<td>COMM 400-480 (p. 937) 2.7</td>
</tr>
<tr>
<td></td>
<td>COMM 100-499 (p. 937) 2.7</td>
</tr>
<tr>
<td></td>
<td>Language and culture (p. 27) 3</td>
</tr>
<tr>
<td></td>
<td>Certificate course elective 3</td>
</tr>
<tr>
<td></td>
<td>Certificate course elective 3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 400-480 (p. 937) 2.7</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30) 3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26) 3</td>
</tr>
<tr>
<td></td>
<td>Certificate course elective 3</td>
</tr>
<tr>
<td></td>
<td>General Elective 3</td>
</tr>
</tbody>
</table>

1. First semester, first time in college students must take COMM 101 and COMM 291. Do NOT take SPCH 1311 elsewhere to fulfill this requirement.
2. Must make a grade of C or better.
3. MATH 140 is a prerequisite for MATH 142, choose MATH 140 if you plan to take MATH 142.
4. Except COMM 100-499
5. Both MATH classes must be complete prior to enrolling in COMM 308.
6. Certificate to be selected from among approved Department of Communication Certificate. Consult with advisor regarding how to declare desired Certificate. Courses fulfilling other requirements may apply to the Certificate and therefore some of these courses may become general electives.

W-Class. See the list of approved writing intensive courses at writingcenter.tamu.edu.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Telecommunication Media Studies - BA

The Department of Communication offers two degrees in Telecommunication Media Studies (TCMS). The Bachelor of Arts in Telecommunication Media Studies is similar in structure to the Bachelor of Arts in Communication. The BA in TCMS features a broad, liberal arts approach to media topics supported by coursework from across the College of Liberal Arts and beyond. The BA in TCMS requires study in Communication Technology skills, Technology and Communication, Media History and Media Theory and then branches out to permit choices among a number of TCMS electives. The BS in TCMS, however, takes a quantitative focus to the study of media and requires study in Communication Technology skills, Technology and Communication, Media Theory, Media Law, Media Law or Money Power and Communication, Media Audiences and Media Industries. With this many specified courses, the
student has a more structured approach to studying media and thereby slightly fewer options for selection among TCMS electives. Both BA and BS students seem to find the path they take to lead to satisfying outcomes!

The Telecommunication Media Studies major provides students with tools for understanding the media and their roles in social life theoretically, historically and critically. The degree allows students to choose a broadly based communication and media studies major or a more specialized study of telecommunication and quantitative systems. Students can choose Communication courses that address media industries, law and policy, technology and society, media audiences, processes, and effects, and the theory, history, and criticism of media, culture, and communication.

A degree in Telecommunication Media Studies is useful in a broad variety of careers, including media and telecommunication industries, as well as media-related positions in business, government, non-profit organizations, and higher education. The curriculum is designed to educate citizens for a productive future in a changing world. Our students may become broadcasters, producers, film makers, digital media specialists, industry leaders, government regulators, spokespeople, politicians, writers, artists, activists, and informed citizens.

Both the BA students and the BS students will select a minor. They have the option to select a certificate in Global Media, Health Communication, Leadership & Conflict Management, Social Media, Strategic Communication or our new certificate in Communication, Diversity and Social Justice.

The BA and BS are both available. The BA is a more flexible, liberal arts media-oriented degree.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Telecommunication elective ² ³</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 230</td>
<td>Communication Technology Skills</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29) ⁴</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532) ⁴</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language ¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532) ⁴</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 308</td>
<td>Research Methods in Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 360</td>
<td>Cultural History of the Media</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor ⁵</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Telecommunication elective ³</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 401 to 480 (p. 937)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Telecommunication elective ³</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15 |

¹ Minor
² Telecommunication elective
³ Elective
⁴ Literature directed elective
⁵ Social and behavioral sciences
Courses in their degree plans:

Students desiring certification to teach communication in secondary education courses must take 21 credit hours of the required program core courses and an additional 3 hours of Berdiev, C. H. (2007). Theories of Communication. 3

At least 12 credits must be taken in residence at Texas A&M University.

Students take 21 credit hours of the required program core courses and 12 credit hours of telecommunication elective courses for a total of 33 credit hours. At least 12 credits must be at the upper-division level. At least 12 credits must be taken in residence at Texas A&M University. Minimum grade of C in each course. No more than 3 credit hours of COMM 484; no more than 6 credit hours of COMM 485.

Teaching Certification

Students desiring certification to teach communication in secondary schools of Texas may either major in communication (College of Liberal Arts) or in another field, but in either case, they must include the following courses in their degree plans:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 305</td>
<td>Theories of Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 34</td>
<td>Communication and Popular Culture</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 40</td>
<td>Rhetoric of Television and Film</td>
<td>3</td>
</tr>
<tr>
<td>FILM 445</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature.</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

2. First semester, first-time college students must take COMM 101 and COMM 291.

3. Select four of the following: COMM 101 to 499 (p. 937); CSCE 110, CSCE 206; ENGL 251/FILM 251; FILM 251/ENGL 251; ISTM 250, ISTM 310, ISTM 315, ISTM 325, ISTM 425, JOUR 102, JOUR 301/COMM 307; POLS 302/COMM 302, POLS 313; TCMG 274; WGST 407/COMM 407.

4. ENGL 203 will count toward the Communication requirement or the Literature directed elective requirement, but not both.

5. COMM course may not be used to fulfill this requirement.

6. Minor to be selected from among approved university minors. Consult with advisor regarding how to declare desired minor. Courses fulfilling core curriculum requirements may apply to the minor and therefore some of these courses may become electives. Minors will range between 15 and 18 hours.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Students take 21 credit hours of the required program core courses and 12 credit hours of telecommunication elective courses for a total of 33 credit hours. At least 12 credits must be at the upper-division level. At least 12 credits must be taken in residence at Texas A&M University. Minimum grade of C in each course. No more than 3 credit hours of COMM 484; no more than 6 credit hours of COMM 485.

Teaching Certification

Students desiring certification to teach communication in secondary schools of Texas may either major in communication (College of Liberal Arts) or in another field, but in either case, they must include the following courses in their degree plans:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 305</td>
<td>Theories of Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 34</td>
<td>Communication and Popular Culture</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 40</td>
<td>Rhetoric of Television and Film</td>
<td>3</td>
</tr>
<tr>
<td>FILM 445</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature.</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 27

Additional education courses are required. More complete information on the requirements for teacher certification may be found in the College of Education and Human Development section under secondary teacher certification.

Telecommunication Media Studies - BS

The Department of Communication offers two degrees in Telecommunication Media Studies (TCMS). The Bachelor of Arts in Telecommunication Media Studies is similar in structure to the Bachelor of Arts in Communication. The BA in TCMS features a broad, liberal arts approach to media topics supported by classwork from across the College of Liberal Arts and beyond. The BA in TCMS requires study in Communication Technology skills, Technology and Communication, Media History and Media Theory and then branches out to permit choices among a number of TCMS electives. The BS in TCMS, however, takes a quantitative focus to the study of media and requires study in Communication Technology skills, Technology and Communication, Media Theory, Media Law or Money Power and Communication, Media Audiences and Media Industries. With this many specified courses, the student has a more structured approach to studying media and thereby slightly fewer options for selection among TCMS electives. Both BA and BS students seem to find the path they take to lead to satisfying outcomes!

The Telecommunication Media Studies major provides students with tools for understanding the media and their roles in social life theoretically, historically and critically. The degree allows students to choose a broadly based communication and media studies major or a more specialized study of telecommunication and quantitative systems. Students can choose Communication courses that address media industries, law and policy, technology and society, media audiences, processes, and effects, and the theory, history, and criticism of media, culture, and communication.

A degree in Telecommunication Media Studies is useful in a broad variety of careers, including media and telecommunication industries, as well as media-related positions in business, government, nonprofit organizations, and higher education. The curriculum is designed to educate citizens for a productive future in a changing world. Our students may become broadcasters, producers, film makers, digital media specialists, industry leaders, government regulators, spokespersons, politicians, writers, artists, activists, and informed citizens.

Both the BA students and the BS students will select a minor. They have the option to select a certificate in Global Media, Health Communication, Leadership and Conflict Management, Social Media, Strategic
Communication or our new certificate in Communication, Diversity and Social Justice.

The BA and BS are both available. The BS is more directed and requires a quantitative background.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunication elective</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 230/</td>
<td>Communication Technology Skills</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JOUR 230</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISTM 210</td>
<td>Fundamentals of Information Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>COMM 308</td>
<td>Research Methods in Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or STAT 303</td>
<td>or Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>ISTM 250</td>
<td>Business Programming Logic and Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>COMM 307/</td>
<td>Communication Law and Policy or Money, Power and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>JOUR 301/</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or COMM 354</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 345/</td>
<td>Media Industries</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FILM 345</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 375</td>
<td>Media Audiences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>COMM 401 to 480 (p. 937)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunication elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 401 to 480 (p. 937)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor 5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1. COMM course may not be used to fulfill this requirement.
2. First semester, first time in college students must take COMM 101 and COMM 291.
3. Select three of the following: COMM 100 to 499 (p. 937) (except COMM 203, COMM 243, CSCE 110, CSCE 206; ISTM 250, ISTM 310, ISTM 315, ISTM 325, ISTM 425; JOUR 102, JOUR 301/COMM 307; MGMT 209, MGMT 309; TCMG 274; WGST 407/COMM 407.
4. ENGL 203 will count toward the Communication requirement or the Literature directed elective requirement, but not both.
Minor to be selected from among approved university minors. Consult with advisor regarding how to declare desired minor. Courses fulfilling core curriculum requirements may apply to the minor and therefore some of these courses may become electives. Minors will range between 15 and 18 hours.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Students take 24 credit hours of the required program core courses and 9-10 credit hours of telecommunication media studies elective courses for a total of 33 credit hours. At least 12 credits must be at the upper-division level. At least 12 credits must be taken in residence at Texas A&M University. Minimum grade of C in each course. No more than 3 credit hours of COMM 484; no more than 6 credit hours of COMM 485.

Teaching Certification

Students desiring certification to teach communication in secondary schools of Texas may either major in communication (College of Liberal Arts) or in another field, but in either case, they must include the following courses in their degree plans:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>COMM 305</td>
<td>Theories of Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 350</td>
<td>Theories of Mediated Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 3 or Communication and Popular Culture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>or COMM 4 or Rhetoric of Television and Film FILM 445</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature.</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 27

Additional education courses are required. More complete information on the requirements for teacher certification may be found in the College of Education and Human Development section under secondary teacher certification.

University Studies - BA, Journalism Studies Concentration

University Studies - Journalism in the Department of Communication represents an interdisciplinary approach to journalism education, with an emphasis on writing-intensive courses that support the critical thinking skills required of journalists in the 21st century. In addition to the concentration in journalism through the University Studies degree, students in the program are required to complete two minors, substantially broadening the interdisciplinary aspects of journalism education. Students who choose a minor in Communication, for example, may also choose to complete a certificate in one of six areas: Global Media, Social Media, Strategic Communication, Health Communication, Leadership and Conflict Management or Diversity and Social Justice.

Students with a degree in University Studies - Journalism will be prepared for a successful life and career in several ways. The coursework emphasizes critical thinking skills—a necessary component in the changing world of journalism that relies on writing for different types of media with frequent updates and differing audiences. They are exposed to experiential learning through classes that require students to report and write on deadline and by the requirement for an internship in the field. They develop and enhance strong writing skills by taking up to four writing-intensive courses. The very nature of journalism—constantly reporting and evaluating new information while examining new topics—prepares them to be thoughtful consumers of information and encourages them to engage in learning throughout their lifetimes.

Students in University Studies - Journalism may work in political journalism, arts and entertainment journalism, sport journalism, magazine journalism, literary nonfiction or multimedia journalism, to name a few.

A student enrolled in the University Studies concentration of Journalism may not pursue a double major or a double degree.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 102</td>
<td>American Mass Media</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOUR 200</td>
<td>Mass Media Information</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3
Second Year

Fall
- JOUR 203 Media Writing I 3
- American history (p. 29) 3
- Literature directed elective (p. 532) 3
- Minor 1 3
- Social and behavioral sciences (p. 30) 3

Spring
- JOUR 200-499 (p. 1039) 3
- Life and physical sciences (p. 26) 3
- Literature directed elective (p. 532) 3
- Minor 1 3
- Minor 1 3

Total Semester Credit Hours 15

Third Year

Fall
- JOUR 200-499 (p. 1039) 3
- JOUR 300-499 (p. 1039) 3
- Life and physical sciences (p. 26) 3
- Minor 1 3
- Minor 1 3

Spring
- JOUR 484 Internship 3
- American history (p. 29) 3
- Life and physical sciences (p. 26) 3
- Minor 1 3
- Minor 1 3

Total Semester Credit Hours 15

Fourth Year

Fall
- JOUR 300-499 (p. 1039) 3
- Language, philosophy and culture or creative arts (p. 27) 3
- Minor 1 3
- Minor 1 3
- Minor 1 3

Spring
- JOUR 490 Journalism as a Profession 3
- Minor 1 3
- Minor 1 3

Total Semester Credit Hours 15

Communication - Minor

The Department of Communication offers a minor in Communication, along with a minor in Journalism, and majors in Communication, Telecommunication Media Studies as well as University Studies-Journalism Studies. The minor in Communication incorporates a course in communication skills with a choice of one of two courses central to the study of communication and then rounded out with a choice of three courses from among the rich array of offerings. Skills courses range from public speaking, interviewing or argumentation and debate to difficult dialogues or communication technology skills, to note only a few. The central courses afford the opportunity to examine, in COMM 301, Rhetoric in Western Thought, how language is used to influence and persuade OR to learn, in COMM 305, Theories of Communication, how communication behavior can be described and predicted in a variety of contexts. The remaining nine hours may be chosen from among courses that run the gamut from Sports Communication or Social Media to Health Communication, Media Culture and Identity, Money Power and Communication, Popular Culture, Critical Race Discourse to Persuasion, Leadership and Conflict Management, Interpersonal, Intercultural, or International Communication. There are over 75 courses from which to choose. This 15-hour minor is open to all majors.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 301</td>
<td>Rhetoric in Western Thought</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 305</td>
<td>Theories of Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 200</td>
<td>to 250 (p. 937)</td>
<td>3</td>
</tr>
<tr>
<td>COMM 300</td>
<td>to 499 (p. 937)</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must earn a grade of C or better in each course.

Journalism - Minor

The Department of Communication offers a minor in Journalism, as well as a major in University Studies-Journalism Studies. The minor in Journalism provides a background in reporting, from interviewing to
on-line records searches, and in writing, from deadline news stories to longer analytical and feature pieces. Video production for the web is an integral part of news writing in our program, along with the opportunity for specialized, advanced writing classes in political reporting, literary nonfiction, sports reporting, arts and entertainment journalism, magazine writing, and a new course in multimedia journalism. The required journalism internship affords students another means to acquire writing and production experience, as well as a great resume entry. Students also can obtain in-depth experience in the field of new media.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOUR 200</td>
<td>Mass Media Information</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 203</td>
<td>Media Writing I</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 484</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 490</td>
<td>Journalism as a Profession</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 300-499 (p. 1039)</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 300-499 (p. 1039)</td>
<td>Internship</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Students must make a grade of ‘C’ or better in all courses.

Communication, Diversity and Social Justice - Certificate

The Communication, Diversity, and Social Justice Certificate, offered through the Department of Communication, gives students in-depth understanding of how communication intersects with issues of diversity and prepares students for a lifetime of successful communication practices in our diverse world. The certificate is grounded in a larger concern with social justice issues, with coursework emphasizing issues of power, privilege, and difference. Students will work in the classroom to understand and gain experience with difficult dialogues, issues of race, gender and inclusivity. They will also participate in the community projects of their choosing to gain experience in real world social justice events and practices.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 343</td>
<td>Communication and Cultural Discourse</td>
<td>3</td>
</tr>
<tr>
<td>COMM 487</td>
<td>Communication, Diversity and Social Justice Capstone Experience</td>
<td>0</td>
</tr>
<tr>
<td>Select 9 hours from:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>COMM 245</td>
<td>Difficult Dialogues on Power, Privilege, and Difference</td>
<td></td>
</tr>
<tr>
<td>COMM 257/Communication, Religion and the RELS 257 Arts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 307/Communication Law and Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 338/Critical Race Discourse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 346</td>
<td>Media, Culture and Identity</td>
<td></td>
</tr>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Communication and Global Media - Certificate

The Communication and Global Media Certificate (CGMC), is offered by the Department of Communication, and is designed to provide students with an understanding of a communication perspective on the impact of media in a global context. Global media examines the flow of information and culture in political, religious and social contexts and across industries. From the development of new media and digital technologies to the influence that media plays in the development of policies, laws and changes to the everyday lives of the people involved, global media studies the messages that influence unseen audiences around the world. Global media careers include international journalism, social justice reform, international trade and commerce, and worldwide travel. The CGMC prepares students for understanding the growth and impact of communication and global media in a variety of similar contexts. An international internship, study abroad or internship in an international concern is required. Specific certificate requirements are available in the Office of Undergraduate Advising of the Department of Communication. Details are also available on the Department of Communication website.

Program Requirements

The CGMC requires designated courses and completion of a global internship or approved experience. Students must earn a grade of B or better in each course used to meet the requirements. Students who pursue the CGMC must complete all requirements prior to graduation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 365/International Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOUR 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 407/Gender, Race and Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 425/Rhetoric of the Civil Rights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFST 425 Movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 428/Women's Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGST 428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431 Rhetoric of Social Movements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 342 The Rhetoric of Gender and Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Communication Leadership and Conflict Management Certificate (CLCM), offered by the Department of Communication, is designed to develop communication leadership competence in interpersonal/group collaborative spheres and social/political arenas, to facilitate communication one on one in interpersonal interactions, across private and public boundaries and to mediate conflict in such diverse groups as families, work teams, political and religious groups and those engaged in geopolitical discord. Each CLCM certificate holder will be certified in basic mediation by the State of Texas. The CLCM certificate prepares students for understanding the growth and impact of communication leadership and of conflict management, especially within the context of communication, and will serve undergraduate students as well as they pursue diverse career options. Specific certificate requirements are available in the Office of Undergraduate Advising of the Department of Communication. Details are also available on the Department of Communication website (http://comm.tamu.edu/).

Program Requirements

Students must earn a grade of "B" or better in each course used to meet the requirements. Students who pursue the CLCM must complete all requirements prior to graduation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 324</td>
<td>Communication Leadership and Conflict Management</td>
<td>3</td>
</tr>
<tr>
<td>COMM 443</td>
<td>Communication and Conflict</td>
<td>3</td>
</tr>
<tr>
<td>COMM 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 420/Gender and Communication WGST 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 431</td>
<td>Rhetoric of Social Movements</td>
<td></td>
</tr>
<tr>
<td>COMM 440</td>
<td>Political Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 447</td>
<td>Communication, Group Processes and Collaboration</td>
<td></td>
</tr>
<tr>
<td>Other courses approved by CLCM committee for prescribed electives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 12

Social Media - Certificate

Social media was once the plaything of teenagers, a means of entertainment, and employed solely for leisure activities. As commercial, non-profit, political, religious, and social entities began to use social media for profit and influence, these same digital natives were employed to manage it. Social media, however, is now ubiquitous. People from all walks of life use social media. These commercial and social entities need well-qualified social media users to take on the massive field of

Health Communication - Certificate

Careers in Health and in Communication are growing much faster than average according to the Office of Occupational Outlook, Bureau of Labor Statistics. Health communication skills are increasingly valuable in careers related to health and medicine, as well as the media, public relations, and strategic communication. Health communication skills are applicable for a variety of health and medical career tasks including provider-patient consultations; the formative research, design, implementation, and assessment of public health communication campaigns; the development of strategic communication initiatives for health organizations and related products and services; as well as leadership in public and private sector health agendas. Health messaging reaches diverse audiences and includes the use of advocacy to influence policy, as well as mediating and shaping public conversations on health issues both face-to-face and via traditional and new media in local and global arenas. Health communication skills are important for profit, nonprofit, and governmental organizations. This certificate provides a course of study and experience for students interested in health campaigns, other forms of mediated health communication, and health policy, as well as for students interested in communication in healthcare organizations and provider-patient relationships. Specific certificate requirements are available in the Undergraduate Studies Office of the Department of Communication. Details are also available on the Department of Communication (http://communication.tamu.edu/) website.

Program Requirements

Students must earn a grade of "B" or better in each course used to meet the requirements. Students who pursue the HCC must complete all requirements prior to graduation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 370</td>
<td>Health Communication</td>
<td>3</td>
</tr>
<tr>
<td>COMM 470</td>
<td>Communication in Health Care Contexts</td>
<td>3</td>
</tr>
<tr>
<td>COMM 470</td>
<td>Communication in Health Care Contexts ¹</td>
<td>3</td>
</tr>
<tr>
<td>or COMM 447</td>
<td>or Media, Health and Medicine</td>
<td></td>
</tr>
<tr>
<td>COMM 483</td>
<td>Health Communication Practicum</td>
<td>0</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 315</td>
<td>Interpersonal Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 320</td>
<td>Organizational Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 325</td>
<td>Persuasion</td>
<td></td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 335</td>
<td>Intercultural Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 342</td>
<td>The Rhetoric of Gender and Health</td>
<td></td>
</tr>
<tr>
<td>COMM 375</td>
<td>Media Audiences</td>
<td></td>
</tr>
<tr>
<td>COMM 482</td>
<td>Health Humanities Senior Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 12

¹ COMM 470 is a variable topic course. If taken for this requirement it must be a different topic.
social media production, curation, management, influence, response, analytics and entrepreneurship. The Department of Communication Certificate in Social Media aims to prepare Communication majors, Telecommunication Media Studies majors, and University Studies-Journalism Studies majors to take up these roles in the social media literate workforce.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 275</td>
<td>Introduction to Social Media</td>
<td>3</td>
</tr>
<tr>
<td>COMM 476</td>
<td>Advanced Social Media</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select three of the following:</td>
<td>9</td>
</tr>
<tr>
<td>COMM 230</td>
<td>Communication Technology Skills</td>
<td></td>
</tr>
<tr>
<td>JOUR 230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 260</td>
<td>Introduction to Communication and Sports</td>
<td></td>
</tr>
<tr>
<td>COMM 307</td>
<td>Communication Law and Policy</td>
<td></td>
</tr>
<tr>
<td>JOUR 301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 323</td>
<td>Strategic Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 330</td>
<td>Technology and Human Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 375</td>
<td>Media Audiences</td>
<td></td>
</tr>
<tr>
<td>COMM 403</td>
<td>Media, Children and Adolescents</td>
<td></td>
</tr>
<tr>
<td>COMM 407</td>
<td>Gender, Race and Media</td>
<td></td>
</tr>
<tr>
<td>WGST 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 438</td>
<td>Propaganda</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Strategic Communication - Certificate

Strategic communication is the process that supports public relations, promotions, public information, marketing, corporate communication, public affairs and advertising. Strategic communication is creation of the plan as well as the tools or tactics used to implement that plan effectively. The value of effective strategic communication is acknowledged by both profit and nonprofit corporations and by governmental agencies. The effect of strategic communication failures on the bottom line, on employee and stakeholder satisfaction, and on the efficient use of resources, is well documented. Gathering and interpreting appropriate information, audience analysis, as well as harnessing the power of accurate language in message crafting, are further noted as key strategic communication functions. Tactics available for implementing strategic communication are expanding exponentially as digital communication and new media evolve. Mastery of the integration of these tactics in strategic plans augment the effectiveness of internal and public issues management while mitigating corporate frustration, offensive messages, and overspending. Although effective strategic communication is critical to organizational success, many companies and agencies continue to need support and assistance in this arena. The U.S. Department of Labor Occupational Outlook Handbook notes that careers in various strategic communication areas are growing "faster than average" to "much faster than average." The Certificate in Strategic Communication will prepare Communication majors, Telecommunication Media Studies majors, and University Studies-Journalism Studies majors to plan and execute communication strategically and to coordinate the integration of appropriate tactics to enhance commerce, government, and to further political, religious and social goals, as they lead us into the future. Specific certificate requirements are available in the Undergraduate Studies Office of the Department of Communication. Details are also available on the Department of Communication (http://communication.tamu.edu) website.

Program Requirements

Students must earn a grade of "B" or better in each course used to meet the requirements. Students who pursue the SCC must complete all requirements prior to graduation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td>COMM 321</td>
<td>Strategic Communication Case Studies</td>
<td>3</td>
</tr>
<tr>
<td>COMM 322</td>
<td>Communication Tactics</td>
<td>3</td>
</tr>
<tr>
<td>COMM 323</td>
<td>Strategic Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed Elective Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 320</td>
<td>Organizational Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 325</td>
<td>Persuasion</td>
<td></td>
</tr>
<tr>
<td>COMM 375</td>
<td>Media Audiences</td>
<td></td>
</tr>
<tr>
<td>COMM 438</td>
<td>Propaganda</td>
<td></td>
</tr>
<tr>
<td>COMM 440</td>
<td>Political Communication</td>
<td></td>
</tr>
<tr>
<td>COMM 446</td>
<td>Communication, Organizations and Society</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Department of Economics

The study of economics helps students develop a framework for understanding of how individuals, organizations and societies make choices and how those choices interact to determine the allocation of an economy's limited resources among alternative competing uses. Economists study how these choices are made in a variety of environments and consider how the outcomes vary under alternative forms of economic organization. Economists evaluate the outcomes of an economic system on a scorecard that includes several different criteria such as efficiency, equity, and stability.

The fundamental goal of our curriculum is to introduce students to the economic way of thinking—a particular way of asking questions and analyzing problems. We offer a core set of courses that teach the fundamental theoretical tools of economics, and a set of elective courses that demonstrate how economists apply these tools to study a wide variety of real-world economic issues. A key takeaway for students is a working knowledge of a useful and coherent structural approach to examining current public policy issues and an ability to identify the inherent tradeoffs involved in developing solutions to major social problems.

The economic style of thinking, when combined with training in the required tools of quantitative and qualitative analysis, provides students with a skill set that will serve them well in a wide array of post-graduate pursuits. The banking and financial sectors regularly hire undergraduate economics majors as do management consulting firms. A number of private corporations employ economists to prepare forecasts of future movements in firm costs and profits. Government agencies—local, state,
national, international- hire economics majors for positions as budget analysts or government program evaluators. The study of economics also provides sound preparation for graduate school, either a Masters or PhD degree in economics or a professional degree in business, law, or public policy.

Faculty

An, Yonghong, Associate Professor
Economics
PHD, John Hopkins University, 2011

Barr, Andrew C, Associate Professor
Economics
PHD, University of Virginia, 2015

Bento, Pedro M, Assistant Professor
Economics
PHD, University of Toronto, 2013

Brown, Alexander L, Professor
Economics
PHD, California Institute of Technology, 2008

Castillo, Marco, Professor
Economics
PHD, University of Wisconsin - Madison, 2001

Doleac, Jennifer, Associate Professor
Economics
PHD, Stanford University, 2012

Eckel, Catherine C, University Distinguished Professor
Economics
PHD, University of Virginia, 1983

Edwardson, Jeffrey C, Senior Lecturer
Economics
PHD, Texas A&M University, 2000

Fang, Zheng, Assistant Professor
Economics
PHD, University of California, San Diego, 2015

Gan, Li, Professor
Economics
PHD, University of California, Berkeley, 1998

Glass, Amy J, Associate Professor
Economics
PHD, University of Pennsylvania, 1993

Gronberg, Timothy J, Professor
Economics
PHD, Northwestern University, 1978

Guo, Huiyi, Assistant Professor
Economics
PHD, University of Iowa, 2018

Hoekstra, Mark L, Professor
Economics
PHD, University of Florida, 2006

Jansen, Dennis W, Professor
Economics
PHD, University of North Carolina at Chapel Hill, 1983

Jo, Yoon Joo, Assistant Professor
Economics
PHD, Columbia University, 2019

Klopack, Benjamin, Assistant Professor
Economics
PHD, Stanford University, 2019

Krasteva, Silvana S, Associate Professor
Economics
PHD, Duke University, 2009

Li, Qi, Professor
Economics
PHD, Texas A&M University, 1991

Lindo, Jason M, Professor
Economics
PHD, University of California - Davis, 2009

Luco Echeverria, Fernando A, Assistant Professor
Economics
PHD, Northwestern University, 2014

Maness, Robert S, Associate Professor of the Practice
Economics
PHD, Texas A&M University, 1992

Meer, Jonathan, Professor
Economics
PHD, Stanford University, 2009

Pakhotina, Nataliya V, Senior Lecturer
Economics
PHD, University of Florida, 2010

Petrie, Ragan, Professor
Economics
PHD, University of Wisconsin - Madison, 2002

Puller, Steven L, Professor
Economics
PHD, University of California, Berkeley, 2001

Schulman, Craig T, Associate Professor of the Practice
Economics
PHD, Texas A&M University, 1990

Sekhposyan, Tatevik, Associate Professor
Economics
PHD, University of North Carolina Chapel Hill, 2010

Serra, Danila, Associate Professor
Economics
PHD, University of Oxford and Centre for the Study of African Economies, 2009

Tian, Guoqiang, Professor
Economics
PHD, University of Minnesota, Twin Cities, 1987
Ureta, Manuelita, Associate Professor
Economics
PHD, UCLA, 1987

Varghese, Adel, Instructional Associate Professor
Economics
PHD, University of Pennsylvania, 1996

Velez, Rodrigo A, Associate Professor
Economics
PHD, University of Rochester, 2009

Wiggins, Steven N, Professor
Economics
PHD, Massachusetts Institute of Technology, 1979

Zhang, Yuzhe, Associate Professor
Economics
PHD, University of Minnesota, 2006

Zubairy, Sarah, Associate Professor
Economics
PHD, Duke University, 2010

Majors
• Bachelor of Arts in Economics (p. 571)
• Bachelor of Arts in Economics and Master of International Affairs, 5-Year Degree Program (p. 572)
• Bachelor of Arts in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 574)
• Bachelor of Science in Economics (p. 575)
• Bachelor of Science in Economics and Master of International Affairs, 5-Year Degree Program (p. 576)
• Bachelor of Science in Economics and Master of Public Service and Administration, 5-Year Degree Program (p. 578)
• Bachelor of Science in Economics and Master of Science in Economics, 5-Year Degree Program (p. 579)

Minors
• Economics Minor (p. 580)

Certificates
• Business Economics Certificate (p. 581)
• Quantitative Economics Methods (p. 581)

Economics - BA
The Bachelor of Arts degree program in Economics offers a strong liberal arts curriculum aimed at enhancing students’ analytical skills and applications to better understand human behavior. The degree plan is designed to allow opportunities for applied exploration of economic principles and theory through research, internship, and study abroad while focusing on quantitative skills and the development of rational thought and critical thinking. In addition to requiring four semesters of a college-level foreign language, the Bachelor of Arts degree plan encompasses a broad spectrum of coursework from throughout the College of Liberal Arts and Texas A&M University. By allowing for flexibility in courses that can be taken within the core curriculum, as well as for general electives, students can achieve a well-rounded education that can help with their future educational and professional goals.

To build a solid base of understanding, students take foundational courses in microeconomics, macroeconomics and mathematics, then refine those skills in statistics and intermediate economic theory classes. In upper-level courses these reasoning abilities are applied to specific situations, with a particular focus on understanding social problems from an economics perspective.

Students who graduate with a Bachelor of Arts degree in Economics have a wide spectrum of career fields to choose from. Many students pursue careers in business, law, government and public policy professions, nonprofit organizations and more.

Program Requirements

First Year

Fall
ECON 202 Principles of Economics 3
ENGL 104 Composition and Rhetoric 3
Select one of the following: 3
MATH 140 Mathematics for Business and Social Sciences
MATH 148 Calculus II for Biological Sciences
MATH 152 Engineering Mathematics II
MATH 172 Calculus II
American history (p. 29) 3
Foreign language 1 4

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Spring
ECON 203 Principles of Economics 3
Select one of the following: 3
MATH 142 Business Calculus
MATH 147 Calculus I for Biological Sciences
MATH 151 Engineering Mathematics I
MATH 171 Calculus I
Foreign language 1 4
Government/Political science (p. 30) 3
Language, philosophy and culture (p. 27) 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall
ACCT 209 Survey of Accounting Principles 3
ECON 323 Microeconomic Theory 2 3
Foreign language 1 3
Literature directed elective (p. 532) 3
General elective 3 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Spring
Communication (p. 26) 3
Creative arts (p. 29) 3
Foreign language 1 3
Economics elective 4 3
Econometrics coursework. A grade of C or higher is required for all Economics and Econometrics courses. No more than 36 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics coursework.

Economics - 5-Year Bachelor of Arts/Master of International Affairs

The combined program between the Department of Economics and The Bush School of Government and Public Service allows undergraduate Economics students to enter the Master of International Affairs Program, with a focus in International Economics and Development, at the beginning of their fourth year at Texas A&M University. This program combines the teaching of analytical thinking skills and applications to better understand human behavior as it relates to international economic development along with skills in diplomacy, research, and development of a global perspective.

Students will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School's MIA program. Students will double-count 9 hours of Bush School courses toward the undergraduate major coursework area and up to 9 hours toward general electives in the Bachelor of Arts in Economics. At the completion of the combined degree, students are prepared for a wide variety of post-graduate opportunities including: employment in global commerce, government, government contracting, national security, and transfer pricing.

Students interested in this program will apply during the fall of their junior year and, if admitted, begin taking masters-level courses in the fall of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 102 credit hours, typically in the following semester. These credit hours must include all specific course prerequisites for a baccalaureate degree in Economics, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>ECON 202</th>
<th>Principles of Economics</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>MATH 171</th>
<th>Calculus I</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>ECMT 461</th>
<th>Economic Data Analysis</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall	Government/Political science (p. 30)	3
------	Life and physical sciences (p. 26)	3
	Economics elective	3
	Literature directed elective (p. 532)	3
	General elective	3
	Semester Credit Hours	15

Spring

ECON 410	Macroeconomic Theory	3
American history (p. 29)	3	
Life and physical sciences (p. 26)	3	
Economics elective	3	
General elective	3	
Semester Credit Hours	15	

Fifth Year

Fall	Language, philosophy and culture or creative arts (p. 27)	3
Social and behavioral sciences (p. 30)	3	
Economics elective	3	
Economics elective	3	
General elective	3	
Semester Credit Hours	13	

Total Semester Credit Hours

120

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

2. ECON 323 is a pre-requisite for most ECON electives.

3. ECON 100-499 (p. 965) and ECMT 100-499 (p. 964) may not be used to fulfill this requirement.

4. Select from ECMT 463, ECMT 475; ECON 301-499 (p. 965).

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 36 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics coursework.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>ECMT 461</td>
<td>Economic Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign</td>
<td>Language</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government</td>
<td>Political science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and</td>
<td>Behavioral sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td>directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ECON 410</td>
<td>Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American</td>
<td>history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative</td>
<td>arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign</td>
<td>Language</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and</td>
<td>physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and</td>
<td>behavioral sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American</td>
<td>history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language,</td>
<td>philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and</td>
<td>physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td>directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>BUSH 631</td>
<td>Quantitative Methods in Public Management I 5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA 601</td>
<td>Leadership in International Affairs: Institutions, Organizations and People</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA 606</td>
<td>International Politics in Theory and Practice 5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA 608</td>
<td>Fundamentals of the Global Economy 6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>BUSH 635</td>
<td>Quantitative Methods in Public Management II: Policy Analysis Emphasis 6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA 605</td>
<td>American Foreign Policy Since World War II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BUSH elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Fifth Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>BUSH/INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spring</td>
<td>INTA 670</td>
<td>International Affairs Capstone Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTA elective 7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

1 Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
2 ECON 323 is a pre-requisite for most ECON electives.
3 Select from ECMT 463, ECMT 475; ECON 301-499 (p. 965).
4 ECON 100-ECON 499 (p. 965) and ECMT 100-ECMT 499 (p. 964) may not be used to fulfill this requirement.
5 Courses can count towards the economics elective on the BA degree plan.
6 Courses can count towards the general elective on the BA degree plan.
7 BUSH graduate advisor will assist with BUSH/INTA course selection for chosen track in graduate program.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 36 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics coursework.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Arts in Economics and the Master of International Affairs.

Students can double-count up to 9 hours of Bush School courses toward the undergraduate major coursework area and up to 9 hours toward general electives in the Bachelor of Arts in Economics.

Economic Electives

In addition to the electives for the BA in ECON, the following courses may be selected for the ECON-MIA program: BUSH 632, BUSH 635; INTA 608, INTA 616, INTA 625; INTA 630, INTA 632.

See the MIA program in the Graduate and Professional Catalog for the MIA requirements.
Economics - 5-Year Bachelor of Arts/Master of Public Service Administration

The combined program between the Department of Economics and The Bush School of Government and Public Service allows undergraduate Economics students to enter the Master of Public Service Program, with a focus in Public Policy Analysis, at the beginning of their fourth year at Texas A&M University. This program combines the teaching of analytical thinking skills and applications to better understand human behavior as it relates to public policy and management along with skills in leadership and research methods.

Students will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School’s MPSA program. Students will double-count 9 hours of Bush School courses toward the undergraduate major coursework area and up to 9 hours toward general electives in the Bachelor of Arts degree in Economics. At the completion of the combined degree, students are prepared for a wide variety of post-graduate opportunities including: employment in local, state or federal government, non-profit organizations, or government contracting.

Students interested in this program will apply during the fall of their junior year and, if admitted, begin taking masters-level courses in the fall of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 102 credit hours, typically in the following semester. These credit hours must include all specific course prerequisites for a baccalaureate degree in Economics, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree.

Program Requirements

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ECON 202 Principles of Economics 3</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric 3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
</tr>
<tr>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
</tr>
<tr>
<td>MATH 148 Calculus II for Biological Sciences</td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
</tr>
<tr>
<td>MATH 172 Calculus II</td>
</tr>
<tr>
<td>Foreign language 1 4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26) 3</td>
</tr>
<tr>
<td>Semester Credit Hours 16</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ECON 203 Principles of Economics 3</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
</tr>
<tr>
<td>MATH 147 Calculus I for Biological Sciences</td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 171 Calculus I</td>
</tr>
<tr>
<td>Foreign language 1 4</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27) 3</td>
</tr>
<tr>
<td>Semester Credit Hours 16</td>
</tr>
<tr>
<td>Second Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ECMT 461 Economic Data Analysis 3</td>
</tr>
<tr>
<td>ECON 323 Microeconomic Theory 2</td>
</tr>
<tr>
<td>Foreign language 1 3</td>
</tr>
<tr>
<td>Government/Political science (p. 30) 3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532) 3</td>
</tr>
<tr>
<td>Semester Credit Hours 18</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ECON 410 Macroeconomic Theory 3</td>
</tr>
<tr>
<td>American history (p. 29) 3</td>
</tr>
<tr>
<td>Creative arts (p. 29) 3</td>
</tr>
<tr>
<td>Foreign language 1 3</td>
</tr>
<tr>
<td>Economics elective 3 3</td>
</tr>
<tr>
<td>General elective 4 3</td>
</tr>
<tr>
<td>Semester Credit Hours 16</td>
</tr>
<tr>
<td>Third Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Communication (p. 26) 3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26) 3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 3</td>
</tr>
<tr>
<td>Economics elective 3 3</td>
</tr>
<tr>
<td>General elective 4 3</td>
</tr>
<tr>
<td>Semester Credit Hours 18</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>ACCT 209 Survey of Accounting Principles 3</td>
</tr>
<tr>
<td>American history (p. 29) 3</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27) 3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26) 3</td>
</tr>
<tr>
<td>Economics elective 3 3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532) 3</td>
</tr>
<tr>
<td>Semester Credit Hours 18</td>
</tr>
<tr>
<td>Fourth Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BUSH 631 Quantitative Methods in Public Management 5</td>
</tr>
<tr>
<td>PSAA 601 Foundations of Public Service 6</td>
</tr>
<tr>
<td>PSAA 621 Economic Analysis 6</td>
</tr>
<tr>
<td>PSAA 643 Foundations of the Nonprofit Sector 6</td>
</tr>
<tr>
<td>Semester Credit Hours 12</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>PSAA 611 Public Policy Formation 5</td>
</tr>
<tr>
<td>BUSH elective 5 3</td>
</tr>
<tr>
<td>BUSH elective 7 3</td>
</tr>
<tr>
<td>PSAA elective 7 3</td>
</tr>
<tr>
<td>Semester Credit Hours 12</td>
</tr>
</tbody>
</table>
Economics - BS

The Bachelor of Science degree in Economics offers a strong liberal arts curriculum aimed at enhancing students’ analytical skills and applications to better understand human behavior. The degree plan is designed to allow opportunities for applied exploration of economic principles and theory through research, internship, and study abroad while focusing on quantitative skills and the development of rational thought and critical thinking. In addition to building skills in social science research and data analysis, the Bachelor of Science degree plan encompasses a broad spectrum of coursework from throughout the College of Liberal Arts and Texas A&M University. By allowing for flexibility in courses that can be taken within the core curriculum, as well as for general electives, students can achieve a well-rounded education that can help with their future educational and professional goals.

To build a solid base of understanding, students take foundational courses in microeconomics, macroeconomics and mathematics, then refine those skills in statistics and intermediate economic theory classes. In upper-level courses, these reasoning abilities are applied to specific situations with a particular focus on understanding social problems from an economics perspective.

Students who graduate with a Bachelor of Science degree in Economics have a wide spectrum of career fields to choose from. Many students will pursue careers in business, law, finance, the nonprofit sector, and government, public policy and political professions.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Economic Electives

In addition to the electives for the BA in ECON, the following courses may be selected for the ECON-MPSA program: BUSH 632, BUSH 635; PSAA 621, PSAA 622, PSAA 638, PSAA 640.

See the MPSA program in the Graduate and Professional Catalog for the MPSA requirements.

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
2. ECON 323 is a prerequisite for most ECON electives.
3. Select from ECMT 463, ECMT 475; ECON 301-499 (p. 965).
4. ECON 100-ECON 499 and ECMT 100-ECMT 499 (p. 964) may not be used to fulfill this requirement.
5. Courses can count towards the general elective on the BA degree plan.
6. Courses can count towards the economics elective on the BA degree plan.
7. BUSH graduate advisor will assist with BUSH/PSAA course selection for chosen track in graduate program.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 36 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics coursework.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Arts in Economics and the Master of Public Service Administration.

Students can double-count up to 9 hours of Bush School courses toward the undergraduate major coursework area and up to 9 hours toward general electives in the Bachelor of Arts degree in Economics.
Second Year
Fall
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year
Fall
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 410</td>
<td>Macroeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMT 461</td>
<td>Economic Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year
Fall
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMT 463</td>
<td>Introduction to Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Program Requirements
First Year
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- **MATH 140** Mathematics for Business and Social Sciences
- **MATH 148** Calculus II for Biological Sciences
- **MATH 152** Engineering Mathematics II
Second Year

Fall
- **ACCT 209** Survey of Accounting Principles 3
- **ECMT 461** Economic Data Analysis 3
- **ECON 323** Microeconomic Theory 3
- **Language, philosophy and culture (p. 27)** 3
- **Literature directed elective (p. 532)** 3

| Semester Credit Hours | 18 |

Spring
- **ACCT 210** Survey of Managerial and Cost Accounting Principles 3
- **ECMT 463** Introduction to Econometrics 3
- **Government/Political science (p. 30)** 3
- **Life and physical sciences (p. 26)** 3
- **Economics elective** 3
- **Literature directed elective (p. 532)** 3

| Semester Credit Hours | 18 |

Third Year

Fall
- **ECON 410** Macroeconomic Theory 3
- **American history (p. 29)** 3
- **Life and physical sciences (p. 26)** 3
- **Economics elective** 3
- **General elective** 3
- **General elective** 3

| Semester Credit Hours | 18 |

Spring
- **Life and physical sciences (p. 26)** 3
- **Social and behavioral sciences (p. 30)** 3
- **Economics elective** 3
- **Economics elective** 3
- **General elective** 3
- **General elective** 3

| Semester Credit Hours | 18 |

Fourth Year

Fall
- **BUSH 631** Quantitative Methods in Public Management 3
- **INTA 601** Leadership in International Affairs: Institutions, Organizations and People 3
- **INTA 606** International Politics in Theory and Practice 3
- **INTA 608** Fundamentals of the Global Economy 3

| Semester Credit Hours | 12 |

Spring
- **BUSH 635** Quantitative Methods in Public Management II: Policy Analysis Emphasis 3
- **INTA 605** American Foreign Policy Since World War II 3
- **BUSH elective** 3
- **INTA elective** 3

| Semester Credit Hours | 12 |

Fifth Year

Fall
- **BUSH/INTA elective** 3
- **BUSH/INTA elective** 3
- **INTA elective** 3
- **INTA elective** 3

| Semester Credit Hours | 12 |

Spring
- **INTA 670** International Affairs Capstone Seminar 3
- **INTA elective** 3
- **INTA elective** 3
- **INTA elective** 3

| Semester Credit Hours | 12 |

| Total Semester Credit Hours | 150 |

1. **ECON 323** is a pre-requisite for most ECON electives.
2. Student must complete ECMT 461 or equivalent STAT course (Pre-approved by an advisor) prior to ECMT 463.
3. Select from ECMT 475, ECON 301-499 (p. 965).
4. ECON 100-499 (p. 965) and ECMT 100-499 (p. 964) may not be used to fulfill this requirement.
5. Courses can count towards the general elective on the BS degree plan.
6. Courses can count towards the economics elective on the BS degree plan.
7. BUSH graduate advisor will assist with BUSH/INTA course selection for chosen track in graduate program.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.
No more than 39 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics coursework.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Science in Economics and the Master of International Affairs.

Students can double-count up to 6 hours of Bush School courses toward the undergraduate major coursework area, 3 hours toward ECMT 463, and up to 9 hours toward general electives in the Bachelor of Science degree in Economics.

Economic Electives
In addition to the electives for the BS in ECON, the following courses may be selected for the ECON-MIA program: Bush 632, Bush 635, INTA 608, INTA 616, INTA 625, INTA 630, INTA 632.

See the MIA program in the Graduate and Professional Catalog for the MIA requirements.

Economics - 5-Year Bachelor of Science/Master of Public Service Administration

The combined program between the Department of Economics and The Bush School of Government and Public Service allows undergraduate Economics students to enter the Master of Public Service Program, with a focus in Public Policy Analysis, at the beginning of their fourth year at Texas A&M University. This program combines the teaching of analytical thinking skills and applications to better understand human behavior as it relates to public policy and management along with skills in leadership and research methods.

Students will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School’s MPSA program. Students will double-count 6 hours of Bush School courses toward the undergraduate major coursework area, 3 hours toward ECMT 463, and up to 9 hours toward general electives in Bachelor of Science degree in Economics. At the completion of the combined degree, students are prepared for a wide variety of post-graduate opportunities including: employment in local, state or federal government, non-profit organizations, or government contracting.

Students interested in this program will apply during the fall of their junior year and, if admitted, begin taking masters-level courses in the fall of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 102 credit hours, typically in the following semester. These credit hours must include all specific course prerequisites for a baccalaureate degree in Economics, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 209</td>
<td>Survey of Accounting Principles</td>
</tr>
<tr>
<td>ECMT 461</td>
<td>Economic Data Analysis</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 210</td>
<td>Survey of Managerial and Cost Accounting Principles</td>
</tr>
<tr>
<td>ECMT 463</td>
<td>Introduction to Econometrics</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ECON 410</td>
<td>Macroeconomic Theory</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td>3</td>
</tr>
<tr>
<td>Economics elective</td>
<td>3</td>
</tr>
</tbody>
</table>
The Department of Economics offers a 5-year combined degree program that provides the opportunity to earn a Bachelor of Science in Economics and a Master of Science in Economics with a concentration in either Financial Economics or Financial Econometrics. Students will double count six hours of masters-level coursework toward the undergraduate degree and complete both the undergraduate degree and the 32 credit hour thesis option or 36 credit hour non-thesis option Master’s degree in five years.

Students interested in this program will apply during the spring or fall semester of their junior year and, if admitted, begin taking masters-level courses in the final two semesters of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 102 credit hours, typically in the following semester. These credit hours, predominantly taken synchronously at Texas A&M University, must include all specific course prerequisites for a baccalaureate degree in Economics, as well as the courses required by the College of Liberal Arts and the university for an undergraduate degree.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

No more than 39 credits in economics and econometrics can be applied to this degree. A grade of C or higher is required for all Economics and Econometrics courses.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Science in Economics and the Master of Public Service Administration.

Students can double-count up to 6 hours of Bush School courses toward the undergraduate major coursework area, 3 hours toward ECMT 463, and up to 9 hours toward general electives in Bachelor of Science degree in Economics.

Economic Electives

In addition to the electives for the BS in ECON, the following courses may be selected for the ECON-MPSA program: BUSH 631, BUSH 632, BUSH 635; PSAA 621, PSAA 622, PSAA 638, PSAA 663/AGEC 604.

See the MPSA program in the Graduate and Professional catalog for the MPSA requirements.

Economics - 5-Year Bachelor of Science/Master of Science in Economics

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BUSH 631</td>
<td>Quantitative Methods in Public Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSAA 601</td>
<td>Foundations of Public Service</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSAA 621</td>
<td>Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSAA 643</td>
<td>Foundations of the Nonprofit Sector</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Spring	PSAA 611	Public Policy Formation	3
	BUSH elective		3
	BUSH elective		3
	PSAA elective		3
	Semester Credit Hours		12

Fifth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>PSAA 675</td>
<td>Public Service and Administration Capstone Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BUSH/PSAA elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BUSH/PSAA elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSAA elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring	PSAA 676	Public Service and Administration Capstone Seminar II	3
	PSAA elective		3
	PSAA elective		3
	PSAA elective		3
	Semester Credit Hours		12

| Total Semester Credit Hours | | 150 |

1. ECON 323 is a pre-requisite for most ECON electives.
2. Student must complete ECMT 461 or equivalent STAT course (Pre-approved by an advisor) prior to ECMT 463.
3. Select from ECMT 475, ECON 301-499 (p. 965).
4. ECON 100-499 (p. 965) and ECMT 100-499 (p. 964) may not be used to fulfill this requirement.
5. Courses can count towards the general elective on the BS degree plan.
6. Courses can count towards the economics elective on the BS degree plan.
7. BUSH graduate advisor will assist with BUSH/INTA course selection for chosen track in graduate program.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.
The study of economics provides a rigorous structure for decision-making, whether on academic topics or day-to-day activities such as how
to divide roommate expenses or how to allocate time between study and recreation. Economics teaches students how to think rationally about problems, a skill that is essential in any profession.

A minor in economics provides knowledge and information that will make a student a better-informed consumer and participant in the world economy. It also provides a basis for a better understanding of world events.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 323</td>
<td>Microeconomic Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECON electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Select two courses from the following:

- ECON 300 to 499 (p. 965)

Total Semester Credit Hours 15

Students must make a grade of C or better in all courses.

Business Economics - Certificate

The Business Economics Certificate (BEC) is an innovative program designed to prepare students for successful careers in a rapidly changing economic environment. The certificate combines a foundation in Economics in the College of Liberal Arts with a business minor in the Mays College of Business, integrating the practical skills taught in business courses with the analytical tools of economics.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMT 463</td>
<td>Introduction to Econometrics 1</td>
<td>3</td>
</tr>
<tr>
<td>ECMT 475</td>
<td>Economic Forecasting 2,3</td>
<td>3</td>
</tr>
</tbody>
</table>

Prescribed electives

Select two of the following: 3,4

- ECON 315 Sports Economics
- ECON 420 Law and Economics
- ECON 425 The Organization of Industry
- ECON 426 Economics of Antitrust and Regulation
- ECON 433 Energy Markets and Policy
- ECON 445 Financial Economics
- ECON 449 Economics of Decision-Making Strategy

Total Semester Credit Hours 12

1. Student must complete ECMT 461 or equivalent STAT course (pre-approved by an advisor) prior to ECMT 463.
2. ECMT 461 and ECMT 463 are prerequisites for this course.
3. ECMT 475 and the required six hours of electives may also be used to satisfy the Economics electives requirement.
4. ECON 323 is a pre-requisite for all 400-level ECON courses.

Students pursing this certificate must also complete a minor in Business Administration (BUAD) (p. 267).

Quantitative Economic Methods - Certificate

The Quantitative Economic Methods certificate program prepares students for entry into an economics Ph.D. program or highly quantitatively-oriented occupation such as economic consulting and research. Students select from a set of courses in the Statistics and Mathematics departments to broaden their understanding of the fundamental basis of advanced economics. In addition, students are required to take several intensive economics courses focused on mathematical and statistical topics. Students interested in this certificate are also strongly encouraged to participate in undergraduate research activities in the Department of Economics.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMT 475</td>
<td>Economic Forecasting 1</td>
<td>3</td>
</tr>
<tr>
<td>ECON 460</td>
<td>Introduction to Mathematical Economics 2</td>
<td>3</td>
</tr>
<tr>
<td>ECON 470</td>
<td>Program Evaluation</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following: 3

- MATH 221 Several Variable Calculus
- MATH 300 Foundations of Mathematics
- MATH 304 Linear Algebra
- MATH 323 Linear Algebra
- MATH 409 Advanced Calculus I
- STAT 414 Mathematical Statistics I
- STAT 415 Mathematical Statistics II

Total Semester Credit Hours 18

1. ECMT 461 and ECMT 463 are prerequisites for this course.
2. Completion of MATH 151 and higher is suggested when enrolling in this course.
3. All MATH and STAT courses listed require a minimum of MATH 151 and MATH 152.

Department of English

Contemporary English studies – like the English language itself – has a global reach. Our curriculum is shaped by the flow of English-speaking people and cultural production in English across both time and space, combining historical, linguistic and cultural analysis with creative work in literature, film, and emerging media. The varied interests of our faculty and students include creative writing, rhetoric and discourse studies, gender and women's studies, film studies, digital humanities, health humanities, science fiction, and the full range of literatures and varieties of English, including African American, the African Diaspora, Latinx, Asian American, Native American, and South Asian studies.

Through these wide and rich areas of inquiry, we impart key skills – thinking critically, analyzing complex texts and contexts, communicating persuasively, and appreciating the aesthetic and cultural value of literary
and multimedia texts – that prepare our students for success in the workplace and in life.

The English major and minor offer flexibility by enabling students to pursue their own interests while acquiring important analytic and writing skills and discovering the riches of literature. The education English students receive prepares them for careers in technical writing, editing and publishing, government services, public relations, teaching, and many other professions.

We encourage English students to pursue research opportunities, to perform and publish their creative work, and to seek internships to build on what they are learning and to prepare for their future careers. We make a positive impact at home and abroad through our internationally recognized faculty and through the success of our students in academia, industry, and the professions.

Teacher Certification Programs in English

Teacher Certification in English Language Arts/Reading - OPTION II (Secondary)

Students desiring certification by Option II to teach English language arts and reading in the secondary schools of Texas should consult an undergraduate English advisor as early as possible. Requirements include 27 semester hours in literature, language, reading, and rhetoric and composition (an optional 24-30 hours in a second teaching field is possible); and professional education courses.

Degree and Certification Program for Middle School in English Language Arts/Reading

The Department of English offers a degree and certification program in English language arts/reading for prospective middle-school teachers. This program requires 36 hours of literature, linguistics, composition and rhetoric and 15 hours of reading along with an 18-hour professional education component.

All students seeking certification should consult an undergraduate English advisor for additional information.

Professional Writing Certificate

The Professional Writing Certificate gives students 18 hours of intensive training in a broad range of communication skills. Students who achieve a grade of B or better in all 18 hours of coursework will receive a certificate signifying their successful completion of this training. Students should allow at least a year and a half to complete the courses, some of which are offered only once a year. Transfer courses, independent studies and credit by exam cannot be counted toward the 18 hours. Required courses include ENGL 210, ENGL 320, and ENGL 355. With the help of the Professional Writing Certificate Advisor, the student must also select three additional courses in rhetoric, communication or a related field.

Faculty

Alonzo, Juan J, Associate Professor
English
PHD, University of Texas, 2003

Balester, Valerie M, Professor
English
PHD, The University of Texas - Austin, 1998

Bhattacharya, Nandini, Professor
English
PHD, University of Rochester, 1992

Carly-Miles, Claire I, Lecturer
English
PHD, Texas A&M University, 2008

Clark, William B, Professor
English
PHD, Louisiana State University and A&M College, 1973

Collins, Michael S, Professor
English
PHD, Columbia University, 1999

Cooper, Rich P, Senior Lecturer
English
PHD, Louisiana State University, 2011

Craig, Heidi, Assistant Professor
English
PHD, University of Toronto, 2017

Dicaglio, Joshua M, Assistant Professor
English
PHD, Pennsylvania State University, 2016

Dicaglio, Sara, Assistant Professor
English
PHD, Pennsylvania State University, 2016

MFA, University of Michigan, 2008

Dickson, Donald R, Professor
English
PHD, University of Illinois, Urbana-Champaign, 1981

Dworkin, Ira M, Associate Professor
English
PHD, City University of New York, 2003

Earhart, Amy E, Associate Professor
English
PHD, Texas A&M University, 1999

Egenolf, Susan B, Associate Professor
English
PHD, Texas A&M University, 1995

Eide, Marian, Professor
English
PHD, University of Pennsylvania, 1994

Ezell-Mainzer, Margaret, Distinguished Professor
English
PHD, Cambridge University, 1981

Francis Jr, James, Lecturer
English
PHD, Middle Tennessee State University, 2010

Fuentes, Ana Marcela, Assistant Professor
English
PHD, Georgia State University, 2016

MFA, Iowa Writers Workshop, 2009
Griffin, Robert J, Associate Professor
English
PHD, Yale University, 1985

Hagstrom Schmidt, Nicole, Lecturer
English
PHD, Texas A&M University, 2019

Harris, Jason M, Instructional Associate Professor
English
MFA, Bowling Green State University, 2014
PHD, University of Washington, 2001

Howell, Jessica M, Associate Professor
English
PHD, University of California, Davis, 2008

Ives, Maura C, Professor
English
PHD, University of Virginia, 1990

Jackson, Shona N, Associate Professor
English
PHD, Stanford University, 2005

Johansen Aase, Emily J, Associate Professor
English
PHD, McMaster University, 2008

Kallendorf, Craig W, Professor
English
PHD, University of North Carolina at Chapel Hill, 1982

Kendall, Shari E, Associate Professor
English
PHD, Georgetown University, 1999

Mandell, Laura C, Professor
English
PHD, Cornell University, 1992

Matthews, Pamela R, Professor
English
PHD, Duke University, 1988

McCoul, Melissa D, Lecturer
English
PHD, University of Notre Dame, 2017

McKinney, Matthew R, Lecturer
English
PHD, University of Nevada-Reno, 2017

McWhirter, David B, Professor
English
PHD, University of Virginia, 1984

Mills, Regina, Assistant Professor
English
PHD, University of Texas, Austin, 2018

Mize, Britt A, Associate Professor
English
PHD, The University of North Carolina at Chapel Hill, 2003

Morey, Anne M, Associate Professor
English
PHD, University of Texas-Austin, 1998

Nair, Dimple, Senior Lecturer
English
MA, University of Mysore (India), 1997

Neighbors, Ryan C, Lecturer
English
MFA, Hollins University, 2014

O’Farrell, Mary A, Associate Professor
English
PHD, University of California, Berkeley, 1991

Owusu, Portia, Visiting Assistant Professor
English
PHD, University of London, 2016

Pantuso, Terri B, Lecturer
English
PHD, University of Texas, San Antonio, 2009

Pattison, Kalani K, Lecturer
English
PHD, Baylor University, 2016

Pilsch, Andrew T, Associate Professor
English
PHD, The Pennsylvania State University, 2017

Reddy, Vanita D, Associate Professor
English
PHD, University of California, Davis, 2009

Reynolds, Larry J, University Distinguished Professor
English
PHD, Duke University, 1974

Robinson, Elizabeth K, Instructional Professor
English
PHD, Texas A&M University, 1995

Robinson, Sally A, Professor
English
PHD, University of Washington, 1989

Ross, Shawna M, Assistant Professor
English
PHD, The Pennsylvania State University, 2011

Rowell, Charles H, Professor
English
PHD, Ohio State University, 1972
Rozier, James T, Lecturer
English
PHD, University of Mississippi, 2015

Stabile, Susan M, Associate Professor
English
PHD, University of Delaware, 1997

Todd, Dorothy R, Lecturer
English
PHD, University of Georgia, 2017

Torabi, Katayoun, Instructional Assistant Professor
English
PHD, Texas A&M University, 2018

Tuhkanen, Mikko J, Professor
English
PHD, University at Buffalo, 2005

Vasilakis, Apostolos, Instructional Associate Professor
English
PHD, Emory University, 2004

Warren, Nancy B, Professor
English
PHD, Indiana University, 1997

White, Lowell M, Instructional Associate Professor
English
PHD, Texas A&M University, 2010

Wollock, Jennifer G, Professor
English
PHD, Harvard University, 1981

Majors

• Bachelor of Arts in English (p. 584)
• Bachelor of Arts in English, Middle School Teacher Certification (p. 586)
• Bachelor of Arts in English and Master of Arts in English, 5-Year Degree Program (p. 587)

Minors

• English Minor (p. 589)

English - BA

The Department of English is dedicated to the study of literatures and cultures of those parts of the world in which English is a primary language. Our curriculum is shaped by the flow of English-speaking people and cultural production in English across both time and space, combining historical, linguistic and cultural analysis with creative work in literature, film, and emerging media. The varied interests of our faculty and students include creative writing, rhetoric and discourse studies, gender and women's studies, film studies, digital humanities, health humanities, science fiction, and the full range of literatures and varieties of English, including African American, the African Diaspora, Latinx, Asian American, Native American, and South Asian studies.

The B.A. in English allows students to develop their own areas of expertise through concentrations in areas such as literature, composition and rhetoric, creative writing, science fiction and fantasy studies, and film. Students who major in English learn how to communicate effectively and persuasively; develop writing skills (including in technical and business writing, and/or creative writing); learn textual analysis and effective research methods; and strengthen their critical thinking skills. This degree prepares students for a variety of careers including education, law, technical writing, publishing, entertainment, management, marketing and advertising, counseling and medicine.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 303</td>
<td>Approaches to English Studies</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>English elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 221/ MODL 221</td>
<td>World Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 227</td>
<td>American Literature: The Beginnings to Civil War</td>
<td></td>
</tr>
<tr>
<td>ENGL 231</td>
<td>Survey of English Literature I</td>
<td></td>
</tr>
<tr>
<td>ENGL 313</td>
<td>Medieval English Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 314</td>
<td>The English Renaissance</td>
<td></td>
</tr>
<tr>
<td>ENGL 315</td>
<td>Seventeenth-Century Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 317</td>
<td>Early British Drama</td>
<td></td>
</tr>
<tr>
<td>ENGL 353</td>
<td>History of Rhetoric</td>
<td></td>
</tr>
<tr>
<td>ENGL 412</td>
<td>Studies in Shakespeare</td>
<td></td>
</tr>
<tr>
<td>ENGL 414</td>
<td>Milton</td>
<td></td>
</tr>
<tr>
<td>ENGL 431</td>
<td>Chaucer</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>English elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ENGL 222/</td>
<td>World Literature</td>
<td></td>
</tr>
<tr>
<td>MODL 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 232</td>
<td>Survey of English Literature II</td>
<td></td>
</tr>
<tr>
<td>ENGL 316</td>
<td>Eighteenth-Century Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>ENGL 321</td>
<td>Nineteenth-Century Literature (Romantic)</td>
<td></td>
</tr>
<tr>
<td>ENGL 322</td>
<td>Nineteenth-Century Literature (Victorian)</td>
<td></td>
</tr>
<tr>
<td>ENGL 323</td>
<td>The American Renaissance</td>
<td></td>
</tr>
<tr>
<td>ENGL 373</td>
<td>American Realism and Naturalism</td>
<td></td>
</tr>
<tr>
<td>ENGL 375</td>
<td>Nineteenth-Century American Novel</td>
<td></td>
</tr>
<tr>
<td>ENGL 377</td>
<td>The British Novel to 1870.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

Fall

Select one of the following: 3

ENGL 228	American Literature: Civil War to Present
ENGL 305	Texas Literature
ENGL 336	Life and Literature of the Southwest
ENGL 337	Life and Literature of the American South
ENGL 340	Modern and Contemporary Drama
ENGL 350	Twentieth-Century Literature to World War II
ENGL 352	Literature, World War II to Present.
ENGL 356	Literature and Film
FILM 356	
ENGL 372	American Poetry
ENGL 376	The American Novel Since 1900
ENGL 378	The British Novel, 1870 to Present.
ENGL 379	Postcolonial Literatures
AFST 379	
ENGL 401	Contemporary Literary Theory
Language, philosophy and culture (p. 27)	3
Mathematics (p. 26)	4
English elective	3
General elective	3
	Semester Credit Hours
	15

Spring

Select one of the following: 3

ENGL 204	Introduction to African-American Literature
AFST 204	
ENGL 205	Introduction to Africana Literature
AFST 205	
ENGL 306	Transnational Literature and Culture
ENGL 329	African-American Literature Pre-1930
AFST 329	
ENGL 333	Lesbian, Gay, Bisexual, Transgender and Queer Literature
WGST 333	
ENGL 338	American Ethnic Literature
ENGL 339	African-American Literature Post-1930
AFST 339	
ENGL 357	Native American Rhetorics and Literatures
ENGL 362	Latino/a Literature
HISP 362	
ENGL 374	Women Writers
WGST 374	
ENGL 391	Folklore, Literature, and World Cultures
ENGL 393	Studies in Africana Literature and Culture
AFST 393	
ENGL 474	Studies in Women Writers
WGST 474	
	Creative arts (p. 29)
	3
	English elective
	3
	General elective
	3
	General elective
	3
	Semester Credit Hours
	15

Fourth Year

Fall

American history (p. 29) | 3 |
Language, philosophy and culture or creative arts (p. 27)	3
English elective	3
General elective	3
General elective	3
	Semester Credit Hours
	15

Spring

ENGL 481 | Senior Seminar |
| 3 |
Life and physical sciences (p. 26)	3
Social and behavioral sciences (p. 30)	3
General elective	3
General elective	3
	Semester Credit Hours
	13
	Total Semester Credit Hours
	120

1. Must make grade of C or better.
2. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
3. Middle School Certificate seekers should consult an undergraduate English advisor for required courses.
4. At least 3 hours must be in MATH. Three hours may be PHIL 240.
5. Select from ENGL 100-499 (p. 970), LING 200-499 (p. 1048).
6. Up to 12 hours of ENGL 300-499 (p. 970) courses may be used.

Up to 51 credits in English can be applied to the degree; at least 21 credits must be in literature. A grade of C or higher is required for a course to be counted in the major. For residency, a student must have at least 12 hours in 300- or 400-level English classes from Texas A&M University.

College and University Requirements

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Other courses may qualify for the following categories. All courses are to be selected with the approval of the student’s academic advisor. The courses incorporate University Core Curriculum (p. 25) requirements. No course can be counted in more than one category, except as allowed in the minor field of study and the International and Cultural Diversity (p. 47) and Cultural Discourse (p. 46) graduation requirements. A minimum of 36 hours of 300- or 400-level coursework must be completed at Texas A&M University, with at least 12 of those hours being in the major.

Minor Field of Study

English majors are advised, but not required, to select a minor field of study. Students who elect to complete a minor should contact the department or program that offers the minor to determine the requirements for that minor. A grade of C or higher is required for a course to be counted in the minor field. A minor field must be declared before the student has completed 75 credit hours.

English - BA, Middle School Teacher Certification

The Department of English offers a degree and certification program in English language arts/reading for prospective middle-school teachers. This program requires 36 hours of major coursework in English, and 33 hours of supporting specialized coursework in specific areas of educational planning and teaching. This certification is a field-based program that requires students spend extensive time in middle schools. Students in the degree program specialize in teaching-specific subjects, cultivate excellent communication skills, and develop an understanding of the social and intellectual development of children.

All students seeking certification should consult an undergraduate English advisor for additional information.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ENGL 303 Approaches to English Studies</td>
</tr>
<tr>
<td>3</td>
<td>INST 210 Understanding Special Populations</td>
</tr>
<tr>
<td>3</td>
<td>Select one of the following: 1</td>
</tr>
<tr>
<td>3</td>
<td>COMM 203 Public Speaking</td>
</tr>
<tr>
<td>3</td>
<td>COMM 205 Communication for Technical Professions</td>
</tr>
<tr>
<td>3</td>
<td>COMM 243 Argumentation and Debate</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>3</td>
<td>ENGL 210 Technical and Business Writing</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>4</td>
<td>Foreign language 2</td>
</tr>
<tr>
<td>16</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203 Writing about Literature 1</td>
</tr>
<tr>
<td>Foreign language 2</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
</tbody>
</table>

Mathematics (p. 26)	3
English elective 4	3
Semester Credit Hours	16

Second Year

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 222 Foundations of Education in a Multicultural Society</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
</tr>
<tr>
<td>ENGL 221/ MODL 221 World Literature</td>
</tr>
<tr>
<td>ENGL 227 American Literature: The Beginnings to Civil War</td>
</tr>
<tr>
<td>ENGL 231 Survey of English Literature I</td>
</tr>
<tr>
<td>ENGL 313 Medieval English Literature</td>
</tr>
<tr>
<td>ENGL 314 The English Renaissance</td>
</tr>
<tr>
<td>ENGL 315 Seventeenth-Century Literature</td>
</tr>
<tr>
<td>ENGL 317 Early British Drama</td>
</tr>
<tr>
<td>ENGL 353 History of Rhetoric</td>
</tr>
<tr>
<td>ENGL 412 Studies in Shakespeare</td>
</tr>
<tr>
<td>ENGL 414 Milton</td>
</tr>
<tr>
<td>ENGL 431 Chaucer</td>
</tr>
<tr>
<td>Foreign language 2</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>English elective 4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDNG 371 Multicultural and Interdisciplinary Literature for Middle Grades</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
</tr>
<tr>
<td>ENGL 222/ MODL 222 World Literature</td>
</tr>
<tr>
<td>ENGL 232 Survey of English Literature II</td>
</tr>
<tr>
<td>ENGL 316 Eighteenth-Century Literature and Culture</td>
</tr>
<tr>
<td>ENGL 321 Nineteenth-Century Literature (Romantic)</td>
</tr>
<tr>
<td>ENGL 322 Nineteenth-Century Literature (Victorian)</td>
</tr>
<tr>
<td>ENGL 323 The American Renaissance</td>
</tr>
<tr>
<td>ENGL 373 American Realism and Naturalism</td>
</tr>
<tr>
<td>ENGL 375 Nineteenth-Century American Novel</td>
</tr>
<tr>
<td>ENGL 377 The British Novel to 1870.</td>
</tr>
<tr>
<td>Select one of the following: 3</td>
</tr>
<tr>
<td>ENGL 228 American Literature: Civil War to Present</td>
</tr>
<tr>
<td>ENGL 305 Texas Literature</td>
</tr>
<tr>
<td>ENGL 336 Life and Literature of the Southwest</td>
</tr>
<tr>
<td>ENGL 337 Life and Literature of the American South</td>
</tr>
<tr>
<td>ENGL 340 Modern and Contemporary Drama</td>
</tr>
<tr>
<td>ENGL 350 Twentieth-Century Literature to World War II</td>
</tr>
<tr>
<td>ENGL 352 Literature, World War II to Present.</td>
</tr>
<tr>
<td>ENGL 356/ FILM 356 Literature and Film</td>
</tr>
<tr>
<td>ENGL 372 American Poetry</td>
</tr>
<tr>
<td>ENGL 376 The American Novel Since 1900</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>ENGL 378</td>
</tr>
<tr>
<td>ENGL 379/</td>
</tr>
<tr>
<td>AFST 379</td>
</tr>
<tr>
<td>ENGL 401</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Third Year</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDNG 372</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>EDCI 354</td>
</tr>
<tr>
<td>ENGL 481</td>
</tr>
<tr>
<td>RDNG 373</td>
</tr>
<tr>
<td>TEFB 371</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ENGL 204/</td>
</tr>
<tr>
<td>AFST 204</td>
</tr>
<tr>
<td>ENGL 205/</td>
</tr>
<tr>
<td>AFST 205</td>
</tr>
<tr>
<td>ENGL 306</td>
</tr>
<tr>
<td>ENGL 329/</td>
</tr>
<tr>
<td>AFST 329</td>
</tr>
<tr>
<td>ENGL 333/</td>
</tr>
<tr>
<td>WGST 333</td>
</tr>
<tr>
<td>ENGL 338</td>
</tr>
<tr>
<td>ENGL 339/</td>
</tr>
<tr>
<td>AFST 339</td>
</tr>
<tr>
<td>ENGL 357</td>
</tr>
<tr>
<td>ENGL 362/</td>
</tr>
<tr>
<td>HISP 362</td>
</tr>
<tr>
<td>ENGL 374/</td>
</tr>
<tr>
<td>WGST 374</td>
</tr>
<tr>
<td>ENGL 391</td>
</tr>
<tr>
<td>ENGL 393/</td>
</tr>
<tr>
<td>AFST 393</td>
</tr>
<tr>
<td>ENGL 474/</td>
</tr>
<tr>
<td>WGST 474</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 362</td>
<td>English as a Second Language Methods 1</td>
<td>3</td>
</tr>
<tr>
<td>MEFB 452</td>
<td>Curriculum and Instruction for Middle Grades 1</td>
<td>3</td>
</tr>
<tr>
<td>RDNG 470</td>
<td>Reading/Language Arts Methods in Middle Grades</td>
<td>3</td>
</tr>
<tr>
<td>RDNG 490</td>
<td>Assessment in Reading Instruction in Middle Grades</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MEFB 497</td>
<td>Supervised Clinical Teaching 1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours 125</td>
<td></td>
</tr>
</tbody>
</table>

1. Minimum grade of C required.
2. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
3. At least 3 hours must be in MATH. Three hours may be PHIL 240.
4. Select from ENGL 100-499 (p. 970), LING 200-499 (p. 1048).

Up to 36 credits in English can be applied to the degree; at least 21 credits must be in literature. A grade of C or higher is required for a course to be counted in the major. For residency, a student must have at least 12 hours in 300- or 400-level English classes from Texas A&M University.

College and University Requirements

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Other courses may qualify for the following categories. All courses are to be selected with the approval of the student’s academic advisor. The following lists incorporate University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the minor field of study and the International and Cultural Diversity (p. 47) and Cultural Discourse (p. 46) graduation requirements. A minimum of 36 hours of 300- or 400-level coursework must be completed at Texas A&M University, with at least 12 of those hours being in the major.

English - 5-Year Bachelor of Arts/Master of Arts in English

The Department of English offers a five-year combined degree program that provides the opportunity to earn a Bachelor of Arts in English and a Master of Arts in English.

In this program, the undergraduate degree requirements are slightly modified to require more theory and methods courses in an effort to prepare students for the more rigorous masters-level coursework. Students will double count six hours of masters-level
coursework toward the undergraduate degree and complete both the undergraduate degree and the 36-hour Masters degree in five years.

At the completion of the degree, students are well-prepared to apply for doctoral programs in English and related humanities, positions teaching composition, and editorial and other writing-centered employment.

Students interested in this program will apply during the fall of their junior year and, if admitted, begin taking masters-level courses in the fall of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 96 credit hours, typically in the following semester. These credit hours must include all specific course prerequisites for a baccalaureate degree in English, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>ENGL 303 Approaches to English Studies</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following:¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210 Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

<table>
<thead>
<tr>
<th>Spring</th>
<th>ENGL 203 Writing about Literature ¹</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreign language ²</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ⁴</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Select one of the following:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 221/ MODL 221 World Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 227 American Literature: The Beginnings to Civil War</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 231 Survey of English Literature I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 313 Medieval English Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 314 The English Renaissance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 315 Seventeenth-Century Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 317 Early British Drama</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 353 History of Rhetoric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 412 Studies in Shakespeare</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 414 Milton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 431 Chaucer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Select one of the following:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreign language ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>English elective ⁵</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ⁴</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 18

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>ENGL 308 History of Literary Criticism</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 228 American Literature: Civil War to Present</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 305 Texas Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 336 Life and Literature of the Southwest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 337 Life and Literature of the American South</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 340 Modern and Contemporary Drama</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 350 Twentieth-Century Literature to World War II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 352 Literature, World War II to Present.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 356/ FILM 356 Literature and Film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 372 American Poetry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 376 The American Novel Since 1900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 378 The British Novel, 1870 to Present.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 379/ AFST 379 Postcolonial Literatures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26) ³</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ⁴</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

<table>
<thead>
<tr>
<th>Spring</th>
<th>ENGL 354 Modern Rhetorical Theory or ENGL 401 or Contemporary Literary Theory</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 481 Senior Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: ³
Graduate coursework elective	8
Semester Credit Hours	3

Total Semester Credit Hours	12

1. Must make grade of C or better.
2. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studies previously without receiving college credit, you must first take a placement test. See academic advisor.
3. At least 3 hours must be in MATH. Three hours may be PHIL 240.
4. Up to 12 hours of ENGL 300-499 (p. 970) courses may be used.
5. Select from ENGL 100-499 (p. 970), LING 200-499 (p. 1048).
6. Course can count towards the English elective on the BA degree plan.
7. Select from ENGL 608, ENGL 610/LING 610, ENGL 613, ENGL 618, ENGL 634, ENGL 650, ENGL 654/COMM 654, ENGL 655/COMM 655, and ENGL 671. Each course can only be taken once for credit.
8. Select from ENGL 600-699 (http://catalog.tamu.edu/graduate/course-descriptions/engl/) (excluding ENGL 691), LING 600-699 (http://catalog.tamu.edu/graduate/course-descriptions/ling/). See graduate advisor.

A grade of C or higher is required for a course to be counted in the major.

For residency, a student must have at least 12 hours in 300- or 400-level English classes from Texas A&M University.

The program includes a total of 156 hours, of which up to 6 hours of graduate-level coursework may be applied toward both the Bachelor of Arts in English and the Master of Arts in English (non-thesis).

College and University Requirements

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Other courses may qualify for the following categories. All courses are to be selected with the approval of the student’s academic advisor. The courses incorporate University Core Curriculum (p. 25) requirements. No course can be counted in more than one category, except as allowed in the minor field of study and the International and Cultural Diversity (p. 47) and Cultural Discourse (p. 46) graduation requirements. A minimum of 36 hours of 300- or 400-level coursework must be completed at Texas A&M University, with at least 12 of those hours being in the major.

English - Minor

The minor in English is offered by the Department of English and is open to all students. Students with a minor in English cultivate expertise in different literary forms, traditions, and approaches. Students have the opportunity to take courses in creative writing, rhetoric, science fiction and fantasy, African-American and Latinx literatures, gender and sexuality studies, and digital humanities. An English minor teaches students to communicate clearly and effectively, learn how to critically read and examine complex texts, build effective arguments, and recognize other points of view. These broadly applicable skills support and enhance the academic development of students who want to attend law or medical
school, work in marketing or advertising, teach at a variety of levels, or work in STEM fields. Whatever their post-graduation plans, the written communication and analytical skills of English minors are essential for thriving in all endeavors.

The minor consists of 18 hours of coursework in English, 6 hours of which must be at the 300-400 level, and 3 hours of which must be at the 400-level.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 100 to 499 (p. 970)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ENGL 300 to 499 (p. 970)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ENGL 400 to 499 (p. 970)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

A grade of C or higher is required for a course to be counted in the minor field of study.

Department of Hispanic Studies

At a time when worldwide globalization includes the demographically and culturally significant Hispanicization of Texas, along with other areas of the United States, the study of the Spanish language and Hispanic cultures is important to achieve an understanding of the world in which we live. The mission of the Department of Hispanic Studies is to create and disseminate knowledge about the cultures and languages of the Hispanic world. Our research agenda includes Hispanic contemporary and period literature, film and performance, photography, iconography and digital humanities, cultural studies, gender and diaspora studies, and the history, presence and acquisition of the Spanish language in the United States. The department offers a Bachelor of Arts in Spanish, a Minor in Spanish, and a Minor in Hispanic Studies for Community Engagement. The development of Spanish language proficiency is at the core of all these programs.

The Department of Hispanic Studies is recognized for its excellent teaching and personalized attention to student needs. The department offers a full range of courses for undergraduates, including language instruction and content courses in literature, culture, professional Spanish, and linguistics. A major in Spanish can show future employers and/or graduate schools that a student has achieved a high level of linguistic ability and understanding of Hispanic cultures. The undergraduate major is designed to help students develop their oral and written language skills as they learn more about Hispanic cultures through literature, cultural studies, and linguistics. This kind of study is valuable for those who plan to go into international careers or to work with Hispanic populations in the United States. A Spanish major is useful in careers such as banking, advertising, marketing, journalism, health services, government, social welfare, and public administration, and it is excellent preparation for professional school in medicine, law, and business. Teaching certification is available to Spanish majors through the College of Education and Human Development.

The department insists on a high level of language competence as the basis for other intellectual growth in the discipline, and thus requires a minimum 10-week experience abroad. To help facilitate the fulfillment of this requirement, the department sponsors summer study abroad programs for credit in a variety of locations, such as Costa Rica, Chile, Ecuador, Mexico, and Spain. Semester and year-long study abroad programs, reciprocal exchanges, and internships are also available and encouraged.

The Department of Hispanic Studies recommends that Spanish language students, especially heritage language learners of Spanish and Advanced Placement (AP) students, take a healthy mixture of coursework related, on the one hand, to achieving University-level linguistic competence in the language; and coursework related to the Hispanic or Latino cultural experience on the other. To this end, students select from courses on language, grammar, and culture in spoken and written Spanish and electives that broaden the Hispanic/Latino knowledge base taught in English. A prudent and timely selection of courses can allow the student to apply coursework taken in the pursuit of bilingual/biculturalism to satisfy some requirements on the student’s degree plan. Many of the suggested courses will apply in the Core Curriculum, for example, in areas such as Humanities and Social Sciences. Discussions with a departmental advisor can help students to focus on the best possible fit of coursework with their interests and degree plan.

HISP and SPAN Courses

Reflective of its dual mission of striving to provide students with opportunities for cultural and linguistic competence, the Department of Hispanic Studies offers courses under two different rubrics, HISP and SPAN. HISP (p. 1013) courses cover a variety of topics pertinent to Hispanic cultures, such as food, film, literature in translation, music and visual culture, as well as social, political, and linguistic issues; they are offered in English. SPAN (p. 1147) courses are conducted in Spanish, and while they also deal with cultural topics ranging from literature to visual culture, they emphasize aspects of language and linguistic development.

Required Foreign Language Placement Test

Students who intend to enroll for the first time in a college foreign language course, who have previous knowledge of the language, however acquired, and who have no college credit in the language MUST take a placement test to determine the appropriate course for their level of ability. The foreign language placement test also serves as a basis for the credit by examination.

Students who take the Advanced Placement (AP) test or other acceptable tests that grant college-level credit in Spanish do not have to take the required foreign language placement test, as the results of these tests may be used for placement. They are encouraged to do so nonetheless. Heritage learners, or those who have acquired any level of Spanish outside of a formal academic setting, are also expected to take the exam to guarantee correct placement, even when AP test results are available.

The Spanish Placement Test (https://hisp.tamu.edu/undergraduate-program/placement-test/) is administered by the Department of Hispanic Studies on the Pre-Conference Day of the New Student Conferences. The test is also offered twice per week during the fall and spring semesters. Students who do not take the placement test on the Pre-Conference Day will not be able to register for a foreign language course during their first semester.

International students whose native language is not English are exempt from satisfying the university foreign language requirement. These students may not register for the beginning and intermediate level courses in their native language (course numbers 101, 102, 201, and 202) which are used to fulfill the foreign language requirement.
Faculty

Arizpe, Norma L, Senior Lecturer
Hispanic Studies
MA, University of Michigan Ann Arbor, 1977

Arizpe, Victor, Professor
Hispanic Studies
PHD, University of Michigan Ann Arbor, 1982

Curry, Richard K, Associate Professor
Hispanic Studies
PHD, Arizona State University, 1982

Espina, Eduardo D, Professor
Hispanic Studies
PHD, Washington University in St. Louis, 1987

Galdo, Juan, Associate Professor
Hispanic Studies
PHD, University of Colorado, 2003

Kallendorf, Hilaire A, Professor
Hispanic Studies
PHD, Princeton University, 2000

Lawo-Sukam, Alain, Associate Professor
Hispanic Studies
PHD, University of Illinois at Urbana - Champaign, 2005

Luiselli, Alessandra, Professor
Hispanic Studies
PHD, University of New Mexico, 1990

Miller, Stephen J, Professor
Hispanic Studies
PHD, The University of Chicago, 1976

Misemer, Sarah M, Professor
Hispanic Studies
PHD, University of Kansas, 2001

Moreiras, Alberto, Professor
Hispanic Studies
PHD, University of Georgia, 1987

Moyna, Maria I, Professor
Hispanic Studies
PHD, University of Florida, 2000

Ortega-Aguilar, Dionisio B, Instructional Associate Professor
Hispanic Studies
PHD, Stanford University, 1986

Parry, Melanie, Lecturer
Hispanic Studies
MA, University of Arizona, 2005

Perez Smith, Adriana M, Instructional Assistant Professor
Hispanic Studies
LLM, Southern Methodist University, 2005

Quintana, Maria E, Associate Professor
Hispanic Studies
PHD, University of California, Berkeley, 1998

Vilaros, Teresa M, Professor
Hispanic Studies
PHD, University of Georgia, 1989

Villalobos, Jose P, Associate Professor
Hispanic Studies
PHD, University of California Irvine, 1998

Zapata, Gabriela C, Associate Professor
Hispanic Studies
PHD, The Pennsylvania State University, 2002

Majors

• Bachelor of Arts in Spanish (p. 591)

Minors

• Hispanic Studies for Community Engagement Minor (p. 593)
• Spanish Minor (p. 594)

Spanish - BA

A Spanish major provides students with language skills that translate into a practical tool for use in our increasingly bilingual landscape, whether this be Texas, the American Southwest, one of the many areas in the U.S. with large Spanish-speaking populations, or beyond our borders where over 500 million Spanish speakers reside. Above the practical aspect of the major, students of Spanish acquire a rich view of the world. Focusing on analytical and critical thinking, as well as cultural awareness, our students are prepared for graduate studies in Spanish and professional schools (medicine, law, business), and for professions in fields such as education, business, human resources, research, government, social service, tourism, journalism, and translation. To enhance their career options, Spanish majors are encouraged to seek out a complementary minor or second major/degree, to create even more opportunities after graduation. Similarly, students can also complete an internship that will provide practical hands-on experience.

The Spanish major consists of 33 hours of major coursework plus 38 hours of general supporting electives. The 33 hours are divided into 6 lower division hours (Spanish 201 or 221; 202 or 203 or 222) plus 27 hours that are equally distributed among Spanish language or linguistics (9 hours), Spanish literature or culture (9 hours), and approved related electives (9 hours). At least 9 of these 27 hours must be in 400-level Spanish courses. The 38 hours of general supporting electives can come from any of the university's offerings and may be taken as a minor or part of a second major. To underscore the focus on cultural awareness and to support the achievement of increased linguistic proficiency, our major requires a minimum 10-week experience abroad in a Spanish-speaking country. This experience abroad can be in a formal academic setting, through an internship or other comparable environment. For cases where an experience abroad is not possible, a student may petition that an internship or service-learning project be used instead.

Program Requirements

First Year

Fall

Semester Credit Hours

ENGL 104 Composition and Rhetoric 3
American history (p. 29) 3
Creative arts (p. 29)
Life and physical sciences (p. 26)
General elective 1

Semester Credit Hours 16

Spring
Select one of the following:
COMM 203 Public Speaking
COMM 205 Communication for Technical Professions
COMM 243 Argumentation and Debate
ENGL 203 Writing about Literature
ENGL 210 Technical and Business Writing
Language, philosophy and culture (p. 27)
Mathematics (p. 26)
Social and behavioral sciences (p. 30)
General elective 1

Semester Credit Hours 16

Second Year
Fall
SPAN 201 Intermediate Spanish I
Life and physical sciences (p. 26)
Mathematics (p. 26)
Literature directed elective (p. 532)
General elective 1

Semester Credit Hours 15

Spring
SPAN 202 Intermediate Spanish II
or SPAN 203 or Intermediate Spanish for Heritage Speakers
American history (p. 29)
Life and physical sciences (p. 26)
General elective 1
General elective 1

Semester Credit Hours 15

Third Year
Fall
Government/Political science (p. 30)
Spanish language/Linguistic 2
Spanish literature/Culture 3
General elective 1
General elective 1

Semester Credit Hours 15

Spring
Spanish language/Linguistic 2
Spanish literature/Culture 3
Spanish literature/Culture 3
Spanish interdisciplinary elective 4
General elective 1

Semester Credit Hours 13

Fourth Year
Fall
Government/Political science (p. 30)
Language, philosophy and culture or creative arts (p. 27)

Spanish language/Linguistic 2
Spanish interdisciplinary elective 4
General elective 1

Semester Credit Hours 15

Spring
Social and behavioral sciences (p. 30)
Literature directed elective (p. 532)
Spanish interdisciplinary elective 4
General elective 1
General elective 1

Semester Credit Hours 15

Total Semester Credit Hours 120

1 SPAN 200-499 (p. 1147) may not be used as general electives.
2 Select from the following: SPAN 301, SPAN 302 or SPAN 304, SPAN 303, SPAN 306, SPAN 307, SPAN 350, SPAN 352, SPAN 452, SPAN 462.
3 Select from the following: SPAN 311, SPAN 312, SPAN 320, SPAN 331, SPAN 332, SPAN 341, SPAN 342, SPAN 410, SPAN 411, SPAN 412, SPAN 413, SPAN 421, SPAN 445, SPAN 450, SPAN 460, SPAN 461.
4 Select from SPAN 100-499 (p. 1147), HISP 100-499 (p. 1013); HISP-related courses (see HISP-Related Interdisciplinary Courses table).

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

33 hours required. Spanish majors are required to complete a credit-bearing 10-week minimum semester-long study or experience abroad in a Spanish-speaking country. Study abroad options include University-sponsored, reciprocal, affiliated, and independent programs. Selection of location and type of experience abroad should be made in consultation with departmental advisors. For students who are unable to study abroad, an internship may be used instead. This option is available with prior approval by the Spanish advisor.

HISP-Related Interdisciplinary Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 308</td>
<td>Archaeology of Mesoamerica</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 445</td>
<td>Studies in African Diaspora</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 336</td>
<td>Life and Literature of the Southwest</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 338</td>
<td>American Ethnic Literature</td>
<td>3</td>
</tr>
<tr>
<td>HISP 362/ENGL 362</td>
<td>Latino/a Literature</td>
<td>3</td>
</tr>
<tr>
<td>FILM 405/EURO 405</td>
<td>European Cinema</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 351/FILM 351</td>
<td>Advanced Film</td>
<td>3</td>
</tr>
<tr>
<td>FILM 401</td>
<td>National Cinema History</td>
<td>3</td>
</tr>
<tr>
<td>GEOG 323</td>
<td>Geography of Latin America</td>
<td>3</td>
</tr>
<tr>
<td>HISP 201</td>
<td>Current Issues in Hispanic Studies</td>
<td>1</td>
</tr>
<tr>
<td>HISP 204</td>
<td>Spanish and Spanish American Literature in Translation</td>
<td>3</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>HISP 205</td>
<td>Don Quixote and the Other Arts</td>
<td>3</td>
</tr>
<tr>
<td>HISP 206</td>
<td>Food in the Hispanic World</td>
<td>3</td>
</tr>
<tr>
<td>HISP 352</td>
<td>Hispanic Literature and Film</td>
<td>3</td>
</tr>
<tr>
<td>HISP 362</td>
<td>Latino/a Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HISP 363</td>
<td>Borderlands: U.S. and Mexico</td>
<td>3</td>
</tr>
<tr>
<td>HISP 474</td>
<td>Diversity Lessons from Medieval Spain</td>
<td>3</td>
</tr>
<tr>
<td>RELS 474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 304</td>
<td>Southwest Borderlands</td>
<td>3</td>
</tr>
<tr>
<td>HIST 305</td>
<td>Chicana/o History since 1848</td>
<td>3</td>
</tr>
<tr>
<td>HIST 307</td>
<td>Latinx History</td>
<td>3</td>
</tr>
<tr>
<td>HIST 319</td>
<td>U.S. Immigration and Ethnicity</td>
<td>3</td>
</tr>
<tr>
<td>HIST 321</td>
<td>The Age of Revolution in the Atlantic World</td>
<td>3</td>
</tr>
<tr>
<td>HIST 322</td>
<td>History of the Iberian World</td>
<td>3</td>
</tr>
<tr>
<td>HIST 326</td>
<td>History of the Caribbean to Emancipation</td>
<td>3</td>
</tr>
<tr>
<td>HIST 341</td>
<td>Latin America to 1810</td>
<td>3</td>
</tr>
<tr>
<td>HIST 342</td>
<td>Latin America Since 1810</td>
<td>3</td>
</tr>
<tr>
<td>HIST 343</td>
<td>Inter-American Relations</td>
<td>3</td>
</tr>
<tr>
<td>HIST 441</td>
<td>History of Mexico, 1821 to the Present</td>
<td>3</td>
</tr>
<tr>
<td>HIST 449</td>
<td>History of Brazil, 1822 to the Present</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 236</td>
<td>Introduction to Health Disparities and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>IBUS 459</td>
<td>Latin American Markets</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 283</td>
<td>Latin American Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>Pols 304</td>
<td>Latino Politics in the United States</td>
<td>3</td>
</tr>
<tr>
<td>Pols 323</td>
<td>Political Systems of Latin America</td>
<td>3</td>
</tr>
<tr>
<td>Pols 362</td>
<td>Latin American Political Thought</td>
<td>3</td>
</tr>
<tr>
<td>Pols 423</td>
<td>U.S.-Latin American Relations</td>
<td>3</td>
</tr>
<tr>
<td>Soci 317</td>
<td>Racial and Ethnic Relations</td>
<td>3</td>
</tr>
<tr>
<td>AFST 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soci 337</td>
<td>International Migration</td>
<td>3</td>
</tr>
<tr>
<td>Soci 403</td>
<td>Sociology of Latinos</td>
<td>3</td>
</tr>
<tr>
<td>Soci 404</td>
<td>Sociology of the Community</td>
<td>3</td>
</tr>
<tr>
<td>Rpts 404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thar 201</td>
<td>Introduction to World Theatre</td>
<td>3</td>
</tr>
<tr>
<td>Any course, including 489 Special Topics, with 33% Hispanic focus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Requirements

Spanish requirement

Select from the following:

- SPAN 301 Oral Expression
- SPAN 302 Advanced Grammar
- SPAN 303 Spanish Composition
- SPAN 304 Advanced Grammar for Heritage Speakers
- SPAN 312 Hispanic Culture and Civilization: 18th Century to Present
- SPAN 411 Contemporary Hispanic Society and Culture
- SPAN 412 U.S. Hispanic Writers
- SPAN 460 Topics in Hispanic Literature
- SPAN 461 Topics in Hispanic Culture
- SPAN 462 Topics in Hispanic Linguistics

Electives

Select from the following:

- ANTH 308 Archaeology of Mesoamerica
- ANTH 445 Studies in African Diaspora
- ENGL 336 Life and Literature of the Southwest
- ENGL 338 American Ethnic Literature
- ENGL 362/360 Latino/a Literature
- HISP 362
- GEOG 323 Geography of Latin America
- HISP 352 Hispanic Literature and Film
- HISP 362/360 Latino/a Literature
- ENGL 362
- HISP 363 Borderlands: U.S. and Mexico
- HISP 471/472 Hispanic Religions
- RELS 471
- HIST 304 Southwest Borderlands
- HIST 305 Chicana/o History since 1848
- HIST 307 Latinx History
- HIST 341 Latin America to 1810
- HIST 342 Latin America Since 1810
- HIST 441 History of Mexico, 1821 to the Present
- PHIL 283 Latin American Philosophy
- Pols 304 Latino Politics in the United States
- Pols 323 Political Systems of Latin America
- Pols 362 Latin American Political Thought
- Pols 423 U.S.-Latin American Relations
- Soci 217 Introduction to Race and Ethnicity
- Soci 317/318 Racial and Ethnic Relations
- AFST 317
- Soci 402 Sociology of Latin America
- Soci 403 Sociology of Latinos
- SPAN 201 Intermediate Spanish I

Hispanic Studies for Community Engagement - Minor

The minor in Hispanic Studies for Community Engagement offers students the opportunity to combine advanced Spanish language skills and Hispanic cultural knowledge with a service-learning experience. This minor complements degrees from other disciplines as it can incorporate courses taught in English that address multiple themes from throughout the Hispanic world. Coursework for this minor consists of 18 hours: 6 hours of 300- to 400-level Spanish courses; 9 hours of relevant courses in Anthropology, English, Hispanic Studies, History, Philosophy, Political Science, or Sociology; and 3 credit hours of service-learning experience with an organization or institution whose primary focus is providing services to Hispanic or Spanish-speaking communities. Of the total required hours, at least 9 must be taken in residence at Texas A&M.
Spanish - Minor

The Spanish minor allows students with other majors to work on their linguistic skills while they gain Hispanic cultural competency. A great way to complement coursework in many other majors, including those in science, health, and business, this minor focuses on language-based coursework that will serve as an asset upon entering the job market after graduation. The minor requires 18 hours of course work beyond 100-level Spanish courses including Spanish 201; 202 or 203. The remaining 12 hours may be selected from the many 300- and 400-level courses offered every semester. Of the total required hours, at least 9 must be taken in residence at Texas A&M.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 201</td>
<td>Intermediate Spanish I</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 202</td>
<td>Intermediate Spanish II or SPAN 203 or Intermediate Spanish for Heritage Speakers</td>
<td>3</td>
</tr>
<tr>
<td>(SPAN 200 to 499)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAN 200 to 499 (p. 1147)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SPAN 300 to 499 (p. 1147)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

At least 9 of these 18 hours must be taken at Texas A&M. A grade of C or higher is required for a course to be counted in the minor field. A minor must be declared before the student has completed 75 credit hours.

Department of History

Welcome to the History Department!

The Department of History, through its dual functions of research and teaching, seeks to broaden and deepen our understanding of the past and prepare students to engage with the increasingly complex, globalizing present. Upon earning a BA in History, students will be able to apply critical thinking skills to, and to communicate verbally and in written format about, contemporary events. Our undergraduate students also develop the skills necessary for quality research, the assessment of conflicting evidence, and the practice of effective writing, argumentation, and advocacy. As a result, they will become more informed global citizens as well as more proficient in the abilities that most employers continue to value above all others. The faculty teach over one hundred undergraduate courses on peoples, ideas, and cultures from around the world and across the ages, and are devoted to developing students’ ability to understand how studying history can help solve some of today's most pressing problems. The department also offers several different study-abroad programs meant to further enhance students' familiarity with the world’s diverse cultures and increase their foreign language competency.

The Department of History at Texas A&M offers the B.A., M.A., and Ph.D. A major in history affords students both a broad education and valuable practical skills. By acquiring familiarity with people in diverse times, places, and circumstances, students of history develop a sophisticated human empathy which is the key to good scholarship and good citizenship alike. Teaching is, of course, one important career path for history majors. But many students rely upon a major in history as preparation for a career in a variety of different government agencies, law and law enforcement, the military, intelligence analysis, foreign service, tech, business, public administration and relations, non-profit work, parks
and recreation, archival and library resources, advertising, and religious leadership. History, in other words, stands as the departure point for an array of jobs in any number of different fields.

Faculty

Alonzo, Armando C, Associate Professor
History
PHD, Indiana University, 1994

Anderson, Terry H, Professor
History
PHD, Indiana University, 1978

Bach, Damon R, Lecturer
History
PHD, Texas A&M University, 2013

Bickham, Troy, Professor
History
PHD, University of Oxford, 2001

Blanton, Carlos K, Professor
History
PHD, Rice University, 1999

Bouton, Cynthia A, Professor
History
PHD, SUNY Binghamton, 1985

Brooks, Charles E, Associate Professor
History
PHD, University of Buffalo, 1988

Brunstedt, Jonathan, Assistant Professor
History
PHD, University of Oxford, 2011

Cobbs, Elizabeth A, Professor
History
PHD, Stanford University, 1988

Collopy, William F, Lecturer
History
PHD, Texas A&M University, 2011
MLA, University of St. Thomas, 2006

Coopersmith, Jonathan, Professor
History
PHD, University of Oxford, 1985

Dror, Olga, Professor
History
PHD, Cornell University, 2003

Emre, Side, Associate Professor
History
PHD, University of Chicago, 2009

Foote, Lorien L, Professor
History
PHD, University of Oklahoma - Norman, 1999

Haefeli, Evan P, Associate Professor
History
PHD, Princeton University, 2000

Hatfield, April L, Associate Professor
History
PHD, Johns Hopkins University, 1997

Hernandez, Sonia, Associate Professor
History
PHD, University of Houston, 2006

Hinojosa, Felipe, Associate Professor
History
PHD, University of Houston, 2009

Hudson, Angela P, Professor
History
PHD, Yale University, 2007

Hudson, David R, Instructional Professor
History
PHD, Texas A&M University, 1998

Johnson, Violet, Professor
History
PHD, Boston College, 1992

Kamphoefner, Walter D, Professor
History
PHD, University of Missouri, 1978

Kim, Hoi-Eun, Associate Professor
History
PHD, Harvard University, 2006

Kirkendall, Andrew J, Professor
History
PHD, University of North Carolina at Chapel Hill, 1996

Lenihan, John H, Associate Professor
History
PHD, University of Maryland, 1976

Lin, Brian M, Professor
History
PHD, Ohio State University, 1985

MacNamara, Lawrence T, Assistant Professor
History
PHD, Columbia University, 2015

McInnis, Verity G, Senior Lecturer
History
PHD, Texas A&M University, 2012

McNamara, Sarah J, Assistant Professor
History
PHD, University of North Carolina at Chapel Hill, 2016
History - BA

Students who wish to major in History do so because they understand that the problems of the present are fundamentally rooted in the choices made by past peoples. History majors, therefore, do not memorize names and dates. Instead, they are detectives, busily scrutinizing and actively interpreting the historical record for a deeper understanding as to why the world looks as it does and how our society might be improved. And in doing so, history majors acquire a number of practical skills that many different employers look for in job candidates. Our majors become experts in both written and oral self-expression, argumentation, and advocacy. In addition, history majors acquire the skills necessary to conduct thorough research, assess evidence, and effectively present one’s findings. It is no wonder, then, that our majors go on to succeed in the fields of education, law, law enforcement, public service, consulting, and business, among many other careers. In today’s global economy, there is persistent demand for job candidates familiar with diverse cultures and points of view. History majors, who take courses specializing in countries and regions around the world, are ideally positioned to succeed in such a job market. This is particularly true of majors who take advantage of our department’s numerous opportunities for study abroad and foreign language instruction.

In the History major, students take courses specializing in many different cultures and time periods. This array of classes helps to familiarize students with human diversity while imparting the marketable skills that make our graduates competitive in any number of career fields.

Teacher Certification

Some history majors may wish to pursue a career in education at the elementary, middle-, or high-school levels. The History Department is proud to welcome and help train the future teachers of both Texas and the nation. Students wishing to meet certification requirements to teach history or social studies in the secondary schools of Texas should contact the College of Education and Human Development for more complete information about the certification options available at Texas A&M University. To be eligible for these options, students must also consult with, and have approval of, their field advisor in the Department of History.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 101 Western Civilization to 1660</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 103 World History to 1500</td>
<td></td>
</tr>
<tr>
<td>HIST 105 History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 102 Western Civilization Since 1660</td>
<td>3</td>
</tr>
<tr>
<td>or HIST 104 World History Since 1500</td>
<td></td>
</tr>
<tr>
<td>HIST 106 History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
</tbody>
</table>
General elective 3 3

Semester Credit Hours 13
Total Semester Credit Hours 120

1 Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
2 At least 12 hours at the 300- and 400-level. At least 3 hours of pre-modern history and at least 3 hours from three of the five lists (United States; Europe; Latin America and Caribbean; Africa, Asia and the Middle East; Thematic).
3 Students may use an additional 12 hours of HIST 300-499 (p. 1014) for this requirement.
4 Writing-intensive course.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Students should plan a program of study in consultation with one of the department’s undergraduate advisors.

A minimum of 33 hours in history may be applied to the degree. Students must take not less than 15 credit hours at upper level for history residency requirement. A grade of C or higher is required for a course to be counted in the major field. A student must complete not less than 18 hours of coursework in history at Texas A&M University.

Minor Field of Study

All history majors are encouraged to select a minor field of study from departments or divisions within or outside of the College of Liberal Arts or in a particular area of interest (as in the case of interdisciplinary minors or career opportunity minors). The minor will consist of a minimum of 15 hours of coursework, as defined by the minor department. A grade of C or higher is required for a course to be counted in the minor field. Interdisciplinary minors (p. 539) such as Women’s and Gender Studies, Africana Studies, Classical Studies, Religious Studies, Film Studies, Latina/o and Mexican American Studies, and Business have specific requirements; students should consult undergraduate advisors in these areas of study. A second major may substitute for the minor. Courses used to meet the minor requirements may not be used in the major. See also the statement on “Minor Field of Study” under the general requirements (p. 532) of the College of Liberal Arts.

History - Minor

A minor is also offered by the Department of History. All majors are welcome as History minors. History is, in fact, the ideal complement to virtually any course of study at Texas A&M. Students in the sciences and engineering, for example, would greatly benefit by using a History minor to help sharpen their writing and critical thinking skills. Employers consistently cite an inability to write and reason as their chief complaints about prospective hires. History minors receive valuable training in precisely those things. Other students interested in graduate or professional programs such as law school or social work also stand to benefit from a historical perspective on the issues and problems that matter to our nation and world today. A minor in History therefore helps to
broaden one's education and enhance a student's competitiveness on the job market.

The Minor in History requires a minimum of 15 hours of coursework. To add a History Minor, a student must make a request through their Major Advisor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower-level requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select two from the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>HIST 100 to 289 (p. 1014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper-level requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select three from the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>HIST 300 to 489 (p. 1014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Students must make a grade of 'C' or better in all courses.

The Department of International Studies

https://liberalarts.tamu.edu/ints (https://liberalarts.tamu.edu/ints/)

The Department of International Studies is dedicated to fostering cultural understanding and global engagement through the discovery, dissemination, and translation of knowledge, using diverse approaches from the humanities, social sciences, and language studies. The department is at the forefront of university efforts to prepare students for a globally interconnected future and to educate global citizens and future leaders.

The department offers diverse curricula that immerse students in the social, political, economic, and cultural implications of globalization. The BA in International Studies combines a linguistic and cultural proficiency with a flexible set of tracks and a mandatory abroad experience. In addition, the department offers Modern Language BA degree options in French, German, and Russian, as well as a BA in Classics. Students can minor in Arabic, Chinese, Classical Studies, French, German, Italian, Japanese, and Russian. We also offer minors in Comparative Cultural Studies and Asian Studies. Our programs give students a combination of measurable language proficiency and a global perspective that will serve both their professional and personal ambitions.

Required Foreign Language Placement Test. Incoming students who intend to enroll for the first time in any language course at Texas A&M University, who have previous knowledge, however acquired, of the language in which they plan to enroll, and who have no college credit in the language, must take the departmental placement examination to determine the appropriate course for their level of ability. The placement test also serves as a basis for credit by examination. The placement examination will be administered by the Department of International Studies during freshman conferences along with other credit by exam tests. The test will also be offered during Fall and Spring semesters. Students who take the Advanced Placement (AP) test or other acceptable tests which grant college-level credit in their foreign language of choice do not have to take the required departmental placement test. In this case, the AP and Achievement test results may be used for placement.

International students whose native language is not English are exempted from satisfying the University foreign language requirement. These students are not allowed to register in those courses in their native language that are used to fulfill that requirement.

Faculty

Adams, George C, Senior Lecturer
International Studies
MED, Temple University, 1996

Arfaoui, Turkia, Lecturer
International Studies
MED, Texas A&M University, 2012

Ayari, Salah, Instructional Associate Professor
International Studies
PHD, University of Minnesota, 1998

Bonner, Christopher, Assistant Professor
International Studies
PHD, New York University, 2015

Bracher, Nathan J, Professor
International Studies
PHD, University of Texas at Austin, 1984

Brenner, David A, Lecturer
International Studies
PHD, University of Texas, 1993

Carley, Robert F, Associate Professor
International Studies
PHD, Texas A&M University, 2012

Cecchini, Fabiana, Instructional Associate Professor
International Studies
PHD, University of Pennsylvania, 2007

Cerrato, Maddalena A, Instructional Assistant Professor
International Studies
PHD, Italian Institute for Human Sciences, 2013

Cervantes, Ekaterina, Lecturer
International Studies
MA, Indiana University, 2017

Charlot, Jean-Baptiste, Lecturer
International Studies
MA, Texas A&M University, 2015

Ciccolella, Federica, Professor
International Studies
PHD, Columbia University, 2004

Cooke, Leighton B, Professor
International Studies
PHD, University of California, Berkeley, 1983

Cooke, Olga M, Associate Professor
International Studies
PHD, University of London, 1982

Garrigan, Carmela, Associate Professor
International Studies
PHD, Michigan State University, 2001
Golsan, Ines D, Senior Lecturer
International Studies
MA, University of North Carolina at Chapel Hill, 1977

Golsan, Richard J, Distinguished Professor
International Studies
PHD, University of North Carolina at Chapel Hill, 1981

Hannaford, Dinah R, Associate Professor
International Studies
PHD, Emory University, 2014

Harris, Stefanie, Associate Professor
International Studies
PHD, Emory University, 1999

Hawthorne, Melanie C, Professor
International Studies
PHD, University of Michigan Ann Arbor, 1987

Hemmig, Christopher, Instructional Assistant Professor
International Studies
PHD, The Ohio State University, 2015

Howell, James, Instructional Assistant Professor
International Studies
PHD, University of Arizona, 2017

Karasisahi, Sena, Instructional Assistant Professor
International Studies
PHD, Universiteit Leiden, 2006

Konrad, Christoph F, Associate Professor
International Studies
PHD, University of North Carolina at Chapel Hill, 1985

Lake, Justin, Associate Professor
International Studies
PHD, Harvard University, 2008

Larson, Ruth E, Associate Professor
International Studies
PHD, Yale University, 1991

Lei, Jun, Assistant Professor
International Studies
PHD, University of California, San Diego, 2015

Marchesini, Manuela, Associate Professor
International Studies
PHD, Stanford University, 2000

Oberhelman, Steven M, Professor
International Studies
PHD, University of Minnesota, 1981

Passmore, Ashley A, Assistant Professor
International Studies
PHD, University of Chicago, 2007

Ragucci, Sylvie B, Senior Lecturer
International Studies
PHD, The Pennsylvania State University, 1999

Rich, Elisabeth, Associate Professor
International Studies
PHD, University of Michigan Ann Arbor, 1985

Rosenthal, Adam R, Assistant Professor
International Studies
PHD, Emory University, 2014

Shandley, Robert R, Professor
International Studies
PHD, University of Minnesota, Twin Cities, 1996

Shi, Wei Dong, Senior Lecturer
International Studies
MA, Beijing Normal University, 1999

Waugh, Yuki, Instructional Associate Professor
International Studies
PHD, University of Nebraska, 2006

Majors

• Bachelor of Arts in Classics, Classical Civilization Track (p. 600)
• Bachelor of Arts in Classics, Language and Literature Track (p. 601)
• Bachelor of Arts in International Studies, Global Cultural Studies Track (p. 602)
• Bachelor of Arts in International Studies, International Commerce Track (p. 604)
• Bachelor of Arts in International Studies, International Communication and Media Track (p. 606)
• Bachelor of Arts in International Studies, International Environmental Studies Track (p. 607)
• Bachelor of Arts in International Studies, International Geographic Information Systems Track (p. 609)
• Bachelor of Arts in International Studies, International Politics and Diplomacy Track (p. 611)
• Bachelor of Arts in International Studies and Master of International Affairs, 5-Year Degree Program (p. 613)
• Bachelor of Arts in Modern Languages, French Option (p. 615)
• Bachelor of Arts in Modern Languages, German Option (p. 616)
• Bachelor of Arts in Modern Language, Russian Option (p. 618)

Minors

• Arabic Studies Minor (p. 619)
• Asian Studies Minor (p. 620)
• Chinese Minor (p. 621)
• Classical Studies Minor (p. 621)
• French Minor (p. 621)
• German Minor (p. 622)
• Italian Minor (p. 622)
• Japanese Minor (p. 622)
• Russian Minor (p. 623)

Certificates

• Proficiency in Arabic Certificate (p. 623)
Classics - BA, Classical Civilization Track

The BA in Classics is designed to give students a thorough grounding in the culture, history, literature, and intellectual accomplishments of Ancient Greece and Rome from the Bronze Age to the dawn of the Middle Ages.

Studying the history and literature of these civilizations will not only help students to develop skills in close reading, writing, and critical thinking, but will also help them to see how fundamental concepts of Western Civilization such as rationalism and democracy first arose in Classical Antiquity.

The Classical Civilization track focuses on the history, beliefs, and material culture of ancient Greek and Roman civilization. It consists of 4 hours of foundational courses and 27 hours of electives, which include courses in archaeology, ancient history, and philosophy. Students can fulfill the foreign language requirement by studying a classical or modern language.

A major in Classics signals a commitment to serious intellectual inquiry and is an excellent basis for careers in law, business, consulting, public service, and teaching. Those intending to pursue careers in medicine or finance will also find that a major in Classics can be easily combined with undergraduate courses required for those fields.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Foreign Language 1</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CLAS 410 Seminar in Classical Studies</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

2. At least 3 hours must be in MATH. Three hours may be PHIL 240.

3. Select from ANTH 300-499 (p. 896); ARCH 430, ARCH 434; ARTS 335; CLAS 220, CLAS 230-499 (p. 935); HIST 300-499 (p. 1014).

4. Select from any 100-499 courses not used elsewhere, except CLAS 300-499 (p. 935).

5. Select from ANTH 316, ANTH 317/RELS 317; CLAS 220, CLAS 230-499 (p. 935); PHIL 410, PHIL 411.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Minor Field of Study. All Classics majors are strongly encouraged to select 15-18 hours in a minor field of study. Students must earn a 'C' or better in all minor coursework.

Courses cross-listed with other programs cannot be used under different prefixes to fulfill more than one requirement.

Classics - BA, Language and Literature Track

The BA in Classics is designed to give students a thorough grounding in the culture, history, literature, and intellectual accomplishments of Ancient Greece and Rome from the Bronze Age to the dawn of the Middle Ages.

Studying the history and literature of these civilizations will not only help students to develop skills in close reading, writing, and critical thinking, but will also help them to see how fundamental concepts of Western Civilization such as rationalism and democracy first arose in Classical Antiquity.

The Literature and Language track has a traditional focus on Latin and Greek philology (students choose either Latin or Greek to specialize in, but are encouraged to take both) and is intended to enable students to read and enjoy the great texts of Classical Antiquity (Homer, Herodotus, Thucydidès, Livy, Tacitus, the New Testament, etc.) in the original languages. Students take 18 hours of language (Greek or Latin) at the 200-300 levels, 4 hours of foundational courses, and 9 hours of electives.

A major in Classics signals a commitment to serious intellectual enquiry and is an excellent basis for careers in law, business, consulting, public service, and teaching. Those intending to pursue careers in medicine or finance will also find that a major in Classics can be easily combined with undergraduate courses required for those fields.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>2</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>2</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Classics directed elective</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language</td>
<td>1</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS 410 Seminar in Classical Studies</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS 491 Research</td>
<td></td>
</tr>
<tr>
<td>Classics directed elective</td>
<td>4</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

1 Select Greek language sequence or Latin language sequence sequence for a total of 18 hours. Greek: Take CLAS 102, CLAS 211, CLAS 312, 9 hours from CLAS 310 to 319 (p. 935). Latin: Take CLAS 122, CLAS 221, CLAS 222, 9 hours from CLAS 320 to 329 (p. 935).
2 At least 3 hours must be in MATH. Three hours may be PHIL 240.
International Studies - BA, Global Cultural Studies Track

The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a subfield specific to the track.

Global Cultural Studies Track

The Global Cultural Studies track offers students both a fundamental theoretical background in cultural studies as well as a broad array of courses in international cultural production and criticism. This humanities based program provides students with a rich understanding of artistic expression in a global setting.

Principle objectives

1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum

The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student’s foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.

Minor Field of Study. All Classics majors are strongly encouraged to select 15-18 hours in a minor field of study. Students must earn a ‘C’ or better in all minor coursework.

Courses cross-listed with other programs cannot be used under different prefixes to fulfill more than one requirement.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Minor Field of Study. All Classics majors are strongly encouraged to select 15-18 hours in a minor field of study. Students must earn a ‘C’ or better in all minor coursework.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26) 2</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 201</td>
<td>Introduction to International Studies</td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 211/ENGL 211</td>
<td>Foundations in Cultural Studies</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
</tr>
<tr>
<td>MODL 222/ENGL 222</td>
<td>World Literature</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience 3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ANTH 324/MUSC 324</td>
<td>Music in World Cultures</td>
</tr>
<tr>
<td>ANTH 335</td>
<td>Cultures of Central Asia</td>
</tr>
<tr>
<td>ANTH 340/RELS 340</td>
<td>Folklore and the Supernatural</td>
</tr>
<tr>
<td>ANTH 370</td>
<td>Cultural Diversity and Ethics</td>
</tr>
</tbody>
</table>

3 Select from any 100-499 courses not used elsewhere, except CLAS 300-499 (p. 935).
4 Select from ANTH 300-499 (p. 896); ARCH 430, ARCH 434; ARTS 335; CLAS 211, CLAS 220, CLAS 221, CLAS 222, CLAS 230-499 (p. 935); HIST 300-499 (p. 1014).
5 Select from ANTH 316, ANTH 317/RELS 317; CLAS 251/RELS 251, CLAS 330 to 381 (p. 935), CLAS 415 to 444 (p. 935), PHIL 410, PHIL 411.
ANTH 403/RELS 403 Anthropology of Religion
ANTH 404/WGST 404 Women and Culture
ANTH 424 Human Evolutionary Ecology: Culture and Cooperation
ANTH 440 Studies in Globalization
ANTH 445 Studies in African Diaspora

Foreign language 1 3
Geographic area studies 4 3
Geographic area studies 4 3
Geographic area studies 4 3

Semester Credit Hours 15

Spring
Select one of the following: 3
INTS 400-480 (p. 1030)
INTS 485 Directed Studies
INTS 489 Special Topics in...
INTS 497 Independent Honors Study
Creative arts (p. 29) 3
Foreign language 1 3
Life and physical sciences (p. 26) 3
Literature directed elective (p. 532) 3
General elective 1 3

Semester Credit Hours 16

Fourth Year
Fall
Select one of the following: 3
INTS 400-480 (p. 1030)
INTS 485 Directed Studies
INTS 489 Special Topics in...
INTS 497 Independent Honors Study
Global cultural studies 5 3
Literature directed elective (p. 532) 3
Mathematics (p. 26) 2 3
Social and behavioral sciences (p. 30) 3

Semester Credit Hours 15

Spring
INTS 481 Senior Seminar in International Studies 3
Global cultural studies 5 3
Global cultural studies 5 3
General elective 3
General elective 3

Semester Credit Hours 15

Total Semester Credit Hours 120

1 Students completing a Bachelor of Arts in the College of Liberal Arts are required to complete 14 hours of a foreign language (p. 532) through the intermediate level. Students in International Studies are required to complete an additional 6 hours of a foreign language through the advanced level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.

2 At least 3 hours must be in MATH. Three hours may be PHIL 240.

3 The course will be used to track student's completion of the International Experience Requirement (see paragraph below).

4 Choose courses from an approved list on the INTS website in consultation with an advisor. Courses numbered 485 or 489 that contain significant international content can be taken in any department to meet part of the track or area requirement. Students must obtain International Studies advisor approval before taking the 485 or 489 course.

5 Select from AFST 325, AFST 326; ARAB 400-499 (p. 900); ARTS 349, ARCH 430, ARCH 434; CHIN 400-499 (p. 934); CLAS 415/ FILM 415, CLAS 418; COMM 335, COMM 340, COMM 365/JOUR 365, EURO 300-499 (p. 989); FREN 400-499 (p. 998); GEOG 311; FILM 398/AFST 398; GERM 400-499 (p. 1010); HIST 421; INTS 215/FILM 215, INTS 301, INTS 484; ITAL 400-499 (p. 1037); MUSC 324/ANTH 324; PERF 301, PERF 325; PHIL 330, PHIL 331/RELS 331, PHIL 371, PSYC 346; RUSS 400-499 (p. 1136); WGST 404/ANTH 404. Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Foreign Language
Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.
- Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements
The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree.

- Must be at least one long semester or one 10-week summer approved experience.
- Must be taken after completion of 100- and 200-level language requirement and INTS 201.
- Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
- Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the
International Studies - BA, International Commerce Track

The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a sub-field specific to the track.

International Commerce Track

The International Commerce track combines a basic set of courses in business practice with a broader set of courses in international economic and social theory. Student choose their coursework from a list that spans at least four colleges of the university. It provides students with a well-developed understanding of the interconnectedness of global commercial systems.

Principle objectives

1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum

The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student’s foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>INTS 205 Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 201 Introduction to International Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 205 Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 203 Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>International commerce</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 205 Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300 International Experience</td>
<td>4</td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>International commerce</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>INTS 400-480 (p. 1030)</td>
<td></td>
</tr>
<tr>
<td>INTS 485 Directed Studies</td>
<td></td>
</tr>
</tbody>
</table>
Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Foreign Language

Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.
- Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements

The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. **Any international experience that does not meet these criteria will not count toward the degree.**

- Must be at least one long semester or one 10-week summer approved experience.
- Must be taken after completion of 100- and 200-level language requirement and INTS 201.
- Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
- Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
 - Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
 - A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.
 - Must be taken outside of the student's country of origin.
- Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse Graduation requirement.
International Studies - BA, International Communication and Media Track

The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a sub-field specific to the track.

International Communication and Media Track

This track offers a discreet set of courses that provide students with a strong background in how media function in a global setting. As one of the largest sectors of the American and global economy, communication and media occupy a major role in our private and professional lives. Moreover, this sector of the economy often functions transnationally in a relatively seamless fashion.

Principle objectives

1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum

The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student’s foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring

INTS 201	Introduction to International Studies	3
INTS 205	Current Issues in International Studies	1
American history (p. 29)	3	
Foreign language	4	
Life and physical sciences (p. 26)	3	
Semester Credit Hours	14	

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>International communication and media</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

INTS 205	Current Issues in International Studies	1
American history (p. 29)	3	
Foreign language	3	
Government/Political science (p. 30)	3	
Life and physical sciences (p. 26)	3	
Literature directed elective (p. 532)	3	
Semester Credit Hours	16	

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience</td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies</td>
<td>3</td>
</tr>
<tr>
<td>International communication and media</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

Select one of the following: 3

<table>
<thead>
<tr>
<th>INTS 400-480 (p. 1030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 485</td>
</tr>
<tr>
<td>INTS 489</td>
</tr>
<tr>
<td>INTS 497</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>Foreign language</td>
</tr>
<tr>
<td>International communication and media</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>General elective</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>INTS 400-480 (p. 1030)</td>
<td></td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
</tr>
<tr>
<td>International communication and media</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
</tbody>
</table>
Exam results may fulfill a maximum of 14 semester credit hours. Students entering International Studies take a placement exam to meet the Foreign Language requirement, or a free elective can be used to satisfy this requirement. Graduation requirements include 3 hours of General elective, General elective, International communication and media, and International communication and media. 3 hours must be at the 300- or 400-level.

Students placed in 201 will take 201 and 6 semester credit hours at the 300- or 400-level. Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level. Students placed in 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements
The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree.

- Must be at least one long semester or one 10-week summer approved experience.
- Must be taken after completion of 100- and 200-level language requirement and INTS 201.
- Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
- Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
 - Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
 - A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.
 - Must be taken outside of the student’s country of origin.
 - Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity Graduation and Cultural Discourse requirement.

International Studies - BA, Environmental Studies Track
The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a subfield specific to the track.

International Environmental Studies Track
Globalization and rapid industrialization have brought about a set of environmental concerns that defy national boundaries. Students will work through a fascinating array of coursework chosen among the Colleges of Geoscience, Science, AgriLife, and Liberal Arts. Ultimately students will have a firm grasp of the myriad environmental issues that arise from our global interconnectedness.
Principle objectives
1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum
The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student’s foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 300</td>
<td>International Experience</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>INTS 400-480</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International environmental studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTS 201</td>
<td>Introduction to International Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>American history</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>International communication and media</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>American history</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience</td>
<td>4</td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>International environmental studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>INTS 400-480</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>International environmental studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience</td>
<td>4</td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>International environmental studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience</td>
<td>4</td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>International environmental studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1 Students completing a Bachelor of Arts in the College of Liberal Arts are required to complete 14 hours of a foreign language (p. 532) through the intermediate level. Students in International Studies are required to complete an additional 6 hours of a foreign language through the advanced level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.
At least 3 hours must be in MATH. Three hours may be PHIL 240.

Select six (6) courses from at least two departments. Not all courses will be offered every semester. See academic advisor. Select from AGEC 105, AGEC 350, AGEC 414, AGEC 452; AGLS 101; ATMO 201; BESC 201; BIOL 357, GEGO 201, GEGO 202, GEGO 203, GEGO 304, GEGO 311, GEGO 324, GEGO 330, GEGO 401, GEGO 430; GEOL 101, GEOL 420; GEOS 210, GEOS 410, INTS 301, INTS 484; NFSC 201; OCNG 251; PHIL 314; POLS 347; RENR 205, RENR 375; SOCI 206, SOCI 328.

The course will be used to track student’s completion of the International Experience Requirement (see paragraph below).

Select courses from an approved list on the INTS website in consultation with an advisor. Courses numbered 485 or 489 that contain significant international content can be taken in any department to meet part of the track or area requirement. Students must obtain International Studies advisor approval before taking the 485 or 489 course.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Foreign Language

Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.
- Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements

The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree.

- Must be at least one long semester or one 10-week summer approved experience.
- Must be taken after completion of 100- and 200-level language requirement and INTS 201.
- Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
- Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
- Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
- A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.

- Must be taken outside of the student’s country of origin.
- Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse Graduation requirement.

International Studies - BA, International Geographic Information Systems Track

The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a sub-field specific to the track.

International Geographic Information Systems Track

The International GIS track immerses students in the workings of spatially distributed information that is used in the environmental, transportation, defense, and many other sectors of the economy. Students will develop skills in spatial analysis and advanced applications of GIS technologies.

Principle objectives

1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum

The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student’s foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26) 2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 14

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 205</td>
<td>Introduction to International Studies</td>
<td>1</td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Second Year

Fall

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of geography 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 300</td>
<td>International Experience 4</td>
<td>0</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Geographic area studies 5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Regional Geography 6</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td>4</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 400-480 (p. 1030)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS (Geographic Information Systems)</td>
<td>4</td>
</tr>
<tr>
<td>INTS 481</td>
<td>Senior Seminar in International Studies</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 400-480 (p. 1030)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>INTS 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>INTS 497</td>
<td>Independent Honors Study</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Total Semester Credit Hours: 120

1. Students completing a Bachelor of Arts in the College of Liberal Arts are required to complete 14 hours of a foreign language (p. 532) through the intermediate level. Students in International Studies are required to complete a total of 6 hours of a foreign language through the advanced level. If you choose to enroll in a language you have studied previously without receiving college credit, you must take a placement test. See the Foreign Language section.

2. At least 3 hours must be in MATH. Three hours may be PHIL 240.

3. Select from ATMO 201; GEOG 203, GEOG 205; GEOL 101; GEOS 210; OCNG 251.

4. The course will be used to track student's completion of the International Experience Requirement (see paragraph below).

5. Select courses from an approved list on the INTS website in consultation with an advisor. Courses numbered 485 or 489 that contain significant international content can be taken in any department to meet part of the track or area requirement. Students must obtain International Studies advisor approval before taking the 485 or 489 course.

6. Select from GEOG 320, GEOG 323, GEOG 324, GEOG 325, GEOG 327.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
International Studies - BA, International Politics and Diplomacy Track

The BA in International Studies (INTS) is an interdisciplinary degree that combines linguistic and regional expertise, with specialization in a subfield specific to the track.

International Politics and Diplomacy Track

This track offers students a fundamental understanding of foreign relations. Students learn about the workings of governments and civil societies in a global framework. From this program students gain a sound understanding of how governments communicate and cooperate in regional, continental, and global settings.

Principle objectives

1. To guide students through the complex cultural, social, political, and economic stakes of global interdependence.
2. To assure a measurable proficiency in a foreign language.
3. To assure regional cultural competency through a structured and integrated abroad experience.
4. To provide a historical dimension to current conceptions of globalization.

Curriculum

The degree plan consists of a combination of INTS core courses (15 hours), with electives tailored for each track (18 hours); area studies courses in the region corresponding to the student's foreign language choice (9 hours); foreign language courses (20 hours); and at least one long semester or 10-week summer study abroad or other approved international program with an emphasis on cultural and linguistic immersion.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>1</td>
<td>INTS 205 Current Issues in International Studies</td>
</tr>
<tr>
<td>4</td>
<td>Foreign language ¹</td>
</tr>
<tr>
<td>3</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics (p. 26) ²</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>INTS 201 Introduction to International Studies</td>
</tr>
<tr>
<td>1</td>
<td>INTS 205 Current Issues in International Studies</td>
</tr>
<tr>
<td>3</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>4</td>
<td>Foreign language ¹</td>
</tr>
<tr>
<td>3</td>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

¹ Required for the major.
² Required for the minor.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse Graduation requirement.

Foreign Language

Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 102, 201, 202 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.
- Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements

The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree.

- Must be at least one long semester or one 10-week summer approved experience.
- Must be taken after completion of 100- and 200-level language requirement and INTS 201.
- Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
- Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
 - Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
 - A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.
 - Must be taken outside of the student's country of origin.
 - Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.
Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTS 481</td>
<td>Senior Seminar in International Studies</td>
<td>3</td>
</tr>
<tr>
<td>INTS 301</td>
<td>International politics and diplomacy</td>
<td>3</td>
</tr>
<tr>
<td>INTS 302</td>
<td>International politics and diplomacy</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Students completing a Bachelor of Arts in the College of Liberal Arts are required to complete 14 hours of a foreign language (p. 532) through the intermediate level. Students in International Studies are required to complete an additional 6 hours of a foreign language through the advanced level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.

2. At least 3 hours must be in MATH. Three hours may be PHIL 240.

3. Select six (6) courses from at least two departments. Not all courses will be offered every semester. See academic advisor. Select from COMM 354, COMM 443; GEOG 401, GEOG 420; ECON 203, ECON 320, ECON 330; HIST 343, HIST 444, HIST 462, HIST 463, HIST 464; INTS 251, INTS 301, INTS 321, INTS 484; POLS 229, POLS 231, POLS 322, POLS 323, POLS 324, POLS 325, POLS 326, POLS 328, POLS 338, POLS 347, POLS 349, POLS 350, POLS 358, POLS 362, POLS 364, POLS 365, POLS 366, POLS 367, WGST 367, POLS 368, POLS 412, POLS 413, POLS 415, POLS 423, POLS 424, POLS 429, POLS 432, POLS 447, POLS 454, POLS 475; SOCI 203, SOCI 337, SOCI 412, SOCI 423.

4. The course will be used to track student's completion of the International Experience Requirement (see paragraph below).

5. Select courses from an approved list on the INTS website in consultation with an advisor. Courses numbered 485 or 489 that contain significant international content can be taken in any department to meet part of the track or area requirement. Students must obtain International Studies advisor approval before taking the 485 or 489 course.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Foreign Language

Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.
• Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements (INTS 300)
The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree.

• Must be at least one long semester or one 10-week summer approved experience.
• Must be taken after completion of 100- and 200-level language requirement and INTS 201.
• Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.
• Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 • An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 • Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
 • Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
 • A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.
• Must be taken outside of the student’s country of origin.
• Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse Graduation requirement.

International Studies - 5-Year Bachelor of Arts and Master of International Affairs
The International Studies department, in conjunction with the Bush School of Government and Public Service, offers a combined degree program that allows International Studies majors to enter the Bush School at the beginning of their fourth year at Texas A&M. This opportunity enables students to receive their International Studies undergraduate degree and a Master of International Affairs (MIA) degree in five years.

The partnership between International Studies and the Bush School is especially attractive because all graduates from the Bush School’s Masters Program must have proficiency in a foreign language and are encouraged to spend a semester abroad; International Studies majors will have completed this requirement prior to entering the Bush School graduate program.

Students admitted to the five-year degree program will have completed 102 hours of the 120 hours of coursework required to receive their bachelor’s degree. These courses must include all of the specific prerequisites for a Bachelor of Arts degree in International Studies (within the Politics and Diplomacy emphasis track), as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree. Students will be required to complete the same two year, 48 hour curriculum as other students admitted to the Bush School’s MPSA program.

For information about the 5-year combined degree program, contact the Bush School (http://bush.tamu.edu/).

Program Requirements

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>First Year</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)²</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 201</td>
<td>Introduction to International Studies</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International politics and diplomacy ³</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTS 205</td>
<td>Current Issues in International Studies</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign language ¹</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Must be at least one long semester or one 10-week summer approved experience.
² Must be taken after completion of 100- and 200-level language requirement and INTS 201.
³ Must be an immersion experience in the foreign culture and language, which can be satisfied by:

- An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
- Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
- Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
- A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.

- Must be taken outside of the student’s country of origin.
- Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college, university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse Graduation requirement.
Third Year

Fall
- **INTS 300** International Experience
- **Foreign language**
- **Geographic area studies**
- **Geographic area studies**
- **Geographic area studies**
- **International politics and diplomacy**
- **Semester Credit Hours** 17

Spring
- **INTS 481** Senior Seminar in International Studies
- **Select one of the following:**
 - **INTS 400-480** (p. 1030)
 - **INTS 485** Directed Studies
 - **INTS 489** Special Topics in...
 - **INTS 497** Independent Honors Study
- **Foreign language**
- **International politics and diplomacy**
- **Life and physical sciences (p. 26)**
- **Mathematics (p. 26)**
- **Semester Credit Hours** 18

Fourth Year

Fall
- **INTA 606** International Politics in Theory and Practice
- **INTA 608** Fundamentals of the Global Economy
- **INTA elective**
- **INTA elective**
- **Semester Credit Hours** 12

Spring
- **BUSH 631** Quantitative Methods in Public Management
- **INTA elective**
- **INTA elective**
- **INTA elective**
- **Semester Credit Hours** 12

Fifth Year

Fall
- **INTA elective**
- **INTA elective**
- **INTA elective**
- **Semester Credit Hours** 12

Spring
- **INTA 670** International Affairs Capstone Seminar
- **INTA elective**
- **INTA elective**
- **INTA elective**
- **Semester Credit Hours** 12

1. Students completing a Bachelor of Arts in the College of Liberal Arts are required to complete 14 hours of a foreign language (p. 532) through the intermediate level. Students in International Studies are required to complete an additional 6 hours of a foreign language through the advanced level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.

2. At least 3 hours must be in MATH. Three hours may be PHIL 240.

3. Select two (2) courses from at least two departments. Not all courses will be offered every semester. See academic advisor. Select from COMM 354, COMM 443; GEOG 401, GEOG 420; ECON 203, ECON 320, ECON 330; HIST 343, HIST 444, HIST 462, HIST 463, HIST 464; INTS 251, INTS 301, INTS 321, INTS 484; POLS 229, POLS 231, POLS 322, POLS 323, POLS 324, POLS 325, POLS 326, POLS 328, POLS 338, POLS 347, POLS 349, POLS 350, POLS 358, POLS 362, POLS 364, POLS 365, POLS 366, POLS 367/WGST 367, POLS 368, POLS 412, POLS 413, POLS 415, POLS 423, POLS 424, POLS 429, POLS 432, POLS 447, POLS 454, POLS 475; SOCI 203, SOCI 337, SOCI 412, SOCI 423.

4. The course will be used to track student's completion of the International Experience Requirement (see paragraph below).

5. Select courses from an approved list on the INTS website in consultation with an advisor. Courses numbered 485 or 489 that contain significant international content can be taken in any department to meet part of the track or area requirement. Students must obtain International Studies advisor approval before taking the 485 or 489 course.

6. Double counted course. See advisor.

7. George Bush School course that could double count as BA-INTS International Politics and Diplomacy.

8. George Bush School course that will only count towards the graduate level program.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Arts in International Studies and the Master of International Affairs.

Foreign Language

Students entering International Studies take a placement exam to determine the level of and number of required foreign language courses. Exam results may fulfill a maximum of 14 semester credit hours.

- Students placed in 101 will take 101, 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 102 will take 102, 201 and 202 and 6 semester credit hours at the 300- or 400-level.
- Students placed in 201 will take 201 and 202 and 6 semester credit hours at the 300- or 400-level.
• Students placed in 202 will take 202 and 6 semester credit hours at the 300- or 400-level.

• Students placing out of 101, 102, 201 and 202 will take 6 semester credit hours at the 300- or 400-level.

International Experience Requirements
The International Experience must generate at least 3 hours of Texas A&M University credit. Departmental approval is required before travel. Any international experience that does not meet these criteria will not count toward the degree. International Experience must be completed prior to admission into the 5-year Degree Program.

• Must be at least one long semester or one 10-week summer approved experience.

• Must be taken after completion of 100- and 200-level language requirement and INTS 201.

• Must be completed before student is eligible to enroll in INTS 481, INTS 491 or INTS 497.

• Must be an immersion experience in the foreign culture and language, which can be satisfied by:
 - An internship at a company, government agency or non-profit operation involving significant use of the foreign language. Three hours of INTS 484 elective credit can be given.
 - Courses taken at a foreign university. Courses may count for Texas A&M University credit with approval of the advisor of the relevant department. These courses cannot apply to the International Studies core. One course must be taken in the foreign language at the 300- or 400-level.
 - Selected Texas A&M University Study Abroad programs which involve intensive cultural and language immersion.
 - A combination of the above to equal the requirement of a long semester or a 10-week summer-approved experience.
 - Must be taken outside of the student's country of origin.
 - Must be taken in one foreign country that matches with the foreign language and the area study requirement unless approved by the department head before travel.

Other courses may qualify for the college and university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or in the International Studies Degree Program Office. The list incorporates University Core Curriculum requirements. No course can be counted in more than one category, except as allowed in the International and Cultural Diversity and Cultural Discourse graduation requirement.

Modern Languages - BA, French Option
The BA in Modern Languages (MODL) supports and advances students' international and global competencies. Students can choose to major in French, German, or Russian. Courses are designed to offer students extended study of the languages, literatures, social histories, and cultures of these language communities.

The careful combination of foreign language skills with other curricula enhances preparation for careers in industry, government, academia and the non-profit sectors. Teaching certification is available to majors through the College of Education and Human Development.

In addition to classes at the College Station campus, the department offers summer study abroad programs for credit. Departmental faculty and advising staff also work closely with students to match their interests with semester and full-year programs abroad.

Students will be required to complete, by coursework or placement test, all 100- and 200-level courses in sequence. Once a student has received credit for a higher-level language course, the student is no longer eligible to receive credit for prerequisite courses.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>FREN 201 Intermediate French I</td>
<td>3</td>
</tr>
<tr>
<td>or FREN 221 or Field Studies I</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 203 Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FREN 202 Intermediate French II</td>
<td>3</td>
</tr>
<tr>
<td>or FREN 222 or Field Studies II</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>General elective or minor</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>FREN 300-499 (p. 998)</td>
<td>3</td>
</tr>
<tr>
<td>FREN 300-499 (p. 998)</td>
<td>3</td>
</tr>
</tbody>
</table>
Results may fulfill a maximum of 14 semester credit hours.

Students entering Modern Languages - French take a placement exam to determine the level of and number of required French courses. Exam results may fulfill a maximum of 14 semester credit hours.

Students placing out of 101, 102, 201 and 202 will take 27 semester credit hours at the 300- or 400-level.

Minor Field of Study

All Modern Language majors must select a minor field of study from departments or divisions within or outside of the College of Liberal Arts or in a particular area of interest (as in the case of interdisciplinary minors). The minor will consist of a minimum of 15 hours of coursework, as defined by the minor department. No more than 9 credit hours may be at the 100-299 level. Interdisciplinary minors such as women’s and gender studies, classical studies, religious studies, and business have specific requirements; students should consult undergraduate advisors in these areas of study. A second major may substitute for the minor. Courses used to meet the minor requirements may not be used in the major. See also the statement on ‘Minor Field of Study’ under the general requirements of the College of Liberal Arts. In general, the careful combination of foreign language skills with other major curricula enhances preparation for careers in business, industry and government. Teaching certification is available to majors through the College of Education and Human Development. Consult the College of Education and Human Development section under secondary teacher certification for additional information.

Any departmental major must earn a C or better in all major and minor coursework.

Other courses may qualify for the college and university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts. The lists incorporate University Core Curriculum requirements. No course can be counted in more than one category.

Modern Languages - BA, German Option

The BA in Modern Languages (MODL) supports and advances students’ international and global competencies. Students can choose to major in French, German, or Russian. Courses are designed to offer students extended study of the languages, literatures, social histories, and cultures of these language communities.

The careful combination of foreign language skills with other curricula enhances preparation for careers in industry, government, academia and the non-profit sectors. Teaching certification is available to majors through the College of Education and Human Development.

In addition to classes at the College Station campus, the department offers summer study abroad programs for credit. Departmental faculty and advising staff also work closely with students to match their interests with semester and full-year programs abroad.

Students will be required to complete, by coursework or placement test, all 100- and 200-level courses in sequence. Once a student has received credit for a higher-level language course, the student is no longer eligible to receive credit for prerequisite courses.
Program Requirements

First Year
Fall
ENGL 104 Composition and Rhetoric 3
Government/Political science (p. 30) 3
Mathematics (p. 26) 3
General elective 4 1
General elective 4 1
Semester Credit Hours 14
Spring
American history (p. 29) 3
Creative arts (p. 29) 3
Life and physical sciences (p. 26) 3
Literature directed elective (p. 532) 3
General elective 4 4
Semester Credit Hours 16
Second Year
Fall
Select one of the following: 2, 3
GERM 201 Intermediate German I 3
GERM 204 Intensive Intermediate German 3
GERM 221 Field Studies I 3
Select one of the following: 3
COMM 203 Public Speaking 3
COMM 205 Communication for Technical Professions 3
COMM 243 Argumentation and Debate 3
ENGL 203 Writing about Literature 3
ENGL 210 Technical and Business Writing 3
Language, philosophy and culture (p. 27) 3
Social and behavioral sciences (p. 30) 3
Literature directed elective (p. 532) 3
Semester Credit Hours 15
Spring
Select one of the following: 2, 3
GERM 202 Intermediate German II 3
GERM 222 Field Studies II 3
GERM 204 Intensive Intermediate German 3
American history (p. 29) 3
Government/Political science (p. 30) 3
Life and physical sciences (p. 26) 3
General elective or minor 4 3
Semester Credit Hours 15
Third Year
Fall
Study Abroad 5
GERM 300-499 (p. 1010) 3
Semester Credit Hours 15

General elective 3
Spring
GERM 310 Composition 3
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 3
Minor 4 3
General elective 3
Semester Credit Hours 15
Fourth Year
Fall
GERM 315 Literary Investigations: German Short Fiction 3
GERM 400-499 (p. 1010) 3
Mathematics (p. 26) 3
Minor 4 3
Minor 4 3
Semester Credit Hours 15
Spring
GERM 300-499 (p. 1010) 3
GERM 400-499 (p. 1010) 3
Minor 4 3
Minor 4 3
General elective 3
Semester Credit Hours 15
Total Semester Credit Hours 120

1 At least three hours must be in MATH. Three hours may be PHIL 240.
2 GERM 101 and GERM 102 are prerequisites for intermediate GERM courses and will count as general electives in the degree plan. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.
3 Two-semester or one-semester sequence of Intermediate German is required. Select from GERM 201 & GERM 202, GERM 221 & GERM 222, GERM 204
4 See the Minor Field of Study paragraph.
5 See the Study Abroad Requirement paragraph.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Foreign Language Requirement

Students entering Modern Languages - German take a placement exam to determine the level of and number of required German courses. Exam results may fulfill a maximum of 14 semester credit hours.

• Students placed in 101 will take 101, 102, 201 and 202 and 27 semester credit hours at the 300- or 400-level.
• Students placed in 102 will take 102, 201 and 202 and 27 semester credit hours at the 300- or 400-level.
• Students placed in 201 will take 201 and 202 and 27 semester credit hours at the 300- or 400-level.
• Students placed in 202 will take 202 and 27 semester credit hours at the 300- or 400-level.
• Students placing out of 101, 102, 201 and 202 will take 27 semester credit hours at the 300- or 400-level.

Minor Field of Study
All Modern Language majors must select a minor field of study from departments or divisions within or outside of the College of Liberal Arts or in a particular area of interest (as in the case of interdisciplinary minors). The minor will consist of a minimum of 15 hours of coursework, as defined by the minor department. No more than 9 credit hours may be at the 100-299 level. Interdisciplinary minors such as women’s and gender studies, classical studies, religious studies, and business have specific requirements; students should consult undergraduate advisors in these areas of study. A second major may substitute for the minor. Courses used to meet the minor requirements may not be used in the major. See also the statement on ‘Minor Field of Study’ under the general requirements of the College of Liberal Arts. In general, the careful combination of foreign language skills with other major curricula enhances preparation for careers in business, industry and government. Teaching certification is available to majors through the College of Education and Human Development. Consult the College of Education and Human Development section under secondary teacher certification for additional information.

Study Abroad Requirement
All German majors are required to study for one semester or summer in a German-speaking country approved by the department.

Any departmental major must earn a C or better in all major and minor coursework.

Other courses may qualify for the college and university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts. The lists incorporate University Core Curriculum requirements. No course can be counted in more than one category.

Modern Languages - BA, Russian Option
The BA in Modern Languages (MODL) supports and advances students’ international and global competencies. Students can choose to major in French, German, or Russian. Courses are designed to offer students extended study of the languages, literatures, social histories, and cultures of these language communities.

The careful combination of foreign language skills with other curricula enhances preparation for careers in industry, government, academia and the non-profit sectors. Teaching certification is available to majors through the College of Education and Human Development.

In addition to classes at the College Station campus, the department offers summer study abroad programs for credit. Departmental faculty and advising staff also work closely with students to match their interests with semester and full-year programs abroad.

Students will be required to complete, by coursework or placement test, all 100- and 200-level courses in sequence. Once a student has received credit for a higher-level language course, the student is no longer eligible to receive credit for prerequisite courses.

Program Requirements

First Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 201</td>
<td>Intermediate Russian I</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 221</td>
<td>Field Studies I</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 202</td>
<td>Intermediate Russian II</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 222</td>
<td>Field Studies II</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective or minor</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 301</td>
<td>Advanced Grammar and Composition I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RUSS 441/ EURO 441</td>
<td>The Russian Novel I: Tolstoy and Dostoevsky</td>
<td></td>
</tr>
<tr>
<td>RUSS 442/ EURO 442</td>
<td>The Russian Novel II: The Twentieth Century</td>
<td></td>
</tr>
<tr>
<td>RUSS 443/ EURO 443</td>
<td>Contemporary Russian Prose</td>
<td></td>
</tr>
</tbody>
</table>
Minor Field of Study

All Modern Language majors must select a minor field of study from departments or divisions within or outside of the College of Liberal Arts or in a particular area of interest (as in the case of interdisciplinary minors). The minor will consist of a minimum of 15 hours of coursework, as defined by the minor department. No more than 9 credit hours may be at the 100-299 level. Interdisciplinary minors such as women’s and gender studies, classical studies, religious studies, and business have specific requirements; students should consult undergraduate advisors in these areas of study. A second major may substitute for the minor. Courses used to meet the minor requirements may not be used in the major. See also the statement on ‘Minor Field of Study’ under the general requirements of the College of Liberal Arts. In general, the careful combination of foreign language skills with other major curricula enhances preparation for careers in business, industry and government. Teaching certification is available to majors through the College of Education and Human Development. Consult the College of Education and Human Development section under secondary teacher certification for additional information.

Any departmental major must earn a ‘C’ or better in all major and minor coursework.

Other courses may qualify for the college and university requirements categories. Students should consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts. The lists incorporate University Core Curriculum requirements. No course can be counted in more than one category.

Arabic Studies - Minor

The minor in Arabic Studies is an academic program open to all students in the university. The minor is interdisciplinary in nature and combines courses in Arabic language and culture with electives in Arabic studies, as well as a capstone project. The minor is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, Arabic Studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Students must complete ARAB 101 and ARAB 102 before they may declare a minor in Arabic Studies.

Foreign Language

Students entering Modern Languages - Russian take a placement exam to determine the level of and number of required French courses. Exam results may fulfill a maximum of 14 semester credit hours.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 444/</td>
<td>Russian Drama</td>
<td>3</td>
</tr>
<tr>
<td>EURO 444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 302</td>
<td>Advanced Grammar and Composition II</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 446/</td>
<td>Russian Artistic Culture I: Beginnings to</td>
<td>3</td>
</tr>
<tr>
<td>EURO 446</td>
<td>Russian Artistic Culture II: 1890 to Present</td>
<td></td>
</tr>
<tr>
<td>or RUSS 447/</td>
<td>or Russian Artistic Culture I: 1890 to Present</td>
<td></td>
</tr>
<tr>
<td>EURO 447</td>
<td>or Russian Artistic Culture II: 1890 to Present</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 410</td>
<td>Seminar in Russian Studies</td>
<td>3</td>
</tr>
<tr>
<td>Russian elective 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Russian elective 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 444/</td>
<td>Russian Drama</td>
<td>3</td>
</tr>
<tr>
<td>EURO 444</td>
<td>Russian Artistic Culture I: Beginnings to</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 447/</td>
<td>or Russian Artistic Culture II: 1890 to Present</td>
<td></td>
</tr>
<tr>
<td>EURO 447</td>
<td>or Russian Artistic Culture II: 1890 to Present</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1. At least three hours must be in MATH. Three hours may be PHIL 240.
2. RUSS 101 and RUSS 102 are prerequisites for intermediate RUSS courses and will count as general electives in the degree plan. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See the Foreign Language paragraph.
3. See the Minor Field of Study paragraph.
4. Select from RUSS 203-220 (p. 1136), RUSS 223-499 (p. 1136), up to 6 hours of EURO 440-449 (p. 989).
Program Requirements

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 202</td>
<td>Intermediate Arabic II</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARAB 301</td>
<td>Reading and Composition</td>
<td></td>
</tr>
<tr>
<td>ARAB 302</td>
<td>Reading and Composition II</td>
<td></td>
</tr>
<tr>
<td>ARAB 321</td>
<td>Business Arabic</td>
<td></td>
</tr>
<tr>
<td>ARAB 323</td>
<td>Media Arabic</td>
<td></td>
</tr>
<tr>
<td>ARAB 491</td>
<td>Research (Capstone course)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>Select two of the following:</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 221</td>
<td>Introduction to Arabic Language and Society</td>
<td></td>
</tr>
<tr>
<td>ARAB 400 to 489 (p. 900)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG 320</td>
<td>The Middle East</td>
<td></td>
</tr>
<tr>
<td>HIST 221/RELS 221</td>
<td>History of Islam</td>
<td></td>
</tr>
<tr>
<td>HIST 347/RELS 347</td>
<td>Rise of Islam, 600-1258</td>
<td></td>
</tr>
<tr>
<td>HIST 348</td>
<td>Modern Middle East</td>
<td></td>
</tr>
<tr>
<td>INTS 251</td>
<td>Contemporary Issues in the Middle East</td>
<td></td>
</tr>
<tr>
<td>INTS 321/RELS 321/HUMA 321</td>
<td>Political Islam and Jihad</td>
<td></td>
</tr>
<tr>
<td>INTS 484</td>
<td>Directed Internship (in an Arabic-speaking country)</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 18 |

Students must earn a “C” or better in all minor coursework.

Capstone Project

A capstone project that is completed in an approved upper-division Arabic Studies course is required of all students pursuing a minor in Arabic Studies during their final year of the program. It consists of a substantial research paper (15–20 pages) on an original topic and is conducted under the direction of a faculty member with the approval of the departmental advisors. Through the capstone course and project, students get a chance to integrate their classroom knowledge about the Arab world and use their study-abroad experiences and internships in an Arabic-speaking country, if any, to address an issue of interest to them. Issues that students can choose to address could be of linguistic, cultural, historical, religious, or political nature, among others. Upon its completion, and in coordination with the departmental advisors, the final project will be presented orally to Arabic classes in order to maximize its benefits.

Asian Studies - Minor

The minor in Asian Studies is an academic program open to all students in the university. The minor is interdisciplinary in nature and includes Asian Studies courses in the humanities and the social sciences, as well as a capstone project. The minor is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile.
Please see the departmental advisors for electives and curricular offerings.

Chinese - Minor

The minor in Chinese is an academic program open to all students in the university. The minor is interdisciplinary in nature and combines courses in Chinese language and culture with electives in Chinese studies, as well as a capstone project. The minor is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, Chinese studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHIN 201</td>
<td>Intermediate Chinese I</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 202</td>
<td>Intermediate Chinese II</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 301</td>
<td>Reading and Composition</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 302</td>
<td>Reading and Composition II</td>
<td>3</td>
</tr>
<tr>
<td>CHIN 491</td>
<td>Research (Capstone course)</td>
<td>3</td>
</tr>
<tr>
<td>Elective Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLS 306</td>
<td>Contemporary Political Problems and Issues</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Students must earn a 'C' or better in all minor coursework.

Capstone Project

The capstone project allows students to integrate knowledge and skills about topics pertaining to Chinese language, culture, history, geography, etc. that they have gained through their coursework, including any study abroad experience in China. Students will consult with the faculty in Chinese and meet regularly with a faculty advisor to complete an independent research project about a topic of their interest pertaining to China.

Classical Studies - Minor

The Minor in Classical Studies is an academic program open to all students in the university. The minor is interdisciplinary in nature and combines courses in Greek or Latin language with electives in multiple disciplines. The focus on the history, beliefs, and material culture of ancient Greek and Roman civilization helps students to see how fundamental concepts of Western Civilization first arose in Classical Antiquity, and is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS 221</td>
<td>Intermediate Latin I</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS 222</td>
<td>Intermediate Latin II</td>
<td>3</td>
</tr>
<tr>
<td>CLAS 320 to 329 (p. 935)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select four of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 317/ Introduction to Biblical Archaeology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RELS 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 434 The Role of Sculpture and Painting in Ancient Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CLAS 220 History of Christianity: Origins to the Reformation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CLAS 250 to 499 (p. 935)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 410 Classical Philosophy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

At least 9 hours must be at the 300-499 level.

Students must earn a 'C' or better in all minor coursework.

French - Minor

The Minor in French is an academic program open to all students in the university. The minor combines courses in French language and culture, and is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS 221</td>
<td>Intermediate Latin I</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS 222</td>
<td>Intermediate Latin II</td>
<td>3</td>
</tr>
<tr>
<td>or FREN 221 or Field Studies I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAS 320 to 329 (p. 935)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electives

Select four of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 317/ Introduction to Biblical Archaeology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RELS 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCH 434 The Role of Sculpture and Painting in Ancient Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CLAS 220 History of Christianity: Origins to the Reformation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CLAS 250 to 499 (p. 935)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 410 Classical Philosophy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must earn a 'C' or better in all minor coursework.
German - Minor

The Minor in German is an academic program open to all students in the university. The minor combines courses in German language and culture, and is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, German studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERM 201</td>
<td>Intermediate German I</td>
<td>3</td>
</tr>
<tr>
<td>or GERM 221</td>
<td>or Field Studies I</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERM 202</td>
<td>Intermediate German II</td>
<td>3</td>
</tr>
<tr>
<td>or GERM 222</td>
<td>or Field Studies II</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERM 204</td>
<td>Intensive Intermediate German</td>
<td>3</td>
</tr>
<tr>
<td>GERM 310</td>
<td>Composition</td>
<td>3</td>
</tr>
<tr>
<td>or GERM 315</td>
<td>or Literary Investigations: German</td>
<td></td>
</tr>
<tr>
<td>Short Fiction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERM 300 to 499 (p. 1010)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must make a grade of C or better.

Japanese - Minor

The Minor in Japanese is an academic program open to all students in the university. The minor is interdisciplinary in nature and combines courses in Japanese language and culture with electives in Japanese studies, as well as a capstone project. The minor is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, Japanese studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAPN 201</td>
<td>Intermediate Japanese I</td>
<td>4</td>
</tr>
<tr>
<td>JAPN 202</td>
<td>Intermediate Japanese II</td>
<td>4</td>
</tr>
<tr>
<td>JAPN 301</td>
<td>Upper Level Japanese I</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 302</td>
<td>Upper Level Japanese II</td>
<td>3</td>
</tr>
<tr>
<td>JAPN 491</td>
<td>Research</td>
<td>1</td>
</tr>
</tbody>
</table>

Elective Course

Select one of the following:\footnote{1} 3

- FILM 481 Seminar in Film Studies
- HIST 350/ASIA 350 World War II in Asia and the Pacific
- HIST 352/ASIA 352 Modern East Asia
- HIST 356/ASIA 356 Twentieth Century Japan
- JAPN 325 Japanese Language and Culture through Manga
- SOCI 329 Pacific Rim Business Behavior
- SOCI 463 Gender in Asia

Total Semester Credit Hours 18

\footnote{1} Other elective courses may be chosen in consultation with the departmental advisors.

Students must make a grade of C or better in all minor coursework.

Capstone Project

A capstone project completed in an approved upper-division Japanese course is required of all students pursuing a minor in Japanese during their final year of the program. The capstone project allows students to integrate knowledge and skills about topics pertaining to Japanese language, culture, history, geography, etc. that they gained through their previous classes, study abroad experience in Japan, or personal readings. Students will consult and regularly meet with an advisor to complete a reading/writing assignment about a topic of their interest pertaining to Japan.

Italian - Minor

The Minor in Italian is an academic program open to all students in the university. The minor combines courses in Italian language and culture, and is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, Italian studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITAL 201</td>
<td>Intermediate Italian I</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 202</td>
<td>Intermediate Italian II</td>
<td>3</td>
</tr>
<tr>
<td>ITAL 303</td>
<td>Composition and Conversation</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>ITAL 300 to 499 (p. 1037)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

Students must make a grade of C or better in all minor coursework.
Russian - Minor

The Minor in Russian is an academic program open to all students in the university. The minor combines courses in Russian language and culture, and is a valuable complement to the academic portfolio of any student majoring in the humanities, social sciences, or natural sciences, who wishes to add an international dimension to their intellectual profile. In addition, Russian studies faculty offer study abroad programs in order to enrich student learning experiences and cultural knowledge while helping students attain higher proficiency in the language.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSS 201</td>
<td>Intermediate Russian I</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 221</td>
<td>or Field Studies I</td>
<td></td>
</tr>
<tr>
<td>RUSS 202</td>
<td>Intermediate Russian II</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 22</td>
<td>or Field Studies II</td>
<td></td>
</tr>
<tr>
<td>RUSS 301</td>
<td>Advanced Grammar and Composition I</td>
<td>3</td>
</tr>
<tr>
<td>or RUSS 302</td>
<td>or Advanced Grammar and Composition II</td>
<td></td>
</tr>
<tr>
<td>RUSS 446/</td>
<td>Russian Artistic Culture I:</td>
<td>3</td>
</tr>
<tr>
<td>EURO 446</td>
<td>Beginnings to 1900</td>
<td></td>
</tr>
<tr>
<td>or RUSS 44</td>
<td>or Russian Artistic Culture II: 1890</td>
<td></td>
</tr>
<tr>
<td>EURO 447</td>
<td>to Present</td>
<td></td>
</tr>
<tr>
<td>RUSS 211</td>
<td>Russian Conversation</td>
<td>3</td>
</tr>
<tr>
<td>RUSS 300</td>
<td>to 499 (p. 1136)</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two from the following: 6

Total Semester Credit Hours 18

Students must earn a 'C' or better in all minor coursework.

Proficiency in Arabic - Certificate

The Certificate of Proficiency in Arabic is a certificate for students studying Arabic at Texas A&M who are aspiring to reach an advanced level of proficiency in the language. The Certificate is open to undergraduate students from any college and any major.

In addition to maintaining a minimum passing grade in all required courses, students pursuing the Certificate are required to take the Oral Proficiency Interview (OPI) test. Students must demonstrate a minimum of Advanced Low (AL) on the OPI in order to receive the Certificate of Proficiency in Arabic.

- The Oral Proficiency Interview (OPI) is a language test developed by the American Council for the Teaching of Foreign Languages (ACTFL) and consists of a 30-40-minute interview. It is designed to assess how well a person speaks a language independently, regardless of how, where, why and for how long they have studied it.

In order to be awarded the Certificate of Proficiency in Arabic, students must take the Oral Proficiency Interview (OPI) test and be rated a ranking of at least 'Advanced Low.'

Department of Performance Studies

In the Department of Performance Studies at Texas A&M University, students use performance to understand and change the world. Performance Studies is an inquiry-based humanities field that examines relationships between performance and culture. We study performance on an expanded field. Performance Studies investigates traditional art forms such as music, theatre, and dance as well as a range of cultural expressions such as ritual, festivals, games and sports, parades, storytelling, dress, social arts, and mass media. Performance studies is a research discipline in which performance is at once the object we research, a frame we use to see the world, and a unique set of artistic practices we use to generate new answers to fundamental questions facing humankind.

Our programs provide flexible and interdisciplinary approaches to the study and practice of performance. The Department’s vibrant faculty works on varied performances in a wide range of cultural contexts. We bring our expertise to bear on the study of music and sound, theater, performance art, politics, dance and movement, gender and sexuality, technology, race, and religion.

Students in the Department study art making, theory, and history, and use performance as a method of inquiry. Through performance, students engage creatively with the world around them in an ongoing process of investigation and meaning-making. In the course of their work in the Performance Studies BA, students will develop a perspective on artistic practice that crosses genres; the ability to think independently, work collaboratively, and solve problems creatively; and a commitment to the performing arts as socially engaged practice.

The BA in Performance Studies provides a foundation for careers that combine skills and knowledge gained in the study, practice, and critical analysis of performance. In the 21st century, this describes many paths a Performance Studies graduate may take. In performance studies our goal is to make scholars and artists with a keen sense of how to use performance to advance their goals and solve problems. To this end, we train our students to be creative leaders in whatever field they choose.

A background in Performance Studies provides an unparalleled foundation for those looking to make their way as artists and performers; for those seeking careers in business, public service, law, medicine, advocacy, journalism, and so on; and for those who plan to continue on to graduate study in the humanities.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARAB 301</td>
<td>Reading and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 302</td>
<td>Reading and Composition II</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 321</td>
<td>Business Arabic</td>
<td>3</td>
</tr>
<tr>
<td>ARAB 323</td>
<td>Media Arabic</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 12
Faculty

Ball III, James R, Assistant Professor
Performance Studies
PHD, New York University, 2012

Cardoso De Cardoso, Leonardo, Assistant Professor
Performance Studies
PHD, University of Texas at Austin, 2013
MMJ, University of Texas at Austin, 2010

Dexter, Rayna M, Instructional Assistant Professor
Performance Studies
MFA, Kent State University, 2009

Donkor, David A, Associate Professor
Performance Studies
PHD, Northwestern University, 2008

Dox, Donnalee, Professor
Performance Studies
PHD, University of Minnesota, Twin Cities, 1995

Gariazzo, Mariana S, Instructional Assistant Professor
Performance Studies
PHD, University of Texas, 2005

Imhoff, Andrea G, Instructional Assistant Professor
Performance Studies
MA, University of Illinois at Urbana Champaign, 1992

Kattari, Kimberly A, Associate Professor
Performance Studies
PHD, University of Texas at Austin, 2011
MMJ, University of Texas at Austin, 2005

Lieuwen, Peter E, Professor
Performance Studies
PHD, University of California at Santa Barbara, 1984

Morris, Jeffrey M, Associate Professor
Performance Studies
PHD, University of North Texas, 2007

Quackenbush Ammons, Anne E, Lecturer
Performance Studies
MA, University of Houston, 2010

Regan, Martin P, Associate Professor
Performance Studies
PHD, University of Hawai‘i at Manoa, 2006

Spalink, Angenette Marie, Assistant Professor
Performance Studies
PHD, Bowling Green State University, 2014

Wilborn, David F, Associate Professor
Performance Studies
PHD, University of Texas, 1994

Minors

- Performance Studies Minor (p. 626)

Performance Studies - BA

The BA in Performance Studies offers an interdisciplinary, liberal arts approach to the study of performance. Our BA provides a foundation in critical reflection, analysis, and creative practice from which students can launch a variety of careers. In their core Performance Studies courses, BA Students are immersed in performance theory, learn the craft of creating live performance, and cultivate essential research and writing skills to be successful citizens, scholars, and artists in the 21st century.

Four Pillars of the BA in Performance Studies

Performance as Research

In Performance Studies, we embrace the fact that live, embodied performance provides a unique way to know and understand the world. We value and champion such repertoires of knowledge alongside the many other ways of knowing represented in institutions of higher education. Students in our BA program use performance as method for conducting research. In every Performance Studies class, students perform: they stage plays and concerts, conduct ethnographic research, make films and podcasts, or present their scholarship to varied audiences. They do this to embrace the fact that a musician, an actor, a dancer, or performer of any stripe knows the world differently by virtue of their performance practice. We train our BA students to translate that knowledge into a format which can be shared widely and effectively.

Intercultural Performance Practices

We live in a globalized world and prepare our students to be global leaders. We privilege performance as a location of intercultural encounter. We bring artists from around the world to campus to work with our students, and we equip our students with the tools they need to be responsible global citizens.

Performance and Technology

We emphasize the intersection of performance and technology. We equip students both to take advantage of technological advances in their creative and professional lives, and to recognize the risks and rewards technology can provide to our communities. Students study the latest developments in digital music-making, virtual reality filmmaking, acoustic surveillance, and so on. Our Performance and Technology pillar prepares students for life in the 21st century.

Performing Communities

We value the use of performance to create and circulate knowledge for and within our communities. Students in our BA program can take classes that study arts administration and work with non-profit organizations, that investigate performance in public institutions as varied as the City Council and the United Nations, and that focus on performance practices in museums, journalism, and so on. We foster the development of informed and responsible citizens who use performance to serve their communities and the wider world.
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>PERF 101</td>
<td>Introduction to Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ¹</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 103</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language ¹</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies elective ³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>PERF 301</td>
<td>Performance in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language ¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>Foreign language ¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies elective ³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies seminar ⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>PERF 303</td>
<td>Creating Performance</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies seminar ⁴</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies elective ³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies seminar ⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>PERF 481</td>
<td>Capstone Seminar: Performance as Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Performance studies elective ³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective ²</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

2. Select from any 100-499 course not used elsewhere, up to 12 hours of courses from MUSC 300-499 (p. 1087), THAR 300-499 (p. 1158), or PERF 300-499 (p. 1105) may be applied.

4. Select from PERF 450, PERF 451, PERF 452, PERF 453, PERF 454, PERF 460, PERF 461.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

General Degree Requirements:

Minimum 2.0 GPA overall and a minimum 2.0 GPA in major coursework.

A grade of C or higher is required in all coursework within the major.

18 hours of major coursework completed at Texas A&M.

Complete 36 hours of upper division (300-400 level) hours in residence, 12 hours of which must be completed in major coursework.
Complete two PERF courses formally designated as writing or communication intensive. At least one course must be completed with the writing intensive designation.

Performance Studies - Minor

The minor in Performance Studies offers students the opportunity to engage the methods of performance studies and the practice of performance to enhance their other studies. In Performance Studies, we study performance on an expanded field: we investigate traditional art forms such as music, theatre, and dance, as well as a range of cultural expressions including ritual, festivals, games and sports, parades, storytelling, dress, social arts, technology, and mass media. Our courses combine scholarship and creative practice, research and performance. Performance Studies developed through a variety of interdisciplinary encounters: between theatre and anthropology, between music and philosophy, and so on. Minors in Performance Studies take up this same charge in their own courses of study, adding a performance perspective to their other academic inquiries, creative practices, and personal development.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERF 101</td>
<td>Introduction to Performance Studies</td>
<td>3</td>
</tr>
<tr>
<td>PERF 301</td>
<td>Performance in World Cultures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select from the following:</td>
<td></td>
</tr>
<tr>
<td>PERF 100 to 499 (p. 1105)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSC 100 to 499 (p. 1087)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THAR 100 to 499 (p. 1158)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Minimum of 6 hours at 300- to 400-level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum 2.7 GPA.</td>
<td></td>
</tr>
</tbody>
</table>

Department of Philosophy and Humanities

The Greek philosopher Socrates once said that the unexamined life is not worth living. For more than 2,000 years, philosophy has been the source of the most intensely reflective, influential and argued versions of that examination. The concerns of philosophy range from the arts, the methods and foundations of the sciences, politics, education, and religion to the complex questions relating to the meaning of reality, truth, values and the significance of human history. The study of philosophy is an essential dimension of a well-educated person.

Philosophy seeks to establish standards of evidence, provide rational methods of resolving conflicts, and create techniques for evaluating ideas and arguments. Philosophy develops the capacity to see the world from the perspectives of other individuals and other cultures; it enhances one's ability to perceive the relationships among the various fields of study; and it deepens one's sense of the meaning and variety of human experience.

Toward these ends the program in philosophy at Texas A&M is structured to provide students with the skills necessary to appreciate more fully the central concerns of human existence and develop abilities in problem-solving, communication, persuasion, writing, and critical thinking.

Students, along with parents and friends, often assume that the only undergraduates who major in philosophy are those who intend to pursue graduate degrees in philosophy, theology and law. The breadth of skills developed, however, makes the study of philosophy appropriate for students entering professional fields such as medicine, business and education, and for those preparing for graduate work in the humanities or the social sciences.

It should be stressed that the non-academic value of a field of study must not be viewed mainly in terms of its contribution to obtaining one's first job after graduation. Students are understandably preoccupied with getting their first job, but even from a narrow vocational point of view it would be short-sighted to concentrate on that at the expense of developing potential for success and advancement once hired. Factors leading to initial employment are not necessarily those that lead to promotions or beyond a first position. This is so because the needs of many employers alter with changes in social and economic patterns. It is therefore crucial to see beyond the specifics of a job description.

As this suggests, there are people trained in philosophy in just about every field. They have gone into not only such professions as teaching, medicine, and law, but also into computer science, management, publishing, sales, government service, criminal justice, public relations, and other fields.

Faculty

Bermudez Ospina, Jose L, Professor
PhD, Cambridge University, 1992

Brady, Emily, Professor
Philosophy & Humanities
PHD, University of Glasgow, 1992

Burch, Robert W, Professor
Philosophy & Humanities
PHD, Rice University, 1969

Conway, Daniel W, Professor
Philosophy & Humanities
PHD, University of California, San Diego, 1985

Daniel, Stephen H, Professor
Philosophy & Humanities
PHD, Saint Louis University, 1977

Easwaran, Kenneth K, Associate Professor
Philosophy & Humanities
PHD, University of California Berkeley, 2008

Ellis, Thomas H, Instructional Assistant Professor
Philosophy & Humanities
MA, Texas A&M University, 2009

Garcia, Robert K, Associate Professor
Philosophy & Humanities
PHD, University of Notre Dame, 2009

PHD, University of Notre Dame, 2009
Minors
- Philosophy Minor (p. 629)

Certificates
- Philosophy Pre-Law Certificate (p. 629)

Philosophy - BA

Curiosity matters! Philosophers and those who are philosophically minded have long asked key questions, evaluated possibilities and arrived at those answers that have shaped and reshaped who we are, how we do things, and how we understand the world in which we live. The study of philosophy is not the study of antiquated views. It is not the study and use of a single method. The study of philosophy transforms intellectual curiosity into a potent, flexible set of skills by inculcating the ability to identify unstated assumptions, to take a critical attitude towards the information that others accept, and to evaluate and articulate the reasons that compel us to do and believe things. Philosophy is what college is all about: delving deeply into subjects that matter to you, while cultivating skills that will carry you the rest of your life.

Educational economists, such as G. Duncan, remind us that jobs that pay well are increasingly requiring employees to be able to solve unexpected problems as team members. In a world that is typified by unpredictable and complex professions, professionals who can cross intellectual boundaries and make connections between previously discrete domains of knowledge are primed to resolve unexpected problems; they are primed to succeed. While there is no single path to success, there is a set of skills that can help solve unexpected problems. Creativity researchers have identified two key factors: breadth of learning and an aptitude for broad conceptual thinking. You cannot combine what you don't know and you cannot combine if you have not cultivated an ability to move freely among conceptual categories. Philosophy is among the best intellectual activities for cultivating creative, critical thinking. Indeed, philosophy students typically score among the top in entrance exams for graduate school (GRE), and professional schools for law (LSAT) and business (GMAT) within national rankings.

The Department of Philosophy supports breadth of learning and broad conceptual thinking while offering a degree program with maximum flexibility. At its core are a limited number of requirements including three courses in the history of philosophy. These courses enable students to step outside of their own world-view and learn how to understand and critique unfamiliar perspectives. Students also take a course in formal logic in fulfillment of one of their core math requirements. Formal logic requires that students use one of the highest forms of reasoning in the taxonomy of learning: creative thinking. There is no algorithm for constructing a formal proof. Students who study formal logic learn a system, and use that system to create their own proofs.

In addition to history and logic, students are free to select among a range of courses that allow them to better understand the limits of knowledge, the limits of scientific thinking, the theories behind our legal and political system, the foundations of ethics, and more. In addition to traditional course work, high-achieving students in philosophy can undertake a sustained research project in the form of an honor’s thesis, serve as Editor for our undergraduate journal, or complete internships either within the department or in other professional settings.

Students pursuing the BA in Philosophy have the option of pursuing early admission to Texas A&M’s School of Law. Under this plan, students
can complete both degrees in 6 years rather than 7 by double-counting 18 hours of first-year law classes towards both degrees. Participation requires formal application to and admission by the School of Law during year 3. Admission is fully at the discretion of the School of Law. Careful planning is key, so interested students should work closely with an advisor from their first semester of study.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 111</td>
<td>Contemporary Moral Issues</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHIL 205</td>
<td>Technology and Human Values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 208</td>
<td>Philosophy of Education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 251</td>
<td>Introduction to Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 252</td>
<td>Introduction to Hip-Hop Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFST 252</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 282</td>
<td>Ethics in a Digital Age</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 283</td>
<td>Latin American Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HUMA 304/ RELS 304</td>
<td>Indian and Oriental Religions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 410</td>
<td>Classical Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 411</td>
<td>Medieval Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Philosophy elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 414</td>
<td>Nineteenth Century Philosophy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHIL 415</td>
<td>American Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 416</td>
<td>Recent British and American Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 417</td>
<td>Phenomenology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHIL 418</td>
<td>Existentialism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Philosophy elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHIL 412</td>
<td>Seventeenth-Century Philosophy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or PHIL 413</td>
<td>or Eighteenth-Century Philosophy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philosophy elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Philosophy elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Philosophy elective</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
2. Philosophy courses can not be used to meet this requirement.
3. In consultation with an advisor select from PHIL 100-499 (p. 1110). At least four of the courses must be 300-400 level.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department
Students must make a grade of 'C' or better in all courses.

30 credits minimum. A grade of C or higher is required for a course to be counted in the major field.

Philosophy - Minor

Curiosity matters! Philosophers and those who are philosophically minded have long asked key questions, evaluated possibilities and arrived at those answers that have shaped and reshaped who we are, how we do things, and how we understand the world in which we live. The study of philosophy is not the study of antiquated views. It is not the study and use of a single method. The study of philosophy transforms intellectual curiosity into a potent, flexible set of skills by inculcating the ability to identify unstated assumptions, to take a critical attitude towards the information that others accept, and to evaluate and articulate the reasons that compel us to do and believe things. Philosophy is what college is all about: delving deeply into subjects that matter to you, while cultivating skills that will carry you the rest of your life.

Educational economists, such as G. Duncan, remind us that jobs that pay well are increasingly requiring employees to be able to solve unexpected problems as team members. In a world that is typified by unpredictable and complex professions, professionals who can cross intellectual boundaries and make connections between previously discrete domains of knowledge are primed to resolve unexpected problems; they are primed to succeed. While there is no single path to success, there is a set of skills that can help solve unexpected problems. Creativity researchers have identified two key factors: breadth of learning and an aptitude for broad conceptual thinking. You cannot combine what you don't know and you cannot combine if you have not cultivated an ability to move freely among conceptual categories. Philosophy is among the best intellectual activities for cultivating creative, critical thinking.

Students may earn a minor in Philosophy by taking 15 credit hours, of which 6 may be earned at the 100-200 level. This allows students maximum flexibility in choosing among our diverse set of courses. Students pursuing the minor are free to sample from the great breadth of philosophical topics (from philosophy of science to philosophy of art) or to dive deep on particular topics of interest (such as ethics, logic and metaphysics, or the history of philosophical thought).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 300 to 499 (p. 1110)</td>
<td>· Any course except PHIL 334 and PHIL 484, which may be used with departmental approval only.</td>
<td>9-15</td>
</tr>
<tr>
<td>PHIL 100 to 299 (p. 1110)</td>
<td>· Up to six semester credit hours may be selected from PHIL 100 - PHIL 299 (p. 1110).</td>
<td>0-6</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Students must make a grade of 'C' or better in all courses.

Philosophy Pre-Law - Certificate

The Department of Philosophy offers a Pre-law Certificate that is primarily guided by the published recommendations of the American Bar Association (A.B.A.). The A.B.A encourages prospective law students to pursue classes that cultivate a set of skills that will enhance the study of law. To this end, Philosophy's Pre-law Certification requires that students take classes that typically cultivate the A.B.A's recommended skill set:

1. Problem Solving involves "courses and other experiences that will engage [students] in critical thinking about important issues, challenge ... beliefs and improve ... tolerance for uncertainty and criticism.”
2. Critical Reading involves "close reading and critical analysis of complex textual material.
3. Writing and Editing involves "preparing original pieces of substantial length and revising written work in response to constructive criticism. [...] Language is the most important tool of a lawyer, and lawyers must learn how to express themselves clearly and concisely."
4. Oral Communication and Listening involves "the ability to speak clearly and persuasively... and excellent listening skills."
5. Research involves "undertaking a project that requires significant library research and the analysis of large amounts of information obtained from that research."

The Certification requires students to take 12 hours of classes, including courses in communication, logic, and political and legal philosophy. Students pursuing the certificate must enroll through an advisor before completing 105 credit hours. As they complete the certificate, students must enroll in 0 credit hours of PHIL 491. The only requirement for this section of PHIL 491 is the submission of a philosophical writing sample, which may be a piece of writing previously submitted for PHIL 332 or PHIL 334.

1 http://www.americanbar.org/groups/legal_education/resources/pre_law.html

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 332</td>
<td>Social and Political Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 334</td>
<td>Philosophy of Law</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 491</td>
<td>Research</td>
<td>0</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1 Must earn a grade of C or higher.
2 Must be taken after or concurrent with the completion of the other credit hours for the certificate. Students must submit a philosophical writing sample, which may be a piece of writing previously submitted for PHIL 332 or PHIL 334.
3 Students must sign up for the certificate through an advisor before completing 105 credit hours.
Department of Political Science

Political science is a social science that investigates collective decision-making. It is concerned with governments, individuals’ attitudes and choices, and the interactions between governing institutions and mass behavior. Among other things, political science addresses power, authority, influence, identity, ethics, law, liberty, justice, wealth, and violence.

The study of political science introduces students to a powerful set of analytical tools for understanding interactions within and among groups of people. These include systematic knowledge of recurring patterns and problems in political life and methods for collecting and analyzing data and other forms of evidence. Studying political science also cultivates critical thinking and effective communication and prepares students for active citizenship, professional success, and lifelong learning.

Undergraduate Courses

The Department of Political Science offers courses in all facets of the discipline: American Politics, International Relations, Comparative Politics, Political Theory, Political Methodology, Public Administration and Policy, and Race and Ethnic Politics.

American Politics

American politics involves the study of the institutions of national government, law, mass political behavior, elections, political communication and media, interest groups, political parties, state and local governments, urban politics, and identity in politics in the United States.

International Relations

International relations involve the study of relations between the governments of the world. Courses are offered in world politics, American foreign relations, and national security policy.

Comparative Politics

This area of political science allows students to develop an in-depth understanding of foreign governments and politics. Courses are offered in European governments, Latin American governments, Asian governments, Russia and the former Soviet states, and in the politics of inequality and globalization.

Political Theory

The study of political theory provides students with an understanding of the fundamental relationships between governments and people. Courses range from the study of Greek antiquity to contemporary political ideologies.

Public Administration and Policy

This area of political science encompasses the study of public administration and the role of public policy in American politics. Study in this area will provide the student with the opportunity to understand the fundamentals of administration within a political environment. Courses are offered in bureaucracy and administration, state and local finance, urban administration, and government and the economy.

Political Methodology

These courses introduce students to scientific research design, statistical analysis, and game theory.

Race and Ethnic Politics

These courses provide the student with an in-depth understanding of the role of diversity in politics.

5-Year Combined Degree Programs

The Political Science Department offers a combined degree program in conjunction with the Bush School of Government and Public Service. This program enables students to receive either a B.A. or B.S. in political science and a Master of Public Service and Administration (MPSA) degree in five years.

The Political Science Department also offers a joint degree program in conjunction with the University of Essex. This program enables students to receive either a B.A. or B.S. in political science and a Master of Arts or a Master of Science in Political Science in four and a half years.

Honors Program

The Department of Political Science participates actively in the University honors program. Honors courses are available in all areas of political science. In addition, students may graduate with honors distinction in political science. Honor students also are offered individual instruction under POLS 497. Students interested in the Department’s Honors Program should contact the Political Science Undergraduate Programs Office.

Teacher Certification

Students desiring certification to teach civics or government in secondary schools in Texas must meet special additional requirements. More complete information on requirements for teacher certification may be found in the College of Education and Human Development section under secondary certification.

Faculty

Betz, Timm L, Associate Professor
Political Science
PHD, University of Michigan, 2015

Bond, Jon R, Professor
Political Science
PHD, University of Illinois at Urbana - Champaign, 1978

Bragg, Belinda L, Lecturer
Political Science
PHD, Texas A&M University, 2006

Cheibub, Jose A, Professor
Political Science
PHD, University of Chicago, 1994

Clark, William, Professor
Political Science
PHD, Rutgers University, 1994

Cook, Scott J, Associate Professor
Political Science
PHD, University of Pittsburgh, 2014
Crisman-Cox, Casey, Assistant Professor
Political Science
PHD, University of Rochester, 2016

Dyer, Megan K, Lecturer
Political Science
PHD, Texas A&M University, 2017

Escobar-Lemmon, Maria, Professor
Political Science
PHD, The University of Arizona, 2000

Fortunato, David, Associate Professor
Political Science
PHD, Rice University, 2012

Fuhrmann, Matthew C, Professor
Political Science
PHD, University of Georgia, 2008

Fulton, Sarah A, Associate Professor
Political Science
PHD, University of California, Davis, 2006

Geva, Nehemia, Associate Professor
Political Science
PHD, Ohio State University, 1977

Harmel, Robert, Professor
Political Science
PHD, Northwestern University, 1977

Hollenbach, Florian M, Assistant Professor
Political Science
PHD, Duke University, 2015

Horz, Carlo, Assistant Professor
Political Science
PHD, New York University, 2017

Ives, Anthony Lister, Instructional Assistant Professor
Political Science
PHD, University of Texas at Austin, 2018

Jo, Hyeran, Associate Professor
Political Science
PHD, University of Michigan, 2008

Kellstedt, Paul M, Professor
Political Science
PHD, University of Minnesota, Twin Cities, 1996

Koch, Michael T, Associate Professor
Political Science
PHD, University of California, Davis, 2002

Lewis, Dominique H, Lecturer
Political Science
PHD, Michigan State University, 2017

Li, Quan, Professor
Political Science
PHD, Florida State University, 1998

Lim, Phaik S, Senior Lecturer
Political Science
PHD, University of Houston, 2003

Lipsmeyer, Christine S, Professor
Political Science
PHD, Vanderbilt University, 1999

Nederman, Cary J, Professor
Political Science
PHD, York University, 1983

Ogden, Benjamin G, Assistant Professor
Political Science
PHD, Boston University, 2016

Pacek, Alexander C, Professor
Political Science
PHD, University of Illinois at Urbana-Champaign, 1991

Perry, Brittany N, Instructional Associate Professor
Political Science
PHD, Duke University, 2013

Peterson, Erik J, Assistant Professor
Political Science
PHD, Stanford University, 2017

Pond, Amy, Assistant Professor
Political Science
PHD, University of Michigan, 2015

Rice, Mitchell F, Professor
Political Science
PHD, Claremont Graduate School, 1976

Robertson, John D, Professor
Political Science
PHD, University of Illinois at Urbana-Champaign, 1979

Roblyer, Dwight A, Senior Lecturer
Political Science
PHD, Texas A&M University, 2009

Rogers, James R, Associate Professor
Political Science
PHD, The University of Iowa, 1994

Santos, Adolfo, Professor
Political Science
PHD, University of Houston, 1998

Simpson, Hannah, Assistant Professor
Political Science
PHD, New York University, 2017

JD, Harvard Law School, 2009

Smith, Jason M, Instructional Assistant Professor
Political Science
PHD, Texas A&M University, 2009

Tarar, Ahmer S, Associate Professor
Political Science
PHD, University of Rochester, 2003
Taylor, Michelle M, Professor
Political Science
PHD, Rice University, 1990

Teodoro, Manuel P, Professor
Political Science
PHD, University of Michigan-Ann Arbor, 2007

Ura, Joseph D, Professor
Political Science
PHD, University of North Carolina Chapel Hill, 2006

Von Vacano, Diego A, Professor
Political Science
PHD, Princeton University, 2003

Whitten, Guy D, Professor
Political Science
PHD, University of Rochester, 1994

Wood, Billy D, Professor
Political Science
PHD, University of Houston, 1987

Majors
- Bachelor of Arts in Political Science (p. 632)
- Bachelor of Arts in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 633)
- Bachelor of Science in Political Science (p. 634)
- Bachelor of Science in Political Science and Master of Public Service and Administration, 5-Year Degree Program (p. 636)

Political Science - BA

The Bachelor of Arts degree program in Political Science offers a strong liberal arts curriculum aimed at enhancing students’ understanding of foreign and domestic politics, along with essential training in social science research methods, strengthening their critical thinking abilities, and enhancing students’ written, verbal, and visual communications skills. In addition to requiring four semesters of a college level foreign language, the Bachelor of Arts degree plan encompasses a broad spectrum of coursework from throughout the College of Liberal Arts and Texas A&M University. By allowing for flexibility in courses that can be taken within the core curriculum, as well as for general electives, students can achieve a well-rounded education that can help with their future educational and professional goals.

Within their major area of study, students will be able to further their education in American political institutions and political behavior; international relations; comparative politics; political theory; research methodology; public policy and administration; and race and ethnic politics.

Students who graduate with a degree in Political Science have a wide spectrum of career fields to choose from. Many students will pursue careers in government, law, secondary education, higher education, business, non-profits, journalism and more.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206 American National Government</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (p. 26) 2</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 200 Foundations of Political Science</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
<td>3</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30) 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
<td>3</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Political Science elective (p. 1118) 5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>
beginning of their fourth year at Texas A&M University. This program combines the teaching of analytical thinking skills and applications to better understand human behavior as it relates to public policy and management along with skills in leadership and research methods.

Students will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School’s MPSA program. Students will double-count up to 9 hours of Bush School coursework towards the undergraduate major coursework and up to 9 hours towards general electives in the Bachelor of Arts degree in Political Science. At the completion of the program, students are prepared for a wide variety of post-graduate opportunities including: employment in local, state or federal government, non-profit organizations, or government contracting.

Students interested in this program will apply during the spring semester of their junior year and, if admitted, begin taking masters-level courses in the fall semester of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students upon completing 102 credit hours, typically in the third semester of the program. Prior to being reclassified, a student must have completed all requirements for their bachelor’s degree in Political Science.

Program Requirements

<table>
<thead>
<tr>
<th>Program Requirements</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>POLS 200</td>
<td>Foundations of Political Science</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>POLS 209</td>
<td>Introduction to Political Science Research</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

Political Science - 5-Year Bachelor of Arts/Master of Public Service Administration

The combined degree program between the Department of Political Science and The Bush School of Government and Public Service allows undergraduate Political Science students to enter the Master of Public Service Program, with a focus in Public Policy Analysis, at the
Third Year

Fall

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
<td>3</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 233 Politics and Policy in the United States</td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Spring

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
<td>3</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
<td>3</td>
</tr>
<tr>
<td>POLS 233 Politics and Policy in the United States</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 16

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSH 631 Quantitative Methods in Public Management</td>
<td>3</td>
</tr>
<tr>
<td>PSAA 601 Foundations of Public Service</td>
<td>3</td>
</tr>
<tr>
<td>PSAA 621 Economic Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PSAA 643 Foundations of the Nonprofit Sector</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSAA 611 Public Policy Formation</td>
<td>3</td>
</tr>
<tr>
<td>BUSH elective</td>
<td>3</td>
</tr>
<tr>
<td>BUSH elective</td>
<td>3</td>
</tr>
<tr>
<td>PSAA elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Fifth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSAA 675 Public Service and Administration Capstone Seminar</td>
<td>3</td>
</tr>
<tr>
<td>BUSH/PSAA elective</td>
<td>3</td>
</tr>
<tr>
<td>BUSH/PSAA elective</td>
<td>3</td>
</tr>
<tr>
<td>PSAA elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 12

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSAA 676 Public Service and Administration Capstone Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours: 3

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. Select in consultation with an academic advisor.
2. At least 3 hours must be in MATH except MATH 102, MATH 150, MATH 167, STAT 201. Three hours may be PHIL 240.
3. POLS 100-499 (p. 1118) cannot be used to fulfill this requirement.
4. Students must complete this course before taking more than 6 hours of 300- or 400-level courses in Political Science.
5. Select from POLS 100-499 (p. 1118) (except POLS 200, POLS 206, POLS 207, POLS 209, POLS 308, POLS 309).
6. Course counted towards the general electives of the BA program.
7. Course counted towards the Political Science electives of the BA program.
8. BUSH school graduate advisor will assist with BUSH/PSAA course selection for chosen track in the graduate program.

No more than 36 credits in political science may be applied to the degree. A grade of C or better is required for a course to be counted in the major field.

Other courses may qualify for the college and university requirements. Student should consult the approved list of courses in the Undergraduate Student Services Office in the College of Liberal Arts. No course can be counted in more than one category.

Students are reclassified as degree seeking master’s students typically in the second year of the graduate portion of this program.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Arts in Political Science and the Master of Public Service Administration.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.

Political Science - BS

The Bachelor of Science degree program in Political Science offers a strong liberal arts curriculum aimed at enhancing students’ understanding of foreign and domestic politics, along with essential training in social science research methods, strengthening their critical thinking abilities, and enhancing students’ written, verbal, and visual communications skills. In addition to building skills in social science research and data analysis, the Bachelor of Science degree plan encompasses a broad spectrum of coursework from throughout the College of Liberal Arts and Texas A&M University. By allowing for flexibility in courses that can be taken within the core curriculum, as well
as for general electives, students can achieve a well-rounded education that can help with their future educational and professional goals.

Within their major area of study, students will be able to further their education in American political institutions and political behavior; international relations; comparative politics; political theory; research methodology; public policy and administration; and race and ethnic politics. Students in the Bachelor of Science degree program will also be required to take a semester of game theoretic methods and a semester of polimetrics.

Students who graduate with a degree in Political Science have a wide spectrum of career fields to choose from. Many students will pursue careers in government, law, secondary education, higher education, business, non-profits, journalism and more.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 200</td>
<td>Foundations of Political Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 209</td>
<td>Introduction to Political Science Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>POLS 203</td>
<td>Introduction to Political Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 229</td>
<td>Introduction to Comparative Politics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 231</td>
<td>Introduction to World Politics</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>POLS 308</td>
<td>Game Theoretic Methods in Political Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Political Science elective (p. 1118)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Political Science elective (p. 1118)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 309</td>
<td>Polimetrics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Political Science elective (p. 1118)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Political Science elective (p. 1118)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

* Total Semester Credit Hours: 120

1. Select from any University Core Mathematics course except MATH 150, MATH 167, STAT 201.
2. POLS 100-499 (p. 1118) cannot fulfill this requirement.
3. Students must complete this course before taking more than 6 hours of 300- or 400-level courses in Political Science.
4. Select from POLS 100-499 (p. 1118) (except POLS 200, POLS 206, POLS 207, POLS 209, POLS 308, POLS 309).

A grade of C or better is required for a course to be counted in the major field.

Other courses may qualify for the college and university requirements. Student should consult with academic advisor for additional options.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. Select in consultation with an academic advisor.
Political Science - 5-Year Bachelor of Science/Master of Public Service Administration

The combined degree program between the Department of Political Science and The Bush School of Government and Public Service allows undergraduate Political Science students to enter the Master of Public Service Program, with a focus in Public Policy Analysis, at the beginning of their fourth year at Texas A&M University. This program combines the teaching of analytical thinking skills and applications to better understand human behavior as it relates to public policy and management along with skills in leadership and research methods.

Students will be required to complete the same two-year, 48-hour curriculum as other students admitted to the Bush School's MPSA program. Students will double-count up to 9 hours of Bush School coursework towards the undergraduate major coursework and up to 9 hours towards general electives in the Bachelor of Arts degree in Political Science. At the completion of the program, students are prepared for a wide variety of post-graduate opportunities including: employment in local, state or federal government, non-profit organizations, or government contracting.

Students interested in this program will apply during the spring semester of their junior year and, if admitted, begin taking masters-level courses in the fall semester of their senior year with an undergraduate classification. Students are reclassified as degree seeking master's students upon completing 102 credit hours, typically in the third semester of their junior year and, if admitted, begin taking masters-level coursework in the fall semester of their senior year. Prior to being reclassified, a student must have completed all requirements for their bachelor's degree in Political Science.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric 3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture or creative arts (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic 3</td>
</tr>
<tr>
<td>POLS 200</td>
<td>Foundations of Political Science 3</td>
</tr>
</tbody>
</table>

Creative arts (p. 29)	3
Language, philosophy and culture (p. 27)	3
Literature directed elective (p. 532)	3
General elective 2	3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>18</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 209 Introduction to Political Science Research</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
</tr>
<tr>
<td>POLS 233 Politics and Policy in the United States</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
<tr>
<td>General elective 2</td>
</tr>
<tr>
<td>General elective 2</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 18 |

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>POLS 308</td>
</tr>
<tr>
<td>Select two of the following:</td>
</tr>
<tr>
<td>POLS 203 Introduction to Political Theory</td>
</tr>
<tr>
<td>POLS 229 Introduction to Comparative Politics</td>
</tr>
<tr>
<td>POLS 231 Introduction to World Politics</td>
</tr>
<tr>
<td>POLS 233 Politics and Policy in the United States</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BUSH 631</td>
</tr>
<tr>
<td>PSAA 601</td>
</tr>
<tr>
<td>PSAA 621</td>
</tr>
<tr>
<td>PSAA 643</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 12 |

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSAA 611 Public Policy Formation 5</td>
</tr>
<tr>
<td>BUSH elective 5</td>
</tr>
<tr>
<td>BUSH elective 7</td>
</tr>
<tr>
<td>PSAA elective 7</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 12 |
The curriculum leading to a degree in psychology provides students with an understanding of human behavior and the ability to use scientific methods to answer questions about human behavior. Students are prepared to enter a variety of graduate and professional programs in psychology and related fields (such as law, medical school), as well as to enter entry-level employment in a number of fields (such as business, human resources).

BA/BS Degrees: Students majoring in psychology may earn either the Bachelor of Arts or Bachelor of Science degree. The psychology course requirements for the two degrees are identical; they differ with respect to the requirements in other disciplines. For example, the BA degree requires courses in a foreign language and extra humanities hours, whereas the BS degree requires additional hours in the physical and biological sciences. The two degrees are offered to allow students to complete their non-psychology course of study in fields of greatest interest to them. Thus, students who have stronger interests in the natural and life sciences should pursue the BS degree, whereas those with stronger interests in foreign language and the humanities should pursue the BA degree.

Both degrees provide students with the necessary curriculum requirements to pursue graduate study in psychology in most institutions, as well as other professional fields such as law. Students planning to apply to medical school or other physical health professional programs are advised to select the BS degree program.

Honors: Students who qualify for the University Honors Program should contact the Department of Psychological and Brain Sciences about the department’s own honors program which places an emphasis on small classes and independent research experience.

Minors: A non-psychology minor is optional for psychology majors. If chosen, a minor must consist of 15–18 credit hours, no more than 9 of which may be lower division and must be declared before the student completes 90 credit hours. No more than 6 hours from the minor may be used to fulfill other Core requirements. A grade of C or higher is required if a course is to be counted in the major or minor field. A psychology minor is available for non-psychology majors (see below). For more information about Psychology undergraduate programs, please visit the Department of Psychological and Brain Sciences website.

Faculty

Alexander-Packard, Gerianne, Professor
Psychological & Brain Sciences
PHD, McGill University, 1991

Anderson, Brian A, Associate Professor
Psychological & Brain Sciences
PHD, John Hopkins University, 2014

Arthur Jr, Winfred E, Professor
Psychological & Brain Sciences
PHD, The University of Akron, 1988

Atoba, Olabisi, Instructional Assistant Professor
Psychological & Brain Sciences
PHD, Texas A&M University, 2017

Bergman, Mindy E, Professor
Psychological & Brain Sciences
PHD, University of Illinois at Urbana-Champaign, 2001
Bernard, Jessica A, Assistant Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2012

Bolanos, Carlos A, Associate Professor
Psychological & Brain Sciences
PHD, Northeastern University, 2000

Bolger Jr, Patrick A, Instructional Assistant Professor
Psychological & Brain Sciences
PHD, University of Arizona, 2005

Brooker, Rebecca J, Associate Professor
Psychological & Brain Sciences
PHD, Pennsylvania State University, 2011

Burte, Heather, Research Assistant Professor
Psychological & Brain Sciences
PHD, University of California-Santa Barbara, 2014

Carter Sowell, Adrienne R, Associate Professor
Psychological & Brain Sciences
PHD, Purdue University, 2010

Dawson Mathur, Vani A, Assistant Professor
Psychological & Brain Sciences
PHD, Northwestern University, 2012

Edens, John F, Professor
Psychological & Brain Sciences
PHD, Texas A&M University, 1996

Edens, Pamela S, Senior Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 1997

Eitan, Shoshana, Associate Professor
Psychological & Brain Sciences
PHD, Weizmann Institute of Science, 1997

Fields, Sherecce A, Associate Professor
Psychological & Brain Sciences
PHD, University of South Florida, 2008

Grau, James W, Professor
Psychological & Brain Sciences
PHD, University of Pennsylvania, 1985

Heffer Jr, Robert W, Clinical Professor
Psychological & Brain Sciences
PHD, Louisiana State University and A&M College, 1988

Hicks, Joshua A, Professor
Psychological & Brain Sciences
PHD, University of Missouri - Columbia, 2009

Hull, Rachel G, Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 2003

Jackson, Cheryl, Lecturer
Psychological & Brain Sciences
PHD, Kansas State University, 2007

Lench, Heather C, Professor
Psychological & Brain Sciences
PHD, University of California Irvine, 2007

Leunes, Arnold D, Senior Professor
Psychological & Brain Sciences
PHD, North Texas State College, 1969

MacNamara, Annmarie E, Assistant Professor
Psychological & Brain Sciences
PHD, Stony Brook University, 2013

Magyar, Melissa, Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 2014

Maren, Stephen A, University Distinguished Professor
Psychological & Brain Sciences
PHD, University of Southern California, 1993

Meagher, Mary W, Professor
Psychological & Brain Sciences
PHD, University of North Carolina at Chapel Hill, 1989

Miner, Kathi N, Associate Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2004

Mochinushi, Yumiko, Instructional Assistant Professor
Psychological & Brain Sciences
MS, Florida Institute of Technology, 2014

Morey, Leslie C, Professor
Psychological & Brain Sciences
PHD, University of Florida, 1981

Moscarello, Justin M, Assistant Professor
Psychological & Brain Sciences
PHD, University of California, Santa Barbara, 2010

Nagaya, Naomi, Research Assistant Professor
Psychological & Brain Sciences
PHD, University of Southern California, 1993

Orr, Joseph M, Assistant Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2011

Osborne, Laura, Lecturer
Psychological & Brain Sciences
MS, Texas A&M University, 2015

Packard, Mark G, Professor
Psychological & Brain Sciences
PHD, McGill University, 1991

Payne, Stephanie C, Professor
Psychological & Brain Sciences
PHD, George Mason University, 2000

Rholes, William S, Professor
Psychological & Brain Sciences
PHD, Princeton University, 1978
Sabat, Isaac E, Assistant Professor
Psychological & Brain Sciences
PHD, George Mason University, 2016

Schlegel, Rebecca J, Professor
Psychological & Brain Sciences
PHD, University of Missouri - Columbia, 2009

Schmeichel, Brandon J, Professor
Psychological & Brain Sciences
PHD, Florida State University, 2005

Schumacher, Jay S, Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 1999

Smallman, Rachel E, Associate Professor
Psychological & Brain Sciences
PHD, University of Illinois-Urbana Champaign, 2010

Smith, Rachel J, Assistant Professor
Psychological & Brain Sciences
PHD, University of Pennsylvania, 2008

Smith, Steven M, Professor
Psychological & Brain Sciences
PHD, University of Wisconsin - Madison, 1979

Snyder, Douglas K, Professor
Psychological & Brain Sciences
PHD, University of North Carolina at Chapel Hill, 1978

Thurston, Idia, Associate Professor
Psychological & Brain Sciences
PHD, University of South Florida, 2010

Vaid, Jyotsna, Professor
Psychological & Brain Sciences
PHD, McGill University, 1982

Vess, Matthew K, Associate Professor
Psychological & Brain Sciences
PHD, University of Missouri, 2010

Wellman, Paul J, Professor
Psychological & Brain Sciences
PHD, Iowa State University, 1980

Worthy, Darrell A, Associate Professor
Psychological & Brain Sciences
PHD, University of Texas, 2010

Yamauchi, Takashi, Associate Professor
Psychological & Brain Sciences
PHD, Columbia University, 1997

Minors

- Psychology Minor (p. 644)

Certificates

- Applied Behavioral Health Certificate (p. 644)
- Healthy Development Certificate (p. 644)
- Psychology of Diversity Certificate (p. 645)
- Work and Organizations Certificate (p. 645)

Neuroscience - BS, Behavioral and Cognitive Neuroscience Tracks

Neuroscience is the study of the nervous system and its impact on behavior and cognitive functions. This interdisciplinary field integrates several disciplines, including psychology, psychiatry, biology, chemistry, and physics. Because the study is interdisciplinary, the Neuroscience major involves multiple units, including the Department of Psychological & Brain Sciences, the Department of Biology, and the College of Veterinary Medicine and Biomedical Sciences in collaboration with the Department of Neuroscience and Experimental Therapeutics (NExT) in the College of Medicine in offering this degree, as well as the Texas A&M Institute for Neuroscience (TAMIN). The concentration of this degree that focuses on Behavioral and Cognitive Neuroscience is housed within the Department of Psychological & Brain Sciences.

Students will develop competency in foundational coursework in the life and physical sciences, including biology, chemistry, and physics. Based on their individual career aspirations and interests, students will complete coursework in neuroscience that involves psychological and biological processes, as well as translational issues relevant to medical science and/or pharmacology, neural engineering, and biochemistry. Nationwide, there is increasing interest in neuroscience programs and training. In part, this interest is driven by changes in the employment market that focus on technical and medical support jobs. Students completing a BS in Neuroscience will be well prepared for graduate study, as well as to enter entry-level healthcare and technical occupations.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111 Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>NRSC 101/ VIBS 101 Neuroscience Overview¹</td>
<td>1</td>
</tr>
<tr>
<td>NRSC 277/ VIBS 277 Introduction to Neuroscience¹</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107 Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

BIOL 112 Introductory Biology II	4
CHEM 120 Fundamentals of Chemistry II	4
NRSC 235/ PSYC 235 Introduction to Behavioral and Cognitive Neuroscience	3

Select one of the following:

<p>| 4 |</p>
<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 147 Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 171 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS 201 College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>PHYS 201 College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS 202 College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 302 Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or STAT 312 Statistics for Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Concentration elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Concentration elective 4

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Must make a grade of C or better.
2. A minor field of study may fulfill this requirement, but a minor is not required. Only one KINE 199 allowed.
4. Select from BICH 410; BIOL 213, BIOL 413; CHEM 227, CHEM 237, CHEM 228, CHEM 238, NRSC 300-499 (p. 1093); PSYC 471, PSYC 475, PSYC 484, PSYC 485, PSYC 491.

Psychology - BA

All psychology majors receive a rigorous program of undergraduate education and training that encourages critical thinking, lifelong learning, and the analysis and integration of information about individuals and groups of people. The curriculum leading to a degree in psychology provides students with an understanding of human behavior and the ability to use scientific methods to answer questions about human behavior.

Students majoring in psychology may earn either the Bachelor of Arts or Bachelor of Science degree. The psychology course requirements for the two degrees are identical; they differ with respect to the requirements in other disciplines. For example, the BA degree requires courses in a foreign language and extra humanities hours, whereas the BS degree requires additional hours in the physical and biological sciences.

Students interested in studying human behavior, with a humanities-oriented supporting curriculum, pursue a Bachelor of Arts degree. The BA can successfully prepare students interested in graduate and professional programs that stress a humanities background (e.g., counseling, social work, management, law), as well as students interested in employment in business or applied psychology.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PSYC 105 First Semester Experience</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PSYC 107 Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>PSYC 245 Introduction to Psychological Science Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 103 Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 203 Writing about Literature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 210 Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 203 Public Speaking</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 235/ NRSC 235</td>
<td>Introduction to Behavioral and Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Select one of the following:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 206/ AFST 206</td>
<td>Black Psychology</td>
</tr>
<tr>
<td>PSYC 208</td>
<td>Stereotypes, Prejudice, and Minority Experience</td>
</tr>
<tr>
<td>PSYC 209/ AFST 209</td>
<td>Psychology of Culture and Diversity</td>
</tr>
<tr>
<td>PSYC 210/ WGST 210</td>
<td>Psychological Aspects of Human Sexuality</td>
</tr>
<tr>
<td>PSYC 300/ WGST 300</td>
<td>Psychology of Women</td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Psychology of Women of Color</td>
</tr>
<tr>
<td>PSYC 432</td>
<td>Diversity and Inclusion in Organizations</td>
</tr>
<tr>
<td>Foreign language</td>
<td>1</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 301</td>
<td>Elementary Statistics for Psychology</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 306</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 319</td>
<td>History and Systems of Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 323</td>
<td>Psychology of Adolescence</td>
<td></td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 353</td>
<td>Personnel Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 365</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

PSYC 302	Research Methods and Design in Psychology	4
Select one of the following:	3	
PSYC 305	Psychology of Animal Behavior	
PSYC 311/ NRSC 311		
PSYC 320/ NRSC 320	Sensation-Perception	
PSYC 332/ NRSC 332	Neuroscience of Learning and Memory	
PSYC 333/ NRSC 333	Biology of Psychological Disorders	
PSYC 336/ NRSC 336	Drugs and Behavior	
PSYC 340/ NRSC 340	Psychology of Learning	
PSYC 345	Human Cognitive Processes	
PSYC 350/ NRSC 350	Cognitive Neuroscience	
PSYC 360/ NRSC 360	Health Psychology and Behavioral Medicine	
American history (p. 29)	3	
Language, philosophy and culture or creative arts (p. 27)	3	
Psychology elective	4	

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 311/ NRSC 311</td>
<td>Psychology of Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 320/ NRSC 320</td>
<td>Sensation-Perception</td>
<td></td>
</tr>
<tr>
<td>PSYC 332/ NRSC 332</td>
<td>Neuroscience of Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>PSYC 333/ NRSC 333</td>
<td>Biology of Psychological Disorders</td>
<td></td>
</tr>
<tr>
<td>PSYC 336/ NRSC 336</td>
<td>Drugs and Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 340/ NRSC 340</td>
<td>Psychology of Learning</td>
<td></td>
</tr>
<tr>
<td>PSYC 345</td>
<td>Human Cognitive Processes</td>
<td></td>
</tr>
<tr>
<td>PSYC 350/ NRSC 350</td>
<td>Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>PSYC 360/ NRSC 360</td>
<td>Health Psychology and Behavioral Medicine</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Psychology elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

Select from the following:	3
PSYC 305	Psychology of Adjustment
PSYC 306	Abnormal Psychology
PSYC 307	Developmental Psychology
PSYC 315	Social Psychology
PSYC 319	History and Systems of Psychology
PSYC 323	Psychology of Adolescence
Students interested in studying human behavior, requires additional hours in the physical and biological sciences. Foreign language and extra humanities hours, whereas the BS degree in other disciplines. For example, the BA degree requires courses in a field. A student must complete a minimum of 36 hours of 300- and 400-level courses at Texas A&M.

A grade of C or higher is required if a course is to be counted in the major field. A student must complete a minimum of 36 hours of 300- and 400-level courses at Texas A&M.

No course can be counted in more than one category.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

Psychology - BS

All psychology majors receive a rigorous program of undergraduate education and training that encourages critical thinking, lifelong learning, and the analysis and integration of information about individuals and groups of people. The curriculum leading to a degree in psychology provides students with an understanding of human behavior and the ability to use scientific methods to answer questions about human behavior.

Students majoring in psychology may earn either the Bachelor of Arts or Bachelor of Science degree. The psychology course requirements for the two degrees are identical; they differ with respect to the requirements in other disciplines. For example, the BA degree requires courses in a foreign language and extra humanities hours, whereas the BS degree requires additional hours in the physical and biological sciences.

Students interested in studying human behavior, with a science-oriented supporting curriculum, pursue a Bachelor of Science degree. The BS can successfully prepare students interested in further study in a science-oriented psychology graduate program (such as neuroscience) or medical school, or other health-related graduate and professional programs (e.g., pharmacy, physical therapy), as well as students interested in entry-level positions in business or applied psychology.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 105</td>
<td>First Semester Experience</td>
<td>1</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 245</td>
<td>Introduction to Psychological Science Methods</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 235/ NRSC 235</td>
<td>Introduction to Behavioral and Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 206/ AFST 206</td>
<td>Black Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 208</td>
<td>Stereotypes, Prejudice, and Minority Experience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 209/ AFST 209</td>
<td>Psychology of Culture and Diversity</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 210/ WGST 210</td>
<td>Psychological Aspects of Human Sexuality</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 300/ WGST 300</td>
<td>Psychology of Women</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Psychology of Women of Color</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 432</td>
<td>Diversity and Inclusion in Organizations</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PSYC 301</td>
<td>Elementary Statistics for Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 306</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 319</td>
<td>History and Systems of Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 323</td>
<td>Psychology of Adolescence</td>
<td></td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 353</td>
<td>Personnel Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 365</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 306</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 319</td>
<td>History and Systems of Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 323</td>
<td>Psychology of Adolescence</td>
<td></td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 353</td>
<td>Personnel Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 365</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 306</td>
<td>Abnormal Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 319</td>
<td>History and Systems of Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 323</td>
<td>Psychology of Adolescence</td>
<td></td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 353</td>
<td>Personnel Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 365</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120
Psychology - Minor

A minor in Psychology can be a valuable supplement to education in almost any field. Students select from a variety of courses that enhance understanding of animal or human behavior, the skills to intervene to change behavior and to create environments that support healthy behavior, and critical thinking skills related to asking and answering questions about human behavior. This knowledge prepares students to pursue a variety of careers where interacting with people is a central job component.

A Psychology minor is available for non-psychology majors. The minor must be declared before the student has completed 90 credit hours.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 200 to 499 (p. 1125) 1,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 300 to 499 (p. 1125) 1,2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1 Only 3 total hours from PSYC 484, PSYC 485 and PSYC 491 can count toward the minor.
2 Registration in PSYC 301 and PSYC 302 is limited to PSYC majors only.

At least 9 semester credit hours of PYSC courses above the 200-level must be taken at Texas A&M.

Students must make a grade of 'C' or better in all courses.

Applied Behavioral Health - Certificate

The Department of Psychological and Brain Sciences offers embedded certificates as part of the major. The certificates are considered embedded because they require no additional coursework—beyond specific courses in the major itself—to earn the certificate. All certificates require 15 credits (5 courses). The certificates are designed to (a) bring greater depth and structure to the major, (b) provide students with guidance as to courses that build on each other, and (c) ultimately increase the employability of our students.

The required courses in this certificate reflect foundational component areas of psychology that focus on (a) human growth and development, both physically and psychologically and (b) positive and negative mental health, with an emphasis on mental health and developmental disorders. The prescribed electives include courses that focus on a variety of aspects of health and well-being and five of the six courses include practical applications of psychology, including the deployment and interpretation of psychological tests, therapeutic techniques, creation and monitoring of plans for personal growth and change, and the creation and application of reward systems.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 306</td>
<td>Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 336/ NRSC 336</td>
<td>Drugs and Behavior</td>
<td></td>
</tr>
<tr>
<td>PSYC 360/ NRSC 360</td>
<td>Health Psychology and Behavioral Medicine</td>
<td></td>
</tr>
<tr>
<td>PSYC 414</td>
<td>Behavior Principles</td>
<td></td>
</tr>
<tr>
<td>PSYC 450</td>
<td>Clinical Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 470</td>
<td>Psychological Testing and Measurement</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must earn an average grade of ‘B’ or better across certificate courses.

Healthy Development - Certificate

The Department of Psychological and Brain Sciences offers embedded certificates as part of the major. The certificates are considered embedded because they require no additional coursework—beyond specific courses in the major itself—to earn the certificate. All certificates require 15 credits (5 courses). The certificates are designed to (a) bring greater depth and structure to the major, (b) provide students with guidance as to courses that build on each other, and (c) ultimately increase the employability of our students.

The required courses in this certificate reflect foundational component areas of psychology that focus on (a) human growth and development, both physically and psychologically and (b) interpersonal behaviors and intrapersonal processes that affect our understanding of and relationships with others. The prescribed electives fall into two sets. The first set focuses on healthy and atypical development at different life stages, including adolescence, old age, and childhood. The second is a skills-based set of courses through which successful students will develop skills in healthy adjustment, behavioral modification, or therapeutic techniques.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PSYC 323</td>
<td>Psychology of Adolescence</td>
<td></td>
</tr>
<tr>
<td>PSYC 365</td>
<td>Psychology of Aging</td>
<td></td>
</tr>
<tr>
<td>PSYC 407</td>
<td>Behavioral Disorders of Children</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PSYC 305</td>
<td>Psychology of Adjustment</td>
<td></td>
</tr>
<tr>
<td>PSYC 414</td>
<td>Behavior Principles</td>
<td></td>
</tr>
</tbody>
</table>
The Department of Psychological and Brain Sciences offers embedded certificates as part of the major. The certificates are considered embedded because they require no additional coursework—beyond specific courses in the major itself—to earn the certificate. All certificates require 15 credits (5 courses). The certificates are designed to (a) bring greater depth and structure to the major, (b) provide students with guidance as to courses that build on each other, and (c) ultimately increase the employability of our students.

The required courses in this certificate reflect foundational component areas of psychology that focus on (a) interpersonal behaviors and intrapersonal processes that affect our understanding of and relationships with others and (b) human cognitive processes that people use to understand information and categorize people and objects. The prescribed electives include courses that focus on a variety of aspects of diversity. These courses focus on the experiences of understudied and/or underrepresented persons and the psychological processes associated with their interpersonal treatment from others.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PSYC 206/</td>
<td>Black Psychology</td>
<td></td>
</tr>
<tr>
<td>AFST 206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 208</td>
<td>Stereotypes, Prejudice, and Minority Experience</td>
<td></td>
</tr>
<tr>
<td>PSYC 209/</td>
<td>Psychology of Culture and Diversity</td>
<td></td>
</tr>
<tr>
<td>AFST 209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 210/</td>
<td>Psychological Aspects of Human</td>
<td></td>
</tr>
<tr>
<td>WGST 210</td>
<td>Sexuality</td>
<td></td>
</tr>
<tr>
<td>PSYC 300/</td>
<td>Psychology of Women</td>
<td></td>
</tr>
<tr>
<td>WGST 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 303</td>
<td>Psychology of Women of Color</td>
<td></td>
</tr>
<tr>
<td>PSYC 432</td>
<td>Diversity and Inclusion in Organizations</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must earn an average grade of 'B' or better across certificate courses.

Work and Organizations - Certificate

The Department of Psychological and Brain Sciences offers embedded certificates as part of the major. The certificates are considered embedded because they require no additional coursework—beyond specific courses in the major itself—to earn the certificate. All certificates require 15 credits (5 courses). The certificates are designed to (a) bring greater depth and structure to the major, (b) provide students with guidance as to courses that build on each other, and (c) ultimately increase the employability of our students.

The required courses in this certificate reflect foundational component areas of psychology that focus on (a) individual personalities and the behavioral and skill implications of individual traits and (b) interpersonal behaviors and intrapersonal processes that affect our understanding of and relationships with others. The prescribed electives include courses that focus on a variety of aspects of work and organizations, including the psychological underpinnings of workplace practices like hiring and training, organizational behavior, sports, negotiation and conflict, and testing.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 315</td>
<td>Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 330</td>
<td>Personality</td>
<td>3</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>PSYC 304</td>
<td>Psychology of Sport and Physical Activity</td>
<td></td>
</tr>
<tr>
<td>PSYC 352</td>
<td>Organizational Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 353</td>
<td>Personnel Psychology</td>
<td></td>
</tr>
<tr>
<td>PSYC 354</td>
<td>Conflict and Negotiation</td>
<td></td>
</tr>
<tr>
<td>PSYC 432</td>
<td>Diversity and Inclusion in Organizations</td>
<td></td>
</tr>
<tr>
<td>PSYC 470</td>
<td>Psychological Testing and Measurement</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Students must earn an average grade of 'B' or better across certificate courses.

Department of Sociology

The Department of Sociology supports a diverse community of faculty, staff and students working together to research and address real world social issues and problems. Faculty offer courses in race and ethnicity, social class, gender, popular culture, social psychology, organizations, community, environment, criminology, religion, global sociology, medical sociology, demography, and gerontology, among others. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. To further complement our courses in these and other areas of sociology, students have opportunities to work one-on-one with professors engaged in sociological research. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses.

Sociological training prepares students for graduate school and/or employment in a variety of occupations. Employers increasingly look for job candidates to have the critical thinking, writing, and research skills students will develop in our program. Sociology coursework provides students with the ability to live and work effectively in a diverse and global society by better understanding social diversity, cultural trends, inequalities, organizational behavior, and community and world events. Sociology provides an excellent background for students wishing to enter into the helping professions like social services, ministry, nursing, teaching, and law enforcement, and it provides an outstanding foundation.
for law, marketing, human resources, journalism, government, business management, and entrepreneurialism.

Faculty

Campbell, Mary E, Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 2004

Cohn, Samuel R, Professor
Sociology
PHD, University of Michigan Ann Arbor, 1981

De Lima Amaral, Ernesto F, Associate Professor
Sociology
PHD, University of Texas at Austin, 2007

Dietrich, Katheryn A, Instructional Professor
Sociology
PHD, Texas A&M University, 1994

Duran, Robert, Associate Professor
Sociology
PHD, University of Colorado Boulder, 2006

Feagin, Joe R, University Distinguished Professor
Sociology
PHD, Harvard University, 1966

Fossett, Mark A, Professor
Sociology
PHD, The University of Texas - Austin, 1983

Foster, Holly A, Professor
Sociology
PHD, University of Toronto, 2001

Gatson, Sarah N, Associate Professor
Sociology
PHD, Northwestern University, 1999

Goldsmith, Patrick A, Professor
Sociology
PHD, University of Arizona, 1999

Hakim, Omar, Professor of the Practice
Sociology
MS, The University of Texas at Austin, 2004

Hernandez, Alexander A, Instructional Assistant Professor
Sociology
PHD, Boston College, 2014

Howard, Daniel L, Professor
Sociology
PHD, Vanderbilt University, 1992

Jewell, Joseph O, Associate Professor
Sociology
PHD, UCLA, 1998

Lakkimsetti, Chaitanya, Associate Professor
Sociology
PHD, University of Wisconsin, 2010

Linneman, Judith A, Instructional Professor
Sociology
PHD, Iowa State University, 1985

Mackin, Robert S, Instructional Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 1998

May, Reuben A, Professor
Sociology
PHD, University of Chicago, 1996

McIntosh, William A, Professor
Sociology
PHD, Iowa State University, 1975

Mestrovic, Stjepan G, Professor
Sociology
PHD, Syracuse University, 1982

Moore, Wendy A, Associate Professor
Sociology
PHD, University of Minnesota, 2005

Morris, Theresa M, Professor
Sociology
PHD, Texas A&M University, 2000

Over, Defne, Assistant Professor
Sociology
PHD, Cornell University, 2017

Pals, Heili, Associate Professor
Sociology
PHD, Stanford University, 2006

Plankey Videla, Nancy B, Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 1998

Prechel, Harland N, Professor
Sociology
PHD, University of Kansas, 1986

Sakamoto, Arthur, Professor
Sociology
PHD, University of Wisconsin - Madison, 1988

Santana, Emilce, Visiting Assistant Professor
Sociology
PHD, Princeton University, 2019

Sell, Jane A, Professor
Sociology
PHD, Washington State University, 1979

Suzuki, Kazuko, Associate Professor
Sociology
PHD, Princeton University, 2003

Thornton, Patricia H, Professor
Sociology
PHD, Stanford University, 1993
Waren, Warren P, Instructional Associate Professor
Sociology
PhD, Texas A&M University, 2008

Woods, Timothy S, Instructional Professor
Sociology
PhD, Texas A&M University, 2000

Majors
- Bachelor of Arts in Sociology (p. 647)
- Bachelor of Arts in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 649)
- Bachelor of Science in Sociology (p. 650)
- Bachelor of Science in Sociology and Master of Public Service and Administration, 5-Year Degree Program (p. 652)

Minors
- Sociology Minor (p. 654)

Sociology - BA
A Bachelor of Arts in Sociology provides a solid foundation in the knowledge and skills needed to address real-world social issues and problems, while allowing students to explore a wide range of social topics and issues. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses. To further complement our courses, students accepted into our honors program have opportunities to work one-on-one with professors engaged in sociological research.

The BA provides an excellent background for students aspiring to attend graduate school or enter a career in nonprofit community services or social work, health care and nursing, law or law enforcement, education, public policy, organizational management and entrepreneurialism, marketing, human resources, and/or journalism.

** Marketable Skills Achieved with a BA in Sociology include:**
- Being aware of other’s beliefs and behaviors and understanding why they believe and behave as they do
- The ability to address real-world problems and issues by developing realistic and equitable solutions
- Identifying complex problems and ideas and reviewing related information to analyze, develop and evaluate options, and implement solutions
- Communicating effectively in writing and speech as appropriate for the needs of the audience
- Developing and utilizing visual aids, graphs, tables and charts
- Giving full attention to what other people are saying, taking time to understand the points being made, asking questions as appropriate, and not interrupting at inappropriate times
- Monitoring/Assessing performance of yourself, other individuals, or organizations to make improvements or take corrective action
- Managing one's own time and the time of others
- Data analysis and interpretation
- Identifying the underlying patterns and principles of qualitative and quantitative information and explaining what that information means and how it can be used
- Bringing others together and trying to reconcile differences
- Establishing trust and ensuring input from all members of a group
- Working together to produce a shared product

Program Requirements

| First Year |
| --- | --- |
| **Fall** |
ENGL 104 Composition and Rhetoric 1	3
SOCI 205 Introduction to Sociology 1	3
American history (p. 29)	3
Foreign language 2	2
Mathematics (p. 26)	3
Semester Credit Hours	16
Spring	
American history (p. 29)	3
Foreign language 2	4
Government/Political science (p. 30)	3
Mathematics (p. 26)	3
Sociology elective (p. 1142) 1	3
Semester Credit Hours	16

| Second Year |
| --- | --- |
| **Fall** |
SOCI 220 Methods of Social Research	3
Foreign language 2	3
Government/Political science (p. 30)	3
Literature directed elective (p. 532)	3
Sociology elective (p. 1142) 1	3
Semester Credit Hours	15
Spring	
SOCI 230 Classical Sociological Theory 1	3
Select one of the following:	3
COMM 203 Public Speaking	
COMM 205 Communication for Technical Professions	
COMM 243 Argumentation and Debate	
ENGL 203 Writing about Literature	
ENGL 210 Technical and Business Writing	
Foreign language 2	3
Life and physical sciences (p. 26)	3
General elective 3	3
Semester Credit Hours	15

| Third Year |
| --- | --- |
| **Fall** |
| SOCI 420 Advanced Methods of Social Research 1 | 3 |
| Language, philosophy and culture (p. 27) | 3 |
Social and behavioral sciences (p. 30) 3
Literature directed elective (p. 532) 3
General elective 3

Spring
SOCI 430 Contemporary Sociological Theory 3
Life and physical sciences (p. 26) 3
Sociology elective (p. 1142) 3
General elective 3

Fourth Year
Fall
Creative arts (p. 29) 3
Life and physical sciences (p. 26) 3
Sociology elective (p. 1142) 3
Sociology elective (p. 1142) 3
General elective 3

Spring
Language, philosophy and culture or creative arts (p. 27) 3
Sociology elective (p. 1142) 3
General elective 3
General elective 3
General elective 3

Minor Field of Study
Sociology majors are not required to select a minor field of study. If chosen, the minor must consist of 15-18 hours, with no more than 9 hours taken at a 100- or 200-level. No more than six hours from the minor may be used to fulfill other requirements. A grade of C or higher is required if a course is to be counted in the minor field.

Teacher Certification
Non-Sociology Majors To Teach Sociology
Students desiring certification to teach sociology in Texas secondary schools must complete a social studies composite with a sociology emphasis and required education courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociology</td>
<td>(p. 1142)</td>
<td>3</td>
</tr>
<tr>
<td>Political Science</td>
<td>(p. 1118)</td>
<td>9</td>
</tr>
<tr>
<td>Economics</td>
<td>(p. 965)</td>
<td>6</td>
</tr>
<tr>
<td>Geography</td>
<td>(p. 1001)</td>
<td>10</td>
</tr>
<tr>
<td>History (p. 1014)</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 76

Sociology Majors To Teach Sociology
Sociology majors desiring certification must include the following among their sociology courses and required education courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SOCI 317/</td>
<td>Racial and Ethnic Relations</td>
<td></td>
</tr>
<tr>
<td>AFST 317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 323/</td>
<td>Sociology of African Americans</td>
<td></td>
</tr>
<tr>
<td>AFST 323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 403</td>
<td>Sociology of Latinos</td>
<td></td>
</tr>
<tr>
<td>SOCI 424/</td>
<td>Women and Work in Society</td>
<td></td>
</tr>
<tr>
<td>WGST 424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCI 411</td>
<td>Social Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 6

Education Courses
More complete information on requests for teacher certification may be found in the College of Education and Human Development section under secondary certification.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 322</td>
<td>Teaching and Schooling in Modern Society</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 324</td>
<td>Teaching Skills II</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 401</td>
<td>Language Arts in the Middle and Senior School</td>
<td>3</td>
</tr>
</tbody>
</table>
MPSA graduates leave the Bush School ready to make a difference, organizations, and the School’s Public Service Leadership Program. With high-level public leaders, real-world consulting projects, student skills both inside and outside the classroom through interaction ample opportunities to engage in public service and to develop leadership, policy analysis, and research methods.

The MPSA program is fully accredited by the Network of Schools of Public Policy, Affairs, and Administration. The curriculum provides effective and ethically in a time when public servants face new and students the tools and knowledge they will need in order to perform develop principled leaders for the public and nonprofit sectors, providing.

The Master of Public Service and Administration (MPSA) program effectively and ethically in a time when public servants face new and students the tools and knowledge they will need in order to perform.

To be considered for the 5-year combined degree program, Sociology students must have a minimum 3.25 GPA and have completed 102 of the 120 hours of course work required to receive a bachelor's degree. These courses must include all of the specific prerequisites for a Bachelor of Arts degree in Sociology, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree. Interested students are encouraged to contact an academic advisor for more information.

A Bachelor of Arts in Sociology provides a solid foundation in the knowledge and skills needed to address real-world social issues and problems, while allowing students to explore a wide range of social topics and issues. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses. To further complement our courses, students accepted into our honors program have opportunities to work one-on-one with professors engaged in sociological research.

The Master of Public Service and Administration (MPSA) program develops principled leaders for the public and nonprofit sectors, providing students the tools and knowledge they will need in order to perform effectively and ethically in a time when public servants face new and increased challenges.

The MPSA program is fully accredited by the Network of Schools of Public Policy, Affairs, and Administration. The curriculum provides students with general knowledge and analytical skills in management, leadership, policy analysis, and research methods. MPSA students have ample opportunities to engage in public service and to develop leadership skills both inside and outside the classroom through interaction with high-level public leaders, real-world consulting projects, student organizations, and the School's Public Service Leadership Program. MPSA graduates leave the Bush School ready to make a difference,

whether they choose to work in government, non-profit organizations, or the private sector.

Program Requirements

Sociology - 5-Year Bachelor of Arts/Master of Public Service Administration

The Department of Sociology and the Bush School of Government and Public Service offer a 5-year (3+2) combined degree program that allows Sociology majors to enter the Bush School at the start of their senior year (typically year four) at Texas A&M University. This enables students to receive their Sociology undergraduate degree (BA) and a Master of Public Service and Administration (MPSA) graduate degree in five years.

To be considered for the 5-year combined degree program, Sociology students must have a minimum 3.25 GPA and have completed 102 of the 120 hours of course work required to receive a bachelor's degree. These courses must include all of the specific prerequisites for a Bachelor of Arts degree in Sociology, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree. Interested students are encouraged to contact an academic advisor for more information.

A Bachelor of Arts in Sociology provides a solid foundation in the knowledge and skills needed to address real-world social issues and problems, while allowing students to explore a wide range of social topics and issues. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses. To further complement our courses, students accepted into our honors program have opportunities to work one-on-one with professors engaged in sociological research.

The Master of Public Service and Administration (MPSA) program develops principled leaders for the public and nonprofit sectors, providing students the tools and knowledge they will need in order to perform effectively and ethically in a time when public servants face new and increased challenges.

The MPSA program is fully accredited by the Network of Schools of Public Policy, Affairs, and Administration. The curriculum provides students with general knowledge and analytical skills in management, leadership, policy analysis, and research methods. MPSA students have ample opportunities to engage in public service and to develop leadership skills both inside and outside the classroom through interaction with high-level public leaders, real-world consulting projects, student organizations, and the School's Public Service Leadership Program. MPSA graduates leave the Bush School ready to make a difference,

whether they choose to work in government, non-profit organizations, or the private sector.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Foreign language ²</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Foreign language ²</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Sociology elective ¹,³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SOCI 220</td>
<td>Methods of Social Research</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Foreign language ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Sociology elective ¹,³</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Spring</td>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Foreign language ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>General elective ⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SOCI 420</td>
<td>Advanced Methods of Social Research</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Social and behavioral sciences (p. 30) ⁵</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Literature directed elective (p. 532)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective ⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>General elective ⁴</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Notes:

¹: Students must complete 532 Social and behavioral sciences (p. 30).
²: Students must complete 30 American history (p. 29).
³: Students must complete 3 Foreign language ².
⁴: Students must complete 4 General elective.
⁵: Students must complete 5 Social and behavioral sciences (p. 30).

Total Semester Credit Hours:

- Fall: 30
- Spring: 16
- Second Year: 18
- Spring: 18
- Third Year: 18

Total Semester Credit Hours:

- Total: 649
Sociology - BS

Spring

SOCI 430 Contemporary Sociological Theory 1 3
Language, philosophy and culture or creative arts (p. 27) 3
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 5
Sociology elective 1,3 3
General elective 4 1

Semester Credit Hours 16

Fourth Year

Fall

BUSH 631 Quantitative Methods in Public Management I 5 3
PSAA 601 Foundations of Public Service 6 3
PSAA 621 Economic Analysis 6 3
PSAA 643 Foundations of the Nonprofit Sector 3

Semester Credit Hours 12

Spring

PSAA 611 Public Policy Formation 6 3
Select one of the following: 6,7
BUSH 632 Quantitative Methods in Public Management II
BUSH 635 Quantitative Methods in Public Management II: Policy Analysis Emphasis
PSAA 630 Program Evaluation in Public and Nonprofit Organizations

BUSH elective 6,7 3
BUSH elective 7 3

Semester Credit Hours 12

Fifth Year

Fall

PSAA 675 Public Service and Administration 3
Capstone Seminar

BUSH elective 7 3
BUSH elective 7 3
BUSH elective 7 3

Semester Credit Hours 12

Spring

PSAA 676 Public Service and Administration 3
Capstone Seminar II

BUSH elective 7 3
BUSH elective 7 3
BUSH elective 7 3

Semester Credit Hours 12

Total Semester Credit Hours 150

1 A grade of C or better is required.
2 Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.
3 Select from SOCI 100-499 (p. 1142), SOCI 608.
4 Any 100-499 level course may be taken. No more than 3 hours of SOCI 484 may be used toward fulfilling this requirement.
5 SOCI courses do not count toward fulfilling this requirement.

Course applies toward both degrees.
7 See Bush School advisor for course selection information.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 33 hours in sociology may be applied to the major.

Other courses may qualify. Consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or from departmental advisors. No more than one course may be counted in more than one category.

Please note that university requirements specify that all students must take at least two courses in their major that are designated as fulfilling a writing requirement (W). See the section on general requirements for baccalaureate degrees for more information.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Arts in Sociology and the Master of Public Service Administration.

See the MPSA program in the Graduate and Professional Catalog for the MPSA requirements.

Minor Field of Study

Sociology majors are not required to select a minor field of study. If chosen, the minor must consist of 15-18 hours, with no more than 9 hours taken at a 100- or 200-level. No more than six hours from the minor may be used to fulfill other requirements. A grade of C or higher is required if a course is to be counted in the minor field.

Sociology - BS

A Bachelor of Science in Sociology provides a solid foundation in the knowledge and skills needed to address real-world social issues and problems, while allowing students to explore a wide range of social topics and issues. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses. To further complement our courses, students accepted into our honors program have opportunities to work one-on-one with professors engaged in sociological research.

The BS provides an excellent background for students aspiring to attend graduate school or enter a career in nonprofit community services or social work, health care and nursing, law or law enforcement, education, public policy, organizational management and entrepreneurialism, marketing, human resources, and/or journalism.

Marketable Skills Achieved with a BS in Sociology include:

- Being aware of other's beliefs and behaviors and understanding why they believe and behave as they do
• The ability to address real-world problems and issues by developing realistic and equitable solutions
• Identifying complex problems and ideas and reviewing related information to analyze, develop and evaluate options, and implement solutions
• Communicating effectively in writing and speech as appropriate for the needs of the audience
• Developing and utilizing visual aids, graphs, tables and charts
• Giving full attention to what other people are saying, taking time to understand the points being made, asking questions as appropriate, and not interrupting at inappropriate times
• Monitoring/Assessing performance of yourself, other individuals, or organizations to make improvements or take corrective action
• Managing one's own time and the time of others
• Data analysis and interpretation
• Identifying the underlying patterns and principles of qualitative and quantitative information and explaining what that information means and how it can be used
• Bringing others together and trying to reconcile differences
• Establishing trust and ensuring input from all members of a group
• Working together to produce a shared product

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>ENGL 104 Composition and Rhetoric</th>
<th>1 SocIO 205 Introduction to Sociology</th>
<th>Creative arts (p. 29)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Mathematics (p. 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>ENGL 210 Technical and Business Writing</th>
<th>American history (p. 29)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Mathematics (p. 26)</th>
<th>Sociology elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

Select one of the following:

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>COMM 203 Public Speaking</th>
<th>COMM 205 Communication for Technical Professions</th>
<th>COMM 243 Argumentation and Debate</th>
<th>ENGL 203 Writing about Literature</th>
<th>ENGL 210 Technical and Business Writing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>ENGL 220 Methods of Social Research</th>
<th>American history (p. 29)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Literature directed elective (p. 532)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

Sociology elective

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>SOCIO 230 Classical Sociological Theory</th>
<th>Government/Political science (p. 30)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Literature directed elective (p. 532)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>SOCIO 420 Advanced Methods of Social Research</th>
<th>Government/Political science (p. 30)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Social and behavioral sciences (p. 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

Sociology elective

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>SOCIO 430 Contemporary Sociological Theory</th>
<th>Government/Political science (p. 30)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Sociology elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Language, philosophy and culture (p. 27)</th>
<th>Life and physical sciences (p. 26)</th>
<th>Sociology elective</th>
<th>Sociology elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

Sociology elective

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Language, philosophy and culture (p. 27)</th>
<th>Social and behavioral sciences (p. 30)</th>
<th>Sociology elective</th>
<th>Sociology elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement.
The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 33 hours in sociology may be applied to the major.

Other courses may qualify. Consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or from departmental advisors. No more than one course may be counted in more than one category.

Please note that university requirements specify that all students must take at least two courses in their major that are designated as fulfilling a writing intensive requirement (W). See the section on general requirements for baccalaureate degree for more information.

Minor Field of Study

Sociology majors are not required to select a minor field of study. If chosen, the minor must consist of 15-18 hours, with no more than 9 hours taken at a 100- or 200-level. No more than six hours from the minor may be used to fulfill other requirements. A grade of C or higher is required if a course is to be counted in the minor field.

Sociology - 5-Year Bachelor of Science/Master of Public Service Administration

The Department of Sociology and the Bush School of Government and Public Service offer a 5-year (3+2) combined degree program that allows Sociology majors to enter the Bush School at the start of their senior year (typically year four) at Texas A&M University. This enables students to receive their Sociology undergraduate degree (BS) and a Master of Public Service and Administration (MPSA) graduate degree in five years.

To be considered for the 5-year combined degree program, Sociology students must have a minimum 3.25 GPA and have completed 102 of the 120 hours of course work required to receive a bachelor’s degree. These courses must include all of the specific prerequisites for a Bachelor of Science degree in Sociology, as well as the courses required by the College of Liberal Arts and by Texas A&M University for an undergraduate degree. Interested students are encouraged to contact an academic advisor for more information.

A Bachelor of Science in Sociology provides a solid foundation in the knowledge and skills needed to address real-world social issues and problems, while allowing students to explore a wide range of social topics and issues. Some courses include hands-on service-learning opportunities in which students connect service and/or research in the community with course material. For sociology majors seeking to enter applied fields, we have a highly praised internship program that offers practical experience in community nonprofit organizations, government agencies, and businesses. To further complement our courses, students accepted into our honors program have opportunities to work one-on-one with professors engaged in sociological research.

The Master of Public Service and Administration (MPSA) program develops principled leaders for the public and nonprofit sectors, providing students the tools and knowledge they will need in order to perform effectively and ethically in a time when public servants face new and increased challenges. The MPSA program is fully accredited by the Network of Schools of Public Policy, Affairs, and Administration. The curriculum provides students with general knowledge and analytical skills in management, leadership, policy analysis, and research methods.

MPSA students have ample opportunities to engage in public service and to develop leadership skills both inside and outside the classroom through interaction with high-level public leaders, real-world consulting projects, student organizations, and the School’s Public Service Leadership Program. MPSA graduates leave the Bush School ready to make a difference, whether they choose to work in government, non-profit organizations, or the private sector.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>Winter</td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>SOCI 220</td>
<td>Methods of Social Research</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Sociology elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>SOCI 230</td>
<td>Classical Sociological Theory</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>General elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>SOCI 420</td>
<td>Advanced Methods of Social Research</td>
<td>3</td>
</tr>
</tbody>
</table>
Life and physical sciences (p. 26) 3
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 3
General elective 4 3
General elective 4 3

Spring
SOCI 430 Contemporary Sociological Theory 1 3
Government/Political science (p. 30) 3
Language, philosophy and culture or creative arts (p. 27) 3
Life and physical sciences (p. 26) 3
Sociology elective 1,2 3
General elective 4 3

Semester Credit Hours 18

Fourth Year
Fall
BUSH 631 Quantitative Methods in Public Management I 5 3
PSAA 601 Foundations of Public Service 5 3
PSAA 621 Economic Analysis 5 3
PSAA 643 Foundations of the Nonprofit Sector 3

Semester Credit Hours 12

Spring
PSAA 611 Public Policy Formation 5 3
Select one of the following: 5,6 3
BUSH 632 Quantitative Methods in Public Management II 3
BUSH 635 Quantitative Methods in Public Management II: Policy Analysis Emphasis 3
PSAA 630 Program Evaluation in Public and Nonprofit Organizations 3

Semester Credit Hours 12

Fifth Year
Fall
PSAA 675 Public Service and Administration Capstone Seminar 3
BUSH elective 6 3
BUSH elective 6 3
BUSH elective 6 3

Semester Credit Hours 12

Spring
PSAA 676 Public Service and Administration Capstone Seminar II 3
BUSH elective 6 3
BUSH elective 6 3
BUSH elective 6 3

Semester Credit Hours 12

Total Semester Credit Hours 150

3 SOCI courses do not count toward fulfilling this requirement.
4 Any 100-499 course. No more than 6 semester credit hours for SOCI 484 may be applied to the Bachelor of Arts degree in Sociology.
5 Course applies toward both degrees.
6 See Bush School advisor for course selection information.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

No more than 33 credit hours in SOCI may be applied to the major.

Other courses may qualify. Consult the approved list of courses available in the Undergraduate Student Services Office in the College of Liberal Arts or from departmental advisors. No more than one course may be counted in more than one category.

Please note that university requirements specify that all students must take at least two courses in their major that are designated as fulfilling a writing intensive requirement (W). See the section on general requirements for baccalaureate degree for more information.

The program includes a total of 168 hours which up to 18 hours may be applied toward both the Bachelor of Science in Sociology and the Master of Public Service Administration.

See the MPSA program in the Graduate and Professional Catalog for the MPSA requirements.

Minor Field of Study
Sociology majors are not required to select a minor field of study. If chosen, the minor must consist of 15-18 hours, with no more than 9 hours taken at a 100- or 200-level. No more than six hours from the minor may be used to fulfill other requirements. A grade of C or higher is required if a course is to be counted in the minor field.

Teacher Certification
Non-Sociology Majors To Teach Sociology
Students desiring certification to teach sociology in Texas secondary schools must complete a social studies composite with a sociology emphasis and required education courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociology (p. 1142)</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Political Science (p. 1118)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Economics (p. 965)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Geography (p. 1001)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>History (p. 1014)</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 76

Sociology Majors To Teach Sociology
Sociology majors desiring certification must include the following among their sociology courses and required education courses:

1 A grade of C or better is required.
2 Select from SOCI 100-499 (p. 1142), SOCI 608.
Sociology - Minor

A minor in Sociology can be a valuable complement to a degree in almost any field of study. Students select from a variety of courses to enhance the ability to live and work effectively in a diverse and global society by better understanding social diversity, cultural trends, inequalities, organizational behavior, and community and world events.

A Sociology minor will provide graduates with skills in applying knowledge to address real world problems through the development of realistic and equitable solutions, thinking critically about complex problems and ideas, engaging in communication processes with diverse audiences, practicing responsibility for one’s own and others’ performance to improve processes and make improvements, analyzing data to identify patterns and explain the meaning and application of data, and collaborating with others.

Sociology provides an excellent background for students wishing to enter into helping professions like social services, ministry, nursing, teaching, and law enforcement; it also provides an outstanding foundation for law, marketing, human resources, journalism, government, business management, and entrepreneurship.

Program Requirements

More complete information on requests for teacher certification may be found in the College of Education and Human Development section under secondary certification.

Education Courses

More complete information on requests for teacher certification may be found in the College of Education and Human Development section under secondary certification.

Students must make a grade of C or better in all courses. At least 9 hours must be at the 300- or 400-level.

University Studies Programs

The College of Liberal Arts offers degrees in University Studies. A University Studies degree differs from a traditional “major” in that it consists of a concentration and two minors of 15-18 hours each. At least one minor must be outside the college. The University Studies degree format was created to provide students the flexibility to combine areas of study that are of special interest.

Some University Studies degree tracks have both a B.S. and a B.A. option. The B.S. degree differs from the B.A. in being more focused on problem solving and analysis of data in examining major social and cultural issues. The B.S. degree therefore requires more courses in science and encourages statistics and mathematics, as opposed to the foreign language requirement of the B.A. version of the degree.

A student enrolled in the University Studies concentration of Race, Gender, Ethnicity may not pursue a double major or a double degree.

No student in any Liberal Arts University Studies concentration may pursue a double major or a double degree.

Majors

- Bachelor of Arts in University Studies, Journalism Studies Concentration (p. 565)
- Bachelor of Arts in University Studies, Race, Gender, Ethnicity Concentration (p. 565)
- Bachelor of Arts in University Studies, Religious Thought, Practices and Cultures Concentration (p. 656)
- Bachelor of Arts in University Studies, Society, Ethics and Law Concentration (p. 657)
- Bachelor of Science in University Studies, Health Humanities Concentration (p. 659)
- Bachelor of Science in University Studies, Liberal Arts Concentration (p. 660)
- Bachelor of Science in University Studies, Race, Gender, Ethnicity Concentration (p. 661)
University Studies - BA, Race, Gender, Ethnicity Concentration

This area of concentration is purposefully designed to require that students complete an individualized body of coursework that educates them in interdisciplinary knowledge. Four inquiry-rich, research-based courses; an introduction to each discipline; and a capstone senior seminar provides students with introductory and concluding courses in the methodologies appropriate to interdisciplinary studies in the Race, Gender, Ethnicity Concentration. Other courses in the core are drawn from areas such as Africana Studies, Latino/a and Mexican-American Studies, and Women’s and Gender Studies.

In the addition to a core of courses focused on race and ethnicity and gender, each student must complete two minors for the degree. It is expected that at least one minor will be from outside the College of Liberal Arts.

A student enrolled in the University Studies concentration of Race, Gender, Ethnicity may not pursue a double major or a double degree.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>AFST 201</td>
<td>Introduction to Africana Studies</td>
</tr>
<tr>
<td>LMAS 201</td>
<td>Introduction to Latino/Mexican American Studies</td>
</tr>
<tr>
<td>WGST 200</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
<tr>
<td>Course approved by CLLA</td>
<td></td>
</tr>
<tr>
<td>400-level Capstone course meeting University Writing Requirement</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>General elective 1</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social science directed elective 2</td>
<td>3</td>
</tr>
<tr>
<td>General elective 1</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities directed elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Foreign language 1</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Social science directed elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Humanities directed elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social science directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>General elective 3,6</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Humanities/Social science directed elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>AFST 201</td>
<td>Introduction to Africana Studies</td>
</tr>
<tr>
<td>LMAS 201</td>
<td>Introduction to Latino/Mexican American Studies</td>
</tr>
<tr>
<td>WGST 200</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
<tr>
<td>Course approved by CLLA</td>
<td></td>
</tr>
<tr>
<td>400-level Capstone course meeting University Writing Requirement</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
</tr>
<tr>
<td>General elective 3,6</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>13</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1 Students must complete Intermediate level foreign language coursework to complete degree requirements, however students will be required to complete or successfully place out of beginning level language courses prior to intermediate course enrollment. Students can apply the first eight hours (beginning 1 and 2) of foreign language courses as eight hours of general electives in their degree program.

Students must complete 48 hours of general electives of which 30-36 hours should be used to satisfy the requirements for two university approved minors. Minors will range between 15 and 18 hours. One minor must be chosen from outside of the College of Liberal Arts. Consult with advisor regarding how to declare desired minor.

Select from AFST 201, AFST 302, AFST 481; ANTH 205, ANTH 301; CLAS 330; COMM 425/AFST 425, COMM 431; ENGL 204/AFST 204, ENGL 329/AFST 329, ENGL 333/WGST 333, ENGL 338, ENGL 339/AFST 339, ENGL 362/HISP 362, ENGL 374/WGST 374, ENGL 393/AFST 393, ENGL 403, ENGL 474/WGST 474; FILM 394; HIST 258, HIST 300/AFST 300, HIST 301/AFST 301, HIST 304, HIST 305, HIST 307, HIST 319, HIST 330, HIST 345/AFST 345; HIST 346/AFST 346, HIST 401, HIST 461/WGST 461, HIST 473/WGST 473, HIST 476/WGST 476, HIST 477/WGST 477; PERF 326; PHIL 252/AFST 252, PHIL 283, PHIL 352/AFST 352, PHIL 353/AFST 353, PHIL 409/WGST 409, PHIL 464/RELS 464; SPAN 412; WGST 330, WGST 394.

100-499 courses not used elsewhere.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

University Studies - BA, Religious Thought, Practices and Cultures Concentration

The University Studies concentration in Religious Thought, Practices, and Culture gives students a knowledge base for analyzing how religious beliefs and practices work in a global context. Students develop the mental flexibility to see the world from multiple points of view and also learn to recognize how religion shapes social organizations, political actions, and individual behavior. The study of religion requires critical distance, analytical skills, and the mental flexibility to see the world from multiple points of view.

The concentration in Religious Thought, Culture, and Practices sits at the intersection of multiple disciplines. Any minor, in or outside the College of Liberal Arts, is thus likely to contribute to a concentration in religion. For example: a minor in biology offers a research path into the neuroscience of religious experience; a minor in psychology contributes a secular view of how religious belief affects people's behavior; a minor in anthropology shows the ways religion shapes cultural identity; a minor in history applies methods for analyzing how religious traditions evolve and change; a minor in mathematics could allow students to model changes in the global distribution of religious traditions; a minor in political science provides methods for analyzing the interplay between religion and politics.

A University Studies concentration is the ideal curricular model for allowing students to focus on the complexities of religious thought and practice in the modern world while supporting that focus with minors than enhance their knowledge base and lead toward careers.

No student enrolled in the University Studies concentration in Religious Thought, Practices and Cultures may pursue a double major or a double degree.

Program Requirements

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Concentration directed elective 2</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Concentration directed elective 2</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Minor 3</td>
</tr>
<tr>
<td>Concentration directed elective 2</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Minor 3</td>
</tr>
<tr>
<td>Concentration directed elective 2</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Third Year</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
<tr>
<td>Minor ²</td>
</tr>
<tr>
<td>Minor ²</td>
</tr>
<tr>
<td>Concentration directed elective ²</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>RELS 480/ Religious Communication</td>
</tr>
<tr>
<td>COMM 480</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>RELS 491 Research</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Minor ³</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

1. Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

3. Students must complete 34 hours of general electives of which 30-34 hours should be used to satisfy the requirements for two university approved minors. Minors will range between 15 and 18 hours. It is recommended one minor only require 15 hours or a minor which utilizes courses within the university core curriculum. One minor must be chosen from outside of the College of Liberal Arts. Consult with advisor regarding how to declare desired minor.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

University Studies - BA, Society, Ethics and Law Concentration

Society, Ethics, and Law (S.E.A.L.) is a university degree that has been designed for students who are interested in pursuing law school, or developing a highly transferable skill set that is useful to non-profits and businesses alike. To this end, S.E.A.L.’s curriculum is primarily guided by the published recommendations of the American Bar Association (A.B.A.). While the A.B.A. does not recommend nor require any particular major, it does encourage prospective law students to i) pursue opportunities (courses and experiences) that cultivate a specific set of skills; ii) obtain experiences that "can help [them] hit the ground running when [they] become a lawyer; and iii) develop "a broad understanding of history, including the various factors (social, political, economic, and cultural) that have influenced the development of our society in the United State."¹

The requirements for this University Studies degree reflect the A.B.A.’s recommendation. Under the broad themes of Society, Ethics and Law, the degree requires classes that contribute to a broad understanding of philosophy, politics, economics and history. Specifically, S.E.A.L. requires that students complete 24 hours of major requirements, a minor in Philosophy, and a second minor outside of the Liberal Arts. In addition to obtaining a broad understanding of society, ethics and law, the degree requires that students pursue experiences and opportunities that typically cultivate the A.B.A.’s recommended skill set:

1. **Problem Solving** involves "courses and other experiences that will engage [students] in critical thinking about important issues, challenge ... beliefs and improve ... tolerance for uncertainty and criticism."¹
2. **Critical Reading** involves "close reading and critical analysis of complex textual material."¹
3. **Writing and Editing** involves "preparing original pieces of substantial length and revising written work in response to constructive criticism. [...] Language is the most important tool of a lawyer, and lawyers must learn how to express themselves clearly and concisely."¹
4. **Oral Communication and Listening** involves "the ability to speak clearly and persuasively... and excellent listening skills."¹
5. **Research** involves "undertaking a project that requires significant library research and the analysis of large amounts of information obtained from that research."¹

The study of philosophy lends itself to the development of the five recommended skills. To this end, the required minor in Philosophy provides an opportunity to cultivate these skills.

Students are strongly advised to take philosophy courses over and above the minimum requirements for a minor, including independent studies and honors research courses.

1. http://www.americanbar.org/groups/legal_education/resources/pre_law.html
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103 or ENGL 104 Introduction to Rhetoric and Composition or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy minor (p. 629)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Spring

PHIL 240 Introduction to Logic | 3 |

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 203 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>Foreign language</td>
<td>4</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Minor **</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Spring

American history (p. 29) | 3 |
Foreign language	3
Life and physical sciences (p. 26)	3
Minor **	3
General elective	3

| Semester Credit Hours | 15 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy minor (p. 629)</td>
<td>3</td>
</tr>
<tr>
<td>Literature directed elective (p. 532)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

Experiential component and supplemental studies **| 3 |
Minor **	3
Philosophy minor (p. 629)	3
Society focus **	3

| Semester Credit Hours | 15 |

Fourth Year

Fall

Ethics focus **| 3 |
Law, regulation and policy focus ***	3
Minor **	3
Philosophy minor (p. 629)	3

| Semester Credit Hours | 15 |

Spring

Ethics focus **| 3 |
Experiential component and supplemental studies ***	3
Law, regulation and policy focus ***	3
Philosophy minor (p. 629)	3

| Semester Credit Hours | 12 |

| Total Semester Credit Hours | 120 |

1 Complete 14 hours of a foreign language (p. 532) through the intermediate level. If you choose to enroll in a language you have studied previously without receiving college credit, you must first take a placement test. See academic advisor.

2 This minor must be chosen from outside of the College of Liberal Arts.

3 Any 100-499 course not used elsewhere.

4 Students must take PHIL 484 (0-3 hours) and then choose the remainder of the required 6 hours from: ARAB 301, ARAB 302, ARAB 321, ARAB 322, CHIN 301, CHIN 302, CLAS 313, CLAS 320, CLAS 321, CLAS 322, COMM 203, COMM 240, COMM 243, COMM 245, COMM 301, COMM 324, COMM 325, COMM 327, COMM 420, WGST 420, ENGL 210, FREN 300, FREN 301, FREN 306, FREN 311, FREN 321, FREN 322, FREN 336, FREN 375, FREN 418, GERM 310, GERM 311, GERM 315, GERM 316, GERM 321, GERM 322, GERM 331, GERM 332, GERM 333, GERM 336, GERM 362, GERM 410, GERM 411, ITAL 303, JAPN 301, JAPN 302, JAPN 401, JAPN 402, PHIL 300-499 (p. 1110), RUSS 301, RUSS 302, RUSS 322, RUSS 410, SPAN 301, SPAN 302, SPAN 303, SPAN 304, SPAN 306, SPAN 307, SPAN 311, SPAN 318, SPAN 331, SPAN 332, SPAN 341, SPAN 342, SPAN 403, SPAN 445, SPAN 483, WGST 403, and any course from the other focus areas lists.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHUM 107</td>
<td>Introduction to the Health Humanities</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- COMM 203 Public Speaking | 3 |
- COMM 205 Communication for Technical Professions | 3 |
- COMM 243 Argumentation and Debate | 3 |
- ENGL 104 Composition and Rhetoric | 3 |
- ENGL 210 Technical and Business Writing | 3 |

American history (p. 29) | 3 |

Government/Political science (p. 30) | 3 |

Mathematics (p. 26) | 3 |

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities directed elective 1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign language 2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social science directed elective 4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foreign language 2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities directed elective 1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social science directed elective 4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

University Studies - BS, Health Humanities Concentration

Health Humanities is a growing, cross-disciplinary field that studies the lived experience of health and illness. Health Humanities is based on the idea that our experience of health and illness is never only biological or 'cultural,' but always both. This concentration is relevant for students interested in interdisciplinary scholarship, especially the interface between biosciences and the arts and humanities. Students must take an introductory course and capstone senior seminar, as well as selecting two courses each from the Humanities, Social Sciences and Sciences related to the interdisciplinary study of health.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.
The University Studies Degree format provides students flexibility to create individualized degree plans at Texas A&M. The format also provides additional opportunities for study in the College of Liberal Arts when there is restricted admission to specific departments. The University Studies in Liberal Arts (USLA) is a unique degree plan that consists of a foundational knowledge of Liberal Arts as a discipline, advanced work in social sciences and humanities, and two minors uniquely chosen by each student.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

University Studies - BS, Liberal Arts Concentration

The 21-credit-hour concentration is uniquely administered by the college, rather than by a department, and includes coursework drawn from all twelve college departments and five interdisciplinary programs. The degree, although B.S., requires a year of college-level foreign language and an additional 12 hours of communication, literature, and social science.

Students of USLA will be able to form their own program of study to acquire a broad interdisciplinary knowledge of the field of Liberal Arts. They will take courses in both the social sciences and the humanities, and receive the skills sets of a Liberal Arts degree: appreciation of different lifestyles and points of view; balanced knowledge of the social sciences and humanities; analytical, problem-solving skills; independent thinking but the ability to work in groups on collaborative projects; flexibility and adaptability; effective oral and written communication; the ability to interact with people at different levels.

A University Studies concentration in Liberal Arts is the ideal curricular model for allowing students to focus on the complexities of national and global problems, acquisition of skills needed for lifelong learning, such as critical thinking, communication, and the value of teamwork in problem solving. The core courses (upper-level courses in social science and humanities) and the additional requirements of foreign language, writing, and critical thinking, along with individualized minors, will position students on the many different career paths available in today's job markets for Liberal Arts graduates with their enhanced skills sets.

A student enrolled in the University Studies concentration of Liberal Arts may not pursue a double major or a double degree.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LBAR 203</td>
<td>Foundations of the Liberal Arts: Humanities</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>LBAR 204</td>
<td>Foundations of the Liberal Arts: Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreign language ²</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Government/Political science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor ³</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor ³</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humanities directed elective ⁴</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Spring
Government/Political science (p. 30) 3
Life and physical sciences (p. 26) 3
Minor 3 3
Minor 3 3
Social science directed elective 5 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Third Year
Fall
Life and physical sciences (p. 26) 3
Social and behavioral sciences (p. 30) 3
Minor 3 3
Minor 3 3
Humanities directed elective 4 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Spring
Creative arts (p. 29) 3
Literature directed elective (p. 532) 3
Minor 3 3
Minor 3 3
Social science directed elective 5 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Fourth Year
Fall
Language, philosophy and culture (p. 27) 3
Minor 3 3
Minor 3 3
Social and behavioral sciences (p. 30) 3
Literature directed elective (p. 532) 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Spring
LBAR 491 Research 3
Language, philosophy and culture or creative arts (p. 27) 3
Minor 3 3
Minor 3 3
General elective 3,6 1

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>13</th>
</tr>
</thead>
</table>

Total Semester Credit Hours 120

1 Must make a grade of C or better.
2 Complete two consecutive semesters of the same foreign language.
3 Students must complete 37 hours of general electives of which 30-36 hours should be used to satisfy the requirements for two university approved minors. One minor must be chosen from outside of the College of Liberal Arts. Minors must be declared in consultation with the major advisor.
4 Select from 300- or 400-level courses with a prefix of AFST (p. 877), ARAB (p. 900), ASIA (p. 908), CHIN (p. 934), CLAS (p. 935), ENGL (p. 970), FILM (p. 991), FREN (p. 998), GERM (p. 1010), HISP (p. 1013), HIST (p. 1014), HUMA (p. 1027), INTS (p. 1030), ITAL (p. 1037), JAPN (p. 1038), JOUR (p. 1039), LBAR (p. 1047), LING (p. 1048), LMAS (p. 1048), MODL (p. 1084), MUSC (p. 1087), PERF (p. 1105), PHIL (p. 1110), RELS (p. 1129), RUSS (p. 1136), SPAN (p. 1147), THAR (p. 1158).
5 Select from 300- or 400-level courses with prefix of ANTH (p. 896), COMM (p. 937), ECMT (p. 964), ECON (p. 965), POLS (p. 1118), PSYC (p. 1125), SOCI (p. 1142), WGST (p. 1173).
6 100-499 courses not used elsewhere.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

University Studies - BS, Race, Gender, Ethnicity Concentration

This area of concentration is purposefully designed to require that students complete an individualized body of coursework that educates them in interdisciplinary knowledge. Four inquiry-rich, research-based courses; an introduction to each discipline; and one a capstone senior seminar provide students with introductory and concluding courses in the methodologies appropriate to interdisciplinary studies in the Race, Gender, Ethnicity Concentration. Other courses in the core are drawn from areas such as Africana Studies, Latino/a and Mexican-American Studies, and Women's and Gender Studies.

The BS degree differs from the BA in being more focused on problem solving and analysis of data in examining major social and cultural issues. The BS degree therefore requires more courses in science and encourages statistics and mathematics, as opposed to the foreign language requirement of the BA version of the degree.

In the addition to a core of courses focused on race and ethnicity and gender, each student must complete two minors for the degree. It is expected that two minors are required for the degree, and at least one minor will must be from outside the College of Liberal Arts.

A student enrolled in the University Studies concentration of Race, Gender, Ethnicity may not pursue a double major or a double degree.

Program Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course approved by CILLA</th>
<th>Course approved by CILLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>AFST 201 Introduction to Africana Studies</td>
<td>LMAS 201 Introduction to Latino/Mexican American Studies</td>
</tr>
<tr>
<td></td>
<td>WGST 200 Introduction to Women's and Gender Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course approved by CILLA</td>
<td>400-level Capstone course meeting University Writing Requirement</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Government/Political science (p. 30)</td>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td></td>
<td>Mathematics (p. 26)</td>
<td>Mathematics (p. 26)</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |
Spring
American history (p. 29) 3
Communication (p. 26) 3
Government/Political science (p. 30) 1
Mathematics (p. 26) 3
Social science directed elective 2 3

Semester Credit Hours 15

Second Year
Fall
Language, philosophy and culture (p. 27) 3
Life and physical sciences (p. 26) 3
Minor 3 3
Minor 3 3
Humanities directed elective 4 3

Semester Credit Hours 15

Spring
Life and physical sciences (p. 26) 3
Minor 3 3
Minor 3 3
Social and behavioral sciences (p. 30) 3
Social science directed elective 2 3

Semester Credit Hours 15

Third Year
Fall
Creative arts (p. 29) 3
Life and physical sciences (p. 26) 3
Minor 3 3
Minor 3 3
Humanities directed elective 4 3

Semester Credit Hours 15

Spring
Minor 3 3
Minor 3 3
Humanities/Social science directed elective 5 3
Science directed elective 6 3
General elective 3,7 3

Semester Credit Hours 15

Fourth Year
Fall
Minor 3 3
Minor 3 3
Humanities/Social science directed elective 5 3
Science directed elective 6 3

Semester Credit Hours 15

Spring
Select one of the following: 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 201 Introduction to Africana Studies</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>LMAS 201 Introduction to Latino/Mexican American Studies</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>WGST 200 Introduction to Women's and Gender Studies</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Course approved by CLLA
400-level Capstone course meeting University Writing Requirement

<table>
<thead>
<tr>
<th>Minor</th>
<th>Credit Hours</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>3,7</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Total Semester Credit Hours 120

1. One course on federal government and one course on state/local government will fulfill this requirement. Completing four semesters of upper-level ROTC may be substituted for 3 semester hours of the six hours required.

3. Students must complete 48 hours of general electives of which 30-36 hours should be used to satisfy the requirements for two university approved minors. Minors will range between 15 and 18 hours. One minor must be chosen from outside of the College of Liberal Arts. Consult with advisor regarding how to declare desired minor.

6. Select from ATMO 100-499 (p. 910); BIOL 100-499 (p. 919); CHEM 100-499 (p. 929); CPSC 100-499; GEOG 100-499 (p. 1005); GEOG 100-499 (p. 1008); MATH 131-499 (p. 1066); OCNG 100-499 (p. 1104); PHYS 100-499 (p. 1115); STAT 201-499 (p. 1154).

7. 100-499 courses not used elsewhere.

Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46)
courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.
COLLEGE OF NURSING

Administrative Officers

Dean - Nancy Fahrenwald, Ph.D., R.N., PHNA-BC, FAAN
Associate Dean for Academic Affairs - Debra Matthews, Ph.D., R.N.
Assistant Dean for Student Affairs - Todd Stricherz, M.S.
Associate Dean for Finance and Administration - Shirley Davidson, M.B.A.
Associate Dean for Research - Jane Bolin, Ph.D., J.D., R.N.
Associate Dean for Clinical and Outreach Affairs - Cindy Weston, D.N.P., R.N., CSN-CC, FNP-BC
Assistant Dean for Undergraduate Nursing Education - Sharon Dormire, Ph.D., R.N.,
Assistant Dean for Graduate Nursing Education - Matthew Sorenson, Ph.D., APRN, ANP-C, FAAN
Assistant Dean for Distant Site Round Rock - Virginia Ann Utterback, Ph.D., R.N., CNE

General Statement

The four-year Bachelor of Science in Nursing (BSN) degree provides the educational and experiential base for entry-level professional nursing practice and provides the platform on which to build a career through graduate-level study for roles such as advanced practice registered nurse (nurse practitioner, nurse midwives, clinical nurse specialist, nurse anesthetist), as well as a career in nursing administration, research, and nursing education.

Much of the emphasis in healthcare today is shifting toward preventive care and the promotion of health. As the healthcare industry turns away from the hospital as the center of the operation, nurses are being asked to take on broader and more diverse roles working in clinics, outpatient facilities, community centers, schools, and even places of business. The education of today’s nurses, therefore, transcends the traditional areas, such as chemistry and anatomy, to enable a deeper understanding of health promotion, disease prevention, screening, genetic counseling, and immunization. BSN education provides nurses with an understanding of how health problems may have a social cause, often referred to as the social determinants of health, such as poverty and environmental contamination, as well as provide insight into human psychology, behavior, cultural mores, and values.

The transformation of today’s healthcare system offers unlimited opportunities for nurses as care in urban and rural settings becomes more accessible. According to the U.S. Bureau of Labor Statistics, employment of RNs will grow faster than the average for all occupations through 2026, due largely to growing demand in settings such as hospitals, community health centers, home care, and long-term care. The increased complexity of health problems and increased management of health problems out of the hospitals require highly educated and well-prepared nurses at the baccalaureate and graduate levels. It is an exciting era in nursing, one that holds exceptional promise for nurses with a baccalaureate nursing degree.

History

Texas A&M College of Nursing received approval from the Texas Board of Nursing on July 17, 2008, and admitted its first class on July 21, 2008. The college has grown to approximately 450 nursing students enrolled at two campuses: Bryan and Round Rock as well as having many students enrolled in distance education programs. The college also has a resident recruiting presence in Lufkin and McAllen serving residents in East and South Texas for both undergraduate and graduate nursing students.

Texas A&M College of Nursing graduates are among the best-prepared baccalaureate and masters nurses in the nation, and they are highly sought after by prospective employers. The first-time National Council Licensure Examination for Registered Nurses® (NCLEX-RN) pass rates for BSN graduates have ranked 10 percentage points higher than both the Texas and national average for the past ten years. The percent of BSN graduates employed within the first month following graduation is consistently high compared to state and national averages.

The college received the National League of Nursing’s prestigious designation as a Center of Excellence in Nursing Education initially in 2016. The distinction recognizes schools of nursing that have achieved outstanding innovations, commitment, and sustainability.

College of Nursing Programs

Program: Baccalaureate degree in nursing
Length: 12 to 23 months
General Admissions Requirements: Prerequisite coursework varies by program
Application Deadline: Varies depending on program of study
Start Term: Varies depending on program of study
Specialization, Program of Study: BSN Traditional Track, BSN Second Degree Track, RN to BSN Track
Degree: BSN.

Baccalaureate Degree in Nursing

The College of Nursing (CON) offers three tracks that lead to the Bachelor of Science in Nursing (BSN) degree. The Traditional BSN and the accelerated Second-Degree BSN options are two-year upper-division nursing degree programs. Prior to entry to the CON, students in these options must complete prerequisite courses in the humanities and biological, physical and behavioral sciences to provide a foundation for the nursing major. Both of these pre-licensure options prepare graduates to take the National Council Licensure Examination (NCLEX-RN) in order to be licensed for practice as a registered nurse. The third option is the RN to BSN (RN-BSN) track for nurses with an associate’s degree in nursing seeking to complete the bachelor’s degree. Students in the College of Nursing are governed by the regulations and policies that apply to all students at TAMU. In addition, students are governed by requirements of the College of Nursing, professional standards and standards of the assigned clinical agencies. These include but are not limited to health requirements, immunizations, background checks, and drug screens. The requirements are presented in detail in the College of Nursing Undergraduate Student Handbook.

Accreditation by the Commission on Collegiate Nursing Education (CCNE)

The Commission on Collegiate Nursing Education is an autonomous accrediting agency, contributing to the improvement of the public’s health. A specialized/professional accrediting agency, CCNE ensures the
quality and integrity of baccalaureate and graduate nursing programs and of post-baccalaureate nurse residency programs. The baccalaureate and master's degree programs in nursing at Texas A&M University College of Nursing are accredited by the Commission on Collegiate Nursing Education (http://www.ccneaccreditation.org), 655 K Street, NW, Suite 750, Washington, DC 20001, 202-887-6791.

Good Academic Standing

Good academic standing is defined as having a minimum grade point average of a 2.0 (on a 4.0 scale), maintaining a minimum grade of C in all courses, and non-probationary status. Students must be in good academic standing in order to progress in the program. Grades of D, F, or U are not acceptable in nursing courses. Students who receive a grade of D, F or U in any course in any given semester will be automatically placed on probation and notified in writing of probation status. The student will remain on probation until the course is repeated with a C or better. The course can only be taken through the Texas A&M College of Nursing. A second attempt in a course cannot be 'Q' dropped. The grade earned on the second attempt will stand. Students who earn a grade of D or F upon repetition of a nursing course or have two nursing course failures are ineligible to continue enrollment in the College.

Students must complete the program to which they enrolled in three (3) consecutive years or six (6) long semesters. Exceptions for extenuating circumstances (i.e. serious illness, pregnancy, etc.) will be considered. In addition to obtaining grades of C or above in all nursing courses, students must demonstrate their ability to deliver safe care to patients at all times. Failure to provide safe patient care may result in immediate withdrawal from the course and, potentially, dismissal from the College of Nursing.

Academic Dismissal

Students will not be permitted to continue in the nursing program or apply for readmission if they:

1. receive a grade of D or F in more than one course,
2. receive any combination of grades of D or F on two attempts of the same course,
3. receive notice of dismissal from the program by the Assistant Dean for Academic Affairs or the Assistant Dean for Student Affairs for failure to adhere to College of Nursing policy.

Nursing Professional Code of Ethics

Students in nursing and other health professions curricula are held to standards of conduct that both differ from and exceed those usually expected of university students. Each student enrolled in the College of Nursing is expected to uphold the professional code of ethics established for and by the nursing profession. The nurse recognizes that his/her first obligation is to the patient’s welfare.

Any situation that threatens patient safety, exhibits a lack of moral character, demonstrates a lack of professionalism or good judgment, and/or proves harmful to the hospital or college environment is a violation of College/Hospital policy and may result in immediate termination from the program.

Compliance Requirements for Clinical Courses

Students must provide documentation confirming completion of compliance requirements prior to participating in clinical nursing courses.

Information on requirements is provided upon admission and during New Student Orientation.

Locations

The Bryan/College Station campus serves as the headquarters of the Texas A&M Health Science Center College of Nursing. The 200-acre campus is located along State Highway 47 approximately three miles west of the main campus of Texas A&M University. The College of Nursing campus in Round Rock, Texas, provides a state-of-the-art 134,000-square-foot structure with classrooms, a simulation center, library, study lounge, student services and faculty offices. Additionally, the College of Nursing has two advising locations: Lufkin and McAllen, Texas.

Bryan/College Station Campus
8447 State Highway 47
Bryan, TX 77807-3260
(979) 436-0110
nursing.tamu.edu (http://nursing.tamu.edu/)

Round Rock Campus
3950 North A. W. Grimes Blvd.
Round Rock, TX 78665
(512) 341-4200

McAllen Advising Location
2101 South McColl Road
McAllen, TX 78503
(956) 668-6328

Lufkin Advising Location
Angelina College, Health Careers Building
3500 South 1st Street, Room #H110
Lufkin, TX 75904
936-633-3293

Faculty

Authement, Renae S, Clinical Assistant Professor
College of Nursing
DNP, Loyola University, 2015

Barnes, Karen, Lecturer
College of Nursing
MSN, Western Governors University, 2018

Beard, Regina, Clinical Associate Professor
College of Nursing
EDD, Auburn University, 2004

Becker, Kristin, Lecturer
College of Nursing
MSN, University of Texas Health Science Center at El Paso, 2019

Bolin, Jane, Professor
College of Nursing
PHD, Pennsylvania State University, 2002

Bonner, Rickie, Clinical Assistant Professor
College of Nursing
DNP, Regis University, 2012

Bosenbark, Margaret J, Clinical Assistant Professor
College of Nursing
MNU, Texas A&M Health Science Center College of Nursing, 2016
Bruce, Richard C, Clinical Assistant Professor
College of Nursing
MS, University of Phoenix, 2012

Burns, Rebecca J, Clinical Assistant Professor
College of Nursing
DNP, Loyola University New Orleans, 2015

Charles, Laurie A, Clinical Assistant Professor
College of Nursing
CERT, Office of the Attorney General of Texas, 2016

Decker, Willa A, Clinical Assistant Professor
College of Nursing
MA, University of Houston - Clear Lake, 1989

Dormire, Sharon L, Professor
College of Nursing
PHD, University of Florida, 1992

Downing, Nancy, Associate Professor
College of Nursing
PHD, The University of Iowa, 2010

Drake, Stacy, Associate Professor
College of Nursing
PHD, Texas Woman’s University, 2014

Droste, Lesa, Clinical Assistant Professor
College of Nursing
MSN, The University of Texas At Austin, 2009

Ehler, Patricia L, Clinical Assistant Professor
College of Nursing
MS, University of Phoenix, 2004

Etherton, Teresa, Lecturer
College of Nursing
BSN, Grand Canyon University, 2014

Fahrenwald, Nancy Lynn, Professor
College of Nursing
PHD, University of Nebraska Medical Center, 2002

Gary, Jodie C, Assistant Professor
College of Nursing
PHD, University of Texas at Tyler, 2012

Gruben, Darla A, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas Health Science Center, 1999

Hardy, Jaime, Clinical Assistant Professor
College of Nursing
CERT, Angelo State University, 2018

Hare, Martha L, Clinical Assistant Professor
College of Nursing
DNP, Texas Tech University Health Science Center, 2010

Hepfer, Katie L, Clinical Assistant Professor
College of Nursing
DNP, The University of Iowa, 2016

Hoffman, Matt F, Clinical Assistant Professor
College of Nursing
DNP, The University of Iowa, 2016

Hutton, Michael W, Clinical Assistant Professor
College of Nursing
MSN, University of Texas Health Science Center at San Antonio, 1990

Johnson, Carrie A, Clinical Assistant Professor
College of Nursing
DNP, The University of Texas Health Science Center at Houston, 2009

Landman, Whitney E, Clinical Assistant Professor
College of Nursing
MSN, Western Governor’s University, 2016

Lang, Bambi, Lecturer
College of Nursing
MSN, University of Texas Health Science Center at San Antonio, 1996

Lehde, Britni, Lecturer
College of Nursing
MSN, Texas Tech University Health Science Center, 2015

Marklund, Leroy, Clinical Assistant Professor
College of Nursing
DNP, University of Alabama, 2015

Marshall, Heather, Lecturer
College of Nursing
DNP, Capella University, 2018

Matthews, Debra, Assistant Professor
College of Nursing
PHD, Washington State University, 2014

Mauldin, Betsy L, Clinical Assistant Professor
College of Nursing
MSN, Angelo State University, 2018

McKee, Susan J, Clinical Assistant Professor
College of Nursing
MSN, University of Texas at Tyler, 2012

Mitchell, Stacey A, Clinical Associate Professor
College of Nursing
DNP, University of Tennessee Health Science Center, 2006

Moffitt, Cassandra, Clinical Assistant Professor
College of Nursing
MSN, University of Texas-Tyler, 2017

Montalvo-Liendo, Nora, Associate Professor
College of Nursing
PHD, The University of Texas Health Science Center at Houston, 2009

Muellerhinze, Maxine L, Clinical Assistant Professor
College of Nursing
PHD, The University of Texas - Austin, 1988

Mufich, Martin W, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas at Austin, 2015
Mulcahy, Angela M, Clinical Associate Professor
College of Nursing
PHD, University of Texas -Tyler, 2018

Narvaez, Lynda Marie, Clinical Assistant Professor
College of Nursing
MSN, United States University, 2014

Neal, Colleen R, Clinical Assistant Professor
College of Nursing
MNU, The University of Oklahoma Health Science Center, 2011

Obriant, Deborah L, Clinical Assistant Professor
College of Nursing
CERT, Texas A&M University-Corpus Christi, 2019

Page, Robin L, Assistant Professor
College of Nursing
PHD, University of Texas at Austin, 2006

Parrott, Thena E, Clinical Assistant Professor
College of Nursing
PHD, Texas A&M University, 1993

Perez, Cayla, Clinical Assistant Professor
College of Nursing
MSN, Texas A&M University-Corpus Christi, 2017

Pittman, Alison F, Clinical Assistant Professor
College of Nursing
PHD, University of Texas at Tyler, 2017

Pullium, Cheryl L, Clinical Assistant Professor
College of Nursing
DNP, The University of Alabama, 2018

Roberts, Cynthia G, Clinical Assistant Professor
College of Nursing
MNU, University of Texas -Tyler, 2014

Roblyer, Kathleen A, Clinical Assistant Professor
College of Nursing
DNP, The University of Alabama at Birmingham, 2015

Rosen, Chelsey L, Clinical Assistant Professor
College of Nursing
MSN, University of Texas at Tyler, 2018

Schuessler, Zohreh, Lecturer
College of Nursing
PHD, Texas Woman’s University, 2018

Seaback, Wanda F, Clinical Assistant Professor
College of Nursing
MNU, Texas Women’s University, 2005

Simon, Ashley, Lecturer
College of Nursing
MNU, Texas A&M Health Science Center, 2016

Sorenson, Matthew, Professor
College of Nursing
PHD, Loyola University Chicago, 2002

Stucki, Kenzie, Lecturer
College of Nursing
MSN, Western Governors University, 2018

Thomas, Safiya, Lecturer
College of Nursing
MSN, Old Dominion University, 2011

Turnbow, Sonia L, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas at El Paso, 1995

Utterback, Virginia A, Associate Professor
College of Nursing
PHD, Texas Tech University, 2010

Van, Suzanne M, Clinical Assistant Professor
College of Nursing
MNU, University of Texas at El Paso, 2014

Vargas, Sylvia, Clinical Assistant Professor
College of Nursing
MNU, Texas A&M University Corpus Christi, 2013

Vela, Carmen G, Clinical Assistant Professor
College of Nursing
DNP, American Sentinel University, 2018

Wagner, Lisa, Lecturer
College of Nursing
MPH, University of Texas Health Science Center at Houston, 2018

Wells-Beede, Elizabeth R, Clinical Assistant Professor
College of Nursing
PHD, Capella University, 2018

Weston, Cynthia G, Assistant Professor
College of Nursing
DNP, University of Texas Health Science Center San Antonio, 2014

White-Corey, Shelley J, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas Health Science Center at Houston, 2011

Ybarra, Debora, Clinical Assistant Professor
College of Nursing
MSN, University of Texas Health Science Center- Houston, 2013

Majors

College of Nursing
- Bachelor of Science in Nursing, RN to BSN Track (p. 668)
- Bachelor of Science in Nursing, Second Degree BSN Track (p. 669)
- Bachelor of Science in Nursing, Traditional BSN (p. 670)

Masters

College of Nursing
- Master of Science in Nursing in Family Nurse Practitioner (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/nursing/msn-family-practitioner/)
Nursing - BSN, RN to BSN Track

The RN to BSN track is an opportunity for registered nurses who hold an associate's degree in nursing from an accredited college or will have an A.D.N. degree conferred prior to the entry date. Applicants must hold a current, unencumbered Registered Nurse license. Students may complete the 30 credit hour upper division course of study as either a full-time or a part-time student. The course instruction is delivered online allowing students to balance career, family and other responsibilities along with advancing their education. Students may choose to complete the curriculum in 3 semesters (1-year option), in 4 semesters (1 1/2-year option) or in 5 semesters (2-year option). Applicants who completed their Associate Degree in Nursing through an LVN to RN or Paramedic to RN bridge program must have earned a minimum of 35 transferable credits in their program in order to apply. This program is approved for delivery via asynchronous distance education technology, with some required visits to Bryan, TX.

Entry to the RN to BSN (Bachelor of Science in Nursing) Program

Admission to the College of Nursing is competitive. The student must have a minimum grade of C in each prerequisite course within only two attempts. It is strongly recommended that applicants have a minimum cumulative grade point average of 3.0 (on a 4.0 scale). All applicants are expected to complete prerequisite coursework and Texas A&M core curriculum coursework prior to the first class day.

Admissions decisions are based on:
1. the strength of the student's academic background;
2. the personal statement/essay;
3. one professional reference from either a professor or the student's current supervisor;
4. the student’s experiences and attributes, to include community service, leadership, honors and awards and work experience;
5. academic history of repeats, withdraws or failures.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107</td>
<td>Zoology or Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>or BIOL 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319</td>
<td>or VIBS 305 Further Human Anatomy and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>or VIBS 305</td>
<td>or Biomedical Anatomy</td>
<td></td>
</tr>
<tr>
<td>NFSC 222</td>
<td>Nutrition for Health and Health Care</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>or VTPB 405 Further Human Anatomy and Physiology</td>
<td>4</td>
</tr>
<tr>
<td>or VTPB 405</td>
<td>or Biomedical Microbiology</td>
<td></td>
</tr>
<tr>
<td>PHIL 111</td>
<td>Contemporary Moral Issues</td>
<td>3</td>
</tr>
<tr>
<td>or PHIL 251</td>
<td>or Introduction to Philosophy</td>
<td></td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BIOL 206</td>
<td>Introductory Microbiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td></td>
</tr>
<tr>
<td>VTPB 405</td>
<td>Biomedical Microbiology</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 312</td>
<td>Introduction to Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NURS 313</td>
<td>Nursing Fundamentals</td>
<td>5</td>
</tr>
<tr>
<td>NURS 314</td>
<td>Health Assessment</td>
<td>3</td>
</tr>
<tr>
<td>NURS 316</td>
<td>Pharmacology Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 305</td>
<td>Nursing Dimensions and Informatics</td>
<td>3</td>
</tr>
<tr>
<td>NURS 320</td>
<td>Adult Nursing I</td>
<td>6</td>
</tr>
<tr>
<td>NURS 411</td>
<td>Evidence-Based Practice for Nurses</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Semester</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 412</td>
<td>Care of Mental Health Clients</td>
<td>4</td>
</tr>
</tbody>
</table>
Texas A&M University

NURS 424 Professional Issues 2
Semester Credit Hours 6

Fourth Year

Fall
NURS 323 Nursing Care of Women, Families and Newborns 4
NURS 420 Adult Nursing II 6
NURS 434 Case Studies in Patient Safety and Quality 2
Semester Credit Hours 12

Spring
NURS 315 Nursing and the Aged 3
NURS 413 Care of Children and Families 4
NURS 421 Care of Community Health Clients 5
Semester Credit Hours 12

Summer
NURS 430 Transition to Professional Nursing Practice 5
Semester Credit Hours 5

Total Semester Credit Hours 120

1 Core Curriculum courses are listed on the University Core Curriculum (p. 25) page. For additional information, please reference http://core.tamu.edu. STAT 201 is recommended to fulfill 3 hours of Mathematics, but is not required.

2 Indicates Nursing Science course.

3 These courses may be taken at a community college, but must be completed by the first day at the College of Nursing. Students may elect to place these courses anywhere in their schedule, thought it is encouraged that these be completed over the summer.

4 Texas common courses BIOL 2401 and 2402 taken at any Texas accredited public institution will meet the requirement for BIOL 319 and BIOL 320.

Nursing - BSN, Second Degree BSN Track

The second degree (post baccalaureate) track is for students who already hold a bachelor’s degree in another field of study. Acceptance into this track requires successful completion of prerequisite coursework prior to beginning upper division courses. All students will be required to complete core curriculum requirements if these were not met in the previous degree program. Contact the Office of Student Affairs for more information. This program is offered in Bryan, TX.

Students with a previous bachelor's degree may apply to the traditional BSN track and must follow the same requirements as noted above. If they met a core curriculum at another Texas public institution in their previous degree, it will be accepted for entry into the College of Nursing.

Upper Level Entry to the Second Degree Bachelor of Science in Nursing

Admission decisions are based on:
1. the strength of the student’s academic background;
2. HESI A2 score;
3. the personal statement;
4. the student’s experiences and attributes, to include community service, leadership, work experience and activities in health care; and
5. academic history of repeats, withdraws or failures.

Program Requirements

First Year

Fall
BIOL 107 Zoology or Introductory Biology I
or BIOL 111
PSYC 107 Introduction to Psychology
Semester Credit Hours 4

Spring
PSYC 307 Developmental Psychology 2, 3
Semester Credit Hours 3

Select one of the following: 2
CHEM 106 Molecular Science for Citizens
& CHEM 116 and Molecular Science for Citizens Laboratory
CHEM 107 General Chemistry for Engineering
& CHEM 117 Students
and General Chemistry for Engineering Students Laboratory
CHEM 119 Fundamentals of Chemistry I
CHEM 120 Fundamentals of Chemistry II
American history (p. 29) 1
Communication (p. 26) 1
Mathematics (p. 26) 1, 2
Semester Credit Hours 16

Second Year

Fall
PHIL 111 Contemporary Moral Issues
or PHIL 251 or Introduction to Philosophy
Semester Credit Hours 3

Spring
BIOL 320 Integrated Human Anatomy and Physiology
or VTPP 423 or Biomedical Physiology I
PHIL 111 Contemporary Moral Issues
or PHIL 251 or Introduction to Philosophy
Select one of the following: 2
BIOL 206 Introductory Microbiology
BIOL 351 Fundamentals of Microbiology
VTPP 405 Biomedical Microbiology
Government/Political science (p. 30)
Semester Credit Hours 14
Third Year

Fall
Term available to students unable to complete 59 hours of general education courses in previous 4 terms

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>0</th>
</tr>
</thead>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 305</td>
<td>Nursing Dimensions and Informatics</td>
<td>3</td>
</tr>
<tr>
<td>NURS 312</td>
<td>Introduction to Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NURS 313</td>
<td>Nursing Fundamentals</td>
<td>5</td>
</tr>
<tr>
<td>NURS 314</td>
<td>Health Assessment</td>
<td>3</td>
</tr>
<tr>
<td>NURS 316</td>
<td>Pharmacology Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 17 |

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 320</td>
<td>Adult Nursing I</td>
<td>6</td>
</tr>
<tr>
<td>NURS 411</td>
<td>Evidence-Based Practice for Nurses</td>
<td>3</td>
</tr>
<tr>
<td>NURS 412</td>
<td>Care of Mental Health Clients</td>
<td>4</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 13 |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 315</td>
<td>Nursing and the Aged</td>
<td>3</td>
</tr>
<tr>
<td>NURS 434</td>
<td>Case Studies in Patient Safety and Quality</td>
<td>2</td>
</tr>
<tr>
<td>NURS 420</td>
<td>Adult Nursing II</td>
<td>6</td>
</tr>
<tr>
<td>NURS 421</td>
<td>Care of Community Health Clients</td>
<td>5</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 323</td>
<td>Nursing Care of Women, Families and Newborns</td>
<td>4</td>
</tr>
<tr>
<td>NURS 413</td>
<td>Nursing Care of Children and Families</td>
<td>4</td>
</tr>
<tr>
<td>NURS 424</td>
<td>Professional Issues</td>
<td>2</td>
</tr>
<tr>
<td>NURS 430</td>
<td>Transition to Professional Nursing Practice</td>
<td>5</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

Total Semester Credit Hours

| Total Semester Credit Hours | 120 |

1. Core Curriculum courses are listed on the University Core Curriculum (p. 25) page. For additional information, please reference http://core.tamu.edu. STAT 201 is recommended to fulfill 3 hours of Mathematics, but is not required.
2. Indicates Nursing Science course.
3. These courses may be taken at a community college, but must be completed by the first day at the College of Nursing. Students may elect to place these courses anywhere in their schedule, thought it is encouraged that these be completed over the summer.
4. Texas common courses BIOL 2401 and 2402 taken at any Texas accredited public institution will meet the requirement for BIOL 319 and BIOL 320.

Nursing - BSN, Traditional BSN

The traditional BSN track requires the successful completion of prerequisite coursework prior to beginning upper division courses. Academic advisors will be able to advise students regarding equivalencies to common course numbers. Information is also available regarding courses at www.tccns.org (http://www.tccns.org) and through the Texas A&M Transfer Course Equivalency (https://compassxe-ssb.tamu.edu/HCA/ssb/transferCourseEquivalency/#!/inst) webpage. This program is offered in Round Rock, TX and Bryan, TX.

Upper Level Entry to the Traditional Bachelor of Science in Nursing

Admission to the College of Nursing upper-level entry program is competitive. The student must have a minimum grade of C in each prerequisite course and a recommended minimum cumulative grade point average of 3.0 (on a 4.0 scale). Students admitted to the program usually exceed this minimum requirement significantly, with higher grade point averages in all university courses, in core curriculum courses and in the science courses. Applicants are required to complete the HESI Admissions Assessment A2 exam and achieve a minimum score of 75% in each required section. Admission requirements include the application, HESI score, personal statement, and transcript(s) from all colleges or universities attended. Admission decisions are based on:

1. the strength of the student’s academic background;
2. the HESI A2 score;
3. the personal statement;
4. the student’s attributes and experiences, to include community service, leadership, work experience and activities in health care; and
5. academic history of repeats, withdraws or failures.

Internal Transfer Applicants

An Internal Transfer Applicant is a current Texas A&M University undergraduate in a non-nursing major who meets specific requirements to apply to the upper division course sequence in Nursing. Meeting requirements does not guarantee admission, but allows a student the opportunity to apply for entry to the nursing program.

Students must submit the application no later than the published deadline in the term in which they are applying. Note: All academic information included on the application must be posted to and appear in a student’s official record at Texas A&M.

External Transfer Applicants

A limited number of External Transfer Applicants from colleges and universities outside of Texas A&M University will be admitted.

Students participating in Program for Transfer Admission (PTA) must follow the external transfer process found here (http://nursing.tamhs.edu/traditional/external.html).

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107 or BIOL 111</td>
<td>Zoology or Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 13 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 307</td>
<td>Developmental Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 3 |
Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 106 & CHEM 116</td>
<td>Molecular Science for Citizens and Molecular Science for Citizens Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 107 & CHEM 117</td>
<td>General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

American history (p. 29) | 1 |
Communication (p. 26) | 1 |
Mathematics (p. 26) | 1, 2 |

Second Year
Fall
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 319 or VIBS 305</td>
<td>Integrated Human Anatomy and Physiology or Biomedical Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>NFSC 222</td>
<td>Nutrition for Health and Health Care</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>1, 2</td>
<td></td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320 or VTPP 423</td>
<td>Integrated Human Anatomy and Physiology or Biomedical Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>PHIL 111 or PHIL 251</td>
<td>Contemporary Moral Issues or Introduction to Philosophy</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 206</td>
<td>Introductory Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 405</td>
<td>Biomedical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Third Year
Fall
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 312</td>
<td>Introduction to Pathophysiology</td>
<td>3</td>
</tr>
<tr>
<td>NURS 313</td>
<td>Nursing Fundamentals</td>
<td>5</td>
</tr>
<tr>
<td>NURS 314</td>
<td>Health Assessment</td>
<td>3</td>
</tr>
<tr>
<td>NURS 316</td>
<td>Pharmacology Principles</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 305</td>
<td>Nursing Dimensions and Informatics</td>
<td>3</td>
</tr>
<tr>
<td>NURS 320</td>
<td>Adult Nursing I</td>
<td>6</td>
</tr>
<tr>
<td>NURS 411</td>
<td>Evidence-Based Practice for Nurses</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 412</td>
<td>Care of Mental Health Clients</td>
<td>4</td>
</tr>
<tr>
<td>NURS 424</td>
<td>Professional Issues</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 323</td>
<td>Nursing Care of Women, Families and Newborns</td>
<td>4</td>
</tr>
<tr>
<td>NURS 420</td>
<td>Adult Nursing II</td>
<td>6</td>
</tr>
<tr>
<td>NURS 434</td>
<td>Case Studies in Patient Safety and Quality</td>
<td>2</td>
</tr>
</tbody>
</table>

Fourth Year
Fall
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 305</td>
<td>Nursing Dimensions and Informatics</td>
<td>3</td>
</tr>
<tr>
<td>NURS 320</td>
<td>Adult Nursing I</td>
<td>6</td>
</tr>
<tr>
<td>NURS 411</td>
<td>Evidence-Based Practice for Nurses</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 315</td>
<td>Nursing and the Aged</td>
<td>3</td>
</tr>
<tr>
<td>NURS 413</td>
<td>Care of Community Health Clients</td>
<td>4</td>
</tr>
<tr>
<td>NURS 421</td>
<td>Care of Community Health Clients</td>
<td>5</td>
</tr>
</tbody>
</table>

Summer
<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>NURS 430</td>
<td>Transition to Professional Nursing Practice</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1 Core Curriculum courses are listed on the University Core Curriculum (p. 25) page. For additional information, please reference http://core.tamu.edu. STAT 201 is recommended to fulfill 3 hours of Mathematics, but is not required.

2 Indicates Nursing Science course.

3 These courses may be taken at a community college, but must be completed by the first day at the College of Nursing. Students may elect to place these courses anywhere in their schedule, thought it is encouraged that these be completed over the summer.

4 Texas common courses BIOL 2401 and 2402 taken at any Texas accredited public institution will meet the requirement for BIOL 319 and BIOL 320.

Foreign Language

Proficiency in a foreign language is required. Can be met by taking two years of the same language in high school or college credit.

Prerequisite Courses

Prerequisites may be planned or in progress during the application cycle, but must be completed with a grade of 'C' or better before the program start date. The courses may be completed at any regionally accredited college or university.
SCHOOL OF PUBLIC HEALTH

Administrative Officers

- Dean - Shawn Gibbs, Ph.D., M.B.A., C.I.H.
- Associate Dean for Climate and Diversity - Lisako McKyer, Ph.D., M.P.H.
- Associate Dean for Public Health Practice - Jennifer Griffith, Dr.P.H.
- Associate Dean for Research - Tiffany A. Radcliff, Ph.D.
- Assistant Dean for Undergraduate Studies - Donald J. Curtis, Jr., Ph.D.
- Assistant Dean for Finance and Administration - John O’Neill, M.B.A.
- Assistant Dean for Student Affairs - Erin Schneider, M.P.H.
- Assistant Dean for Accountability - Eric Wilson, Ph.D.

General Statement

Founded in 1998 as the first public health school in the nation with a focus on rural and underserved communities, the School of Public Health developed into a nationally ranked, fully accredited public health academic, research, and service program.

Offering classes at the College Station campus as well as other Texas locations through distance education, the school provides a bachelor's program and graduate level programs including two master's degrees (Master of Public Health and Master of Health Administration) in several public health disciplines: epidemiology, biostatistics, environmental health, occupational safety and health, health administration, policy and management, and health promotion and community health sciences. The school also offers a Doctor of Public Health with concentrations in epidemiology, environmental health, and health promotion and community health sciences, and a Doctor of Philosophy in health services research.

The school provides an excellent forum for tomorrow’s public health leaders to engage in a learning environment that builds on a wide array of research strengths and scholarly inquiry of a stellar faculty (seven of whom have received the prestigious designations of Regents Professors and one Distinguished Professor). Further, the research and practice links established by the faculty provide an extensive diversity of opportunities for students to work closely with professionals in applied public health settings.

Providing a forum for future public health leaders, the school builds an array of research strengths and practice skills for rural and urban settings.

History

The School of Public Health is the first of its kind in the nation. The Texas Legislature established the school in 1995 as part of a rural health initiative to better address rural health needs in the state. After receiving degree-granting authority for the Master of Public Health degree in April 1998 from the Texas Higher Education Coordinating Board, the School of Rural Public Health welcomed its inaugural class in September 1998.

In 2014, the School of Public Health welcomed its first students into the brand-new Bachelor of Science in Public Health program, the first program of its kind in the state affiliated with a fully accredited School of Public Health. With a mission to serve the public health needs of the entire state, the undergraduate program is based on a philosophy of health promotion and disease prevention to improve the quality of life of individuals, families, and communities in the State of Texas and beyond.

Graduates of the BSPH program will be able to assess factors influencing health in populations as well as plan, design, implement and successfully manage effective healthcare programs and interventions as well as be well-positioned for careers in medicine, nursing, and other allied health professions.

School of Public Health - Undergraduate Office
163 SRPH Administration Building, 212 Adriance Lab Road
College Station, TX 77843-1266
(979) 436-9463
https://public-health.tamu.edu/phs/ (http://sph.tamhsc.edu/phs/)

 Majors

School of Public Health

- Bachelor of Science in Public Health and Master of Public Health in Epidemiology, 5-Year Degree Program (p. 676)
- Bachelor of Science of Public Health (p. 673)

Minors

School of Public Health

- Global Health Minor (p. 677)
- Occupational Health and Safety Minor (p. 678)
- Public Health Studies Minor (p. 678)

Masters

School of Public Health

- Master of Health Administration in Health Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-administration-mha/)
- Master of Public Health in Occupational Safety and Health (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/occupational-safety-health-mph/)
- Master of Science in Public Health in Health Policy and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-policy-management-msph/)

Department of Environmental and Occupational Health

- Master of Public Health in Environmental Health (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/environmental-occupational-health/environmental-health-mph/)

Department of Epidemiology and Biostatistics

- Master of Public Health in Biostatistics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/epidemiology-biostatistics/biostatistics-mph/)
- Master of Public Health in Epidemiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/epidemiology-biostatistics/epidemiology-mph/)
Department of Health Policy and Management

- Master of Health Administration in Health Administration (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-administration-mha/)
- Master of International Affairs (INTA) and Master of Public Health (PHPM) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/health-policy-management/combination-mph-jd/)
- Master of Public Health in Health Policy and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/health-policy-management/mph/)
- Master of Public Health in Health Policy Management (PHPM) and Juris Doctor (JDLW) Combination Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/health-policy-management/combination-mph-jd/)
- Master of Science in Public Health in Health Policy and Management (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-policy-management-msph/)

Department of Health Promotion and Community Health Sciences

- Master of International Affairs (INTA) and Master of Public Health (HPCH) Combined Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/government-public-service/international-affairs/combined-inta-hpch/)
- Master of Public Health in Health Promotion and Community Health Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/health-promotion-community-health-sciences/mph/)

Doctoral

School of Public Health

- Doctor of Philosophy in Health Services Research (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-services-research-phd/)
- Doctor of Public Health in Public Health Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/public-health-sciences-drph/)

Department of Health Policy and Management

- Doctor of Philosophy in Health Services Research (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/public-health/interdepartmental/health-services-research-phd/)
- Master of Public Service and Administration (PSAA) and Doctor of Philosophy (HRSA) Collaborative Degree Program (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/government-public-service/public-service-administration/collaborative-psaa-hrsa/)

Public Health - BS

Public Health professionals with a Bachelor of Science in Public Health (BSPH) are prepared to:

- understand the history, ethics, and traditions of the field of public health.
- value the scope and nature of problems and challenges addressed by the field of public health.
- appreciate the breadth, depth, and variety of intellectual and practical skills employed in the field of public health.
- appreciate the variety of communication methods and cultural competence required in the field of public health.

The BSPH program is based on a philosophy of health promotion and disease prevention, to improve the quality of life of individuals, families and communities. The BSPH discipline focuses on four areas:

1. the multiple determinants of health, including biological, environmental, sociocultural, health service, and economic factors,
2. identification of scientific data, tools of informatics, and other information for identifying indicators of health status and health disparities and assessing the well-being of a community,
3. addressing major local, national, and global health challenges, and
4. designing public health approaches and interventions that improve health outcomes, population health and well-being.

The Bachelor of Science in Public Health degree program is more than a means to produce ready public health practitioners. It can complement or enrich a traditional biology-based pre-health degree plan for students intending professional education in medicine, nursing, allied health or other health professions. Notably the program establishes a specific entry-level baccalaureate degree in the Public Health academic pathway which, until recently, had started with a master's degree.

This program is approved to be offered at the Texas A&M Higher Education Center in McAllen, Texas.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111 Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205 Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>ENGL 203 Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>THAR 407 Performing Literature</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140 Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 142 Business Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 147 Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 148 Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>MATH 167</td>
<td>Explorations in Mathematics</td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
</tr>
</tbody>
</table>

Social and Behavioral Sciences (p. 30) 3 Semester Credit Hours

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td></td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td></td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td></td>
</tr>
<tr>
<td>THAR 407</td>
<td>Performing Literature</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3 Semester Credit Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>MATH 167</td>
<td>Explorations in Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 168</td>
<td>Finite Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
</tbody>
</table>

Creative arts (p. 29) 3 Semester Credit Hours

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Free Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Select 9 hours from the following: 9 Semester Credit Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>BESC 401</td>
<td>Bioenvironmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>BICH 412</td>
<td>Biochemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>ENTO 210</td>
<td>Global Public Health Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 431/</td>
<td>The Science of Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 432/</td>
<td>Applied Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td></td>
</tr>
<tr>
<td>GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>GENE 320/</td>
<td>Biomedical Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHLT 306</td>
<td>Border Health</td>
<td></td>
</tr>
<tr>
<td>PHLT 308</td>
<td>Comparative Global Health Systems</td>
<td></td>
</tr>
<tr>
<td>PHLT 331</td>
<td>Occupational Safety and Health I</td>
<td></td>
</tr>
<tr>
<td>PHLT 332</td>
<td>Occupational Safety and Health II</td>
<td></td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
<td></td>
</tr>
<tr>
<td>PHLT 334</td>
<td>Fire Safety and Workplace Hazards</td>
<td></td>
</tr>
<tr>
<td>PHLT 335</td>
<td>Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>PHLT 413</td>
<td>Public Health Informatics</td>
<td></td>
</tr>
<tr>
<td>PHLT 414</td>
<td>Applications of Epidemiology in Public Health</td>
<td></td>
</tr>
<tr>
<td>PHLT 416</td>
<td>Public Health Leadership and Ethics</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHLT 305</td>
<td>Epidemiology in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 309</td>
<td>Population Health Promotion</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 311</td>
<td>Narrative Approach to Public Health</td>
<td>1</td>
</tr>
<tr>
<td>PHLT 330</td>
<td>The Environment and Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 412</td>
<td>Health Advocacy and Policy</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 315</td>
<td>Public Health Data Management and Assessment I</td>
<td>2</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHLT 410</td>
<td>Public Health Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 411</td>
<td>Project Management in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 441</td>
<td>Strategies for Population Health Improvement</td>
<td></td>
</tr>
</tbody>
</table>

BSPH Directed Electives

Select 9 hours from the following: 9 Semester Credit Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
<td></td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
<td></td>
</tr>
<tr>
<td>BESC 401</td>
<td>Bioenvironmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>BICH 412</td>
<td>Biochemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>ENTO 210</td>
<td>Global Public Health Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 431/</td>
<td>The Science of Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTO 432/</td>
<td>Applied Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
<td></td>
</tr>
<tr>
<td>GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>GENE 320/</td>
<td>Biomedical Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHLT 306</td>
<td>Border Health</td>
<td></td>
</tr>
<tr>
<td>PHLT 308</td>
<td>Comparative Global Health Systems</td>
<td></td>
</tr>
<tr>
<td>PHLT 331</td>
<td>Occupational Safety and Health I</td>
<td></td>
</tr>
<tr>
<td>PHLT 332</td>
<td>Occupational Safety and Health II</td>
<td></td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
<td></td>
</tr>
<tr>
<td>PHLT 334</td>
<td>Fire Safety and Workplace Hazards</td>
<td></td>
</tr>
<tr>
<td>PHLT 335</td>
<td>Hazardous Materials</td>
<td></td>
</tr>
<tr>
<td>PHLT 413</td>
<td>Public Health Informatics</td>
<td></td>
</tr>
<tr>
<td>PHLT 414</td>
<td>Applications of Epidemiology in Public Health</td>
<td></td>
</tr>
<tr>
<td>PHLT 416</td>
<td>Public Health Leadership and Ethics</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PHLT 432</td>
<td>Human Factors and Ergonomic Health and Safety</td>
<td></td>
</tr>
<tr>
<td>PHLT 433</td>
<td>Industrial Inspections and Audit Techniques</td>
<td></td>
</tr>
<tr>
<td>PHLT 434</td>
<td>Project Cost Benefit and Economics</td>
<td></td>
</tr>
<tr>
<td>PHLT 484</td>
<td>Public Health Studies Field Experience</td>
<td></td>
</tr>
<tr>
<td>PHLT 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>PHLT 489</td>
<td>Special Topics In...</td>
<td></td>
</tr>
<tr>
<td>PHLT 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td>URPN 370</td>
<td>Health Systems Planning</td>
<td></td>
</tr>
<tr>
<td>URPN 371</td>
<td>Environmental Health Planning and Policy</td>
<td></td>
</tr>
<tr>
<td>VIBS 401</td>
<td>Developmental Neurotoxicology</td>
<td></td>
</tr>
<tr>
<td>VIBS 407/</td>
<td>Core Ideas in Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NRSC 407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIBS 413</td>
<td>Introduction to Epidemiology</td>
<td></td>
</tr>
<tr>
<td>VIBS 420</td>
<td>Computer Applications in Public Health Research</td>
<td></td>
</tr>
<tr>
<td>VTPB 408</td>
<td>Clinical Microbiology</td>
<td></td>
</tr>
<tr>
<td>VTPB 409</td>
<td>Introduction to Immunology</td>
<td></td>
</tr>
<tr>
<td>VTPB 438</td>
<td>Biomedical Virology</td>
<td></td>
</tr>
<tr>
<td>VTPB 487/</td>
<td>Biomedical Parasitology</td>
<td></td>
</tr>
<tr>
<td>BIOL 487</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours: 18

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHLT 307</td>
<td>Public Health in the Global Context</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 415</td>
<td>Emergency Management in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 445</td>
<td>Applications of Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

BSPH Directed Electives 2

Select 6 hours from the following: 6

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BESC 314</td>
<td>Pathogens, the Environment and Society</td>
</tr>
<tr>
<td>BESC 367</td>
<td>U.S. Environmental Regulations</td>
</tr>
<tr>
<td>BESC 401</td>
<td>Bioenvironmental Microbiology</td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
</tr>
<tr>
<td>BICH 412</td>
<td>Biochemistry Laboratory I</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>ENTO 210</td>
<td>Global Public Health Entomology</td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
</tr>
<tr>
<td>ENTO 431/</td>
<td>The Science of Forensic Entomology</td>
</tr>
<tr>
<td>FIVS 431</td>
<td></td>
</tr>
<tr>
<td>ENTO 432/</td>
<td>Applied Forensic Entomology</td>
</tr>
<tr>
<td>FIVS 432</td>
<td></td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
</tr>
<tr>
<td>GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>GENE 320/</td>
<td>Biomedical Genetics</td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
</tr>
<tr>
<td>PHLT 306</td>
<td>Border Health</td>
</tr>
<tr>
<td>PHLT 308</td>
<td>Comparative Global Health Systems</td>
</tr>
<tr>
<td>PHLT 331</td>
<td>Occupational Safety and Health</td>
</tr>
<tr>
<td>PHLT 332</td>
<td>Occupational Safety and Health I</td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
</tr>
<tr>
<td>PHLT 334</td>
<td>Fire Safety and Workplace Hazards</td>
</tr>
<tr>
<td>PHLT 335</td>
<td>Hazardous Materials</td>
</tr>
<tr>
<td>PHLT 413</td>
<td>Public Health Informatics</td>
</tr>
<tr>
<td>PHLT 414</td>
<td>Applications of Epidemiology in Public Health</td>
</tr>
<tr>
<td>PHLT 416</td>
<td>Public Health Leadership and Ethics</td>
</tr>
<tr>
<td>PHLT 432</td>
<td>Human Factors and Ergonomic Health and Safety</td>
</tr>
<tr>
<td>PHLT 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>PHLT 489</td>
<td>Special Topics In...</td>
</tr>
<tr>
<td>PHLT 491</td>
<td>Research</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>URPN 370</td>
<td>Health Systems Planning</td>
</tr>
<tr>
<td>URPN 371</td>
<td>Environmental Health Planning and Policy</td>
</tr>
<tr>
<td>VIBS 401</td>
<td>Developmental Neurotoxicology</td>
</tr>
<tr>
<td>VIBS 407/</td>
<td>Core Ideas in Neuroscience</td>
</tr>
<tr>
<td>NRSC 407</td>
<td></td>
</tr>
<tr>
<td>VIBS 413</td>
<td>Introduction to Epidemiology</td>
</tr>
<tr>
<td>VIBS 420</td>
<td>Computer Applications in Public Health Research</td>
</tr>
<tr>
<td>VTPB 408</td>
<td>Clinical Microbiology</td>
</tr>
<tr>
<td>VTPB 409</td>
<td>Introduction to Immunology</td>
</tr>
<tr>
<td>VTPB 438</td>
<td>Biomedical Virology</td>
</tr>
<tr>
<td>VTPB 487/</td>
<td>Biomedical Parasitology</td>
</tr>
<tr>
<td>BIOL 487</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours: 15

Total Semester Credit Hours: 120

1 Chosen in consultation with BSPH academic advisor.

2 BSPH Directed Electives: courses that constitute the major are those offered by the School of Public Health and those approved for public health studies electives. Additional courses may be available. Students must check with their academic advisor.

Approval of degree plan does not guarantee access to courses. Students must satisfy prerequisites, and some course (writing intensive classes included) are available to majors only. It is the responsibility of the student to ascertain whether there are any restrictions or prerequisites for courses in their degree plan.
Public Health - 5-year Bachelor of Science/Master of Public Health in Epidemiology

The School of Public Health offers a 5-year degree program including a Bachelor of Science and a Master of Public Health in Epidemiology.

The 3+2 Bachelor of Science in Public Health/Masters in Public Health in Epidemiology degree program is more than a means to produce next-level Epidemiologists. It will deliver a graduate who can not only immediately impact the field of Epidemiology, but also deliver someone with a well-rounded understanding of the role that Epidemiology and Public Health play in medicine, nursing, allied health or other health professions.

The undergraduate component of the 3+2 program is based on a philosophy of health promotion and disease prevention, to improve the quality of life of individuals, families and communities. The graduate MPH component is a non-thesis degree program with culminating experiences as part of the degree requirements. Students will participate in a practicum demonstrating overall public health problem solving skills and complete a rigorous capstone class.

Program Requirements

The following is a suggested schedule that includes the required courses for the combined BS/MPH in Public Health-Epidemiology. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>BIOL 111 Introductory Biology I</td>
</tr>
<tr>
<td>3</td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>COMM 203 Public Speaking</td>
</tr>
<tr>
<td></td>
<td>COMM 205 Communication for Technical Professions</td>
</tr>
<tr>
<td></td>
<td>COMM 243 Argumentation and Debate</td>
</tr>
<tr>
<td></td>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td></td>
<td>ENGL 203 Writing about Literature</td>
</tr>
<tr>
<td></td>
<td>ENGL 210 Technical and Business Writing</td>
</tr>
<tr>
<td></td>
<td>THAR 407 Performing Literature</td>
</tr>
<tr>
<td>6</td>
<td>Free electives</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CHEM 119 Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>3</td>
<td>POLS 206 American National Government</td>
</tr>
<tr>
<td>6</td>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>1</td>
<td>Free electives</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PHLT 302 Foundations of Public Health</td>
</tr>
<tr>
<td>3</td>
<td>PHLT 303 Social Context of Population Health</td>
</tr>
<tr>
<td>3</td>
<td>PHLT 304 Biological Basis of Public Health</td>
</tr>
<tr>
<td>1</td>
<td>PHLT 310 Public Health Writing</td>
</tr>
<tr>
<td>3</td>
<td>PHLT 313 Health Care and Public Health System</td>
</tr>
<tr>
<td>2</td>
<td>PHLT 314 Public Health Data Management and Assessment I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PHLT 305 Epidemiology in Public Health</td>
</tr>
</tbody>
</table>
Fourth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEB 602</td>
<td>Biostatistics I</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 411</td>
<td>Project Management in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 441</td>
<td>Strategies for Population Health Improvement</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 601</td>
<td>Thinking in Populations: The Public Health Mindset</td>
<td>2</td>
</tr>
<tr>
<td>SOPH 602</td>
<td>Investigation and Control: Acute Public Health Events</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 603</td>
<td>Assessment and Intervention: Wicked Problems in Public Health</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEB 603</td>
<td>Biostatistics II</td>
<td>3</td>
</tr>
<tr>
<td>PHEB 605</td>
<td>Epidemiologic Methods I</td>
<td>3</td>
</tr>
<tr>
<td>PHEB 612</td>
<td>Data Management / Computing</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 410</td>
<td>Public Health Communication</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 445</td>
<td>Applications of Public Health</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 604</td>
<td>Framing and Persuasion: Public Health in the Public Sphere</td>
<td>1</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEB 684</td>
<td>Practicum</td>
<td>2</td>
</tr>
</tbody>
</table>

Fifth Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEB 609</td>
<td>Categorical Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PHEB 610</td>
<td>Epidemiologic Methods II</td>
<td>3</td>
</tr>
<tr>
<td>PHEB 615-627</td>
<td>(http://catalog.tamu.edu/graduate/course-</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 307</td>
<td>Public Health in the Global Context</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHEB 615-627</td>
<td>(http://catalog.tamu.edu/graduate/course-</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 415</td>
<td>Emergency Management in Public Health</td>
<td>3</td>
</tr>
<tr>
<td>SOPH 680</td>
<td>Public Health Capstone</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum of 6 hours at 300 to 400 level.

Students must have completed at least 45 hours, have a minimum TAMU GPA of 2.5 or higher, and a completed minor form filed in the Public Health Studies advising office to pursue this program.
Occupational Health and Safety - Minor

The Occupational Safety and Health minor consists of 15 hrs of selected upper-level Public Health coursework. Students are encouraged to select courses in consultation with a Public Health Studies Academic Advisor.

Students applying for an OCSH minor must have a 2.0 or better overall GPA and meet with a PHLT advisor to declare the minor. Students are required to meet a minimum cumulative GPA of 2.0 or better in their minor coursework. Proper classification is required for the course level taken and any minor course prerequisites must be met.

Students with a minor in Occupational Safety and Health minor are prepared to recognize factors that make a workplace unsafe and learn how to reduce risks for everyone.

Requirements to declare Occupational Safety & Health minor:

Must have a 2.0 TAMU GPA

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHLT 331</td>
<td>Occupational Safety and Health I</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 333</td>
<td>Accident Investigation</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 432</td>
<td>Human Factors and Ergonomic Health and Safety</td>
<td>3</td>
</tr>
<tr>
<td>PHLT 434</td>
<td>Project Cost Benefit and Economics</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHLT 305</td>
<td>Epidemiology in Public Health</td>
<td></td>
</tr>
<tr>
<td>PHLT 330</td>
<td>The Environment and Public Health</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

Minimum 15 hours required.
Minimum of 6 hours at 300- to 400-level.
Minimum 2.0 TAMU GPA and a completed minor form filed in the Public Health Studies advising office.

Public Health Studies - Minor

The Public Health Studies minor consists of 15 hrs of selected upper-level Public Health coursework. Students are encouraged to select courses in consultation with a Public Health Studies Academic Advisor.

Students applying for a PHLT minor must have a 2.0 or better overall GPA and meet with a PHLT advisor to declare the minor. Students are required to meet a minimum cumulative GPA of 2.0 or better in their minor coursework. Proper classification is required for the course level taken and any minor course prerequisites must be met.

Students with a minor in Public Health are prepared to: Understand factors influencing health in individuals, communities and populations; Contribute to society as citizens armed with the knowledge and skills to promote the common good; Promote healthier lifestyles and environments; and Contribute to the implementation of programs and interventions.

Requirements to declare PHLT minor:

Must have a 2.0 TAMU GPA
College of Science

Administrative Officers

Dean - Valen E. Johnson, Ph.D.
Executive Associate Dean - Mark J. Zoran, Ph.D.
Associate Dean for Assessment - Suojin Wang, Ph.D.
Associate Dean for External Relations - Marlan O. Scully, Ph.D.
Associate Dean for International Programs - Gil Rosenthal, PhD
Associate Dean for Research - James Batteas, Ph.D.
Associate Dean for Undergraduate Programs - Lucas Macri, Ph.D.
Assistant Dean for Diversity and College Climate - Derya Akleman, Ph.D.

General Statement

Nature, its origins and its evolution, its strengths and its frailties, its order and its perceived disarray, constitutes the realm of study classified as science. Scientists search for interconnecting relationships and traits of order to understand the nature of our universe. Each new discovery provides additional knowledge and frequently enables the solution of previously perplexing questions. Often technology is able to transform scientific discovery into applications which are beneficial to our everyday living. Technology would be impoverished were it not for the new knowledge continually being sought by scientists. At the same time, science could not progress without the advances in instrumentation and techniques generated by technology. Thus, a symbiotic relationship exists between science and technology, a relationship which permeates the courses and programs in the college.

The departments of the College of Science are organized to respond to the needs of students for both general and specialized education in science in offering the Bachelor of Science and the Bachelor of Arts degrees in Biology, Chemistry, Mathematics, Physics, and University Studies. The former degree permits heavy emphasis in selected subject matter and closely allied fields, whereas the latter degree is designed for the student who desires a more broadly based education while still specializing in one of the sciences. Additionally, the college offers a Bachelor of Science degree in Applied Mathematical Science and Statistics.

For this reason, many students select a degree program in science to complete their prerequisite courses for professional study programs. The early admissions option to professional schools of dentistry or medicine in the biology degree programs provides the opportunity for a student to receive a degree in biology if they are successful in gaining admission to a professional study program in medicine or dentistry prior to completion of a regular four-year degree program. To receive the degree, they must complete all requirements under this program and successfully complete their first year of medical or dental school.

In addition to the Departments of Biology, Chemistry, Mathematics, Physics and Astronomy, and Statistics, the College of Science includes the Cyclotron Institute, a research institute that emphasizes fundamental studies of nuclear science in which both undergraduate and graduate students participate. The College of Science offers MS and PhD programs in various departments.

General Degree Requirements

Degree requirements for science majors are organized into:

1. general requirements, including University Core Curriculum requirements and College of Science requirements;
2. requirements of the major field of study;
3. requirements of the minor field of study for those students completing a BA degree; and
4. electives.

With the exception of physical activity and general elective requirements, courses taken to satisfy degree requirements must be taken for letter grades.

Students are responsible for selecting the courses in their degree plan and assuring they abide by Texas A&M University Student Rules in meeting all degree requirements. Each department has advisors who should be consulted in developing degree programs.

General Requirements

General requirements include those which are required in every degree program at the University. Please refer to these requirements defined in the University Core Curriculum and graduation requirements in foreign language sections of this catalog. Special guidelines should be noted in the following categories:

American History

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. history course ¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. history course ¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

¹ Students seeking teacher certification must complete HIST 105 and HIST 106.

Three hours in history may be substituted by successfully completing the required four semesters of upper-level ROTC curriculum.

Government/Political Science

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Three hours in political science may be substituted by successfully completing the required four semesters of upper-level ROTC curriculum.

International and Cultural Diversity Requirements

The International and Cultural Diversity portion of the Graduation requirements may be fulfilled by 6 hours from the approved list of courses (see the International and Cultural Diversity requirements (p. 47) page). These courses may be in addition to University Core Curriculum requirements, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements.
Major Field of Study
Each department sets its own requirements for the major. At least 12 semester hours in the major must be completed in advanced courses (300- or 400-level) in residence at Texas A&M.

Minor Field of Study
The BA degree requires a minor field of study or an area of emphasis for students pursuing teacher certification. A minor requires 15–18 semester hours in one discipline. Six of these hours must be advanced (300- or 400-level) courses. Students must contact the department offering the minor to determine course requirements. Students pursuing a BS degree may select an optional minor. Contact the department offering the minor to determine course requirements. Students must declare a minor no later than the date on which they apply for graduation.

Electives
Electives should be chosen to enhance the student's degree program and/or complete professional school prerequisites if not contained in required courses in the degree plan. Elective courses must be above the minimum level required in other areas of the degree program. For example, MATH 102 is not acceptable because it is below the minimum requirement of calculus. Also, introductory courses to another field of study such as BIMS 101 and AGLS 101 will not count toward degree requirements. Lower-level ROTC courses are not acceptable as electives. Please consult an advisor when selecting electives.

Curricular Options

Honors Program
The College of Science participates in the University Honors Program designed to offer the superior student special opportunities for academic work of a range and depth appropriate to his or her capabilities and greater intellectual interests. For further information, refer to the section regarding the University Honors Program (p. 115).

Cooperative Education Program
Cooperative education enables students to gain practical work experience and a salary while completing academic requirements. During the four-year academic program, co-op students complete two to four periods of work away from campus, gaining experience through on-the-job training and thus improving their opportunities for future employment. The Cooperative Education Office provides additional information about this program.

Minor Field of Study
Each department in the College of Science offers a minor. Students interested in pursuing a minor in a field in the College should contact the department offering the minor.

Summer Internships
A number of programs are available throughout the country which offer summer employment to students interested in specific fields of study and training. Each departmental advisor has information pertaining to these programs.

Combined Bachelor's and Master's Degrees
The Department of Mathematics provides the opportunity for ambitious and talented students to earn a bachelor's and a master's degree within a five year period. Eligible students earn graduate credit during their undergraduate study which allows them to complete this option.

Interested students should contact the Mathematics Department if interested in this program.

Preparation for Professional Studies
Students interested in gaining admission to professional study programs in the health professions may do so through any course of study. Prerequisite course requirements may be completed as part of a regular degree program or through electives. Advising for students preparing for health profession careers is available, regardless of major, through Professional School Advising, 209 Koldus, (979) 847-8938.

Medicine and Dentistry
Curricula in biology, chemistry, mathematics and physics within the College of Science readily accommodate the required courses needed for admission to professional studies in medicine and dentistry. Admission to medical and dental schools typically require the following prerequisites:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BICH</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Two advanced biological sciences courses</td>
<td>6</td>
</tr>
<tr>
<td>PHYS</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS</td>
<td>Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>or PHYS</td>
<td>or Newtonian Mechanics for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>PHYS</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td>or PHYS</td>
<td>or 207/PHYS 227</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>STAT</td>
<td>Introduction to Biometry</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Statistical Methods</td>
<td></td>
</tr>
</tbody>
</table>

Early Admission Program
The College of Science offers two methods of awarding a baccalaureate degree to students who gain admission to professional school prior to completion of their degree. The Baccalaureate Degree Option for Students Granted Early Admission to Medical/Professional Programs is available to all students regardless of their major.
Most students complete a four-year program prior to acceptance to professional school and thus it is advised a degree program leading to a standard baccalaureate degree be selected.

Veterinary Medicine

Please refer to the Admission Requirements—Professional Curriculum listed in the College of Veterinary Medicine and Biomedical Sciences.

Other Allied Health Programs

There are many allied health fields students may prepare for through degree programs in the College of Science. Prerequisite requirements for admission should be completed as part of a degree granting program.

Teacher Certification

The Secondary Teaching Certificate may be obtained in conjunction with a major in the College of Science. Requirements for teacher certification may be found at the aggieteach.tamu.edu/ website.

Curricula in University Studies

The College of Science has five different University Studies degree tracks. A University Studies Degree generally consists of a concentration of 21-24 hours and two minors of 15-18 hours each. Some concentrations and minors contain required courses that have additional prerequisites. One of the two minors must be completed in a college outside of the College of Science. The student’s diploma will list Bachelor of Science in University Studies. The student’s area of concentration and the two minors will be indicated on the student’s transcript.

Students must meet with an academic advisor to discuss their plans, grade requirements and receive an application packet. Additional information about the degree tracks may be found at https://science.tamu.edu/degrees/university-studies/.

Majors

College of Science

- Bachelor of Science in University Studies, Arts and Sciences Concentration (p. 751)
- Bachelor of Science in University Studies, BioInformatics Concentration (p. 752)
- Bachelor of Science in University Studies, Mathematics for Business Concentration (p. 753)
- Bachelor of Science in University Studies, Mathematics for Pre-Professionals Concentration (p. 753)
- Bachelor of Science in University Studies, Mathematics for Teaching Concentration (p. 754)
- Bachelor of Science in University Studies, Science for Secondary Teaching Concentration (p. 755)

Department of Biology

- Bachelor of Arts in Biology (p. 688)
- Bachelor of Science in Biology (p. 689)
- Bachelor of Science in Microbiology (p. 690)
- Bachelor of Science in Molecular and Cell Biology (p. 692)
- Bachelor of Science in Neuroscience, Molecular and Cellular Neuroscience Track (p. 693)
- Bachelor of Science in Zoology (p. 694)

Department of Chemistry

- Bachelor of Arts in Chemistry (p. 700)
- Bachelor of Arts in Chemistry, Biological Chemistry or Medical, Dental, Pharmacy School Track (p. 702)
- Bachelor of Arts in Chemistry, Chemical Education Track (p. 703)
- Bachelor of Arts in Chemistry, Environmental Chemistry Track (p. 705)
- Bachelor of Science in Chemistry (p. 707)
- Bachelor of Science in Chemistry, Biological Chemistry Track (p. 709)
- Bachelor of Science in Chemistry, Environmental Chemistry Track (p. 710)
- Bachelor of Science in Chemistry, Materials Chemistry Track (p. 712)

Department of Mathematics

- Bachelor of Arts in Mathematics (p. 730)
- Bachelor of Arts in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 732)
- Bachelor of Science in Mathematics (p. 733)
- Bachelor of Science in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 735)
- Bachelor of Science in Applied Mathematical Sciences, Actuarial Science Emphasis (p. 718)
- Bachelor of Science in Applied Mathematical Sciences, Biological Science Emphasis (p. 720)
- Bachelor of Science in Applied Mathematical Sciences, Computational Science Emphasis (p. 721)
- Bachelor of Science in Applied Mathematical Sciences, Cryptography Emphasis (p. 722)
- Bachelor of Science in Applied Mathematical Sciences, Economics Emphasis (p. 724)
- Bachelor of Science in Applied Mathematical Sciences, Math Emphasis (p. 725)
- Bachelor of Science in Applied Mathematical Sciences, Statistics Emphasis (p. 727)
- Bachelor of Science in Applied Mathematical Sciences and Master of Science in Mathematics, 5-Year Degree Program (p. 728)

Department of Physics and Astronomy

- Bachelor of Arts in Physics (p. 740)
- Bachelor of Science in Physics (p. 741)
- Bachelor of Science in Physics, Astrophysics Track (p. 742)
- Bachelor of Science in Physics, Business Track (p. 743)
- Bachelor of Science in Physics, Computational Science Track (p. 744)

Department of Statistics

- Bachelor of Science in Statistics (p. 748)
- Bachelor of Science in Statistics and Master of Science in Statistics, 5-Year Degree Program (p. 749)
Minors

Department of Biology
- Bioinformatics Minor (p. 696)
- Biology Minor (p. 696)
- Pre-Medicine Minor (p. 696)

Department of Chemistry
- Chemistry Minor (p. 713)

Department Mathematics
- Mathematics Minor (p. 737)

Department of Physics
- Astrophysics Minor (p. 745)
- Physics Minor (p. 746)

Department of Statistics
- Statistics Minor (p. 750)

Masters

Department of Biology
- Master of Science in Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/biology/ms/)
- Master of Science in Ecology and Evolutionary Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/biology/ecology-and-evolutionary-biology/ms/)
- Master of Science in Microbiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/biology/microbiology/ms/)

Department of Chemistry
- Master of Science in Chemistry (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/chemistry/ms/)

Department of Mathematics
- Master of Science in Mathematics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/mathematics/ms/)
- Master of Science in Quantitative Finance (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/mathematics/quantitative-finance/ms/)

Department of Physics and Astronomy
- Master of Science in Astronomy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/physics-astronomy/astronomy/ms/)
- Master of Science in Physics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/physics-astronomy/physics/ms/)

Department of Statistics
- Master of Science in Statistics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/statistics/ms/)

Doctoral

Department of Biology
- Doctor of Philosophy in Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/biology/phd/)
- Doctor of Philosophy in Microbiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/biology/microbiology/phd/)

Department of Chemistry
- Doctor of Philosophy in Chemistry (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/chemistry/phd/)

Department of Mathematics
- Doctor of Philosophy in Mathematics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/mathematics/phd/)

Department of Physics and Astronomy
- Doctor of Philosophy in Astronomy (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/physics-astronomy/astronomy/phd/)

Department of Statistics
- Doctor of Philosophy in Statistics (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/science/statistics/phd/)

Department of Biology

No one really knows what the world will be like 50 years from now, but it is certain that biologists will be at the forefront of science attempting to find solutions to many of the world’s problems and to find answers to intriguing questions about animals, plants and microbes at the molecular, cellular, organismal and ecosystem levels. Biologists will be concerned with pollution of the environment, cause and cure of disease, population control, recurring food shortages, preservation of species and many other aspects resulting from the impact of technological changes on life forms. Those who are astounded by the array of living things on the earth and who seek challenging, creative work should consider a career in biology or in a biology-related field. The Department of Biology offers five distinct four-year curricula which lead to the baccalaureate degree. These are the Bachelor of Arts in Biology, Bachelor of Science in Biology, Bachelor of Science in Molecular and Cell Biology, Bachelor of Science in Microbiology and Bachelor of Science in Zoology. The curricula are designed to maximize postbaccalaureate opportunities in:

1. professional schools of medicine, veterinary medicine and dentistry;
2. allied health schools of physical and occupational therapy, physician assistant programs, optometry, pharmacy, and nursing;
3. graduate education leading to teaching and research careers in universities, in industry or in state or national agencies;
4. teaching at junior high or high school levels and
5. jobs in biotechnology, research laboratories, pharmaceutical companies and field biology.

The Department of Biology degree plans will enable students to complete all entrance requirements for graduate and professional schools as well as medical technology, pharmacy, optometry, nursing, physical therapy, and other paramedical and health support fields.

Advising

Because some careers in biology require advanced and/or specialized training, it is essential to take advantage of advising opportunities. In the Department of Biology, there are professional advisors in the Biology Undergraduate Programs Office. The advisor may be consulted prior to each registration period and as the student needs. Questions regarding registration, degree checks, transfer of courses, advanced placements and other academic matters are handled in the Office of Undergraduate Programs. Students with special interests in graduate study should consult the graduate advisor. Information concerning entrance to professional schools of medicine, dentistry and other health related fields is available from the Office of Professional School Advising.

Requirements for all Baccalaureate Degrees in the Department of Biology

Each student seeking a baccalaureate degree in the Department of Biology is required to master a common body of knowledge in science. In addition, the student must take courses essential to a liberal education. Students will note that the first two years of all curricula offered by the Department of Biology are similar. Electives must include a 3 hour international and cultural diversity elective and a 3 hour cultural discourse elective required for graduation. Students must also take at least two writing-intensive courses in biology. Other requirements for graduation are listed in the Texas A&M University Student Rules and this catalog.

Students in the Department of Biology must make a grade of C or better in BIOL 111 and BIOL 112. Additionally, students may have only one D in courses within the major used to satisfy required or directed electives for a given degree plan. It is required that the freshman and sophomore level biology, chemistry and math courses be completed before the start of the 5th full semester and before enrollment in any junior or senior level science.

Common Body of Knowledge

To assure that students have sufficient prerequisite training for advanced courses, Biology majors must complete a series of courses comprising a Common Body of Knowledge (CBK) prior to their junior year (5th full semester) and enrollment in upper level BIOL courses. A Biology student will be admitted into upper level Biology classes when he or she has met the following criteria:

Completion of a set of CBK courses (37-38 hours) before the student's 5th full semester to include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 238</td>
<td>and Organic Chemistry Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 37-38

A student must be in good academic standing with an overall grade point average of at least 2.0 or better overall and in the major.

Process

Students will be audited by the department to monitor progress of the CBK. Students failing to complete the CBK within the first four full semesters (two full semesters for Transfer Students) at Texas A&M University may be blocked and forced to change majors or be required to meet with an academic advisor to see if they can be successful in the major. Students registering for upper-level Biology classes without completing the CBK, or without approval of the Undergraduate Advising Office, will be dropped from the roster.

Transfer Students

1. Transfer from within Texas A&M University: The Biology Department will accept changes of major from other departments at Texas A&M upon completion of AT LEAST one semester of an applicable BIOL course taken at Texas A&M and AT LEAST one semester of an applicable CHEM course taken at Texas A&M, with a minimum 2.5 grade point average overall for courses taken at Texas A&M, a 2.5 grade point average in BIOL courses taken at Texas A&M, and a 2.5 or better grade point average in CHEM courses taken at Texas A&M. Students still must complete the CBK before being admitted to upper level BIOL courses.

2. Transfer students from other institutions to Biology must have completed the following:
 a. A minimum of 24 accredited college hours including prescribed coursework
 b. Prescribed coursework:
 i. Eight hours of General Biology (TAMU BIOL 111 and BIOL 112 or Texas Common Course Numbers BIOL 1406 and 1407) with B's or better, and
 ii. Eight hours of General Chemistry (TAMU CHEM 119 and CHEM 120 or Texas Common Course Numbers CHEM 1411 and CHEM 1412) with B's or better, and
 iii. Four hours of Calculus (TAMU MATH 147 or MATH 151 or MATH 171 and four hours of Calculus II (TAMU MATH 148 or MATH 152 or MATH 172 or three hours of Statistics in TAMU MATH 150) and four hours of Calculus II (TAMU MATH 2413 and MATH 2414 or MATH 1342) with C's or better
 c. A minimum cumulative grade point average of a 3.0
d. A minimum Biology and Chemistry grade point average of a 3.0 in each
e. Please refer to admissions.tamu.edu

Biology Honors Program

The Biology Department Honors Program is open to highly talented and motivated students pursuing a major in any of our degree plans. Honors students will be part of a vibrant community within the department with enriched learning experiences in both the classroom and biology research laboratories.

Honors Requirements: Students wishing to graduate with honors distinctions in either Biology (BIOL), Microbiology (MBIO), Zoology (ZOOL), or Molecular and Cellular Biology (BMCB) must earn 21 credits in Honors courses and meet the following minimum honors requirements in addition to those listed in the degree plan:

- 4 credits BIOL 111H or BIOL 112H*
- 3 credits BIOL 213H or BIOL 214H
- 3 credits at 300/400 BIOL honors or honors contract; any 600 BIOL; not to include BIOL 485H, BIOL 491H, or BIOL 495H
- 6 credits BIOL 491H
- 2 credits BIOL 495H
- 3 credits any honors course outside the College of Science

* This requirement may be waived with a score of 5 on the Biology AP exam, a score of 6 on the IB exam, or by taking an additional honors biology course at the 300 or 400 level.

Grade requirements at time of graduation:

- cumulative Texas A&M University GPA of 3.5 or higher
- cumulative honors GPA of 3.25 or higher
- no grade lower than a B in courses counting toward honors. If a student earns less than a B in an honors course, they will still receive University credit. However, they will need to take a different course to fulfill the honors requirement.
- no F*, given in cases of academic dishonesty, on the transcript

Honors recognition: All honors courses will be denoted as honors on students’ official transcripts. Furthermore, students completing the honors program will have the departmental Biology honors distinction as well as any earned university or college distinction noted on the official transcript.

Admission to the Honors Program in Biology

Incoming Freshmen: Incoming freshmen applicants should indicate their interest in the departmental honors program though the ApplyTexas site and by choosing the ‘Apply to any Honors Program’ after August 1. Qualified applicants will be contacted by the department with further information on joining Biology Honors. Current qualifications for freshman admission are detailed on the Biology Honors website (https://www.bio.tamu.edu/wordpress/index.php/biology-honors-program/).

Students who have already completed their application and now wish to apply to the Biology Honors Program can use the ‘Apply to any Honors Program’ link at the Texas A&M Honors program site (http://honorsprograms.tamu.edu/Home/) or contact biohonors@bio.tamu.edu.

Current or transfer students: Current or transfer students with a cumulative GPA of 3.5 or better can apply for admission to the Biology Honors Program by writing a short (less than 300 word) email to the department’s Honors Director. When applying students should keep in mind that they will need to fulfill all honors requirements. Please send email to: biohonors@bio.tamu.edu.

Remaining in the program

In order to remain in the Biology Honors program, students must maintain a cumulative GPA at Texas A&M of 3.5 and honors GPA of 3.25. Students falling below these standards will be placed on probation for the next semester. Students unable to meet these standards for a second semester may be dismissed from the Biology Honors Program.

Contact us

Please direct any questions to biohonors@bio.tamu.edu or the Biology Undergraduate Advising office.

Human Biology Track

This unofficial track is for students interested in pursuing professional schools including medical, dental and allied health programs (e.g., nursing, occupational therapy, optometry, pharmacy, physical therapy and physician assistant). The focus of the science courses on human biology will better prepare these students for their chosen fields. Suggested courses include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or SOCI 205</td>
<td>or Introduction to Sociology</td>
<td></td>
</tr>
<tr>
<td>BIOL 318</td>
<td>Chordate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 344</td>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 437</td>
<td>Molecular and Human Medical Mycology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 454</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 456</td>
<td>Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 335</td>
<td>Human Diseases</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 354</td>
<td>Medical Terminology for the Health Professions</td>
<td>3</td>
</tr>
<tr>
<td>URPN 370</td>
<td>Health Systems Planning</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>or SOCI 205</td>
<td>or Introduction to Sociology</td>
<td></td>
</tr>
<tr>
<td>BIOL 318</td>
<td>Chordate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 344</td>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 437</td>
<td>Molecular and Human Medical Mycology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 454</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 456</td>
<td>Medical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>HLTH 236</td>
<td>Introduction to Health Disparities and Diversity</td>
<td>3</td>
</tr>
</tbody>
</table>
Students should consult their academic advisor about the courses that best fit their career interests.

Education Track
This is for students wishing to acquire state certification to teach at the secondary level upon graduation. Students should seek advice from the advisors within their department and from the College of Education and Human Development, as well as from the advisor in charge of their teaching option. The intention is to make the best possible use of social science, humanity, free and directed electives in the Bachelor of Arts in Biology, thereby condensing as many of the certification requirements as possible into the degree plan and allowing the student to obtain a minor in Applied Learning in Science, Technology, Engineering and Mathematics (STEM). Courses should include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Biology Electives
Upper-level BIOL courses, including two writing intensive courses (p. 919)

Free Electives
RDNG 372 Reading and Writing across the Middle Grades Curriculum or RDNG 465 or Reading in the Middle and Secondary Grades

TEFB 322 Teaching and Schooling in Modern Society

TEFB 324 Teaching Skills II

TEFB 406 Science in the Middle and Secondary School

Student teaching

Total Semester Credit Hours 32

Marine Biology Track
This unofficial track is for students desiring a more rigorous and in-depth foundation in biological courses that apply to marine environments and ecosystems. This suggested plan is ideal for students who intend to pursue graduate studies in marine biology or serve as field biologists at national seashores or sanctuaries. Suggested courses include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 335</td>
<td>Invertebrate Zoology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 440</td>
<td>Marine Biology</td>
<td>4</td>
</tr>
<tr>
<td>Related ZOOL research or field experience (p. 1177)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Free Electives
OCNG 251 Oceanography or OCNG 42 or Biological Oceanography

WFSC 311 Ichthyology

Total Semester Credit Hours 20-21

Students should consult their academic advisor about the courses that best fit their career interests.

Ecology/Environmental Track
This unofficial track is particularly designed for students interested in environmental consulting, environmental protection and ecosystem evaluation. This suggested plan can be adapted to focus on particular areas or populations within an ecosystem. Suggested courses include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
</tbody>
</table>

Biology Electives
Select one of the following: 3-4

- BIOL 335 Invertebrate Zoology
- BIOL 357 Ecology
- BIOL 358 Ecology Laboratory
- BIOL 440 Marine Biology
- BIOL 462/ WFSC 462 Amazon River Tropical Biology
- WFSC 462
- BIOL 467 Integrative Animal Behavior

Free Electives
CHEM 315 Fundamentals of Quantitative Analysis and Quantitative Analysis Laboratory

ENTO 201 General Entomology

MEPS 313 Introduction to Plant Physiology

Select one of the following: 3-4

- PLPA 301 Plant Pathology & PLPA 303 and Plant Pathology Laboratory
- WFSC 311 Ichthyology
- WFSC 401 General Mammalogy
- WFSC 402 General Ornithology

Total Semester Credit Hours 20-21

Students should consult their academic advisor about the courses that best fit their career interests.

Liberal Education Requirements of the University, College or State

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td>0-3</td>
</tr>
<tr>
<td>Cultural Discourse (p. 46)</td>
<td></td>
<td>0-3</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 27-33
Faculty

Adams, Amanda, Lecturer
Biology
PHD, University of Western Ontario, 2013

Alexander, Michael B, Lab Instructor
Biology
PHD, Texas A&M University, 2014

Aramayo, Rodolfo A, Associate Professor
Biology
PHD, University of Georgia, 1992

Arzan Zarin, Aref, Assistant Professor
Biology
PHD, The University of Dublin, 2013

Attia, John, Lab Instructor
Biology
MS, Texas A&M University, 2019

Bell-Pedersen, Deborah, Professor
Biology
PHD, State University of New York at Albany, 1991

Benedik, Michael J, Professor
Biology
PHD, Stanford University, 1982

Beremand, Phillip D, Lab Instructor
Biology
PHD, Indiana University- Bloomington, 1979

Bernardo, Joseph, Research Associate Professor
Biology
PHD, Duke University, 1991

Blackmon, Heath L, Assistant Professor
Biology
PHD, University of Texas at Arlington, 2015

Cohn, William B, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 2000

Cricione, Charles D, Professor
Biology
PHD, Oregon State University, 2005

Delmore, Kira, Assistant Professor
Biology
PHD, University of British Columbia, 2015

Dulin, Jennifer N, Assistant Professor
Biology
PHD, University of Texas Health Science Center, 2012

Epps, Sharon V, Lab Instructor
Biology
MS, Texas A&M University, 2013

Erickson, James W, Associate Professor
Biology
PHD, University of Wisconsin - Madison, 1989

Fletcher, Samantha, Lecturer
Biology
PHD, Texas A&M University, 2019

Garcia, Luis R, Professor
Biology
DDS, Texas A&M University Baylor College of Dentistry, 1999

Garcia, Luis R, Professor
Biology
PHD, University of Texas at Austin, 1996

Gomer, Richard H, Professor
Biology
PHD, California Institute of Technology, 1983

Greenbaum, Ira F, Professor
Biology
PHD, Texas Tech University, 1978

Griffing, Lawrence R, Associate Professor
Biology
PHD, Stanford University, 1981

Hardin, Paul E, Distinguished Professor
Biology
PHD, Indiana University, 1987

Hawkins, Angela K, Lecturer
Biology
PHD, Texas A&M University, 2018

Kemp, Walter M, Professor
Biology
PHD, The Tulane University of Louisiana, 1969

Leboeuf, Brigitte L, Lecturer
Biology
PHD, Texas A&M University, 2009

Lee, Christopher P, Lecturer
Biology
BS, Texas A&M University, 1993

Lockless, Steve W, Associate Professor
Biology
PHD, University of Texas at Dallas, 2002

Lyons, Jacob I, Lab Instructor
Biology
MS, Texas State University, 2010

Mackenzie, Duncan S, Associate Professor
Biology
PHD, University of California, Berkeley, 1980

Manson, Michael D, Professor
Biology
PHD, Stanford University, 1976

McCreedy, Dylan, Assistant Professor
Biology
PHD, Washington University, St. Louis, 2013
McKnight, Thomas D, Professor
Biology
PHD, University of Georgia, 1983

McMahan, Uel J, Professor
Biology
PHD, University of Tennessee, 1964

Menet, Jerome, Assistant Professor
Biology
PHD, Louis Pasteur University, 2003

Merlin, Christine, Associate Professor
Biology
PHD, University Pierre and Marie Curie, 2006

Mitchell, Angela, Assistant Professor
Biology
PHD, University of North Carolina at Chapel Hill, 2013

Moyes, Rita J, Instructional Associate Professor
Biology
PHD, Texas A&M University, 1992

Nan, Beiyan, Assistant Professor
Biology
PHD, Peking University, 2007

Norton, Jerry D, Lab Instructor
Biology
PHD, The University of Texas at Austin, 1994

Paredes-Sabja, Daniel, Assistant Professor
Biology
PHD, Oregon State University, 2009

Pepper, Alan E, Professor
Biology
PHD, University of California, Davis, 1990

Pilling, Darrell, Research Assistant Professor
Biology
PHD, University of Birmingham, 1995

Qin, Hongmin, Associate Professor
Biology
PHD, Institute of Microbiology, Chinese Academy of Sciences, 1999

Rao, Asha, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 2002

Riley, Bruce B, Professor
Biology
PHD, University of Wisconsin - Madison, 1990

Rosenthal, Gil G, Professor
Biology
PHD, University of Texas at Austin, 2000

Roy Sarkar, Tapasree, Research Assistant Professor
Biology
PHD, Purdue University, 2008

Ryan, Kathryn J, Instructional Associate Professor
Biology
PHD, Baylor College of Medicine, 1998

Sachs, Matthew S, Professor
Biology
PHD, Massachusetts Institute of Technology, 1986

Schartl, Manfred, Visiting Professor
Biology
PHD, University of Gießen, 1980

Scott, Timothy P, Professor
Biology
PHD, Texas A&M University, 1996

Siegele, Deborah A, Associate Professor
Biology
PHD, University of Wisconsin - Madison, 1989

Smith, James L, Professor
Biology
PHD, University of Florida, 2002

Smootherman, Michael S, Professor
Biology
PHD, University of California, Los Angeles, 1998

Sorg, Joseph A, Professor
Biology
PHD, University of Chicago, 2006

St. Clair, Allison, Senior Lecturer
Biology
PHD, Texas A&M University, 2017

Tag, Andrew G, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 2003

Taylor, Lathrop, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 1985

Thomas, Terry L, Professor
Biology
PHD, The University of Georgia, 1975

Thompson, Wesley J, Professor
Biology
PHD, University of California-Berkeley, 1975

Versaw, Wayne K, Professor
Biology
PHD, University of Wisconsin - Madison, 1995

Wicksten, Mary K, Professor
Biology
PHD, University of Southern California, 1977

Winemiller, Leslie K, Instructional Assistant Professor
Biology
PHD, University of Texas at Austin, 1989
Majors

• Bachelor of Arts in Biology (p. 688)
• Bachelor of Science in Biology (p. 689)
• Bachelor of Science in Microbiology (p. 690)
• Bachelor of Science in Molecular and Cell Biology (p. 692)
• Bachelor of Science in Zoology (p. 694)

Minors

• Bioinformatics Minor (p. 696)
• Biology Minor (p. 696)
• Pre-Medicine Minor (p. 696)

Biology - BA

The BA degree in Biology, through the availability of a large number of electives, gives students maximum flexibility in earning a biology degree. The 15-18 hour minor requirement, including 6 hours of advanced courses in a discipline other than biology, provides students with the opportunity to include significant coursework in areas such as foreign language, business, education, or social sciences. The BA program is recommended for students with broad educational objectives or who intend to pursue further education in areas such as allied health professions, professional schools, or teaching certification.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

1. Grade of C or better required.
2. Must be completed by start of 5th full semester.
3. Students may not use MATH 142 to satisfy this requirement.
4. Students seeking teacher certification must take HIST 105 and HIST 106. Other students may choose HIST 105 and HIST 106 or any 6 hours of American history courses (3 hours may be in Texas history).
5. Students successfully completing the required four semesters of upper-level ROTC courses may substitute these courses for 3 hours of American history and 3 hours of government/political science.

The following are CBK courses and must be completed prior to the start of 5th full semester: BIOL 111, BIOL 112, BIOL 213, BIOL 214, CHEM 119, CHEM 120, CHEM 227 & CHEM 237, CHEM 228 & CHEM 238, MATH 147, MATH 148 or STAT 201.

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or BICH 440</td>
<td>Biochemistry I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 312</td>
<td>Statistics for Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BICH 412</td>
<td>Biochemistry Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BICH 414</td>
<td>Biochemical Techniques I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BICH 432/</td>
<td>Laboratory in Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

6. Students successfully completing the required four semesters of upper-level ROTC courses may substitute these courses for 3 hours of American history and 3 hours of government/political science.
Biology - BS

The BS degree in Biology is designed for students to obtain a comprehensive, solid foundation in the major branches of Biology. The degree provides the opportunity for extensive study across the breadth of biological disciplines, ranging from molecular and cellular biology to ecology and evolution. This degree plan is recommended for students preparing for graduate programs in biological sciences or any professional programs in health and medical sciences such as medical, dental or veterinary schools.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 237</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 238</td>
<td>and Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total Program Hours 120

6. Select from any 100-499 course not used elsewhere. (Except AGLS 101; ASCC 101, ASCC 102, ASCC 289; BIMS 101; BIOL 101, BIOL 107, BIOL 113, BIOL 206, CHEM 106, CHEM 116; MATH 102, MATH 142; WFSC 101.) Only one KINE 199 may be used as a general elective.

7. Two courses in the major must be designated as writing intensive.
Students seeking teacher certification must take HIST 105 and HIST 106. Other students may choose HIST 105 and HIST 106 or any 6 hours of American history courses (3 hours may be in Texas history).

Students successfully completing the required four semesters of upper-level ROTC courses may substitute these courses for 3 hours of American history and 3 hours of government/political science.

The following are CBK courses and must be completed prior to the start of 5th full semester: BIOL 111, BIOL 112, BIOL 213, BIOL 214, CHEM 119, CHEM 120, CHEM 227 & CHEM 237, CHEM 228 & CHEM 238, MATH 147, MATH 148 or STAT 201.

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Comprehensive Biochemistry I</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>or BICH 440</td>
<td>3</td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td>4</td>
</tr>
<tr>
<td>GENE 312</td>
<td>and Comprehensive Genetics Laboratory</td>
<td></td>
</tr>
<tr>
<td>STAT 312</td>
<td>Statistics for Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

- BICH 412 | Biochemistry Laboratory I | 1 |
- BICH 414 | Biochemical Techniques I | |
- BICH 432/GENE 432 | Laboratory in Molecular Genetics | |
- General elective | 6 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Comprehensive Biochemistry II</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411</td>
<td>or BICH 441</td>
<td>3</td>
</tr>
</tbody>
</table>

Select from the following:

- BICH 464 | Bacteriophage Genomics | 7 |
- BIOL 300-499 (p. 919) | 3 |
- GENE 400-499 (p. 999) | 4 |
- OCNG 420 | Biological Oceanography | |
- VIBS 343 | Histology | 3 |
- VIBS 443 | or Biology of Mammalian Cells and Tissues | |

Creative arts (p. 29) | 3 |
General elective | 6 |

Total Semester Credit Hours 63

Total Program Hours 120

Microbiology - BS

The degree program in Microbiology is designed to provide a comprehensive education in the biology of microorganisms. A graduate of this program will have a thorough grounding in the classical areas of microbial physiology and biochemistry, microbial genetics, and developing areas like the molecular biology of microorganisms. The curriculum provides excellent training toward a career in any one of many areas of industrial microbiology and public health services. It is also an ideal preparation for advanced study or professional school in medicine, dentistry and other related fields, especially medical technology and biotechnology.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Introductory Biology I</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>1,2</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select from the following:

- MATH 147 | Calculus I for Biological Sciences | 4 |
- MATH 151 | Engineering Mathematics I | |
- MATH 171 | Calculus I | |

Communication (p. 26) | 3 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
</tbody>
</table>

Select one of the following:

- 2,3 |

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>American National Government</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Select from the following:

- BICH 464 | Bacteriophage Genomics | 7 |
- OCNG 420 | Biological Oceanography | |
- VIBS 343 | Histology | 3 |
- VIBS 443 | or Biology of Mammalian Cells and Tissues | |
- BIOL 300-499 (p. 919) | 3 |
- GENE 400-499 (p. 999) | 4 |

Language, philosophy and culture (p. 27) | 3 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Introductory Biology II</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>1,2</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

- 2,3 | 3-4 |
MATH 148 Calculus II for Biological Sciences
MATH 152 Engineering Mathematics II
MATH 172 Calculus II
STAT 201 Elementary Statistical Inference

Communication (p. 26) 3

Second Year

Fall
BIOL 213 Molecular Cell Biology 2 3
CHEM 227 Organic Chemistry I 4
& CHEM 237 and Organic Chemistry Laboratory 2
PHYS 201 College Physics 4
American history (p. 29) 4,5 3

Semester Credit Hours 14

Spring
BIOL 214 Genes, Ecology and Evolution 2 3
CHEM 228 Organic Chemistry II 4
& CHEM 238 and Organic Chemistry Laboratory 2
PHYS 202 College Physics 4
American history (p. 29) 4,5 3

Semester Credit Hours 14

Total Semester Credit Hours 57

1 Grade of C or better required.
2 Must be completed by start of 5th full semester.
3 Students may not use MATH 142 to satisfy this requirement.
4 Students seeking teacher certification must take HIST 105 and HIST 106. Other students may choose HIST 105 and HIST 106 or any 6 hours of American history courses (3 hours may be in Texas history).
5 Students successfully completing the required four semesters of upper-level ROTC courses may substitute these courses for 3 hours of American history and 3 hours of government/political science.

The following are CBK courses and must be completed prior to the start of 5th full semester: BIOL 111, BIOL 112, BIOL 213, BIOL 214, CHEM 119, CHEM 120, CHEM 227 & CHEM 237, CHEM 228 & CHEM 238, MATH 147, MATH 148 or STAT 201.

Third Year

Fall

BICH 410 Comprehensive Biochemistry I 3
or BICH 440
BICH 351 Fundamentals of Microbiology 4
BIOL 302 Principles of Genetics 4
& GENE 312 and Comprehensive Genetics Laboratory
STAT 312 Statistics for Biology 3

Semester Credit Hours 14

Spring

BICH 411 Comprehensive Biochemistry II 3
or BICH 441
BICH 414 Biochemical Techniques I 2
or BICH 432/GENE 432

Semester Credit Hours 7

Fall

BICH 410 Comprehensive Biochemistry I 3
or BICH 440
BICH 351 Fundamentals of Microbiology 4
BIOL 302 Principles of Genetics 4
& GENE 312 and Comprehensive Genetics Laboratory
STAT 312 Statistics for Biology 3

Semester Credit Hours 14

Spring

BICH 411 Comprehensive Biochemistry II 3
or BICH 441
BICH 414 Biochemical Techniques I 2
or BICH 432/GENE 432

Semester Credit Hours 7

Total Program Hours 120

Directed Electives

Code Title Semester Credit Hours

Select one course from the following:
BIOL 300-499 (p. 919)
OCNG 420 Biological Oceanography 3

Select remaining courses from the following:

Industrial Microbiology
BIOL 352 Diagnostic Bacteriology 4
BIOL 414 Developmental Biology 3
BIOL 430 Biological Imaging 4
BIOL 450/451 Genomics 4

Environmental Microbiology
BIOL 352 Diagnostic Bacteriology 4
BIOL 430 Biological Imaging 4
BIOL 440 Marine Biology 4
SCSC 405 Soil and Water Microbiology 3

POLS 206 American National Government 5 3
Social and behavioral science (p. 30) 3
General elective 6 6

Semester Credit Hours 17

Fourth Year

Fall

BIOL 406/GENE 406 Bacterial Genetics 3
BIOL 445 or BIOL 454 Biology of Viruses or Immunology 3
POLS 207 State and Local Government 5 3
Language, philosophy and culture (p. 27) 3
Directed electives 7, 8 4

Semester Credit Hours 16

Spring

BIOL 438 Bacterial Physiology 3
Creative arts (p. 29) 3
Directed elective 7, 8 3
General elective 7 7

Semester Credit Hours 16

Total Semester Credit Hours 63

6 Select from any 100-499 course not used elsewhere. (Except AGLS 101; ASCC 101, ASCC 102, ASCC 289; BIMS 101; BIOL 101, BIOL 107, BIOL 113, BIOL 206; CHEM 106, CHEM 116; MATH 102, MATH 142; WFSC 101.) Only one KINE 199 may be used as a general elective.
7 Select directed electives from the list below.
8 Two courses in the major must be designated as writing intensive.
Molecular and Cell Biology - BS

Students who select Molecular and Cell Biology as their major will receive a strong background in the cellular and molecular aspects of biology with particular emphasis on eukaryotes. The major provides an excellent foundation for a career in biotechnology, genetic engineering, MD/PhD programs or basic biological research.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

BIOL 112	Introductory Biology II	4
CHEM 120	Fundamentals of Chemistry II	4
Select one of the following:	3-4	
MATH 148	Calculus II for Biological Sciences	
MATH 152	Engineering Mathematics II	
MATH 172	Calculus II	
STAT 201	Elementary Statistical Inference	
Communication (p. 26)	3	
Semester Credit Hours	14	

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410 or BICH 440</td>
<td>Comprehensive Biochemistry I or Biochemistry I</td>
</tr>
<tr>
<td>BICH 415</td>
<td>Comprehensive Biochemistry II or Biochemistry II</td>
</tr>
<tr>
<td>BICH 414 or BICH 432/GENE 432</td>
<td>Biochemical Techniques I or Laboratory in Molecular Genetics</td>
</tr>
<tr>
<td>BICH 431/GENE 431</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>5</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 413</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL 414</td>
<td>Developmental Biology</td>
</tr>
</tbody>
</table>
BIOL 423 Cell Biology Laboratory 2
POLS 206 American National Government 3
Language, philosophy and culture (p. 27) 3
General elective 6 3

Semester Credit Hours 17

Spring
POLS 207 State and Local Government 3
Creative arts (p. 29) 3
Directed electives 7, 8 6
General elective 6 3

Semester Credit Hours 16

Total Semester Credit Hours 63

6 Select from any 100-499 course not used elsewhere. (Except
AGLS 101; ASCC 101, ASCC 102, ASCC 289; BIMS 101; BIOL 101,
BIOL 107, BIOL 113, BIOL 206; CHEM 106, CHEM 116; MATH 102,
MATH 142; WFSC 101.) Only one KINE 199 may be used as a general
elective.

7 Directed Electives choose from list below.

8 Two courses in the major must be designated as writing intensive.

Total Program Hours 120

Directed Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300-499 (p. 919)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCN 420</td>
<td>Biological Oceanography</td>
<td>3</td>
</tr>
</tbody>
</table>

Select remaining courses from the following:

Cell Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 430</td>
<td>Biological Imaging</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 343</td>
<td>Histology</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 443</td>
<td>Biology of Mammalian Cells and Tissues</td>
<td>4</td>
</tr>
</tbody>
</table>

Organismal Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 344</td>
<td>Embryology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 434/ NRSC 434</td>
<td>Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 435</td>
<td>Laboratory for Regulatory and Behavioral Neuroscience</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 466</td>
<td>Principles of Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 467</td>
<td>Integrative Animal Behavior</td>
<td>3</td>
</tr>
<tr>
<td>MEPS 313</td>
<td>Introduction to Plant Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Molecular and Computational Biology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 450/ BICH 450</td>
<td>Genomics</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 451</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BICH 432/ GENE 432</td>
<td>Laboratory in Molecular Genetics</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 406/ GENE 406</td>
<td>Bacterial Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 438</td>
<td>Bacterial Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 445</td>
<td>Biology of Viruses</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 454</td>
<td>Immunology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 455</td>
<td>Laboratory in Immunology</td>
<td>2</td>
</tr>
<tr>
<td>BIOL 456</td>
<td>Medical Microbiology</td>
<td>3</td>
</tr>
</tbody>
</table>

Neuroscience - BS, Molecular and Cellular Neuroscience Track

Neuroscience is the study of the nervous system and its impact on
behavior and cognitive functions. This interdisciplinary field integrates
several areas of study, including biology, chemistry, physics, biochemistry,
psychology, and medicine. The core courses for this degree include
a foundation in the life sciences, and a foundational sequence in
neuroscience that will prepare students for more advanced NRSC
courses. The Neuroscience degree track administered by the Department
of Biology (NRSC-MCB) focuses on the biological basis of neurological
processes at the molecular and cellular level. Students completing
the NRSC-MCB degree will be well prepared for jobs in medical and
biotechnology fields, and they will be competitive for admission to
medical or graduate school.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MATH 147 or MATH 151</td>
<td>Calculus I for Biological Sciences or Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 101/ NRSC 101</td>
<td>Neuroscience Overview</td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following: 3-4

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

Second Year

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>NRSC 277/ VIBS 277</td>
<td>Introduction to Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours 14

The Zoology degree program is designed to expose students to all aspects of the study of animals. Following foundation courses on the principles of vertebrate and invertebrate zoology, students may select from a broad range of classes in animal biology, ranging from cellular and developmental biology, physiology, and anatomy to ecology and evolution. Graduates enter into advanced studies in zoology, specialized zoological fields in agriculture and renewable resources, or such professional fields as medicine, veterinary medicine, dentistry and other health-related areas.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 120</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>MATH 152</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 172</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 201</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 213</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 227</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 214</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 228</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 229</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 202</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BICH 410</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 388</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 312</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>BICH 411</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 388</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 413</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NRSC 450/ VIBS 450</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Neuroscience electives</td>
<td>6</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 207</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Neuroscience electives</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>General electives</td>
<td>7-8</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

1 Course must be completed by start of fifth full semester.
2 Must have a C or better.
3 Select any approved course in area from core curriculum list.
4 Select from BIOL 430; NRSC 300-499 (http://catalog.tamu.edu/linkurl:/undergraduate/course-descriptions/nrsc/).
5 Any course except AGLS 101; ASCC 101; ASCC 102; ASCC 289; BIMS 101; BIOL 107, BIOL 113, BIOL 206; CHEM 106, CHEM 116; MATH 102; MATH 142; WFSC 101. Only one KINE 199 can be used as a general elective.

Zoology - BS

The Zoology degree program is designed to expose students to all aspects of the study of animals. Following foundation courses on the principles of vertebrate and invertebrate zoology, students may select from a broad range of classes in animal biology, ranging from cellular and developmental biology, physiology, and anatomy to ecology and evolution. Graduates enter into advanced studies in zoology, specialized zoological fields in agriculture and renewable resources, or such professional fields as medicine, veterinary medicine, dentistry and other health-related areas.
Students seeking teacher certification must take HIST 105 and HIST 106. Other students may choose HIST 105 and HIST 106 or any 6 hours of American history courses (3 hours may be in Texas history).

Students successfully completing the required four semesters of upper-level ROTC courses may substitute these courses for 3 hours of American history and 3 hours of government/political science.

The following are CBK courses and must be completed prior to the start of 5th full semester: BIOL 111, BIOL 112, BIOL 213, BIOL 214, CHEM 119, CHEM 120, CHEM 227 & CHEM 237, CHEM 228 & CHEM 238, MATH 147, MATH 148 or STAT 201.

Total Program Hours 120

Directed Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>or BICH 440</td>
<td>or Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BIOL 318</td>
<td>Chordate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>STAT 312</td>
<td>Statistics for Biology</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 412</td>
<td>Biochemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>BICH 414</td>
<td>Biochemical Techniques I</td>
<td></td>
</tr>
<tr>
<td>BICH 432/GENE 432</td>
<td>Laboratory in Molecular Genetics</td>
<td></td>
</tr>
</tbody>
</table>

General elective 6

Semester Credit Hours 17

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>or BICH 441</td>
<td>or Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td>4</td>
</tr>
<tr>
<td>& GENE 312</td>
<td>and Comprehensive Genetics Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Social and behavioral science (p. 30) 3

Semester Credit Hours 14

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 466</td>
<td>Principles of Evolution</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 5</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 7, 8</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 335</td>
<td>Invertebrate Zoology</td>
<td>4</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 5</td>
<td>3</td>
</tr>
<tr>
<td>Directed elective 7, 8</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective 6</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Total Semester Credit Hours 63

6 Select from any 100-499 course not used elsewhere. (Except AGLS 101; ASCC 101, ASCC 102, ASCC 289; BIMS 101; BIOL 101, BIOL 107, BIOL 113, BIOL 206; CHEM 106, CHEM 116; MATH 102, MATH 142; WFSC 101.) Only one KINE 199 may be used as a general elective.

7 Select from directed elective list below.

8 Two courses in the major must be designated as writing intensive.
Bioinformatics - Minor

In the early 21st century we have gained the ability to decipher and manipulate the genetic information of organisms. We have also seen dramatic advances in imaging technologies from the macro to nano scales (Satellites/UAVs, hyper-spectral imaging, GPS, MRI, confocal and two photon microscopy, x-ray crystallography, etc.). Concomitant with, and underlying these advances, has been a revolution in information technology in which we have seen ever accelerating computational processing speeds and ever more massive data sets. These changes are driving a fundamental transformation of the biological sciences. In order to provide our students with the educational foundation they need to not just flourish, but to lead in this dramatically altered environment, we are offering a minor in the area of Bioinformatics to provide effective training at the interface of biological applications and computational tools. While students will be trained using the most advanced tools and applications available, the minor will focus on core concepts and approaches, to provide a durable skill set that can be applied to new tools and applications that will inevitably develop. The core curriculum of the minor will cover the essentials of effective computation, as well as the handling, exploration and utilization of large data sets.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to Computation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCE 110 Programming I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or CSCE 11dr Introduction to Computer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioinformatic Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 451 Bioinformatics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computational Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>BIOL 350 Computational Genomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Level Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological Molecules and Processes</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 213 Molecular Cell Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE 302 Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE 320/ Biomedical Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIMS 320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Bioinformatics</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BICH 419/ Computational Techniques for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GENE 419 Evolutionary Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BICH 464 Bacteriophage Genomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 430 Biological Imaging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOL 450/ Genomics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BICH 450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT 446 Statistical Bioinformatics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTPP 438 Analysis of Genomic Signals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Minimum of 16 hours required. Minimum of 6 hours at the 300- to 400-level. Must make a grad of ‘C’ or better in all required Bioinformatics minor courses. Students must complete at least one course in each of the five categories. If a course in statistics in not already required for a student’s major, then STAT 211, STAT 301, STAT 302 or STAT 303 is strongly recommended. Independent research experiences through 491 courses is encouraged.

Biology - Minor

A minor in Biology should represent coursework taken in the discipline beyond courses that might be used to satisfy core curriculum science requirements (8 credits). Therefore, though BIOL 111 and BIOL 112 are prerequisites to all of the listed courses, they are not considered part of the minor program. Some coursework will require organic chemistry and C’s or better are required in each course completed for the minor. The coursework listed represents various sub-disciplines within the field of Biology and would give the student an overall knowledge base fitting a minor in Biology.

Program Requirements

Students must have a C average in all courses taken for a minor in Biology. BIOL 484, BIOL 491 and BIOL 485 credits will not be allowed to count for the minor, nor used in the Biology GPA calculation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>BICH 409</td>
<td>Principles of Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BICH 464</td>
<td>Bacteriophage Genomics</td>
<td></td>
</tr>
<tr>
<td>BIOL 300-499 (p. 919)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& GENE 312 and Comprehensive Genetics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Pre-Medicine - Minor

This minor is designed for students intending to apply to medical or dental school and who are pursuing a major that does not include the required prerequisite courses in their degree plan. Students majoring in BIMS or pursuing any degree from the Department of Biology are not eligible to pursue this minor.
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BICH 409</td>
<td>Principles of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics ¹</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 207 or Electricity and Magnetism for Engineering and Science</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 3

- STAT 211 Principles of Statistics I
- STAT 301 Introduction to Biometry
- STAT 302 Statistical Methods
- STAT 303 Statistical Methods
- STAT 312 Statistics for Biology

Select one of the following: 4

- BIOL 319 Integrated Human Anatomy and Physiology I
- BIOL 320 Integrated Human Anatomy and Physiology II
- BIOL 351 Fundamentals of Microbiology
- BIOL 388 Principles of Animal Physiology

Total Semester Credit Hours 17

¹ If PHYS 207 is selected, 1 hour should be added from PHYS 217/ENGR 217 or PHYS 227.

Department of Chemistry

An understanding of chemistry is critical to an understanding of life and its associated activities. Chemistry and chemical principles profoundly influence the way we live, communicate, and interact with one another, so it is little wonder that a strong background in chemistry provides a solid foundation for a variety of careers of major importance in the twenty-first century. Chemistry is uniquely positioned at the crossroad between the biological and physical sciences. By exploiting their understanding of both realms, chemists and other professionals with strong backgrounds in chemistry have made, and continue to make, major contributions to improve the human condition. Major technological and biological discoveries almost always depend on a fundamental understanding of chemistry and the pursuit of these discoveries, as a way to improve the world in which we live, drives those who seek to be a part of the process.

The Department of Chemistry offers coursework and research in all the major areas of chemistry, organized into programs leading to the degrees of Bachelor of Arts and Bachelor of Science. Both degree programs are suitable as terminal degree programs as well as for preparation for more advanced study in chemistry and related areas or as preparation for many professional programs in a variety of career fields. The BS program is more rigorous with respect to required mathematics and chemistry courses. It is particularly appropriate for those students who plan a career in the chemical industry or who intend to pursue advanced degrees in chemistry, biochemistry, chemical physics or forensics. An attractive number of free electives in this degree program allows students to take courses in interdisciplinary focus areas. The BA program offers the greatest degree of flexibility for students who see chemistry as a springboard into a related career field such as medicine, pharmacy, law, science writing, teaching or business for example. Chemistry majors are counseled by PhD chemistry faculty advisors fully familiar with the many options available in the chemistry and other departments, so as to optimize each student’s program of study to meet individual needs. The Department of Chemistry (http://chem.tamu.edu) website provides additional information about the degree plans, advising, and career opportunities for chemistry majors.

Although students may choose a variety of electives and/or minors in either the BA or BS degree programs, the following chemistry tracks have been developed to guide students in choosing electives.

Chemistry Tracks

In addition to the traditional BS degree (which allows for optional minors) and the traditional BA degree (minor required), the Department of Chemistry offers six tracks to guide students in their selection of electives for particular career paths in biological chemistry, environmental chemistry, materials chemistry, chemical education, medicine, dentistry and pharmacy. A traditional minor requires that all minor courses must be taken from the same department and approved by the department granting the minor. These tracks provide the student an opportunity to replace a traditional minor with a broad spectrum of elective courses focused, not in a single department, but in an area of emphasis. A list of the recommended elective courses for each track may be obtained from the Office of the Undergraduate Advisor in Room 104 Chemistry Building or from the Department of Chemistry (http://chem.tamu.edu) website.

Cooperative Education Program in Chemistry

Under suitable circumstances, chemistry majors may participate in a cooperative education program in which the student alternates periods of attendance at the University with periods of employment in industry. This year-round cooperative program of college study and industrial experience is educationally enriching and meaningful, and also has the benefit of providing substantial financial assistance to the student without unduly prolonging the completion of the BS or BA degree program.

Faculty

Altemose, Alicia, Lecturer
Chemistry
PHD, Penn State University, 2020

Banerjee, Sarbajit, Professor
Chemistry
PHD, State University of New York at Stony Brook, 2004

Barondeau, David P, Associate Professor
Chemistry
PHD, Texas A&M University, 1996

Batteas, James D, Professor
Chemistry
PHD, University of California, Berkeley, 1995

Begley, Tadhg P, University Distinguished Professor
Chemistry
PHD, California Institute of Technology, 1983

Bergbreiter, David E, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1974
Bethel, Ryan D, Senior Lecturer
Chemistry
PHD, Texas A&M University, 2014

Bluemel, Janet F, Professor
Chemistry
PHD, Technical University of Munich, Germany, 1989

Brown, Lawrence S, Instructional Associate Professor
Chemistry
PHD, Princeton University, 1986

Burgess, Kevin, Professor
Chemistry
PHD, The University of Cambridge, 1983

Collins, Daniel P, Senior Lecturer
Chemistry
PHD, University of South Carolina, 2012

Daresbourg, Donald J, Distinguished Professor
Chemistry
PHD, University of Illinois at Urbana-Campaign, 1968

Daresbourg, Marcetta, Distinguished Professor
Chemistry
PHD, University of Illinois at Urbana-Campaign, 1967

Dunbar, Kim R, Distinguished Professor
Chemistry
PHD, Purdue University, 1984

Fang, Lei, Associate Professor
Chemistry
PHD, Northwestern University, 2010

Fierke, Carol A, Professor
Chemistry
PHD, Brandeis University, 1984

Folden III, Charles M, Associate Professor
Chemistry
PHD, University of California, Berkeley, 2004

Gabbai, Francois P, University Distinguished Professor
Chemistry
PHD, Technische Universitat Munchen, Germany, 1999

Gaede, Holly C, Instructional Professor
Chemistry
PHD, University of California, Berkeley, 1995

Gladysz, John A, Distinguished Professor
Chemistry
PHD, Stanford University, 1974

Goodey, Joanna R, Instructional Associate Professor
Chemistry
PHD, University of Houston, 2001

Gopalakrishnan, Ganesa, Senior Lecturer
Chemistry
PHD, University of Madras, India, 1977

Hall, Michael B, Professor
Chemistry
PHD, University of Wisconsin - Madison, 1971

Hilty, Christian B, Professor
Chemistry
PHD, Swiss Federal Institute of Technology Zurich, 2004

Hughbanks, Timothy R, Professor
Chemistry
PHD, Cornell University, 1983

Laane, Jaan, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1967

Laganowsky, Arthur D, Associate Professor
Chemistry
PHD, University of California, 2011

Lee, Edward, Lecturer
Chemistry
PHD, University of Virginia, Charlottesville, 2011

Lim, Soon Mi, Instructional Assistant Professor
Chemistry
PHD, Texas A&M University, 2006

Lindahl, Paul A, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1985

Liu, Wenshe, Professor
Chemistry
PHD, University of California, Davis, 2005

Mawk, Elmo J, Instructional Assistant Professor
Chemistry
PHD, Texas A&M University, 1999

McCartney, Stephanie A, Senior Lecturer
Chemistry
PHD, George Washington University, 2009

Michaudel, Quentin, Assistant Professor
Chemistry
PHD, The Scripps Research Institute, 2015

Mullen, Christine A, Senior Lecturer
Chemistry
PHD, University of California, San Diego, 2000

Nippe, Michael, Associate Professor
Chemistry
PHD, University of Wisconsin - Madison, 2011

North, Simon W, Professor
Chemistry
PHD, University of California, Berkeley, 1995

Ozerov, Oleg V, Professor
Chemistry
PHD, University of Kentucky, 2000
Pennington, James D, Instructional Associate Professor
Chemistry
PHD, University of Michigan, 1998

Pentzer, Emily, Associate Professor
Chemistry
PHD, Northwestern University, 2010

Ponnamperuma, Krishan, Senior Lecturer
Chemistry
PHD, University of Cambridge, UK, 1992

Powers, David C, Assistant Professor
Chemistry
PHD, Harvard University, 2012

Powers, Tamara M, Senior Lecturer
Chemistry
PHD, Harvard University, 2013

Raushel, Frank M, Distinguished Professor
Chemistry
PHD, University of Wisconsin - Madison, 1976

Rosynek, Michael P, Professor
Chemistry
PHD, Rice University, 1972

Russell, David H, Professor
Chemistry
PHD, University of Nebraska - Lincoln, 1978

Saber, Mohamed, Lecturer
Chemistry
PHD, Texas A&M University, 2013

San Pedro, Joanna Maria N, Lecturer
Chemistry
PHD, Johns Hopkins University, 2014

Santander, Patricio J, Senior Lecturer
Chemistry
PHD, Texas A&M University, 1987

Schaefer, Amber J, Instructional Assistant Professor
Chemistry
PHD, Rice University, 2007

Schweikert, Emile A, Professor
Chemistry
PHD, Universite de Paris, France, 1964

Sczepanski, Jonathan T, Assistant Professor
Chemistry
PHD, The Johns Hopkins University, 2010

Serrano, Catherine M, Lecturer
Chemistry
PHD, University of Utah, 2015

Sheldon, Matthew T, Assistant Professor
Chemistry
PHD, University of California, Berkeley, 2010

Singleton, Daniel A, Professor
Chemistry
PHD, University of Minnesota, 1986

Son, Dong H, Professor
Chemistry
PHD, University of Texas at Austin, 2002

Tabor, Daniel, Assistant Professor
Chemistry
PHD, University of Wisconsin - Madison, 2016

Waas, Jack R, Senior Lecturer
Chemistry
PHD, University of Michigan, 1997

Watanabe, Coran M, Associate Professor
Chemistry
PHD, Johns Hopkins University, 1999

Williamson, Vickie M, Instructional Professor
Chemistry
PHD, University of Oklahoma, 1992

Wooley, Karen L, University Distinguished Professor
Chemistry
PHD, Cornell University, 1993

Xu, Shiqing, Research Associate Professor
Chemistry
PHD, Fudan University, 2009

Yan, Xin, Assistant Professor
Chemistry
PHD, Purdue, 2015

Yennello, Sherry J, Professor
Chemistry
PHD, Indiana University, 1990

Zhou, Hongcai J, Professor
Chemistry
PHD, Texas A&M University, 2000

Majors

- Bachelor of Arts in Chemistry (p. 700)
- Bachelor of Arts in Chemistry, Biological Chemistry or Medical, Dental, Pharmacy School Track (p. 702)
- Bachelor of Arts in Chemistry, Chemical Education Track (p. 703)
- Bachelor of Arts in Chemistry, Environmental Chemistry Track (p. 705)
- Bachelor of Science in Chemistry (p. 707)
- Bachelor of Science in Chemistry, Biological Chemistry Track (p. 709)
- Bachelor of Science in Chemistry, Environmental Chemistry Track (p. 710)
- Bachelor of Science in Chemistry, Materials Chemistry Track (p. 712)

Minors

- Minor in Chemistry (p. 713)
Chemistry - BA

The Bachelor of Arts program, through the availability of a generous number of electives, gives the student a firm and broadly-based foundation in chemistry, with the option of pursuing other educational objectives involving specialization in at least one other field in depth. This objective is accomplished by means of the BA program flexibility and by the inclusion of a minor area of study in another discipline. Additional elective hours allow further diversification.

The BA degree offers somewhat more flexibility than the BS program, in terms of tailoring a program of study that combines chemistry with an interest in subject areas such as biochemistry, biology, business, computer science, education, forensics, medicine or physics. Although the BA program may in any specific case turn out to be a somewhat less technical curriculum, it meets the needs of many students who plan to use chemistry as a springboard to a career in chemical sales, marketing, law, technical writing, teaching at a pre-college level, science journalism, etc., to name only a few possibilities.

A BA degree in Chemistry coupled with a minor in Biology, or completion of a biological chemistry track, is excellent preparation for a variety of careers in the health-related disciplines. In particular, a BA degree in Chemistry is excellent and proven preparation for medical and dental schools, and affords the superior student the opportunity to maintain flexibility for a broad spectrum of medical or dental careers.

Although not required for the BA program, abundant research opportunities are available to students. The BA program also permits and encourages non-technical elective courses.

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 171</td>
<td>or Calculus I</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 172</td>
<td>or Calculus II</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Course for Minor | | |
| Semester Credit Hours | | 15 |

Spring		
CHEM 228	Organic Chemistry II	3
CHEM 234	Organic Synthesis and Analysis	4
PHYS 207	Electricity and Magnetism for Engineering and Science	3
PHYS 227	Electricity and Magnetism Laboratory for the Sciences	1
POLS 206	American National Government	3
Select one of the following:		3
CHEM 485	Directed Studies	
CHEM 491	Research	
Communication (p. 26)		
Creative arts (p. 29)		
Cultural discourse (p. 46)		
International and cultural diversity (p. 47)		
Language, philosophy and culture (p. 27)		
Social and behavioral sciences (p. 30)		

<p>| Third Year | | |
| Fall | | |
| CHEM 315 | Fundamentals of Quantitative Analysis | 3 |
| CHEM 318 | Quantitative Analysis Laboratory | 1 |
| CHEM 327 | Physical Chemistry I | 3 |
| Select three of the following: | | 9 |
| CHEM 485 | Directed Studies | |
| CHEM 491 | Research | |
| Communication (p. 26) | | |
| Creative arts (p. 29) | | |
| Cultural discourse (p. 46) | | |
| International and cultural diversity (p. 47) | | |</p>
<table>
<thead>
<tr>
<th>Course for Minor</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>2</td>
</tr>
</tbody>
</table>

Select four of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select three of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 440</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 441</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course for Minor</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>BICH 440</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BICH 441</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 440</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 441</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course for Minor</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Choose a section designated for chemistry majors.
2. Students may substitute any 6 hours of American history courses approved by the University Core Curriculum to fulfill this requirement, but no more than 3 hours may be in Texas history. Students seeking teacher certification must take HIST 105 and HIST 106.
These electives must include 12 hours which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum. In addition, 3 hours of courses must be in the area of international and cultural diversity and 3 hours must be in the area of cultural discourse. These may be in addition to the previous 12 hours of University Core Curriculum courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Additional elective hours must be used to complete a required minor approved by the granting department or students must satisfy the requirements of one of the approved chemistry track programs. BA chemistry majors may take CHEM 485 or CHEM 491 as elective courses. The total hours of CHEM 485 and CHEM 491 taken on a graded (A-F) basis may not exceed 9. Additional hours of these courses may be taken on an S/U basis. A maximum of 6 hours of these courses may be included on the degree plan. Electives should be chosen in consultation with the chemistry advisor, and should be selected to meet the residency requirement (36 hours at 300-400-level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.

Chemistry - BA, Biological Chemistry or Medical, Dental, Pharmacy School Track

Many students planning to enter medical, dental, or pharmacy school prefer a bachelor of arts degree that contains a large number of elective courses that may be used to satisfy pre-professional school requirements. With that in mind, this track provides an effective way to use some of the available free electives in the BA chemistry program to satisfy the pre-professional requirements for these programs. Courses in anatomy, biochemistry, biology, genetics, and microbiology are included. Additional free electives, of which there will be many, may be used to strengthen the student’s program of study in a manner decided by the student and the academic advisor.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I (^1)</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States (^2)</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>or MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II (^1)</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States (^2)</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>or MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I (^1)</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Select one of the following (^3)</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States (^2)</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>or MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II (^1)</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Organic Synthesis and Analysis (^4)</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>GENE 301</td>
<td>Comprehensive Genetics</td>
</tr>
<tr>
<td>& GENE 312</td>
<td>Comprehensive Genetics Laboratory</td>
</tr>
<tr>
<td>GENE 320/</td>
<td>Biomedical Genetics</td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
</tr>
<tr>
<td>or VTPB 405</td>
<td>Biomedical Microbiology</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States (^2)</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>or MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

\(^3\) This is a designated C- or W-course.

\(^4\) This is a designated C- or W-course.
Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I or BICH 441</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 318</td>
<td>Chordate Anatomy</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Integrated Human Anatomy and Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 305</td>
<td>Biomedical Anatomy</td>
<td>4</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>6</td>
</tr>
</tbody>
</table>

Communication (p. 26)

Creative arts (p. 29)

Cultural discourse (p. 46)

International and cultural diversity (p. 47)

Language, philosophy and culture (p. 27)

Social and behavioral sciences (p. 30)

Course for Minor

Semester Credit Hours | 13

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I or BICH 441</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Integrated Human Anatomy and Physiology II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 388</td>
<td>Principles of Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>VTPP 423</td>
<td>Biomedical Physiology I</td>
<td>4</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>3</td>
</tr>
</tbody>
</table>

Communication (p. 26)

Creative arts (p. 29)

Cultural discourse (p. 46)

International and cultural diversity (p. 47)

Language, philosophy and culture (p. 27)

Course for Minor

Semester Credit Hours | 16

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II or BICH 441</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
</tbody>
</table>

Select four of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td>11</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>11</td>
</tr>
</tbody>
</table>

Communication (p. 26)

Creative arts (p. 29)

Cultural discourse (p. 46)

International and cultural diversity (p. 47)

Language, philosophy and culture (p. 27)

Course for Minor

Semester Credit Hours | 13

Social and behavioral sciences (p. 30)

Course for Minor

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
</table>

Total Semester Credit Hours | 120

1. Select a section designated for chemistry majors.
2. Students may substitute any 6 hours of American history courses approved by the University Core Curriculum (p. 25) to fulfill this requirement, but no more than 3 hours may be in Texas history. Students seeking teacher certification must take HIST 105 and HIST 106.
3. These electives must include 12 hours which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum (p. 25). In addition, 3 hours of courses must be in the area of International and Cultural Diversity (p. 47) and 3 hours must be in the area of Cultural Discourse. These may be in addition to the previous 12 hours of University Core Curriculum (p. 25) courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Additional elective hours must be used to complete a required minor approved by the granting department or students must satisfy the requirements of one of the approved chemistry track programs. BA chemistry majors may take CHEM 485 or CHEM 491 as elective courses. The total hours of CHEM 485 and CHEM 491 taken on a graded (A-F) basis may not exceed 9. Additional hours of these courses may be taken on an S/U basis. A maximum of 6 hours of these courses may be included on the degree plan. Electives should be chosen in consultation with the chemistry advisor, and should be selected to meet the residency requirement (36 hours at 300-400-level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.
4. This is a designated C- or W-course.

Chemistry - BA, Chemical Education Track

The Chemical Education Track provides the student an opportunity to obtain secondary teacher certification in addition to completion of the requirements for a degree in chemistry. Many students who plan to become high school chemistry teachers or to pursue a master's degree in chemical education will find this track attractive. Students must complete the requirements for secondary teacher certification as defined by the College of Education and Human Development (consultation with the College of Education and Human Development is required).

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
</tbody>
</table>

1. BA chemistry majors may take CHEM 485 or CHEM 491 as elective courses. The total hours of CHEM 485 and CHEM 491 taken on a graded (A-F) basis may not exceed 9. Additional hours of these courses may be taken on an S/U basis. A maximum of 6 hours of these courses may be included on the degree plan. Electives should be chosen in consultation with the chemistry advisor, and should be selected to meet the residency requirement (36 hours at 300-400-level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.

2. This is a designated C- or W-course.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCEN 201</td>
<td>Experiences In Secondary Math and Science Classrooms</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II ¹</td>
<td>4</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States ²</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II or Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I ¹</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II ¹</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Organic Synthesis and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>RDNG 465</td>
<td>Reading in the Middle and Secondary Grades</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

| Semester Credit Hours | 14 |

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society or Racial and Ethnic Relations</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 322</td>
<td>Teaching and Schooling in Modern Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society or Racial and Ethnic Relations</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 322</td>
<td>Teaching and Schooling in Modern Society</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours

| Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>TEFB 324</td>
<td>Teaching Skills II</td>
<td>3</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course for Minor

| Semester Credit Hours | 15 |
Chemistry - BA, Environmental Chemistry Track

This Environmental Chemistry Track contains a very large number of elective courses and provides even greater opportunity for students to select electives which provide for a career focus in environmental chemistry. The large number of electives makes it possible for students to combine interests in environmental issues with other interests such as business, law, and politics. Electives may be chosen from recommended courses in atmospheric sciences, bioenvironmental science, biology, geology, geosciences, microbiology and oceanography.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Organic Synthesis and Analysis</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
</tr>
<tr>
<td>Course for Minor</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
</tr>
<tr>
<td>BIOL 214</td>
<td>Genes, Ecology and Evolution</td>
</tr>
<tr>
<td>OCNG 420</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>GEOL 420</td>
<td>Environmental Geology</td>
</tr>
<tr>
<td>GEOL 451</td>
<td>Introduction to Geochemistry</td>
</tr>
<tr>
<td>BESC 403</td>
<td>Sampling and Environmental Monitoring</td>
</tr>
<tr>
<td>GEOG 324</td>
<td>Global Climatic Regions</td>
</tr>
<tr>
<td>GEOG 330</td>
<td>Resources and the Environment</td>
</tr>
<tr>
<td>GEOG 370/ MARS 370</td>
<td>Coastal Processes</td>
</tr>
<tr>
<td>GEOS 410</td>
<td>Global Change</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course for Minor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td></td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td></td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>BICH 440</td>
<td>Biochemistry I</td>
<td></td>
</tr>
<tr>
<td>BICH 441</td>
<td>Biochemistry II</td>
<td></td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td></td>
</tr>
<tr>
<td>Select three of the following:</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>CHEM 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course for Minor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th></th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Students may wish to choose electives suggested in the biological or environmental chemistry tracks. This degree program satisfies fully the accreditation requirements of the American Chemical Society. This is a designated C- or W-course. These electives must include 12 hours which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum. In addition, 3 hours of courses must be in the area of International and Cultural Diversity and 3 hours must be in the area of Cultural Discourse. These may be in addition to the previous 12 hours of University Core Curriculum courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Additional elective hours must be used to complete a required minor approved by the granting department or students must satisfy the requirements of one of the approved chemistry track programs. BA chemistry majors may take CHEM 485 or CHEM 491 as elective courses. The total hours of CHEM 485 and CHEM 491 taken on a graded (A-F) basis may not exceed 9. Additional hours of these courses may be taken on an S/U basis. A maximum of 6 hours of these courses may be included on the degree plan. Electives should be chosen in consultation with the chemistry advisor, and should be selected to meet the residency requirement (36 hours at 300-400-level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.

Chemistry - BS

The BS program in Chemistry is arranged so that a student obtains a comprehensive, solid foundation in all of the major branches of chemistry, combined with a suitable measure of individual flexibility. The latter objective is met in part by a strong emphasis on involving the undergraduate BS chemistry major in exciting, innovative, state-of-the-art research programs. Most students in the BS program become involved in research during their junior year and continue this until graduation. Students frequently receive research scholarships and fellowships, which include opportunities for summer research programs. It is not uncommon for an undergraduate chemistry major to be a coauthor of scientific publications in major research journals before graduation.

Undergraduate chemistry research activities involve substantial use of modern scientific equipment, including major instrumentation. The student involved in this activity also gains considerable insight into the profession by means of substantial individual contact with chemistry department faculty.

The BS degree in Chemistry is the appropriate program for students planning advanced degree programs in chemistry, biochemistry, forensics, chemical physics and other fields. Students planning careers in chemical industry should also choose the BS degree in Chemistry. Students may wish to choose electives suggested in the biological or environmental chemistry tracks. This degree program satisfies fully the accreditation requirements of the American Chemical Society.

<table>
<thead>
<tr>
<th>Program Requirements</th>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 151 or MATH 171</td>
<td>Engineering Mathematics I or Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152 or MATH 172</td>
<td>Engineering Mathematics II or Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Select one of the following</td>
<td>4</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 253</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>Organic Synthesis and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics elective (p. 1066)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Statistics elective (p. 1154)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>5</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>
Third Year

Fall
- **CHEM 315** Fundamentals of Quantitative Analysis 3
- **CHEM 318** Quantitative Analysis Laboratory 1
- **CHEM 327** Physical Chemistry I 3
- **CHEM 433** Advanced Inorganic Chemistry Laboratory 2
- **POLS 206** American National Government 3

Select one of the following: 5
- Communication (p. 26)
- Creative arts (p. 29)
- Cultural discourse (p. 46)
- International and cultural diversity (p. 47)
- Language, philosophy and culture (p. 27)
- Social and behavioral sciences (p. 30)

| Semester Credit Hours | 15 |

Spring
- **CHEM 325** Physical Chemistry Laboratory I 1
- **CHEM 328** Physical Chemistry II 3
- **POLS 207** State and Local Government 3

Select three of the following: 9
- Communication (p. 26)
- Creative arts (p. 29)
- Cultural discourse (p. 46)
- International and cultural diversity (p. 47)
- Language, philosophy and culture (p. 27)
- Social and behavioral sciences (p. 30)

| Semester Credit Hours | 16 |

Fourth Year

Fall
- **CHEM 326** Physical Chemistry Laboratory II 1
- **CHEM 415** Analytical Chemistry 3
- **CHEM 491** Research 6 3

Select one of the following: 7
- **CHEM 446** Organic Chemistry III 3
- **CHEM 456** Chemical Biology 3
- **CHEM 462** Inorganic Chemistry 3
- **CHEM 464** Nuclear Chemistry 3
- **CHEM 466** Polymer Chemistry 3
- **CHEM 468** Materials Chemistry of Inorganic Materials 3
- **CHEM 470** Industrial Chemistry 3
- **CHEM 472** Green Chemistry 3
- **BICH 410** Comprehensive Biochemistry I 3
- **BICH 411** Comprehensive Biochemistry II 3
- **BICH 440** Biochemistry I 3
- **BICH 441** Biochemistry II 3
- **PHYS 309** Modern Physics 3

Select two of the following: 5
- Communication (p. 26)
- Creative arts (p. 29)
- Cultural discourse (p. 46)
- International and cultural diversity (p. 47)
- Language, philosophy and culture (p. 27)
- Social and behavioral sciences (p. 30)

| Total Semester Credit Hours | 120 |

1. Select a section designated for chemistry majors.
2. Students may substitute any 6 hours of American history courses approved by the University Core Curriculum to fulfill this requirement, but no more than 3 hours may be in Texas history. Students seeking teacher certification must take HIST 105 and HIST 106.
3. This is a designated C- or W-course.
4. Must be selected in consultation with an advisor.
5. These electives must include 12 hours of courses which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum (p. 25). In addition, 3 hours of courses must be in the area of International and Cultural Diversity (p. 47) and 3 hours must be in the area of Cultural Discourse (p. 46). These may be in addition to the previous 12 hours of University Core Curriculum (p. 25) courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Electives should be chosen in consultation with the chemistry advisor. Electives should be chosen in consultation with the chemistry advisor and should be selected to meet the residency requirement (36 hours at 300-400 level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.
The total hours of CHEM 485 and CHEM 491 taken by BS chemistry majors on a graded (A–F) basis may not exceed 15. Additional hours of these courses may be taken on a satisfactory/unsatisfactory basis.

Students wishing to complete an American Chemical Society certified degree program must take at least one semester of biochemistry (i.e., BICH 410 or BICH 440).

Chemistry - BS, Biological-Chemistry Track

The biological chemistry track has been designed for students interested in pursuing graduate study in biological chemistry, biochemistry, pharmacology or related fields or a career in the pharmaceutical industry. Students who wish to enter an MD/PhD program or medical, dental or pharmacy school will, in most cases, need to take an additional advanced biology course beyond those recommended for this track and should check the admission requirements for these programs with the Office of Professional School Advising. Courses in biology, biochemistry, genetics and statistics are recommended as electives.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
</tr>
<tr>
<td>MATH 151 or MATH 171</td>
<td>Engineering Mathematics I or Calculus I</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 15</td>
</tr>
</tbody>
</table>

Spring

CHEM 120	Fundamentals of Chemistry II
HIST 106	History of the United States
MATH 152 or MATH 172	Engineering Mathematics II or Calculus II
PHYS 206	Newtonian Mechanics for Engineering and Science
PHYS 226	Physics of Motion Laboratory for the Sciences
	Semester Credit Hours 15

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
</tr>
<tr>
<td></td>
<td>Select one of the following 4</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
</tr>
<tr>
<td>CHEM 433</td>
<td>Advanced Inorganic Chemistry Laboratory</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 16</td>
</tr>
</tbody>
</table>

Spring

CHEM 325	Physical Chemistry Laboratory I
CHEM 328	Physical Chemistry II
POLS 207	State and Local Government
	Select two of the following 5
GENE 301	Comprehensive Genetics
& GENE 312	and Comprehensive Genetics Laboratory
GENE 320/ BIMS 320	Biomedical Genetics
	Semester Credit Hours 16

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410 or BICH 440</td>
<td>Comprehensive Biochemistry I</td>
</tr>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research 5</td>
</tr>
<tr>
<td></td>
<td>Select two of the following 5</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
</tr>
<tr>
<td></td>
<td>Cultural discourse (p. 46)</td>
</tr>
<tr>
<td></td>
<td>International and cultural diversity elective (p. 47)</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours 16</td>
</tr>
</tbody>
</table>
Chemistry - BS, Environmental Chemistry Track

Chemistry plays a major role in most environmental issues and this track recommends electives in a broad spectrum of courses designed to prepare students to address environmental problems from a variety of perspectives. Electives may be chosen from recommended courses in atmospheric sciences, bioenvironmental science, biology, geography, geology, microbiology and oceanography.
<table>
<thead>
<tr>
<th>Third Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 433</td>
<td>Advanced Inorganic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ATMO 363</td>
<td>Introduction to Atmospheric Chemistry and Air Pollution</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td></td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>OCNG 410</td>
<td>Physical Oceanography</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring		
CHEM 325	Physical Chemistry Laboratory I	1
CHEM 328	Physical Chemistry II	3
POLS 207	State and Local Government	3
Select two of the following:	6	
BESC 403	Sampling and Environmental Monitoring	
BIOL 214	Genes, Ecology and Evolution	
GEOG 324	Global Climatic Regions	
GEOG 330	Resources and the Environment	
GEOG 370/MARS 370	Coastal Processes	
GEOL 420	Environmental Geology	
GEOL 451	Introduction to Geochemistry	
OCNG 420	Biological Oceanography	
Select one of the following:	3	
Communication (p. 26)		
Creative arts (p. 29)		
Cultural discourse (p. 46)		
International and cultural diversity (p. 47)		
Language, philosophy and culture (p. 27)		
Social and behavioral sciences (p. 30)		
Semester Credit Hours	16	

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td></td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td></td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Spring		
CHEM 434	Analytical Instrumentation Laboratory	2
CHEM 481	Seminar	3
CHEM 491	Research	3
Select one of the following:	3	
CHEM 446	Organic Chemistry III	
CHEM 456	Chemical Biology	
CHEM 462	Inorganic Chemistry	
CHEM 464	Nuclear Chemistry	
CHEM 466	Polymer Chemistry	
CHEM 468	Materials Chemistry of Inorganic Materials	
CHEM 470	Industrial Chemistry	
CHEM 483	Green Chemistry	
CHEM 489	Special Topics in...	
Semester Credit Hours	15	

| Semester Credit Hours | 120 |

1. Select a section designated for chemistry majors.
2. Students may substitute any 6 hours of American history courses approved by the University Core Curriculum (p. 25) to fulfill this requirement, but no more than 3 hours may be in Texas history.
3. Students seeking teacher certification must take HIST 105 and HIST 106.
4. This is a designated C- or W-course.
5. Must be selected in consultation with an advisor.
These electives must include 12 hours of courses which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum (p. 25). In addition, 3 hours of courses must be in the area of International and Cultural Diversity (p. 47) and 3 hours must be in the area of Cultural Discourse (p. 46). These may be in addition to the previous 12 hours of University Core Curriculum (p. 25) courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Electives should be chosen in consultation with the chemistry advisor. Electives should be chosen in consultation with the chemistry advisor and should be selected to meet the residency requirement (36 hours at 300-400 level must be taken at TAMU). Electives recommended in the various track programs should be considered.

The total hours of CHEM 485 and CHEM 491 taken by BS chemistry majors on a graded (A–F) basis may not exceed 15. Additional hours of these courses may be taken on a satisfactory/unsatisfactory basis.

Students wishing to complete an American Chemical Society certified degree program must take at least one semester of biochemistry (i.e., BICH 410 or BICH 440).

Chemistry - BS, Materials Chemistry Track

The Department of Chemistry offers a Bachelor of Science in Chemistry with a Materials Chemistry Track. In materials chemistry, molecular-level understanding drives the design, synthesis, and characterization of materials with interesting and useful properties. Insight into catalytic, electronic, optical, or structural characteristics of substances allows them to be tailored for different applications. This track includes a breadth of coverage in both hard and soft materials and prepares students for further study in materials chemistry or employment in a variety of industries.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 100</td>
<td>Horizons in Chemistry</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I ¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HIST 105</td>
<td>History of the United States ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 151 or MATH 171</td>
<td>Engineering Mathematics I or Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II ¹</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HIST 106</td>
<td>History of the United States ²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 152 or MATH 172</td>
<td>Engineering Mathematics II or Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 227</td>
<td>Organic Chemistry I ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 231</td>
<td>Techniques of Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 253</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 228</td>
<td>Organic Chemistry II ¹</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 234</td>
<td>Organic Synthesis and Analysis ³</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Materials chemistry elective ⁴</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 304</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics elective (p. 1066) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics elective (p. 1154) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 433</td>
<td>Advanced Inorganic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Materials chemistry elective ⁴</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 304</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics elective (p. 1066) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics elective (p. 1154) ⁵</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

¹ Students may take this course in the fall or spring semester.
² Students must complete at least 12 semester credit hours of these courses.
³ Students must complete at least 6 semester credit hours of this course.
⁴ Students must complete at least 15 semester credit hours of these courses.
⁵ Students must complete at least 9 semester credit hours of this course.

The course PHYS 226 is included in the list of courses that can be taken for the Materials Chemistry Track. This course provides an introduction to the physics of motion laboratory for the sciences, covering concepts such as Newtonian mechanics, electricity, and magnetism. It is an essential component of the Materials Chemistry Track, as it helps students understand the physical principles underlying the behavior of materials. The course requires 1 semester credit hour and is typically taken in the fall semester of the second year of study.

Additionally, the course PHYS 207 is included in the list of courses that can be taken for the Materials Chemistry Track. This course provides an introduction to the physics of motion laboratory for the sciences, covering concepts such as Newtonian mechanics, electricity, and magnetism. It is an essential component of the Materials Chemistry Track, as it helps students understand the physical principles underlying the behavior of materials. The course requires 3 semester credit hours and is typically taken in the fall semester of the first year of study.

The course PHYS 206 is included in the list of courses that can be taken for the Materials Chemistry Track. This course provides an introduction to the physics of motion laboratory for the sciences, covering concepts such as Newtonian mechanics, electricity, and magnetism. It is an essential component of the Materials Chemistry Track, as it helps students understand the physical principles underlying the behavior of materials. The course requires 3 semester credit hours and is typically taken in the fall semester of the first year of study.
Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>7</td>
</tr>
<tr>
<td>Materials chemistry elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 434</td>
<td>Analytical Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 481</td>
<td>Seminar</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 491</td>
<td>Research</td>
<td>7</td>
</tr>
<tr>
<td>Materials chemistry elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural discourse (p. 46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International and cultural diversity (p. 47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120

1. Select a section designated for chemistry majors.
2. Students may substitute any 6 hours of American history courses approved by the University Core Curriculum (p. 25) to fulfill this requirement, but no more than 3 hours may be in Texas history. Students seeking teacher certification must take HIST 105 and HIST 106.
3. This is a designated C- or W-course.
4. In consultation with an advisor, choose 12 hours from among CHEM 220; CHEM 462; CHEM 470; MEEN 222/MSEN 222 OR BMEN 343, MEEN 458
5. Must be selected in consultation with an advisor.
6. These electives must include 12 hours of courses which meet the language, philosophy and culture (3 hours), creative arts (3 hours), social and behavioral science (3 hours) and communication (3 hours) requirements of the University Core Curriculum (p. 25). (See page 17). In addition, 3 hours of courses must be in the area of International and Cultural Diversity (p. 47) and 3 must be in the area of Cultural Discourse (p. 46). These may be in addition to the previous 12 hours of University Core Curriculum (p. 25) courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements. Electives should be chosen in consultation with the chemistry advisor. Electives should be chosen in consultation with the chemistry advisor and should be selected to meet the residency requirement (36 hours at 300-400 level must be taken at TAMU). Electives recommended in the various track programs should be strongly considered.
7. The total hours of CHEM 485 and CHEM 491 taken by BS chemistry majors on a graded (A–F) basis may not exceed 15. Additional hours of these courses may be taken on a satisfactory/unsatisfactory basis.
8. Students wishing to complete an American Chemical Society certified degree program must take at least one semester of biochemistry (i.e., BICH 410 or BICH 440).

Chemistry - Minor

Students seeking a minor in chemistry must complete the Declaration of Minor in Chemistry form and have it approved by the undergraduate advisor in chemistry (Room 104 Chemistry) and their academic advisor. A minor in Chemistry should represent course work taken in the discipline beyond courses that might be used to satisfy core curriculum science requirements (8 credits). Therefore, though CHEM 119 or CHEM 107/CHEM 117 and CHEM 120 are prerequisites to all of the listed courses, they are not considered part of the minor program. The course work listed (17-20 credits) represents various sub-disciplines within the field of Chemistry and would give the student an overall knowledge base fitting a Minor in Chemistry. This is consistent with the statement on minors published by the American Chemical Society.

Program Requirements

The student will choose five lecture courses (14-15 credits) and three laboratory courses (3-5 credits) from categories A.-E. below. The student must take at least one course from four of the five categories. Students must have a C average in all courses taken for a minor in Chemistry. CHEM 491 and CHEM 485 credits will not be allowed to count for the minor nor used in the Chemistry GPA calculation. Substitution of courses without the CHEM prefix will not be allowed.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Quantitative Analysis</td>
<td>2</td>
</tr>
</tbody>
</table>

A. Organic Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

B. Analytical Chemistry

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 315</td>
<td>Fundamentals of Quantitative Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 316</td>
<td>Quantitative Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>CHEM 318</td>
<td>Quantitative Analysis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>C. Physical Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 310</td>
<td>Elements of Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 322</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 325</td>
<td>Physical Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 326</td>
<td>Physical Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 328</td>
<td>Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>D. Inorganic Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 220</td>
<td>Physics and Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 362</td>
<td>Descriptive Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 383</td>
<td>Chemistry of Environmental Pollution</td>
<td>3</td>
</tr>
<tr>
<td>E. Advanced Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 415</td>
<td>Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 433</td>
<td>Advanced Inorganic Chemistry Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 434</td>
<td>Analytical Instrumentation Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 446</td>
<td>Organic Chemistry III</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 456</td>
<td>Chemical Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 462</td>
<td>Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 464</td>
<td>Nuclear Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 466</td>
<td>Polymer Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 468</td>
<td>Materials Chemistry of Inorganic Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 470</td>
<td>Industrial Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 483</td>
<td>Green Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 489</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
</tbody>
</table>

1. Students may not count both CHEM 315 and CHEM 316.
2. Students may only count one from CHEM 310, CHEM 322, or CHEM 327.

Department of Mathematics

The Department of Mathematics offers curricula which lead to the following undergraduate degrees: Bachelor of Science in Applied Mathematical Sciences, Bachelor of Arts in Mathematics and Bachelor of Science in Mathematics. A combined baccalaureate/graduate degree program is also offered.

The curriculum for the BS in Applied Mathematical Sciences includes courses in economics, industrial engineering, statistics, computer science and mathematics. A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to modern technological industries and/or modern financial markets. On the other hand, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate programs. Advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

With carefully chosen electives in education, any one of the above three degree plans can lead to teacher certification. Students interested in teacher certification may find the BA degree plan the most suitable since this degree plan offers the greatest flexibility for the inclusion of teacher certification courses.

Faculty

Allen, Angela J, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2005

Alonso Ruiz, Patricia, Assistant Professor
Mathematics
PHD, University of Siegen, 2013

Anshelevich, Michael V, Professor
Mathematics
PHD, University of California, Berkeley, 2000

Aurispa, Benjamin, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2006

Austin, Amy L, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 1994

Baskin, Dean R, Associate Professor
Mathematics
PHD, Stanford University, 2010

Battle III, Guy A, Professor
Mathematics
PHD, Duke University, 1977

Baudier, Florent P Assistant Professor
Mathematics
PHD, Universite De Besancon, 2010

Berkolaiko, Gregory, Professor
Mathematics
PHD, University of Bristol, 1997

Boas, Harold P, Professor
Mathematics
PHD, Massachusetts Institute of Technology, 1980

Bobkova, Irina, Assistant Professor
Mathematics
PHD, Northwestern University, 2014

Bollinger, Kathryn L, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 1998

Bonito, Andrea, Professor
Mathematics
PHD, Ecole Polytechnique Federale de Lausanne, France, 2006

Booth, Robert, Visiting Assistant Professor
Mathematics
PHD, University of North Carolina at Chapel Hill, 2018

Borosh, Itshak, Senior Professor
Mathematics
PHD, Weizmann Institute of Science, 1966
Brannan, Michael P, Associate Professor
Mathematics
PHD, Queen's University, 2012

Cantu, Justin, Lecturer
Mathematics
PHD, Texas A&M University, 2019

Carter, Tamara A, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 2005

Chen, Goong, Professor
Mathematics
PHD, University of Wisconsin - Madison, 1977

Coffelt, Vanessa Lea, Lecturer
Mathematics
MS, Kansas State University, 2005

Comch, Andrew, Associate Professor
Mathematics
PHD, Columbia University, 1997

Darbinyan, Arman, Visiting Assistant Professor
Mathematics
PHD, Vanderbilt University, 2018

Daripa, Prabir, Professor
Mathematics
PHD, Brown University, 1985

Demlow, Alan R, Professor
Mathematics
PHD, Cornell University, 2002

Devere, Ronald A, Distinguished Professor
Mathematics
PHD, Ohio State University, 1967

Dykena, Kenneth J, Professor
Mathematics
PHD, University of California, Berkeley, 1993

Efendiev, Yalchirn R, Professor
Mathematics
PHD, California Institute of Technology, 1999

Epstein, Janice L, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 1992

Erdelyi, Tamas, Professor
Mathematics
PHD, University of Southern Carolina, 1989

Foran, Alexandra, Lecturer
Mathematics
PHD, Texas A&M University, 2018

Foucart, Simon, Professor
Mathematics
PHD, University of Cambridge, 2005

Fulling, Stephen A, Professor
Mathematics
PHD, Princeton University, 1972

Gao, Li, Visiting Assistant Professor
Mathematics
PHD, University of Illinois-Urbana-Champaign, 2018

Goswami, Souvik, Visiting Assistant Professor
Mathematics
PHD, University of Alberta, 2015

Grigorchuk, Rostislav, Distinguished Professor
Mathematics
PHD, Moscow State University of Lomomosov, 1986

Gueirmond, Jean-Luc, Professor
Mathematics
PHD, Sorbonne Universites, 1995

Guo, Hao, Visiting Assistant Professor
Mathematics
PHD, The University of Adelaide, 2018

Gustafson, Robert A, Associate Professor
Mathematics
PHD, Yale University, 1979

Hanin, Boris L, Assistant Professor
Mathematics
PHD, Northwestern University, 2014

Harper, Alicia, Visiting Assistant Professor
Mathematics
PHD, Brown University, 2018

Harris, Samuel, Visiting Assistant Professor
Mathematics
PHD, University of Waterloo, 2019

Hensley, Douglas A, Senior Professor
Mathematics
PHD, University of Minnesota, 1974

Hester, Yvette C, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 2000

Holmes, Irina, Assistant Professor
Mathematics
PHD, Louisiana State University, 2014

Howard, Peter B, Professor
Mathematics
PHD, Indiana University, 1998

Huang, Hang, Visiting Assistant Professor
Mathematics
PHD, University of Wisconsin, 2019

Jantsch, Peter Alan, Visiting Assistant Professor
Mathematics
PHD, University of Tennessee, 2017
Johnson, Maya E, Lecturer
Mathematics
PHD, Texas A&M University, 2015

Johnson, William B, Distinguished Professor
Mathematics
PHD, Iowa State University, 1969

Jung, Junehyuk, Assistant Professor
Mathematics
PHD, Princeton University, 2013

Kahlig, Joseph E, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 1994

Kerr, David G, Professor
Mathematics
PHD, University of Toronto, 2001

Kilmer, Kendra R, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2003

Kim, Joung Dong, Instructional Assistant Professor
Mathematics
PHD, State University of New York at Stony Brook, 2012

Kuan, Jeffrey, Assistant Professor
Mathematics
PHD, Harvard University, 2015

Kuchment, Peter, University Distinguished Professor
Mathematics
PHD, Kharkov State University, Russia, 1973

Landsberg, Joseph M, Professor
Mathematics
PHD, Duke University, 1990

Larson, David R, Professor
Mathematics
PHD, University of California - Berkeley, 1976

Lazarov, Raytcho D, Professor
Mathematics
PHD, University of Moscow, Russia, 1972

Lee, Sang Rae, Senior Lecturer
Mathematics
PHD, University of Oklahoma, 2012

Limafilho, Paulo C, Professor
Mathematics
PHD, State University of New York at Stony Brook, 1989

Liu, Chun-Hung, Assistant Professor
Mathematics
PHD, Georgia Institute of Technology, 2014

Liu, Wencai, Visiting Assistant Professor
Mathematics
PHD, Fudan University, 2015

Luehrmann, Jonas, Visiting Assistant Professor
Mathematics
PHD, ETH Zurich, 2016

Lynch, Richard G, Visiting Assistant Professor
Mathematics
PHD, University of Missouri, 2016

Maier, Matthias Sebastian, Assistant Professor
Mathematics
PHD, Ruprecht-Karls Universitat Heidelberg, Germany, 2015

Manuel, David J, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 1994

Masri, Mohamad R, Professor
Mathematics
PHD, University of Texas at Austin, 2005

Matusevich, Laura F, Professor
Mathematics
PHD, University of California, Berkeley, 2002

Ming, Shuang, Visiting Assistant Professor
Mathematics
PHD, University of California Davis, 2019

Narcowich, Francis J, Professor
Mathematics
PHD, Princeton University, 1972

Nekrashevych, Volodymyr, Professor
Mathematics
PHD, Taras Shevchenko National University, Russia, 1998

Onica, Constantin, Instructional Assistant Professor
Mathematics
PHD, Texas A&M University, 2005

Orchard, Patrick J, Lecturer
Mathematics
MS, Texas A&M University, 2015

Paouris, Grigoris, Professor
Mathematics
PHD, University of Crete, 2004

Papanikolas, Matthew A, Professor
Mathematics
PHD, Brown University, 1998

Pasciak, Joseph E, Professor
Mathematics
PHD, Cornell University, 1977

Pearlstein, Gregory J, Associate Professor
Mathematics
PHD, UNIVERSITY OF MASSACHUSETTS AT AMHERST, 1999

Pearlstein, Rosanna, Lecturer
Mathematics
PHD, University of Massachusetts Amherst, 1998
Petrova, Guergana P, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Pisier, Gilles, Distinguished Professor
Mathematics
PHD, University of Paris, 1977

Poltoratski, Alexei G, Professor
Mathematics
PHD, California Institute of Technology, 1995

Popov, Bojan D, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Procaccia, Eviatar B, Associate Professor
Mathematics
PHD, Weizmann Institute of Science, 2013

Pun, Sai Mang, Visiting Assistant Professor
Mathematics
PHD, The Chinese University of Hong Kong, 2019

Rahm Jr, Robert S, Instructional Assistant Professor
Mathematics
PHD, Washington University in St. Louis, 2017

Ramos, Heather L, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 2004

Reihani, Kamran, Instructional Assistant Professor
Mathematics
PHD, Tarbiat Modares University, 2005

Rojas, Joseph M, Professor
Mathematics
PHD, University of California, Berkeley, 1995

Roque-Sol, Marco A, Lecturer
Mathematics
PHD, Texas A&M University, 2006

Rowell, Eric C, Professor
Mathematics
PHD, University of California, San Diego, 2003

Rundell, William, Professor
Mathematics
PHD, Glasgow University, 1974

Schielack Jr, Vincent, Associate Professor
Mathematics
PHD, University of Texas at Austin, 1982

Schlumprecht, Thomas B, Professor
Mathematics
PHD, Ludwig Maximilians Universitat, Germany, 1988

Schrader, Todd W, Lecturer
Mathematics
MS, Texas A&M University, 2016

Sengupta, Sinjini, Instructional Assistant Professor
Mathematics
PHD, Florida State University, 2006

Shatalov, Oksana, Instructional Professor
Mathematics
PHD, Technion - Israel Institute of Technology, 2001

Shi, Shuhui, Visiting Assistant Professor
Mathematics
PHD, University of Rochester, 2018

Shiu, Anne J, Associate Professor
Mathematics
PHD, University of California at Berkeley, 2010

Small, Kenneth, Lecturer
Mathematics
MS, Texas A&M University, 2019

Smith, Roger R, Professor
Mathematics
PHD, University of Oxford, 1976

Sottile, Frank J, Professor
Mathematics
PHD, University of Chicago, 1994

Stiller, Peter F, Professor
Mathematics
PHD, Princeton University, 1977

Straube, Emil J, Professor
Mathematics
PHD, Swiss Federal Institute of Technology Zurich, 1983

Taliaferro, Steven D, Associate Professor
Mathematics
PHD, Stanford University, 1976

Titi, Edriss S, Professor
Mathematics
PHD, Indiana University, Bloomington, 1986

Tripode, Jessica, Lecturer
Mathematics
MS, Texas A&M University, 2019

Tucker-Drob, Robin D, Associate Professor
Mathematics
PHD, California Institute of Technology, 2013

Ventura, Emanuele, Visiting Assistant Professor
Mathematics
PHD, Aalto University, 2017

Voric, Jurij, Visiting Assistant Professor
Mathematics
PHD, University of Auckland, 2018

Vorobets, Mariya, Instructional Assistant Professor
Mathematics
PHD, Lviv National University, 2004
Vorobets, Yaroslav, Associate Professor
Mathematics
PHD, Moscow Lomonosov State University, 1998

Ward, Joseph D, Professor
Mathematics
PHD, Indiana University, 1973

Whitfield, Jennifer G, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 2000

Witherspoon, Sarah J, Professor
Mathematics
PHD, University of Chicago, 1994

Wu, Jianchao, Visiting Assistant Professor
Mathematics
PHD, Vanderbilt University, 2019

Xie, Zhizhang, Associate Professor
Mathematics
PHD, The Ohio State University, 2011

Xu, Guangbo, Visiting Assistant Professor
Mathematics
PHD, Princeton University, 2013

Yan, Huafei, Professor
Mathematics
PHD, Massachusetts Institute of Technology, 1997

Yang, Tian, Assistant Professor
Mathematics
PHD, Rutgers University at New Brunswick, 2013

Yasskin, Philip B, Associate Professor
Mathematics
PHD, University of Maryland, 1979

Young, Matthew P, Professor
Mathematics
PHD, Rutgers University, 2004

Yu, Guoliang, University Distinguished Professor
Mathematics
PHD, State University Of New York At Stony Brook, 1991

Zelenko, Igor, Associate Professor
Mathematics
PHD, Technion - Israel Institute of Technology, 2002

Zhou, Jianxin, Professor
Mathematics
PHD, Pennsylvania State University, 1986

Majors

- Bachelor of Arts in Mathematics (p. 730)
- Bachelor of Arts in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 732)
- Bachelor of Science in Mathematics (p. 733)
- Bachelor of Science in Mathematics and Master of Science in Mathematics, 5-Year Degree Program (p. 735)

- Bachelor of Science in Applied Mathematical Sciences, Actuarial Science Emphasis (p. 718)
- Bachelor of Science in Applied Mathematical Sciences, Biological Science Emphasis (p. 720)
- Bachelor of Science in Applied Mathematical Sciences, Computational Science Emphasis (p. 721)
- Bachelor of Science in Applied Mathematical Sciences, Cryptography Emphasis (p. 722)
- Bachelor of Science in Applied Mathematical Sciences, Economics Emphasis (p. 724)
- Bachelor of Science in Applied Mathematical Sciences, Math Emphasis (p. 725)
- Bachelor of Science in Applied Mathematical Sciences, Statistics Emphasis (p. 727)
- Bachelor of Science in Applied Mathematical Sciences and Master of Science in Mathematics, 5-Year Degree Program (p. 728)

Minors

- Mathematics Minor (p. 737)

Applied Mathematical Sciences - BS, Actuarial Science Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with an Actuarial Science emphasis explores the application of analytical problem solving tools to challenges in the financial and insurance industries. Students in the Actuarial Science emphasis investigate techniques in applied and pure mathematics and pursue electives in economics and finance that demonstrate how mathematics can be used to model financial concerns in the insurance and related industries.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to modern financial markets. Coursework in the Actuarial emphasis prepares students to take actuarial exams necessary for employment in the actuarial industry. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools. A minor in business or economics is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>Semester</td>
<td>Course Code</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fall</td>
<td>CSCE 206</td>
</tr>
<tr>
<td></td>
<td>Freshman Science elective</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 172</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>CSCE 110 Programming I</td>
</tr>
<tr>
<td></td>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td></td>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td></td>
<td>CSCE 206 Structured Programming in C</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>Freshman Science elective</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Second Year</td>
<td>ECON 202 Principles of Economics</td>
</tr>
<tr>
<td>Fall</td>
<td>or ECON 203 Principles of Economics</td>
</tr>
<tr>
<td></td>
<td>MATH 221 Several Variable Calculus</td>
</tr>
<tr>
<td></td>
<td>MATH 300 Foundations of Mathematics</td>
</tr>
<tr>
<td></td>
<td>STAT 211 Principles of Statistics I</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 308 Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 323 Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>STAT 212 Principles of Statistics II</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Third Year</td>
<td>MATH 325 The Mathematics of Interest</td>
</tr>
<tr>
<td>Fall</td>
<td>MATH 411 Mathematical Probability</td>
</tr>
<tr>
<td></td>
<td>or STAT 414 Mathematical Statistics I</td>
</tr>
<tr>
<td></td>
<td>MATH 425 The Mathematics of Contingent Claims</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>COMM 203 Public Speaking</td>
</tr>
<tr>
<td></td>
<td>COMM 205 Communication for Technical Professions</td>
</tr>
<tr>
<td></td>
<td>COMM 243 Argumentation and Debate</td>
</tr>
<tr>
<td></td>
<td>General elective</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 417 Numerical Methods</td>
</tr>
<tr>
<td></td>
<td>or MATH 437 Principles of Numerical Analysis</td>
</tr>
<tr>
<td></td>
<td>MATH 419 Applications of Actuarial Science</td>
</tr>
<tr>
<td></td>
<td>or OCNG 451 Mathematical Modeling of Ocean Climate</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
</tr>
<tr>
<td></td>
<td>OCNG 451 Mathematical Modeling of Ocean Climate</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>PHYS 207 Electricity and Magnetism for Engineering and Science</td>
</tr>
<tr>
<td>Fall</td>
<td>Select 6 hours from the following:</td>
</tr>
<tr>
<td></td>
<td>CSCE 210-CSCE 470 (p. 946)</td>
</tr>
<tr>
<td></td>
<td>MATH 407-MATH 499 (p. 1066)</td>
</tr>
<tr>
<td></td>
<td>STAT 335-STAT 482 (p. 1154)</td>
</tr>
<tr>
<td></td>
<td>Select 9 hours from the following:</td>
</tr>
<tr>
<td></td>
<td>ISEN 320 Operations Research I or Operations Research II</td>
</tr>
<tr>
<td></td>
<td>ECON 311-ECON 489 (p. 965)</td>
</tr>
<tr>
<td></td>
<td>ECMT 463 Introduction to Econometrics</td>
</tr>
<tr>
<td></td>
<td>FINC 309-FINC 489 (p. 993)</td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 409 Advanced Calculus I</td>
</tr>
<tr>
<td></td>
<td>PHYS 206 Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
</tr>
</tbody>
</table>

Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107, CHEM 117. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHM 117, GEO 101/GEOL 102, OCNG 251/OCNG 252.

3 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

3 Select from any 100-499 course not used elsewhere, except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFSC 101).

Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.

4 MATH 411 should be taken the semester after taking MATH 221.

5 Except CSCE 222/ECEN 222, CSCE 285, CSCE 289, CSCE 291.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.
Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D’s in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47) s and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Applied Mathematical Sciences - BS, Biological Science Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with a Biological Sciences emphasis explores the application of analytical problem solving tools to problems in biology, medicine, and the environment. Students in the Biological Sciences emphasis investigate techniques in applied and pure mathematics and pursue electives in biology and other sciences that demonstrate how mathematics models phenomena in the life sciences.

A student completing this program is prepared for a career in applications of mathematics to the life sciences. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate school or medical school, including Ph.D. programs in Applied Mathematics or Mathematics. A minor in biology is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

Biological Science Emphasis: Consult with departmental advisor.

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BIOL 111 Introductory Biology I</td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103 Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>MATH 171 Calculus I</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>BIOL 213 Molecular Cell Biology</td>
</tr>
<tr>
<td>MATH 221 Several Variable Calculus</td>
</tr>
<tr>
<td>MATH 300 Foundations of Mathematics</td>
</tr>
<tr>
<td>STAT 211 Principles of Statistics I</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>Directed Studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>BIOL 214 Genes, Ecology and Evolution</td>
</tr>
<tr>
<td>CHEM 222 Elements of Organic and Biological Chemistry and Elementary Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>MATH 308 Differential Equations</td>
</tr>
<tr>
<td>MATH 323 Linear Algebra</td>
</tr>
<tr>
<td>Directed Studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>MATH 409 Advanced Calculus I</td>
</tr>
<tr>
<td>MATH 469 Introduction to Mathematical Biology</td>
</tr>
<tr>
<td>Directed Studies</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>MATH elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>MATH 417 or MATH 437 Numerical Methods or Principles of Numerical Analysis</td>
</tr>
<tr>
<td>MATH 442 Mathematical Modeling</td>
</tr>
<tr>
<td>STAT 212 Principles of Statistics II</td>
</tr>
<tr>
<td>Directed Studies</td>
</tr>
<tr>
<td>MATH elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed Studies</td>
</tr>
<tr>
<td>MATH elective</td>
</tr>
</tbody>
</table>
Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 410</td>
<td>Advanced Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 446</td>
<td>or Principles of Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 415</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 433</td>
<td>or Applied Algebra</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 203</td>
<td>or Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>MATH elective 3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General elective 4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

1. Select from MATH 285 or BIOL 285 (Quantitative Biology Seminar). Consult Departmental advisor for selection of proper section.
2. Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.
3. Select from MATH 325, MATH 407-499 (p. 1066). One course must be a W or C course.
4. Select from any 100-499 course not used elsewhere, (except ALED 125, ASCC 102, ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201 STAT 301 - 303 (p. 1154); WFSC 101).

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D's in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47)s and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Applied Mathematical Sciences - BS, Computational Science Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with a Computational emphasis explores the application of analytical problem solving tools to concrete problems in computation and technology. Students in the Computational emphasis investigate a broad array of techniques in applied and pure mathematics and pursue electives in computer science that demonstrate how mathematics models challenges in computing and technology.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to technological industries. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including Ph.D. programs in Applied Mathematics or Mathematics. A minor in computer science is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
</tr>
<tr>
<td>General elective 1</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 4</td>
<td></td>
</tr>
<tr>
<td>Freshman Science elective 1</td>
<td></td>
</tr>
<tr>
<td>General elective 2,3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ECON 202 or ECON 203</td>
<td>Principles of Economics or Principles of Economics</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
</tbody>
</table>
Applied Mathematical Sciences - BS, Cryptography Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with a Cryptography emphasis explores the application of analytical problem solving tools to concrete problems in cybersecurity. Students in the Cryptography emphasis investigate a broad array of techniques in applied and pure mathematics and pursue electives in
Texas A&M University

computer science that demonstrate how mathematics is central to keeping information and data secure.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to technological industries or government, especially in cybersecurity related fields. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including PhD programs in Applied Mathematics or Mathematics. A minor in computer science or cybersecurity is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ENGL 103</td>
<td>or Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshman Science elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3,4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freshman Science elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>3,4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ECON 203</td>
<td>or Principles of Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 415</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or MATH 433</td>
<td>or Applied Algebra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 470</td>
<td>Communications and Cryptography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MATH 411</td>
<td>Mathematical Probability</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 427</td>
<td>Introduction to Number Theory</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or MATH 431</td>
<td>or Structures and Methods of Combinatorics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 471</td>
<td>Communications and Cryptography II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 472</td>
<td>Elliptic Curve Cryptography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking (Select one of the following)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMM 243</td>
<td>Argumentation and Debate (Elective)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSCE 210-470 (p. 946)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISEN 320</td>
<td>Operations Research I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISEN 340</td>
<td>Operations Research II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 407-499 (p. 1066)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT 335-482 (p. 1154)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select 3 hours from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CSCE 210-470 (p. 946)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 407-499 (p. 1066)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select 3 hours from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSCE 210-470 (p. 946)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISEN 320</td>
<td>Operations Research I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISEN 340</td>
<td>Operations Research II</td>
<td></td>
</tr>
</tbody>
</table>
MATH 407-499 (p. 1066)
STAT 404-482 (p. 1154)

General elective 4

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>4</th>
</tr>
</thead>
</table>

Total Semester Credit Hours 120

1. Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.
2. Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117. The remaining 4 hours may be selected from: ASTR 111, ATM 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, GEOL 101/GEOL 102, OCNG 251/OCNG 252.
3. MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172. MATH 200 is also highly recommended for math majors co-enrolled in MATH 151, MATH 152, MATH 171 or MATH 172.
4. Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205, PSYC 301; STAT 201, STAT 301-303 (p. 1154); WFSC 101).
5. MATH 433 is only offered in Spring semesters.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D's in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47) and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Applied Mathematical Sciences - BS, Economics Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with an Economics emphasis explores the application of analytical problem solving tools to challenges in business and financial industries. Students in the Economics emphasis investigate techniques in applied and pure mathematics and pursue electives in economics and finance that demonstrate how mathematics can be used to model economic and financial concerns.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to modern financial markets. coursework in the Economics emphasis prepares students to take actuarial exams necessary for employment in the actuarial industry. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including Ph.D. programs in Applied Mathematics or Mathematics. A minor in business or economics is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103</td>
</tr>
<tr>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>MATH 171</td>
</tr>
<tr>
<td>Calculus I</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
</tr>
<tr>
<td>Freshman Science elective 1</td>
</tr>
<tr>
<td>General elective 2,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>4</td>
</tr>
<tr>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 4</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective 1</td>
<td>4</td>
</tr>
<tr>
<td>General elective 2,3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ECON 202 or ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics or Principles of Economics</td>
<td></td>
</tr>
<tr>
<td>MATH 300</td>
<td>3</td>
</tr>
<tr>
<td>Foundations of Mathematics</td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>4</td>
</tr>
<tr>
<td>Several Variable Calculus</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Statistics I</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 5</td>
<td>3</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |
Spring
MATH 308 Differential Equations 3
MATH 323 Linear Algebra 3
STAT 212 Principles of Statistics II 3
University Core Curriculum (p. 25) 4 3
University Core Curriculum (p. 25) 4 3
Semester Credit Hours 15

Third Year
Fall
MATH 325 The Mathematics of Interest 3
MATH 409 Advanced Calculus I 3
PHYS 206 Newtonian Mechanics for Engineering and
& PHYS 226 Science
and Physics of Motion Laboratory for the Sciences
University Core Curriculum (p. 25) 4 3
University Core Curriculum (p. 25) 4 3
Semester Credit Hours 16

Spring
MATH 411 Mathematical Probability
or STAT 414 or Mathematical Statistics I
MATH 425 The Mathematics of Contingent Claims 3
Select one of the following: 4
OCNG 451 Mathematical Modeling of Ocean Climate
PHYS 207 Electricity and Magnetism for Engineering
& PHYS 227 and Science
and Electricity and Magnetism Laboratory for the Sciences
General elective 3
Semester Credit Hours 14

Fourth Year
Fall
ECON 323 Microeconomic Theory 3
ECON 459 Games and Economic Behavior 3
ECMT 463 Introduction to Econometrics 3
ISEN 320 Operations Research I
or ISEN 340 or Operations Research II
Select one of the following: 3
COMM 203 Public Speaking
COMM 205 Communication for Technical Professions
COMM 243 Argumentation and Debate
General elective 3
Semester Credit Hours 18

Spring
MATH 407-499 (p. 1066) 6
General elective 3 3
Semester Credit Hours 9
Total Semester Credit Hours 120

1 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

2 Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/117. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/117, GEOL 101/GEOL 102, OCNG 251/OCNG 252.

3 Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109; ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148; MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ ASTR 109/PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WESC 101).

4 Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D’s in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47)’s and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Applied Mathematical Sciences - BS, Math Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with a Mathematics emphasis explores the application of analytical problem solving tools to concrete problems in technology and business. Students in the Mathematics emphasis investigate a broad array of techniques in applied and pure mathematics and pursue electives in related fields, such as computer science and statistics, that demonstrate how mathematics models challenges we face every day.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to technological industries or modern financial markets. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including Ph.D. programs in Applied Mathematics or Mathematics. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics or Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

15

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 410</td>
<td>Advanced Calculus II or Principles of Analysis I</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 417 or MATH 437</td>
<td>Numerical Methods or Principles of Numerical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 415 or MATH 433</td>
<td>Modern Algebra I or Applied Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>OCNG 451</td>
<td>Mathematical Modeling of Ocean Climate</td>
<td></td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours

15

Total Semester Credit Hours

120

1 Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/Chem 117. The remaining 4 hours may be selected from: ASTR 111, ATM 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/Chem 117, GEOL 101/GEOL 102, OCNG 251/OCNG 252.
2 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.
3 Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151 - 166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301-303 (p. 1154); WASC 101).
4 Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.
5 Except CSCE 222/ECEN 222, CSCE 285, CSCE 289, CSCE 291.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/ MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D’s in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47)s and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/ department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Applied Mathematical Sciences - BS, Statistics Emphasis

The curriculum in the Bachelor of Science in Applied Mathematical Sciences with a Statistics emphasis explores the application of analytical problem solving tools to concrete problems in the statistical analysis of data. Students in the Statistics emphasis investigate a broad array of techniques in applied and pure mathematics and pursue electives in statistics that demonstrate how mathematics is central to acquiring information from the analysis of data sets.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to technological industries or government. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including Ph.D. programs in Applied Mathematics or Mathematics. A minor in computer science or statistics is well suited to students in this program. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>3</td>
</tr>
<tr>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Science elective 1</td>
<td>4</td>
</tr>
<tr>
<td>General elective 2,3</td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective 1</td>
<td>4</td>
</tr>
<tr>
<td>General elective 2,3</td>
<td>1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202 or ECON 203</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Economics or Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221 Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 300 Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211 Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308 Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212 Principles of Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 409 Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 411 Mathematical Probability or Mathematical Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>
The combined program enables ambitious and academically talented mathematics majors at Texas A&M University to earn both a bachelor's degree and a master's degree within a period of five years after entering Texas A&M. The curriculum in the Bachelor of Science in Applied Mathematical Sciences 5-year program explores the application of analytical problem solving tools to concrete problems in technology and business. Students in this program investigate a broad array of techniques in applied and pure mathematics and pursue electives in related fields, such as computer science and statistics, that demonstrate how mathematics models challenges we face every day.

Among the various advantages of the combined program, upon its completion a student will be in an exceptionally strong position to enter:

- The professional industrial job marketplace;
- A career in secondary education;
- A doctoral program in mathematics, or in a related discipline, at Texas A&M or another university.

Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119; PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFS 101).

Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.

Except CSCE 222/ECEN 222, CSCE 285, CSCE 289, CSCE 291.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D's in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47)s and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.
The related disciplines include computer science, engineering, physics, statistics, genetics, economics, business administration, education, and biology.

Eligibility for entering a doctoral program in one of these disciplines would depend in part on the undergraduate and graduate external options and areas of emphasis that were reflected in a student’s individual degree plan.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202 or ECON 203</td>
<td>Principles of Economics or Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours

16

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 410 or MATH 446</td>
<td>Advanced Calculus II or Principles of Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 417 or MATH 437</td>
<td>Numerical Methods or Principles of Numerical Analysis</td>
<td>4</td>
</tr>
<tr>
<td>MATH 415 or MATH 433</td>
<td>Modern Algebra I or Applied Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours

15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td></td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 412</td>
<td>Theory of Partial Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH 414</td>
<td>Fourier Series and Wavelets</td>
<td></td>
</tr>
<tr>
<td>MATH 442</td>
<td>Mathematical Modeling</td>
<td></td>
</tr>
<tr>
<td>MATH 470</td>
<td>Communications and Cryptography</td>
<td></td>
</tr>
<tr>
<td>MATH 471</td>
<td>Communications and Cryptography II</td>
<td></td>
</tr>
<tr>
<td>Select 6 hours from the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td></td>
</tr>
<tr>
<td>MATH 407-MATH 499 (p. 1154)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 335-STAT 482 (p. 1154)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 210-CSCE 470 (p. 946)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISEN 320 or ISEN 340 (p. 1032)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td></td>
</tr>
<tr>
<td>MATH 407-MATH 499 (p. 1032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select from the following:</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>MATH 603-MATH 628 (p. 1032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 630-MATH 639 (p. 1032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 641-MATH 644 (p. 1032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 647-MATH 684 (p. 1032)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours

12

1. Freshman Science elective
2. General elective
3. University Core Curriculum (p. 25)
General elective 3
Semester Credit Hours 5
Total Semester Credit Hours 14

Fifth Year
Fall
Graduate Degree 6
Semester Credit Hours 36
Total Semester Credit Hours 36

1. Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117. The remaining 4 hours may be selected from: ASTR 111, ATM 201/ATM 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, GEOL 101/GEOL 102, OCNG 251/OCNG 252.

2. MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

3. Select from any 100-499 course not used elsewhere (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFS 101).

4. Of the 18 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 6 from American history, 6 from Government/Political Science.

6. This 6 hours will be applied towards both BS and MS degrees in Mathematics.

7. The overall program hours (156 hours) includes 36 hours for a non-thesis option or 32 hours for a thesis option (up to six of which are MATH 691). Up to six hours of graduate courses may double count. MATH 601 is prohibited for all graduate degree plans. Except for the MS teaching track, no distance class may be used on the degree plan nor may MATH 696 appear. For the MS teaching track, students must take four distance courses: MATH 629, MATH 645, MATH 646 and MATH 696. All five tracks require at least 24 credit hours of mathematics of which at most six may be undergraduate. Depending on the MS track, courses outside of mathematics may be required or optional. For additional information, reference https://www.math.tamu.edu/graduate/masters (https://www.math.tamu.edu/graduate/master/) and select the track of interest.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151 / MATH 171, MATH 152 / MATH 172, MATH 221 / MATH 251 / MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D's in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity course (p. 47)'s and 3 hours of Cultural Discourse (p. 46). A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Mathematics - BA

The curriculum in the Bachelor of Arts in Mathematics affords students to undertake a traditional liberal arts education in mathematics. Students in this program investigate a broad array of techniques in mathematics and pursue electives in related fields that demonstrate how mathematics is fundamental to the world at large. The degree is well suited for students interested in pursuing mathematics and some other area, and a minor field of study is required for this degree.

A student completing this program is prepared to enter the professional work force, or with appropriately chosen electives, to pursue professional degrees in various fields, including education, law, and medicine. Students in this degree can also pursue teaching certification programs. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 or ENGL 103 Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 110 Programming I</td>
<td></td>
</tr>
<tr>
<td>CSCE 111 Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121 Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206 Structured Programming in C</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>
Texas A&M University

Second Year

Fall
MATH 221 Several Variable Calculus 4
MATH 300 Foundations of Mathematics 3
STAT 211 Principles of Statistics I 3
University Core Curriculum (p. 25) 3
University Core Curriculum (p. 25) 3

Spring
MATH 308 Differential Equations 3
MATH 323 Linear Algebra 3
Select one of the following: 3
COMM 203 Public Speaking
COMM 205 Communication for Technical Professions
COMM 243 Argumentation and Debate
University Core Curriculum (p. 25) 3
Minor elective 5

Third Year

Fall
MATH 409 Advanced Calculus I 3
PHYS 206 Newtonian Mechanics for Engineering and 4
& PHYS 226 Science and Physics of Motion Laboratory for the Sciences
Minor elective 5
General elective 4

Spring
Select one of the following: 3
MATH 415 Modern Algebra I
MATH 423 Linear Algebra II
MATH 433 Applied Algebra
MATH elective 6
Minor elective 5
General elective 4

Fourth Year

Fall
University Core Curriculum (p. 25) 3
MATH elective 5
Minor elective 5
General elective 4

Spring
University Core Curriculum (p. 25) 3
MATH elective 5
Minor elective 5
General electives 4

Total Semester Credit Hours 120

1 Of the 21 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 3 from social and behavioral sciences, 6 from American history, 6 from Government/Political Science.

2 Select 4 hours from: ASTR 111, BIOL 111, BIOL 112,
CHEM 119, CHEM 120, CHEM 107/CHM 117,
PHYS 207/PHYS 227. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112,
CHEM 119, CHEM 120, CHEM 107/CHM 117, GEOL 101/GEOL 102,
OCNG 251/OCNG 252, PHYS 207/PHYS 227.

3 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

4 Select from any 100-499 course not used elsewhere, (except
ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119;
BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102 - 148, MATH 151 - 166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365,
MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109,
PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301;
STAT 201, STAT 301, STAT 302, STAT 303; WFSC 101).

5 A 15-18-hour minor field of study should be selected in conference with a departmental advisor.

6 Nine of the 12 hours of math elective courses are to be from any 400- or 600-level MATH, excluding MATH 401 and MATH 601
The last three hours can be from any 400- or 600-level MATH (excluding MATH 401 or MATH 601), STAT 335 - STAT 482 (p. 1154),
CSCE 210 - CSCE 470 (p. 946) (excluding CSCE 222/ECEN 222,
CSCE 285, CSCE 289, CSCE 291), or ISEN 320 - ISEN 430, (p. 1032)
excluding any 485 course in any department without permission of a departmental advisor. Students seeking secondary certification
must take MATH 403, MATH 467, and either MATH 415 or MATH 433.
Students who plan to attend graduate school are encouraged to take MATH 416, MATH 447 and at least one 600-level course.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437, or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172,
MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308,
this course must be immediately retaken and a grade of C or better earned. The department will allow at most two Ds in upper-level (325-499)
courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47), and 3 hours of Cultural Discourse (p. 46). A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.
Mathematics - 5-Year Bachelor of Arts/Master of Science in Mathematics

The combined degree program enables ambitious and academically talented mathematics majors at Texas A&M University to earn both a bachelor’s degree and a master’s degree within a period of five years after entering Texas A&M. The curriculum in the Bachelor of Arts in Mathematics 5-year combined program affords students to undertake a traditional liberal arts education in mathematics. Students in this program investigate a broad array of techniques in mathematics and pursue electives in related fields that demonstrate how mathematics is fundamental to the world at large. The degree is well suited for students interested in pursuing mathematics and some other area, and a minor field of study is required for this degree.

Among the various advantages of the program, upon its completion a student will be in an exceptionally strong position to enter:

- The professional industrial job marketplace;
- A career in secondary education;
- A doctoral program in mathematics, or in a related discipline, at Texas A&M or another university.

The related disciplines include computer science, engineering, physics, statistics, genetics, economics, business administration, education, and biology.

Eligibility for entering a doctoral program in one of these disciplines would depend in part on the undergraduate and graduate external options and areas of emphasis that were reflected in a student’s individual degree plan.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

ENGL 104 or ENGL 103 Composition and Rhetoric or Introduction to Rhetoric and Composition 3

MATH 171 Calculus I 4
University Core Curriculum (p. 25) 3
Freshman Science elective 2 4
General elective 3,4 1

Spring

MATH 172 Calculus II 4
Select one from the following: 4
- CSCE 110 Programming I
- CSCE 111 Introduction to Computer Science Concepts and Programming
- CSCE 121 Introduction to Program Design and Concepts
- CSCE 206 Structured Programming in C
University Core Curriculum (p. 25) 3
Freshman Science elective 2 4

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

MATH 221 Several Variable Calculus 4
MATH 300 Foundations of Mathematics 3
STAT 211 Principles of Statistics I 3
University Core Curriculum (p. 25) 3
University Core Curriculum (p. 25) 3

Spring

MATH 308 Differential Equations 3
MATH 323 Linear Algebra 3
Select one from the following: 3
- COMM 203 Public Speaking
- COMM 205 Communication for Technical Professions
- COMM 243 Argumentation and Debate
University Core Curriculum (p. 25) 3
Minor elective 5 3

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

MATH 409 Advanced Calculus I 3
PHYS 206 & PHYS 226 Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences 4
Select one from the following: 3
- CSCE 210-CSCE 470 (p. 1032) 6
- ISEN 320-ISEN 430 (p. 1032)
- MATH 403-MATH 499 (p. 1032)
- STAT 335-STAT 482 (p. 1032)
Minor electives 5 6
General elective 4 3

Spring

Select one from the following: 3
- MATH 415 Modern Algebra I
- MATH 423 Linear Algebra II
- MATH 433 Applied Algebra
Select one from the following: 3
- CSCE 210-CSCE 470 (p. 1032) 6
- ISEN 320-ISEN 430 (p. 1032)
- MATH 403-MATH 499 (p. 1032)
- STAT 335-STAT 482 (p. 1032)
Minor electives 5 6
General elective 4 3

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

Select 6 hours from the following: 7 6
- MATH 603-MATH 628 (p. 1032)
- MATH 630-MATH 639 (p. 1032)
- MATH 641-MATH 644 (p. 1032)
- MATH 647-MATH 684 (p. 1032)
University Core Curriculum (p. 25) 3
Minor elective 5 3
Graduate Degree

Fall

Spring

Select one from the following:

- MATH 325 The Mathematics of Interest
- MATH 403-MATH 499 (p. 1032)
- University Core Curriculum (p. 25)
- Minor elective
- General elective
- General elective

Semester Credit Hours

15

Semester Credit Hours

15

Total Semester Credit Hours

36

Total Semester Credit Hours

36

1 Of the 21 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 3 from social and behavioral sciences, 6 from American history, 6 from Government/Political Science.

2 Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, PHYS 207/PHYS 227. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, GEOL 101/GEOL 102, OCNG 251/OCNG 252, PHYS 207/PHYS 227.

3 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

4 Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFSC 101).

5 A 15-18 hour minor field of study should be chosen in conference with a departmental advisor.

6 Except CSCE 222/ECEN 222, CSCE 285, CSCE 289, CSCE 291.

7 This 6 hours will be applied towards both BA and MS degrees in Mathematics.

8 The overall program hours (156 hours) includes 36 hours for a non-thesis option or 32 hours for a thesis option (up to six of which are MATH 691). Up to six hours of graduate courses may double count. MATH 601 is prohibited for all graduate degree plans. Except for the MS teaching track, no distance class may be used on the degree plan nor may MATH 696 appear. For the MS teaching track, students must take four distance courses: MATH 629, MATH 645, MATH 646 and MATH 696. All five tracks require at least 24 credit hours of mathematics of which at most six may be undergraduate. Depending on the MS track, courses outside of mathematics may be required or optional. For additional information, reference https://www.math.tamu.edu/graduate/masters/ and select the track of interest.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two Ds in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Mathematics - BS

The curriculum in the Bachelor of Science in Mathematics explores mathematical problems and their interplay with science and engineering. Students in this program investigate a broad array of techniques in pure mathematics and pursue electives in science and related fields that demonstrate the crucial underpinnings of mathematics in our understanding of information, science, and technology.

A student completing this program is prepared to enter employment with analytical and quantitative tools relevant to technological industries or modern financial markets. Furthermore, with the appropriate electives chosen, the student is prepared to enter quantitatively oriented graduate schools, including Ph.D. programs in Mathematics. All advising for this degree option is done through the Undergraduate Program Office in the Department of Mathematics.
Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 103</td>
<td>or Introduction to Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3,4</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td>4</td>
</tr>
<tr>
<td>CSCE 111</td>
<td>Introduction to Computer Science Concepts and Programming</td>
<td></td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Introduction to Program Design and Concepts</td>
<td></td>
</tr>
<tr>
<td>CSCE 206</td>
<td>Structured Programming in C</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Science elective</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General elective</td>
<td>3,4</td>
<td>1</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Science elective</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 415</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td></td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 410</td>
<td>Advanced Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 446</td>
<td>or Principles of Analysis I</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 416</td>
<td>Modern Algebra II</td>
<td></td>
</tr>
<tr>
<td>MATH 423</td>
<td>Linear Algebra II</td>
<td></td>
</tr>
<tr>
<td>MATH 472</td>
<td>Elliptic Curve Cryptography</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCGN 451</td>
<td>Mathematical Modeling of Ocean Climate</td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 411</td>
<td>Mathematical Probability</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 414</td>
<td>or Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>MATH elective</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Science elective</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH elective</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>General elective</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1. Of the 21 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 3 from social and behavioral sciences, 6 from American history, 6 from Government/Political Science.
2. Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, GEOL 101/GEOL 102, OCGN 251/OCGN 252.
3. MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.
4. Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151 - 166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376, PHYS101-125,PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301-303 (p. 1154), WFSC 101).
Six (6) hours must be selected from BICH 401-489 (p. 916); BIOL 200-470 (p. 919); CHEM 222-474 (p. 929); CSCE 206, CSCE 221, CSCE 411, CSCE 421/STAT 421; GENE 301-452 (p. 999); OCNG 251-252, 404-420 (p. 1104); PHYS 221, 302-305, 307-314, 324-428 (p. 1115); STAT 211, STAT 212, STAT 335/CSCE 320, STAT 408. Four (4) hours must be selected from ASTR 111; BICH 401-489 (p. 916); BIOL 111, BIOL 112, BIOL 200-470, 318-438 (p. 919); CHEM 119, CHEM 120, CHEM 222-474 (p. 929); CSCE 110, CSCE 111, CSCE 121, CSCE 206, CSCE 221; GENE 301-452 (p. 999); OCNG 251, OCNG 252, OCNG 404-420 (p. 1104); PHYS 221, 302-305, 307-314, 324-428 (p. 1115).

Twelve hours must be selected from MATH 407-499 (p. 1066) or any 600-level MATH (excluding MATH 601). Students are required to take at least one of the following: MATH 427, MATH 431, MATH 436, MATH 439. Students are encouraged to take MATH 412, MATH 414, MATH 442, or MATH 470. Students who plan to attend graduate school are encouraged to take MATH 447 and at least one 600-level course. Departmental permission is required to take MATH 485 or MATH 491, or to enroll in a 600-level MATH course.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 323 or MATH 308, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D’s in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned. Students desiring teacher certification should consult the requirements for certification before registering for electives.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

Mathematics - 5-Year Bachelor of Science/Master of Science in Mathematics

The combined degree program enables ambitious and academically talented mathematics majors at Texas A&M University to earn both a bachelor’s degree and a master’s degree within a period of five years after entering Texas A&M. The curriculum in the Bachelor of Science in Mathematics 5-year combined program explores mathematical problems and their interplay with science and engineering. Students in this program investigate a broad array of techniques in pure mathematics and pursue electives in science and related fields that demonstrate the crucial underpinnings of mathematics in our understanding of information, science, and technology.

Among the various advantages of the program, upon its completion a student will be in an exceptionally strong position to enter:

- The professional industrial job marketplace;
- A career in secondary education;
- A doctoral program in mathematics, or in a related discipline, at Texas A&M or another university.

The related disciplines include computer science, engineering, physics, statistics, genetics, economics, business administration, education, and biology.

Eligibility for entering a doctoral program in one of these disciplines would depend in part on the undergraduate and graduate external options and areas of emphasis that were reflected in a student’s individual degree plan.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ENGL 104 or ENGL 103</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
</tr>
<tr>
<td></td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>4</td>
<td>Freshman Science elective</td>
</tr>
<tr>
<td>1</td>
<td>General elective</td>
</tr>
<tr>
<td>15</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MATH 221</td>
</tr>
<tr>
<td>3</td>
<td>MATH 300</td>
</tr>
<tr>
<td>3</td>
<td>University Core Curriculum (p. 25)</td>
</tr>
<tr>
<td>4</td>
<td>Science elective</td>
</tr>
<tr>
<td>14</td>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
PHYS 206 & PHYS 226
Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences
4

University Core Curriculum (p. 25)
3

University Core Curriculum (p. 25)
3

Semester Credit Hours
16

Third Year

Fall

MATH 409
Advanced Calculus I
3

MATH 415
Modern Algebra I
3

Select one from:

COMM 203
Public Speaking
3

COMM 205
Communication for Technical Professions
3

COMM 243
Argumentation and Debate
3

University Core Curriculum (p. 25)
3

Science elective
3

Semester Credit Hours
15

Spring

MATH 410
Advanced Calculus II or MATH 446
or Principles of Analysis I
3

PHYS 207 & PHYS 227
Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences
4

Select from one of the following:

MATH 416
Modern Algebra II
3

MATH 423
Linear Algebra II
3

MATH 472
Elliptic Curve Cryptography
3

University Core Curriculum (p. 25)
3

Semester Credit Hours
13

Fourth Year

Fall

MATH 411 or STAT 414
Mathematical Probability or Mathematical Statistics I
3

Select one from the following:

MATH 427
Introduction to Number Theory
3

MATH 431
Structures and Methods of Combinatorics
3

MATH 436
Introduction to Topology
3

MATH 439
Differential Geometry of Curves and Surfaces
3

Science elective
3

General elective
3

General elective
4

Semester Credit Hours
16

Spring

Select one from the following:

MATH 325
The Mathematics of Interest
3

MATH 407-MATH 499 (p. 1032)

Select from the following:
6

MATH 603-MATH 628 (p. 1032)

MATH 630-MATH 639 (p. 1032)

MATH 641-MATH 644 (p. 1032)

Mathematics - 5-Year Bachelor of Science/Master of Science in Mathematics

MATH 647-MATH 684 (p. 1032)

Semester Credit Hours
6

Total Semester Credit Hours
120

Fifth Year

Fall

Graduate Degree
36

Semester Credit Hours
36

Total Semester Credit Hours
36

1 Of the 21 hours shown as University Core Curriculum (p. 25), 3 must be from language, philosophy and culture, 3 from creative arts, 3 from social and behavioral sciences, 6 from American history, 6 from Government/Political Science.

2 Select 4 hours from: ASTR 111, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117. The remaining 4 hours may be selected from: ASTR 111, ATMO 201/ATMO 202, BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 107/CHEM 117, GEOL 101/GEOL 102, OCNG 251/OCNG 252.

3 MATH 170 is highly recommended for math majors co-enrolled in MATH 150, MATH 151, MATH 152, MATH 171 or MATH 172.

4 Six (6) hours must be selected from BICH 401-489 (p. 916); BIOL 200-470 (p. 919); CHEM 222-474 (p. 929); CSCE 206, CSCE 221, CSCE 411, CSCE 421/STAT 421; GENE 301-452 (p. 999); OCNG 251-252, 401-420 (p. 1104); PHYS 221, 302-305, 307-314, 324-428 (p. 1115); STAT 211, STAT 212, STAT 335/CSCE 320, STAT 408. Four (4) hours must be selected from ASTR 111; BICH 401-489 (p. 916); BIOL 111, 112, 200-470, 318-438 (p. 919); CHEM 119, 120, 222-474 (p. 929); CSCE 110, CSCE 111, CSCE 121, CSCE 206, CSCE 221; GENE 301-452 (p. 999); OCNG 251-252, 401-420 (p. 1104); PHYS 221, 302-305, 307-314, 324-428 (p. 1115).

5 Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (http://catalog.tamu.edu/undergraduate/course-descriptions/math/), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376, PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (http://catalog.tamu.edu/undergraduate/course-descriptions/stat/); WFSC 101).

6 This 6 hours will be used towards both the BS and MS degrees in Mathematics.
Program Requirements

Non-math majors can obtain a minor in mathematics by meeting the following requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus 1</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III 1</td>
<td></td>
</tr>
<tr>
<td>MATH 253</td>
<td>Engineering Mathematics III 1</td>
<td></td>
</tr>
<tr>
<td>MATH 300-499 (p. 1066) 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MATH 400-499 (p. 1066) 2, 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 16

1 Only one of MATH 221, MATH 251, or MATH 253 can be taken to satisfy the minor, due to the course content.
2 Only one of MATH 304, MATH 309, MATH 311 or MATH 323 can be taken to satisfy the minor, due to the course content.
3 All 300-400 level MATH courses MUST be taken at Texas A&M University. No transfer work will be accepted.

Students must make a grade of C or better in all courses.

MATH 142, MATH 168, MATH 365, MATH 366, MATH 367, MATH 396, MATH 403, MATH 419, and MATH 485 may not be used to satisfy the requirements. MATH 485 will receive approval only under exceptional circumstances.

Department of Physics and Astronomy

Physics seeks to understand the fundamental workings of nature, from the constituents of matter deep within the nuclei of atoms, to the most distant galaxies of our expanding universe, to everyday phenomena of emergent complexity, self-organization and chaos. The resulting basic physical knowledge provides a firm foundation for innovations and is often the driving force of advanced technology. Computers, global positioning systems (GPS), the internet, lasers, magnetic resonance imaging (MRI) and other medical diagnostic tools, and space flight, along with many others, were all made possible by key advances in physics.

Physicists have a curiosity that thrives on the challenge of solving problems. Consistent with this, the physics program at Texas A&M strives to teach analytical thinking and quantitative problem-solving skills. This enables students to work productively in physics, in areas closely related to physics, and in a wide variety of areas outside of physics proper. Physicists can be found in almost any discipline that requires complex problem-solving skills. Some engage in cutting-edge research to increase our basic knowledge of the universe. Some apply new-found knowledge to make practical advances in the fields of computer science, medical science and engineering. Still others use their knowledge to advocate, advise, inform, instruct and administrate as lawyers, consultants, journalists/writers, teachers and managers.

Mathematics - Minor

The Minor in Mathematics program enables non-mathematics majors to complete a course of study that highlights fundamental techniques and applications of mathematics. The mathematics minor begins with Calculus II (MATH 148, MATH 152, or MATH 172) and involves middle-level and upper-level coursework in mathematics, aimed at a broad view of topics.

Students wishing to earn a minor in mathematics do not need to visit the Mathematics Department to do so. They should see their advisor, and inform them of their intention to earn a minor in mathematics, and to have that information entered into COMPASS.

The department also wants to point out to students who are majoring in engineering or one of the sciences that it might not take more than another 18 to 24 hours to obtain a double major in mathematics. If that is of interest to you, contact the Mathematics Undergraduate Program Office.
The Department of Physics and Astronomy offers two undergraduate degree programs, a Bachelor of Arts and a Bachelor of Science, as well as minors in Astrophysics and Physics. The Bachelor of Science degree includes tracks in Astrophysics, Business, and Computational Science in addition to a no-track option. The Department of Physics and Astronomy also offers Master of Science degrees in Astronomy and Physics, and Doctor of Philosophy degrees in Applied Physics, Astronomy and Physics.

The faculty members of the department carry out theoretical and experimental research in the areas of astronomy and astrophysics, atomic, molecular and optical physics, computational physics, cosmology, high-energy and elementary particle physics, condensed matter physics and materials science, nuclear physics, quantum optics, and physics education. During the course of their undergraduate experience at Texas A&M, Physics majors have the opportunity to work with faculty in all of these areas.

Faculty

Abanov, Artem G, Associate Professor
Physics & Astronomy
PHD, Texas A&M University, 1998

Agnolet, Glenn, Professor
Physics & Astronomy
PHD, Cornell University, 1983

Akimov, Alexey, Assistant Professor
Physics & Astronomy
PHD, Moscow Institute of Technology, 2003

Allen, Roland E, Professor
Physics & Astronomy
PHD, University of Texas at Austin, 1969

Bassichis, William H, Professor
Physics & Astronomy
PHD, Case Western Reserve University, 1963

Becker, Katrin, Professor
Physics & Astronomy
PHD, University of Bonn, 1994

Becker, Melanie, Professor
Physics & Astronomy
PHD, University of Bonn, Germany, 1994

Belyanin, Alexey A, Professor
Physics & Astronomy
PHD, Institute of Applied Physics Russian Academy of Sciences, 1995

Chin, Siu A, Professor
Physics & Astronomy
PHD, Massachusetts Institute of Technology, 1975

Depoy, Darren L, Professor
Physics & Astronomy
PHD, University of Hawaii at Manoa, 1987

Dutta, Bhaskar, Professor
Physics & Astronomy
PHD, Oklahoma State University, 1995

Erukhimova, Tatiana L, Instructional Professor
Physics & Astronomy
PHD, Institute of Applied Physics, Russian Academy of Sciences, 1999

Eusebi, Ricardo, Professor
Physics & Astronomy
PHD, University of Rochester, 2006

Finkelstein, Alexander, Professor
Physics & Astronomy
PHD, Landau Institute for Theoretical Physics, 1972

Ford, Albert L, Professor
Physics & Astronomy
PHD, University of Texas at Austin, 1972

Fries, Rainer J, Professor
Physics & Astronomy
PHD, University of Regensburg, Germany, 2001

Fry, Edward S, Distinguished Professor
Physics & Astronomy
PHD, University of Michigan, 1969

Gagliardi, Carl A, Professor
Physics & Astronomy
PHD, Princeton University, 1982

Holt, Jeremy W, Assistant Professor
Physics & Astronomy
PHD, Stony Brook University, 2008

Kamon, Teruki, Professor
Physics & Astronomy
PHD, University of Tsukuba, 1986

Katzgraber, Helmut G, Professor
Physics & Astronomy
PHD, University of California-Santa Cruz, 2001

Kennicutt, Robert Charles, Professor
Physics & Astronomy
PHD, University of Washington, 1978

Khmelenko, Vladimir, Research Professor
Physics & Astronomy
PHD, Institute of Chemical Physics, 1984

Ko, Che-Ming, University Distinguished Professor
Physics & Astronomy
PHD, State University of New York at Stony Brook, 1973

Kocharovskaya, Olga A, Distinguished Professor
Physics & Astronomy
PHD, Institute of Applied Physics, Russian Academy of Sciences, 1986

Kocharovsky, Vitaly V, Professor
Physics & Astronomy
PHD, Institute of Applied Physics, Russian Academy of Sciences, 1986

Krisiciunas, Kevin L, Instructional Associate Professor
Physics & Astronomy
PHD, University of Washington, 2000
Lee, David M, University Distinguished Professor
Physics & Astronomy
PHD, Yale University, 1959

Lyukysutov, Igor F, Professor
Physics & Astronomy

Macri, Lucas M, Professor
Physics & Astronomy
PHD, Harvard University, 2001

Mahapatra, Rupak K, Professor
Physics & Astronomy
PHD, University of Minnesota, 2000

Marshall, Jennifer L, Assistant Professor
Physics & Astronomy
PHD, Ohio State University, 2006

McIntyre, Peter M, Professor
Physics & Astronomy
PHD, University of Chicago, 1973

Melconian, Daniel G, Professor
Physics & Astronomy
PHD, Simon Fraser University, 2006

Mioduszewski, Saskia, Professor
Physics & Astronomy
PHD, University of Tennessee, 1999

Mirabolfathi, Nader, Research Associate Professor
Physics & Astronomy
PHD, University of Paris XI, 2002

Naugle, Donald G, Professor
Physics & Astronomy
PHD, Texas A&M University, 1965

Nodurft, Dawson, Instructional Assistant Professor
Physics & Astronomy
PHD, Texas A&M University, 2019

Papovich, Casey J, Professor
Physics & Astronomy
PHD, Johns Hopkins University, 2002

Pokrovsky, Valery, Distinguished Professor
Physics & Astronomy
PHD, Tomsk State University, 1957

Pope, Christopher N, Distinguished Professor
Physics & Astronomy
PHD, University of Cambridge, 1980

Rapp, Ralf F, Professor
Physics & Astronomy
PHD, Rheinische Friedrich-Wilhelma University, Bonn, 1996

Rogachev, Grigory V, Professor
Physics & Astronomy
PHD, National Research Centre, 1999

Ross Jr, Joseph H, Professor
Physics & Astronomy
PHD, University of Illinois at Urbana-Champaign, 1986

Safonov, Alexei N, Professor
Physics & Astronomy
PHD, University of Florida, 2001

Saslow, Wayne M, Professor
Physics & Astronomy
PHD, University of California - Irvine, 1968

Schuessler, Hans A, Professor
Physics & Astronomy
PHD, Universitat Heidelberg, 1964

Scully, Marlan O, Distinguished Professor
Physics & Astronomy
PHD, Yale University, 1966

Sezgin, Ergin, Professor
Physics & Astronomy
PHD, State University of New York at Stony Brook, 1980

Sokolov, Alexei V, Professor
Physics & Astronomy
PHD, Stanford University, 2001

Strigari, Louis E, Associate Professor
Physics & Astronomy
PHD, Ohio State University, 2005

Suntzeff, Nicholas B, University Distinguished Professor
Physics & Astronomy
PHD, University of California - Santa Cruz, 1980

Teizer, Winfried, Professor
Physics & Astronomy
PHD, University of Massachusetts - Amherst, 1998

Toback, David, Professor
Physics & Astronomy
PHD, University of Chicago, 1997

Tribble, Robert E, Senior Professor
Physics & Astronomy
PHD, Princeton University, 1973

Walsh, Jonelle L, Assistant Professor
Physics & Astronomy
PHD, University of California, Irvine, 2011

Wang, Lifan, Professor
Physics & Astronomy
PHD, University of Science and Technology of China, 1993

Webb, Robert C, Professor
Physics & Astronomy
PHD, Princeton University, 1972

Weimer, Michael B, Professor
Physics & Astronomy
PHD, California Institute of Technology, 1986
Majors

- Bachelor of Arts in Physics (p. 740)
- Bachelor of Science in Physics (p. 741)
- Bachelor of Science in Physics, Astrophysics Track (p. 742)
- Bachelor of Science in Physics, Business Track (p. 743)
- Bachelor of Science in Physics, Computational Science Track (p. 744)

Minors

- Astrophysics Minor (p. 745)
- Physics Minor (p. 746)

Physics - BA

The Bachelor of Arts curriculum provides the student with a firm foundation in physics and with the flexibility to choose from a large number of elective courses, thus permitting the student to explore other interests. Some of these elective courses are chosen to satisfy the requirements of a minor field of study. The student can, therefore, customize his or her program of study in preparation for a career in any science-related or science-required field, from intellectual property law and science reporting to physics teaching. Although not required for the BA program, students have the opportunity to become directly involved in any of the active research programs in the Department of Physics and Astronomy.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 101</td>
<td>Freshman Physics Orientation</td>
<td>1</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td></td>
</tr>
<tr>
<td>& CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>& PHYS 227</td>
<td>Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Optics and Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 302</td>
<td>Advanced Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 304</td>
<td>Advanced Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 332</td>
<td>Theoretical Methods for Physicists II</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral science (p. 30)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 327</td>
<td>Experimental Physics I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 328</td>
<td>Experimental Physics II</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 412</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 413</td>
<td>Computational Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 401</td>
<td>Computational Physics</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 413</td>
<td>Computational Physics</td>
<td>3</td>
</tr>
</tbody>
</table>
Creative arts (p. 29)
1
General electives
1
Semester Credit Hours 15
Total Semester Credit Hours 120

1 A physics major must complete the foundation courses (PHYS 101, PHYS 206/PHYS 226, PHYS 207/PHYS 227, PHYS 221, PHYS 309, PHYS 331, CHEM 107/CHEM 117, MATH 171, MATH 172, MATH 221, MATH 308) with a grade of C or better and have a 2.0 cumulative GPR before taking non-foundation upper-level physics courses.
2 Any course in this category from the approved University Core Curriculum list of courses.
3 A minor is required and, along with other free electives, should be chosen in consultation with the student’s advisor. Three hours must be in the area of International and Cultural Diversity (p. 47), and three hours must be in the area of Cultural Discourse (p. 46). These may be in addition to other University Core Curriculum courses, or if a course in this category satisfies another area of the Core, it can be used to meet both requirements. Electives may be selected from any 100-499 course not used elsewhere, except ENGL 103, MATH 100-148, MATH 165-166, MATH 365, MATH 366 (p. 1066); PHYS 201, PHYS 202.
4 Any approved Communication course, except THAR 407.
5 PHYS 327 is an approved W course. PHYS 328 is an approved C course.
6 To register for PHYS 401 a student must be able to program in a high level language.
7 Any upper-division course within the College of Science, College of Geosciences or College of Engineering (except 485/491).

Physics - BS
The Bachelor of Science curriculum is more rigorous in its physics and mathematics course requirements than the Bachelor of Arts. Currently it has a no track option and three track options. The BS in Physics (no track) is designed primarily for students who wish to pursue an advanced degree in physics or employment as a professional physicist in an industrial setting. The department also offers tracks in Astrophysics, Business, and Computational Science for those who plan to seek an employment or advanced degrees in these fields. Each track results in the BS in Physics degree and has the same core physics courses and the same total number of hours. Because physics forms the basis of many other sciences such as astronomy, chemistry, material science, oceanography, nano-engineering and geophysics, the BS program is excellent preparation for advanced degrees in these fields. In addition, physicists are increasingly applying their talents to molecular biology, biochemistry and medicine. An important part of the BS program is student participation in experimental or theoretical research guided by faculty.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>CHEM 107 & CHEM 117</td>
<td>General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 221</td>
<td>Optics and Thermal Physics</td>
<td>1</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>PHYS 225</td>
<td>Electronic Circuits and Applications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 331</td>
<td>Theoretical Methods for Physicists</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication (p. 26)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>PHYS 302</td>
<td>Advanced Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 304</td>
<td>Advanced Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 332</td>
<td>Theoretical Methods for Physicists</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creative arts (p. 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social and behavioral science (p. 30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>4</td>
<td>PHYS 408</td>
<td>Thermodynamics and Statistical Mechanics</td>
<td>4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit</th>
<th>Course</th>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>PHYS 303</td>
<td>Advanced Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 305</td>
<td>Advanced Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 327</td>
<td>Experimental Physics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 328</td>
<td>Experimental Physics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYS 412</td>
<td>Quantum Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
</tbody>
</table>
Physics - BS, Astrophysics Track

The BS-PHYS, Astrophysics track will provide you with a solid foundation in basic physics combined with knowledge of fascinating astrophysical objects and phenomena. It will prepare you for graduate studies in Astronomy, Astrophysics, and related fields. You will also learn quantitative problem-solving skills, experimental research skills, and expertise in computer simulations that are highly valued in any field and any industry.

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 117</td>
<td></td>
</tr>
<tr>
<td>Students and General Chemistry for Engineering Students Laboratory</td>
<td></td>
</tr>
<tr>
<td>ENGL 104</td>
<td>3</td>
</tr>
<tr>
<td>or ENGL 103</td>
<td></td>
</tr>
<tr>
<td>Composition and Rhetoric and Composition</td>
<td></td>
</tr>
<tr>
<td>MATH 171</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 101</td>
<td>1</td>
</tr>
<tr>
<td>Freshman Physics Orientation</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 206</td>
<td></td>
</tr>
<tr>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>& PHYS 226</td>
<td></td>
</tr>
<tr>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>2</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 14 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>4</td>
</tr>
<tr>
<td>Several Variable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH 308</td>
<td>3</td>
</tr>
<tr>
<td>Differential Equations</td>
<td></td>
</tr>
<tr>
<td>PHYS 207</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 227</td>
<td></td>
</tr>
<tr>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>PHYS 221</td>
<td>3</td>
</tr>
<tr>
<td>Optics and Thermal Physics</td>
<td></td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 14 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 314</td>
<td>3</td>
</tr>
<tr>
<td>Survey of Astronomy</td>
<td></td>
</tr>
<tr>
<td>PHYS 225</td>
<td>3</td>
</tr>
<tr>
<td>Electronic Circuits and Applications</td>
<td></td>
</tr>
<tr>
<td>PHYS 309</td>
<td>3</td>
</tr>
<tr>
<td>Modern Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 331</td>
<td>3</td>
</tr>
<tr>
<td>Theoretical Methods for Physicists</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 320</td>
<td>3</td>
</tr>
<tr>
<td>Astrophysical Research Methods</td>
<td></td>
</tr>
</tbody>
</table>

A Physics major must complete the foundation courses (PHYS 101, PHYS 206/PHYS 226, PHYS 207/PHYS 227, PHYS 221, PHYS 309, PHYS 331, CHEM 107/CHEM 117, MATH 171, MATH 172, MATH 221, MATH 308) with a grade of C or better and have a 2.0 cumulative GPR before taking non-foundation upper-level Physics courses.

Any course in this category from the approved University Core Curriculum list of courses.

Any approved Communication course, except THAR 407.

PHYS 327 is an approved W course. PHYS 328 is an approved C course.

A combination of PHYS 291, PHYS 491, ASTR 291 and ASTR 491 must equal 4 hours. Students with a U1 or U2 classification should take PHYS 291/ASTR 291. Students with a U3 or U4 classification should take PHYS 491/ASTR 491.

Select from ASTR 314, PHYS 414/PHYS 416, PHYS 489, MATH 460, or any graduate offering in PHYS or ASTR.

To register for PHYS 401 a student must be able to program in a high level language.

Any upper-division course within the College of Science, College of Geosciences or College of Engineering (except 485/491).

Electives should be chosen in consultation with the student's academic advisor. Three hours must be in the area of International and Cultural Diversity, and three hours must be in the area of Cultural Discourse. These may be in addition to other University Core Curriculum courses, or, if a course in this category satisfies another area of the Core, it can be used to meet both requirements.

Electives may be selected from any 100-499 course not used elsewhere, except ENGL 103, MATH 100-148, 165-166, 365-366 (http://catalog.tamu.edu/linkurl:/undergraduate/course-descriptions/math/); PHYS 201, PHYS 202.

A student must be able to program in a high level language.

To register for any industry.
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 302</td>
<td>Advanced Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 304</td>
<td>Advanced Electricity and Magnetism I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 332</td>
<td>Theoretical Methods for Physicists II</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 420</td>
<td>Advanced Astrophysical Research Methods</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 303 or PHYS 305</td>
<td>Advanced Mechanics II or Advanced Electricity and Magnetism II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 327</td>
<td>Experimental Physics I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 328</td>
<td>Experimental Physics II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 412</td>
<td>Quantum Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 291 or ASTR 491</td>
<td>Research or Research</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 401</td>
<td>Stars and Extrasolar Planets</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 408</td>
<td>Thermodynamics and Statistical Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 403</td>
<td>Extragalactic Astronomy and Cosmology</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral science (p. 30)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Science or technical elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 120

1. A Physics major must complete the foundation courses (PHYS 101, PHYS 206/PHYS 226, PHYS 207/PHYS 227, PHYS 221, PHYS 309, PHYS 331, CHEM 107/CHEM 117, MATH 171, MATH 172, MATH 221, MATH 308) with a grade of C or better and have a 2.0 cumulative GPR before taking non-foundation upper-level Physics courses.

2. Any course in this category from the approved University Core Curriculum list of courses.

3. Any approved Communication course, except THAR 407.

4. PHYS 327 is an approved W course. PHYS 328 is an approved C course.

5. A combination of ASTR 291 and ASTR 491 must equal 3 hours. Students with a U1 or U2 classification should take ASTR 291. Students with a U3 or U4 classification should take ASTR 491.

6. Electives should be chosen in consultation with the student’s advisor. Three hours must be in the area of International and Cultural Diversity, and three hours must be in the area of Cultural Discourse. These may be in addition to other University Core Curriculum courses, or, if a course in this category satisfies another area of the Core, it can be used to meet both requirements. Electives may be selected from any 100-499 course not used elsewhere, except ENGL 103; MATH 100-148, 165-166, 365-366 (http://catalog.tamu.edulinkurl:/undergraduate/course-descriptions/math/); PHYS 201, PHYS 202.

7. Any upper-division course within the College of Science, College of Geoscience or College of Engineering (except 485/491).

Physics - BS, Business Track

The BS-PHYS, Business Track will help you develop analytical thinking and quantitative problem-solving skills, while providing you with solid knowledge of business disciplines. These qualities are in increasingly high demand at the job market. If you enjoy studying physics and at the same time aspire to become a future business leader in our technology-dominated world, this track is for you.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 & CHEM 117</td>
<td>General Chemistry for Engineering Students</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104 or ENGL 103</td>
<td>Composition and Rhetoric or Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>Freshman Physics Orientation</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Optics and Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>
Physics - BS, Computational Science Track

Physics and other sciences increasingly rely on advanced computer simulations and data analysis to develop realistic mathematical models of complex phenomena or process huge amounts of data coming from particle accelerators and astronomical surveys. The BS-PHYS, Computational Science track will provide you with the skills to pursue advanced studies in this area or directly enter the workforce in virtually any industry, as the demand for experts with advanced computer skills will only grow with time.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>PHYS 101, MATH 171, CHEM 107, ENGL 104, POLS 206</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>First Year English Discourse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Elective 6: ECON 101, MATH 172, or any approved Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>course, except THAR 407.</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 221, CHEM 108, ENGL 107, POLS 207, & ENGL 107</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>First Year English Discourse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Elective 7: ENGL 108, MATH 173, or any approved Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>course, except THAR 407.</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 301, ENGL 118, POLS 208, & ENGL 117</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>First Year English Discourse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Elective 6: ECON 102, MATH 271, or any approved Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>course, except THAR 407.</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MATH 401, ENGL 120, POLS 210, & ENGL 121</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>First Year English Discourse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Elective 7: ENGL 119, MATH 272, or any approved Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>course, except THAR 407.</td>
<td></td>
</tr>
</tbody>
</table>

1. A physics major must complete the foundation courses (PHYS 101, PHYS 102, PHYS 206/PHYS 226, PHYS 207/PHYS 227, PHYS 221, PHYS 309, PHYS 331, CHEM 107/CHEM 117, MATH 171, MATH 172, MATH 221, MATH 308) with a grade of C or better and have a 2.0 cumulative GPR before taking non-foundation upper-level physics courses.

2. Any course in this category from the approved University Core Curriculum list of courses.

3. PHYS 327 is an approved W course. PHYS 328 is an approved C course.

4. Any approved Communication course, except THAR 407.
A physics major must complete the foundation courses (PHYS 101, PHYS 102, PHYS 206/PHYS 226, PHYS 207/PHYS 227, PHYS 221, PHYS 309, PHYS 331, CHEM 107/CHEM 117, MATH 171, MATH 172, MATH 221, MATH 308) with a grade of C or better and have a 2.0 cumulative GPR before taking non-foundation upper-level physics courses.

Any course in this category from the approved University Core Curriculum list of courses.

Any approved Communication course, except THAR 407.

PHYS 327 is an approved W course. PHYS 328 is an approved C course.

Electives should be chosen in consultation with the student's advisor. Three hours must be in the area of International and Cultural Diversity, and three hours must be in the area of Cultural Discourse. These may be in addition to other University Core Curriculum courses, or, if a course in this category satisfies another area of the Core, it can be used to meet both requirements. Electives may be selected from any 100-499 course not used elsewhere, except ENGL 103; MATH 100-148, 165-166, 365-366 (http://catalog.tamu.edulinkurl:/undergraduate/course-descriptions/math/); PHYS 201, PHYS 202.

To register for PHYS 401 a student must be able to program in a high level language.

Any upper-division course within the College of Science, College of Geosciences or College of Engineering (except 485/491).

Astrophysics - Minor

Astrophysics encompasses physical law at the largest scales; from planets in the Solar System and planets around other stars to the evolution of galaxies and the stars that populate them, massive black holes in the center of galaxies, and the origin, growth, and ultimate fate of the Universe. Astrophysics unifies discoveries from many sciences including physics, chemistry, and biology using techniques in statistics, data mining, and applied mathematics.

The minor in Astrophysics helps to prepare students for entry into the competitive science, technology, engineering, and mathematics (STEM) workplace. Students develop technical skills and problem-solving experiences that expand the tools used in the modern, high-technology world. The minor is intended for anyone interested in the mathematical basis of astronomy and is especially relevant for engineering and physics students who will need a basic understanding of the physics of the Universe in their future careers. It is also suitable for students who intend to pursue careers in areas that may benefit from a technical knowledge of astronomy such as science writing, scientific journalism, or science teaching in schools.

Please view the Program Requirements tab above for more information.

To declare a minor in Astrophysics, please contact an advisor in the Department of Physics and Astronomy.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 314</td>
<td>Survey of Astronomy ^2</td>
<td>3</td>
</tr>
<tr>
<td>ASTR 320</td>
<td>Astrophysical Research Methods</td>
<td>3</td>
</tr>
</tbody>
</table>
Physics - Minor

A minor in Physics is designed for those who have a strong interest in Physics, but don’t want to make it a profession. It includes a set of classes that will give you a firm foundation in Physics and the ability to pursue a more in-depth study in one of the Physics areas of your choice. The minor in Physics will develop analytical thinking and quantitative problem-solving skills that you can apply in any field. It will also give you the basic knowledge to make informed decisions, advise, instruct, or administrate in our modern science- and technology-dominated world.

To declare a Physics minor, please contact an academic advisor in the Department of Physics and Astronomy.

Program Requirements

Students who wish to complete a minor in physics must satisfy the following requirements:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences ¹</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227</td>
<td>Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences ¹</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 221</td>
<td>Optics and Thermal Physics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 309</td>
<td>Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>300–400 level physics elective (p. 1115) ²</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

¹ All Engineering majors will take ENGR 216/PHYS 216 and ENGR 217/PHYS 217 in place of PHYS 226 and PHYS 227.

² Select from PHYS 300-499 (p. 1115) (except PHYS 485 or PHYS 491), or ASTR 314, in consultation with an advisor in the Department of Physics and Astronomy.

Students must make a grade of C or better in all courses.

Department of Statistics

The science of statistics deals with the collection and summarization of data, design of experiments and surveys, measurement of the magnitude of variation in both experimental and survey data, estimation of population parameters with measures of their accuracy and precision, tests of hypotheses about populations and studies of the relationships between two or more variables. While the ideal of science is to achieve a systematic interrelationship of facts, scientific methods must be a pursuit of this ideal by experimentation, observation and logical arguments from various accepted postulates. Thus, the science of statistics is a set of scientific principles and methodologies that are useful in reaching conclusions about populations and processes when the available information is both limited and variable. Hence, statistical principles are useful in all the sciences, both physical and social. Many practical applications of statistics are found in a wide variety of fields, including biology, education, social sciences, engineering, business, government and agriculture.

The Department of Statistics offers training in statistics leading to degrees of Bachelor of Science, Master of Science and Doctor of Philosophy.

Faculty

Akleman, Derya G, Instructional Associate Professor Statistics
PHD, Texas A&M University, 1996

Bhattacharya, Anirban, Associate Professor Statistics
PHD, Duke University, 2012

Carroll, Raymond J, Distinguished Professor Statistics
PHD, Purdue University, 1974

Chakrabortty, Abhishek, Assistant Professor Statistics
PHD, Harvard Graduate School of Arts and Sciences, 2016

Chen, Willa W, Professor Statistics
PHD, New York University, 2000

Cline, Daren B, Professor Statistics
PHD, Colorado State University, 1983

Cummings, Shelby M, Lecturer Statistics
MPH, Texas A&M University, 2017

Dabney, Alan R, Associate Professor Statistics
PHD, University of Washington, 2006
Garcia, Tanya, Associate Professor
Statistics
PHD, Texas A&M University, 2011

Gaynanova, Irina, Assistant Professor
Statistics
PHD, Cornell University, 2015

Hart, Jeffrey D, Professor
Statistics
PHD, Southern Methodist University, 1981

Hatfield, Lloyd K, Senior Lecturer
Statistics
MBA, University of North Texas, 1980

Hernandez Magallanes, Irma Del Consue, Instructional Assistant Professor
Statistics
PHD, University California Berkley, 2010

Huang, Jianhua, Professor
Statistics
PHD, University of California, Berkeley, 1997

Johnson, Valen E, University Distinguished Professor
Statistics
PHD, University Of Chicago, 1989

Jones, David Edward, Assistant Professor
Statistics
PHD, Harvard, 2016

Jun, Mikiyoung, Professor
Statistics
PHD, University of Chicago, 2005

Karmakar, Moumita, Instructional Assistant Professor
Statistics
PHD, University of Maryland at Baltimore, 2015

Katzfuss, Matthias S, Associate Professor
Statistics
PHD, The Ohio State University, 2011

Kincheloe, Faron, Visiting Professor
Statistics
MS, Baylor University, 2011

Kolodziej, Elizabeth Y, Instructional Assistant Professor
Statistics
PHD, Texas A&M University, 2010

Liang, Hwa Chi, Instructional Assistant Professor
Statistics
PHD, University of New Mexico, 2003

Liu, Shuling, Instructional Assistant Professor
Statistics
PHD, Emory University, 2015

Longnecker, Michael T, Professor
Statistics
PHD, Florida State University, 1976

Ma, Jing, Assistant Professor
Statistics
PHD, University of Michigan, 2015

Mallick, Bani K, University Distinguished Professor
Statistics
PHD, University of Connecticut, 1994

Newton, Howard J, Senior Professor
Statistics
PHD, SUNY Buffalo, 1975

Ni, Yang, Assistant Professor
Statistics
PHD, Rice University, 2015

Pati, Debdeep, Associate Professor
Statistics
PHD, Duke University, 2012

Pourahmadi, Mohsen, Professor
Statistics
PHD, Michigan State University, 1980

Rahman, Shahina, Instructional Assistant Professor
Statistics
PHD, Texas A&M University, 2015

Sang, Huiyan, Professor
Statistics
PHD, Duke University, 2008

Schmiediche, Henrik, Instructional Professor
Statistics
PHD, Texas A&M University, 1993

Sinha, Samiran, Professor
Statistics
PHD, University of Florida, 2004

Spiegelman, Clifford H, Distinguished Professor
Statistics
PHD, Northwestern University, 1976

Subbarao, Suhasini T, Professor
Statistics
PHD, University of Bristol, 2001

Vidakovic, Branislav, Professor
Statistics
PHD, Purdue University, 1992

Wang, Suojin, Professor
Statistics
PHD, University of Texas at Austin, 1988

Wang, Tiandong, Assistant Professor
Statistics
PHD, Cornell University, 2019

Wehrly, Thomas E, Senior Professor
Statistics
PHD, University of Wisconsin - Madison, 1976
Statistics - BS

Wong, Ka Wai, Associate Professor
Statistics
PHD, University California, Davis, 2014

Zhang, Xianyang, Associate Professor
Statistics
PHD, University of Illinois at Urbana - Champaign, 2013

Zhou, Lan, Associate Professor
Statistics
PHD, University of California, Berkeley, 1997

Zhou, Quan, Assistant Professor
Statistics
PHD, Baylor College of Medicine, 2017

Majors
• Bachelor of Science in Statistics (p. 748)
• Bachelor of Science in Statistics and Master of Science in Statistics, 5-Year Degree Program (p. 749)

Minors
• Statistics Minor (p. 750)

Statistics - BS

Statistics is the science of collecting and analyzing data for the purpose of making decisions in the presence of uncertainty. Data are ubiquitous in the modern day and age, and statisticians are in high demand. Multidisciplinary application areas vary widely and include health and medicine, business, engineering, physical sciences, environmental studies, and government. The curriculum in statistics provides instruction in all necessary areas, including a foundation in mathematics and probability, strategies for designing studies and collecting data, the visualization and analysis of data using popular software such as R, SAS and Python, and the process of using sample data to draw conclusions about a population. Depending on the electives selected, a student completing this program will be prepared to enter employment as a statistical analyst or to continue to graduate school in statistics or a related field.

Program Requirements

The following is a suggested schedule that includes the required courses for the BS in Statistics. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>STAT 182</td>
<td>Foundations of Statistics</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Science elective 1</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Computer science elective 2</td>
<td>4</td>
</tr>
<tr>
<td>Science elective 1</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
</tr>
<tr>
<td>Communication requirement</td>
<td>3</td>
</tr>
<tr>
<td>Science elective 1</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 304 or MATH 323</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
</tr>
<tr>
<td>Computer science elective 2</td>
<td>4</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 404</td>
<td>Statistical Computing</td>
</tr>
<tr>
<td>STAT 414</td>
<td>Mathematical Statistics I</td>
</tr>
<tr>
<td>Mathematics elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 408</td>
<td>Introduction to Linear Models</td>
</tr>
<tr>
<td>STAT 415</td>
<td>Mathematical Statistics II</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>6</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 406</td>
<td>Design and Analysis of Experiments</td>
</tr>
<tr>
<td>Mathematics or Statistics elective 5,7</td>
<td>3</td>
</tr>
<tr>
<td>Statistics elective 7</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 482</td>
<td>Statistics Capstone</td>
</tr>
<tr>
<td>Statistics elective 7</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>4</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>13</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 120
Two lower-level science courses are to be selected from ASTR 111; BIOL 111; BIOL 112; CHEM 119; CHEM 120; PHYS 206/PHYS 226; PHYS 207/PHYS 227. A third science course (p. 26) is to be selected from any course satisfying the life and physical sciences requirement for the University Core Curriculum.

Select 8 hours from CSCE 110, CSCE 111, CSCE 121, or CSCE 206.

Select 3 hours from COMM 203, COMM 205, or COMM 243, which fulfills the communication (p. 26) requirement for the University Core Curriculum (p. 25).

Three elective hours must be chosen from the approved University Core Curriculum list for language, philosophy and culture (p. 27), three elective hours must be chosen from the approved University Core Curriculum list for creative arts (p. 29), and three elective hours must be chosen from the approved University Core Curriculum list for social and behavior sciences (p. 30). In addition, 3 hours must be in the area of cultural discourse (p. 46), and 3 hours of courses must be in the area of international and cultural diversity (p. 47). These may be in addition to University Core Curriculum courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements.

Students must take at least one course from the following courses: MATH 300, MATH 302, MATH 308, MATH 409, MATH 410, MATH 417 or MATH 437, MATH 442, MATH 446, MATH 447, MATH 469, MATH 470, ISEN 320, ISEN 340, ISEN 355. The student must take a total of at least 12 hours of mathematics and statistics elective courses.

Students must take 12 hours in an outside specialization area upon approval by a departmental advisor. At least 6 hours must be upper level hours.

Students must take at least two courses from the following courses: STAT 407, STAT 436, STAT 438, STAT 445, STAT 446, STAT 459, STAT 485, STAT 489, STAT 491, ISEN 350. The student must take a total of at least 12 hours of mathematics and statistics elective courses.

If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 304/MATH 323, STAT 211, or STAT 212, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D’s in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Statistics - 5-Year Bachelor of Science/Master of Science in Statistics

Well-trained statisticians are in high demand in various application areas including health and medicine, business, engineering, physical sciences, environmental studies, and government. The combined degree program enables ambitious and academically talented statistics majors at Texas A&M University to earn both a bachelor’s degree and a master’s degree within a period of five years after entering Texas A&M as a freshman. Depending on the electives selected, a student completing the combined program will be prepared to enter:

- Employment as a statistical analyst or as a data scientist;
- The professional job marketplace for quantitatively trained professionals;
- A career in secondary education;
- A doctoral program in statistics, biostatistics, or in a related discipline, at Texas A&M or another university.

Program Requirements

The Fast Track program enables a Statistics major to earn both a bachelor’s degree (120 undergraduate credit hours including 6 dual credit graduate hours) and a master’s degree (36 credit hours including the 6 dual credit graduate hours) in Statistics within a period of five years after entering Texas A&M. Students can complete the required credit hours for each degree without diminishing scope or quality of work. The scheduling of the graduate level courses is flexible since many of the MS electives are offered during the summer. A student completing this program will be prepared for employment as a senior statistical analyst or to continue to a Ph.D. program in statistics or a related field.

Students interested in this program will apply during the fall of their junior year and, if admitted, begin taking masters-level courses in the fall of their senior year with an undergraduate classification. Students are reclassified as degree seeking master’s students after completing 96 credit hours, typically in the following semester. These credit hours must include all specific course prerequisites for a baccalaureate degree in Statistics, as well as the courses required by the College of Science and by Texas A&M University for an undergraduate degree.

The following is a suggested schedule that includes the required courses for the combined BS/MS in Statistics. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>STAT 182</td>
<td>Foundations of Statistics</td>
<td>1</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Computer science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Science elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 221</td>
<td>Several Variable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>Communication requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Science elective

Semester Credit Hours 3

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 304 or MATH 323</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212</td>
<td>3</td>
</tr>
<tr>
<td>Computer science elective 2</td>
<td>4</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 16

Third Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 404</td>
<td>3</td>
</tr>
<tr>
<td>STAT 414</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 408</td>
<td>3</td>
</tr>
<tr>
<td>STAT 415</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>6</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 406</td>
<td>3</td>
</tr>
<tr>
<td>STAT 641</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics or Statistics elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester Credit Hours 15

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 482</td>
<td>3</td>
</tr>
<tr>
<td>STAT 642</td>
<td>3</td>
</tr>
<tr>
<td>Outside specialization elective 6</td>
<td>3</td>
</tr>
<tr>
<td>Elective hours 4</td>
<td>4</td>
</tr>
</tbody>
</table>

Semester Credit Hours 13

Fifth Year

Fall

Graduate coursework 8 18

Semester Credit Hours 18

Spring

Graduate coursework 8 18

Semester Credit Hours 18

Total Semester Credit Hours 156

1. Two lower-level science courses are to be selected from ASTR 111; BIOL 111; BIOL 112; CHEM 119; CHEM 120; PHYS 207/PHYS 227; PHYS 206/PHYS 226. A third science course (p. 26) is to be selected from any course satisfying the life and physical sciences requirement for the University Core Curriculum.

2. Select 8 hours from CSCE 110, CSCE 111, CSCE 121, or CSCE 206.

3. Select 3 hours from COMM 203, COMM 205, or COMM 243, which fulfills the communication (p. 26) requirement for the University Core Curriculum (p. 25).

4. Three elective hours must be chosen from the approved University Core Curriculum list for language, philosophy and culture (p. 27), three elective hours must be chosen from the approved University Core Curriculum list for creative arts (p. 29), and three elective hours must be chosen from the approved University Core Curriculum list for social and behavior sciences (p. 30). In addition, 3 hours must be in the area of cultural discourse (CD) and 3 hours of courses must be in the area of international and cultural diversity (p. 47) (ICD). These may be in addition to University Core Curriculum courses, or if a course in this category satisfies an area of the Core, it can be used to meet both requirements.

5. The student must take a total of at least 6 hours of mathematics and statistics elective courses. Students must take at least one course from the following list of mathematics courses: MATH 300, MATH 302, MATH 308, MATH 409, MATH 410, MATH 417 or MATH 437, MATH 442, MATH 446, MATH 447, MATH 469, ISEN 320, ISEN 350, ISEN 355. The second elective course can be selected from the previously listed mathematics courses or from the remaining approved University Core Curriculum courses.

6. Students must take 12 hours in an outside specialization area upon approval by a departmental advisor. At least 6 hours must be upper level hours.

7. Students must take STAT 641 and STAT 642. These 6 hours will be used towards both the BS and MS degree in Statistics.

8. The overall program hours (156 hours) includes 36 hours for a non-thesis option or 32 hours for a thesis option (up to six of which are STAT 691). STAT 641 and STAT 642 may double count toward both degrees. The remaining graduate hours must be taken from 600 level STAT courses not including STAT 601, STAT 651, STAT 652, or STAT 658. Students are required to take one semester hour of STAT 681 and two semester hours of STAT 684. For additional information concerning this and other requirements of the master’s program including the Master's diagnostic examination, refer to https://www.stat.tamu.edu/ms-statistics/ (https://www.stat.tamu.edu/ms-statistics/).

Students will not be permitted to receive credit for both the 400- and 600-level versions of certain courses because the content and learning outcomes are too similar (e.g. STAT 404/STAT 604, STAT 408/STAT 608, STAT 407/STAT 607, STAT 626, STAT 436/STAT 636, STAT 438/STAT 638, STAT 445/STAT 645, STAT 446/STAT 646, STAT 459/STAT 659).

*If a grade of D or F is earned in any of the following courses, MATH 151/MATH 171, MATH 152/MATH 172, MATH 221/MATH 251/MATH 253, MATH 300, MATH 304/MATH 323, STAT 211, or STAT 212, this course must be immediately retaken and a grade of C or better earned. The department will allow at most two D's in upper-level (325-499) courses. If a third D is earned, one of the three courses in which a D was earned must be retaken and a grade of C or better earned.

Statistics - Minor

Statistics is the science of collecting and analyzing data for the purpose of making decisions in the presence of uncertainty. Multidisciplinary application areas vary widely and include health and medicine, business,
engineering, physical sciences, environmental studies, and government. The statistics minor provides training in theoretical, applied and computational statistics with a two-semester sequence in statistical methods (STAT 211/STAT 212) and a broad selection of upper-level elective classes. Depending on the electives selected, a student completing this program will be prepared to conduct statistical analysis in their professional work or to continue graduate study in fields involving statistical analysis.

For additional information, see the Department of Statistics website (http://www.stat.tamu.edu).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Division Courses</td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 212</td>
<td>Principles of Statistics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Directed Upper Division Electives</td>
<td></td>
</tr>
<tr>
<td>Select three of the following: 1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>STAT 335/CSCE 320</td>
<td>Principles of Data Science</td>
<td></td>
</tr>
<tr>
<td>STAT 404</td>
<td>Statistical Computing</td>
<td></td>
</tr>
<tr>
<td>STAT 406</td>
<td>Design and Analysis of Experiments</td>
<td></td>
</tr>
<tr>
<td>STAT 407</td>
<td>Principles of Sample Surveys</td>
<td></td>
</tr>
<tr>
<td>STAT 408</td>
<td>Introduction to Linear Models</td>
<td></td>
</tr>
<tr>
<td>STAT 414</td>
<td>Mathematical Statistics I</td>
<td></td>
</tr>
<tr>
<td>STAT 415</td>
<td>Mathematical Statistics II</td>
<td></td>
</tr>
<tr>
<td>STAT 421/CSCE 421</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>STAT 436</td>
<td>Multivariate Analysis and Statistical Learning</td>
<td></td>
</tr>
<tr>
<td>STAT 438</td>
<td>Bayesian Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT 445</td>
<td>Applied Biostatistics and Data Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 446</td>
<td>Statistical Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>STAT 459</td>
<td>Categorical Data Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>STAT 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 15

1 STAT 485 or STAT 489 must be approved by the Statistics Department.

Additional Requirements:

Students must make a grade of C or better in all courses.

Substitutions for the minor must be approved by the Statistics Department.

University Studies Programs

The College of Science offers degrees in University Studies. A University Studies degree differs from a traditional “major” in that it consists of a concentration and two minors of 15-18 hours each. The University Studies degree format was created to provide students the flexibility to combine areas of study that are of special interest.

Majors

- Bachelor of Science in University Studies, Arts and Sciences Concentration (p. 751)
- Bachelor of Science in University Studies, BioInformatics Concentration (p. 752)
- Bachelor of Science in University Studies, Mathematics for Business Concentration (p. 753)
- Bachelor of Science in University Studies, Mathematics for Pre-Professionals Concentration (p. 753)
- Bachelor of Science in University Studies, Mathematics for Teaching Concentration (p. 754)
- Bachelor of Science in University Studies, Science for Secondary Teaching Concentration (p. 755)

University Studies - BS, Arts and Sciences Concentration

The Bachelor of Science in University Studies, Arts and Sciences area of concentration, enables students to craft a personalized interdisciplinary program of study that provides a solid foundation, advanced knowledge and perspective on complex issues pertaining to both Liberal Arts and Sciences.

Students will be able to acquire communication, critical thinking, and problem-solving skills that are critical for lifelong learning and for a broad variety of career paths in today's complex job market. The area of concentration in this degree plan gives complete flexibility to design a course of study, as long as classes are selected from 300- or 400-level offerings from one of our Departments. Two minors are required; one from the College of Liberal Arts and one from the College of Science. Lastly, one full year of a foreign language is part of the program.

This program is approved to be offered at the Texas A&M Higher Education Center in McAllen, Texas.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Foreign language 1</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
</tr>
</tbody>
</table>
Graduation requirements include 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. The required 6 hours may be met by courses satisfying other areas of a degree program. See your academic advisor for further information.

University Studies - BS, BioInformatics Concentration

The Bachelor of Science in University Studies, BioInformatics area of concentration aims to provide a solid foundation in Biology along with a foundation in Informatics for students who wish to focus on the interface between the two disciplines. Graduates of this program could find employment in biotech/biomedical companies or research institutes, or could pursue advanced degrees in this area.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 350</td>
<td>Computational Genomics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 430</td>
<td>Biological Imaging</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 451</td>
<td>Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 491</td>
<td>Research</td>
<td>2</td>
</tr>
<tr>
<td>CSCE 110</td>
<td>Programming I</td>
<td>4</td>
</tr>
<tr>
<td>or CSCE 111</td>
<td>Introduction to Computer</td>
<td></td>
</tr>
<tr>
<td>STAT 312</td>
<td>Statistics for Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minor 1</td>
<td>15-18</td>
</tr>
<tr>
<td></td>
<td>Minor 2</td>
<td>15-18</td>
</tr>
<tr>
<td></td>
<td>General electives 2</td>
<td>12-18</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Complete two consecutive semesters of the same foreign language.
2. One minor must be chosen from the College of Liberal Arts and one from the College of Science. Minors must be declared in consultation with the major advisor.
3. Select from ASTR 300-499 (p. 909); BIOL 300-499 (p. 919); CHEM 300-499 (p. 929); MATH 300-499 (p. 1066); PHYS 300-499 (p. 1115); STAT 300-499 (p. 1154).
4. Any 100-499 courses not used elsewhere.
University Studies - BS, Mathematics for Business Concentration

The Bachelor of Science in University Studies, Mathematics for Business area of concentration consists of courses that are designed to give students who are both interested in business and mathematically inclined a way to combine both interests.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III 1 or MATH 221 or Several Variable Calculus or MATH 253 or Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra 1 or MATH 323 or Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 325</td>
<td>The Mathematics of Interest</td>
<td>3</td>
</tr>
<tr>
<td>MATH 425</td>
<td>The Mathematics of Contingent Claims</td>
<td>3</td>
</tr>
<tr>
<td>MATH 442</td>
<td>Mathematical Modeling or STAT 408 or Introduction to Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition or ENGL 10 or Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 2</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 2</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>COMM 205</td>
<td>Communication for Technical Professions</td>
<td>3</td>
</tr>
<tr>
<td>COMM 243</td>
<td>Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III 1 or MATH 221 or Several Variable Calculus or MATH 253 or Engineering Mathematics III</td>
<td>4</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra 1 or MATH 323 or Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 415</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 414</td>
<td>Mathematical Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>

American history (p. 29) 6
Creative arts (p. 29) 3
Language, philosophy and culture (p. 27) 3
Life and physical sciences (p. 26) 9
Social and behavioral sciences (p. 30) 3
Minor 1 15-18
Minor 2 15-18
General electives 3 16-22

Total Semester Credit Hours 120

1 Must make a grade of C or better.
2 Completion of four semesters of upper-level ROTC may be substituted for three hours of the requirement.
3 Select from any 100-499 course not used elsewhere, (except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205; PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFS 101).

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

University Studies - BS, Mathematics for Pre-Professionals Concentration

The Bachelor of Science in University Studies, Mathematics for Pre-Professionals area of concentration consists of courses that are designed to give students who are both interested in pre-professional programs and mathematically inclined a way to combine both interests.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III 1 or MATH 221 or Several Variable Calculus or MATH 253 or Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra 1 or MATH 323 or Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 409</td>
<td>Advanced Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 415</td>
<td>Modern Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 414</td>
<td>Mathematical Statistics I</td>
<td>3</td>
</tr>
</tbody>
</table>

or MATH 411 or Mathematical Probability
University College Requirements

MATH 407 - MATH 499 (p. 1066) 3

University and College Requirements

ENGL 103 Introduction to Rhetoric and Composition 3

or **ENGL 105** Composition and Rhetoric 3

POLS 206 American National Government 3

POLS 207 State and Local Government 3

Communication 3

Select one of the following:

COMM 203 Public Speaking

COMM 205 Communication for Technical Professions

COMM 243 Argumentation and Debate

Mathematics

Select one of the following: 4

- **MATH 147** Calculus I for Biological Sciences 1
- **MATH 151** Engineering Mathematics I 1
- **MATH 171** Calculus I 1

Select one of the following: 4

- **MATH 148** Calculus II for Biological Sciences 1
- **MATH 152** Engineering Mathematics II 1
- **MATH 172** Calculus II 1

American history (p. 29) 6

Creative arts (p. 29) 3

Language, philosophy and culture (p. 27) 4 3

Life and physical sciences (p. 26) 9

Social and behavioral sciences (p. 30) 3

Minor 1 15-18

Minor 2 15-18

General Electives 4 16-22

Total Semester Credit Hours 120

1 Must make a grade of C or better.
2 MATH 433 will not fulfill this requirement.
3 Completion of four semesters of upper-level ROTC may be substituted for three hours of this requirement.
4 Select from any 100-499 course not used elsewhere, except ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376, PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205, PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFSC 101.

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

University Studies - BS, Mathematics for Teaching Concentration

The BS in University Studies, Mathematics for Teaching area of concentration consists of courses that are designed to give students desiring a secondary-school teaching credential a solid foundation in mathematics. In particular, the courses chosen encompass the mathematical areas tested by the State of Texas and TExES secondary mathematics examination. These are the courses currently required for the secondary mathematics teaching field at Texas A&M University.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 300</td>
<td>Foundations of Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 304</td>
<td>Linear Algebra 1</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 32</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 375</td>
<td>Intermediate Real Analysis 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 376</td>
<td>Intermediate Abstract Algebra 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 403</td>
<td>Mathematics and Technology 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 467</td>
<td>Modern Geometry 1</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics 1</td>
<td>3</td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science & PHYS 226</td>
<td>4</td>
</tr>
<tr>
<td>or PHYS 226</td>
<td>Engineering and Science & Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 2</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Mathematics

Select one of the following:

- **MATH 147** Calculus I for Biological Sciences
- **MATH 151** Engineering Mathematics I
- **MATH 171** Calculus I

Select one of the following:

- **MATH 148** Calculus II for Biological Sciences
- **MATH 152** Engineering Mathematics II
- **MATH 172** Calculus II

American history (p. 29) 6

Creative arts (p. 29) 3

Language, philosophy and culture (p. 27) 3 3

Life and physical sciences (p. 26) 5

Social and behavioral sciences (p. 30) 3

Minor 1 15-18

Minor 2 15-18

General Electives 3 19-25

Total Semester Credit Hours 120
Program Requirements

1 Must make a grade of C or better.
2 Completion of four semesters of upper-level ROTC may be substituted for three hours of the requirement.
3 Select from any 100-499 course not used elsewhere, (except
ALED 125; ASCC 102; ASTR 109/PHYS 109, ASTR 119/PHYS 119; BMEN 101; ISEN 101; KINE 199; LAND 101; MATH 102-148, MATH 151-166 (p. 1066), MATH 304, MATH 309, MATH 311, MATH 365, MATH 366, MATH 367, MATH 375, MATH 376; PHYS 109/ASTR 109, PHYS 119/ASTR 119, PHYS 201, PHYS 202, PHYS 205, PSYC 301; STAT 201, STAT 301 - 303 (p. 1154); WFSC 101).

Maximum of 3 hours of MATH 300 or CSCE 222/ECEN 222 may be used in this degree program.

Maximum of 3 hours of MATH 411 or STAT 414 may be used in this degree program.

Maximum of 4 hours of MATH 417, MATH 437 or CSCE 442 may be used in this degree program.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 47) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.

University Studies - BS, Science for Secondary Teaching Concentration

The BS in University Studies, Science for Secondary Teaching area of concentration consists of courses that give students desiring secondary-school teaching credentials a solid foundation in life, earth and physical sciences. In particular, the courses chosen encompass the science composite areas test by the State of Texas and TExES. These are the courses currently required for the science composite certificate.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 201</td>
<td>Weather and Climate</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ASTR 101</td>
<td>Basic Astronomy</td>
<td>4</td>
</tr>
<tr>
<td>& ASTR 102 and & Observational Astronomy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ASTR 111</td>
<td>Overview of Modern Astronomy</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics and Science</td>
<td>4</td>
</tr>
<tr>
<td>& PHYS 22 & Engineering and Science</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>and Physics of Motion Laboratory for the Sciences</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td>4</td>
</tr>
<tr>
<td>& GEOL 102 and Principles of Geology</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
<td>3</td>
</tr>
<tr>
<td>& GEOG 213 and Planet Earth Lab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Select 12 hours from the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIOL 300-499 (p. 919)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 300-499 (p. 929)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOG 300-499 (p. 1001)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GEOL 300-499 (p. 1005)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>OCNG 300-499 (p. 1104)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHYS 300-499 (p. 1115)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 202</td>
<td>Weather and Climate Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>MATH 172</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td>4</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>INST 210</td>
<td>Understanding Special Populations</td>
<td>3</td>
</tr>
<tr>
<td>INST 222</td>
<td>Foundations of Education in a Multicultural Society</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 217</td>
<td>Introduction to Race and Ethnicity</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minor 1</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>Minor 2</td>
<td>15-18</td>
<td></td>
</tr>
<tr>
<td>General electives</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1 Must make a grade of C or better.
2 Selection should be from courses from which prerequisites have been satisfied.
3 Completion of four semesters of upper-level ROTC may be substitute for three hours of this requirement.
4 Select from any 100-499 not used elsewhere.

Graduation requirements include a requirement for 3 hours of International and Cultural Diversity (p. 47) courses and 3 hours of Cultural Discourse (p. 46) courses. A course satisfying a Core category, a college/department requirement, or a general elective can be used to satisfy this requirement. See academic advisor.
COLLEGE OF VETERINARY MEDICINE AND BIOMEDICAL SCIENCES

Administrative Officers
Dean - Eleanor M. Green, B.S., D.V.M.
Executive Associate Dean - Kenita S. Rogers, M.S., D.V.M.
Associate Dean for Research and Graduate Studies - Robert Burghardt M.S., Ph.D.
Assistant Dean for Graduate Studies - Michael Criscitiello, M.S., Ph.D.
Associate Dean for Undergraduate Education - Elizabeth Crouch, Ph.D.
Assistant Dean for Finance and Administration - Belinda S. Hale, M.B.A.
Associate Dean of Global One Health - Gerald Parker, M.S., D.V.M., Ph.D.

General Statement
The College of Veterinary Medicine and Biomedical Sciences consists of five academic departments: Veterinary Integrative Biosciences, Veterinary Large Animal Clinical Sciences, Veterinary Pathobiology, Veterinary Physiology and Pharmacology, and Veterinary Small Animal Clinical Sciences. Each department is administered by a department head, who is responsible to the Dean of Veterinary Medicine and Biomedical Sciences for all programs assigned or developed in the department, including teaching, research, extension and service.

A Veterinary Medical Teaching Hospital and Field Service Clinic are operated within the College to provide clinical laboratories for the veterinary medical educational program.

An extensive research program in animal health and disease is conducted by the faculty and staff of the college, and a substantial number of the teaching faculty members are engaged in research.

A veterinary extension program carries research information to veterinarians, animal owners, and others in the state and nation with the least possible delay. The faculty makes research information available to the students in the classroom and laboratories in a timely manner.

The typical land-grant institutional mandate of teaching, research, patient care and service provides the organizational framework necessary to meet the dynamics in the ever-changing field of veterinary medicine.

Graduate programs leading to the Master of Science (Non-Thesis and Thesis Options) and Doctor of Philosophy degrees are available through a College of Veterinary Medicine and Biomedical Sciences umbrella Graduate Program focused in four training tracks (Biomedical Genomics and Bioinformatics, Diagnostics and Therapeutics, Infection, Immunity and Epidemiology, and Physiology and Developmental Biology). The Department of Veterinary Integrative Biosciences offers a Science and Technology Journalism MS program and a Veterinary Epidemiology and Public Health MS program. Clinical specialty training programs are also available to provide effective training in the areas of professional specialization. The Interdisciplinary Faculty of Toxicology, a MS and PhD granting program composed of faculty from five colleges, is administratively housed in the College of Veterinary Medicine and Biomedical Sciences.

Majors
College of Veterinary Medicine and Biomedical Sciences

- Bachelor of Science in Biomedical Sciences (p. 757)
- Bachelor of Science in Neuroscience, Translational and Preclinical Neuroscience Track (p. 760)
- Bachelor of Science in University Studies, Biomedical Sciences Concentration (p. 771)

Minors
College of Veterinary Medicine and Biomedical Sciences

- Biomedical Sciences Minor (p. 761)

Certificates
College of Veterinary Medicine and Biomedical Sciences

- International Certificate in Cultural Competency and Communications in Spanish (p. 762)

Masters
College of Veterinary Medicine and Biomedical Sciences

- Master of Science in Biomedical Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/veterinary-medicine-biomedical-sciences/interdepartmental/biomedical-sciences-ms/)
- Master of Science in Science and Technology Journalism (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/veterinary-medicine-biomedical-sciences/interdepartmental/science-technology-journalism-ms/)

Department of Veterinary Physiology and Pharmacology

- Biomedical Research and Development Certificate (p. 770)

Department of Veterinary Integrative Biosciences

- Master of Science in Veterinary Public Health - Epidemiology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/veterinary-medicine-biomedical-sciences/veterinary-integrative-biosciences/veterinary-public-health-epidemiology-ms/)
Doctoral
College of Veterinary Medicine and Biomedical Sciences
• Doctor of Philosophy in Biomedical Sciences (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/veterinary-medicine-biomedical-sciences/interdepartmental/biomedical-sciences-phd/)

Professional
College of Veterinary Medicine and Biomedical Sciences
• Doctor of Veterinary Medicine in Veterinary Medicine (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/veterinary-medicine-biomedical-sciences/interdepartmental/dvm/)

Biomedical Sciences - BS
Admission
1. A Biomedical Sciences (BIMS) major will be admitted into the upper-level courses according to the following criteria:
 a. Completion of a set of Common Body of Knowledge (CBK) courses (35 hours to include BIOL 111, BIOL 112, CHEM 119, CHEM 120, CHEM 227/CHEM 237, CHEM 228/CHEM 238, PHYS 201, PHYS 202 and MATH 142*) with a grade of C or better in each course taken at Texas A&M. Any CBK course transferred in from a community college must have a minimum grade of a B.
 Normally, for admission to BIMS upper-level courses, a student may have attempted a CBK course no more than twice.
 b. A minimum of 55 completed semester hours with a cumulative resident Grade Point Average (GPA) of 2.5 or better.
 Process: Each student upon completing 55–65 semester credit hours must have a degree audit to verify upper-level eligibility.

2. The Biomedical Sciences Program will continue to accept changes of major into BIMS according to current Texas A&M University policy, but restrict changes of major into the upper-level courses (BIMS) according to the criteria listed in item 1. Students in other majors requesting a change of major to the BIMS program must also fulfill the criteria in item 1. In addition, the dean must verify availability of resources necessary to insure the student’s full-time enrollment in required upper-level courses prior to admission to upper-level status. If such courses are not available, the student will be denied admission to Biomedical Sciences.

3. To enter BIMS upper-level courses, transfer students must have:
 a. A minimum GPA of 3.0 in CBK courses with a grade of B or better in each completed course if taken at a 2-year college. A grade of C is accepted from a 4-year college.
 b. Transfer students admitted under another major and wishing to change into BIMS must complete one semester of graded coursework at Texas A&M University with a cumulative resident GPA of 2.5 and must fulfill the criteria in item 1.
 c. Texas A&M change of majors must have at least 55 semester credit hours with a minimum cumulative GPA of 3.0.

4. Students seeking readmission will be considered on a case-by-case basis, according to current catalog policy. No quotas will be placed on readmission; however, the decision to readmit will be dependent on resource availability and University policy.

5. Any BIMS student admitted to upper-level courses who then falls below the cumulative 2.5 GPA requirement will not be considered in good academic standing in their major and will be placed on college probation. Students who achieve less than a cumulative TAMU GPA of 1.0 in any semester are not eligible for college probation or grade warning status. All Biomedical Sciences majors must follow established probation rules for the Biomedical Sciences Program.

6. The Dean, Director or Department Head will reserve the right to waive CBK or GPA requirements within the criteria established in Texas A&M University Student Rules.

7. No courses other than BIMS 481, BIMS 484, VIBS 310, VIBS 311, or research/directed studies credits can be taken S/U to be used in the degree plan.

8. BIMS probation is determined at the end of the Spring semester. Students not meeting acceptable GPA requirements (cumulative 2.5 BIMS majors with 55 or more hours or cumulative 2.0 area of concentration (USVM), BIMS majors with less than 55 hours) will be required to attend Texas A&M University that summer and repeat courses as needed to raise their GPA. Students who achieve less than a cumulative TAMU GPA of 1.0 in any semester (BIMS or USVM) are not eligible for college probation or grade warning status.

9. Students may only attempt CVM courses a total of three (3) times.

*Calculus course options include: MATH 142, MATH 147, MATH 151, MATH 171.

Applied Science Option
Biomedical Sciences is a broad field of applied biology that is directed toward understanding health and disease. This major is a 120 hour, traditional-delivery, degree offered on both the College Station campus and at the Texas A&M Higher Education Center in McAllen, TX. Our mission is to educate students who will create a healthier future for humans and animals through the medical professions, biomedical innovation and discovery, global service and outreach. The curriculum is designed to provide a strong four-year education that emphasizes versatility of the graduate in the biological and medical sciences. A highly effective counseling program assists the students with the development of an individualized approach and course package that orients and prepares the students for entry into the medical, allied health field or graduate program of their choice. Such an approach enhances their educational experiences, improves their placement in professional and graduate programs, and facilitates their entry into the biomedical science job market.

Biomedical Sciences graduates enter professional programs in human medicine, veterinary medicine, dentistry, osteopathy, podiatry, optometry, and pharmacy. Some become medical technologists, physician assistants, nurses, and laboratory and research technicians. Others pursue radiation technology, hospital administration, and a wide variety of health-related fields. Many Biomedical Sciences students continue their education in graduate schools and specialize in various biology- and medicine-related disciplines. Other graduates are employed by clinical practices, industrial companies, government agencies, private foundations, public schools, colleges and certain aspects of business. Positions are available in pharmaceutical and drug marketing, research equipment manufacture and sales, food safety, biomedical research, disease control, zoonoses and epidemiology, laboratory animal care, zoo and aquatic animal supervision, health-related inspection and regulatory work. The BS in Biomedical Sciences is also awarded to students who
complete the three year Early Admission Option to Professional Schools and one year of professional school.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIMS 101</td>
<td>Introduction to Biomedical Science</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>Mathematics elective (p. 26)</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>Fall</td>
<td>Social and behavioral sciences elective (p. 30)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 203</td>
<td>Writing about Literature</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 171</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Fall</td>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>2,3</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Creative arts elective (p. 29)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>& CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>American history (p. 29)</td>
<td>2,3</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Language, philosophy and culture elective (p. 27)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>VTPP 405</td>
<td>Biomedical Microbiology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Directed elective</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>BIMS 320/GENE 320</td>
<td>Biomedical Genetics</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>VIABS 305</td>
<td>Biomedical Anatomy</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>VTPP 423</td>
<td>Biomedical Physiology I</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>Directed electives</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Fall</td>
<td>Free elective</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>VTPP 427</td>
<td>Biomedical Physiology II</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>Directed electives</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

1. Select from courses that meet the mathematics core requirements except PHIL 240, MATH 167.
2. Check with your BIMS academic advisor to select the correct courses.
3. HIST 105 and HIST 106 are recommended, however students may choose from other American History core courses.
4. Must be chosen in consultation with BIMS academic advisor.

In satisfying the required 30 hours of BIMS directed electives and free electives, all 285/291/485/484/491 courses may not exceed 9 credit hours and all 289/489 courses may not exceed 9 credit hours. BIMS 484 may not exceed 6 credit hours total. A 289/489 course used as a free elective may not exceed 3 hours.

Directed Electives

BIMS directed electives are courses that constitute the major offered by the College of Veterinary Medicine and Biomedical Sciences and those approved for biomedical science electives. A student may choose 27 semester credits from the following partial list of courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 108</td>
<td>General Animal Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 210</td>
<td>Companion Animal Science</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 318</td>
<td>Animal Feeds and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 320</td>
<td>Animal Nutrition and Feeding</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 303</td>
<td>Principles of Animal Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 325</td>
<td>Food Bacteriology</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 327</td>
<td>Food Bacteriology Lab</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 410</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 412</td>
<td>Biochemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ANSC 414</td>
<td>Biochemical Techniques I</td>
<td>2</td>
</tr>
<tr>
<td>ANSC 431</td>
<td>Molecular Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ANSC 432</td>
<td>Laboratory in Molecular Genetics</td>
<td>2</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>BIMS 110</td>
<td>One Health in Action</td>
<td>1</td>
</tr>
<tr>
<td>BIMS 201</td>
<td>Introduction to Phenotypic Expression in the Context of Human Medicine</td>
<td>2</td>
</tr>
<tr>
<td>BIMS 289</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>BIMS 291</td>
<td>Research</td>
<td>0-4</td>
</tr>
<tr>
<td>BIMS 391</td>
<td>Cooperative Education in Biomedical Science</td>
<td>2</td>
</tr>
<tr>
<td>BIMS 481</td>
<td>Seminar in Biomedical Science</td>
<td>1</td>
</tr>
<tr>
<td>BIMS 484</td>
<td>Biomedical Science Field Experience</td>
<td>2</td>
</tr>
<tr>
<td>BIMS 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>BIMS 489</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>BIMS 491</td>
<td>Research</td>
<td>0-4</td>
</tr>
<tr>
<td>BIMS 405/GENE 405</td>
<td>Mammalian Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 421/GENE 421</td>
<td>Advanced Human Genetics</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 208</td>
<td>Veterinary Entomology</td>
<td>2</td>
</tr>
<tr>
<td>ENTO 209</td>
<td>Veterinary Entomology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENTO 210</td>
<td>Global Public Health Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 431/ FIVS 431</td>
<td>The Science of Forensic Entomology</td>
<td>3</td>
</tr>
<tr>
<td>ENTO 432/ FIVS 432</td>
<td>Applied Forensic Entomology</td>
<td>1</td>
</tr>
<tr>
<td>NFSC 222</td>
<td>Nutrition for Health and Health Care</td>
<td>3</td>
</tr>
<tr>
<td>URPN 370</td>
<td>Health Systems Planning</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 204</td>
<td>Fundamentals of Food Toxicology and Safety</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 222</td>
<td>Great Poisonings of the World</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 243</td>
<td>Introductory Mammalian Histology</td>
<td>2</td>
</tr>
<tr>
<td>VIBS 285</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>VIBS 289</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>VIBS 310</td>
<td>Biomedical Writing</td>
<td>1</td>
</tr>
<tr>
<td>VIBS 311</td>
<td>Biomedical Explorations through Narrative</td>
<td>1</td>
</tr>
<tr>
<td>VIBS 343</td>
<td>Histology</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 401</td>
<td>Developmental Neurotoxicology</td>
<td>2</td>
</tr>
<tr>
<td>VIBS 404</td>
<td>Food Toxicology and Safety</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 408</td>
<td>Neuroscience and Religion</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 411</td>
<td>Tumor Cell Biology and Carcinogenesis</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 413</td>
<td>Introduction to Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 420</td>
<td>Computer Applications in Public Health Research</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 422</td>
<td>Endocrine Toxicology</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 443</td>
<td>Biology of Mammalian Cells and Tissues</td>
<td>4</td>
</tr>
<tr>
<td>VIBS 447</td>
<td>Neurophysiology of Music</td>
<td>2</td>
</tr>
<tr>
<td>VIBS 456</td>
<td>Science in Cinema and Society</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>VIBS 489</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>VIBS 277/ NRSC 277</td>
<td>Introduction to Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 407/ NRSC 407</td>
<td>Core Ideas in Neuroscience</td>
<td>2</td>
</tr>
<tr>
<td>VIBS 424/ VTPP 424</td>
<td>Biomedical Neuroendocrinology and Endocrine Disorders</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 426/ ENTO 426</td>
<td>Methods in Vector-Borne Disease</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 450/ NRSC 450</td>
<td>Mammalian Functional Neuroanatomy</td>
<td>4</td>
</tr>
<tr>
<td>VLC 422</td>
<td>Equine Disease and Epidemiology</td>
<td>3</td>
</tr>
<tr>
<td>VLC 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>VSCS 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>VTPB 303</td>
<td>Medical Communication in the International Community</td>
<td>1-4</td>
</tr>
<tr>
<td>VTPB 407</td>
<td>Advanced Veterinary Microbiology Laboratory</td>
<td>1-3</td>
</tr>
<tr>
<td>VTPB 408</td>
<td>Clinical Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 409</td>
<td>Introduction to Immunology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 410</td>
<td>Cell Mechanisms of Disease</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 411</td>
<td>One Health and Tropical Ecology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 415</td>
<td>Immunogenetics and Comparative Immunology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 421</td>
<td>Infectious Diseases of Humans and Animals</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 438</td>
<td>Biomedical Virology</td>
<td>3</td>
</tr>
<tr>
<td>VTPB 485</td>
<td>Directed Studies</td>
<td>0-4</td>
</tr>
<tr>
<td>VTPB 489</td>
<td>Special Topics in...</td>
<td>1-4</td>
</tr>
<tr>
<td>VTPB 301/ WFSC 327</td>
<td>Wildlife Diseases</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 425</td>
<td>Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 429</td>
<td>Introduction to Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 438</td>
<td>Analysis of Genomic Signals</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 444</td>
<td>Practicum in Biomedical Research</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 452</td>
<td>Fetal and Embryo Physiology</td>
<td>3</td>
</tr>
</tbody>
</table>
Neuroscience - BS, Translational and Preclinical Neuroscience Track

Neuroscience is the study of the nervous system and its impact on behavior and cognitive functions. This interdisciplinary field integrates several disciplines, including psychology, psychiatry, biology, chemistry, physics, and medicine. It is the interdisciplinary nature of neuroscience that requires the participation of multiple units, including the Department of Biology, the Department of Psychological and Brain Sciences, and the College of Veterinary Medicine and Biomedical Sciences in collaboration with Neuroscience and Experimental Therapeutics (NEXT) in offering this degree, as well as the Texas A&M Institute for Neuroscience. Students completing the 120 hour BS in Neuroscience (College Station campus), with an emphasis in Translational and Preclinical Studies, will be well prepared for graduate study, as well as to enter entry-level healthcare and technical occupations. The core courses for this degree will include a foundation in the life sciences, and a foundational sequence in neuroscience that will prepare students for more advanced courses. For the concentration of the degree administered by the College of Veterinary Medicine and Biomedical Sciences, in collaboration with the Department of Neuroscience and Experimental Therapeutics in the College of Medicine, students will complete courses focused on biomedical, translational, and preclinical neuroscience.

Program Requirements

First Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 101</td>
<td>Neuroscience Overview</td>
<td>1</td>
</tr>
<tr>
<td>NRSC 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 147 Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 151 Engineering Mathematics I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 171 Calculus I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 148 Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 152 Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH 172 Calculus II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 237</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 277</td>
<td>Introduction to Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>NRSC 277</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 213</td>
<td>Molecular Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 238</td>
<td>Organic Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>American history</td>
<td>(p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 410</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>GENE 302</td>
<td>Principles of Genetics</td>
<td>3</td>
</tr>
<tr>
<td>or GENE 320</td>
<td>or Biomedical Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRSC 235</td>
<td>Introduction to Behavioral and Cognitive Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American history</td>
<td>(p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture</td>
<td>(p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BICH 411</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>STAT 302</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>Select 3 hours from:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NRSC 300-499</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PSYC 300-499</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication</td>
<td>(p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIBS 450</td>
<td>Mammalian Functional Neuroanatomy</td>
<td>4</td>
</tr>
<tr>
<td>NRSC 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creative arts</td>
<td>(p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Concentration elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>General elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 434</td>
<td>Regulatory and Behavioral Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>NRSC 434</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>
The graduation requirements include a requirement for 3 hours of international and cultural diversity courses and 3 hours of cultural discourse courses. A course satisfying a core category, a college/department requirement, or a free elective can be used to satisfy this requirement. See academic advisor.

Graduation requirements require 2 courses with the Writing Intensive (UWRT), or 1 course with the Writing Intensive (UWRT) and 1 course with the Oral Communication (UCRT) attribute. These courses are designed to be TPC concentration electives (ex. VIBS 408, VIBS 443, VIBS 447) and should be chosen in consultation with an academic advisor. Writing/Communication intensive courses must be taken in the student’s major to count towards graduation.

Biomedical Sciences - Minor

The Biomedical Sciences minor consists of 15 hrs of selected coursework related to and directed toward understanding health and disease. Students are encouraged to select courses in consultation with a BIMS Academic Advisor.

Students applying for a BIMS minor must have a 2.0 or better overall GPA and meet with a BIMS advisor to declare the minor. Students are required to meet a minimum cumulative GPA of 2.0 or better in their minor coursework. Proper classification is required for the course level taken and any minor course prerequisites must be met.

The Biomedical Sciences program cannot guarantee the availability of courses required to meet the minor requirements. Successful completion of the minor will be certified by a degree audit in Howdy during the semester of the student’s graduation. The minor will be recognized after graduation on the student’s transcript, but not on the student’s diploma.

Requirements to declare BIMS minor:

- Must have a 2.0 TAMU GPA
- Must be declared before 75 hours are completed

Program Requirements

A selection from among the following courses will constitute a minor field of study. The following 15 hours of course work are required. Proper classification must be met for the course level being taken.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTPB 221</td>
<td>Great Diseases of the World</td>
<td>3</td>
</tr>
<tr>
<td>BIMS 320/GENE 320</td>
<td>Biomedical Genetics</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 323</td>
<td>Physiology of Domestic Animals</td>
<td>3</td>
</tr>
<tr>
<td>VIBS 404</td>
<td>Food Toxicology and Safety</td>
<td>3</td>
</tr>
<tr>
<td>BIMS Directed Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ANSC 107</td>
<td>General Animal Science</td>
<td></td>
</tr>
<tr>
<td>NFSC 303</td>
<td>and General Animal Science Laboratory</td>
<td></td>
</tr>
<tr>
<td>ANSC 303</td>
<td>Principles of Animal Nutrition</td>
<td></td>
</tr>
<tr>
<td>ANSC 318</td>
<td>Animal Feeds and Feeding</td>
<td></td>
</tr>
<tr>
<td>ANSC 320</td>
<td>Animal Nutrition and Feeding</td>
<td></td>
</tr>
<tr>
<td>BICH 412</td>
<td>Biochemistry Laboratory I</td>
<td></td>
</tr>
<tr>
<td>& BICH 414</td>
<td>and Biochemical Techniques I</td>
<td></td>
</tr>
<tr>
<td>BIMS 392</td>
<td>Cooperative Education in Biomedical Science</td>
<td></td>
</tr>
<tr>
<td>BIMS 405/GENE 405</td>
<td>Mammalian Genetics</td>
<td></td>
</tr>
<tr>
<td>BIMS 481</td>
<td>Seminar in Biomedical Science</td>
<td></td>
</tr>
<tr>
<td>BIMS 484</td>
<td>Biomedical Science Field Experience</td>
<td></td>
</tr>
<tr>
<td>BIMS 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>BIMS 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>ENTO 208</td>
<td>Veterinary Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 423</td>
<td>Medical Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 431</td>
<td>The Science of Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 431</td>
<td>Entomology</td>
<td></td>
</tr>
<tr>
<td>ENTO 432/</td>
<td>Applied Forensic Entomology</td>
<td></td>
</tr>
<tr>
<td>FIVS 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENE 431</td>
<td>Molecular Genetics</td>
<td></td>
</tr>
<tr>
<td>BICH 431</td>
<td>and Laboratory in Molecular & GENE 432</td>
<td></td>
</tr>
<tr>
<td>BICH 432</td>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>GENE 450</td>
<td>Recombinant DNA and Biotechnology</td>
<td></td>
</tr>
<tr>
<td>VIBS 343</td>
<td>Histology</td>
<td></td>
</tr>
<tr>
<td>VIBS 404</td>
<td>Food Toxicology and Safety</td>
<td></td>
</tr>
<tr>
<td>VIBS 420</td>
<td>Computer Applications in Public Health Research</td>
<td></td>
</tr>
<tr>
<td>VIBS 443</td>
<td>Biology of Mammalian Cells and Tissues</td>
<td></td>
</tr>
<tr>
<td>VIBS 450</td>
<td>Mammalian Functional</td>
<td></td>
</tr>
<tr>
<td>NRSC 450</td>
<td>Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td>VIBS 485</td>
<td>Directed Studies</td>
<td></td>
</tr>
<tr>
<td>VIBS 489</td>
<td>Special Topics in...</td>
<td></td>
</tr>
<tr>
<td>VTPB 301/</td>
<td>Wildlife Diseases</td>
<td></td>
</tr>
<tr>
<td>WFSC 327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTPB 303</td>
<td>Medical Communication in the International Community</td>
<td></td>
</tr>
<tr>
<td>VTPB 334</td>
<td>Poultry Diseases</td>
<td></td>
</tr>
<tr>
<td>VTPB 408</td>
<td>Clinical Microbiology</td>
<td></td>
</tr>
<tr>
<td>VTPB 409</td>
<td>Introduction to Immunology</td>
<td></td>
</tr>
</tbody>
</table>
Program Requirements

To earn the certificate, students are required to complete:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN 201</td>
<td>Intermediate Spanish I ¹</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 202</td>
<td>Intermediate Spanish II ¹</td>
<td>3</td>
</tr>
<tr>
<td>SPAN 300/SPAN 400 level course of the student’s choice ²</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3 credit hours of area studies from an approved course list ³</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Minimum of 2 credit hours in a medical communications Area ⁴</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BIMS 485 ⁵</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>An international experience approved by the Biomedical Sciences Program ⁶</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

¹ SPAN 221 and SPAN 222 are acceptable substitutions, when taken abroad, for SPAN 201 and SPAN 202.

² Prerequisites apply.

³ The certificate was designed with the student’s required Texas A&M Core Curriculum (p. 25) in mind. Many of the courses on the approved list will count as a language, philosophy and culture, creative arts, or social and behavioral sciences. It is up to the student to compare the two lists and to work with their academic advisor to choose courses appropriate to their degree plan.

⁴ It is suggested that students enroll in this course after the completion of at least SPAN 201 or equivalent. For course options, see academic advisor.

⁵ This course is a specific section of 485 that requires shadowing in the biomedical environment while using the Spanish language.

⁶ This requirement may be satisfied by an approved study abroad program.

International Certificate in Cultural Competency and Communications in Spanish

Students who complete this certificate will be functionally bilingual and able to perform linguistically in a culturally sensitive manner within the biomedical environment. A required study abroad will allow students to gain experiential knowledge, expanding their cultural sensitivities and functionality in a foreign environment. Because of limited resources, the program will have a cap on the number of students admitted. All courses in the program must be completed with a grade of C or better. The certificate will be awarded upon completion of a BS degree in Biomedical Sciences.

Department of Small Animal Clinical Sciences

http://vetmed.tamu.edu/vscs (http://vetmed.tamu.edu/vscs/)

Faculty

- Baetge, Courtney L, Clinical Assistant Professor
 Vet Small Animal Clinical Sc
 DVM, Texas A&M University, 2003

- Barnes, Katherine Hirose, Clinical Assistant Professor
 Vet Small Animal Clinical Sc
 DVM, Oregon State University College of Veterinary Medicine, 2011

- Beaver, Bonnie V, Professor
 Vet Small Animal Clinical Sc
 DVM, University of Minnesota, 1968

- Bennett, Brad S, Clinical Assistant Professor
 Vet Small Animal Clinical Sc
 PHD, Texas A&M University, 2007

- Bilof, Katherine, Clinical Assistant Professor
 Vet Small Animal Clinical Sc
 DVM, University of Missouri, Columbia, 2012

- Boudreau, Christen E, Assistant Professor
 Vet Small Animal Clinical Sc
 DVM, Texas A&M University, 2010
 PHD, Baylor College of Medicine, 2001

- Cook, Audrey K, Professor
 Vet Small Animal Clinical Sc
 DVM, University of Edinburgh, 1989

- Cornell, Karen K, Professor
 Vet Small Animal Clinical Sc
 PHD, Purdue University, 1998
 DVM, Purdue University, 1988

- Crevey, Kate E, Associate Professor
 Vet Small Animal Clinical Sc
 DVM, University of Tennessee, 1998
Davidson, Jacqueline R, Clinical Professor
Vet Small Animal Clinical Sc
DVM, University of Minnesota, 1986

Devey, Michael A, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Kansas State University, 2005

Diesel, Alison B, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Kansas State University, 2005

Dodd, Johnathon R, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1979

Eckman, Stacy L, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2001

Gordon, Sonya G, Professor
Vet Small Animal Clinical Sc
DVM, University of Guelph, 1994

Heatley, Jennifer J, Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1995

Heinz, Justin A, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Purdue University, 2012

Heseltine, Johanna C, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, University of Saskatchewan, 1998

Hoppes, Sharman M, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Oklahoma State University, 1993

Jeffery, Nicholas D, Professor
Vet Small Animal Clinical Sc
PHD, The University of Cambridge, 1997

Kerwin, Sharon C, Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1988

Levine, Jonathan M, Professor
Vet Small Animal Clinical Sc
DVM, Cornell University, 2001

Lidbury, Jonathan A, Assistant Professor
Vet Small Animal Clinical Sc
BVetM, University of Glasgow, 2002

Little, Adam L, Assistant Professor of the Practice
Vet Small Animal Clinical Sc
DVM, University of Guelph, 2013

Loria Lepiz, Mauricio A, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Universidad Nacional de Costa Rica, 2000

Mankin, Joseph M, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, University of Tennessee-Knoxville, 2007

Mankin, Kelley M, Assistant Professor
Vet Small Animal Clinical Sc
DVM, University of Missouri-Columbia, 2006

McCool, Katherine Elizabeth, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, The Ohio State University, 2012

Paranjape, Vaidehi Vinay, Clinical Assistant Professor
Vet Small Animal Clinical Sc
BVSc, MAHARASHTRA ANIMAL & FISHERY SCIENCES UNIVERSITY, 2009

Patterson, Adam P, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Mississippi State University, 2001

Peycke, Laura E, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Louisiana State University, 1998

Richards, Amanda, Lecturer
Vet Small Animal Clinical Sc
DVM, Colorado State University, 2016

Rogers, Kenita S, Professor
Vet Small Animal Clinical Sc
DVM, Louisiana State University, 1982

Rutter, Christine R, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Mississippi State University, 2003

Saunders, Ashley B, Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2001

Saunders, William B, Associate Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 2005
DVM, Texas A&M University, 2001

Scallan, Elizabeth M, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Ross University School of Veterinary Medicine, 2007

Scott, Erin M, Assistant Professor
Vet Small Animal Clinical Sc
DVM, University of Pennsylvania, 2015

Simon, Bradley T, Assistant Professor
Vet Small Animal Clinical Sc
DVM, Ross University, 2007

Smith, Lauren, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2013

Steiner, Joerg M, Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 2000
Department of Veterinary Integrative Biosciences

http://vetmed.tamu.edu/vibs (http://vetmed.tamu.edu/vibs/)

Faculty

Andersson, Leif B, Professor
Vet Integrative Biosciences
PHD, Swedish University of Agricultural Sciences, Uppsala, 1984

Arosh, Joe A, Professor
Vet Integrative Biosciences
PHD, Universite Laval, 2004

Arosh, Sakhila B, Associate Professor
Vet Integrative Biosciences
PHD, University of Madras, 2002

Bergthorsson, Ulfar, Associate Professor
Vet Integrative Biosciences
PHD, University of Rochester, 1998

Budke, Christine M, Professor
Vet Integrative Biosciences
PHD, Philosophisch-Naturwissenschaftliche Fakultät der Universität Basel, 2004
DVM, Purdue University, 2001

Burghardt, Robert C, Professor
Vet Integrative Biosciences
PHD, Wayne State University, 1976

Cai, Jing, Associate Professor
Vet Integrative Biosciences
PHD, University of Hong Kong, 2006

Chiu, Weihueh A, Professor
Vet Integrative Biosciences
PHD, Princeton University, 1998

Curley Jr, Kevin O, Instructional Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2012

Davis, Brian W, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2013

Frank-Cannon, Tamy C, Clinical Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2005
DVM, Texas A&M University, 1996

Gaddy, Dana, Professor
Vet Integrative Biosciences
PHD, Baylor College of Medicine, 1991

Gastel, Barbara J, Professor
Vet Integrative Biosciences
MD, Johns Hopkins University, 1978

Gonzales, Molly McCarty, Instructional Assistant Professor
Vet Integrative Biosciences
EDD, Pepperdine University, 2017

Hamer, Sarah A, Associate Professor
Vet Integrative Biosciences
DVM, Michigan State University, 2011
PHD, Michigan State University, 2010

Hartberg, Yasha M, Lecturer
Vet Integrative Biosciences
PHD, Binghamton University, 2016

Herman, Cheryl L, Clinical Associate Professor
Vet Integrative Biosciences
DVM, University of Saskatchewan, 1987

Hiney, Jill K, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1996

Hoffman, Anton G, Clinical Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1992
DVM, Texas A&M University, 1986
Johnson, Gregory A, Professor
Vet Integrative Biosciences
PHD, University of Wyoming, 1997

Johnson, Larry, Professor
Vet Integrative Biosciences
PHD, Colorado State University, 1978

Juras, Rytis, Research Assistant Professor
Vet Integrative Biosciences
PHD, Lithuanian Veterinary Academy, 2005
DVM, Lithuanian Veterinary Academy, 2000

Katju, Vaishali, Professor
Vet Integrative Biosciences
PHD, Indiana University, 2004

Kim, Sun J, Research Assistant Professor
Vet Integrative Biosciences
PHD, Sogang University, 2006

Klemm, William R, Senior Professor
Vet Integrative Biosciences
PHD, University of Notre Dame, 1963
DVM, Auburn University, 1958

Kneese, Dana A, Clinical Assistant Professor
Vet Integrative Biosciences
DVM, Texas A&M University, 2013
PHD, Texas A&M University, 2009

Ko, Gladys Y, Associate Professor
Vet Integrative Biosciences
PHD, Kent State University, 1996

Ko, Michael L, Research Assistant Professor
Vet Integrative Biosciences
PHD, Kent State University, 1997

Kornegay, Joe N, Professor
Vet Integrative Biosciences
PHD, University of Georgia, 1982

Langford, Candice L, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2006

Li, Jianrong, Professor
Vet Integrative Biosciences
PHD, University of Hawaii at Manoa, 1997

Li, Qinglei, Associate Professor
Vet Integrative Biosciences
PHD, Harbin Medical University, 2001

Lyczak, Kristin C, Clinical Assistant Professor
Vet Integrative Biosciences
DVM, Colorado State University, 2003

Mouneimne, Roula, Research Professor
Vet Integrative Biosciences
PHD, Lyon I University, 1984

Murphy, William J, Professor
Vet Integrative Biosciences
PHD, The University of Tulsa, 1997

Ndeffo Mbah, Martial Loth, Assistant Professor
Vet Integrative Biosciences
PHD, University of Cambridge, UK, 2010

Nghiem, Peter P, Assistant Professor
Vet Integrative Biosciences
PHD, George Washington University, 2014
DVM, Texas A&M University, 2008

Norman, Keri N, Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2010

Phillips, Timothy D, University Distinguished Professor
Vet Integrative Biosciences
PHD, University of Southern Mississippi, 1975

Pine, Michelle D, Clinical Associate Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2002
DVM, University of Missouri-Columbia, 1991

Porter, Weston W, Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1997

Qian, Yongchang, Research Associate Professor
Vet Integrative Biosciences
PHD, Shanghai Institutes for Biological Sciences, 1990

Raudsepp, Terje, Professor
Vet Integrative Biosciences
PHD, Swedish University of Agricultural Sciences, 1999

Rijnkels, Monique G, Research Associate Professor
Vet Integrative Biosciences
PHD, Leiden University, 1997

Ritter, Nicola L, Instructional Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2014

Ruoff, Lynn M, Clinical Professor
Vet Integrative Biosciences
DVM, Colorado State University, 1975

Rusyn, Ivan I, Professor
Vet Integrative Biosciences
PHD, University of North Carolina at Chapel Hill, 2000

Seo, Heewon, Research Assistant Professor
Vet Integrative Biosciences
PHD, Yonsei University, 2012

Shi, Liheng, Research Assistant Professor
Vet Integrative Biosciences
PHD, Osaka University, 2001

Skow, Loren C, Senior Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1976
Tayce, Jordan D, Instructional Associate Professor
Vet Integrative Biosciences
DVM, Texas A&M University, 2008

Taylor, Robert J, Research Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1987

Tiffany-Castiglion, E, Professor
Vet Integrative Biosciences
PHD, University of Texas Medical Branch at Galveston, 1979

Venkatraj, Vijayanagaram S, Clinical Associate Professor
Vet Integrative Biosciences
PHD, New York University, 1992

Waltz, Micah J, Lecturer
Vet Integrative Biosciences
MS, West Virginia University, 2014

Welsh, Christabel Jane, Professor
Vet Integrative Biosciences
PHD, London University, 1981

Yeoman, Michelle S, Lecturer
Vet Integrative Biosciences
MS, Texas A&M University, 2013

Department of Veterinary Large Animal Clinical Sciences

http://vetmed.tamu.edu/vlcs

Faculty

Arnold, Carolyn E, Associate Professor
Vet Large Animal Clinical Sc
DVM, Michigan State University, 1998

Barling, Kerry, Lecturer
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2000
DVM, Texas A&M University, 1987

Bissett Jr, Wesley T, Associate Professor
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2007
DVM, Texas A&M University, 1997

Bordin, Angela I, Assistant Professor
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2014
DVM, Federal University of Santa Maria, Brazil, 2002

Brinkso, Steven P, Professor
Vet Large Animal Clinical Sc
PHD, Cornell University, 1995
DVM, University of Florida, 1985

Cerfogli, Jennifer A, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Iowa State University, 2001

Chaffin, Morgan K, Professor
Vet Large Animal Clinical Sc
DVM, North Carolina State University, 1985

Cohen, Noah D, Professor
Vet Large Animal Clinical Sc
PHD, Johns Hopkins University, 1988
DVM, University of Pennsylvania, 1983

Coleman, Michelle C, Assistant Professor
Vet Large Animal Clinical Sc
DVM, University of Georgia, 2007

Dominguez, Brandon J, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2005

Eades, Erma S, Professor
Vet Large Animal Clinical Sc
PHD, University of Georgia, 1988
DVM, Louisiana State University, 1982

Easterwood, Leslie A, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1995

Fridley, Jennifer, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Mississippi State University, 2014

Gilmour, Lindsey J, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2009

Glass, Kati P, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2012

Green, Eleanor M, Professor
Vet Large Animal Clinical Sc
DVM, Auburn University, 1973

Griffin IV, John F, Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2004

Griffin, Cleet E, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1990

Griffin, Dicky D, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Oklahoma State University, 1975

Hardy, Joanne, Clinical Professor
Vet Large Animal Clinical Sc
PHD, The Ohio State University, 1996
DVM, University of Montreal, 1982

Hartnack, Amanda K, Assistant Professor
Vet Large Animal Clinical Sc
DVM, Colorado State University, 2010
Kneese, Eric, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2012

Krenek, Nancy, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PHD, The University of Texas Medical Branch, 2014

Love, Charles C, Professor
Vet Large Animal Clinical Sc
DVM, University of Missouri-Columbia, 1984

Martin, Michael T, Senior Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1968

Mays, Glennon B, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1976

Navas De Solis, Cristobal, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PHD, Universidad Autonoma de Barcelona, 2013
DVM, Universidad A. Barcelona, 2012
BVMS, Universidad Cardenal Herrera, 2001
DVM, Universidad Cardenal Herrera CEU, 2001

Posey, Richard D, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1982

Poteet, Brian A, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1991

Romano, Juan E, Professor
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2004
DVM, Universidad del Uruguay, 1985

Roussel, Allen J, Professor
Vet Large Animal Clinical Sc
DVM, Louisiana State University, 1977

Russell, Lauren A, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Atlantic Veterinary College, 2014

Sampson, Sarah N, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PHD, Washington State University, 2008
DVM, Washington State University, 1999

Schmitz, David G, Visiting Associate Professor
Vet Large Animal Clinical Sc
DVM, Kansas State University, 1976

Thompson, James A, Professor
Vet Large Animal Clinical Sc
DVM, University of Guelph, 1982

Vallone, Jessica M, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Mississippi State University, 2012

Varner, Dickson D, Professor
Vet Large Animal Clinical Sc
DVM, University of Missouri, 1978

Voges Gariepy, Andra-Kay, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1991

Washburn, Kevin E, Professor
Vet Large Animal Clinical Sc
DVM, Oklahoma State University, 1993

Watts, Ashlee E, Associate Professor
Vet Large Animal Clinical Sc
DVM, Colorado State University, 2003

Whitfield-Cargile, Canaan M, Assistant Professor
Vet Large Animal Clinical Sc
DVM, University of Georgia, 2006

Department of Veterinary Pathobiology
http://vetmed.tamu.edu/vtpb

Faculty

Adams, Leslie G, Senior Professor
Veterinary Pathobiology
PHD, Texas A&M University, 1968
DVM, Texas A&M University, 1964

Arenas, Angela M, Assistant Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2007
DVM, La Salle University, Colombia, 2002

Brightsmith, Donald J, Associate Professor
Veterinary Pathobiology
PHD, Duke University, 1999

Bryan, Laura K, Clinical Assistant Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2018
DVM, University of Georgia, 2011

Chaki, Sankar P, Research Assistant Professor
Veterinary Pathobiology
PHD, National Institute of Health & Family Welfare (Vidysagar University), 2005

Clubb Jr, Fred J, Clinical Professor
Veterinary Pathobiology
PHD, University of Alabama - Birmingham, 1983
DVM, Auburn University, 1971

Cook, Walter E, Clinical Associate Professor
Veterinary Pathobiology
PHD, University of Wyoming, 1999
DVM, University of California - Davis, 1994

http://vetmed.tamu.edu/vtpb/
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree Institution, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criscitiello, Michael F</td>
<td>Professor</td>
<td>Veterinary Pathobiology</td>
<td>PhD, University of Miami, 2003</td>
</tr>
<tr>
<td>Derr, James N</td>
<td>Professor</td>
<td>Veterinary Pathobiology</td>
<td>PhD, Texas A&M University, 1990</td>
</tr>
<tr>
<td>Dindot, Scott V</td>
<td>Associate Professor</td>
<td>Veterinary Pathobiology</td>
<td>PhD, Texas A&M University, 2003</td>
</tr>
<tr>
<td>Esteve-Gasent, Maria D</td>
<td>Assistant Professor</td>
<td>Veterinary Pathobiology</td>
<td>PhD, Universidad de Valencia, Spain, 2003</td>
</tr>
</tbody>
</table>
| Gomes Verocai, Guilherme | Clinical Assistant Professor| Veterinary Pathobiology | PhD, University of Calgary, 2015
| DVM, Instituto de Veterinaria-Universidade Federal Rural do Rio de Janeiro, 2005 |
| Hillhouse, Andrew E | Research Assistant Professor| Veterinary Pathobiology | PhD, University of Missouri-Columbia, 2010 |
| Jeter, Elizabeth A | Lecturer | Veterinary Pathobiology | DVM, Texas A&M University, 1982 |
| Johnson, Mark C | Clinical Professor | Veterinary Pathobiology | DVM, Texas A&M University, 1988 |
| Lawhon, Sara D | Associate Professor | Veterinary Pathobiology | PhD, North Carolina State University, 2003
| DVM, Texas A&M University, 1997 |
| Levine, Gwendolyn J | Clinical Associate Professor| Veterinary Pathobiology | DVM, Texas A&M University, 2006 |
| Locke, Unity B | Assistant Professor | Veterinary Pathobiology | DVM, University of Cambridge, 2008 |
| Logan, Linda L | Professor | Veterinary Pathobiology | PhD, University of California-Davis, 1987
| DVM, Texas A&M University, 1976 |
| Lupiani, Blanca M | Professor | Veterinary Pathobiology | PhD, University of Maryland-College Park, 1994 |
| Mulenga, Albert | Professor | Veterinary Pathobiology | PhD, Hokkaido University, 1999 |
| Musser, Jeffrey M | Clinical Professor | Veterinary Pathobiology | PhD, North Carolina State University, 2000
| DVM, Virginia Tech, 1989 |
| Nabity, Mary B | Associate Professor | Veterinary Pathobiology | PhD, Texas A&M University, 2010
| DVM, Cornell University, 2002 |
| Omran, Mohamed T | Clinical Assistant Professor| Veterinary Pathobiology | PhD, Texas A&M University, 1995 |
| Porter, Brian F | Clinical Professor | Veterinary Pathobiology | DVM, Texas A&M University, 1992 |
| Rech, Raquel R | Clinical Associate Professor| Veterinary Pathobiology | PhD, Federal University of Santa Maria (UFSM), 2007
| DVM, Santa Catarina State University, 1999 |
| Reddy, Sanjay M | Professor | Veterinary Pathobiology | PhD, University of Maryland, College Park, 1994
| DVM, Andhra Pradesh Agricultural University, India, 1986 |
| Rodrigues Hoffmann, Aline | Associate Professor | Veterinary Pathobiology | PhD, Texas A&M University, 2011 |
| Rogovskyy, Artem S | Assistant Professor | Veterinary Pathobiology | PhD, Washington State University, 2014
| DVM, National Agricultural University, 2001 |
| Russell, Karen E | Professor | Veterinary Pathobiology | PhD, North Carolina State University, 1997
| DVM, Virginia Tech, 1990 |
| Scott, Harvey M | Professor | Veterinary Pathobiology | PhD, University of Guelph, 1998
| DVM, University of Saskatchewan, 1988 |
| Seabury, Christopher M | Associate Professor | Veterinary Pathobiology | PhD, Texas A&M University, 2004
| Subashchandrabose, Sargurunathan, Assistant Professor | Veterinary Pathobiology | PhD, Michigan State University, 2011
| BVSc, Madras Veterinary College Tamil Nadu Veterinary and Animal Sciences University, 2005 |
| Turner, Kenneth E | Lab Instructor | Veterinary Pathobiology | DVM, University of Pennsylvania, 1992 |
| Vemulapalli, Ramesh | Professor | Veterinary Pathobiology | PhD, University of Maryland, 1996
| BVSc, Andhra Pradesh Agricultural University, India, 1986 |

Vemulapalli, Tracy H, Clinical Associate Professor
Veterinary Pathobiology
DVM, Virginia-Maryland Regional College of Veterinary Medicine, 1998

Weeks, Bradley R, Professor
Veterinary Pathobiology
PHD, Kansas State University, 1988
DVM, Oklahoma State University, 1983

Wiener, Dominique Judith, Clinical Assistant Professor
Veterinary Pathobiology
PHD, University of Bern, Switzerland, 2011
DVM, University of Bern, 2010

Womack, James E, Senior Professor
Veterinary Pathobiology
PHD, Oregon State University, 1968

Zhu, Guan, Professor
Veterinary Pathobiology
PHD, University of Georgia, 1993

Department of Veterinary Physiology
and Pharmacology

https://physiology.tamu.edu (http://vetmed.tamu.edu/vtpp/)

Faculty

Bailey, Everett M, Professor
Vet Physiology & Pharmacology
PHD, Iowa State University, 1968
DVM, Texas A&M University, 1964

Blue-McLendon, Alice, Clinical Associate Professor
Vet Physiology & Pharmacology
DVM, Texas A&M University, 1989

Brunauer, Regina, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Medical University Innsbruck, Austria, 2011

Clement, Tracy M, Assistant Professor
Vet Physiology & Pharmacology
PHD, Washington State University, 2009

Davis, Amanda R, Lecturer
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2017

Dawson, Lindsay A, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Tulane University, 2014

Dongaonkar, Ranjeet M, Assistant Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2008

Fajt, Virginia R, Clinical Professor
Vet Physiology & Pharmacology
PHD, Iowa State University, 2000
DVM, Auburn University, 1995

Golding, Michael C, Associate Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2003

Han, Guichun, Clinical Assistant Professor
Vet Physiology & Pharmacology
PHD, Dalian Medical University, China, 2002

Heaps, Cristine L, Associate Professor
Vet Physiology & Pharmacology
PHD, University of Missouri - Columbia, 1999

Herman, James D, Clinical Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 1995
DVM, Texas A&M University, 1989

Hinrichs, Katrin, Professor
Vet Physiology & Pharmacology
PHD, University of Pennsylvania, 1988
DVM, University of California, Davis, 1978

Ivanov, Ivan V, Clinical Professor
Vet Physiology & Pharmacology
PHD, Dong-A University, Busan, Korea, 2004

Jin, Un Ho, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Dong-A University, Busan, Korea, 1999

Kraemer, Duane C, Senior Professor
Vet Physiology & Pharmacology
DVM, Agricultural & Mechanical College, 1966
PHD, Agricultural & Mechanical College, 1966

Laine, Glen A, Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 1980

Long, Charles R, Professor
Vet Physiology & Pharmacology
PHD, University of Massachusetts - Amherst, 1996

Lyons, Luke C, Lecturer
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2018

Muneoka, Ken, Professor
Vet Physiology & Pharmacology
PHD, University of California - Irvine, 1983

Newell-Fugate, Anne E, Assistant Professor
Vet Physiology & Pharmacology
PHD, University of Illinois-Urbana Champaign, 2012
DVM, North Carolina State University, 2004

Patterson, Carly A, Clinical Assistant Professor
Vet Physiology & Pharmacology
DVM, University of Illinois, 2011

Quick, Christopher M, Professor
Vet Physiology & Pharmacology
PHD, Rutgers University, 1999
Biomedical Research and Development - Certificate

The Biomedical Research Certificate, offered by the Department of Veterinary Physiology and Pharmacology, will provide students the opportunity to gain advanced training in biomedical research. Students in the Certificate Program will gain a broader understanding of the creation, evaluation, and dissemination of new knowledge while performing publishable original biomedical research within a research-intensive community. The Biomedical Research Certificate program requires a minimum of 18-credit hours in designated courses, each of which includes engagement in inquiry-based research. Specific certificate requirements are available in the Biomedical Sciences Office and the Department of Veterinary Physiology and Pharmacology (http://vetmed.tamu.edu/vtpp/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTPP 123</td>
<td>Foundations of Physiology</td>
<td>3</td>
</tr>
<tr>
<td>VTPP 491</td>
<td>Research 1</td>
<td>6</td>
</tr>
<tr>
<td>VTPP 444</td>
<td>Practicum in Biomedical Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prescribed Elective Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTPP 223</td>
<td>Design of Experiments for & VTPP 224 Physiology Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and In Vitro Experimentation in Physiology Research</td>
<td></td>
</tr>
<tr>
<td>VTPP 234</td>
<td>Design of Models for Physiology & VTPP 235 Research</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Analysis and Validation of Models for Physiology Research</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 18

1 Two (three hour) courses are required for six hours total.

University Studies Programs

The University Studies major allows students to choose an area of concentration and two minors to constitute the 120 hours of the degree. University Studies in the College of Veterinary Medicine & Biomedical Sciences (USVM), is a B.S. degree with an area of concentration in veterinary medicine and biomedical sciences. The area of concentration emphasizes applied biology in the context of the veterinary and human medical field, highlighting one health concepts: the interrelatedness of human, animal and environmental health and factors affecting each. Students considering USVM as a major should note that all students are required to complete prerequisite coursework including biology, fundamentals of chemistry and organic chemistry with lab (1 semester), prior to completing the area of concentration coursework. Minors must be chosen from an approved list and Biology or Biomedical Sciences cannot be chosen as minors to couple with this concentration. This major does not admit first-time college students. Students can apply to change their curriculum according to approved university steps and in consultation with an academic advisor from the college. Students must maintain a minimum overall GPA of 2.0 and meet all requirements and prerequisite coursework for the declared area of concentration and two minors. The minors will be recognized after graduation on the student’s transcript, but not on the student’s diploma. This course of study is offered on the College Station campus.

Majors

- Bachelor of Science in University Studies, Biomedical Sciences Concentration (p. 771)
University Studies - BS, Biomedical Sciences Concentration

The University Studies major allows students to choose an area of concentration and two minors to constitute the 120 hours of the degree. University Studies in the College of Veterinary Medicine and Biomedical Sciences (USVM), is a B.S. degree with an area of concentration in veterinary medicine and biomedical sciences. The area of concentration emphasizes applied biology in the context of the veterinary and human medical field, highlighting one health concepts: the interrelatedness of human, animal and environmental health and factors affecting each. Students considering USVM as a major should note that all students are required to complete prerequisite coursework including biology, fundamentals of chemistry and organic chemistry with lab (1 semester), prior to completing the area of concentration coursework. Minors must be chosen from an approved list and Biology or Biomedical Sciences cannot be chosen as minors to couple with this concentration. This major does not admit first time college students. Students can apply to change their curriculum according to approved university steps and in consultation with an academic advisor from the college. Students must maintain a minimum overall GPA of 2.0 and meet all requirements and prerequisite coursework for the declared area of concentration and two minors. The minors will be recognized after graduation on the student’s transcript, but not on the student’s diploma.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
</tr>
<tr>
<td>ENGL 203</td>
<td>Writing about Literature</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 171</td>
<td>Calculus I</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 227 & CHEM 237</td>
<td>Organic Chemistry I and Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td>BIMS directed elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>American history (p. 29)</td>
<td>2</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
<td>2</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td>BIMS directed elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>VTPB 421</td>
<td>Infectious Diseases of Humans and Animals</td>
</tr>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Technical elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIMS 320/GENE 320</td>
<td>Biomedical Genetics</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Technical elective</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>General elective</td>
<td>7</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>6</td>
</tr>
<tr>
<td>Technical elective</td>
<td>4</td>
</tr>
<tr>
<td>General elective</td>
<td>7</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>19</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 120 |

1 Except MATH 167, PHIL 240.
2 Completion of four semesters of upper-level ROTC may be substituted for 3 hours of American history and 3 hours of political science.

Up to 9 course hours may be selected from BIMS 484, BIMS 485; BIMS 491; VIBS 285, VIBS 485, VLCS 485; VSCS 485; VTPB 285, VTPB 485, VTPP 285, VTPP 291, VTPP 485, VTPP 491. No more than 6 hours of BIMS 484 may be used. Restriction to be enforce by the BIMS advising office.

Used to satisfy the two minor requirements.

Select any 100-499 course not used elsewhere.

All students are required to complete 3 hours of International and Cultural Diversity (p. 47) credit (ICD) and 3 hours of Cultural Discourse (p. 46) (CD) credits. Select in consultation with academic advisor.
The School of Military Sciences is composed of three departments: Aerospace Studies, Military Science and Naval Science.

All courses offered by the School of Military Sciences are accredited by the University. However, the credit granted for degree plans varies by college and often by department. For precise information, consult the associate dean or department head.

The University’s commitment to providing highly skilled and disciplined leaders to the Armed Forces requires all students enrolled in ROTC programs at Texas A&M to be members of the Corps of Cadets.

Students not enrolled in an ROTC program may be permitted to take ROTC courses as electives with the advance approval of the professor of military science, the professor of aerospace studies, or the professor of naval science, as appropriate, and the concurrence of the head of the School of Military Sciences.

State law permits the substitution of 3 hours of history and 3 hours of political science for a student in the program of an approved senior ROTC unit. With the approval of the dean of the appropriate college, students successfully completing their required four semesters of upper-level ROTC curriculum will be deemed to have completed the equivalent of POLS 206 or POLS 207 plus HIST 105 or HIST 106 (or another appropriate course) for a total of 6 hours. Students pursuing teacher certification are not allowed to substitute ROTC credits for this requirement.

Undergraduate Studies’ units have modified services available to students enrolled via distance education, at branch campuses, or at other instructional locations.

Departments

Aerospace Studies (p. 775)

Military Science (p. 775)

Naval Science (p. 776)

Minors

• Military Studies Minor (p. 773)

Certificates

• Leadership Study and Development Certificate (p. 774)

Military Studies - Minor

The School of Military Sciences offers a minor in Military Studies. This minor is available to all Texas A&M students but is not required for ROTC or Corps of Cadets participation. Students should consult with an advisor in their major department to determine minor requirements. All students desiring to enroll in the Military Studies minor should contact the Assistant Commandant for Academics and International Programs in Room 211 of the Buzbee Leadership Learning Center, (979) 458-2829.

Program Requirements

The Military Studies minor requires 18 hours. Nine hours must be completed in approved upper-level Aerospace Studies, Military Science, or Naval Science courses with an additional 9 hours from approved university courses with a military-related focus. A minimum of 12 hours must be at the 300-400 level. A grade of C or higher is required if a course is to be counted towards the minor field. Minor programs are recognized on the transcripts after graduation, but not on the diploma. The student’s college and/or major department determines the number of minor programs a student may seek and shall be responsible for advising after the student receives signed approval from the Assistant Commandant for Academics and International Programs.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Military Science Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three of the following:</td>
<td>9</td>
</tr>
<tr>
<td>NVSC 303</td>
<td>Evolution of Warfare</td>
<td></td>
</tr>
<tr>
<td>NVSC 401</td>
<td>Naval Ships Systems II: Weapons</td>
<td></td>
</tr>
<tr>
<td>NVSC 402</td>
<td>Leadership and Ethics</td>
<td></td>
</tr>
<tr>
<td>NVSC 410</td>
<td>Fundamentals of Maneuver Warfare</td>
<td></td>
</tr>
<tr>
<td>AERS 303</td>
<td>Air Force Leadership Studies</td>
<td></td>
</tr>
<tr>
<td>AERS 304</td>
<td>Air Force Leadership Studies</td>
<td></td>
</tr>
<tr>
<td>AERS 403</td>
<td>National Security Affairs—Preparation for Active Duty</td>
<td></td>
</tr>
<tr>
<td>AERS 404</td>
<td>National Security Affairs—Preparation for Active Duty</td>
<td></td>
</tr>
<tr>
<td>MLSC 321</td>
<td>Adaptive Leadership and Tactical Operations I</td>
<td></td>
</tr>
<tr>
<td>MLSC 322</td>
<td>Adaptive Leadership and Tactical Operations II</td>
<td></td>
</tr>
<tr>
<td>MLSC 421</td>
<td>The Army Officer and the Profession of Arms I</td>
<td></td>
</tr>
<tr>
<td>MLSC 422</td>
<td>The Army Officer and the Profession of Arms II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Military Science Courses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select three from the following:</td>
<td>9</td>
</tr>
<tr>
<td>CLAS 371</td>
<td>In Search of Homer and the Trojan War</td>
<td></td>
</tr>
<tr>
<td>GEOG 320</td>
<td>The Middle East</td>
<td></td>
</tr>
<tr>
<td>GEOG 327</td>
<td>Geography of South Asia</td>
<td></td>
</tr>
<tr>
<td>GEOG 352/GEOG 352</td>
<td>GNSS in the Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 361</td>
<td>Remote Sensing in Geosciences</td>
<td></td>
</tr>
<tr>
<td>GEOG 390</td>
<td>Principles of Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 401</td>
<td>Political Geography</td>
<td></td>
</tr>
<tr>
<td>GEOG 420</td>
<td>Geography of Terrorism</td>
<td></td>
</tr>
<tr>
<td>GEOG 475</td>
<td>Advanced Topics in GIS</td>
<td></td>
</tr>
<tr>
<td>GEOG 352/GEOG 352</td>
<td>GNSS in the Geosciences</td>
<td></td>
</tr>
</tbody>
</table>
Leadership Study and Development - Certificate

In alignment with the mission and values of Texas A&M University and the Corps of Cadets, the Hollingsworth Center for Ethical Leadership (HCEL) offers a comprehensive collection of programs in character and leadership development. HCEL programs enhance participants’ capacities to be value-adding leaders in both the public and private sectors of the global workforce. Although initially designed for cadets not pursuing a military commission, HCEL programs are now available to all cadets and other Texas A&M University undergraduate students. Participating students hone their leadership skills through a rigorous progression of academic leadership courses, application of leadership experiences within the Corps and broader Texas A&M community, and the creation of a personal Individual Leadership Development Plan. Additional emphasis is given to the intentional development of career readiness competencies of critical thinking, teamwork, professionalism, oral/written communication, career management, digital technology, leadership, and global/intercultural fluency. The science and art of leadership, along with the career readiness competencies, can be learned, developed, and improved. The four-class system in the Corps of Cadets offers an excellent framework for progressive advancement in these areas. The HCEL capitalizes on that framework by creating ongoing opportunities for participants to discover and synthesize personal meaning from their academic and extracurricular experiences, both inside and outside the classroom.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOMS 380</td>
<td>Workshop in Leadership Education</td>
<td>1</td>
</tr>
<tr>
<td>SOMS 481</td>
<td>Seminar in Executive Leadership</td>
<td>1</td>
</tr>
<tr>
<td>Select from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALED 340</td>
<td>Survey of Leadership Theory</td>
<td></td>
</tr>
<tr>
<td>ALED 341</td>
<td>Team Learning</td>
<td></td>
</tr>
<tr>
<td>ALED 400</td>
<td>Public Leadership Development</td>
<td></td>
</tr>
<tr>
<td>BUSN 125</td>
<td>Business Learning Community I</td>
<td></td>
</tr>
<tr>
<td>BUSN 401</td>
<td>Mays Business Fellows I</td>
<td></td>
</tr>
<tr>
<td>COMM 210</td>
<td>Group Communication and Discussion</td>
<td></td>
</tr>
<tr>
<td>ENGR 482/AFST 482</td>
<td>Ethics and Engineering</td>
<td></td>
</tr>
<tr>
<td>PHIL 482</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBUS 452/PHIL 452</td>
<td>International Management</td>
<td></td>
</tr>
<tr>
<td>MGMT 452</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDIS 434</td>
<td>The Quality Process in Distribution</td>
<td></td>
</tr>
<tr>
<td>IDIS 444</td>
<td>Ethics and Leadership in Distribution</td>
<td></td>
</tr>
<tr>
<td>KINE 431</td>
<td>Ropes Course and Group Process</td>
<td></td>
</tr>
<tr>
<td>MGMT 363</td>
<td>Managing People in Organizations</td>
<td></td>
</tr>
</tbody>
</table>

Minimum of 6 hours of School of Military Sciences courses (NVSC, AERS, and MLSC) must be at the 400 level.
The Air Force ROTC (AFROTC) program at Texas A&M University is the largest AFROTC program in the United States and is designed to prepare selected students to be commissioned officers in the United States Air Force. The institutional phase of AFROTC, called aerospace studies, is divided into two parts. The first two years constitute the General Military Course and the second two years constitute the Professional Officer Course. Details on courses offered are set forth in the alphabetical departmental listing. Concurrent enrollment in more than one aerospace studies course requires the approval of the department head, also known as the Professor of Aerospace Studies.

The General Military Course consists of the 100- and 200-level courses. These courses focus on the structure and missions of Air Force organizations; officership and professionalism; and, include an introduction to communicative skills. The General Military Course prepares the cadet, as a candidate, for the Professional Officer Course (POC). Cadets in the General Military Course attend one hour of class plus two hours of leadership lab per week.

Students apply for enrollment in the Professional Officer Course during their sophomore year. Enrollment in the Professional Officer Course at the beginning of the junior year is limited to students of high moral character who are academically qualified, physically fit, possess the necessary interest and aptitude, and have demonstrated leadership potential.

Before entry into the Professional Officer Course, cadets must attend AFROTC Field Training during the summer months typically between the sophomore and junior academic years. The major areas of study in the Field Training program include junior officer training, aircraft and aircrew orientation, career orientation, survival training, base functions, Air Force environment, physical fitness training, and a culminating field training exercise. Those who complete Field Training are enlisted in the Air Force Reserve and enter the POC.

The purpose of the Professional Officer Course is to develop skills and attitudes vital to a career as a professional Air Force officer. A degree is a prerequisite for an Air Force commission. Cadets attend class three hours a week and leadership lab two hours per week during each semester of the Professional Officer Course.

If a student is selected for and enrolled in the Professional Officer Course, he or she must sign a contract with the government in which he or she agrees to enlist in the Air Force Reserve, complete the course and, upon graduation, accept a commission as an officer in the United States Air Force. He or she also must agree to serve on active duty for not less than four years after being commissioned. Persons selected for flight training must serve ten years of active duty following completion of pilot training. During their two years in the Professional Officer Course, cadets are eligible to receive monthly subsistence pay, plus added monetary incentives.

Leadership training is continuous during the student's life as an AFROTC cadet. One way this is accomplished is through Leadership Laboratory. Instruction is conducted within the framework of an organized cadet corps with a progression of experiences designed to develop each student's leadership potential. Leadership Laboratory involves a study of Air Force customs and courtesies, drill and ceremonies, Air Force career opportunities, and expectations of an Air Force junior officer. Students develop their leadership in a practical, supervised laboratory, which typically includes field trips to Air Force installations.

Students enrolled in the four-year program may apply and compete for two- or three-year AFROTC College Scholarships. The AFROTC In-College Scholarship Program is a highly competitive program aimed primarily at college freshmen and sophomores in any major. If selected for an AFROTC scholarship, the student will receive tuition payment, textbook allowance and monthly subsistence allowance.

Upon completion of the Professional Officer Course and graduation from the University, students are commissioned as Second Lieutenants in the United States Air Force. All instructors are active duty officers assigned to the University by the United States Air Force. Information about the Air Force ROTC program may be obtained by contacting the Detachment, or visiting the Air Force ROTC (http://afrotc.tamu.edu) website.

Military Science

Overview

The Army ROTC (AROTC) program at Texas A&M is the oldest on campus. AROTC cadets are proud contributors to the heritage of the "Fightin’ Texas Aggies." AROTC members are leaders in a wide variety of university activities including Student Government, campus athletics, the Fightin’ Texas Aggie Band Ross Volunteer Company, Rudder’s Rangers and Parsons Mounted Calvary. The Army ROTC Ranger Challenge Team is a perennial contender at both Regional and National levels, finishing in the top five at the Sandhurst competition hosted by the US Military Academy in consecutive years.

The Army offers a diverse career field to match a student’s education and interests, with virtually no restrictions on the major field of study or discipline with the exception of General Studies. The AROTC student may enter career fields such as engineering, military intelligence, communications, finance, personnel administration, medical services, transportation, aviation, law enforcement, artillery, armor or infantry. Engineering students are eligible to participate in the University’s chapter of the Society of American Military Engineers. Additional opportunities after commissioning are service in one of the U.S. Ranger Battalions and the Special Operations Community. Highly qualified applicants may compete to take part in the delayed entry program while pursuing medical or law degrees and selected cadets may attend specialty military training including Airborne, Air Assault, Cold Weather Operations Course, Combat Diver Qualification Course and Basic Mountaineering.
Curriculum

AROTC classes are unique in the college curriculum in offering both classroom instruction and hands-on leadership development opportunities. AROTC is divided into two parts: The Basic and Advanced Courses. The Basic Course is taken during freshman and sophomore years. Coursework covers the areas of military customs, leadership fundamentals, fire team maneuver, map reading, marksmanship and land navigation. Students develop and refine their leadership by participating in weekly tactical leadership labs and field training exercises. Corps of Cadets provide basic uniform issue and lessons are delivered electronically. There is NO military commitment for participation in the Basic Course. When applicable, AROTC provides additional uniforms.

In addition, any student participating in AROTC may attend Basic Camp at Fort Knox, Kentucky during the summer after their freshman or sophomore year. Basic Camp provides an immersive experience in basic Soldier skills and may replace any 100 and/or 200-level ROTC class for transferring students.

The Advanced Course is taken in the final two years of college and includes participation in Advanced Camp during the summer after the junior or senior year. Advanced Course instruction emphasizes advanced leadership development, organization ethics, critical thinking and problem solving, administration, and military law. Summer Advanced Camp at Fort Knox, Kentucky enables cadets to implement, in a field environment, the principles and theories acquired in the classroom. Those cadets taking the Advanced Course with a commissioning contract will incur a military obligation to serve either in the Active Duty Army, Army Reserves, or Army National Guard upon graduation.

Stipends

All cadets in the AROTC program and who have entered into a commissioning contract receive a subsistence allowance of $420 per month. AROTC cadets are encouraged to take courses in strategic languages. Through the Army’s Culture and Language Incentives Program, students can earn up to $300 per credit hour for completing classes in qualifying languages. In addition, AROTC sponsors the Cultural Understanding and Language Proficiency Program that affords students the opportunity to participate in month long immersion programs in over 40 countries.

Qualified students who join the Army National Guard or Army Reserve, may participate in the Simultaneous Membership Program (SMP) in which they earn approximately $250 per month. The total dollar amount for SMP cadets can reach $750 per month during their junior and senior years in ROTC. Tuition assistance, which pays between 75-100% of tuition costs, is available through the US Army Reserves and Texas National Guard.

Qualified veterans may enroll directly into the ROTC Advanced Course. Veterans in the Advanced Program receive a tiered subsistence allowance of up to $500 per month in addition to their veterans’ benefits.

Scholarships

The AROTC Scholarship program awards four-year and three-year advance designee scholarships on a competitive basis to students entering ROTC as college freshmen. Two-year, three-year, and 3.5 year scholarships also are available for college students already enrolled in ROTC. These scholarships pay the cost of tuition and required fees or room and board. Also included is a flat rate textbook allowance for the duration of the award. In all, a four-year scholarship can be worth over $58,000 at Texas A&M. Additional scholarship opportunities are available specifically for students participating in Science, Technology, Engineering, and Math majors that pay the same benefits as four and three-year ROTC scholarships.

The U.S. Army Health Profession Scholarship Program offers a unique opportunity for financial support to cadets who desire to continue their education beyond their undergraduate work by enrolling in a program leading to a professional degree in medicine, dentistry or veterinary medicine.

Contact

Texas A&M’s staff, having served multiple combat and operational deployments overseas, are dedicated to developing academically superior and physically fit commissioned officers recognized as outstanding leaders of character for the U.S. Army Officer Corps. For more information on Army ROTC programs, contact the Military Science Department at (979) 845-2814.

Naval Science

Mission

The Naval ROTC Unit at Texas A&M University provides qualified young men and women the opportunity to learn the mission of the Naval Services and pursue a commission as an officer in the United States Navy or United States Marine Corps. The Naval ROTC Unit operates as the Department of Naval Science at Texas A&M and is one of the largest Naval ROTC Units in the United States. Graduates from our program can be found serving around the world. Officers commissioned as Ensigns in the United States Navy have the option, based on physical and aptitude qualification, to serve in the Aviation (Pilot or Naval Flight Officer), Surface Warfare (Conventional or Nuclear), Nuclear Submarine, or Special Warfare (SEAL or Explosive Ordnance Disposal) communities. Officers commissioned as Second Lieutenants in the United States Marine Corps can serve in one of more than 36 military operational specialties in three categories including Aviation (Pilot or Naval Flight Officer), Combat Arms (Infantry, Artillery, Armor, Assault Amphibians, Combat Engineers, etc.), or Combat Service Support (Logistics, Supply, Data Processing, Finance, etc.).

Naval ROTC students may participate fully in all aspects of university life. This includes serving in positions with Student Government or the Memorial Student Center, belonging to campus clubs and service organizations, or participating in religious, social, professional or personal interest organizations. The NROTC Unit also sponsors and advises special units within the Corps of Cadets; SEAL Platoon and RECON Company.

Scholarships

The Naval ROTC program provides numerous scholarship opportunities for qualified individuals who are seeking a commission upon graduation as an officer in either the United States Navy or United States Marine Corps. The four-year Naval ROTC scholarship program is a nationally competitive program. High school students seeking a four-year Navy or Marine Corps Option Naval ROTC scholarship may apply as early as the spring of their junior year in high school, and should apply no later than December of their senior year in high school. College freshmen with less than 30 college credit hours may also apply for the 4-year Naval ROTC scholarship during the fall of their freshman year. If awarded the scholarship, it would come into effect during the fall of their sophomore year. The Naval ROTC scholarship pays for all tuition, most university fees, some uniform fees, and provides the student with a monthly stipend.
Students who choose to join the Naval ROTC, but do not intend to pursue a commission into the Navy or Marine Corps are considered Naval Science Students. They are required to take a Naval Science (NVSC) class and attend specified Leadership Laboratories. They are not required to do physical fitness with the NROTC or be advised by a military advisor.

Leadership

All Scholarship and College Program (Basic and Advanced Standing) NROTC students are also members of the Texas A&M Midshipman Battalion, an organization providing distinct training and leadership opportunities for students pursuing Navy and Marine Corps commissions. This training is accomplished through the NROTC’s Leadership Laboratory. Associated with each Naval Science class and conducted every Tuesday afternoon, Leadership Laboratory is a combination of classroom study and practical hands-on application that exposes the students to many facets of the Navy and Marine Corps and provides them the opportunity to develop their leadership skills.

Academic Requirements

Academic requirements vary by program, but all freshmen and sophomore Naval ROTC students must take a Naval Science (NVSC) class each fall and spring semester. These courses provide a basic understanding of the Navy and Marine Corps organization and mission; address the concepts of leadership, ethics, and management; and provide a basic understanding of the history of American sea power and the evolution of warfare throughout the ages. All Scholarship and College Program (Advanced Standing) students continue to take Naval Science courses during their junior and senior year. These courses cover additional topics such as navigation, weapons systems, amphibious warfare and leadership and ethics for the junior officer. All students on scholarship or College Program (Advanced Standing) can choose from any major offered by Texas A&M. Students who are recipients of the NROTC scholarship Navy option, must also complete two courses of calculus and two courses of physics, regardless of major.

Summer Cruise

Scholarship students receive four to six weeks of additional training every summer with operational Navy and Marine Corps units around the world. Between the freshman and sophomore years, students receive orientation training with naval aviation, surface combatant, submarine and Marine Corps units. Between the sophomore and junior years, Navy Option students experience the life of enlisted sailors aboard ships and submarines and Marine Option students experience the life of enlisted marines with Marine units in the field. For the final training session between the junior and senior years, all Scholarship and College Program (Advanced Standing) students receive service-specific training in final preparation for commissioning. Navy Option students are assigned to aviation units, surface combatants or submarines depending upon their qualifications and desires and receive hands-on training working closely with qualified junior officers. Marine Option students attend Officer Candidate School at Quantico, VA where they are screened, trained and evaluated in an intense, competitive environment alongside other Marine Option students from around the country. Students participating in summer cruises are provided government travel, medical and dental care, commissary and exchange privileges, and are paid for the duration of the training.

Commissioning

Upon graduation, qualified Naval ROTC Navy and Marine Option Scholarship students receive commissions as Ensigns in the United States Navy or as Second Lieutenants in the United States Marine Corps and serve a minimum of four years of active duty. Qualified Naval ROTC College Program (Advanced Standing) Navy Option students receive commissions as Ensigns in the United States Navy and serve a minimum of three years of active duty. Qualified Naval ROTC College Program (Advanced Standing) Marine Option students receive commissions as Second Lieutenants in the United States Marine Corps and serve a minimum of three and a half years of active duty. Those Navy Option graduates who are academically qualified and accepted to graduate school in certain disciplines may apply for active duty deferments to complete their postgraduate education.

NROTC Staff

The staff of the Naval Science Department is dedicated to producing officers of the highest quality for the United States Navy and United States Marine Corps. All instructors are active duty Navy or Marine Corps officers and senior enlisted personnel assigned to the University by the United States Navy or United States Marine Corps. In addition, they work with the Corps of Cadets and act as military advisors to the Companies/Outfits within the Naval regiments. This group of highly trained professionals places specific emphasis on the academic and professional development of every student assigned. Additional information about the Naval ROTC program at Texas A&M University can be obtained by calling the Department at (979) 845-1775, or by visiting the Texas A&M Naval ROTC website.
TEXAS A&M UNIVERSITY AT GALVESTON

General Statement

Texas A&M University at Galveston, a branch campus of Texas A&M University, offers ocean-oriented academic degrees, research, continuing education, and public service in marine science, engineering, business, transportation and liberal arts. Degrees are awarded from Texas A&M University. Ocean voyages, sailing in Galveston Bay, beachfront experiments and independent study complement the rigorous classroom experience at Texas A&M University at Galveston. In addition to its academic programs, the campus houses the Texas A&M Maritime Academy, which offers training programs leading to officer licensing in the U.S. Merchant Marine.

Texas A&M University at Galveston is located near the mouth of Galveston Bay with close access to the Gulf of Mexico. Most instructional programs are taught at the 130-acre Mitchell Campus on Pelican Island (with housing for 1,400+ students). The training ship serves as a floating classroom, laboratory and dormitory for annual sea term training of the U.S. Maritime Service cadets. During the regular school year, the ship is berthed at Pelican Island and provides valuable dockside laboratory facilities for instruction in the practical aspects of the maritime curricula.

Courses of Study

Texas A&M University at Galveston provides undergraduate degree programs in Marine Biology (MARB), Marine Sciences (MARS), Marine Engineering Technology (MARR), Marine Transportation (MART), Marine Fisheries (MARF), Maritime Business Administration (MARA), Maritime Studies (MAST), Coastal Environmental Science and Society, and University Studies (USGA) (with concentrations in Oceans and One Health, Marine Environmental Law and Policy, and Tourism and Coastal Community Development). A 5-year program is offered to allow Coastal Environmental Science and Society majors to complete the Master of Marine Resources Management (MARM) degree, combining their senior year of the undergraduate program with the first year of MARM. A similar 5-year program is offered to allow Maritime Business Administration majors to complete the Master of Maritime Business Administration and Logistics (MMAL) in addition to the bachelor’s degree program in a total of 5 years. All students complete the University Core Curriculum requirements set by Texas A&M University to ensure a broad-based education.

Texas A&M University at Galveston is fully accredited as a branch campus of Texas A&M University by the Southern Association of Colleges and Schools Commission on Colleges. Marine Engineering Technology is accredited by the Engineering Technology Accreditation Commission of ABET and the license option programs of the Texas A&M Maritime Academy including are certified by the U.S. Coast Guard.

U.S. Maritime Service Corps of Cadets

Texas A&M University at Galveston houses the Texas A&M Maritime Academy, one of six state maritime academies in the U.S., preparing graduates for licensing as officers in the American Merchant Marine. This program provides an opportunity for students to learn how to operate and maintain an ocean-going vessel. In addition to classroom and field training during the regular school year, students will sail aboard a training vessel or appropriate commercial placement during three sea terms to gain practical experience in seafarership, navigation and operations. At the conclusion of the program, cadets test to become licensed as officers in the U.S. Merchant Marine and may seek employment in the field of marine transportation as a licensed Third Mate or Third Assistant Engineer. Please see the tab title Texas A&M Maritime Academy.

The NROTC Program offers men and women an opportunity to qualify for a commission in the Navy while attending Texas A&M University at Galveston. All NROTC students are required to participate in the Texas A&M Maritime Academy Corps of Cadets. Any student may join the NROTC Program either as a National Scholarship winner or as a non-subsidized college program student. Applications for National Scholarships can be obtained through a Navy recruiting office before the submission deadline of January 30 of the year for which the student is applying.

Mission Statement

Texas A&M University at Galveston is a special-purpose institution of higher education for undergraduate and graduate instruction in marine and maritime studies in science, engineering and business and for research and public service related to the general field of marine resources. The institution is under the management and control of the Board of Regents of The Texas A&M University System, with degrees offered under the name and authority of Texas A&M University at College Station.

Research Programs

Faculty, post-doctoral fellows, research staff, and students are actively involved in research throughout the world. Research is conducted under the direction of more than 50 faculty members with funding from federal, state, private and university sources including the National Science Foundation, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, Department of the Interior, National Institutes of Health, Department of Energy, Environmental Protection Agency, Texas General Land Office, Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, CONACYT, Consortium for Ocean Leadership, Texas Institute of Oceanography and Research Development Fund. Externally funded research expenditures were over $4.1 million. Total research expenditures were over $5.6 million. Research encompasses both the basic and applied aspects of fields such as marine biology, oceanography, coastal/ocean engineering, marine geology, marine policy and management, environmental studies, conservation, business, admiralty law and coastal zone management. Research is focused largely in the areas of coastal and beach processes (e.g., physical profiling of coastal regions and erosion processes and control), marine life studies (e.g., marine mammal, fish, shellfish, algae and sea turtle biology and ecology), bay and estuary ecosystems (e.g., wetlands management and toxic contaminant analysis), geochemical cycling in marine/aquatic/atmospheric systems and offshore/deep water environments. Many of the faculty researchers hold dual graduate appointments in Texas A&M University at Galveston and/or Texas A&M University departments. Approximately 40 M.S. and
Ph.D. graduate students from the Texas A&M University departments of Wildlife and Fisheries Sciences, Ocean Engineering, Civil and Environmental Engineering, Biology, and Anthropology are conducting their research under a Texas A&M University at Galveston faculty member. Undergraduate students have many opportunities to participate in research, such as the Texas Institute of Oceanography Undergraduate Student Research Program, working as student workers and technicians on funded research programs, taking independent study classes or participating in the Undergraduate Research Scholars Program. Undergraduate students may work in the laboratory and at field sites throughout the world, participate in research cruises, present results at local, national and international meetings, and serve as authors on publications.

Administrative Officers

Col. Michael E. Fossum, USAFR (Ret.) - Chief Operating Officer, Texas A&M University at Galveston; Vice President, Texas A&M University; Superintendent, Texas A&M Maritime Academy

Dr. Patrick Louchouarn - Executive Associate Vice President for Academic Affairs and Chief Academic Officer, Texas A&M University at Galveston; Associate Provost, Texas A&M University

Dr. Donna C. Lang - Associate Vice President for Academic Operations

Ms. Susan Hernandez Lee - Associate Vice President for Finance and Compliance Officer

Mr. Grant W. Shallenberger - Associate Vice President for Administration and Auxiliary Services

Dr. Todd Sutherland - Associate Vice President for Student Affairs

Dr. Antonietta S. Quigg - Senior Associate Vice President for Research and Graduate Studies

Board of Visitors

Robert A. Fry, Jr. (Chairman)
Jonathan Whitworth (Vice Chairman)
Greg Binion
Christopher S. Cahill
Michael E. Cokinos
Thomas E. Farmer
William Fraser III
Pat Gamble
Billy Greer
Roger Guenther
Leonard Hale
John Hallmark
Amy Hark
Paul Hill
Randolph W. House
Peter D. Huddleston
Charlie Jenkins
William E. Jenkins
Chris Johnson
Shrub Kempner
Mark Lyons
Betty Massey
Keith W. McFatridge, Jr.
John J. Michael
Phyllis Milstein

B. Greg Mitchell
Jerry Mohn
Frank M. Muller, Jr.
L.C. Neely
Brandon H. Neff
Chris Orth
Victor R. Pierson
Wayne H. Prescott
Terry Ray
Brian Roy, Jr.
Robert T. Sakowitz
Mike Spiers
Todd Sullivan
Kelly Teichman
Andy Tirpak
Deepak Varshney
Tyson T. Voelkel
James A. Watson IV

General Information (p. 780)

Majors

Department of Foundational Sciences

• Bachelor of Science in University Studies, Oceans and One Health Concentration (p. 808)

Department of Liberal Studies

• Bachelor of Arts in Maritime Studies (p. 810)
• Bachelor of Science in University Studies, Marine Environmental Law and Policy Concentration (p. 811)
• Bachelor of Science in University Studies, Tourism and Coastal Community Development Concentration (p. 812)

Department of Marine Biology

• Bachelor of Science in Marine Biology (p. 824)
• Bachelor of Science in Marine Biology, License Option (p. 825)
• Bachelor of Science in Marine Fisheries (p. 827)

Department of Marine and Coastal Environmental Science

• Bachelor of Science in Coastal Environmental Science and Society (p. 815)
• Bachelor of Science in (p. 817)Coastal Environmental Science and Society and Master of Marine Resources Management, 5-Year Degree Program
• Bachelor of Science in Marine Sciences (p. 818)
• Bachelor of Science in Marine Sciences, License Option (p. 820)

Department of Marine Engineering Technology

• Bachelor of Science in Marine Engineering Technology (p. 829)
• Bachelor of Science in Marine Engineering Technology, License Option (p. 830)
Department of Maritime Business Administration
- Bachelor of Science in Maritime Business Administration (p. 832)
- Bachelor of Science in Maritime Business Administration and Master of Maritime Business Administration and Logistics, 5-Year Degree Program (p. 834)

Department of Maritime Transportation
- Bachelor of Science in Marine Transportation (p. 837)

Minors
- Clinical Laboratory Sciences Minor (p. 822)
- Coastal Environmental Science and Society Minor (p. 822)
- Diving Technology and Methods Minor (p. 813)
- Marine Biology Minor (p. 828)
- Maritime Business Administration Minor (p. 836)
- Maritime Studies Minor (p. 814)

Masters

Department of Marine Biology
- Master of Science in Marine Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/marine-biology-ms/)

Department of Marine and Coastal Environmental Science
- Master of Marine Resources Management in Marine Resources Management (http://catalog.tamu.edu/graduate/galveston/marine-and-coastal-environmental-science/mmrmm/)

Department of Maritime Business Administration
- Master of Maritime Business Administration and Logistics in Maritime Business Administration and Logistics (http://catalog.tamu.edu/graduate/galveston/maritime-business-administration/mmal/)

Doctoral

Department of Marine and Coastal Environmental Science
- Doctor of Philosophy in Marine and Coastal Management and Science (http://catalog.tamu.edu/graduate/galveston/marine-and-coastal-environmental-science/phd-mcms/)

Department of Marine Biology
- Doctor of Philosophy in Marine Biology (http://catalog.tamu.edu/graduate/colleges-schools-interdisciplinary/interdisciplinary/marine-biology-phd/)

General Information

General Information for Texas A&M University at Galveston Students

General Academics Major

The General Academics major at Texas A&M University at Galveston is to be utilized by continuing students who are not able to immediately enter their major of choice. A student must have completed at least one semester at TAMUG prior to entering the General Academics major. Entry into the major is not guaranteed; interested students must complete the General Academics Change of Major Application by the designated deadline and undergo review. A later deadline will be set for students who are suspended from their current major, but not from the campus. Review criteria for entry to the major will include the student’s ability to meet the minimum requirements to enter into their intended major in one to two semester(s), as well as review of any previous academic or honor code issues. Students admitted to the General Academics major have one (1) semester to work toward entry to their major of choice; an extension of one additional semester will be considered on a case-by-case basis.

For additional information, visit tamug.edu/slc/gacd (http://www.tamug.edu/slc/gacd/) or contact the Seibel Learning Center at (409) 741-4343.

Academic Deficiency

Any GPA below 2.0 at Texas A&M University at Galveston is considered academically deficient; this applies to term GPA, major GPA, and cumulative GPA. At the conclusion of each academic term, all students with a deficient GPA will be reviewed. Depending on the severity of their case, and extenuating circumstances when relevant, the student will be placed into one of the following categories:

- **Probation One** – Students placed on Probation One are able to fully continue within their program, but must show consistent progress towards regaining good standing. Failure to show consistent academic progress, per terms set by the academic department, could result in the student being moved to another deficiency category.
- **Probation Two** – Students placed on Probation Two are able to fully continue within their academic program, but must meet additional probationary terms as well as showing consistent progress towards regaining good standing. These terms include full completion of the Academic Coaching and Success program, as well as remediation as deemed appropriate by the academic department. Failure to meet the full terms of probation and/or to show consistent academic progress, per terms set by the academic department, could result in the student being moved to another deficiency category.
- **Departmental Suspension** – Students placed on Departmental Suspension will not be able to continue within their academic program. Any classes that student has registered for will be dropped, and they will not be able to register for additional classes until they have successfully applied and been accepted into a new major. Admission to another major is not guaranteed.
- **Campus Suspension** – Students placed on Campus Suspension will not be able to continue at Texas A&M University at Galveston for a
minimum of one (1) full semester. During that time, the student is required to develop an action plan addressing the specific issues causing their academic difficulty. After the semester suspension concludes, the student is eligible to reapply to the campus; readmission is not guaranteed.

- University Suspension — Students placed on University Suspension will not be able to continue at Texas A&M University for a minimum of 12 months. Following the completion of the 12-month suspension, the student may apply for readmission; readmission is not guaranteed.

For additional information, contact the Seibel Learning Center at (409) 741-4343.

Academic Calendar

Texas A&M University and Texas A&M University at Galveston Calendar

All dates and times are subject to change.

2020 Summer I

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 22</td>
<td>Friday. 5 p.m. Last day to register for first term classes. Refer to https://sbs.tamu.edu/billing-payments/due-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>May 26</td>
<td>Tuesday. First day of first term classes.</td>
</tr>
<tr>
<td>May 29</td>
<td>Friday. 5 p.m. Last day for adding/dropping courses for the first term.</td>
</tr>
<tr>
<td>June 15</td>
<td>Official census date for first term.</td>
</tr>
<tr>
<td>June 20</td>
<td>Monday. 5 p.m. Last day for all students to drop courses with no penalty for the first term (Q-drop).</td>
</tr>
<tr>
<td>June 26</td>
<td>Tuesday. Last day of first term classes.</td>
</tr>
<tr>
<td>June 29</td>
<td>Monday. First term final examinations.</td>
</tr>
<tr>
<td>July 3</td>
<td>Friday. noon. First term final grades due.</td>
</tr>
<tr>
<td>July 20</td>
<td>Monday. 5 p.m. Last day to apply for summer 2020 graduation online.</td>
</tr>
</tbody>
</table>

2020 Summer II

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
</tbody>
</table>

2020 Summer 10 Week Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 13</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2020.</td>
</tr>
<tr>
<td>May 22</td>
<td>Friday. 5 p.m. Last day to register for 10-week semester classes. Refer to https://sbs.tamu.edu/billing-payments/due-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 25</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
</tbody>
</table>
2020 Fall Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 26</td>
<td>First day of 10-week semester classes.</td>
<td></td>
</tr>
<tr>
<td>May 29</td>
<td>Last day for adding/dropping for the 10-week semester.</td>
<td></td>
</tr>
<tr>
<td>June 29</td>
<td>No 10-week semester classes.</td>
<td></td>
</tr>
<tr>
<td>July 3</td>
<td>Last day to apply for degrees to be awarded in summer 2020 without a late fee.</td>
<td></td>
</tr>
<tr>
<td>July 14</td>
<td>Last day for all students to drop courses with no penalty (Q-drop) for the 10-week semester.</td>
<td></td>
</tr>
<tr>
<td>July 20</td>
<td>Last day to apply for summer 2020 graduation online.</td>
<td></td>
</tr>
<tr>
<td>August 3</td>
<td>Last day to apply for all degrees to be awarded in summer 2020.</td>
<td></td>
</tr>
<tr>
<td>August 4-5</td>
<td>10-week semester final examinations for all students.</td>
<td></td>
</tr>
<tr>
<td>August 6</td>
<td>Grades due for degree candidates.</td>
<td></td>
</tr>
<tr>
<td>August 7</td>
<td>Last day for August undergraduate degree candidates to apply for Tuition Rebate in Howdy.</td>
<td></td>
</tr>
<tr>
<td>TBD*</td>
<td>Doctoral Commencement and Hooding Ceremony in College Station.</td>
<td></td>
</tr>
<tr>
<td>August 10</td>
<td>Final grades for 10-week semester due.</td>
<td></td>
</tr>
<tr>
<td>August 25-26**</td>
<td>All Galveston campus courses cancelled due to weather emergency and campus evacuation.</td>
<td></td>
</tr>
<tr>
<td>August 27-28</td>
<td>Galveston campus courses resume remotely.</td>
<td></td>
</tr>
<tr>
<td>August 28</td>
<td>Last day for adding/dropping courses for the fall semester, except for courses offered on the Galveston campus.</td>
<td></td>
</tr>
<tr>
<td>August 31</td>
<td>Galveston campus courses resume in person.</td>
<td>Last day for adding/dropping Galveston campus courses for the fall semester.</td>
</tr>
<tr>
<td>September 3</td>
<td>Fall official census date.</td>
<td></td>
</tr>
<tr>
<td>September 15</td>
<td>Undergraduate deadline to submit a request for change of curriculum.</td>
<td></td>
</tr>
<tr>
<td>September 17</td>
<td>Higher Education Center at McAllen courses begin face-to-face instruction.</td>
<td></td>
</tr>
<tr>
<td>September 18</td>
<td>Last day to apply for all degrees to be awarded in fall 2020 without a late fee.</td>
<td></td>
</tr>
<tr>
<td>September 30</td>
<td>Undergraduate degree plan approval deadline.</td>
<td></td>
</tr>
<tr>
<td>October 5</td>
<td>Mid-semester grades due.</td>
<td></td>
</tr>
<tr>
<td>November 5-18</td>
<td>Preregistration for 2021 spring semester.</td>
<td></td>
</tr>
<tr>
<td>November 10</td>
<td>Last day for all students to drop courses with no penalty (Q-drop).</td>
<td></td>
</tr>
<tr>
<td>November 18</td>
<td>Bonfire 1999 Remembrance Day.</td>
<td></td>
</tr>
<tr>
<td>November 23</td>
<td>Pursuant to Student Rule 8.3 (http://student-rules.tamu.edu/rule08/), no regular course examinations (except for laboratory and one-hour courses) shall be given during the 15th week of classes.</td>
<td></td>
</tr>
<tr>
<td>November 24</td>
<td>Last day of fall semester classes. Last day for face-to-face meetings to be held. All assignments and projects that require face-to-face interaction must be completed at this time. The only remaining graded activities that are permissible are those which may be accomplished remotely and final exams. Pursuant to Student Rule 8.3 (http://student-rules.tamu.edu/rule08/), no regular course examinations (except for laboratory and one-hour courses) shall be given during the 15th week of classes.</td>
<td></td>
</tr>
</tbody>
</table>

Due to the global COVID-19 coronavirus pandemic and restrictions on event sizes announced by the White House, Summer graduation ceremonies were postponed.

2020 Fall Semester

- **August 12**: Wednesday. Graduation application opens for all students planning to graduate in December 2020.
- **August 18**: Tuesday. Last day to register for fall semester classes. Refer to http://finance.tamu.edu/sbs (http://finance.tamu.edu/sbs/) for tuition and fee due dates.
- **August 19**: Wednesday. First day of fall semester classes.
- **August 24**: Monday. All Galveston campus courses held remotely in preparation for campus response to tropical weather activity in the Gulf of Mexico.
In response to regional coronavirus conditions, all courses offered at the Texas A&M University Higher Education Center at McAllen will be delivered remotely for the first four weeks of the fall 2020 term starting on August 19, 2020 and returning for face-to-face or other previously arranged delivery instruction September 17, 2020. This four-week period of remote instruction applies only to courses offered at the HECM and does not impact courses taught at any other Texas A&M University locations.

Texas A&M University at Galveston – Modified for Hurricane Laura.

2021 Spring Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 25</td>
<td>Wednesday. Final exam preparation day (Reading day), no classes.</td>
</tr>
<tr>
<td>November 26-27</td>
<td>Thursday-Friday. Thanksgiving Holiday.</td>
</tr>
<tr>
<td>November 30</td>
<td>Monday. Final exam preparation day (Reading day), no classes.</td>
</tr>
<tr>
<td>December 1-4, 7-9</td>
<td>Tuesday-Friday. Monday-Wednesday. Fall semester final examinations for all students.</td>
</tr>
<tr>
<td>December 5</td>
<td>Saturday, 10 a.m. Doctoral Commencement and Hooding Ceremony in College Station.</td>
</tr>
<tr>
<td>December 10</td>
<td>Thursday, 6 p.m. Grades due for degree candidates.</td>
</tr>
<tr>
<td>December 11</td>
<td>Friday, 5 p.m. Last day for December undergraduate degree candidates to apply for Tuition Rebate in Howdy.</td>
</tr>
<tr>
<td>December 12</td>
<td>Saturday. Commencement and Commissioning - Bachelor and Master's Degrees in College Station.</td>
</tr>
<tr>
<td>December 14</td>
<td>Monday, noon. Final grades for all students due.</td>
</tr>
<tr>
<td>December 24 - January 1</td>
<td>Thursday-Friday. Faculty and Staff holiday.</td>
</tr>
</tbody>
</table>

Important Dates

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 6</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in May 2021.</td>
</tr>
<tr>
<td>January 15</td>
<td>Friday, 5 p.m. Last day to register for spring semester classes. Refer to https://sbs.tamu.edu/resources/important-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>January 18</td>
<td>Monday. Martin Luther King, Jr. Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>January 19</td>
<td>Tuesday. First day of spring semester classes.</td>
</tr>
<tr>
<td>January 25</td>
<td>Monday, 5 p.m. Last day for adding/dropping courses for the spring semester.</td>
</tr>
<tr>
<td>February 3</td>
<td>Wednesday. Spring official census date.</td>
</tr>
<tr>
<td>February 15</td>
<td>Monday. Undergraduate deadline to submit a request for change of curriculum.</td>
</tr>
<tr>
<td>February 19</td>
<td>Friday. Last day to apply for all degrees to be awarded in spring 2021 without a late fee.</td>
</tr>
<tr>
<td>March 8</td>
<td>Monday, noon. Mid-semester grades due.</td>
</tr>
<tr>
<td>March 15-19</td>
<td>Monday-Friday. Spring break.</td>
</tr>
<tr>
<td>March 17-19</td>
<td>Wednesday-Friday. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>April 1-16</td>
<td>Thursday-Friday. Preregistration for the 2021 first term, second term, 10-week summer semester and fall semester.</td>
</tr>
<tr>
<td>April 2</td>
<td>Friday. Reading day, no classes.</td>
</tr>
<tr>
<td>April 20</td>
<td>Tuesday, 5 p.m. Last day for all students to drop courses with no penalty (Q-drop).</td>
</tr>
<tr>
<td>May 3</td>
<td>Monday. Pursuant to Student Rule 8.3, no regular course examinations (except for laboratory and one hour courses) shall be given during the 15th week of classes.</td>
</tr>
<tr>
<td>May 19</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2021.</td>
</tr>
</tbody>
</table>

2021 Summer Term I

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 19</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2021.</td>
</tr>
</tbody>
</table>
2021 Summer Term II

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 28</td>
<td>Friday, 5 p.m. Last day to register for first term classes. Refer to https://sbs.tamu.edu/resources/important-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 31</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>June 1</td>
<td>Tuesday. First day of first term classes. Undergraduate change of curriculum period begins.</td>
</tr>
<tr>
<td></td>
<td>See Student Rule 5.1, https://student-rules.tamu.edu/rule05.</td>
</tr>
<tr>
<td>June 4</td>
<td>Friday, 5 p.m. Last day for adding/dropping first term classes.</td>
</tr>
<tr>
<td></td>
<td>Official census date for first term classes.</td>
</tr>
<tr>
<td>June 21</td>
<td>Monday, 5 p.m. Last day for all students to drop courses with no penalty for the first term (Q-drop).</td>
</tr>
<tr>
<td></td>
<td>5 p.m. Last day to change Kinesiology 198/199 grade type for the first term.</td>
</tr>
<tr>
<td></td>
<td>5 p.m. Last day to officially withdraw from the University for the first term.</td>
</tr>
<tr>
<td>June 28</td>
<td>Monday. Undergraduate deadline to submit a request for change of curriculum.</td>
</tr>
<tr>
<td>July 2</td>
<td>Friday. Last day of first term classes.</td>
</tr>
<tr>
<td>July 5</td>
<td>Monday. First term final examinations.</td>
</tr>
<tr>
<td></td>
<td>5 p.m. Last day to register for second term classes.</td>
</tr>
<tr>
<td></td>
<td>Refer to https://sbs.tamu.edu/resources/important-dates</td>
</tr>
<tr>
<td>July 9</td>
<td>Friday. First term final grades due at noon.</td>
</tr>
<tr>
<td></td>
<td>Last day to apply for degrees to be awarded in summer 2021 without a late fee.</td>
</tr>
<tr>
<td>July 26</td>
<td>Monday, 5 p.m. Last day to apply for summer 2021 graduation online.</td>
</tr>
<tr>
<td></td>
<td>5 p.m. Summer 2021 Degree Candidates: Degree Requirement Verification http://registrar.tamu.edu/Graduation-Degree-Programs/Graduation-Diplomas/Degree-Requirement-Verification deadline per Student Rule 14.2</td>
</tr>
</tbody>
</table>

2021 10-Week Summer Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 19</td>
<td>Wednesday. Graduation application opens for all students planning to graduate in August 2021.</td>
</tr>
<tr>
<td>May 31</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>June 1</td>
<td>Tuesday. First day of 10-week classes. Undergraduate change of curriculum period begins.</td>
</tr>
<tr>
<td></td>
<td>See Student Rule 5.1, https://student-rules.tamu.edu/rule05.</td>
</tr>
<tr>
<td>June 28</td>
<td>Monday. Undergraduate deadline to submit a request for change of curriculum.</td>
</tr>
<tr>
<td>June 4</td>
<td>Friday, 5 p.m. Last day for adding/dropping 10-week classes.</td>
</tr>
<tr>
<td></td>
<td>Official census date for 10-week classes.</td>
</tr>
<tr>
<td>June 5</td>
<td>Monday. No 10-week classes.</td>
</tr>
<tr>
<td>July 9</td>
<td>Friday. Last day to apply for degrees to be awarded in summer 2021 without a late fee.</td>
</tr>
</tbody>
</table>

2021 10-Week Summer Semester

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 28</td>
<td>Friday, 5 p.m. Last day to register for 10-week semester classes. Refer to https://sbs.tamu.edu/resources/important-dates for tuition and fee due dates.</td>
</tr>
<tr>
<td>May 31</td>
<td>Monday. Memorial Day. Faculty and Staff holiday.</td>
</tr>
<tr>
<td>June 1</td>
<td>Tuesday. First day of 10-week classes. Undergraduate change of curriculum period begins.</td>
</tr>
<tr>
<td></td>
<td>See Student Rule 5.1, https://student-rules.tamu.edu/rule05.</td>
</tr>
<tr>
<td>June 4</td>
<td>Friday, 5 p.m. Last day for adding/dropping 10-week classes.</td>
</tr>
<tr>
<td></td>
<td>Official census date for 10-week classes.</td>
</tr>
<tr>
<td>June 5</td>
<td>Monday. No 10-week classes.</td>
</tr>
<tr>
<td>July 9</td>
<td>Friday. Last day to apply for degrees to be awarded in summer 2021 without a late fee.</td>
</tr>
</tbody>
</table>
Applicants may apply for admission to any program on the Galveston campus at a separate application from Texas A&M University at College Station.

Admission into Texas A&M University at Galveston (TAMUG) requires an additional application. Acceptance to an academic program by the Office of Admissions does not constitute admission to the TAMMA and U.S. Maritime Service License Option Program. Full information regarding TAMMA application and required documents is located at http://www.tamug.edu/corps/apply.html.

To obtain an information packet or schedule a campus visit, call toll free at 1-87-SEAAGGIE, write Office of Admissions, Texas A&M University at Galveston, P. O. Box 1675, Galveston, TX 77553-1675, or visit http://www.tamug.edu/admissions (http://www.tamug.edu/admissions/).

Admission Statement and Policy on Individuals with Disabling Conditions

Texas A&M University at Galveston has a strong institutional commitment to the principle of diversity in all areas. In that spirit, admission to Texas A&M University and any of its sponsored programs is open to all qualified individuals. Texas A&M does not discriminate on the basis of an individual’s disability and complies with Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) as amended in its admissions, accessibility, treatment and employment policies and procedures in effect for 2020 admission.

Admission to the Texas A&M Maritime Academy (TAMMA) requires an additional application. Acceptance to an academic program by the Office of Admissions does not constitute admission to the TAMMA and U.S. Maritime Service License Option Program. Full information regarding TAMMA application and required documents is located at http://www.tamug.edu/corps/apply.html.

To obtain an information packet or schedule a campus visit, call toll free at 1-87-SEAAGGIE, write Office of Admissions, Texas A&M University at Galveston, P. O. Box 1675, Galveston, TX 77553-1675, or visit http://www.tamug.edu/admissions (http://www.tamug.edu/admissions/).

Applying for Admission

Both Texas resident and non-resident students can apply for undergraduate admission to any Texas Public University for freshman, transfer and international admission by using the ApplyTexas Application. You may access the appropriate application from the ApplyTexas application website www.applytexas.org (http://www.applytexas.org/).

The application for Spring 2021, the application deadline is December 1, 2020. While they are the best guide available, admission criteria are subject to change. The TAMU Galveston website (www.tamug.edu (http://www.tamug.edu)) contains the admission policies and procedures in effect for 2020 admission.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.

Admission Deadlines

- The application for Freshman admission will be available July 1, 2019. The application deadline for domestic freshman is March 1, 2020, with all supporting documents submitted by March 15, 2020 to be considered for admission.
- The application for Transfer admission will be available July 1, 2019. The application deadline is June 30, 2020.
- The application for an International Freshman student is due:
 - To apply for Fall 2020, the application deadline is December 1, 2019.
 - To apply for Spring 2021, the application is available from April 1, 2019 to August 1, 2019.
• The application for an International Transfer student is due:
 • To apply for Fall 2020, the application deadline is December 1, 2019.
 • To apply for Spring 2020, the application is available from April 1, 2019, and the deadline is August 1, 2019.
• The application for Readmission will be available July 1, 2019 for Fall 2020. The application deadline for readmission is June 30, 2020.
• The application for Post Baccalaureate admission will be available July 1, 2019. The application deadline is May 30, 2020.
• The application for Non-degree Seeking admission will be available July 1, 2019. The application deadline is June 30, 2020.

Required Immunizations
• Texas Education Code (TEC) 51.9192 requires all entering students (under the age of 22) to provide evidence of vaccination against bacterial meningitis received within the last 5 years or a signed affidavit declining the vaccine at least 10 days prior to the start of classes for any given semester. Learn more about bacterial meningitis at http://www.tamug.edu/admissions/BacterialMeningitis.html.

Guidelines for Requesting Application Fee Waivers:
Fee waivers are not available for international students.

Freshman Waivers
Applicants who qualify for federally funded free/reduced lunch programs may qualify for a fee waiver. Students must certify their eligibility on the application. Please see our admissions website, http://www.tamug.edu/admissions (http://admissions.tamu.edu/freshman/apply/admissions (http://catalog.tamu.edu/undergraduate/galveston/general-information/www.tamug.edu/admissions/), for additional information relating to fee waivers.

Transfer or Readmit Waivers
To request a fee waiver, please provide your Student Aid Report (SAR), which you will find within your current FAFSA or a copy of an award letter from your current institution. Check the fee waiver box on the application will not satisfy the fee waiver requirement. The documents can be uploaded through the Applicant Information System (AIS) portal, faxed to (409) 740-4731 or provided by U.S. mail.

All fee waiver request documents may be mailed to the following address:
Texas A&M University at Galveston
Office of Admissions
P. O. Box 1675
Galveston, TX 77553-1675

Information concerning credit by examination may be obtained from the Seibel Learning Center Staff, (409) 741-4343. For information regarding current procedures for accepting credit, please visit the Seibel Learning Center (http://www.tamug.edu/slsc) website.

Gateway Program
The Galveston Gateway Program helps incoming students become fully prepared for their academic program. Students will be selected for the Gateway Program during initial review of their application for admission to the University; any student offered provisional admission through the Gateway Program is required to satisfactorily complete the program in order to gain full admission to the University.

Galveston Gateway students begin at TAMUG for the Summer II term and complete preparatory coursework, some of which will apply towards their major. At the conclusion of the Summer term, students who have met the terms of the program will continue as full students in good standing for the Fall term. Students who do not meet the terms of the program will be reviewed for possible continuation on probation or full suspension.

For additional information, contact the Seibel Learning Center at (409) 741-4343.

Entry to a Major – College of Engineering
Freshmen in General Engineering, Engineering at Galveston, or Engineering Academy programs have a common first year engineering curriculum to allow time for students to learn about the 17 engineering degree granting majors. It is recognized that in most cases students are not made aware of all of our engineering majors while in high school. Students are introduced to the different engineering majors in the first year engineering courses. Students are encouraged to leverage additional resources, including the career center, faculty, as well as advisors to get career advice. Students must complete the following courses in at least two semesters before applying to an engineering major: two engineering courses, two math courses, and two science courses in the freshman year engineering curriculum. Exceptions will be made as needed for students entering with credit for the required courses. The entry-to-a-major process is designed for students to take ownership of their future to identify at least three majors that are a good match for their career goals and academic performance. The entry-to-a-major process is designed to place students in the highest rank major possible based upon capacity and student performance. Students are encouraged to be in a major as early as possible. Students in the General Engineering and Engineering at Galveston programs must be in a major by the end of the third semester in engineering. Students in the Engineering Academy program must be in a major by the end of the fourth semester in engineering.

Transfer students are admitted directly to a degree granting major through the admissions process.

Tuition and Fees
Tuition and Fees for Texas A&M University at Galveston

Payment of Tuition and Fees (p. 787)
One Time Only Fees (p. 787)
Housing and Meal Plans (p. 788)
Tuition and Fees: Texas Resident and Non-Texas Resident (Both undergraduate and graduate) (p. 788)
Tuition and Fees: Texas A&M Maritime Academy Cadets (p. 788)

S (p. 788)ea Term
Other Expenses (p. 788)
Students Dropped for Non-Payment (p. 788)
Payment of Tuition and Fees

Students must meet all financial obligations to the University by their due dates to avoid late penalties, regardless of timing of payment assistance (scholarships, loans, tuition assistance, etc). Failure to pay amounts owed may result in cancellation of the student’s registration and their being barred from future enrollment and receiving official transcripts. Students who wish to pay fees in installments can select the option on the My Finances tab at their Howdy portal at https://howdy.tamu.edu/cp/home/displaylogin (https://howdy.tamu.edu/cp/home/displaylogin/).

- Payments to Student Business Services may be in the form of cashier's check, personal check, debit card or money order payable to Texas A&M University at Galveston (or TAMUG). All checks and money orders are accepted subject to final payment. Debit cards are also accepted in person. Cash is not accepted at the Cashier's booth.
- Discover, Mastercard and American Express credit cards and E-checks are accepted for tuition and fee payments over the website at the Howdy Portal/ My Finance Tab. Convenience fees of 2.25% will be charged for online credit card transactions, with a minimum $3 charge. Visa credit cards cannot be used for payment.

No tuition and fee statements will be mailed. Notices of amounts owed should be obtained through the Howdy Portal/ My Finance Tab at https://howdy.tamu.edu/cp/home/displaylogin (https://howdy.tamu.edu/cp/home/displaylogin/). An email will be sent to a student's University email address (email.tamu.edu) when the tuition and fee statement is available to view online. Students must use their Howdy NetID and password to log into these two programs.

Students who plan to pay their bill in full by the due date will receive notification through their University email address that the fee statement is available to view online and when tuition is due and payable.

Students may choose to pay tuition and fees in installments. Students on the installment plan will receive notification through their University email account that the fee statement is available to view online and when each installment payment is due and payable. In addition, students will be notified through this medium when any changes have occurred to their tuition and fee statement and if and when they have a refund available. All financial aid or loans must be accepted before being applied toward the student's account.

Late Payment Penalty

There are severe penalties for failure to pay student account balances and installments by their specified due dates. If a payment is delinquent when a semester ends, the student will be blocked and may not receive credit for academic work performed. Students will not be readmitted to the University until all past due balances, including late charges, are paid. A late fee of $25 will be assessed for each payment not received on or before it is due. If a student is removed from the rolls of the University or is withdrawn for failure to pay amounts owed the University, a reinstatement fee of $200 will be assessed in addition to any other late fees or penalties already incurred and must be paid before the student will be reinstated. Current due dates can be found at the Student Business Services website.

Late Registration Fees

Students who register on or after the first day of classes are assessed a late registration fee of $100. Students who register after the official census date (12th class day for fall and spring, 4th day for summer) are assessed a late registration fee of $200. Students who add classes after the official census date are assessed a late fee of $50. Note: Penalties, late registration and late add fees also apply to students who are required to re-enroll because their registrations were cancelled for nonpayment. Registrations are subject to cancellation and/or financial penalties if sufficient payment is not received before 5:00 p.m. on the semester due date.

Use of Collection agencies and Credit Bureau

If amounts become past due, the University reserves the right to report the account to the Credit Bureau. This will also initiate internal collection efforts and could cause the University to employ an outside collection agency to collect the debt. If any collection efforts must be made, the student will be required to reimburse the University for the fees of any collection agency, which may be based on a percentage at a maximum of 30% of the debt, and all costs and expenses, including reasonable attorney’s fees the University incurs in such collection efforts.

Cancelling Registration

Once students have registered for classes, they must select one course of action from the following to remain in good standing with the University:

- pay all amounts due by the specified due date.
- use the online registration to drop all classes prior to the first day of classes.
- initiate the withdrawal process online in Howdy to begin the process to withdraw from the University after the first day of classes.

Following this procedure is especially important for students who have been awarded scholarships or financial aid since the aid may automatically pay tuition and fees and cause the registration to be held even though the student has decided not to attend. Failure to request cancellation of an unwanted registration may result in grades of F or I in all courses for the semester. The student will be required to reimburse the University for scholarships and other financial aid applied to his or her account and will be held responsible for paying all fees for the semester, regardless of whether he or she attended classes.

Cancellation for Nonpayment of Tuition and Fees

The University reserves the right to cancel registrations not paid by their due date, or the official census date for a semester or summer term, to comply with state laws requiring payment of tuition and fees, to free the classroom spaces for other students, and to ensure the most efficient use of university resources.

One Time Only Fees

<table>
<thead>
<tr>
<th>Fee Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Application (not refundable)</td>
<td>$ 75.00</td>
</tr>
<tr>
<td>Freshman New Student Conference Fee (not refundable)</td>
<td>$ 225.00</td>
</tr>
</tbody>
</table>
New Transfer Student Conference Fee (not refundable) $153.00
General Property Deposit (refundable) $100.00

Housing and Meal Plans

With limited exception, all undergraduate students enrolled in more than nine credit hours are required to reside in campus housing (if available) and are required to purchase a meal plan. Information concerning a request to live off-campus can be obtained at http://www.tamug.edu/cll/PoliciesProcedures.html (http://www.tamug.edu/reslife/Housing/Campus%20Housing%20Requirement.html). Any student living off campus at the beginning of the semester who adds enough hours to require living on campus must pay for room and board for the entire semester. Residence hall fees are included in the fee schedules at http://www.tamug.edu/cll/HousingOptions.html#Pricing (http://www.tamug.edu/reslife/Housing/HallSpecifics.html). In certain cases, single room housing is offered. The fee for that room is the normal rate plus 50%.

Upon admission to the University, students who will be living on campus must submit a $75 housing application fee to reserve their spot in the residence halls. A waiver for the housing application may be submitted. To do so, the student should submit the housing application with an attached letter stating reasons for the waiver request. In order to be considered, the student must have a FAFSA submitted to TAMUG. The waiver request can be emailed to reslife@tamug.edu or mailed to TAMUG Residence Life, P.O. Box 1675, Galveston, TX, 77553-1675.

Students requesting to change meal plans during the semester will have 20 days from the first class day to make any changes and the cost of those changes will adhere to the University’s refund schedule. Requests for changes to a meal plan after the 20 day period will not be permitted. All changes must be made through the Dining Services Office at (409) 740-4508.

Meal Plan Fees:
- For On Campus: https://new.dineoncampus.com/tamug/for-on-campus
- For Off Campus: https://new.dineoncampus.com/tamug/for-off-campus

Tuition and Fees: Texas Resident and Non-Texas Resident (Both undergraduate and graduate)

Tuition and fees can be found at http://tuition.tamu.edu/galveston. The student will need to know his/her chosen tuition plan for determination of his/her tuition and fees.

Tuition and Fees: Texas A&M Maritime Academy Cadets

Cadets enrolled in MARB-LO, MARS-LO, MART or MARR-LO curricula pay a special tuition rate regardless of their state residency status (in-state or out-of-state). License Option students who are residents of the state of Texas will pay instate tuition plus $12.50 per semester credit hour. License Option Students from states other than Texas will pay the instate variable plan plus $12.50 per semester hour plus a Differential Tuition of $300.00 per semester hour.

Tuition and fees can be found at http://tuition.tamu.edu/galveston. The Cadet’s cohort will determination the applicable Tuition and Fees. NROTC Midshipmen, Drill and Ceremonies Cadets or International Cadets are not eligible for this special License Option tuition and must pay normal Texas Resident or Non-Resident as applicable.

Summer Sea Term

Cadets in the License Option Program must achieve the minimum sea service aboard ships required by the U.S. Coast Guard within four (4) years. In order to obtain federal financial aid, students must enroll in a minimum of six semester credit hours during the summer term. Cadets may meet this requirement by completing two additional semester credit hours by distance or by completing an additional course on campus.

Either of these options will result in additional tuition expenses.

The Summer Sea Term expense for training aboard the Texas A&M Maritime Academy assigned training ship or a designated alternate ship includes tuition and fees plus a sea term (cruise) fee. There could be additional travel expenses to and from the ports plus lodging in addition to the cost of the sea term which is estimated to be between $11,500 to $12,500. The Summer Sea Term meal plan expense includes state and city tax of 8.25%.

Other Expenses

This may include uniforms with an initial outlay of $1,500, special training such as Fire Fighting School and incidentals.

Students who are dismissed or withdraw from a license-option degree plan after the semester begins will have fees adjusted to the appropriate resident or nonresident rate retroactive to the beginning of the semester.

License-option Cadets who are granted a leave of absence for the summer and who enroll in the onshore summer program at the Mitchell Campus instead of the summer sea term will pay license-option fees as appropriate for that period.

License-option Cadets must complete all required sea service within four (4) years.

Emergency Tuition and Fee Loans

Emergency tuition and fees loans are available to help students get through the crunch at fee payment time. Students can borrow up to the amount of their tuition and fees for a maximum term of 90 days in the Fall and Spring semester and 30 days in the Summer semester. The loan proceeds are applied directly to the student’s account to cover current due charges. Students that anticipate their financial aid or some other third party payment may be delayed are encouraged to pursue an emergency tuition and fees loan so they will not get dropped from their classes or incur additional fees. Students may apply for this loan at the Howdy Portal/ My Finance Tab.

Short term loans are also available to pay optional fees, such as residence hall fees, meal plans, parking, etc. They can be repaid within 12 months. To qualify you must be registered for 6 hours in the fall or spring semester and 3 hours in the summer term and be clear of all past due loans and blocks. To obtain short term loans, students should consult with Student Business Services, located in the Main Building Suite 104 or at 409-740-4434.

Returned Payments

If a check or ACH payment accepted by Student Business Services, the bookstore or any other campus department is returned unpaid by the bank on which it is drawn, a penalty of $30 will be assessed. The...
returned check or ACH payment and the penalty fee must be paid with cashier’s check, money order or credit card online. If not redeemed, the student may be dropped from the University. Student accounts will be blocked for future registration and transcripts. The student is eligible for reinstatement after payment of penalties, a $50 reinstatement fee and redemption of the check or ACH payment. If Student Business Services receives three returned checks or ACH payments from one student, the University will no longer accept this payment type for the student.

Fees
Please note that not all fees listed below are relevant to all students.

Application Fee
Students who submit an application for undergraduate studies pay a $75 fee. Students who submit an application for graduate studies pay a $50 fee. International students pay a $90 application fee.

Career Center Fee
This $35 fee is required of students in the semester they register for on-campus interviews to support full-time and internship placement services. This fee is optional if the student desires to access career services through Texas A&M University in College Station.

Commercial Cruise Fee
A fee of $1200 will be charged for all license option students sailing on a commercial cruise.

Distance Education Fee
$46 per semester credit hour is assessed to students taking courses using distance education resources.

Field Trip Fees
A field trip fee ranging from $15 to $5,740 may be charged for courses that include field trips.

Diploma/Graduation Fee
A non-refundable fee of $47.50 per degree sought is assessed the semester a student applies for graduation. This must be paid within the first 15 class days of the student’s final semester. Late payment of the Graduation Fee will result in a $50 late charge.

International Student Service Fee
International students who are not sponsored are assessed a $85 fee each semester to defray administrative support costs.

Independent Study Abroad Fee
In the event that a student is planning to Study Abroad, this fee of $100 is to cover services provided by the TAMU Study Abroad Office.

International Student Health Insurance
International students (students who are not U.S. Citizens or Lawful Permanent Residents of the United States) enrolled at Texas A&M are required to have health insurance. International students will be automatically enrolled in and charged for the System Student Health Insurance Plan (SSHIP) unless they apply for and are granted a waiver. Individually purchased plans from vendors other than the Texas A&M University System provider will not be eligible for a waiver of automatic enrollment in the SSHIP. This is to ensure that medical treatment will be available in the event of injury or illness during enrollment at the University. This requirement includes students enrolled in extensive English language programs. Full-time English Language Institute (ELI) students should contact ELI for information. All other international students can receive more detailed information about this requirement by visiting http://admissions.tamu.edu/international/iss/ (http://admissions.tamu.edu/international/iss/). Specific questions may be directed to International Student Services by emailing ISS@tamu.edu.

General Property Deposit
A deposit of $100 is required of every student to ensure the institution against losses, damages, and breakage for which the student is responsible, or to be used to offset in part amounts owed by the student to the institution. General deposits are returned to students, less any such amounts owed to the institution, within a reasonable period after the date of the student’s withdrawal or graduation from the institution, not to exceed 180 days. The deposit retention period provides the University sufficient time to identify all amounts owed and to determine if the student intends to enroll in the semester or summer session immediately following the student’s withdrawal or graduation or, if the student withdraws or graduates in the spring semester, in the next fall semester. If a student leaves the University without graduating or officially withdrawing, they must submit a written request to Student Business Services to receive a refund of their deposit. Deposits for students that do not graduate, withdraw or otherwise request a refund remain on file for four years. Those deposits are forfeited to the University’s General Deposit Scholarship Fund, after deducting any amounts owed the University.

Health Services Fee
This fee is required of all students enrolled in Galveston-based classes at the rate of $44.50 for each regular semester, $44.50 for the summer training cruise, and $22.25 per five-week summer term. This fee will finance health services provided by a local clinic in Galveston, and medical services on the summer training cruise.

Housing Application Fee
An application fee of $75 is required as part of a completed housing application. Exact stipulations and details regarding the use and return of that deposit are listed within the contract signed with the application. A waiver for the housing application fee may be submitted. To do so, the student should submit the housing application with an attached letter stating reasons for the waiver request. In order to be considered, the student must have a current FAFSA on file with Financial Aid. The waiver request can be emailed to reslife@tamug.edu or mailed to TAMUG Residence Life, P.O. Box 1675, Galveston, TX, 77553-1675.

Identification Card Maintenance Fee
All students must have an identification card. This card is used in registration procedures, collection of fees, for dining hall privileges, etc. If the card is lost or stolen, a reissuing fee will apply.

Installment Plan Fee
If a student chooses to use the installment plan for payment of tuition and fees, there is a $15.00 nonrefundable charge for Fall and Spring Semesters. There is no no charge for the installment plan in the summer semester.

Laboratory Fees
A laboratory fee ranging from $8 to $30 is charged for each laboratory course each semester.
MMAL (Master of Maritime Administration and Logistics) and MMRM (Master of Marine Resources Management)

Program Fee
This fee is required of all graduate students enrolled in the MMAL and MMRM program and assessed at $750.00 for instate residents and $1500 for non-residential per semester. The MMAL and MMRM program fee will be utilized to provide program administration and departmental operating costs in order to sustain a quality graduate program, as well as to provide for innovative growth.

Mail Service Fee
Limited availability exists for students residing in non-university owned or operated housing to rent a campus mailbox. The fee is $20 per semester and $20 per ten week summer term. Inquiries should be directed to the Bookstore (409-740-4488). Students have mail services included as part of the University's room charge if they are residing in university owned housing.

Cadet Drug Test Fee
The Cadet Drug Test Fee is $30 per semester and is required for all License-Option Cadets.

New Student Conference Fee - Graduate
The Graduate New Student Conference fee is required of all new graduate students enrolling in the fall or spring semesters and selected summer terms at the rate of $50 per student. This fee supports the provision of advanced materials to accepted students and the activities and food during the orientation.

New Student Conference Fee - Undergraduate
The New Student Conference fee is required of all new freshmen students at the rate of $225. New transfer students enrolling in fall or spring semesters and selected summer terms will be charged $153 per student. This fee supports the provision of advanced materials to accepted students, the presentation of new student conferences (including some meals) and student activities.

Parking Permit
All students parking an automobile or motorcycle on the campus pay a fee of $200 for the academic year (Fall, Spring, Summer). By request, prorated refunds can be issued for terms not used. Parking rates are subject to change each fiscal year.

Recreational Sports Fee
This mandatory $105 fee assessed for the fall and spring terms and $52.50 for each 5-week summer term will provide building maintenance and programming support for recreational sports facilities.

Student Center Complex Fee
The mandatory Student Center Complex Fee is required for all students at the rate of $100 per spring or fall semester or $50 for the five-week summer term. This fee will be used for the operation, maintenance, programming improvement and purchase of equipment for the student center complex and for the acquisition and construction of additions to the complex.

Supplementary Fee for Courses Attempted More than Twice
A course that is repeated by a student more than twice at a public institution of higher education in Texas may not be reported for state funding. As a result, the institution must either pass the non-funded portion to all students, or charge a supplementary fee to the student who is repeating the course. Texas A&M has chosen to assess a supplementary fee to those students repeating a course more than twice. A student attempting certain courses more than twice at Texas A&M University will be subject to a supplementary fee of $125 per semester credit hour ($375 for a 3 hour course) for the repeated course, in addition to tuition and required fees associated with the course. The general criteria for determining which courses are subject to the supplementary fee are:

- A course is subject to the fee if a student has completed it twice at Texas A&M University with a grade of A, B, C, D, F, F* (academic dishonesty), S (satisfactory), U (unsatisfactory), I (incomplete), Q (authorized drop after the add/drop period), F# (Freshmen Grade Exclusion) or X (no grade submitted).
- Courses identified by the University as repeatable for credit are not subject to the fee. A schedule of repeated courses can be found at admissions.tamu.edu/registrar/general/threepeat.aspx.
- Courses dropped with no record (NR), no grade (NG) and withdrawals (W) are not counted as repeated courses.

Students will be notified at the time they register for a course that it has been taken twice at Texas A&M University and is subject to the supplementary fee.

Testing Administrative Fee
A $50 per test fee will be used to pay for personnel to proctor credit-by-exams and TSI tests and to pay shipping costs to send tests to testing centers.

Texas A&M Maritime Academy Orientation Week Fee
The Texas A&M Maritime Academy Orientation Week (O-Week) Fee is $43 and covers equipment and supplies needed during the Corps of Cadets O-Week. Meals for O-Week are a separate charge and will be added to the semester bill following O-Week.

University Advancement Fee
The variable University Advancement Fee is a required fee charged to all Texas A&M University students. The Advancement fee funds services such as advising, technology, library and administrative services such as ID services, utilities, access to discounted software and many services provided through Student Services.

University Authorized Tuition
This variable fee is assessed to compensate for occupancy, services, use and/or availability of all or any of the property, buildings, structures, activities, operations and other facilities of the campus.

Other Expenses
Textbooks and Supplies: The cost of textbooks and supplies will vary with the quality of items purchased and with the course of study pursued. Students can expect to pay about $800 for each fall and spring semester. Expenses for the summer term should amount to approximately one-half of the above estimates.

License Option Cadet Expenses: License-option Cadets must purchase uniforms with initial outfitting estimated at $1,500. Other items such as caps, belt buckles, and name tags may be required to be purchased from the TAMUG Bookstore.
A Sports Pass which will allow a student to attend Texas A&M University home games may also be purchased at registration. Refunds are not allowed for individual games or games missed.

The University operates a bookstore which supplies textbooks, stationery, drawing instruments, toiletries and other supplies. All merchandise is sold at retail prices prevailing in the area. Major credit cards are accepted in the bookstore.

Student Fiscal Appeals

If a student finds themselves in an issue related to the application of University Student Fiscal Policy, such as excess hours, please access the information under http://fms-galveston.tamu.edu/sbs-galveston/student-fiscal-appeal-process for an explanation of the Student Fiscal Appeal Process and an application for appeal.

Scholarships

For entering students, including freshman, transfer, and domestic graduate students, all scholarships are awarded based on information from the ApplyTexas application for admissions, including information collected in the Scholarship section of the application. If any awards require additional information, those students that are deemed qualified based on the ApplyTexas will be notified. The priority deadline for incoming student scholarships is December 1\(^{st}\). The final deadline for the Freshman Terry Scholarship is January 24\(^{th}\). The deadline for the Levy Fellowship is January 1\(^{st}\).

For continuing students, the University Scholarship Application (http://financialaid.tamu.edu/uwideapp/) is used for awarding institutional scholarships. In order to receive a scholarship from Texas A&M University at Galveston for the upcoming school year, a student must complete the University Scholarship Application online by February 1\(^{st}\). Award recipients are primarily selected by a committee of faculty and staff from across the university who utilize this application and any other necessary supplemental information. In some cases, the selection is made directly by the donor of the scholarship funds.

To view scholarships available, visit http://www.tamug.edu/Scholarships (http://www.tamug.edu/finaid/Scholarships/). For additional information, contact the Scholarship Office at scholarships@tamug.edu or 409-740-4414.

Scholarships & Financial Aid

Texas A&M University
P. O. Box 30016
College Station, TX 77842-3016
(979) 845-3236
financialaid@tamu.edu
http://financialaid.tamu.edu (http://financialaid.tamu.edu/)

For additional information regarding financial assistance and other scholarships available to International Students, please contact:

International Student Services Office
Bizzell Hall East
Texas A&M University
1226 TAMU
College Station, TX 77843-1226
USA
(979) 845-1824
Fax (979) 862-4633
iss@tamu.edu

http://iss.tamu.edu (http://iss.tamu.edu/)

Maritime Academy

Texas A&M Maritime Academy

Admission (p. 791) to the Texas A&M Maritime Academy (p. 791)

License Option Graduation Requirements (p. 792)
License Option Requirements (p. 792)
Sea Service Requirements (p. 792)
Corps of Cadets (p. 792)
Standards of Conduct (p. 793)
Orientation Week (p. 793)
Student Incentive Program (SIP) (p. 793)
Additional LO Requirements (p. 794)

The Texas A&M Maritime Academy (TAMMA), formed in 1962, is a specialized, maritime education and training program within Texas A&M University at Galveston (TAMUG) where Academy Cadets complete a rigorous academic program with a regimented lifestyle. The Maritime Academy educates and trains professional U.S. Coast Guard-credentialed mariners, Navy Reserve Officer Training Corps (ROTC), as well as Drill and Ceremony cadets who carry on the maritime and military traditions of our campus while they pursue other career goals serving the needs of the State, the Nation and the global marketplace.

Admission to the Texas A&M Maritime Academy

Applicants to the Texas A&M Maritime Academy (TAMMA) must apply to the university and to TAMMA. Admission to the TAMU Galveston Campus does not guarantee admission to the TAMMA. In addition to the common application, (Applytexas.org) prospective students must submit an application to the TAMMA to one of the three programs embedded into the Corps of Cadets. Each individual programs has additional admissions requirements. Refer to the License Option, NROTC, and Drill & Ceremony program requirements found on the TAMMA website [3]. Due to program and professional requirements established in Federal law (46 CFR Part 310) by the U.S. Coast Guard (USCG) and the Maritime Administration (MARAD), the application for admission to TAMMA requires additional application elements detailed below.

- Evidence of the ability to meet the most current medical and physical standards established by USCG regulations. Applicants must apply to the USCG for a medical certificate. The medical and physical evaluation process includes a vision test, hearing test, general medical exam, and demonstration of physical ability [1]. License Option (LO) Cadets must demonstrate ability to meet USCG medical and physical standards within nine (9) months of enrollment. LO Cadets must continue to meet the USCG medical and physical standards throughout enrollment in an LO program. LO Cadets who fail to demonstrate ability to meet most current USCG medical and physical standards will be transferred out of the LO programs.
until the individual is able to meet the most current USCG medical and physical standards. Additional programs such as D&C and NROTC admission requirements can be found on the TAMMA website application page [3].

- Evidence that the Cadet or Midshipman is not a user of dangerous drugs. According to Federal regulations [2], TAMMA maintains a program for testing individuals for evidence of dangerous drug use. During O-Week, TAMMA will test entering freshmen and Cadets transferring into TAMMA for evidence of the use of dangerous drugs. In addition, TAMMA conducts random tests throughout the academic year. Any Cadet who tests positive for the use of dangerous drugs or refuses to be tested will be immediately suspended from the Corps and all LO courses and activities for a period of at least one (1) calendar year, depending upon the outcome of a Return-to-Duty process prescribed and monitored by the USCG. There is no guarantee that a Cadet who is suspended will be permitted to re-enroll in a LO program.
- A criminal background check.

Prospective Cadets may download a TAMMA application through the TAMMA website [3] for a complete detailed list of all admissions requirements.

License Option Graduation Requirements

TAMMA’s Cadets may receive diplomas from Texas A&M University only after 1) successfully completing the courses of study in their academic degree plans, 2) successfully completing required sea service 3) passing a comprehensive professional examination administered by the USCG, and 4) demonstrating knowledge, understanding, and proficiency competencies required by the International Convention on Standards for Training, Certification and Watchkeeping (STCW). The following degree plans offer a License Option:

- BS Marine Biology
- BS Marine Sciences
- BS Marine Engineering Technology
- BS Marine Transportation
- Any Graduate Program offered by TAMUG

All students enrolled in the Marine Transportation program are required to be in the LO program.

Cadets who select an LO degree plan must be motivated, honorable, and willing to experience the rigor and discipline of the regimental structure of the Corps of Cadets for the duration of their enrollment in the program.

License Option Requirements

In addition to the degree requirements contained in the Texas A&M at Galveston Students Rules and the University catalog, LO Cadets must complete the requirements to achieve a Merchant Mariner Credential (MMC)[4] issued by the USCG. The requirements for the MMC are determined by International conventions, Federal law and regulations, and policies established by the USCG and the Maritime Administration (MARAD). The requirements for an MMC are subject to change according to developments at the International Maritime Organization, Congressional action, the Federal rule-making process, and consultations between the USCG, MARAD, and the Maritime Academies.

The international convention with the most direct impact on TAMMA and the requirements for an MMC is the International Convention on Standards for Training, Certification and Watchkeeping for Seafarers (STCW Convention). The main purpose of the STCW Convention is to establish international agreement on training and education standards to promote safety of life and property at sea and the protection of the marine environment.

The STCW Convention establishes endorsements that LO Cadets must achieve in order to graduate and serve aboard commercial vessels in international trade. “Deck Cadets” must achieve the STCW international endorsement as Officer In Charge of a Navigation Watch (OICNW). “Engine Cadets” must achieve the STCW international endorsement as Officer In Charge of an Engineering Watch (OICEW).

LO Cadets must also pass each course required for the desired STCW Convention international endorsement with at least a C and demonstrate each of the required competencies contained in each course. Attendance in LO courses is mandatory.

LO Cadets, regardless of age, prior experience as a mariner, or prior military service must maintain membership in the Corps and complete all of the requirements of the LO program. The minimum period of training is three (3) years or six (6) full semesters as a full-time student. All License Option Cadets and NROTC must participate in the Corps of Cadets until graduation. Applicants who desire to transfer into TAMMA from other State or Federal Maritime Academies are encouraged to inquire regarding current policy and provide documentation regarding prior coursework, sea service, and conduct records from other Academies.

LO Cadets are required to attend all classes in each course required for the desired STCW Convention international endorsement. These courses are identified in the Texas A&M University Catalog. Unexcused absences are not permitted. All sea service must be achieved according to TAMMA’s USCG-approved License Option programs.

Sea Service Requirements

Under Federal law all LO Cadets are required to complete 360 days of sea service. Cadets may achieve the required sea service through a combination of TAMMA-approved assignments aboard training vessels, commercial ships, military vessels, USCG-approved courses that employ simulators, watches aboard TAMMA’s training vessel, and maintenance work. Cadets assigned to approved training vessels receive 1.5 days of sea service for each 1 day assigned. Cadets assigned to commercial or government vessels receive 1 day of sea service for each 1 day assigned. All assignments must be approved by the Superintendent or delegate.

Corps of Cadets

The Corps of Cadets (Corps) focuses on leadership development and provides Cadets and Midshipmen enrolled in the Navy Reserve Officer Training Corps program (NROTC) a disciplined environment designed to prepare its members to become successful Merchant Marine or military officers.

Members of the Corps are required to attend formations, drills (including parades at College Station), stand announced and unannounced personnel and room inspections, participate in physical fitness activities, and perform other duties required by the Corps Operations Manual and Sea Term manual (LO cadets).

TAMMA’s Superintendent is responsible for TAMMA’s administration and the operations of the Corps of Cadets. The Corps of Cadets includes

1) License Option Cadets (LO Cadets) who are studying and training to fulfill the professional requirements to become Merchant Marine Officers through TAMMA’s USCG-approved training program. These Cadets
enroll in TAMMA’s License Option (LO) programs and must maintain membership in good standing in the Corps.

2) Midshipmen who meet the qualifications for acceptance into TAMUG’s NROTC program. Midshipmen seek commissions in the U.S. Navy upon graduation. Midshipmen integrate fully into the Corps, and must complete all degree requirements as well as courses required by the Navy.

Students may join the NROTC program as National Four-Year Scholarship Winners or as non-subsidized college program applicants. Interested prospective Midshipmen may obtain information on the National Four-Year Scholarship program through any Navy recruiting office. The application deadline is January 15 of the year of admission. All NROTC scholarships cover the costs of tuition, fees, and uniforms. All scholarship junior and senior-level Midshipmen receive a monthly allowance and are paid for summer training periods.

3) Drill and Ceremony (D&C) Cadets who desire the structure, rigor, leadership training, and camaraderie of membership in the Corps. D&C Cadets are full members of the Corps, must purchase all required uniforms, perform drills, stand formation, and participate in personal and room inspections. Drill and Ceremony cadets do not participate in summer sea term courses aboard the training ship. Each D&C Cadet will receive a certificate indicating voluntarily participation and membership in the TAMUG Corps of Cadets.

Corps members are encouraged to participate in on-campus sports, clubs and educational activities and may compete for places on the Hearn Honor Guard, the Drill Team, the Sea Aggie Band, and the Flag Color Guard.

Members of the Corps are generally required to live on campus in the state-of-the-art Texas A&M Maritime Academy Hall.

Standards of Conduct
In addition to the Texas A&M University at Galveston Student Rules and the Texas A&M University Rules the Corps operates according to rules and standards contained in the Corps Operations Manual and the Cadet Instructions Manual[5]. Among other things, these publications establish mandatory uniform regulations, standards of dress, grooming, and discipline.

The Corps’ conduct and discipline system, administered by the Commandant, is a method for assessing the aptitude and motivation of each corps member for becoming a mariner or military officer.

Corps members who violate the Corps’ standards of conduct receive demerits and Cadets that consistently violate the Corps’ standards of conduct may be suspended or dismissed from the Corps. Cadets enrolled in any of the LO programs must maintain membership in good standing in the Corps. LO Cadets who are dismissed or suspended from the Corps but who are permitted to remain at TAMUG may not enroll in LO courses and will be removed from the Corps housing. Cadets who are not Texas residents, will be required to pay out-of-state tuition costs retroactively to the beginning of the term.

The Corps includes a special unit called “Victor Company”. Victor Company is veterans of the U.S. Armed Services or individuals who are married and/or with dependents or over the age of 25 when first enrolled in TAMMA. The Victor Company Cadet Commander reports directly to the Commandant and Victor Company members follow all Corps regulations including watches and practical training aboard TAMMA’s training vessel. Cadets in Victor Company are permitted to live off campus.

The Corps also includes International Cadets. With approval, international Cadets may pursue the LO education and training required to become Merchant Marine Officers and earn a degree from Texas A&M University. However, International Cadets are subject to U.S. immigration laws and may not take the USCG license exams. Instead, international Cadets receive a certificate of completion of their respective degree plans.

TAMMA will provide each Cadet accepted into the Corps a list of required uniform items along with procedures for purchasing uniforms. Entering Cadets should order uniforms as soon as they learn they have been accepted into the Corps.

TAMMA will issue uniforms during Orientation Week prior to the start of the Fall Semester.

Orientation Week
Prior to the beginning of the Fall semester, all freshman and transfer students entering TAMMA, NROTC, or D&C must attend Orientation Week (O-Week).

Under the guidance of the Commandant, members of the Corps of Cadets’ leadership team plan and execute O-Week to introduce each new member to the Corps’ routines and traditions. Cadets also learn military bearing and customs, basic seamanship, engineering, and nautical science skills. O-Week training includes, military formations, marching to class and meals, team-building exercises, hands-on seamanship training, and other training to enable new members to hit the decks running when the entire Corps returns from training sea terms and/or assignments at sea.

Student Incentive Program (SIP)
LO Cadets may qualify for financial support through MARAD’s Student Incentive Program (SIP).[6] LO Cadets who receive financial support through SIP participate in the Navy Strategic Sealift Midshipman program (SSO) program and receive a commission as Ensign, USNR upon graduation and may apply for active duty service with the Navy following graduation.

In order to qualify for the financial support under SIP, LO Cadets must:
1. Pass a Navy physical examination and maintain Navy medical standards,
2. Pass semi-annual Navy Physical Readiness Tests,
3. Maintain a minimum GPA of 2.5 (4.0 system),
4. Be under the age of 27 by graduation. Waivers are available for prior service students.

Upon graduation, LO Cadets who accept financial support through SIP must:
1. Complete the course of instruction at TAMMA,
2. Within three (3) months of completion of the TAMMA course of study, achieve a merchant mariner license with appropriate national and international endorsements for service aboard vessels in domestic and international voyages with unlimited endorsements,
3. For at least six (6) years maintain a valid 1) merchant mariner license with appropriate national and international endorsements for service aboard vessels in domestic and international voyages with unlimited endorsements, 2) transportation worker identification credential, and 3) USCG medical certificate.

4. Apply for and accept, if tendered, an appointment as a commissioned officer in the Navy Reserve including the Strategic Sealift Officer Program, the USCG Reserve, or any other reserve component of the Armed Forces of the United States for at least eight (8) years.

5. Serve the foreign and domestic commerce and the national defense for at least three (3) years after graduation.

LO Cadets with interest in the SIP are encouraged to speak with TAMMA and NROTC staff about the details of applying and the obligations following graduation.

Additional LO Requirements

In addition to minimum requirements associated with courses within USCG-approved program of study and training for international STCW Endorsements, Cadets are required to obtain several training endorsements required by the USCG. Some of these include, but are not limited to Basic Safety Training, Basic and Advanced Firefighting, Radar and Automated Radar Plotting Aids, Global Marine Distress System (GMDSS), and Bridge Resource Management.

LO Cadets are also required to apply for and maintain a valid Transportation Workers Identification Credential (TWIC), and a current Passport. TAMMA will assist each Cadet in obtaining the required endorsements and documents. However, it is each Cadet’s responsibility to maintain a current portfolio of all required documentation. A complete list of these requirements and costs will be available during New Student Conferences.

[4] 46 CFR §10.107(b) defines Merchant Mariner Credential as combining the individual merchant mariner’s document, license, and the STCW endorsement into a single mariners qualification document, certificate of identification, and certificate of service.

[6] Cadets enrolled in TAMMA’s License Option (LO) program may apply for Student Incentive Payments (SIP) provided by the Department of Transportation’s Maritime Administration. Title 46 USC 51509-51511 describes the details of the SIP. Cadets are encouraged to seek guidance from TAMMA staff regarding SIP.

Campus Recreation (p. 795)
Career Services (p. 795)
Counseling Services (p. 795)
Course Support (p. 795)
Disability Services (p. 796)
Diversity (p. 796)
Financial Aid and Scholarships (p. 796)
Health Services (p. 798)
Housing (p. 799)
Honors (p. 798)
International Student Services (p. 799)
Learning Commons (p. 800)
Library (p. 800)
Parking (p. 800)
Registration and Academic Status (p. 800)
Seibel Learning Center (p. 800)
Student Activities (p. 800)
Student Affairs (p. 800)
Studio (p. 801)
Undergraduate Research (p. 801)
University Police (p. 802)
Writing Support (p. 802)

Campus Dining

With limited exceptions, all students are required to live in campus housing, if campus housing is available, and purchase a meal plan. Students residing in campus housing and classified as U1 on the first class day must select one of the Block 240 or Block 200 meal plans. Students residing on campus and classified as U2 or above on the first class day must select one of the Block 240, Block 200 or Block 160 meal plans.

All Dining Plans are loaded onto the Student ID card to make access and use easy.

Fees for the selected meal plan will be added to your Texas A&M University student fee, and are separate from housing fees. Any plan purchases or additions made after the ninth week of class cannot be charged to the student’s account and must be paid via credit card. This date is subject to change, so please check with Dining Services when needing to purchase or add to your plan.

Dining Plans include 2 parts: First, “Meals,” which can be used at the all-you-care-to-eat dining hall (Captain’s Landing located in the Student Center). “Meals” can also be used in Sbisa Dining Hall in College Station when a student travels to College Station for activities (football games, visits with friends, etc.). The second part of the dining plan consists of

Services

Services for Texas A&M University at Galveston Students

Campus Dining (p. 794)
“Dining Dollars.” These declining balance dollars can be spent like cash or a debit card, and are accepted at all dining locations. Each purchase is automatically deducted from the account.

Dining Dollars roll over from fall to spring with the purchase of a spring dining plan. “Meals” do not roll from one semester to another.

Dining Dollars are only accepted on campus, assuring parents and guardians that this money is spent only on food and beverages.

Applicable sales tax will be added at checkout.

Students requesting to downgrade their meal plans during the semester will have 20 days from the first class day to make any changes and the cost of those changes will adhere to the University’s refund schedule. Downgrades can only be made if the student is not already on the minimum required plan. In order to add or upgrade a meal plan, please do so by 7 weeks from the start of the semester. All changes must be made through the Dining Services Office at (409) 740-4508.

Meal Plan Pricing:

On Campus: https://dineoncampus.com/tamug/on-campus
(https://dineoncampus.com/tamug/on-campus/)

Off Campus: https://dineoncampus.com/tamug/off-campus
(https://dineoncampus.com/tamug/off-campus/)

Campus Recreation
The Campus Recreation Department commits to Aggies learning for a lifetime by providing safe and inclusive programs promoting wellness of mind, body, and spirit while developing marketable skills which enrich the education of our students and the campus community.

The Intramural Sports program offers the campus community the opportunity to compete in a variety of Men's, Women's, and/or Co-Rec leagues or tournaments. Intramural sports are open to all currently enrolled students as well as TAMUG faculty and staff. There are no registration fees charged for participation. Instructions on how to sign-up for an intramural sport can be found within the Intramural Sports tab.

The Club Sports program provides students with the chance to focus on a particular sport or recreational activity, and in many cases compete in or pursue that activity at a higher level.

The Outdoor Program grants students, faculty, and staff the opportunity to participate in outdoor pursuits such as surfing, camping, rock climbing, stand-up paddleboarding, and kayaking.

Additionally, the Campus Recreation Department oversees aquatic facility operations at the campus outdoor pool including open swim hours, hiring of lifeguards, and facility rentals.

The Fitness program allows students, faculty, and staff to participate in group exercise classes, personal training sessions, and fitness orientations.

The Student Wellness program creates educational opportunities for students around the 8 dimensions on the wellness wheel - Spiritual, Physical, Intellectual, Emotional, Environmental, Social, Financial, and Occupational.

Career Services
Career Services can offer a variety of services for students in every stage of the career planning process, from your freshman year through graduation. These services include:

- Web based job and internship postings
- Resume and cover letter assistance
- Interview preparation and mock interviews
- On-campus interviews and employer presentations
- Specialized workshops for employment research, job and graduate school searches.
- Job search and networking tips
- Email distribution list for job and internship postings.
- Career counseling
- Two annual career fairs, one in Fall and another in the Spring

Counseling Services
The Office of Student Counseling provides services to undergraduate and graduate students at Texas A&M University at Galveston. The Office is staffed by licensed counselors and the services rendered to students are free, voluntary, and confidential. The Office staff is dedicated to assisting students in their pursuit of personal and academic growth, to helping students gain a better understanding and appreciation of themselves, and to supporting students as they make important decisions about their lives.

What is counseling?
Counseling, most simply stated, is an interaction between a person who is struggling in some way and in need of help, and another person who is trained in helping people find solutions for their struggles. The reasons for coming are many, and the counseling strategies employed also vary from counselor to counselor. The one constant is that the counselor focuses all energies on trying to help the student. It doesn't always work, but our student evaluation forms suggest that most students who seek counseling believe that it has been helpful to them. And if you feel uncertain about whether counseling is for you, we encourage you to make an initial appointment and discuss any reservations you might have with one of our counselors. There is no obligation to continue.

Course Support
Deeper understanding, extra practice at applied theory, and intellectual skill building differentiate students who attend Course Support Sessions from those who don’t. Peer Consultants guide learning in foundational courses such as Chemistry, Math, Physics as well as disciplines including Accounting, Economics, Engineering, Marine Transportation, and Statistics. Course Consultants are successful students whom made an A in the course and are endorsed by faculty; they facilitate sessions in one-on-one and small group settings guiding students through homework problems and difficult course concepts using example problems. Groups of five to seven students work together in small blocks of time throughout the week.

www.tamug.edu/tutoring (http://www.tamug.edu/tutoring/)
Disability Services
The Counseling and Career Services office provides services to students with documented disabilities. The office offers information on disabilities, campus services, and related resources. Persons with disabilities are encouraged to apply for services early and to request a meeting to discuss their individual needs prior to registration. Accommodations provided to students are based on individual need. Information regarding disabilities can be obtained through the Counseling and Career Services, P.O. Box 1675, Galveston, TX 77553-1675, call 409-740-4736.

Diversity
Consistent with the core values of Texas A&M University the mission of the Office of Student Diversity Initiatives at Texas A&M at Galveston (TAMUG) is to provide programs and services that encourages members of our community to gain a deeper understanding, awareness, and appreciation for their own culture, as well as embracing the dignity of all cultures from our global society. Goals of diversity include creating an inclusive community of respect that positively encourages and attracts diverse populations to join and contribute to the university community as a student, faculty, and/or staff member.

Our vision is to be a model of inclusion and cultural competency that empowers holistic student development, transformational learning through inter-cultural dialogue, and collaborative networks that advocate for social justice in a diverse university community. To fulfill the vision, we offer programs and services that:

- Advocates and supports students and cultural groups in their identities.
- Collaborates with campus and community entities to ensure a positive university climate that advocates for justice, access, equity, and transformative learning for all students, with special focus on underserved students.
- Provides student support by building relationships of commitment and trust.
- Provides opportunities for students to develop as leaders by fostering a community of respect and building cross-cultural relationships.
- Provides diversity education and programs that allow dialogue and intersecting discussions regarding age, citizenship, disability/ability, education, ethnicity, gender, gender identity/expression, geographical location, language, military experience, political views, race, religion, sexual orientation, socioeconomic status, and/or thought to aid with developing students’ understanding of themselves and other cultures.

It is our mission to serve ALL students, but recognize the need to be especially attentive to the needs of those identifying themselves as African American/Black, Asian/Asian American, Hispanic/Latino(a), LGBT, Native American/American Indian, Multi-Racial, and/or Student Veterans.

Financial Aid & Scholarships
The mission of Scholarships & Financial Aid is to provide students with information and financial resources to attend Texas A&M University at Galveston as well as supporting programs that promote higher education and developmental opportunities. As a part of this promise, we strive to give financial solutions to students at all income levels and with different academic, merit, and leadership qualifications.

Need-based financial aid is designed for students who have financial need, as defined by the Free Application for Federal Student Aid (FAFSA) or other applicable application, in order to assist students in paying college expenses. All financial aid depends on student enrollment and making Satisfactory Academic Progress (SAP), as defined by Scholarships and Financial Aid or the specific aid program.

Financial Aid
Financial aid is available in two forms: Gift Aid and Self-Help.

Gift Aid
- Grants (Federal, State, Institutional)
- Scholarships
- Texas Application for State Financial Aid (TASFA)

Self-Help
- Loans (Federal, State, Institutional, Alternative)
- Student Employment (Work Study, Part-time Employment, Internships, Assistantships)
- Non-resident Tuition Waivers

Texas A&M University’s packaging philosophy for need-based financial aid is to provide the greatest amount of gift aid to those students with the highest need and to keep loan debt to a minimum. Financial aid is awarded on a first-come, first-served basis with a priority date before the fall semester for which the student is seeking aid.

To apply for financial aid, a student must submit a Free Application for Federal Student Aid (FAFSA). The FAFSA becomes available on October 1 each year for the next academic year. Students are encouraged to submit their FAFSA online at https://studentaid.gov/h/apply-for-aid/fafsa (https://studentaid.gov/h/apply-for-aid/fafsa/) by the state priority deadline of January 15. Students who do not meet the citizenship eligibility requirements to complete the FAFSA may be eligible to submit the Texas Application for State Financial Aid (TASFA). Only students who have been accepted to the University, have a FAFSA or TASFA on file, and have turned in all requested items to Scholarships & Financial Aid will be sent a financial aid offer. Financial aid offers for incoming Fall semester students are made early in the prior Spring semester. Award offers for incoming Spring semester students are made late in the prior Fall semester. Financial aid offers to continuing students for the upcoming academic year are made after Spring semester grades have posted. Summer financial aid is offered to students with a FAFSA or TASFA on file who enroll at least half-time in summer at Texas A&M.

Financial aid offers are made based on full-time enrollment in the Fall and Spring semesters. Cost of attendance and awards will be adjusted for students who are enrolled less than full-time at Texas A&M University. Students may only receive federal financial aid for eligible courses that count toward the student’s degree. State and institutional aid are not subject to the same rules. However, the cost of attendance for students will be reduced for courses that are not counting to the program of study, which can result in a lower amount of state and institutional aid a student could receive.

Student questions may be sent to:

Scholarships & Financial Aid
Texas A&M University at Galveston
P. O. Box 40005
College Station, TX 77842
(405) 740-4500 - Galveston office
(979) 845-3236 - College Station office
financialaid@tamu.edu
http://financialaid.tamu.edu (http://financialaid.tamu.edu/)
FAFSA School Code 003632
Please visit our website for the most current information on financial aid applications, programs, and any deadlines.

Grants

The Federal Pell Grant is available to undergraduate students who have not received a bachelor’s degree and who have financial need based on the FAFSA.

The Federal Supplemental Educational Opportunity Grant (FSEOG) and the Texas Public Education Grant (TPEG) are available to students who show financial need based on their financial aid application and when funds are available. These funds are awarded on a first-come, first-served basis.

The Towards EXcellence, Access and Success (TEXAS) grant is available to eligible Texas residents who have a set level of financial need according to the FAFSA/TASFA and have met the program rules; it is also subject to funds availability and eligibility guidelines as defined by the Texas Higher Education Coordinating Board.

Additionally, Texas A&M University provides institutional grant aid to eligible students to assist with educational expenses. Student grants are subject to fund availability and may be single-year or multi-year awards.

The Federal/Texas College Work Study Programs

Federal and state programs provide part-time employment for U.S. citizens, permanent residents, and eligible non-citizens, within fund limitations, who have an established financial need and desire on-campus employment.

To qualify for the Federal/Texas College Work Study Programs, a student must have submitted a financial aid application, have financial need, be eligible to work in the United States, be enrolled at least half-time or accepted for enrollment, and be making Satisfactory Academic Progress.

All Work Study students are paid minimum wage or higher, work an average of 20 hours per week, and are not eligible for paid holidays, retirement, vacation, nor sick leave.

Loan Programs

The Federal Direct Loan programs are available to students who have submitted a FAFSA. Students will be notified of their eligibility for Direct Loans through a financial aid offer.

Students and parents seeking the Parent Loan for Undergraduate Students (PLUS) may obtain information from the financial aid website. This program requires the FAFSA to be on file with Scholarships & Financial Aid.

Short-term loans are available to provide assistance to students who experience temporary financial difficulties with educationally related expenses. Funding for this program is provided by The Association of Former Students, the Class of 1926, and other University resources. This program is not intended to provide long-term assistance or to replace other assistance available through Scholarships & Financial Aid. Students must be degree-seeking and enrolled at least half-time to be eligible for short-term loans.

The Emergency Tuition and Required Fees loan program is available to help students pay their tuition and required fees. The loan is applied directly to the student’s tuition and fee account.

Please refer to our website for detailed information on all of these programs.

Changes in Status that Impact Financial Assistance

Dropping or Q-dropping a course affects a student's enrollment status. In turn, enrollment status may impact certain funding sources. The following describes these impacts.

- Enrollment Status – A student’s enrollment status continues to be adjusted throughout the semester when a student drops or Q-drops a course. Please visit or speak with Scholarships & Financial Aid to determine if dropping a course will have an impact on your financial aid.
- Health Insurance – In the past, students often needed to maintain full-time enrollment to continue to be covered under their parents’ health insurance policy. With the implementation of the Affordable Care Act (ACA), that is no longer required. A dependent can now be covered under their parents’ insurance plan until the age of 26 regardless of their enrollment status as a student.
- Financial Aid & Scholarships – Scholarships & Financial Aid will check enrollment status on two occasions – when a student’s aid is released to their billing account and on 12th class day of a Fall or Spring semester. A student’s aid amount can be adjusted if the student’s enrollment status changes between the time funds are disbursed to the billing account and the 12th class day. However, after the 12th class day, enrollment status is not a factor for aid that has already disbursed and instead any changes in enrollment status will be reviewed through financial aid’s Satisfactory Academic Progress standards for subsequent semesters. If aid has not been disbursed prior to the 12th class day, then the enrollment status on the date the aid is disbursed is what matters. In the Summer semester, enrollment status is officially checked on the 5th class day of the Summer session(s) in which the student is enrolled.
- Student Loan Repayment – Students must maintain at least half-time enrollment throughout the semester for student loans to remain in an in-school deferred status. Dropping below half-time enrollment will trigger student loans to enter any applicable grace period, with repayment required after the grace period has elapsed. Changes in enrollment status from full-time to half-time have no consequence on student loans. Half-time enrollment for a graduate student is defined as 5 hours and for an undergraduate student it is defined at 6 hours.

Scholarships

Incoming Freshmen Scholarship Programs

- Achievement Scholarships are available to incoming freshmen who attended and graduated from targeted high schools in the State of Texas. Awards are based on academic achievement, leadership ability, and extracurricular participation. For priority consideration, students must complete and submit the ApplyTexas (http://www.applytexas.org/) freshmen scholarship application no later than December 1 of their senior year of high school.
- Scholarships are available to incoming freshmen who achieve a minimum 1300 Old SAT composite score (critical reading + math, with respective scores of 600 in each), 1360 New SAT composite
Continuing Student Scholarships

- The University Scholarship Application is available to students with at least one semester completed at Texas A&M. Awards range in value from $500 to $1,500 and are available to undergraduate, graduate, and professional students currently enrolled at Texas A&M. Some awards are limited to certain fields of study and to individuals who have attained a necessary academic classification, while others are unrestricted. Awards are made to outstanding students based on a combination of academic achievement, campus/community involvement, campus leadership roles, and, for some scholarships, financial need. Students are encouraged to complete the application beginning in October via the scholarships website (https://scholarships.tamu.edu/). The deadline for submitting applications is February 1, prior to the academic year for which the student will be awarded.

Transfer Student Scholarships

- Aggie Transfer Student scholarships are designed to recognize outstanding students who will be transferring to Texas A&M University at Galveston. Scholarships are awarded based on a combination of academic achievement, extracurricular activities, campus involvement at their current institution, leadership, major and, in some instances, financial need. These award amounts can range from $500 to $1,500 and the application is available to students through the ApplyTexas (http://www.applytexas.org/) application.

Scholarship Recipients and Non-Resident Tuition Waivers

- The Competitive Scholarship waiver, authorized under Texas Education Code 54.213a, is an optional waiver that institutions can implement. An eligible non-resident student who holds a competitive academic scholarship of a specified minimum dollar amount for the academic year or summer for which the student is enrolled may be eligible to pay the fees and charges required of Texas residents without regard to the length of time the student has resided in Texas. The student must have competed with other students, including Texas residents, for the scholarship and the scholarship must be awarded by a Texas A&M University college or departmental scholarship committee or university representative. An outside donor may be consulted for input by the college or departmental unit; however, outside donor(s) may not make the final selection of the student recipient for a scholarship.

- Effective Fall 2017, undergraduate students must be awarded and maintain competitive scholarships of at least $4,000 per academic year in order to qualify for this waiver. All graduate students, all professional students, and current undergraduate students with existing and continuing scholarship awards, may continue to receive this waiver at the previous $1,000 threshold.

- More information is available at http://scholarships.tamu.edu/Non-Resident-Tuition-Waiver (http://scholarships.tamu.edu/Non-Resident-Tuition-Waiver/)

For additional information on scholarships, please visit https://scholarships.tamu.edu/ or email scholarships@tamu.edu.

Health Services

Texas A&M University at Galveston contracts with the University of Texas Medical Branch (UTMB) Family Medicine clinic for health services for enrolled undergraduate students. Under the contract, office visits to the doctor are free of charge. Medications, inoculations, x-rays, physicals, and other services provided at the clinic may be covered under students’ private insurance or at the student’s expense. Hospitalization and emergency room visits are full-charge at the student’s expense.

Group Insurance: Since there are numerous health needs and costs, which are not provided or paid for by Student Health Service, students are strongly encouraged to maintain medical insurance. A group plan is available to all students in the Texas A&M University System. Information about this program will be distributed during new student orientation and are available from the student counseling office. Students and parents should give careful consideration prior to dropping any current health insurance.

Emergency Medical Transport: Please note that if an ambulance or other emergency transport is called, it is the responsibility of the student to cover any cost incurred, it is not the liability of the University.

Texas A&M University at Galveston Campus Honors Program

Texas A&M University at Galveston Honors Program believes in and promotes student success by motivating and challenging students to expand their education to a deeper, more enriched, and intellectually stimulating level.

Students in the Galveston Honors Program are encouraged to design an individualized Honors plan of study that could include independent study, research, or a thesis based on the individual student’s academic, personal, and professional goals.

Honors Program Eligibility

Invitation into the Galveston Honors Program is open to:

Incoming freshmen with a minimum score of 1250 on the SAT or 28 on the ACT and in the top 10 percent of their graduating high school class, as well as National Merit Finalists, National Achievement Finalists, or National Hispanic Scholars, are automatically admitted into the Texas A&M University at Galveston Honors Program. Incoming students entering Galveston Honors are required to participate in the Honor Experience their 1st semester (Fall) to maintain Honors status.

Continuing students with a cumulative Grade Point Average (GPA) of 3.5 or higher at Texas A&M University will receive an invitation to join Honors Program at the end of each successful semester until they have reached over 90 credit hours. A 3.5 cumulative GPA is required to remain eligible for participation in the Honors Program.

Honors Program Requirements
The following minimum requirements must be competed for students to receive an Honors designation on their official transcript:

1. A minimum of 18 Honors credits.
2. No more than 6 Honors credit hours can come from the Texas Common Core of Curriculum or Common Body of Knowledge.
3. At least 9 Honors credit hours must come from the student's major or minor requirements, can include research, independent study, and/or internships (that are university/department sponsored)
4. Student must take 3 one credit hour Honors seminars.

To make progress toward the Honors distinction, Texas A&M University at Galveston Campus students must:

1. Maintain a Texas A&M University GPA of 3.5 and accumulative Honors GPA of at least 3.25.
2. Receive advising toward Galveston Honors distinction each semester.
3. Fulfill annual co-curricular participation and service requirements, including at least two Honors Program events each semester.

In the event an Honors student fails to meet any of these requirements, a probationary semester is granted. Continued failure to meet these requirements results in dismissal from the Honors Program.

Honors Program Core Coursework

The following three Honors Seminars are required:

GALV 101 (Connections): Exploration of connections between academic disciplines, including science and the humanities; proposes and engages with “big questions,” such as what it means to be human.
GALV 201 (Research Methods): Interdisciplinary research methods and research practices with an emphasis on writing for and presenting to different audiences.
GALV 401 (Service Learning): Experiential learning opportunity in which students apply the objectives of the course to engage with and reflect upon meaningful community service to better understand civic responsibility.

Housing

The Office of Campus Living & Learning coordinates on-campus housing in modern student residence halls. Rooms are double and single occupancy and furnished with beds, desks, chairs, wardrobes or closets, and dressers. Students are expected to furnish pillows, blankets, shower curtains, linens, and cleaning supplies.

Students not enrolled in the Texas A&M Maritime Academy (TAMMA) are required to live on campus until the first Fall semester that they turn the age of 21 (one must be 21 prior to the start of the Fall term to qualify). Exceptions may be granted for special circumstances that are listed below.

Permission to live off-campus is typically granted if one of the following circumstances are met:

- The student is married and living with their spouse in the local Galveston area.
- The student is a single parent/guardian and their child resides with them at their local Galveston area residence.
- The student is a veteran of the U.S. Armed Forces (copy of DD-214; not active duty for training only).
- The student will live with a parent/guardian in the Galveston area. (A typed verification letter will be required)
- The student will enroll in 9 credit hours or less for the semester.
- The student has an approved medical accommodation through the Office of Disability Services.

On-campus housing is required for all Cadets enrolled in TAMMA who are under the age of 25 unless they have been granted Victor company status through the Corps of Cadets.

Any student who believes they qualify to live off campus must apply for permission to seek off-campus housing. Approximately 60 percent of the undergraduate students are housed on campus, and returning students are given priority in granting permission to live off campus. Campus residents accepting housing in the fall semester are required to sign a Fall and Spring Semester contract and are not permitted to move off campus for the spring semester. An on-line application for campus housing, which is separate from the application for admission to the University, is available from the Office of Campus Living & Learning website at www.tamug.edu/CLL (http://www.tamug.edu/reslife/). Rooms are assigned in accordance with the date on which the housing application and room deposit are received in Financial Management Services.

Upon admission to the University, students who will be living on campus must submit an application containing a housing agreement and one-time, non-refundable housing application fee to be eligible to receive a Residence Hall Assignment. A waiver for the $75 non-refundable application fee may be submitted. To do so, the student should submit the housing application with an attached letter stating reasons for the waiver request. In order to be considered, the student must have a FAFSA submitted to TAMUG. The waiver request can be emailed to reslife@tamug.edu or mailed to TAMUG Campus Living & Learning, P.O. Box 1675, Galveston, TX, 77553-1675.

It is recommended that housing applications be submitted early. In the event that on-campus housing is not available, information concerning off-campus housing will be provided upon request. Since TAMMA Cadets are required to live on campus, Cadets will be able to pursue a license option only if campus housing is available for them.

Housing Costs

The cost of housing for each semester will vary based on the residence hall and room style a student resides in. Visit https://www.tamug.edu/cll/HousingOptions.html#Pricing for current costs.

International Student Services

The Office of Student Diversity Initiatives serves as the liaison with the International Student Services Office at Texas A&M University in College Station. Personal counseling, financial planning, liaison with embassies and consulates, legal referrals, academic referrals, immigration matters, orientation programs, and advisement to groups, are among the services offered in collaboration with the Office of Counseling Services, Financial Aid, and International Student Services in College Station, TX.

For more information regarding International Student Services, contact the Office of Student Diversity Initiatives, P.O. Box 1675, Galveston, TX 77553-1675 or call 409-740-4582.

Learning Commons

The Learning Commons is a vital part of student academic support, success, and lifelong learning by developing strong curricular partnerships with faculty and tailoring a variety of programs...
and resources for all students. Our programs provide a modern learning experience for all students, contribute to a dynamic scholarly environment, deliver high impact learning opportunities, and foster engagement with research methods and materials. Academic support programs employ over 100 students annually in leadership, teaching, and mentoring roles. These opportunities develop professional and marketable skills through experiences as peer consultants and make students competitive for jobs after graduation.

www.tamug.edu/learningcommons (http://www.tamug.edu/learningcommons/)

Library
The Jack K. Williams Library and Commons hosts student-centered services and an electronic, print, and archival collection devoted to Marine and Maritime subjects in conjunction with students’ courses; a computer lab for resource discovery; equipment checkout; and individual, small group, and large group study spaces. The Library supports learning with research instruction, technology, information discovery, and reading/writing skills.

Collection Services and the Research Commons promotes student success by connecting Sea Aggies with information resources in and beyond the Jack K. Williams Library’s academic work and acquires books, articles, and more from libraries around the world. In addition, The Research Commons helps students and faculty acquire information literacy and promotes inquiry and critical thinking.

The Learning Commons is a vital part of student academic support and success. The Learning Commons provides a modern learning experience for all students, contributes to a dynamic student learning community, provides high impact learning opportunities and fosters lifelong learning in students. The Learning Commons impacts student success through a variety of programs and resources including the Writing Lab, Studio, Course Tutoring and Supplemental Instruction.

The Teaching Commons, another division of The Commons, provides faculty with teaching and instruction tools to creatively engage students in learning.

In addition, the Commons supports the Honors Program and Undergraduate Research Services.

Jack K. Williams Library (http://www.tamug.edu/library/)

Learning Commons (http://www.tamug.edu/learningcommons/)

Parking
Vehicles parked on the Galveston campus are required to display a valid parking permit, except for those parked in designated visitor’s spaces. When not purchased for the full year, the annual cost of permit is prorated. For more information or to purchase a faculty, staff or student permit, visit http://www.tamug.edu/police/parking/.

Registration and Academic Status
The Texas A&M University at Galveston follows the same guidelines and definitions as the College Station Campus. Registration for the fall and spring semesters is accomplished at several times. During the fall and spring semesters (in November and April), a preregistration period is held for currently enrolled and readmitted students to register for the next semester. There are periods of announced open registration for students who were unable to preregister during the scheduled preregistration period. New Student Conferences serve as an opportunity for new undergraduate students to register. Further information concerning registration may be obtained from the Office of the Registrar. The schedule of classes is available online.

Seibel Learning Center
The mission of the Seibel Learning Center (SLC) is to contribute to the academic success of all undergraduate students at Texas A&M University at Galveston by providing them the information and support needed to become skillful, self-directed learners. Its aim is to guide students through the integration of curricular, co-curricular, and personal choices into a purposeful academic journey. Vital aspects of this effort include advising students on how to navigate an ever-evolving learning environment, coaching students on effective learning behaviors, connecting students to high impact opportunities, and providing individualized solutions to ease student transitions.

Specific SLC programs include Academic Advising (for all first year students as well as General Academics majors), the Academic Coaching and Success Program, academic compliance and testing oversight, FIRST Program, Galveston Gateway, BEYOND Program, and the General Academics major. For additional information, please visit tamug.edu/slc (http://www.tamug.edu/slc/).

Student Activities
It is easy to get involved at Texas A&M University at Galveston, and there are many good reasons to get involved.

As would be expected, student life at TAMUG is often centered around the ocean. Many clubs and sports often involve water, but we have numerous active student organizations including many professional organizations that cover a wide variety of interests. The only question is which organization, or organizations, are right for you?

We follow Aggie traditions such as Yell Practice, Muster, Silver Taps, SALT Camp (Sea Aggies Learning Traditions), The Big Event and the famous Aggie Ring. Students may also get involved with the Student Government Association, the Nautilus (newspaper), or Sea Spray (literary magazine).

As you can see, there are numerous opportunities to enrich your college career by practicing the six core values of Texas A&M University: Excellence, Integrity, Leadership, Loyalty, Respect, and Selfless Service.

Student Affairs
The Division of Student Affairs, Suite 101 in the Seibel Student Services Center, is responsible for the social, moral, and intellectual development of Texas A&M University at Galveston students through their involvement in student organizations, leadership activities, recreational sports, and other co-curricular and extracurricular activities. Student Affairs also oversees Housing, Judicial Services, student diversity initiatives, counseling and career services, and the residence life programs as well as advises student organizations about program planning, university rules, risk management and the function of organizations to students throughout their college career. Furthermore, they allocate funding for eligible student organizations and aid in campus wide events such as Aggie Muster, Maritime Ball, Family Weekend, and Springfest. In addition to providing students an avenue to participate in several club activities, Student Affairs is also responsible for dispersing football tickets and ordering the highly honored Aggie Ring.
The Division of Student Affairs encourages all students to take advantage of the many opportunities available through ‘the other education’ activity programs.

The Studio

The Studio aims to target communication and presentation needs for all students, staff, and faculty exploring visual and audio communication mediums. Services include equipment checkout, dedicated audio room, individual and group editing stations, lightboard, green screen, interview station, presentation station, lighting, audio mixing boards, and microphones. The Studio encourages discovery of visual mediums by hosting Adobe Creative Suite software along with additional audio, video, graphic, and storyboarding software. Projects are supported by Video and Speech Consultants who assist in the creation and use of media for students and faculty and development of public speaking skills.

www.tamug.edu/hypermedia (http://www.tamug.edu/hypermedia/)

Supplemental Instruction (SI)

Supplemental Instructors design fun and collaborative study sessions based on course topics to reinforce challenging concepts and strengthen understanding. SI support is offered for historically difficult courses usually in the first year. These guided group study sessions are taught by successful students whom made an A in the course and are endorsed by faculty. SI Leaders partner with faculty to design active learning sessions and prepare students for exams; These sessions as taught three times weekly at diverse times for broad access to all students. Regular attendance throughout the semester helps students stay on track or get ahead, build confidence through critical thinking and problem solving, and meet other students and form study groups.

http://www.tamug.edu/supplementalinstruction (http://www.tamug.edu/supplementalinstruction/)

Undergraduate Research

Undergraduate Research Services promotes student success by providing high-impact educational experiences and challenges motivated students in all academic disciplines to pursue an enriched, intellectually-stimulating curriculum. The Undergraduate Research programs bring together outstanding students and faculty to build a community of knowledge-producers, life-long learners, nationally-recognized scholars, and world citizens. Research opportunities are open to all undergraduates and is a collaborative effort between undergraduate students, graduate students, and faculty using an inquiry-based approach to generate new knowledge.

Being involved in undergraduate research allows students to participate in a scholarly community of students with common interests, to learn more about their future professional field, and to develop a close working relationship with acclaimed faculty. Research experiences make students more competitive for scholarships, internships, jobs, international opportunities, and admission to top graduate and professional programs. Perhaps most importantly, engaging in undergraduate research allows students to experience the excitement of working collaboratively to create new knowledge, solve cutting-edge problems, work collaboratively, and communicate more effectively—life skills that are increasingly valued in our world.

Visit www.tamug.edu/undergraduate research (http://www.tamug.edu/undergraduate research/) for more information or to apply.

Undergraduate Research Scholars

The Undergraduate Research Scholars (URS) program seeks to provide eligible undergraduates with a graduate student experience by allowing them to participate in research and communicate their findings as principal authors to the University’s scholarly community.

Undergraduates who participate in the Undergraduate Research Scholars (URS) program will ultimately:

- Produce a written undergraduate thesis to be published in the Undergraduate Research Scholars Capstone Collection in the Texas A&M OAKTrust Repository (http://oaktrust.library.tamu.edu/handle/1969.1/3367/)
- Make a public presentation
- Gain knowledge that didn’t come from a classroom
- Improve their chances for acceptance into graduate or professional schools, fellowships, and grants
- Gain a better understanding of graduate school
- Network with students and faculty

To apply for the Undergraduate Research Scholars (URS) program, students must:

- Be actively involved in an independent undergraduate research project throughout both the fall and spring semesters under the mentorship of a Texas A&M faculty member throughout
- Have completed at least 60 credit hours (junior status) of undergraduate course work
- Have at least 24 credit hours at Texas A&M University
- Have and maintain a cumulative GPA of at least 3.0
- Be expecting to graduate May 2018 or later

Aggies Commit to Excellence Scholar (ACES)

The Aggies Commit to Excellence Scholar (ACES) program will fund up to 10 undergraduates from all majors to engage in high impact learning and research experiences under the mentorship of TAMUG faculty. The purpose of ACES is to empower all students and encourage underserved student populations to engage in research, as well as offer professional and leadership skills development to foster their interest and aptitude towards pursuing a graduate degree.

ACES students will receive a stipend per semester and renewal from the Fall to Spring semester will depend on successful recommendation of the faculty sponsor and demonstration of appropriate progress. Recipients will present project results at the TAMUG Student Research Symposium and/or other profession conference. A maximum of one student application per faculty member will be considered. Selection of students will be based on meeting the eligibility criteria, the quality of the narrative, and letter of support from the Faculty Sponsor.

Visit www.tamug.edu/undergraduate research (http://www.tamug.edu/undergraduate research/) for more information or to apply.
Louis Stokes Alliance for Minority Participation (LSAMP)

Texas A&M University System Louis Stokes Alliance for Minority Participation, funded by the National Science Foundation, is part of a national initiative to increase the number of underrepresented minority students successfully completing high quality degree programs in Science, Technology, Engineering and Mathematics (STEM) disciplines and to encourage students to matriculate into graduate programs.

LSAMP awardees will receive a research and personal scholarship to cover research related expenses or travel to a conference. Each student will be expected to participate a minimum of 180 research hours split between the Fall and Spring semesters to present their research results at the TAMUG Student Research Symposium and LSAMP Symposium, and/or other professional conference. A maximum of one student application per faculty member will be considered (under exceptional circumstances such as a collaborative project or a limited number of Faculty Sponsors, more than one student per professor may be considered). Selection of students will be based on meeting the eligibility criteria, the quality of the narrative, and letters of support from the Faculty Sponsor.

Undergraduate Research Ambassador

The Undergraduate Research Ambassadors work to inspire broader engagement in undergraduate research by educating and serving the Texas A&M University at Galveston community. Ambassadors represent LAUNCH at research, recruiting, and outreach events.

To be eligible, the student must:

• Have at least one semester of faculty-mentored undergraduate research experience
• Have at least 60 credit hours (24 hours at TAMUG) and maintain a GPA of 3.0 or higher
• Possess outstanding oral communication skills and describe your undergraduate research to a general audience
• Be willing to serve as a source of information on how to get involved in research
• Provide a letter of support from a Texas A&M faculty mentor

Upon acceptance to program UGR students will be expected to:

• Participate in an all-day orientation and training
• Attend Ambassador meetings
• Participate in at least 10 hours of activities per semester
• Review, interview, and train the incoming class of Ambassadors

University Police

The University Police are responsible for the protection of persons and property of Texas A&M University, and for the enforcement of the laws of the State of Texas and the rules and regulations of Texas A&M University. University police are commissioned peace officers involved in regular foot and vehicle patrol of campus, late-night security escorts, crime prevention programs for the campus community, and criminal investigations for the recovery of property and apprehension of criminals. Officers also provide regular security checks of buildings and property on campus. All members of the campus community are requested to cooperate with University police officers.

Writing Support

Students can meet with peer writing consultants in face-to-face sessions, targeted workshops for course assignments, group visits, and through web conferencing. By making an appointment through TutorTrac in the Howdy portal, students can ask questions about research and organizing/brainstorming or request a review for revision, editing, formatting, citations, and references. The service is available during any stage of the writing life-cycle and for any written or verbal project. Writing Consultants teach strategies & techniques to improve writing for academic growth, career success, and lifelong learning.

www.tam.edu/writing (http://www.tam.edu/writing/)

Facilities

Texas A&M University at Galveston

Facilities

Classrooms, laboratories and meeting spaces are housed within 23 major buildings on the Mitchell Campus on Pelican Island. The Ocean and Coastal Studies building is the largest and best-equipped marine research facility on the Gulf of Mexico. The Jack K. Williams Library and Learning Commons contains over 60,000 books, museum exhibit space, archives and special collections, group study rooms, a classroom, computer lab, collections services workspace, a media lab, writing center and tutoring spaces. The training ship provides additional classroom, meeting and training space during the school year, and an additional fleet of small boats serve as floating classrooms and research stations. Other buildings include five residence halls, the Aggie Special Events Center (ASEC), the James McCloy Arena and the Mary Moody Northen Student Center, which includes our primary dining facility. The Texas A&M University Galveston Campus has telecommunications systems established to communicate statewide within The Texas A&M University System universities and agencies. The Galveston campus has direct access to the Texas A&M University computer network in College Station via remote job entry connect lines.

Housing applications are available from Texas A&M University Galveston Office of Campus Living and Learning website http://www.tamug.edu/cll/ and must be completed online with the one-time application fee. Applications can be cancelled or withdrawn by calling the Campus Living and Learning office, 409-740-4445, or emailing reslife@tamug.edu.

Policies

Texas A&M University at Galveston

Policies

University Statement for Individuals with Disabilities (p. 803)

University Statement on Harassment and Discrimination (p. 803)

Aggie Honor Code (p. 804)

University Student Rules (p. 804)

Fishing Rules (p. 804)
University Statement for Individuals with Disabilities

Texas A&M University (TAMU) is committed to maintaining an accessible campus community and providing reasonable accommodations to qualified students, faculty, staff and visitors, including making its web sites accessible and usable. TAMU does not discriminate on the basis of an individual's disability and complies with Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) as amended.

Students are protected from discrimination regarding access to and participation in TAMU’s programs and activities. TAMU provides academic adjustments and auxiliary aids to accommodate needs of students with disabilities, as defined under the law, who are otherwise qualified to meet the institution's academic requirements.

Students with disabilities who would like to request accommodations may contact the following:

- TAMU, Texas A&M Health’s (TAMH) College of Nursing, Irma Lerma Rangel College of Pharmacy College Station, College of Medicine, and School of Public Health should contact Disability Resources (979) 845-1637 or disability@tamu.edu.
- TAMH College of Dentistry should contact the Office of Academic Affairs (214) 828-8978 or bramsey@tamu.edu to request accommodations.
- TAMU School of Law should contact the Office of Student Affairs at (979) 845-4815 or anyofthefollowing
- TAMUQ should contact the ADA Coordinator at (979) 845-8115 or any of the following campus contacts:
 - TAMU, TAMU School of Law, and TAMH locations should contact the ADA Coordinator at (979) 845-8115 or ADA.Coordinator@tamu.edu.
 - TAMUG should contact the ADA Coordinator at (409) 770-4503 or boyerj@tamu.edu.
 - TAMUG should contact Miguel Trevino at +974-4423-0317 or miguel.trevino@qatar.tamu.edu.

For more information about disability accommodations, see TAMU Student Rule 46, Disability Accommodations in Academic Programs (http://student-rules.tamu.edu/rule46/) or TAMUG Student Rule 46, Disability Accommodations in Academic Programs (http://www.tamu.edu/studentrules/Student_Grievance_Procedures/46_Disability_Accommodations.html).

University Statement on Harassment and Discrimination

Texas A&M University is committed to providing a safe and non-discriminatory learning, living, and working environment for all members of the University community. The University provides equal opportunity to all employees, students, applicants for employment or admission, and the public regardless of race, color, sex, religion, national origin, age, disability, genetic information, veteran status, sexual orientation, or gender identity. Texas A&M University will promptly investigate and resolve all complaints of discrimination, harassment (including sexual harassment), and related retaliation in accordance with applicable federal and state laws and University rules and standard administrative procedures.

The University’s response to allegations of discrimination, harassment, and related retaliation will be 1) prompt and equitable; 2) intended to prevent the recurrence of any discrimination, harassment or retaliation; and 3) intended to remedy its discriminatory effects, as appropriate. A substantiated allegation of such conduct will result in disciplinary action, up to and including separation from the University. The University’s student sanctioning guidance for substantiated allegations of discrimination on the basis of sex, including sexual harassment, sexual violence and related retaliation, can be found here: Title IX Sanctioning Matrix (https://urc.tamu.edu/media/1601574/title-ix-sanctioning-matrices-august-2018.pdf).

Students who have questions or believe they have experienced discrimination, sexual harassment, sexual violence, and/or related retaliation are encouraged to contact Kevin McGinnis, Chief Risk, Ethics, and Compliance Officer, at the J. K. Williams Building, Suite 302, College Station, TX 77843. He may be contacted at civilrights@tamu.edu or at (979) 458-0308. Students can also contact the TAMU ADA Coordinator at ADA.Coordinator@tamu.edu or (979) 845-8115, or any of the following campus contacts:

- TAMU, TAMU School of Law, and TAMH locations should contact the ADA Coordinator at (979) 845-8115 or ADA.Coordinator@tamu.edu.
- TAMUG should contact the ADA Coordinator at (409) 770-4503 or boyerj@tamu.edu.
- TAMUG should contact Miguel Trevino at +974-4423-0317 or miguel.trevino@qatar.tamu.edu.

In addition, any report can be submitted to Jennifer Smith, Title IX Officer, at the Medical Sciences Library, Suite 007, College Station, TX 77843. Her telephone number is: (979) 458-8167 and email address is civilrights@tamu.edu. Such reports will be immediately forwarded to the Chief Risk, Ethics, and Compliance Officer for investigation and resolution. The Title IX website can be found at http://urc.tamu.edu/title-ix/.

To report incidents, request accommodations, or inquire about discrimination based on disability, you may contact Peggy Zapalac, ADA Coordinator, at (979) 845-8115 or ADA.Coordinator@tamu.edu. The office address is 750 Agronomy Road, Suite 2101, College Station, TX.
University Student Rules

Each student enrolled at Texas A&M University at Galveston is responsible for being fully acquainted with and complying with the Texas A&M University Student Rules. Specific rules, information and procedures may be found in publications pertaining to each particular service or department. Students are encouraged to reference the website at http://www.tamug.edu/studentrules/ for current published rules and regulations.

Fishing Rules

Texas A&M University at Galveston (TAMUG) is an institution of higher education and does not include any public fishing facilities. Due to significant safety and security concerns TAMUG only allows current students, current TAMUG employees and approved guests to fish on property owned or controlled by TAMUG. Approved guests must be accompanied by an affiliated individual, unless otherwise authorized. Fishing is only permitted on the Mitchell Campus on Pelican Island.

1. Guests of affiliated students and employees are permitted to fish as long as the TAMUG student or employee is with them. Employees and students are responsible for the conduct, compliance, safety and actions of their guests. All fishermen are expected to be courteous and respectful at all times.

2. Students and staff may have a reasonable number of guests at any one time. (Campus Police will determine what is reasonable for the situation)

3. Fishermen may only deploy one or two fishing rods at a time, per fisherman. Fishing rods may not be left unattended.

4. All children must be in the immediate care of an adult. Children 12 years old and under must wear an approved USCG flotation device while on TAMUG docks, piers, and beaches, as well as when they are in or near the water. In addition to dangerous drop-offs and currents, equipment and vehicles in the vicinity of authorized fishing areas can pose a danger to unsupervised children.

5. Fishing is permitted from the dock at any time. Fishing is allowed on the beach, between the dock and the Pelican Island Causeway, or on the fishing pier. The area around the small boat basin is not open for fishing during normal hours of operations or if port operations require it to close temporarily. Open mainly on weekends and holidays.

6. Fishing is allowed at night but may be limited or forbidden during certain times for, training, repairs and/or cruise preparation.

7. No wade fishing is allowed in the oil spill compound, the small boat basin, the Oceanography docks or any areas marked as ‘No Fishing’. Fishing on the Teichman Road campus is strictly limited to affiliated students and employees of TAMUG.

8. All fishermen must have a valid Texas fishing license with a salt water stamp and must present it upon request.

9. No alcoholic beverages, drugs or firearms are allowed on-campus at any time. Anyone found in possession of contraband will be subject to immediate removal and/or citation or arrest.

10. All vehicle operators on-campus must obey traffic signs and directions from University Police officers or University Officials. Vehicles operated on-campus without a valid campus parking hangtag must be registered with University Police and display a TAMUG parking pass.

11. Vehicles may be parked in campus parking areas with authorized parking permits, obtained from the Campus Police Department. Parking on the docks, the beach area or within fire lanes or any
other space which is not a clearly marked parking space, is strictly prohibited. Vehicles in violation of these rules will be cited and subject to tow at the owners expense. Failure to pay parking citations (University cashiers office-SAGC) will result in revocation of fishing authorization for one year from date of violation.

12. No littering. All fishermen are responsible for any trash or debris that they may accumulate while on TAMUG property. Fish cleaning is not allowed at any time on campus property.

13. All rules will be enforced by the Campus Police Department. Anyone who fails to follow the instructions of a Campus Police Officer will be subject to revocation of campus fishing authorization, and/or citation or arrest. All unauthorized individuals will be asked to leave. All fishermen shall be considered ‘notified’ of the rules from posted signs.

14. Texas parks and Wildlife agents frequently check fisherman on campus and notify campus officers if University rules are violated.

15. We reserve the right to investigate all containers left tied to any structure on the TAMUG water front. (anyone that suspects a container may present a problem should immediately call the officer on duty for inspection-409-740-4545) We recommend that all who leave a container in the water make sure it has their name and phone number on it, for verification. Homeland Security rules prohibit containers of any kind to be left near the ship or between the dock and the ship. These containers will be removed and discarded without notification. No ropes, strings or lines of any kind will be fastened to water lines, gas lines, electrical conduit or any other piece of infrastructure on the water front. They will be removed and discarded without notification. Any authorized staff or researcher, who finds any unauthorized containers or fastening in the normal course of their duties may remove and discard such objects without notice. (report to Campus Police at time of removal)

16. The fishing pier, located in the sw corner of campus, is small and can only accommodate a small number of fishermen at any one time. Campus Police may relieve any overload situation by whatever reasonable means are available at the time. Safety is number one.

17. No exception to these rules may be made without the approval of the TAMUG CEO or Executive Vice President or their designee.

Title IX – Sexual Discrimination, Sexual Harassment, Sexual Assault & Violence

“No person in the United States shall, on the basis of sex, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any education program or activity receiving Federal financial assistance...”

(20 U.S.C. Section 1681)

Notice of Nondiscrimination and Abuse

Texas A&M University at Galveston is committed to providing a safe and non-discriminatory learning, living, and working environment for all members of the University community. The University provides equal opportunity to all employees, students, applicants for employment or admission, and the public regardless of race, color, sex, religion, national origin, age, disability, genetic information, veteran status, sexual orientation, or gender identity. Texas A&M University at Galveston will promptly investigate and resolve all complaints of discrimination, harassment (including sexual harassment), and related retaliation in accordance with applicable federal and state laws.

The University’s response to allegations of discrimination, harassment, and related retaliation will be 1) prompt and equitable; 2) intended to prevent the recurrence of any harassment; and 3) intended to remedy its discriminatory effects, as appropriate. A substantiated allegation of such conduct will result in disciplinary action, up to and including separation from the University. Visitors, contractors, and third parties who commit discrimination, harassment, retaliation, or complicity may have their relationships with the University terminated and/or their privileges of being on University premises withdrawn.

Reporting Responsibilities

Any employee who observes or has knowledge of discrimination, harassment, retaliation, or complicity must promptly report all known information about the incident(s) to the University’s Designated Official unless they are designated as a “confidential employee” below. Pursuant to state law, the sanction for failure to report an incident of sexual harassment, sexual assault, dating violence, or stalking is termination of employment.

Confidential Employees

Certain University employees have been designated as Confidential Employees: licensed health care personnel and licensed counselors when acting in this capacity as part of their official employment. These employees only report de-identified statistics to the Designated Official.

Where to Report an Incident

Designated Official: The University has designated Jennifer Smith, Assistant Vice President and Title IX Coordinator to receive all reports of discrimination, harassment, retaliation and complicity related to a protected class or status. Protected classes or statuses include: race, color, sex, gender identity, age, religion, disability, national origin, immigration status, citizenship status, sexual orientation, genetic information, or veteran status.

To file a report with the University, please contact:

Ms. Jennifer M. Smith, TAMU Assistant Vice President and Title IX Officer

Medical Sciences Library

202 Olsen, Suite 007

College Station, TX 77845

(979) 845-0977
civilrights@tamu.edu

Local Campus Contact (Allegations against Students): For making inquiries regarding allegations of discrimination by students, you may contact:

Dr. Todd Sutherland, TAMUG Associate VP of Student Affairs

Seibel Student Services Center #101G,

Galveston, TX 77554
To Report Abuse or Neglect of Persons Age 65 or Older, Persons with # Galveston County Sheriff's Office (409) 766-2300
Galveston Police Department (409) 765-3702
Texas A&M University at Galveston Police Department (409) 740-4545

...pursued separately or at the same time. An individual wishing to pursue... through law enforcement. Disciplinary and criminal remedies may be...disciplinary remedies through the University and criminal remedies through law enforcement. Disciplinary and criminal remedies may be...report to both entities.

...complainant may also choose to decline to notify law enforcement. Any...report to both entities.

...appropriate local law enforcement agency. A complainant will be assisted...of such report. Retaliation may be present even where there is a decision of "unsustained," "insufficient information to substantiate," "not responsible" or "not guilty" on the allegations of discrimination, harassment, or related retaliation. Retaliation does not include good faith actions lawfully pursued in response to a report of discrimination, harassment, or related retaliation. Violation of an interim, remedial, or protective measure will be considered retaliation.

...students, faculty and staff are prohibited from retaliating against a person for (1) making a good faith report of a violation of Texas A&M System policies, university rules, student rules, and/or the law; or (2) participating in any proceeding related to the investigation or resolution of such report. Retaliation includes threatening, intimidating, harassing, coercing or any other conduct that would discourage a reasonable person from engaging in activity protected under this policy. Retaliation may be present even where there is a decision of "unsustained," "insufficient information to substantiate," "not responsible" or "not guilty" on the allegations of discrimination, harassment, or related retaliation. Retaliation does not include good faith actions lawfully pursued in response to a report of discrimination, harassment, or related retaliation. Violation of an interim, remedial, or protective measure will be considered retaliation.

...students, faculty and staff are prohibited from retaliating against a person for (1) making a good faith report of a violation of Texas A&M System policies, university rules, student rules, and/or the law; or (2) participating in any proceeding related to the investigation or resolution of such report. Retaliation includes threatening, intimidating, harassing, coercing or any other conduct that would discourage a reasonable person from engaging in activity protected under this policy. Retaliation may be present even where there is a decision of "unsustained," "insufficient information to substantiate," "not responsible" or "not guilty" on the allegations of discrimination, harassment, or related retaliation. Retaliation does not include good faith actions lawfully pursued in response to a report of discrimination, harassment, or related retaliation. Violation of an interim, remedial, or protective measure will be considered retaliation.

False Complaints
Any person who knowingly files a false complaint of discrimination, harassment, complicity or retaliation is subject to disciplinary action, up to and including dismissal or separation from the University. A finding of ‘unsustainted’ or ‘insufficient information to substantiate’ does not imply that a complaint was false.

Confidentiality
The confidentiality of a complaint of sexual misconduct and all documents, correspondence, and information collected during an investigation will be maintained by the University on a need-to-know basis to the extent permitted by law.
A student or an employee who is a victim of sexual harassment (including sexual misconduct or stalking), domestic violence, or dating violence, whether it occurred on or off-campus, has certain resources, rights and options. Information is available at TAMUG Title IX Resources, Rights, and Options for Individuals Subjected to Sexual Harassment, Sexual Misconduct, Stalking, Domestic Violence, or Dating Violence

A student or an employee who is accused of sexual harassment (including sexual misconduct or stalking), domestic violence, or dating violence, whether it occurred on or off-campus, has certain resources, rights and options. Information is available at TAMUG Title IX Resources, Rights, and Options for Individuals Accused of Sexual Harassment, Sexual Misconduct, Stalking, Domestic Violence, or Dating Violence

For additional information concerning federal and state policies, please reference the appendices (p. 1299) in this catalog.

Department of Foundational Sciences

The mission of Foundational Sciences (FSCI) is to be a community of engaged faculty who offer academically excellent and pedagogically innovative classes in mathematics, chemistry, physics and statistics. We envision that all Galveston students will be challenged and successful in the high quality coursework we offer. Our faculty are proactively engaging the students with hands-on high impact learning experiences and support activities for their coursework.

FSCI advises for and facilitates minors supporting the Oceans and One Health degree and other programs on the Galveston Campus. The department offers the coursework needed for minors in Mathematics (http://catalog.tamu.edu/undergraduate/science/mathematics/minor/), and Chemistry (http://catalog.tamu.edu/undergraduate/science/chemistry/minor/), through the respective departments at Texas A&M. The department also facilitates the STEM (http://catalog.tamu.edu/undergraduate/education-human-development/teaching-learning-culture/ stem-minor/) minor (Science, Technology, Engineering and Mathematics), which will lead to students being certified for teaching life science or chemistry for grades 7-12.

Faculty

Acero-Schertzer Carmen, Instructional Assistant Professor
Foundational Sciences
PHD, University of Miami, 1996

Aristidou, Michael, Instructional Assistant Professor
Foundational Sciences
PHD, Louisiana State University, 2005

Aronson, Carl, Instructional Assistant Professor
Foundational Sciences
PHD, University of Michigan - Ann Arbor, 1999

Boulahouache Chaouki, Instructional Associate Professor
Foundational Sciences
PHD, Syracuse University, 2002

Brown Philip, Associate Professor
Foundational Sciences
PHD, Texas A&M University, 2000

Galan Jhenny, Instructional Associate Professor
Foundational Sciences
PHD, University of Connecticut, 2006

Gracia Pete, Senior Lecturer
Foundational Sciences
MS, University of Houston - Clear Lake, 1991

Kang Cong, Associate Professor
Foundational Sciences
PHD, University of Texas, 1999

Klein Douglas, Professor
Foundational Sciences
PHD, University of Texas, 1969

Letko Olbelina, Instructional Assistant Professor
Foundational Sciences
PHD, University of Illinois at Urbana-Champaign, 2015

Luxemburg Leon, Associate Professor
Foundational Sciences
PHD, Texas A&M University, 1987

Mosur Melanie, Instructional Professor
Foundational Sciences
PHD, University of Houston, 1977

Nair Radhika, Instructional Assistant Professor
Foundational Sciences
PHD, University of Nevada, 2009

Pangemanan Adelaide, Instructional Assistant Professor
Foundational Sciences
MS, State University of New York at Stony Brook, 2002

Qiu Lin, Instructional Assistant Professor
Foundational Sciences
PHD, University of Alabama, 2006

Rantschler James, Instructional Assistant Professor
Foundational Sciences
PHD, University of Alabama, 2003

Schwehr, Kathleen, Lecturer
Foundational Sciences
PHD, Texas A&M University, 2004

Suen Ching-Yun, Professor
Foundational Sciences
PHD, University of Houston, 1983

Townsend Grace, Instructional Associate Professor
Foundational Sciences
MS, University of Houston at Clear Lake, 1983

Warren Jesse, Lecturer
Foundational Sciences
MS, University of Houston-Clear Lake, 2005

Yi Eunjeong, Professor
Foundational Sciences
PHD, University of Houston, 2003
Majors

• Bachelor of Science in University Studies, Oceans and One Health Concentration (p. 808)

University Studies - BS, Oceans and One Health Concentration

Oceans and One Health is an interdisciplinary concentration that allows the student to explore the intersection between human, animal, and environmental health specific to the coastal environment. This degree program is intended for students who wish to pursue medical, dental, veterinary, or health-professional degrees or those interested in health issues in urbanized coastal communities. It is a flexible but robust program that provides opportunities for students to have a solid background in the physical and biological sciences, environmental science, and/or health-related disciplines. Students can choose their focus from a diverse list of concentration electives and minors to tailor their degree to their professional goals.

Through a partnership with the University of Texas Medical Branch (UTMB) in Galveston our Oceans and One Health students who apply and are admitted to UTMB after completing 95 hours at TAMUG have the option to obtain a minor in Clinical Laboratory Sciences, which includes the first semester coursework for the M.S. degree in Clinical Laboratory Sciences at UTMB.

This concentration is housed in the Foundational Sciences Department.

Students in this program may choose to pursue secondary (grades 8 thru 12) science teaching certification. Please consult with Department of Foundation Sciences.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARS 360</td>
<td>Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td>MARS 428</td>
<td>Coastal Development and Human Health</td>
<td>3</td>
</tr>
<tr>
<td>OCNG 251</td>
<td>Oceanography & OCNG 252 and Oceanography Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td>3</td>
</tr>
<tr>
<td>MARB 303</td>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
<td></td>
</tr>
<tr>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Select from the following:</td>
<td>10</td>
</tr>
<tr>
<td>BIOL 351</td>
<td>Fundamentals of Microbiology</td>
<td></td>
</tr>
<tr>
<td>CHEM 383</td>
<td>Chemistry of Environmental Pollution</td>
<td></td>
</tr>
<tr>
<td>MARB 301</td>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>MARB 310</td>
<td>Introduction to Cell Biology</td>
<td></td>
</tr>
<tr>
<td>MARB 401</td>
<td>Physiological Ecology of Marine Mammals</td>
<td></td>
</tr>
<tr>
<td>or MARB</td>
<td>or Comparative Animal Physiology</td>
<td></td>
</tr>
<tr>
<td>MARB 414</td>
<td>Toxicology</td>
<td></td>
</tr>
<tr>
<td>MARB 430</td>
<td>Coastal Plant Ecology</td>
<td></td>
</tr>
</tbody>
</table>

MARS 325 Introduction to GIS for Marine Sciences
OCNG 420 Biological Oceanography

University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Minor 1</td>
<td></td>
<td>15-18</td>
</tr>
<tr>
<td>Minor 2</td>
<td></td>
<td>15-18</td>
</tr>
<tr>
<td>General electives</td>
<td></td>
<td>15-21</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

All University Studies degree plans require at least 120 hours for completion. A University Studies Degree consists of a concentration of 21-24 hours and two minors of 15-18 hours each. Specific courses may be required for the completion of the hours in the concentrations and minors. Some concentrations and minors contain required courses that have additional prerequisites. One of the two minors must be completed in a college outside of the college that provides the concentration for the student's degree.

Department of Liberal Studies

The Department of Liberal Studies at Texas A&M at Galveston offers four unique interdisciplinary undergraduate degrees:

1. Bachelor of Arts: Maritime Studies
 The past and present relationships between humans and the sea; nautical archaeology, cultural anthropology, world politics, maritime history, maritime literature, tall ship sail training, museum studies, tourism, domestic and international public service, environmental concerns

2. Bachelor of Arts or Bachelor of Science: University Studies;
 concentration in Tourism and Coastal Community Development Sociology, tourism

3. Bachelor of Science: University Studies; concentration in Maritime Public Policy and Communication Communication, public policy

4. Bachelor of Science: University Studies; concentration in Marine Environmental Law and Policy Law and business

The mission of the Department of Liberal Studies is to provide a robust intellectual foundation for students pursuing occupational and leadership roles in areas such as government, communication, business, non-governmental organizations, public policy, tourism policy, journalism and public relations, archaeology and anthropology, museums and archives, professional diving, and preparation for graduate studies and law school.
Liberal Studies students participate in a variety of state and national programs such as the Model United Nations, Student Conference on National Affairs, and the Bush School Public Service Institute. They are encouraged to avail themselves of the international educational opportunities available through courses offered in the Texas A&M University Education Abroad Programs Office (http://abroad.tamu.edu/).

With faculty maintaining research agendas in a variety of disciplines including politics, history, mass media and communication, English, popular culture, archeology, philosophy, museum studies, anthropology, genocide studies, African-American studies, and mathematics, Liberal Studies builds within students enhanced critical thinking and strong communication skills, while emphasizing the critical nature of multicultural thinking and collaboration in a global economy.

The Department of Liberal Studies provides the skills necessary for students to:

• Lead others through critical thinking, multi-dimensional problem solving, and issue advocacy;
• Be competitive in a multicultural world increasingly interested in college graduates with interdisciplinary backgrounds;
• Inform public policy creation and decision-making from both the governmental and business perspectives;
• Earn internships in areas such as politics, law and legal affairs, communication, for-profit and non-profit organizations, artifact conservation and museum management;
• Prepare for graduate school and law school opportunities;
• Understand the inalienable connections between liberal education, freedom, and democracy.

Faculty

Brooks, Stuart R, Lecturer
Liberal Studies
MA, University of Houston Clear Lake, 2009

Davis, Carol A, Associate Professor
Liberal Studies
PHD, University of Southern California, 2007

Domsky, Darren K, Associate Professor
Liberal Studies
PHD, York University, 2006

Earle, Thomas, Assistant Professor
Liberal Studies
PHD, Rice University, 2017

Echols, Katherine E, Instructional Associate Professor
Liberal Studies
PHD, University of Houston, 2015

Falvo, Kathryn, Instructional Assistant Professor
Liberal Studies
PHD, Pennsylvania State University, 2018

Furth, Brett H, Instructional Assistant Professor
Liberal Studies
PHD, Texas A&M University, 2015

Galvan Mandujano, Martha C, Lecturer
Liberal Studies
PHD, The University of Oklahoma, 2015

Garza-Horne, Julie A, Instructional Assistant Professor
Liberal Studies
MA, University of Houston Clear Lake, 2010

Haney, Adam D, Instructional Assistant Professor
Liberal Studies
MA, Texas A&M University-Commerce, 2014

Hufton, Amie J, Instructional Associate Professor
Liberal Studies
MMR, Texas A&M University, 2010

Josvoll, Kristin K, Instructional Assistant Professor
Liberal Studies
MA, Johns Hopkins University, 2015

Kates-Hammond, Cindy, Lecturer
Liberal Studies
EDD, University of South Dakota, 2000
MMU, University of South Dakota, 1995

Kress, Lisa M, Lecturer
Liberal Studies
MFA, University of Houston, 2001

Lamphere, Jenna A, Assistant Professor
Liberal Studies
PHD, University of Tennessee Knoxville, 2016

Ledford, Christopher E, Instructional Assistant Professor
Liberal Studies

Lutz, Joann A, Professor
Liberal Studies
PHD, University of North Texas, 1993

Mark, Samuel E, Professor
Liberal Studies
PHD, Texas A&M University, 2000

McCloud Daisey, Lecturer
Liberal Studies
MA, Houston Baptist University, 2002

Nyman, Elizabeth A, Assistant Professor
Liberal Studies
PHD, Florida State University, 2010

Pearl, Frederic B, Associate Professor
Liberal Studies
PHD, Texas A&M University, 2001

Pintacuda, Jesse Catherine, Lecturer
Liberal Studies
CERT, NA, 2019

Presswood, Phillip H, Instructional Assistant Professor
Liberal Studies
MA, University of Houston-Clear Lake, 2011
Ryan, James G, Professor
Liberal Studies
PHD, University of Notre Dame, 1981

Sisman, Ozlem, Lecturer
Liberal Studies
PHD, Bilkent University, Turkey, 2013

Slaton, Katie J, Instructional Assistant Professor
Liberal Studies
MED, University of Montevallo, 2003

Traber, Daniel S, Professor
Liberal Studies
PHD, University of Houston, 2000

Viser, Victor J, Instructional Associate Professor
Liberal Studies
PHD, Temple University, 1995

Wallace, David Shane, Lecturer
Liberal Studies
PHD, Louisiana State University, 2011

Williams, Sara S, Lecturer
Liberal Studies
CERT, National Association of Underwater Instructors, 2004

Majors
- Bachelor of Arts in Maritime Studies (p. 810)
- Bachelor of Science in University Studies, concentration in Marine Environmental Law and Policy (p. 811)
- Bachelor of Arts or Bachelor of Science in University Studies, concentration in Tourism and Coastal Community Development (p. 812)

Minors
- Diving Technology and Methods Minor (p. 813)
- Maritime Studies Minor (p. 814)

Maritime Studies - BA
Maritime Studies (MAST) offers students a unique opportunity to examine the varied ways humans use and impact coastal and maritime environments. The program is well suited for students seeking to understand the vital and synergistic relationship humans have with the sea.

With 40% of the world’s population living within 60 miles of a coastline, a myriad of interests and demand for jobs dependent upon coastal areas exist, such as:
- Energy exploration and use
- Preservation and conversation of culture
- Historical research
- Underwater archaeology
- Contract archaeology
- Commercial fisheries
- Museums and their management
- Policy changes
- The effects of rising sea levels and changing coastal climates on coastal communities
- Human rights at sea

By studying the history, archaeology, literature, and politics of maritime peoples and cultures from ancient times to present, Maritime Studies graduates gain a comprehensive understanding of the interconnected issues, while achieving an excellent broad-based interdisciplinary education with a distinctive, international emphasis.

Working closely with their undergraduate advisor, students tailor the MAST degree program to suit their interests and career goals, and have many opportunities for enrichment activities contribute to a healthy graduation portfolio. Activities can include enrollment in an internship suited to their career interest, participation in field studies, concentration on a particular topic with a professor of their choice, and/or studying abroad for a semester. MAST students are able to train as a crew member on a working 19th century tall ship, The Elissa. MAST students are encouraged to pursue at least one minor, usually in Anthropology, English, Diving, Museum Studies or History, and many earn two.

Employers understand that students of the liberal arts bring advanced comprehensive problem-solving capabilities to the job market. Upon graduation with the MAST degree, students have acquired valuable critical thinking, reasoning, and communication skills. They are prepared for a diverse choice of fields including, but not limited to, oil and gas administration, environmental management, state and federal agencies, historical and non-profit foundations, museums conservation and administration, mass and niche communication, nautical and contract archaeology, journalism, education, management, law school, and graduate studies in related fields.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
<tr>
<td>MAST 240 Introduction to Maritime Studies(^{1,2})</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>Directed elective(^{1,3})</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 203 Writing about Literature</td>
</tr>
<tr>
<td>Government/Political science (p. 30)</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
</tr>
<tr>
<td>MAST elective(^{1,4})</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
</tr>
</tbody>
</table>
Second Year

Fall

- ANTH 225 Introduction to Biological Anthropology 4
- & ANTH 226 and Introduction to Biological Anthropology Laboratory 1
- HIST 232 History of American Sea Power 3
- Creative arts (p. 29) 3
- Social and behavioral sciences (p. 30) 3
- Directed elective 1,3 3

Semester Credit Hours 16

Spring

- ANTH 210 Social and Cultural Anthropology 1 3
- POLS 232 Introduction to Public Policy 1 3
- American history (p. 29) 3
- Government/Political science (p. 30) 3
- General elective 3

Semester Credit Hours 15

Third Year

Fall

- ANTH 316 Nautical Archaeology 1 3
- MAST 365 Material Culture 1 3
- Life and physical sciences (p. 26) 4
- MAST elective 1,4 3
- MAST elective 1,4 3

Semester Credit Hours 16

Spring

- ENGL 335 Literature of the Sea 1 3
- HIST 242 United States Maritime History 1 3
- Directed elective 1,3 3
- MAST elective 1,4 3
- MAST elective 1,4 3

Semester Credit Hours 15

Fourth Year

Fall

- ENGL 415 Studies in a Major Author 1 3
- MAST 425 Thesis and Technical Writing 1 3
- MAST elective 1,4 3
- MAST elective 1,4 3
- General elective 3

Semester Credit Hours 15

Spring

- MAST 411 International Maritime Culture 1 3
- Directed elective 1,3 3
- MAST elective 1,4 3
- MAST elective 1,4 3
- General elective 3

Semester Credit Hours 15

Total Semester Credit Hours 120

1 Must make a grade of C or better.
2 Required the first semester in the MAST program.
3 Select from ANTH 202, ANTH 313, ANTH 350, ANTH 409, ANTH 423, ANTH 485; COMM 203, COMM 365/JOUR 365; ENGL 330, ENGL 334, ENGL 338, ENGL 339/AFST 339, ENGL 374/WGST 374, ENGL 484, ENGL 485; HIST 226, HIST 370, HIST 373, HIST 374, HIST 405, HIST 485; KINE 199; MARA 212, MARA 421, MARA 435, MARA 470; MARB 340; POLS 353, POLS 366; SPAN 101, SPAN 102, SPAN 201, SPAN 202. A maximum of 3 hours of KINE 199, and a maximum of 3 hours of 484 or 485 may be used for directed electives.
4 Select from ANTH 318, ANTH 330, ANTH 351, ANTH 484; CLAS 371; MAST 200-499 (p. 1064) (except MAST 365, MAST 480, MAST 481); PHIL 314; POLS 231, POLS 347. A maximum combination of 6 hours of 484, 485 and/or 491 may be used as MAST electives.

Students in the BA-MAST program must maintain a portfolio of artifacts from MAST required coursework. The portfolio is developed over the course of the undergraduate career, and upon completion, will contain artifacts from each MAST required course. The Portfolio is assessed for completion during the last term of enrollment, after the student submits the graduation application. The completion of the portfolio requirement will be assessed by the Liberal Studies faculty.

University Studies - BS, Marine Environmental Law and Policy Concentration

Students who are currently enrolled at Texas A&M University Galveston campus may submit proposals to enroll as University Studies majors. The University Studies degree format was created to provide students the flexibility to combine areas of study within either or both campuses that are of special interest. This flexibility may be attractive to students who have particular career paths or post-baccalaureate degree paths in mind.

All University Studies degree plans require at least 120 hours for completion. A University Studies Degree consists of a concentration of 21-24 hours and two minors of 15-18 hours each. Specific courses may be required for the completion of the hours in the concentrations and minors. Some concentrations and minors contain required courses that have additional prerequisites. One of the two minors must be completed in a college outside of the college that provides the concentration for the student's degree.

Students must submit a Proposed Course Form that lists the courses for the individual degree plan the student hopes to complete to the University Studies admissions committee. The application includes a required 2-3 page essay in which the student can explain how the degree will help the student meet the desired educational and personal goals. Once it is determined that the Proposed Course Form has been completed with appropriate information, it will be reviewed by the department that offers the concentration. Students must be in good academic standing, and they must have good academic standing in previous courses that count toward the area of concentration or minors.

A University Studies major will be considered a student in the department that offers the concentration; the Marine Environmental Law and Policy concentration is housed in the Liberal Studies department. The student's diploma will list Bachelor of Arts or Bachelor of Science in the same place it is currently listed, and University Studies will be listed in the place the major is currently listed. The student's area of concentration and the two minors will be indicated on the student's transcript.
The concentration in Marine Environmental Law and Policy requires 21 to 24 hours in coursework such as business law, admiralty law, environmental law, environmental ethics and politics of energy and the environment. Students can choose from a wide variety of combinations to position themselves for graduate studies in environmental law, employment in environmental regulatory areas and/or industry interested in environmental protection especially in a near shore environment. The student must complete a minimum of 6 hours at the 400-level and 36 hours of 300-400 level coursework in residence at Texas A&M University Galveston campus.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>MARA 212 Business Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Mathematics (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>POLS 206 American National Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Life and physical sciences (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Directed elective 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>POLS 207 State and Local Government</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>POLS 340 or POLS 353 Introduction to Public Administration or Constitutional Rights and Liberties</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Directed elective 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>PHIL 314 Environmental Ethics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MARA 421 Admiralty Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Directed elective 2,3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Minor 4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>General elective 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1 Hours must be in 100-499 courses not used elsewhere. Students are required to take 21 to 24 hours of general electives.
2 Must make a grade of C or better.
3 Select from COMM 307/JOUR 301, HIST 232, MARA 304, MARS 435, MARS 491, MAST 411, MGMT 211, PHIL 240, POLS 232, POLS 347. A total of 9 semester hours required.
4 Two university approved minors are required for this degree program. Students are required to take 15 to 18 semester hours for Minor 1 and 15 to 18 semester hours for Minor 2.

University Studies - BS, Tourism and Coastal Community Development Concentration

Students who are currently enrolled at Texas A&M University Galveston campus may submit proposals to enroll as University Studies majors. The University Studies degree format was created to provide students the flexibility to combine areas of study within either or both campuses that are of special interest. This flexibility may be attractive to students who have particular career paths or post-baccalaureate degree paths in mind.

All University Studies degree plans require at least 120 hours for completion. A University Studies degree consists of a concentration of 21-24 hours and two minors of 15-18 hours each. Specific courses may be required for the completion of the hours in the concentrations and minors. Some concentrations and minors contain required courses that have additional prerequisites. One of the two minors must be completed in a college outside of the college that provides the concentration for the student’s degree.

Students must submit a Proposed Course Form that lists the courses for the individual degree plan the student hopes to complete to the University
Studies admissions committee. The application includes a required 2-3 page essay in which the student can explain how the degree will help the student meet the desired educational and personal goals. Once it is determined that the Proposed Course Form has been completed with appropriate information, it will be reviewed by the department that offers the concentration. Students must be in good academic standing, and they must have good academic standing in previous courses that count toward the area of concentration or minors.

A University Studies major will be considered a student in the department that offers the concentration; the Tourism and Coastal Community Development concentration is housed in the Liberal Studies department. The student’s diploma will list Bachelor of Arts or Bachelor of Science in the same place it is currently listed, and University Studies will be listed in the place the major is currently listed. The student’s area of concentration and the two minors will be indicated on the student’s transcript.

The concentration in Tourism and Coastal Community Development requires 21-24 hours of major coursework and equips students with the knowledge and skills to help coastal communities progress, while maintaining sound ecological and environmental practices. Such thinking involves an interdisciplinary approach that engenders creative and critical thinking about such issues as maritime public policy, communication, marine science, sociology, and ecology. Students graduate with the capability to guide industry and community toward a path that is both sustainable and economically beneficial. TCD career opportunities include:

- Ecotourism
- Coastal community planning and development
- Environmental policy and legislative affairs
- Sports tourism
- Convention and tourism offices
- Hospitality industry liaison
- Tourism sociological impact researcher
- Ecological economics
- NGOs and international social justice legal centers
- Congressional and legislative assistant

The student must complete a minimum of 6 hours at the 400-level and 36 hours of 300-400 level coursework in residence at Texas A&M University Galveston campus.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPTS 302</td>
<td>Application of Tourism Principles</td>
<td>3</td>
</tr>
<tr>
<td>RPTS 426</td>
<td>Tourism Impacts</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 320</td>
<td>Demographic Methods</td>
<td>3</td>
</tr>
<tr>
<td>SOCI 404/ RPTS 404</td>
<td>Sociology of the Community</td>
<td>3</td>
</tr>
<tr>
<td>Concentration Electives ²</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

University and College Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics (p. 26)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

The minor in Diving Technology and Methods combines practical scuba training with advanced coursework highlighting scientific and specialized applications of diving. Students gain professional diving certifications and experience in scientific diving research. Students in any major may establish a minor field of study in Diving Technology and Methods through completing 16 hours from the designated courses. A University Studies Degree consists of a concentration for the student’s degree.

In addition to the course requirements, students must:

- Maintain compliance with training agency requirements.
- Maintain a GPA of 2.5.
- Maintain good health and fitness appropriate to the level of diving required. Adverse behaviors that put the diver or other participants at risk such as the use of alcohol or certain medicines may require the diver to be removed from the program.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
<td>16</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity (Positive Impact Diving)</td>
<td></td>
</tr>
<tr>
<td>DIVE 250</td>
<td>SCUBA Diving I</td>
<td></td>
</tr>
<tr>
<td>DIVE 251</td>
<td>SCUBA Diving II</td>
<td></td>
</tr>
<tr>
<td>DIVE 260</td>
<td>Scuba Diving III</td>
<td></td>
</tr>
<tr>
<td>DIVE 330</td>
<td>Rescue Diving</td>
<td></td>
</tr>
</tbody>
</table>
Maritime Studies - Minor

The Maritime Studies minor offers students an exciting interdisciplinary selection of courses to compliment and enrich all majors offered at the Galveston campus of Texas A&M University. The minor requires a total of 15 hours – three hours each of Anthropology, English, and History/Political Science, and 6 hours of electives to be chosen from Maritime Studies courses. The broad range of liberal arts courses offered by this minor provides an opportunity for TAMUG students in other majors to expand their knowledge and experience of maritime topics. The courses in the minor have been carefully selected for content, class size, and instructor to provide an optimum learning experience.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 202</td>
<td>Introduction to Archaeology</td>
<td>3</td>
</tr>
<tr>
<td>ANTH 210</td>
<td>Social and Cultural Anthropology</td>
<td></td>
</tr>
<tr>
<td>ANTH 225</td>
<td>Introduction to Biological Anthropology</td>
<td></td>
</tr>
<tr>
<td>ANTH 313</td>
<td>Historical Archaeology</td>
<td></td>
</tr>
<tr>
<td>ANTH 316</td>
<td>Nautical Archaeology</td>
<td></td>
</tr>
<tr>
<td>ANTH 318</td>
<td>Nautical Archaeology of the Americas</td>
<td></td>
</tr>
<tr>
<td>ANTH 330</td>
<td>Field Research in Anthropology</td>
<td></td>
</tr>
<tr>
<td>ANTH 350</td>
<td>European Archaeology</td>
<td></td>
</tr>
<tr>
<td>ANTH 409</td>
<td>Science, Pseudoscience and Critical Thinking in Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>MAST 371</td>
<td>Archaeology of the Pacific</td>
<td></td>
</tr>
<tr>
<td>Select one from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 335</td>
<td>Literature of the Sea</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 415</td>
<td>Studies in a Major Author</td>
<td></td>
</tr>
<tr>
<td>Select one from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST 232</td>
<td>History of American Sea Power</td>
<td>3</td>
</tr>
<tr>
<td>HIST 242</td>
<td>United States Maritime History</td>
<td></td>
</tr>
<tr>
<td>MAST 336</td>
<td>Maritime Foreign Policy</td>
<td></td>
</tr>
<tr>
<td>MAST 345</td>
<td>Texas Maritime Culture and History</td>
<td></td>
</tr>
<tr>
<td>POLS 231</td>
<td>Introduction to World Politics</td>
<td></td>
</tr>
<tr>
<td>POLS 347</td>
<td>Politics of Energy and the Environment</td>
<td>6</td>
</tr>
<tr>
<td>Select two from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH 351</td>
<td>Classical Archaeology</td>
<td></td>
</tr>
<tr>
<td>CLAS 371</td>
<td>In Search of Homer and the Trojan War</td>
<td></td>
</tr>
<tr>
<td>MAST 252</td>
<td>Crafts of the Maritime World</td>
<td></td>
</tr>
<tr>
<td>MAST 265</td>
<td>Elissa Sail Training</td>
<td></td>
</tr>
<tr>
<td>MAST 333</td>
<td>Viking Archaeology and Norse Mythology</td>
<td></td>
</tr>
<tr>
<td>MAST 350</td>
<td>A History of Wooden Ship Construction</td>
<td></td>
</tr>
<tr>
<td>MAST 354</td>
<td>Ancient Egyptian Seafaring</td>
<td></td>
</tr>
<tr>
<td>MAST 365</td>
<td>Material Culture</td>
<td></td>
</tr>
<tr>
<td>MAST 411</td>
<td>International Maritime Culture</td>
<td></td>
</tr>
<tr>
<td>MAST 441</td>
<td>Maritime Piracy</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Minimum of 6 hours at 300- to 400-level.

A minimum grade of 'C' must be made in a course to count toward the minor.

Department of Marine and Coastal Environmental Science

The Department of Marine and Coastal Environmental Science (MCES) educates undergraduate and graduate students to be future leaders in coastal and marine science as well as in management and policy decision-making for the utilization and preservation of marine resources. We recognize today's professional careers demand strong interdisciplinary as well as interpersonal skills and have designed our educational programs to provide a core education in the physical, chemical and geological sciences and the necessary training for applying this knowledge to the maintenance and improvement of our marine resources. Our faculty conducts cutting-edge research in coastal marine geology, physical oceanography, marine geochemistry, and coastal resources management that emphasize and support our degrees and course curricula. Our strength is the diversity of our faculty who utilize their experience from private, governmental, and academic careers to create extraordinary learning opportunities for students through "hands on" and "on the water" field and laboratory research as well as internships that give our students a competitive advantage for employment after graduation.

We offer a variety of majors and minors in subjects centered on the coastal and marine environment. We offer a B.S. in Marine Sciences (MARS) and a B.S. in Coastal Environmental Science and Society. Students enrolled in the MARS degree will have the opportunity to select a track in physical, chemical, or geological marine sciences or an integrated track. The License Option Program (MARS-LO) is also available to MARS majors to obtain a third mate's license in the Merchant Marine upon graduation. We offer a minor in Coastal Environmental Science and Society, as well as facilitating coursework for minors in Geology, Oceanography, and Geography through the respective departments in College Station. Graduate programs offer a Master of Marine Resources Management (MARM) and a Ph.D. program in Marine and Coastal Management and Science (MCMS). We also offer a 3+2 Program in which the student can attain a B.S. in Coastal Environmental Science and Society with a MARM degree in 5 years. Our faculty advise students in diverse M.S. and Ph.D. graduate degrees on our campus such as the interdisciplinary program in Marine Biology (MARB IDP) and programs in...
conjunction with departments in College Station such as Oceanography (OCNG) and Landscape Architecture and Urban Planning (LAUP).

Faculty

Alexander, Steve K, Lecturer
Marine and Coastal Environmental Science
PHD, Louisiana State University, 1976

Amon, Rainer, Professor
Marine and Coastal Environmental Science
PHD, University of Texas at Austin, 1995

Anis, Ayal, Associate Professor
Marine and Coastal Environmental Science
PHD, Oregon State University, 1993

Bodson, Bruce R, Lecturer
Marine and Coastal Environmental Science
JD, South Texas College of Law, 1993

Brody, Samuel D, Professor
Marine and Coastal Environmental Science
PHD, University of North Carolina, 2002

Coleman Jr, Charles H, Instructional Assistant Professor
Marine and Coastal Environmental Science
MS, University of Houston at Clear Lake, 1986

Davlasheridze, Meri, Assistant Professor
Marine and Coastal Environmental Science
PHD, Pennsylvania State University, 2013

Dellapenna, Timothy M, Associate Professor
Marine and Coastal Environmental Science
PHD, The College of William & Mary, 1999

Highfield, Wesley E, Associate Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 2008

Jones, Glenn A, Professor
Marine and Coastal Environmental Science
PHD, Columbia University, 1983

Kaiser, Karl, Associate Professor
Marine and Coastal Environmental Science
PHD, University of South Carolina, 2009

Kovacevich, John W, Lecturer
Marine and Coastal Environmental Science
MS, University of Houston - Clear Lake, 2015

Louchouarn, Patrick, Professor
Marine and Coastal Environmental Science
PHD, Universite du Quebec a Montreal, 1997

Merrell Jr, William J, Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 1971

Mohler, Robert R, Senior Lecturer
Marine and Coastal Environmental Science
PHD, Texas A&M University, 1994

Park, Kyeong, Professor
Marine and Coastal Environmental Science
PHD, College of William and Mary, 1993

Retchless, David P, Assistant Professor
Marine and Coastal Environmental Science
PHD, Pennsylvania State University, 2015

Ross-Wootton, Ashley D, Assistant Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 2010

Santschi, Peter H, Professor
Marine and Coastal Environmental Science
PHD, Universitat Bern, 1975

Van Hengstum, Peter J, Associate Professor
Marine and Coastal Environmental Science
PHD, Dalhousie University, Canada, 2011

Majors

- Bachelor of Science in Coastal Environmental Science and Society (p. 815)
- Bachelor of Science in (p. 817) Coastal Environmental Science and Society and Master of Marine Resources Management, 5-Year Degree Program
- Bachelor of Science in Marine Sciences (p. 818)
- Bachelor of Science in Marine Sciences, License Option (p. 820)

Minors

- Clinical Laboratory Sciences Minor (p. 822)
- Coastal Environmental Science and Society Minor (p. 822)

Coastal Environmental Science and Society - BS

The Coastal Environmental Science and Society program is a Bachelor of Science degree that focuses on natural environmental processes (physical, chemical/biogeochemical, and geological) and social issues (policy, management, economics, law, etc.) related to the development and exploitation of oceanic and coastal resources and ecosystems. The Coastal Environmental Science and Society curriculum provides a solid foundation in oceanography, geology, chemistry, biology and physics with additional coursework in economics, policy and management. The curriculum is specifically geared towards understanding the societal and environmental impacts of resource development and exploitation, with the focus on environmental pollution, sustainable development, biological diversity, fisheries and mariculture development and management, or oil and gas extraction and exploration, wetlands, and global climate change.

There is a growing demand for trained entry-level professionals from both government and industry who understand and can use scientific information in the planning and management processes. With a solid scientific foundation, the Coastal Environmental Science and Society graduates are ideally poised to pursue their careers at the interface between government and businesses operating in marine realm. With suitably chosen electives, our graduates are well qualified to enter Master or Ph.D. programs in marine resource management and policy, environmental sciences, oceanography or related disciplines.
Students in Coastal Environmental Science and Society may choose to establish a minor field of study, for example, in Economics (TAMU) or in Maritime Business Administration (TAMUG) through completion of credits as outlined in the available minors’ curriculum pages. Obtaining a minor from a department located at TAMU in College Station with coursework completed in Galveston is also possible. An advisor in the MCES Department can help with course selection and facilitate the minor approval process through another department.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 101 & GEOL 102</td>
<td>Principles of Geology and Principles of Geology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARS 101</td>
<td>Marine Science Matters</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear Systems</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>BIOL 112 or GEOL 106</td>
<td>Introductory Biology II or Historical Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>OCNG 251 & MARS 252</td>
<td>Oceanography and Introductory Marine Science Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 280</td>
<td>Coastal and Ocean Resources</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 281</td>
<td>Sophomore Seminar in Marine Sciences</td>
<td>1</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 & PHYS 226</td>
<td>Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>COMM 203</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 210</td>
<td>Marine Geography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 16 |

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MARA 363</td>
<td>The Management Process</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 350</td>
<td>Advanced Computer Applications</td>
<td>2</td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 5 |

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MARS 325</td>
<td>Introduction to GIS for Marine Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 491</td>
<td>Research in Marine Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>POLS 347</td>
<td>Politics of Energy and the Environment</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>MARS 432</td>
<td>or Peak Oil, Global Warming and Resource Scarcity</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 303</td>
<td>Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Select one from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARB 430</td>
<td>Coastal Plant Ecology</td>
<td>4</td>
</tr>
<tr>
<td>MARS 425</td>
<td>Coastal Wetlands Management</td>
<td>1</td>
</tr>
<tr>
<td>MARS 426 & MARS 427</td>
<td>Coastal Wetlands Delineation Laboratory</td>
<td>3</td>
</tr>
</tbody>
</table>

| Professional elective | 3 |

| Semester Credit Hours | 14 |

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>MARS 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 430</td>
<td>Geological Oceanography-Plate Tectonics</td>
<td>1, 3</td>
</tr>
<tr>
<td></td>
<td>MARS 431</td>
<td>or Geological Oceanography-Earth’s Climate</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General elective</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 15 |

| Total Semester Credit Hours | 120 |

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication, Mathematics, Life and Physical Sciences, Language Philosophy and Culture, Creative Arts, American History, Government and Political Sciences and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and Cultural Diversity and the 3 hour requirement for Cultural Diversity may be met with courses used to satisfy other degree requirements.

1. Indicates required courses in the Ocean and Coastal Resources major. These courses will be used to compute the major GPR. Also, if any upper level MARS or OCNG elective courses are taken, they will be used in the major GPR.

2. The total hours may be increased if the student is required to take remedial math, remedial English, foreign language or the 3-hour University Core Curriculum requirement for International and Cultural Diversity and the 3 hour requirement for Cultural Diversity.
Recommended professional electives include, but are not limited to: CHEM 316, CHEM 318, MARA 470, MARB 320, MARB 340, MARB 423, MARB 438, MARB 445, MARS 305, MARS 306, MARS 330, MARS 370/GEOG 370, MARS 410, MARS 412, MARS 415, MARS 423, MARS 435, MARS 440, MARS 491 or MARS 489. Field Experience may also be met with MARB 300 plus one credit hour of a field oriented lab course. Designated writing intensive course. If both MARS 430 and MARS 431 are taken, one can be used as a professional elective.

Coastal Environmental Science and Society - 5-Year Bachelor of Science/Master of Marine Resources Management

The Coastal Environmental Science and Society and MARM Program allows Coastal Environmental Science and Society majors to enter the graduate program for a Master of Marine Resources Management at the beginning of their senior year, enabling students to receive their Coastal Environmental Science and Society undergraduate degree (BS) and a Master of Marine Resources Management (MARM) graduate degree in five years. The Coastal Environmental Science and Society majors who have at least a 3.25 GPA and have fulfilled all of their prerequisite course requirements and otherwise completed 101 or 102 hours by the fall of their fourth year are eligible to apply for the 5-year combined program during their junior year. Applicants to the 5-year combined program submit the same materials (including GRE scores) and are subject to the same admission process and criteria as other MARM program applicants. Those students whose credentials are judged to be competitive by the mid-January deadline will be admitted.

Admitted students enroll in Marine Resources Management graduate courses with an undergraduate classification (U4) during the fall of their fourth year. They are then be reclassified as degree-seeking master’s students (G7) upon completing 120 credit hours, which typically occurs at the beginning of the fall semester of the fifth year. Students are required to complete the same 2-year, 36-hour curriculum as other graduate students admitted to the MARM Professional Track (see MARM curriculum). Students who are interested in the MARM Research (Thesis) Track are afforded additional flexibility to replace required courses with up to nine hours of research courses (MARS 691) and electives chosen with the approval of their advisory committee. To comply with the course and work requirements of the Research Track, this program may extend beyond the 5-year window. For specific requirements to comply with the Research Track curriculum, students are asked to consult the MARM section of the catalog.

Students who choose not to finish the MARM degree after being admitted to the 5-year combined program may exit the program at any time. Completed MARM courses will be applied to their bachelor’s degree in Coastal Environmental Science and Society, as appropriate. Failure to complete the MARM program will in no way impede their ability to attain a bachelor’s degree in Coastal Environmental Science and Society when the requirements for that degree are completed. Those who pursue the 5-year combined program obtain both degrees upon the completion of the 5-year combined program, receiving both their Bachelor of Science and the MARM degrees at the end of year five. Advising for the 5-year combined program is coordinated by the MCES Department’s undergraduate and graduate advisors and by the Office of Graduate Studies. Advising will help ensure that interested students have satisfied the prerequisite course requirements for the bachelor’s degree so that they may enter the 5-year combined program. Coastal Environmental Science and Society students should consult an undergraduate advisor and a graduate advisor for more information.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>GEOL 101 & GEOL 102</td>
<td>Principles of Geology and Principles of Geology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MARS 101</td>
<td>Marine Science Matters</td>
<td>1</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear Systems</td>
<td>4</td>
</tr>
</tbody>
</table>

| Spring | Semester Credit Hours | 16 |
|--------|-----------------------|
| BIOL 112 or GEOL 106 | Introductory Biology II or Historical Geology | 4 |
| MATH 147 or MATH 151 | Calculus I for Biological Sciences or Engineering Mathematics I | 4 |
| MARS 210 | Marine Geography | 3 |
| MARS 252 | Introductory Marine Science Laboratory | 1 |
| OCNG 251 | Oceanography | 3 |
| POLS 207 | State and Local Government | 3 |

| Second Year | Fall | Semester Credit Hours | 18 |
|-------------|------|-----------------------|
| CHEM 119 | Fundamentals of Chemistry I | 4 |
| COMM 203 | Public Speaking | 3 |
| MARS 280 | Coastal and Ocean Resources | 3 |
| MARS 281 | Sophomore Seminar in Marine Sciences | 1 |
| Select one of the following: | 4 |
| PHYS 201 | College Physics | |
| PHYS 206 & PHYS 226 | Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences | |
| Creative arts (p. 29) | 3 |

| Spring | Semester Credit Hours | 16 |
|--------|-----------------------|
| CHEM 120 | Fundamentals of Chemistry II | 4 |
| ECON 202 | Principles of Economics | 3 |
| MARA 363 | The Management Process | 3 |
| POLS 206 | American National Government | 3 |
| Language, philosophy and culture (p. 27) | 3 |

<p>| Third Year | Fall | Semester Credit Hours | 16 |
|-----------|------|-----------------------|
| MARS 350 | Advanced Computer Applications | 2 |
| OCNG 420 | Biological Oceanography | 3 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 347 or MARS 432</td>
<td>Politics of Energy and the Environment or Peak Oil, Global Warming and Resource Scarcity</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARS 425 & MARS 426</td>
<td>Coastal Wetlands Management and Coastal Wetlands Delineation Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MARB 430</td>
<td>Coastal Plant Ecology</td>
<td>3</td>
</tr>
</tbody>
</table>

American history (p. 29)
Semester Credit Hours 15

Spring
MARS 310 | Field Methods in Marine Sciences 1,3 | 3 |

MARS 430 or MARS 431
Geological Oceanography-Plate Tectonics 1,2
or Geological Oceanography-Earth’s Climate

STAT 303 | Statistical Methods | 3 |

American history (p. 29)
Professional elective 1,4
Semester Credit Hours 15

Fourth Year
Fall
MARS 325 | Introduction to GIS for Marine Sciences 5 | 3 |

MARS 481 | Seminar 1 | 1 |

MARS 491 | Research in Marine Sciences 1 | 1 |

MARS 625 | GIS Use in Coastal Resources 5 | 3 |

MARS 676 | Environmental Policy 1 | 3 |

Professional elective 1,4
Semester Credit Hours 15

Spring
ECON 203 | Principles of Economics 5 | 3 |

MARA 604 | Marine Natural Resource Economics 5,6 | 3 |

MARS 603 | Quantitative Methods for Resource Management 1,6 | 3 |

MARS 675 | Environmental Management Strategies 1,6 | 3 |

Professional elective 1,4
Semester Credit Hours 16

Fifth Year
Fall
MARS 635 | Environmental Impact Statements and Natural Resource Damage Assessment 6 | 3 |

MARS 681 | Seminar 6 | 1 |

PLAN 641 | Problems of Environmental Planning Administration 6 | 3 |

MARM elective 6
Semester Credit Hours 10

Spring
MARS 680 | Integrative Analysis in Marine Resources 6 | 2 |

MARM elective 6
Semester Credit Hours 9

Total Semester Credit Hours 150

1 Indicates required courses in the Ocean and Coastal Resources major. These courses will be used to compute the major GPR. Also, if any upper level MARS or OCNG elective courses are taken, they will be used in the major GPR.

2 Designated writing intensive course.

3 Field Experience may also be met with MARB 300 plus one credit hour of a field oriented lab course.

4 Recommended professional electives include but are not limited to: CHEM 316, CHEM 318, MARA 470, MARS 470, MARS 320, MARS 420, MARS 423, MARS 438, MARS 445, MARS 305, MARS 330, MARS 370/GEOG 370, MARS 410, MARS 415, MARS 432, MARS 435, MARS 440, MARS 484, MARS 485, MARS 491 or MARS 489.

5 Credit by exam for MARS 325 and ECON 203 will be awarded after successful completion of MARS 625 and MARA 604, respectively.

6 The 36-hour professional track curriculum is structured with 24 hours of required courses and 12 hours of optional elective courses. The required courses include a 1 hour seminar to be taken in the student’s first year, 8 hours of management, 3 hours of Geographic Information Systems (GIS), 6 hours of resource economics and statistical methods, and 6 hours of law/policy courses. The student in the professional track will choose electives for the remaining 12 credit hours. See MARM curriculum pages of the graduate catalog for additional requirements for the research track (thesis option) curriculum.

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and Cultural Diversity may be met with courses used to satisfy other degree requirements. The 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements.

Students in the 5-year program will take 12 fewer undergraduate credit hours than the other OCRE students. Graduate courses (6 hours) taken in the fourth and fifth year will be counted as credit towards the OCRE degree.

The total undergraduate credit hours prior to enrolling in graduate courses is 98 after the completion of the 3rd year. After the 3rd year, 10 additional undergraduate hours will be taken, 6 additional hours will be obtained by exam hours of two graduate courses, and 6 hours of MARM elective credits will be used for 6 hours of undergraduate elective credits for a total of 120 undergraduate transcript hours. The total graduate credit hours is 36. Substituting 6 hours of MARM electives for one free and one professional elective and applying 6 hours of credit by exam results in a total of 150 hours. The total hours may be increased if the student is required to take remedial math, remedial English, foreign language or International and Cultural Diversity courses.

Marine Sciences - BS

The Marine Sciences (MARS) program is a Bachelor of Science degree that focuses on the geological, chemical and physical science aspects of the estuarine, coastal, and marine environment. The coastal location of the campus enables students to acquire extensive hands-on field experience in addition to rigorous course work in chemistry, geology,
Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GEOL 102</td>
<td>and Principles of Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 101</td>
<td>Marine Science Matters</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 151</td>
<td>or Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 152</td>
<td>or Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>OCNG 251</td>
<td>Oceanography</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& MARS 252</td>
<td>and Introductory Marine Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARS 210</td>
<td>Marine Geography 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select one of the following:</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 201</td>
<td>College Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& PHYS 226</td>
<td>and Physics of Motion Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Track focus elective 1,2</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>MARS 461</td>
<td>Capstone Undergraduate Research Experience II 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 481</td>
<td>Seminar 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 491</td>
<td>Research in Marine Sciences 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MARS 491</td>
<td>Research in Marine Sciences 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GPR 207</td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Track elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Semester Credit Hours</td>
<td>120</td>
</tr>
</tbody>
</table>

1 Course counts towards major GPR.
2 Hours vary depending on track focus electives chosen.
If a student is following the geology track, GEOL 106 is their focus elective and they will need to choose any additional 4 credit class for the spring semester to satisfy the curriculum 120 credit hours. Writing intensive course.

3 hours must be International and Cultural Diversity (p. 47). This requirement can be met with courses used to satisfy other degree requirements.

Track Options

Chemical Marine Science

Focus electives
- CHEM 227 Organic Chemistry I and Organic Chemistry Laboratory 4
- CHEM 228 Organic Chemistry II and Organic Chemistry Laboratory 4

Breadth electives
- Select four of the following:
 - ATMO 363 Introduction to Atmospheric Chemistry and Air Pollution
 - MARS 340 Geochemistry
 - MARS 360 Biochemistry
 - MARS 470 Eco-Environmental Modeling
 - STAT 303 Statistical Methods
 - CHEM 300 to 499 (p. 929)

Total Semester Credit Hours 20

Geological Marine Science

Focus electives
- GEOL 106 Historical Geology 4
- MARS 306 Coastal Sedimentary Geology 4

Breadth electives
- Select four of the following:
 - GEOL 300 to 499 (p. 1005)
 - GEOG 331 Geomorphology
 - MARS 305 Environmental Micropaleontology
 - MARS 340 Geochemistry
 - MARS 370/ Coastal Processes
 - GEOG 370 Remote Sensing Technology
 - MARS 430 Geological Oceanography-Plate Tectonics
 - MARS 431 Geological Oceanography-Earth’s Climate
 - MARS 432 Peak Oil, Global Warming and Resource Scarcity
 - MARS 435 Exploration Geophysics
 - MARS 489 Special Topics in Marine Sciences

Total Semester Credit Hours 20

Physical Marine Science

Focus electives
- MATH 251 Engineering Mathematics III 3
- MATH 308 Differential Equations 3

Breadth electives
- Select four of the following:
 - ATMO 363 Introduction to Atmospheric Chemistry and Air Pollution
 - MARS 408 Estuarine and Coastal Hydrodynamics
 - MARS 415 Remote Sensing Technology
 - MARS 470 Eco-Environmental Modeling
 - MARS 489 Special Topics in Marine Sciences
 - STAT 303 Statistical Methods
 - PHYS 300 to 499 (p. 1115)

Total Semester Credit Hours 18

Integrated Track

Focus electives
- Select one of the following: 3-4
 - CHEM 227 Organic Chemistry I and Organic Chemistry Laboratory
 - MARS 306 Coastal Sedimentary Geology
 - MATH 251 Engineering Mathematics III

Breadth electives
- Select four of the following:
 - CHEM 228 Organic Chemistry II and Organic Chemistry Laboratory
 - GEOL 106 Historical Geology
 - MATH 308 Differential Equations

Total Semester Credit Hours 18-20

Marine Sciences - BS, License Option

The license option (LO) in the Marine Sciences (MARS) program leads toward a license as a deck officer in the United States Merchant Marine. This program retains the physical science core of the MARS curriculum, and adds coursework that prepares the student to sit for the U.S. Coast Guard (USCG) examination as a Third Mate of any gross tonnage upon oceans, steam, or motor vessels. Students combine a broad base of courses in physical science and mathematics and practical instruction in seamanship and navigation with four oceanography courses. The objective of the program is to provide students with a sound intellectual and educational background to function in a scientifically and technologically advanced society, while also providing the practical hands-on training needed for employment in the maritime industry. Graduates are particularly well qualified to serve on research vessels.
where an understanding of the scientific purpose of the voyage is required. Students who wish to enter a physical science graduate program will need to take additional course work in science and mathematics. Midshipmen who enroll in and apply to graduate under one of the license option curricula must complete the appropriate license examination for Third Mate or Third Assistant Engineer in order to graduate from Texas A&M University as well as licensing requirements outlined in the program requirements. Certain USCG courses require a minimum grade of C (70%).

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GEOL 101</td>
<td>Principles of Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& GEOL 102</td>
<td>Principles of Geology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MARS 101</td>
<td>Marine Science Matters</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 103</td>
<td>Basic Safety and Lifeboatman Training</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 201</td>
<td>Vessel Structure and Ship Knowledge</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 147</td>
<td>Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 151</td>
<td>Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>OCNG 251</td>
<td>Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 252</td>
<td>Introductory Marine Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MART 115</td>
<td>Seamanship I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 204</td>
<td>Terrestrial Navigation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 148</td>
<td>Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MATH 152</td>
<td>Engineering Mathematics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>MART 200</td>
<td>Deck Sea Training I: Basic Communications, Navigation and Seamanship</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARS 210</td>
<td>Marine Geography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 202</td>
<td>Ship Stability and Trim</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 212</td>
<td>Marine Dry Cargo Operations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARS 281</td>
<td>Sophomore Seminar in Marine Sciences</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MART 210</td>
<td>Integrated Navigation I: RADAR/ARPA/ECDIS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MART 215</td>
<td>Seamanship II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 303</td>
<td>Celestial Navigation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MART 310</td>
<td>Integrated Navigation II: Electronic Navigation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>NVSC 200</td>
<td>Naval Science for the Merchant Marine Officer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& PHYS 226</td>
<td>and Physics of Motion Laboratory for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MART 303</td>
<td>Computing and Data Display</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 440</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 307</td>
<td>Global Maritime Distress Safety System</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 313</td>
<td>Marine Liquid Cargo Operations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& PHYS 227</td>
<td>and Electricity and Magnetism Laboratory for the Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>MART 400</td>
<td>Deck Sea Training III: Advanced Communications, Navigation and Seamanship</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MARS 325</td>
<td>Introduction to GIS for Marine Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 410</td>
<td>Physical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARS 481</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MART 208</td>
<td>Maritime Meteorology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 410</td>
<td>Integrated Navigation III: Bridge Watchstanding</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>MARS 310</td>
<td>Field Methods in Marine Sciences</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 498</td>
<td>Maritime Medical Care</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geological Oceanography Requirement: choose from</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Texas A&M University

821
the cadet does not complete the degree within that time period, the cadet
requirements to receive the degree:
requirements outlined here, the cadet must also complete the following
Refer to the University catalog section for the Texas A&M Maritime
Maritime Academy Corps of Cadets as a qualified License Option cadet.
This degree requires full participation in the Texas A&M University
plan.
MARR 300
hour cruise options (Cultural Diversity courses, or any of the six hour cruise options. The six
remedial math, remedial English, foreign language or International and
Language, Philosophy and Culture; Creative Arts; American History;
Government and Political Sciences; and Social and Behavioral Sciences.
The 6-hour University Core Curriculum requirement for International and
Cultural Diversity may be met with courses used to satisfy other degree
requirements.

All electives must be chosen in consultation with, and approved by, the
student's academic advisor. Unless courses are specifically listed, see
University Core Curriculum at http://core.tamu.edu/ for a listing of course
options for Communication; Mathematics; Life and Physical Sciences;
Language, Philosophy and Culture; Creative Arts; American History;
Government and Political Sciences; and Social and Behavioral Sciences.
The 6-hour University Core Curriculum requirement for International and
Cultural Diversity may be met with courses used to satisfy other degree
requirements.

The total hours may be increased if the student is required to take
remedial math, remedial English, foreign language or International and
Cultural Diversity courses, or any of the six hour cruise options. The six
hour cruise options (NAUT 200, NAUT 300 and NAUT 400 or MARR 200,
MARR 300 and MARR 400) do not add any required hours to the degree
plan.

This degree requires full participation in the Texas A&M University
Maritime Academy Corps of Cadets as a qualified License Option cadet.
Refer to the University catalog section for the Texas A&M Maritime
Academy for additional information. In addition to the academic
requirements outlined here, the cadet must also complete the following
requirements to receive the degree:

• Successfully complete required sea service and minimum training
 cruise requirements

• Pass a comprehensive professional examination (either the Third
 Mate Unlimited-Oceans or Third Assistant Engineering Unlimited)
 administered by the U.S. Coast Guard (USCG).

• Successfully complete all competencies required by the International
 Convention on Standards for Training, Certification and Watchkeeping
 (STCW).

Note: STCW competency certifications expire 5 years after completion. If
the cadet does not complete the degree within that time period, the cadet
will be required to revalidate the expired competency prior to graduation.

Clinical Laboratory Sciences - Minor

The Department of Marine Sciences offers a minor in Clinical Laboratory Sciences (CLBS) through a partnership with the University of Texas Medical Branch (UTMB) in Galveston. Students who wish to obtain this minor must be University Studies, Oceans and One Health majors who have been admitted to the Clinical Laboratory Sciences program at UTMB. Seven hours of coursework taken during the first semester in
that program will be applied towards the CLBS minor at TAMUG. More information is available from the Oceans and One Health advisor.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMUG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARB 315</td>
<td>Natural History of Vertebrates</td>
<td>4</td>
</tr>
<tr>
<td>MARB 420</td>
<td>Comparative Animal Physiology</td>
<td>4</td>
</tr>
<tr>
<td>UTMB 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLLS 3514</td>
<td>Clinical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CLLS 3200</td>
<td>Basic Operations Methods and Introduction</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>to Clinical Lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

This minor will be completed in 15 credit hours, 8 of which are taught at
TAMUG and 7 are taught at UTMB.

Coastal Environmental Science and Society - Minor

Students in other majors may establish a minor field of study in Coastal
Environmental Science and Society (CESS) through the completion of
at least 16 hours of coursework. The CESS minor pairs well with majors in
Marine Biology (http://catalog.tamu.edu/undergraduate/galveston/
marine-biology-bs/), Marine Fisheries (http://catalog.tamu.edu/
undergraduate/galveston/marine-biology/marine-fisheries-bs/), Maritime
Studies (http://catalog.tamu.edu/undergraduate/galveston/liberal-
studies/maritime-studies-bs/), Maritime Administration (http://
catalog.tamu.edu/undergraduate/galveston/liberal-studies/maritime-studies-ba/), Maritime Law (http://catalog.tamu.edu/
undergraduate/galveston/marine-law-policy-university-studies-bs/) or Marine Public Policy and
Communication (http://catalog.tamu.edu/undergraduate/galveston/
liberal-studies/maritime-public-policy-communication-university-studies-bs/).

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARS 280</td>
<td>Coastal and Ocean Resources</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Select from the following:</td>
<td></td>
</tr>
</tbody>
</table>
Department of Marine Biology

The Department of Marine Biology offers undergraduate Bachelor of Science degrees in Marine Biology, Marine Fisheries, and Marine Biology-License Option from Texas A&M University. At the graduate level, the department offers Master of Science and Doctoral degrees in Marine Biology. Teaching and research facilities are located in Galveston, Texas along the shore of Galveston Bay. The semitropical climate provides students and faculty with year-round access to a variety of estuarine, coastal and pelagic marine ecosystems, including salt marshes, oyster reefs, seagrass meadows and coastal sand dunes and beaches. A state-of-the-art Sea Life Facility is available for additional hands-on experiences with marine organisms.

Undergraduate students have extensive opportunities for laboratory and field education and research at national and international locations. International educational opportunities are frequently available in Mexico, Greece, and Italy in conjunction with the Texas A&M Education Abroad Program Office, as well as summer field courses in Alaska.

The faculty have research expertise in marine fisheries, marine invertebrate and vertebrate zoology, marine botany, marine mammalogy, biological oceanography, wetlands ecology, marine conservation and management, biodiversity, microbiology, virology, genomics, toxicology, physiology, marine acoustics, and evolutionary biology.

Marine biology undergraduate students obtain employment with State and Federal agencies, private industry, environmental consulting entities, biomedical research, marine parks, aquariums and zoos, and teaching. Many undergraduates pursue postgraduate studies in marine biology, as well as in the fields of medicine, veterinary sciences and environmental law.

Faculty

Alvarado-Bremer, Jaime, Professor
Marine Biology
PHD, University of Toronto, 1994

Armitage Chan, Anna R, Professor
Marine Biology
PHD, University of California, Los Angeles, 2003

Davis, Randall W, Professor
Marine Biology
PHD, University of California at San Diego, 1980

Eytan, Ron I, Assistant Professor
Marine Biology
PHD, Louisiana State University, 2010

Hala, David, Assistant Professor
Marine Biology
PHD, Brunel University, 2007

Hochman, Mona E, Lecturer
Marine Biology
MS, University of Maryland, 2000

Iliffe, Thomas M, Professor
Marine Biology
PHD, University of Texas Medical Branch at Galveston, 1977

Jurgens, Laura, Assistant Professor
Marine Biology
PHD, University of California Davis, 2015

Labonte, Jessica, Assistant Professor
Marine Biology
PHD, University of British Columbia, 2013

Liu, Hui, Associate Professor
Marine Biology
PHD, University of Alaska Fairbanks, 2006

MATICH, PHILIP, Instructional Assistant Professor
Marine Biology
PHD, Florida International University, 2014

Marshall, Christopher, Professor
Marine Biology
PHD, University of Florida, 1997

Miglietta, Maria P, Associate Professor
Marine Biology
PHD, Duke University, 2005

Petersen, Lene H, Instructional Assistant Professor
Marine Biology
PHD, Memorial University of New Foundland, 2010

Quigg, Antonietta S, Professor
Marine Biology
PHD, Monash University, 2000

Roelke, Daniel, Professor
Marine Biology
PHD, Texas A&M University, 1997
Rooker, Jay R, Professor
Marine Biology
PHD, The University of Texas - Austin, 1997

Schulze, Anja, Professor
Marine Biology
PHD, University of Victoria, Canada, 2001

Sirovic, Ana, Associate Professor
Marine Biology
PHD, University of California San Diego, 2006

St Clair, Katherine, Lecturer
Marine Biology
MS, Texas A&M University, 2014

Steichen, Jamie L, Lecturer
Marine Biology
PHD, Texas A&M University, 2012

Wells, Robert J, Associate Professor
Marine Biology
PHD, Louisiana State University, 2007

Majors

• Bachelor of Science in Marine Biology (p. 824)
• Bachelor of Science in Marine Biology, License Option (p. 825)
• Bachelor of Science in Marine Fisheries (p. 827)

Minors

• Marine Biology Minor (p. 828)

Marine Biology - BS

The Marine Biology Bachelor of Science degree emphasizes high impact, hands-on learning, with courses offering lab-and field-based experiences. Our curriculum spans a broad range of topics, including ichthyology and fish physiology, marine mammalogy, ecology, marine botany and coastal plant ecology, vertebrate and invertebrate zoology, and marine conservation. Our diverse curriculum allows each student to tailor his/her education to realize one’s career goals. With state-of-the-art labs and classrooms, a fleet of vessels, and world-class faculty, our educational and research opportunities prepare graduates to become leaders in their field.

Learn from Experts in the Field

The faculty of the Department of Marine Biology comprises some of the top researchers in their respective fields. This international group of scientists, hailing from 10 different countries around the world, is eager to share their knowledge and foster the passions of our undergraduates. Our faculty recognizes the power of networking, and provides students research and professional opportunities through affiliations with NOAA, FDA, EPA, Texas Parks and Wildlife Department, Texas Commission on Environmental Quality, Galveston Bay Foundation, General Land Office, and numerous others. Whether a student desires to study the smallest microbes and plankton to the largest marine organisms, or ecosystems along the coastline to the deepest reaches of the ocean, the faculty of the Marine Biology Department equips each student with the knowledge needed to succeed.

Career Opportunities

The unique flexibility of courses and the unparalleled access to top quality professors, training, and the sea puts our students in a great position to succeed in any number of career paths, including:

• Conservation
• Environmental Consulting
• Research
• Biomedical Sciences
• Veterinary and Medical degrees
• Law Enforcement
• Environmental Outreach
• Higher/Secondary Education

Endless Learning Opportunities

The courses offered to Marine Biology undergraduates are tailored to give students a solid foundational knowledge of life in the ocean while allowing students to pursue their specific interests. The diverse array of electives includes such courses as: Biology of Marine Mammals, Tropical Marine Ecology, Marine Toxicology, Animal Behavior, Life in Extreme Environments, and Conservation Biology

Learning Outside the Classroom

Sometimes the greatest lessons are learned away from the classroom. For this reason, the Marine Biology Department offers study abroad and field-based courses in Greece, Alaska, and closer to home at Sea World San Antonio. Additionally, take advantage of our on-campus Sea Life Facility for extensive hands-on opportunities. Undergraduates in our program get more than just a degree, they get experiences of a lifetime!

Double Your Career Options

Marine Biology majors have the option to pursue a U.S. Merchant Marine License Option through the Texas A&M Maritime Academy. Those who complete the program will have not only their Bachelor of Science degree, but will qualify to take the U.S. Coast Guard license examination in order to become a Third Mate for ocean going vessels, a vital asset in a number of career fields.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111 Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MARB 101 Succeeding in Science</td>
<td>1</td>
</tr>
<tr>
<td>MATH 147 Calculus I for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112 Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MATH 148 Calculus II for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>
Second Year
Fall
CHEM 227 Organic Chemistry I 3
CHEM 237 Organic Chemistry Laboratory 1
MARB 315 Natural History of Vertebrates 4
PHYS 201 College Physics 4
POLS 206 American National Government 3

Semester Credit Hours 15

Spring
CHEM 228 Organic Chemistry II 3
CHEM 238 Organic Chemistry Laboratory 1
MARB 303 Biostatistics 4
PHYS 202 College Physics 4
POLS 207 State and Local Government 3

Semester Credit Hours 15

Third Year
Fall
COMM 205 Communication for Technical Professions 3
MARB 301 Genetics 4
American history (p. 29) 3
Marine biology elective 6

Semester Credit Hours 16

Spring
MARB 310 Introduction to Cell Biology 4
MARB 435 Marine Invertebrate Zoology 4
Social and behavioral sciences (p. 30) 3
Marine biology elective 4

Semester Credit Hours 15

Fourth Year
Fall
MARB 425 Marine Ecology 4
MARB 430 Coastal Plant Ecology 4
Earth science elective 3
Marine biology elective 3

Semester Credit Hours 14

Spring
MARB 420 Comparative Animal Physiology 4
Language, philosophy and culture (p. 27) 3
Creative arts (p. 29) 3
Marine biology elective 4

Semester Credit Hours 14

Total Semester Credit Hours 120

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and Cultural Diversity may be met with courses used to satisfy other degree requirements. The 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements. Up to 4 hours of MARB 491 and/or MARB 484 may be used as marine biology elective courses in your curriculum. Please consult with your academic advisor.

1. A grade of C or better is required before advancing to upper level courses.
2. Indicates required courses in the Marine Biology major. These courses will be used to compute the major GPR.
3. Student can choose to substitute with MATH 151.
4. Student may choose to substitute with MATH 150 or MATH 152.
5. 17 credit hours of marine biology electives selected from the following: BIOL 351; MARB 300-499 (p. 1051); MARS 305, MARS 325, MARS 360. Students may take a maximum of two mammals courses (selected from MARB 400, MARB 401, MARB 407).
6. Designated writing intensive course.
7. The Earth Science elective may be chosen from GEOL 101-499 (p. 1005) or OCNG 251-499 (p. 1104).
8. MARB 408, which is offered in the Spring semester, can be substituted for MARB 430. MARB 408 is also a writing intensive course.

Marine Biology - BS, License Option

The Marine Biology License Option program allows the marine biology student to prepare for a career as an officer aboard a sea going vessel by participating in the Texas A&M Maritime Academy Corps of Midshipmen. The curriculum provides the basics of marine biology, as well as courses leading toward licensing as a Third Mate of any gross tonnage upon oceans, steam, or motor vessels, in the U.S. Merchant Marine.

The Marine Biology License Option curriculum is an abbreviated version of the Marine Biology curriculum and is oriented toward field activities consistent with service aboard research vessels. Midshipmen who enroll in and apply to graduate in this curriculum must pass the license examination for Third Mate in order to graduate from Texas A&M University. Certain USCG courses require a minimum grade of C (70%).

Program Requirements

First Year
Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111</td>
<td>Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 119</td>
<td>Fundamentals of Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>MARB 101</td>
<td>Succeeding in Science</td>
<td>1</td>
</tr>
<tr>
<td>MART 103</td>
<td>Basic Safety and Lifeboatman Training</td>
<td>3</td>
</tr>
<tr>
<td>MART 201</td>
<td>Vessel Structure and Ship Knowledge</td>
<td>3</td>
</tr>
</tbody>
</table>

Select one from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td></td>
</tr>
<tr>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear Systems</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td></td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
<td></td>
</tr>
</tbody>
</table>

| Semester Credit Hours | 18 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>Introductory Biology II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
</tbody>
</table>
Second Year
Fall
- **CHEM 227** Organic Chemistry I 3
- **CHEM 237** Organic Chemistry Laboratory 1
- **NVSC 200** Naval Science for the Merchant Marine Officer 3
- **PHYS 201** College Physics 4
- **American history (p. 29)** 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Spring
- **CHEM 228** Organic Chemistry II 3
- **CHEM 238** Organic Chemistry Laboratory 1
- **ENGL 104** Composition and Rhetoric 3
- **MART 303** Seamanship II 3
- **MART 307** Global Maritime Distress Safety System 3
- **MART 321** Navigation Rules, International and Inland 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year
Fall
- **MARB 303** Biostatistics 2
- **MARB 315** Natural History of Vertebrates 2
- **MART 210** Integrated Navigation I: RADAR/ARPA/ECDIS 3
- **MART 212** Marine Dry Cargo Operations 3
- **MART 321** Navigation Rules, International and Inland 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring
- **MART 202** Ship Stability and Trim 3
- **MART 307** Global Maritime Distress Safety System 3
- **MART 310** Integrated Navigation II: Electronic Navigation 3
- **MART 313** Marine Liquid Cargo Operations 3
- **POLS 206** American National Government 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year
Fall
- **MARB 310** Introduction to Cell Biology 2
- **MARB 425** Marine Ecology 2
- **MART 410** Integrated Navigation III: Bridge Watchstanding 3
- **POLS 207** State and Local Government 3
- **Creative arts (p. 29)** 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring
- **MARB 311** Ichthyology 2
- **MARB 435** Marine Invertebrate Zoology 2
- **MART 208** Maritime Meteorology 3
- **MART 498** Maritime Medical Care 3
- **American history (p. 29)** 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Summer
- **MART 300** or **MART 350** Deck Sea Training II: Intermediate Communications, Navigation and Seamanship 3
- **MART 400** Deck Sea Training III: Advanced Communications, Navigation and Seamanship 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Credit Hours</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 150 |

1. A grade of C or better is required before advancing to upper level courses.
2. Indicates required courses in Marine Biology License Option major. These courses will be used to compute the major GPR.
3. Indicates license courses leading to a USCG/STCW license endorsement or sea time credit accrual which require a minimum grade of C (70%) or better to earn the endorsement or accrual. Students will be required to repeat the course until they earn a grade of C (70%) or better. MART 307 requires a grade of 75% or better.
4. Other calculus or logic elective may be substituted with approval.
5. Designated writing intensive course.
6. MART 498 must be taken within one year of graduation to receive USCG approval.

All electives must be chosen in consultation with, and approved by, the student's academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and Cultural Diversity may be met with courses used to satisfy other degree requirements. The 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements.
The total hours may be increased if the student is required to take remedial math, remedial English, foreign language or International and Cultural Diversity courses, or any of the six hour cruise options. The six hour cruise options (NAUT 200, NAUT 300 and NAUT 400 or MARR 200, MARR 300 and MARR 400) do not add any required hours to the degree plan.

This degree requires full participation in the Texas A&M University Maritime Academy Corps of Cadets as a qualified License Option cadet. Refer to the University catalog section on the Texas A&M Maritime Academy for additional information. In addition to the academic requirements outlined here, the cadet must also complete the following requirements to receive the degree:

- Successfully complete required sea service and minimum training cruise requirements
- Pass a comprehensive professional examination (either the Third Mate Unlimited-Oceans or Third Assistant Engineering Unlimited) administered by the U.S. Coast Guard (USCG).
- Successfully complete all competencies required by the International Convention on Standards for Training, Certification and Watchkeeping (STCW).

Note: STCW competency certifications expire 5 years after completion. If the cadet does not complete the degree within that time period, the cadet will be required to revalidate the expired competency prior to graduation.

Marine Fisheries - BS

This program provides educational opportunities in the biological sciences, with emphasis of marine management. Ecology, taxonomy, zoogeography, culture, and general biology of commercial species are emphasized. Course offerings are structured to provide not only a strong basis of formal academic instruction but also considerable hands-on field and collection experience by taking advantage of the coastal location of the University. A strong preparation in the sciences is recommended. Marine Fisheries graduates are prepared to work as fisheries managers or research biologists for state and federal agencies, ecological consulting firms, and educational institutions. Qualified degree recipients may undertake postgraduate studies in resource management, mariculture, systematics, and fisheries economics.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 111 Introductory Biology I (^{1,2})</td>
</tr>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
</tr>
<tr>
<td>MARB 101 Succeeding in Science</td>
</tr>
<tr>
<td>MAT 147 Calculus I for Biological Sciences (^3)</td>
</tr>
<tr>
<td>American history (p. 29)</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112 Introductory Biology II (^{1,2})</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry II</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227 Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry Laboratory</td>
</tr>
<tr>
<td>MARB 315 Natural History of Vertebrates (^1)</td>
</tr>
<tr>
<td>PHYS 201 College Physics</td>
</tr>
<tr>
<td>POLS 206 American National Government</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARB 301 Genetics (^1)</td>
</tr>
<tr>
<td>MARB 303 Biostatistics (^1)</td>
</tr>
<tr>
<td>MARB 320 Fisheries Techniques (^1)</td>
</tr>
<tr>
<td>MARB 435 Marine Invertebrate Zoology (^1,5)</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARB 423 Mariculture (^1)</td>
</tr>
<tr>
<td>MARB 425 Marine Ecology (^1)</td>
</tr>
<tr>
<td>MARB 445 Marine Fisheries Management (^1,5)</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
</tr>
</tbody>
</table>

All electives must be chosen in consultation with, and approved by, the student's academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History, Government and Political Sciences; and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and
Cultural Diversity may be met with courses used to satisfy other degree requirements. The 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements.

1 Indicates required courses in the Marine Fisheries major. These courses will be used to compute the major GPR.
2 A grade of C or better is required before advancing to upper level courses.
3 Student may choose to substitute with MATH 151.
4 Student may choose to substitute MATH 150 or MATH 152.
5 Designated writing intensive course.
6 Directed Electives must be selected from MARB 300-499 (p. 1051).

The total hours may be increased if the student is required to take remedial math, remedial English, foreign language, Cultural Discourse or International and Cultural Diversity courses.

Marine Biology - Minor

Coupled with the appropriate major, a minor in marine biology is a powerful asset and can prepare a student for a number of exciting and rewarding career opportunities. This coursework combines top quality classroom, laboratory, and hands-on experiences to diversify a student’s education and prepare them for a future in research, conservation, education, and more.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select from:</td>
<td>16</td>
</tr>
<tr>
<td>MARB 301</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td>MARB 311</td>
<td>Ichthyology</td>
<td>4</td>
</tr>
<tr>
<td>MARB 315</td>
<td>Natural History of Vertebrates</td>
<td>4</td>
</tr>
<tr>
<td>MARB 360</td>
<td>Marine Conservation Biology</td>
<td>4</td>
</tr>
<tr>
<td>MARB 400</td>
<td>Biology of Marine Mammals</td>
<td>4</td>
</tr>
<tr>
<td>MARB 408</td>
<td>Marine Botany</td>
<td>4</td>
</tr>
<tr>
<td>MARB 425</td>
<td>Marine Ecology</td>
<td>4</td>
</tr>
<tr>
<td>MARB 430</td>
<td>Coastal Plant Ecology</td>
<td>4</td>
</tr>
<tr>
<td>MARB 435</td>
<td>Marine Invertebrate Zoology</td>
<td>4</td>
</tr>
</tbody>
</table>

1 All MARB 300-400 (p. 1051) level courses require BIOL 111 and BIOL 112 with a grade of ‘C’ or better.

Department of Marine Engineering Technology

Texas A&M University at Galveston is a special purpose institution for teaching, research, and public service pertaining to marine and maritime studies in science, engineering, and business. The university is also the home of the Texas A&M Maritime Academy. Within this context, the Marine Engineering Technology (MART) program produces graduates who are prepared to perform engineering work in the marine sector or marine-related shore-based industries involving the design, production, operation, maintenance, and management of engineering systems and projects. The program is available in a License Option version for students who want to serve as an engineering officer aboard seagoing vessels and in a Non-License Option for students who want an education in maritime-related applied engineering but do not plan to serve at sea.

Opportunities for such work abound in the vicinity of the campus, which is located just south of the fourth largest metropolis in the United States. The Houston/Galveston area has extensive port facilities, considerable commercial, recreational, and military ship traffic, and offshore and onshore infrastructure associated with the oil industry. Career opportunities of various kinds are therefore available for these graduates who are ideally suited for working on ships, at port facilities, and at shore facilities, particularly in power generation, distribution, and concomitant auxiliary support systems.

Our goal is to produce graduates with a strong background in engineering fundamentals, mathematics, and analytical methods, which is reinforced by practical machine-shop, welding, and laboratory experiences (including several on the training ship). The curriculum builds on a foundation of basic engineering topics such as fluid mechanics, thermodynamics, electricity, drafting, and materials science to develop inter-disciplinary skills required for the practice of marine engineering. In particular, the program’s educational objectives are to produce graduates who can plan, design, construct, operate, and maintain systems used in marine and facilities power systems such as propulsion, electrical power generation and distribution, refrigeration, and air conditioning. Graduates also support the maritime sector (the Navy and Coast Guard), companies operating sea-going vessels, the offshore oil and gas industry; and, are well-prepared to engage in lifelong education, professional development, and continuous improvement.

Faculty

Coleman, Gerard T, Associate Professor of the Practice
Marine Engineering Technology
MS, The George Washington University, 1996

Kane, Matthew H, Instructional Associate Professor
Marine Engineering Technology
PHD, Georgia Institute of Technology, 2007

Khan, Irfan Ahmad, Instructional Assistant Professor
Marine Engineering Technology
PHD, Carnegie Mellon University, 2018

King, George, Lecturer
Marine Engineering Technology
BS, Texas A&M University, 1975

Korn, Milton O, Professor of the Practice
Marine Engineering Technology
CERT, State of New Jersey Board of Professional Engineers and Land Surveyors, 2019

McQueen, Vanicha Ruth Favors, Assistant Professor Of The Practice
Marine Engineering Technology
CERT, The United States Coast Guard National Maritime Center, 2013

Moore Andrew, Lecturer
Marine Engineering Technology
BS, Texas A&M University at Galveston, 2014

Nyakiti, Luke O, Instructional Assistant Professor
Marine Engineering Technology
PHD, Texas Tech University, 2008
Program Requirements

Marine Engineering Technology - BS

The Marine Engineering Technology (MARR) non-license option program is designed to prepare the student for a career as an engineering technologist in the maritime profession. Students receive an education in applied engineering with a maritime focus, but do not plan to serve at sea. The MARR curriculum is a thermal power-oriented specialization of a classical Mechanical Engineering Technology program. A thorough preparation in mathematics, science, and basic engineering courses is the foundation for further study in ship propulsion plants and electrical power generation and distribution equipment. Marine Engineering Technology focuses on power cycles, principles, and methods used to convert the energy in fossil fuels into useful power, and the selection and operation of the major components and support systems in the power cycle. Courses in marine engineering are supplemented with studies in naval architecture and maritime application of electrical engineering fundamentals. The students’ education is enhanced through the use of computer simulation of propulsion plants and direct operation of marine machinery aboard the University's training ship. Marine Engineering Technology (MARR) is accredited by the Engineering Technology Accreditation Commission of ABET, www.abet.org (https://www.abet.org/).

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MARE 100 Marine Engineering Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>MARE 242 Manufacturing Methods I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 111 Methods in Engineering Technology</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152 Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206 & PHYS 226 Newtonian Mechanics for Engineering and Science and Physics of Motion Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Second Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 112 Graphics for Engineering Technology</td>
<td>2</td>
</tr>
<tr>
<td>MARE 202 Marine Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MARE 205 Engineering Mechanics I</td>
<td>3</td>
</tr>
<tr>
<td>MARE 243 Manufacturing Methods II</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 207 & PHYS 227 Electricity and Magnetism for Engineering and Science and Electricity and Magnetism Laboratory for the Sciences</td>
<td>4</td>
</tr>
<tr>
<td>Communication</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 207 Electrical Power</td>
<td>3</td>
</tr>
<tr>
<td>MARE 305 Fluid Mechanics Theory</td>
<td>4</td>
</tr>
<tr>
<td>MARE 313 Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207 State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 307 Marine Electronics</td>
<td>3</td>
</tr>
<tr>
<td>MARE 405 Fundamentals of Naval Architecture</td>
<td>3</td>
</tr>
<tr>
<td>MARE 451 Senior Design Project</td>
<td>2</td>
</tr>
<tr>
<td>MARE 481 Seminar</td>
<td>1</td>
</tr>
<tr>
<td>POLS 206 American National Government</td>
<td>3</td>
</tr>
<tr>
<td>MARE elective</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 402 Shipboard Automation and Control</td>
<td>3</td>
</tr>
<tr>
<td>MARE 452 Senior Design Project II</td>
<td>2</td>
</tr>
<tr>
<td>Social and behavioral sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

American history (p. 29) 3
Creative arts (p. 29) 3

Pedersen, Frank A, Assistant Professor of the Practice
Marine Engineering Technology
BS, Arendal Maritime College, 1986

Potier, Paul A, Professor of the Practice
Marine Engineering Technology
PHD, Prairie View A&M University, 2012

Majors

- Bachelor of Science in Marine Engineering Technology, License Option (p. 830)
- Bachelor of Science in Marine Engineering Technology, Non-License Option (p. 829)
Marine Engineering Technology focuses on power cycles, principles, and plants and electrical power generation and distribution equipment. Engineering courses are the foundation for further study in ship propulsion. A thorough preparation in mathematics, science, and basic courses aboard sea-going vessels. The MARR curriculum is a thermal power-

- **MARE elective**
- **Technical elective**

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>123</td>
</tr>
</tbody>
</table>

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication, Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History, Government and Political Sciences; and Social and Behavioral Sciences.

The 3-hour University Core Curriculum requirement for International and Cultural Diversity and the 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements.

Although they may count for university credit, grades from another institution below a C in engineering, mathematics and physics will not be accepted by the TAMUG engineering technology program toward the degree.

1. Indicates required courses in Marine Engineering major. These courses will be used to compute the major GPA.
2. MARR students are required to earn a grade of C or better in MATH 151, PHYS 206, PHYS 207, MARE 202, MARE 205, MARE 206 and MARE 207. Failure to meet this requirement will prevent the student from continuing any sequence in which the course is a prerequisite. Although they may count for credit, grades from another institution below a C in engineering, mathematics and physics will not be accepted by the TAMUG engineering programs toward the degree.
3. Technical electives may be any course with the following prefixes: MARE (p. 1054), MARR (p. 1057), MARS (p. 1057), MART (p. 1060), MASE (p. 1064), OCEN (p. 1101), CVEN (p. 950), MATH (p. 1066), PHYHS (p. 1115), or OCNG (p. 1104) in consultation with the student’s advisor. At least one elective must be at the 300 or 400 level.
4. Designated Writing intensive course.
5. Students may take any of the 400-level courses (except MARE 402 and MARE 405) offered by the Marine Engineering Department in their senior year including standard courses such as MARE 401 which are offered to license option students.

The total hours may be increased if the student is required to take remedial math, remedial English, computer science, foreign language or if the creative arts; language, philosophy and culture or social science requirements do not fulfill the International and Cultural Diversity requirement.

Marine Engineering Technology - BS, License Option

The purpose of the Marine Engineering Technology License Option (MARR-LIO) program is to train students to serve as engineering officers aboard sea-going vessels. The MARR curriculum is a thermal power-oriented specialization of a classical Mechanical Engineering Technology program. A thorough preparation in mathematics, science, and basic engineering courses is the foundation for further study in ship propulsion plants and electrical power generation and distribution equipment.

Marine Engineering Technology focuses on power cycles, principles, and methods used to convert the energy in fossil fuels into useful power, and the selection and operation of the major components and support systems in the power cycle. Courses in marine engineering are supplemented with studies in naval architecture and maritime application of electrical engineering fundamentals. The students’ education is enhanced through the use of computer simulation of propulsion plants and direct operation of marine machinery aboard the University’s training ship. Marine Engineering Technology (MARR) is accredited by the Engineering Technology Accreditation Commission of ABET, www.abet.org.

In addition to the degree requirements for the Marine Engineering Technology Degree, MARR-LIO Cadets must complete the requirements to achieve a Merchant Mariner Credential (MMC) issued by the USCG. The requirements for the MMC are determined by International conventions, Federal law and regulations, and policies established by the USCG and the Maritime Administration (MARAD). The requirements for an MMC are subject to change according to developments at the International Maritime Organization, Congressional action, the Federal rulemaking process, and consultations between the USCG, MARAD, and the Maritime Academies. The student who successfully completes the program will be qualified to sit for the U.S. Coast Guard license examination as a Third Assistant Engineer of any gross tonnage upon oceans, steam, or motor vessels and issuance of Standards of Training, Certification and Watchkeeping (STCW) international endorsement as Officer In Charge of an Engineering Watch (OICEW).

MARR-LIO students must also complete all the requirements as a cadet in the Texas A&M Maritime Academy, described previously in this catalog, in order to receive the degree. Cadets who enroll in and apply to graduate in Marine Engineering Technology must successfully complete the license examination for Third Assistant Engineer in order to graduate from Texas A&M University. Courses earning USCG or STCW qualifications, sea-time remission or STCW competency certification require a minimum grade of C (70%). In addition, all STCW proficiencies must be satisfactorily completed with a grade of 70% or better (See applicable course outlines available through the department).

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARE 111</td>
<td>2</td>
</tr>
<tr>
<td>MARE 242</td>
<td>2</td>
</tr>
<tr>
<td>MARR 102</td>
<td>1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>4</td>
</tr>
</tbody>
</table>

http://core.tamu.edu/
<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>MARE 112: Graphics for Engineering Technology</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MARE 202: Marine Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 205: Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 243: Manufacturing Methods</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PHYS 207: Electricity and Magnetism for Engineering and Science</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>& PHYS 227: Electricity and Magnetism Laboratory for the Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>MARE 206: Engineering Mechanics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 209: Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 211: Steam Propulsion Plants</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 261: Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Summer</td>
<td>Select from one of the following:</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARE 300: Intermediate Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARE 350: Commercial Cruise Internship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARR 300: Intermediate Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>4</td>
</tr>
<tr>
<td>Fall</td>
<td>MARE 207: Electrical Power</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 305: Fluid Mechanics Theory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MARE 313: Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>NVSC 200: Naval Science for the Merchant Marine Officer</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Creative arts (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>MARE 309: Marine Construction Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 312: Diesel Propulsion Plants</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 306: Electrical Power II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 399: High Impact Experience in Marine Engineering Technology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 401: Marine Auxiliary Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Language, philosophy and culture (p. 27)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Summer</td>
<td>MARE 400: Advanced Operations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or MARR 400: Advanced Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>4</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MARE 307: Marine Electronics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 405: Fundamentals of Naval Architecture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARR 451: Senior Capstone Project</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POLS 206: American National Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARR 481: Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Social and behavioral sciences (p. 30)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td>MARE 402: Shipboard Automation and Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MARE 441: Engineering Economics and Project Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MART 498: Maritime Medical Care</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>POLS 207: State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total Semester Credit Hours</td>
<td>135</td>
</tr>
</tbody>
</table>

1. Indicates required courses in the Marine Engineering Technology License Option major. These courses will be used to compute the major GPA.
2. Indicates license courses leading to a USCG/STCW license endorsement or sea time or workshops skills credit accrual which require a minimum grade of C (70%) or better to earn the endorsement or workshop skills accrual. Cadets will be required to repeat the course until they earn a grade of C (70%) or better. Failure to meet this requirement will prevent the student from continuing any sequence in which the course is a prerequisite.
3. MARR students are required to earn a grade of C or better in MATH 151, PHYS 206, PHYS 207, MARE 202, MARE 205, MARE 206, and MARE 207. Failure to meet this requirement will prevent the student from continuing any sequence in which the course is a prerequisite.
4. Designated Writing intensive course.
5. Technical electives may be any course with the following prefixes: MARE (p. 1054), MARR (p. 1057), MART (p. 1060), MASE (p. 1064), OCEN (p. 1101), CVEN (p. 950), MATH (p. 1066), PHYS (p. 1115), MARS (p. 1057), or OCNG (p. 1104) at the 300 or 400 level in consultation with the student’s advisor.

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences. The 3-hour University Core Curriculum requirement for International and Cultural Diversity and the 3-hour University Core Curriculum requirement for Cultural Discourse may be met with courses used to satisfy other degree requirements. Although they may count for university credit, grades from an other institution below a C in engineering, mathematics
and physics will not be accepted by the TAMUG engineering programs toward the degree.

The total hours may be increased if the student is required to take remedial math, remedial English, foreign language or International and Cultural Diversity courses, or any of the six hour cruise options. The 6-hour cruise options (MART 200, MART 300, and MART 400 or MARR 200, MARR 300 and MARR 400) do not add any required hours to the degree plan.

This degree requires full participation in the Texas A&M University Maritime Academy Corps of Cadets as a qualified License Option cadet. Refer to the University catalog section for the Texas A&M Maritime Academy for additional information. In addition to the academic requirements outlined here, the cadet must also complete the following requirements to receive the degree:

- Successfully complete required sea service and minimum training cruise requirements
- Pass a comprehensive professional examination (either the Third Mate Unlimited- Oceans or Third Assistant Engineering Unlimited) administered by the U.S. Coast Guard (USCG).
- Successfully complete all competencies required by the International Convention on Standards for Training, Certification and Watchkeeping (STCW).

Note: STCW competency certifications expire 5 years after completion. If the cadet does not complete the degree within that time period, the cadet will be required to revalidate the expired competency prior to graduation.

Department of Maritime Business Administration

Our Mission
To develop inspirational leaders through innovative teaching, impactful research, and meaningful service to our community and the maritime industry while increasing global recognition.

Faculty
Baker, Robert K, Lecturer
Maritime Business Administration
MBA, University of Houston, 1983

Bomer Galvao, Cassia, Assistant Professor
Maritime Business Administration
PHD, Pontificia Universidade Catolica, 2017

Boudreaux, Lowell A, Instructional Associate Professor
Maritime Business Administration
MML, Texas A&M University at Galveston, 2017

Conway, Steven M, Senior Lecturer
Maritime Business Administration
MA, Yale School of Management, 1982

Donelan, Michael B, Lecturer
Maritime Business Administration
MBA, Tulane University, 1981

Fertitta, Kelli, Instructional Assistant Professor
Maritime Business Administration
JD, South Texas College of Law, 2013

Hammady Brho, Mazen, Assistant Professor
Maritime Business Administration
PHD, University of North Texas, 2018

Hark Jr, John F, Lecturer
Maritime Business Administration
BS, Texas A&M University, 1989

Mileski, Joan P, Professor
Maritime Business Administration
PHD, University of Texas at Dallas, 2000

Mykoniotis, Nikolaos, Instructional Associate Professor
Maritime Business Administration
PHD, The Pennsylvania State University, 2013

Nwabueze, Uchenna M, Instructional Professor
Maritime Business Administration
PHD, Sheffield Hallam University, City Campus, 1995

Wang, Ping, Associate Professor
Maritime Business Administration
PHD, The Ohio State University, 2007

Waterworth, Leonard D, Executive Professor
Maritime Business Administration
MS, US Army War College, 2000

Wiseman, Melissa, Instructional Professor
Maritime Business Administration
PHD, Texas Tech University, 1999

Majors
- Bachelor of Science in Maritime Business Administration (p. 832)
- Bachelor of Science in Maritime Business Administration and Master of Maritime Business Administration and Logistics, 5-Year Degree Program (p. 834)

Minors
- Maritime Business Administration Minor (p. 836)

Maritime Business Administration - BS

The Maritime Business Administration undergraduate curriculum, offered on the Galveston Campus, provides a solid background in the key areas of accounting, finance, marketing, law, economics and mathematics that are critical for today's business professional. These courses lay the foundation for more advanced courses in international trade, inland waterways management, brokerage and chartering, organizational behavior, transportation economics, port and terminal management and other areas related to the maritime industry.

International trade is expanding as a result of the general increase in world-wide economic and political stability and this trend is expected to increase, as major economies such as China and Russia participate more fully in world-wide economic growth. The great majority of this expanded trade will be carried by ship. As a result, activity in American ports is
expected to more than double in the next 20 years, and some ports in the Gulf of Mexico are expected to see a tripling of port activity. Additionally, the next 40 years will see greatly expanded oil and gas production in the deep waters of the western Gulf of Mexico. Taken together, these forces are now and will continue to positively affect demand for trained maritime professionals ashore. Maritime Business Administration graduates are ideally poised to meet the increasing demand for well educated maritime professionals.

Additionally, qualified undergraduate students have the opportunity to earn a Bachelor of Science and a Master of Maritime Business Administration and Logistics (p. 834) in five years time through the Department of Maritime Business Administration’s 3+2 program.

Upper-Level Entry Requirements and Application Procedures

Students accepted to the Department of Maritime Business Administration enter the Bachelor of Science in Maritime Business Administration program at the lower-level. Enrollment of students in junior and senior level courses is limited to those who have been admitted to upper-level. Entry requirements and application procedures for the upper-level are as follows.

1. To be admitted to upper-level, a student must have been accepted to the Department of Maritime Business Administration and have:
 a. Satisfactorily completed the following five courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

b. Students must successfully complete these three remaining lower-level courses during their first upper-level semester, unless satisfactorily completed prior to entering upper-level:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MARA 250</td>
<td>Management Information Systems</td>
<td>2</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
</tbody>
</table>

c. Students may preregister for upper-level courses in the semester their status is changed to upper-level. However, students who fail to complete upper-level requirements shall not be permitted to remain registered in upper-level classes.

d. Lower-level students are not required to apply for a change of status to upper-level. An automated process is performed several times each semester comparing a student’s academic record to the upper-level entry requirements. Qualifying lower-level students are automatically moved to upper-level and informed of their change-in status through TAMU email.

2. Transfer Students: Transfer students admitted to the Department of Maritime Business Administration will be classified as lower-level students until they complete all requirements listed in Item 1. Transfer students may immediately request upper-level status when admitted to the university only if they meet all upper-level requirements.

3. Change of curriculum students: Students approved to change their curriculum to Maritime Business Administration will be classified as lower-level until they complete all requirements listed previously in Item 1. Change of curriculum students who qualify for admission to upper-level may request this at time of acceptance.

4. Preference for available seats in junior and senior level courses taught through the Department of Maritime Business Administration will be granted to students who have been admitted to the upper-level program. Ineligible students who preregister for upper-level classes are subject to having their registration in these courses cancelled.

Program Requirements

First Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARA 205</td>
<td>Introduction to Ships and Shipping</td>
<td>3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 202</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MARA 250</td>
<td>Management Information Systems</td>
<td>2</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Fall

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ECON 203</td>
<td>Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>MARA 281</td>
<td>Seminar in Undergraduate Research Methods</td>
<td>1</td>
</tr>
<tr>
<td>MGMT 211</td>
<td>Legal and Social Environment of Business</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26)</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 230</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MARA 212</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Language, philosophy and culture (p. 27)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours

<table>
<thead>
<tr>
<th>Total Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
</tbody>
</table>
Indicates required courses in the Maritime Administration major. These courses will be used to compute the major GPR. At the time of graduation, a MARA major must have a GPR of at least 2.25 in their major. A MARA major must achieve a grade of ‘C’ or better in ACCT 229, ACCT 230, ECON 202, ECON 203 and SCMT 303 as a graduation requirement. These courses may be repeated as necessary to meet this requirement, and the requirement applies to courses taken at TAMUG or offered for transfer from other institutions.

Students must register for MARA 205 their first semester at Texas A&M University Galveston Campus.

Students may satisfy the 9-credit hours of Life and Physical Science requirement through any combination of one, three or four credit hour courses.

Students must satisfactorily complete ACCT 229, ECON 202, ECON 203, MATH 140 and MATH 142 prior to admission to upper-level BS-MARA.

Students must complete ACCT 230, MARA 250 and MGMT 211 during their first upper-level semester, unless satisfactorily completed prior to upper-level admission.

MATH 148, MATH 152, MATH 168 and MATH 172 will be accepted in lieu of MATH 140.

MATH 147, MATH 151 and MATH 171 will be accepted in lieu of MATH 142.

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARA 301</td>
<td>Ocean Transportation 1</td>
</tr>
<tr>
<td>MARA 363</td>
<td>The Management Process 1</td>
</tr>
<tr>
<td>MKTG 321</td>
<td>Marketing 1</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods 1</td>
</tr>
<tr>
<td>MARA elective 1, 5</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINC 341</td>
<td>Business Finance 1</td>
</tr>
<tr>
<td>MARA 304</td>
<td>Ocean Transportation 1</td>
</tr>
<tr>
<td>SCMT 364</td>
<td>Operations Management 1</td>
</tr>
<tr>
<td>Creative arts (p. 29)</td>
<td></td>
</tr>
<tr>
<td>MARA elective 1, 9</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MARA 373</td>
<td>Personnel Management 1, 10</td>
</tr>
<tr>
<td>MARA 421</td>
<td>Admiralty Law 1</td>
</tr>
<tr>
<td>MARA 440</td>
<td>Global Economy and Enterprise Management 1, 8, 11</td>
</tr>
<tr>
<td>MARA electives 1, 9</td>
<td></td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARA 466</td>
<td>Strategic Management 1, 8</td>
</tr>
<tr>
<td>MGMT 481</td>
<td>Seminar in Management 1</td>
</tr>
<tr>
<td>MARA electives 1, 9</td>
<td></td>
</tr>
</tbody>
</table>

General electives 5

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Semester Credit Hours</td>
<td>60</td>
</tr>
</tbody>
</table>

8 Designated writing intensive course.

9 Students should select 18 hours from the following courses: ACCT 315, ACCT 316, ECON 311, ECON 323, ECON 452, MARA 342, MARA 401, MARA 402, MARA 416, MARA 424, MARA 435, MARA 450, MARA 470, MARA 475, MARA 484, MARA 485, MARA 489, MARA 491, MARA 493 and SCMT 336.

10 Satisfies the 3 credit hour Cultural Discourse (p. 46) (CD) requirement.

11 Satisfies the 3 credit hour International and Cultural Diversity (p. 47) (ICD) requirement.

TOTAL PROGRAM HOURS 120

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum (p. 25) for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences.

The total hours may be increased if the student is required to take remedial math, remedial English or foreign language courses.

To earn the economics minor, the student’s elective hours must include ECON 311, ECON 323 and ECON 452. For additional requirements of the economics minor, please see the website: http://www.tamug.edu/academics/Minors.html.

Maritime Business Administration - 5-Year Bachelor of Science/Master of Maritime Business Administration and Logistics

This program allows Maritime Business Administration (MBAU) majors to enter the graduate program for a Master of Maritime Business Administration and Logistics at the beginning of their senior year, enabling students to receive their Bachelor of Science in Maritime Business Administration (MBAU) undergraduate degree and a Master of Maritime Business Administration and Logistics (MBAA) graduate degree in five years.

Students admitted to the 5-year combined degree program will have completed 92 of the 120 hours of course work required to receive a bachelor’s degree. These courses must include the specific prerequisites for a Bachelor of Science degree in Maritime Business Administration, as well as the required Texas A&M University core curriculum courses. Maritime Business Administration majors who have at least a 3.00 GPA and who have taken all of their prerequisite courses and otherwise completed 92 hours by the fall of their fourth year will be eligible to apply for the 5-year combined program during their junior year. Applicants to the 5-year combined program will submit the same materials (including GMAT scores) as other MBA applicants. Those whose records are judged competitive, using the same admission criteria as for other MBA students, will be admitted.
Students who choose not to finish the MBAA degree after being admitted to the 5-year combined program may exit the program at any time. Completed MBAA courses will be applied to their bachelor's degree in Maritime Business Administration, as appropriate. Failure to complete the MBAA program will in no way impede their ability to attain a bachelor's degree in Maritime Business Administration when the requirements for that degree are completed. Those who pursue the combined program will receive both degrees upon completion of the entire 5-year combined program. Students will not graduate with a bachelor's degree in year four, but rather will earn both their Bachelor of Science in Maritime Business Administration and Master of Maritime Business Administration and Logistics at the end of year five.

Admitted students will be allowed to enroll in Maritime Business Administration and Logistics graduate courses with an undergraduate classification (U4) during the fall of their fourth year and will be reclassified as degree seeking master's students (G7) upon completing 107 credit hours. This will normally occur at the beginning of the spring semester of year four. Students will take 9 fewer undergraduate credit hours. Graduate courses taken in the fifth year program will be counted double, as credit towards their MBAA degree, and as substitutes and free electives required for the MBAU bachelor's degree.

Students will be required to complete 36 graduate hours. The graduate hours will include 7 core courses (21 credits) in economics, management, operations and logistics with 15 credit hours of electives. The electives will be chosen according to the interest of the student in consultation with an academic adviser. Students will also take 21 hours of undergraduate level electives that must include MARA 416 in order to satisfy the TAMU intensive writing requirement.

The combined program requires a minimum record of 156 semester credit hours. All undergraduate courses are offered on the Galveston Campus. Graduate level courses may be offered as traditional format courses on the Galveston campus or via asynchronous distance education delivery.

Program Requirements

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MARA 205</td>
<td>Introduction to Ships and Shipping (^{1,2}) 3</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences (^{4,6}) 3</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government 3</td>
</tr>
<tr>
<td>American history (p. 29)</td>
<td>3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Economics (^{1,4}) 3</td>
</tr>
<tr>
<td>MARA 250</td>
<td>Management Information Systems (^{1,5}) 2</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus (^{4,7}) 3</td>
</tr>
<tr>
<td>Communication (p. 26)</td>
<td>3</td>
</tr>
<tr>
<td>Life and physical sciences (p. 26) (^{3})</td>
<td>4</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting (^{1,4}) 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MARA 301</td>
<td>Ocean Transportation I (^{1}) 3</td>
</tr>
<tr>
<td>MARA 363</td>
<td>The Management Process (^{1}) 3</td>
</tr>
<tr>
<td>MARA 373</td>
<td>Personnel Management (^{3,10}) 3</td>
</tr>
<tr>
<td>MARA 421</td>
<td>Admiralty Law (^{1}) 3</td>
</tr>
<tr>
<td>SCMT 303</td>
<td>Statistical Methods (^{1}) 3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MARA 304</td>
<td>Ocean Transportation II (^{1}) 3</td>
</tr>
<tr>
<td>MARA 416</td>
<td>Port Operations, Administration and Economics (^{1,8}) 3</td>
</tr>
</tbody>
</table>
Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229</td>
<td>Introductory Accounting</td>
<td>3</td>
</tr>
<tr>
<td>MARA 301</td>
<td>Ocean Transportation I</td>
<td>3</td>
</tr>
<tr>
<td>MARA 363</td>
<td>The Management Process</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 18

Students are required to complete 18 credit hours of MARA electives. Students should choose from the following courses: ACCT 315, ACCT 316, ECON 311, ECON 323, ECON 452, MARA 342, MARA 401, MARA 402, MARA 416, MARA 424, MARA 435, MARA 450, MARA 470, MARA 475, MARA 484, MARA 485, MARA 489, MARA 491, MARA 493 and SCMT 336.

Choose 15 credit hours from the following graduate level MMAL elective courses: MARA 604, MARA 616, MARA 640, MARA 650, MARA 652, MARA 658, MARA 660, MARA 670, MARA 672, MARA 673, MARA 684, MARA 685, MARA 689, MARA 691.

Students are required to complete 18 credit hours of MARA electives. Students should choose from the following courses: ACCT 315, ACCT 316, ECON 311, ECON 323, ECON 452, MARA 342, MARA 401, MARA 402, MARA 416, MARA 424, MARA 435, MARA 450, MARA 470, MARA 475, MARA 484, MARA 485, MARA 489, MARA 491, MARA 493 and SCMT 336.

Choose 15 credit hours from the following graduate level MMAL elective courses: MARA 604, MARA 616, MARA 640, MARA 650, MARA 652, MARA 658, MARA 660, MARA 670, MARA 672, MARA 673, MARA 684, MARA 685, MARA 689, MARA 691.

TOTAL PROGRAM HOURS 156

All electives must be chosen in consultation with, and approved by, the student’s academic advisor. Unless courses are specifically listed, see University Core Curriculum (p. 25) for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences.

To earn the economics minor, the student’s elective hours must include ECON 311, ECON 323 and ECON 452. For additional requirements of the economics minor, please see the website: http://www.tamug.edu/academics/Minors.html.

Maritime Business Administration - Minor

The minor in Maritime Business Administration, offered on the Galveston campus, is designed to provide the student with fundamental knowledge in the business of water transportation. Students are required to complete 18 credit hours consisting of 9 hours of required coursework in general business and the maritime industry, and 9 credit hours from an approved list of maritime course electives.

Code Title Semester Credit Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARA 610</td>
<td>Maritime Strategic Management</td>
<td>3</td>
</tr>
<tr>
<td>MARA 623</td>
<td>Maritime Economics Theory and Applications</td>
<td>3</td>
</tr>
<tr>
<td>MARA 624</td>
<td>Port Development and Intermodal Freight</td>
<td>3</td>
</tr>
<tr>
<td>MARA 627</td>
<td>Marketing of Maritime Services</td>
<td>3</td>
</tr>
<tr>
<td>MARA 636</td>
<td>Maritime Managerial Decision Making</td>
<td>3</td>
</tr>
<tr>
<td>MARA 641</td>
<td>Maritime Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>MARA 664</td>
<td>Maritime Production, Operations and Logistics Management</td>
<td>3</td>
</tr>
<tr>
<td>MMAL electives</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 36

8. Satisfies the intensive writing requirement.
9. Credit by examination given for MARA 466.
10. Satisfies the 3 credit hour Cultural Discourse (p. 46) (CD) requirement.
11. Satisfies the 3 credit hour International and Cultural Diversity (p. 47) (ICD) requirement.
12. Courses to be used to meet both Undergraduate and Graduate requirements.
Department of Maritime Transportation

This program combines studies in the humanities and sciences with instruction and training in maritime disciplines to provide the U.S. Maritime Service Cadet with a broad-based education. The student who successfully completes the license program will be qualified to sit for the U.S. Coast Guard license examination as a Third Mate of any gross tonnage upon oceans, steam, or motor vessels and issuance of Standards of Training, Certification and Watchkeeping (STCW) credentials. Cadets are also provided with solid fundamentals in business topics related to the maritime industry, ashore and afloat. Cadets who enroll in and apply to graduate in Marine Transportation must successfully complete the license examination for Third Mate in order to graduate from Texas A&M University.

Courses earning USCG or STCW qualifications, sea-time remission or STCW competency certification require a minimum grade of C (70%). In addition, all STCW proficiencies must be satisfactorily completed with a grade of 70% or better (See applicable course outlines available through the department).

Faculty

Askins, Daniel, Assistant Professor of the Practice
Maritime Transportation
CERT, U. S. Coast Guard, 2017

Coonrod, James W, Assistant Professor of the Practice
Maritime Transportation
BS, Texas A&M University, 1967

Faris, Joseph Basam, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2016

Luna, Amy V, Lecturer
Maritime Transportation
BS, Texas A&M University, 2007

McNeice, Sean T, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2015

Nelick, Timothy F, Assistant Professor of the Practice
Maritime Transportation
CERT, United States Coast Guard, 2019

Peterlin, John, Assistant Professor of the Practice
Maritime Transportation
CERT, United States Coast Guard, 2019

Quinn, Shaun C, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2019

Roth, Augusta D, Associate Professor of the Practice
Maritime Transportation
DBA, Walden University, 2018

Teare Joseph, Lecturer
Maritime Transportation
BS, Texas A&M University, 1967

Vechan, Ryan J, Assistant Professor of the Practice
Maritime Transportation
JD, University of Houston, 2014

Majors

• Bachelor of Science in Marine Transportation (p. 837)

Marine Transportation - BS

This program combines studies in the humanities and sciences with instruction and training in maritime disciplines to provide the U.S. Maritime Service Cadet with a broad-based education. The student who successfully completes the license program will be qualified to sit for the U.S. Coast Guard license examination as a Third Mate of any gross tonnage upon oceans, steam, or motor vessels and issuance of Standards of Training, Certification and Watchkeeping (STCW) credentials. Cadets are also provided with solid fundamentals in business topics related to the maritime industry, ashore and afloat. Cadets who enroll in and apply to graduate in Marine Transportation must successfully complete the license examination for Third Mate in order to graduate from Texas A&M University.

Courses earning USCG or STCW qualifications, sea-time remission or STCW competency certification require a minimum grade of C (70%). In addition, all STCW proficiencies must be satisfactorily completed with a grade of 70% or better (See applicable course outlines available through the department).

Program Requirements

First Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 232</td>
<td>History of American Sea Power</td>
<td>3</td>
</tr>
<tr>
<td>KINE 120</td>
<td>The Science of Basic Health and Fitness</td>
<td>1</td>
</tr>
<tr>
<td>MART 103</td>
<td>Basic Safety and Lifeboatman Training</td>
<td>1,2</td>
</tr>
<tr>
<td>MART 115</td>
<td>Seamanship I</td>
<td>1,2</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Communication (p. 26) | 3 |

Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MART 201</td>
<td>Vessel Structure and Ship Knowledge</td>
<td>1,2</td>
</tr>
<tr>
<td>MART 204</td>
<td>Terrestrial Navigation</td>
<td>1,2</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
<td>3</td>
</tr>
<tr>
<td>NVSC 200</td>
<td>Naval Science for the Merchant Marine Officer</td>
<td>1,2</td>
</tr>
</tbody>
</table>

American history (p. 29) | 3 |

Semester Credit Hours | 15 |

Summer

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MART 200</td>
<td>Deck Sea Training I: Basic Communications, Navigation and Seamanship</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Semester Credit Hours | 4 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIST 242</td>
<td>United States Maritime History</td>
<td>3</td>
</tr>
<tr>
<td>Semester</td>
<td>Course</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Fall</td>
<td>MART 202</td>
<td>Ship Stability and Trim</td>
</tr>
<tr>
<td>Fall</td>
<td>MART 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>Fall</td>
<td>MART 100</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>Fall</td>
<td>MART 313</td>
<td>Marine Liquid Cargo Operations</td>
</tr>
<tr>
<td>Fall</td>
<td>MART 410</td>
<td>Integrated Navigation III: Bridge Watchstanding</td>
</tr>
<tr>
<td>Fall</td>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 202</td>
<td>Ship Stability and Trim</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 203</td>
<td>Principles of Economics</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 313</td>
<td>Marine Liquid Cargo Operations</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 410</td>
<td>Integrated Navigation III: Bridge Watchstanding</td>
</tr>
<tr>
<td>Spring</td>
<td>MART 411</td>
<td>Maritime Meteorology</td>
</tr>
<tr>
<td>Summer</td>
<td>MART 400</td>
<td>Deck Sea Training III: Advanced Communications, Navigation and Seaman ship</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
<td>MART 416</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
<td>MART 403</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
<td>MART 404</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Fall</td>
<td>MART 498</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Spring</td>
<td>MART 421</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Spring</td>
<td>MART 422</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>Spring</td>
<td>MART 423</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours: 12

Requirements

- **Fall:** 33 credit hours
- **Spring:** 36 credit hours
- **Summer:** 4 credit hours
- **Fourth Year:** 31 credit hours

Notes:

1. Indicates required courses in the Marine Transportation major. These courses will be used to compute the major GPR, which must be at least 2.25.
2. Indicates license courses leading to a USCG/STCW license endorsement or sea time credit accrual which require a minimum grade of C (70%) or better to earn the endorsement or accrual. Students will be required to repeat the course until they earn a grade of C (70%) or better. MART 307 GMDSS requires a score of 75% or better.
3. Indicates a course that satisfies the writing intensive course requirements of the university.
4. Approved Electives in Field include but are not limited to ACCT 229; MART 205, MART 213, MART 308, MART 311, MART 485, MART 489, MARA 304, MARA 342, MARA 363, MARA 401, MARA 402, MARA 424, MARA 440, MARA 450.
5. MART 498 must be taken within one year of graduation to receive USCG approval.

All electives must be chosen in consultation with, and approved by, the student's academic advisor. Unless courses are specifically listed, see University Core Curriculum at http://core.tamu.edu/ for a listing of course options for Communication; Mathematics; Life and Physical Sciences; Language, Philosophy and Culture; Creative Arts; American History; Government and Political Sciences; and Social and Behavioral Sciences. The 6-hour University Core Curriculum requirement for International and Cultural Diversity may be met with courses used to satisfy other degree requirements.

MART students are required to earn a grade of C or better in all MART courses, including electives in field.

The total hours may be increased if the student is required to take remedial math, remedial English, foreign language or International and Cultural Diversity courses, or any of the six hour cruise options. The six hour cruise options (NAUT 200, NAUT 300 and NAUT 400 or MARR 200, MARR 300 and MARR 400) do not add any required hours to the degree plan.

This degree requires full participation in the Texas A&M University Maritime Academy Corps of Cadets as a qualified License Option cadet. Refer to the University catalog section for the Texas A&M Maritime Academy for additional information. In addition to the academic requirements outlined here, the cadet must also complete the following requirements to receive the degree:

- Successfully complete required sea service and minimum training cruise requirements.
- Pass a comprehensive professional examination (either the Third Mate Unlimited- Oceans or Third Assistant Engineering Unlimited) administered by the U.S. Coast Guard (USCG).
- Successfully complete all competencies required by the International Convention on Standards for Training, Certification and Watchkeeping (STCW).
Note: STCW competency certifications expire 5 years after completion. If the cadet does not complete the degree within that time period, the cadet will be required to revalidate the expired competency prior to graduation.
Texas A&M University at Qatar

Texas A&M University at Qatar Joint Advisory Board

The Joint Advisory Board (JAB) of Texas A&M University at Qatar was established May 25, 2003, between Texas A&M University and Qatar Foundation for Education, Science and Community Development to provide advice regarding the management and operation of Texas A&M at Qatar the Dean and CEO and to Qatar Foundation. The JAB is primarily responsible for ongoing review and evaluation of the success of Texas A&M at Qatar.

Joint Advisory Board Members

His Excellency, Mohammed bin Saleh Al-Sada. Ph.D. — Chairman
Former Minister of Energy and Industry, State of Qatar

Carol A. Fierke, Ph.D. — Vice Chair
Provost and Executive Vice President, Texas A&M University

M. Katherine Banks, Ph.D.
Vice Chancellor for Engineering, The Texas A&M University System
Dean, College of Engineering at Texas A&M University
Director, Texas Engineering Experiment Station

W.L. (Bill) Bullock, Jr.
President, Asia Pacific & Middle East, ConocoPhillips

Olivier Dubrule, Ph.D.
Professor, Department of Earth Sciences and Engineering, Imperial College London

Pam Matthews, Ph.D.
Dean of the College of Liberal Arts, Texas A&M University

Robert Gordon Moore, Ph.D.
Professor, Chemical and Petroleum Engineering Department, University of Calgary, Canada

Alistair Routledge
President and General Manager, ExxonMobil Qatar

Marc Vermeersch, Ph.D.
Executive Director, Qatar Environment and Energy Research Institute (QEERI)

Ex-officio Members

Buthaina A. Al-Nuaimi
President of Pre-University Education, Qatar Foundation

César O. Malavé, Ph.D., P.E.
Dean, Texas A&M University at Qatar

Ioannis G. Economou, Ph.D. — Secretariat
Associate Dean
Professor of Chemical Engineering, Texas A&M University at Qatar

Texas A&M University at Qatar Administrative Officers

The leadership of Texas A&M University at Qatar is responsible for the vision of the campus. This vision is simple: to be the premier provider of engineering education in the region, a significant contributor to knowledge internationally and an essential resource to the State of Qatar.

César O. Malavé
Dean

Ioannis G. Economou
Associate Dean for Academic Affairs

Hassan S. Bazzi
Associate Dean for Research and Executive Director of Development, Engagement, and Outreach

Hazem Nounou
Assistant Dean for Academic and Student Services

Rosalie Nickles
Assistant Dean for Finance and Administrative Services

Texas A&M University at Qatar Program Chairs

Patrick Linke
Chemical Engineering Program Chair

Erchin Serpedin
Electrical Engineering Program Chair

Joseph Ura
Interim Liberal Arts Program Chair

Ibrahim Galal Hassan
Interim Mechanical Engineering Program Chair

Patrick Linke
Interim Petroleum Engineering Program Chair

Hassan S. Bazzi
Interim Science Program Chair

General Statement

Texas A&M’s branch campus in Qatar, part of the 2,500-acre multi-institutional campus known as Education City formally opened on September 7, 2003, offering undergraduate degree programs in chemical, electrical, mechanical, and petroleum engineering. Texas A&M’s engineering program is widely considered among the best in America, and the curricula offered at the Qatar campus are materially the same as those offered at the main campus located in College Station, Texas. Texas A&M University at Qatar is fully funded by the Qatar Foundation for Education, Science, and Community Development and provides a unique opportunity for the University to expand its international presence and provide educational and research opportunities for faculty and students.

Mission Statement

The mission of the Qatar campus is to develop exemplary engineers and leaders through internationally respected undergraduate and graduate degree programs. Texas A&M at Qatar generates new knowledge by conducting research and disseminating results. In all of its efforts, Texas
A&M at Qatar serves the needs of the State of Qatar and the region through broad expertise.

Qatar Foundation and Education City

Founded in 1995 by His Highness Sheikh Hamad bin Khalifa Al-Thani, who was then the emir and now is the father emir, the Qatar Foundation for Education, Science and Community Development's guiding principle is that a nation's most valuable natural resource is its people. The foundation's symbol is the Sidra tree, whose deep, solid roots reflect the foundation's regard for Qatari culture and whose fruits carry the seeds of hope for a better tomorrow.

Her Highness Sheikha Moza bint Nasser serves as chairperson of the Qatar Foundation and guides the nonprofit organization's programs and philosophies. Among those philosophies is a commitment to making Qatar a world-renowned center for higher learning.

To that end, the Qatar Foundation's most visionary undertaking, Education City, was founded in 1997. The 2,500-acre complex outside of Doha, Qatar, boasts state-of-the-art facilities and a forward-thinking agenda that has enticed some of the world's top universities to open branch campuses. In 2003, Texas A&M at Qatar joined Virginia Commonwealth University School for the Arts and Weill Cornell Medical College in offering undergraduate degree programs at Education City. In 2004, Carnegie Mellon University came aboard, followed by Georgetown University in 2005, Northwestern University in 2008, University College of London in 2010, and HEC Paris in 2011, and negotiations with other institutions of higher learning continue. It is also the home of Hamad bin Khalifa University. In addition, the Qatar Science and Technology Park, an extensive, state-of-the-art research complex, is providing opportunities for research partnerships between business, government and academic institutions.

The missions of Education City are clearly defined: to prepare world-class graduates capable of assuming professional leadership positions in Qatar, throughout the Gulf region, and around the world, and to make Qatar a world leader in higher education and cutting-edge research. Texas A&M at Qatar is proud to take part in achieving the goals of the Qatar Foundation, which so closely resemble its own commitments to education and community service.

General Information (p. 844)

Faculty

Abdalla, Ahmed A, Associate Professor
Texas A&M University at Qatar
PHD, North Carolina State University, 2001

Abdel-Wahab, Ahmed I, Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2003

Abu-Rub, Haithem A, Professor
Texas A&M University at Qatar
PHD, Gdansk University of Technology, Poland, 1995

Al-Hashimi, Mohammed, Research Associate Professor
Texas A&M University at Qatar
PHD, Queen Mary Westfield College, University of London, 2007

Al-Mohannadi, Dhabia, Assistant Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2019

Al-Mohannadi, Nasser, Professor of the Practice
Texas A&M University at Qatar
PHD, Colorado School of Mines, 2004

Al-Rawashdeh, Ma'moun, Assistant Professor
Texas A&M University at Qatar
PHD, Technical University of Eindhoven, Netherlands, 2013

Alnuweiri, Hussein, Professor
Texas A&M University at Qatar
PHD, University of Southern California, 1989

Alonso, Ricardo, Associate Professor
Texas A&M University at Qatar
PHD, The University of Texas at Austin, 2008

Alyafei, Nayef M, Assistant Professor
Texas A&M University at Qatar
PHD, Imperial College London, United Kingdom, 2015

Amani, Mahmood, Associate Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 1997

Alyafei, Nayef M, Assistant Professor
Texas A&M University at Qatar
PHD, Imperial College London, United Kingdom, 2015

Balog Jr, Robert S, Associate Professor
Texas A&M University at Qatar
PHD, University of Illinois, 2006

Bashir, Hassan, Associate Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2008

Bazz, Hassan S, Professor
Texas A&M University at Qatar
PHD, McGill University, 2003

Belic, Milivoj R, Professor
Texas A&M University at Qatar
PHD, The City University of New York, 1980

Bengali, Ashfaq A, Professor
Texas A&M University at Qatar
PHD, University of Minnesota, 1992

Bouhali, Othmane, Research Professor
Texas A&M University at Qatar
PHD, Universite Libre de Bruxelles, Faculte des Sciences, 1999

Bounds, Brittany, Instructional Assistant Professor
Texas A&M University at Qatar
MA, California State University Northridge, 2009

Boutros, Joseph J, Professor
Texas A&M University at Qatar
PHD, Telecom Paris Tech (ENST), 1996

Brothers, Edward N, Professor
Texas A&M University at Qatar
PHD, Pennsylvania State University, 1997
Brothers, Nicole M, Clinical Assistant Professor
Texas A&M University at Qatar
MLS, University of Pittsburgh, 2011

Cath, Adam E, Clinical Associate Professor
Texas A&M University at Qatar
MLS, Victoria University of Wellington, 1997

Cheng, Zheng Dong, Professor
Texas A&M University at Qatar
PHD, Princeton University, 1999

Economou, Ioannis, Professor
Texas A&M University at Qatar
PHD, Johns Hopkins University, 1993

El Borgi, Sami, Professor
Texas A&M University at Qatar
PHD, Cornell University, 1993

Elbashir, Nimir O, Professor
Texas A&M University at Qatar
PHD, Auburn University, 2004

Elbashir, Nimir O, Professor
Texas A&M University at Qatar
PHD, Auburn University, 2004

Elgindi, Ali, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, University of Chicago, 2011

Elsheikh, Aymen E, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, Indiana University-Bloomington, 2012

Eslami, Zohreh R, Professor
Texas A&M University at Qatar
PHD, University of Illinois at Urbana-Champaign, 1992

Fadlelmula, Mohamed, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, Middle East Technical University, 2012

Ghrayeb, Ali, Professor
Texas A&M University at Qatar
PHD, University of Arizona, 2000

Gray, Phillip W, Assistant Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2006

Guerillot, Dominique R, Professor
Texas A&M University at Qatar
PHD, Universite De Provence, 1982

Guo, Bing, Associate Professor
Texas A&M University at Qatar
PHD, Tsinghua University, China, 1998

Hassan, Ibrahim, Professor
Texas A&M University at Qatar
PHD, Manitoba University, 1995

Hillman, Sara K, Assistant Professor
Texas A&M University at Qatar
PHD, Michigan State University, East Lansing, MI, 2011

Hingtgen, Luke, Visiting Lecturer
Texas A&M University at Qatar
CERT, DePaul University, 2017

Hodges, Amy M, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, University of Arkansas, 2012

Huang, Tingwen, Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2002

Ji, Jim X, Professor
Texas A&M University at Qatar
PHD, University of Illinois, 2003

Kakosimos, Konstantinos E, Associate Professor
Texas A&M University at Qatar
PHD, Aristotle University, 2009

Karkoub, Mansour, Professor
Texas A&M University at Qatar
PHD, University of Minnesota, 1994

Krolikowski, Wieslaw Z, Professor
Texas A&M University at Qatar
PHD, Institute of Physics, Polish Academy of Sciences, 1988

Linke, Patrick, Professor
Texas A&M University at Qatar
PHD, University of Manchester Institute of Science and Technology, 2001

Madrahimov, Sherzod T, Assistant Professor
Texas A&M University at Qatar
PHD, University of Illinois, 2012

Malave, Cesear, Professor
Texas A&M University at Qatar
PHD, University of South Florida, 1987

Mansoor, Bilal, Associate Professor
Texas A&M University at Qatar
PHD, University of Michigan, 2010

Masad, Eyad A, Professor
Texas A&M University at Qatar
PHD, Washington State University, 1998

Mir, Nordine, Professor
Texas A&M University at Qatar
PHD, University of Rouen, France, 1998

Nha, Hyon Cheol, Professor
Texas A&M University at Qatar
PHD, Seoul National University, 2002

Nounou, Hazem N, Professor
Texas A&M University at Qatar
PHD, Ohio State University, 2000
Nounou, Mohamed N, Professor
Texas A&M University at Qatar
PHD, Ohio State University, 2000

Qaraqe, Khalid A, Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 1997

Rahman, Mohammad A, Associate Professor
Texas A&M University at Qatar
PHD, University of Alberta, 2010

Retnanto, Albertus, Professor of the Practice
Texas A&M University at Qatar
PHD, Texas A&M University, 1998

Rudd, Leaann M, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Indiana State University, 2012

Ruimi, Annie, Associate Professor
Texas A&M University at Qatar
PHD, University of California at Santa Barbara, 2005

Salama, Ghada H, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Cairo University, 2001

Schuller, Michael J, Instructional Associate Professor
Texas A&M University at Qatar
DEN, Texas A&M University, 1985

Seers, Thomas D, Assistant Professor
Texas A&M University at Qatar
PHD, University of Manchester, 2016

Serpedin, Erchin, Professor
Texas A&M University at Qatar
PHD, University of Virginia, 1999

Soukiassian, Yeran M, Senior Lecturer
Texas A&M University at Qatar
MS, American University of Beirut, 2007

Tafreshi, Reza, Professor
Texas A&M University at Qatar
PHD, University of British Columbia, Canada, 2005

Telafici, Michael A, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Norwich University, 2009

Torres, Shaun D, Clinical Assistant Professor
Texas A&M University at Qatar
MLS, George Washington University, 2012

Trabelsi, Saber, Assistant Professor
Texas A&M University at Qatar
PHD, University Paris 7 (Paris, France), 2010

Tzortzakis, Stylianos, Professor
Texas A&M University at Qatar
PHD, Ecole Polytechnique, France, 2001

Ura, Joseph, Associate Professor
Texas A&M University at Qatar
PHD, University of North Carolina Chapel Hill, 2006

Van De Logt, Martinus J, Associate Professor
Texas A&M University at Qatar
PHD, Oklahoma State University, 2002

Vechot, Luc N, Associate Professor
Texas A&M University at Qatar
PHD, Ecole Natinale Superieure des Mines de Saint Etienne, France, 2007

Ward, Sherry D, Instructional Assistant Professor
Texas A&M University at Qatar
MS, The School for International Training, 1998

Weston, Anthony, Instructional Professor
Texas A&M University at Qatar
PHD, Kent State University, 1993

Zilany, Muhammad Shamsul Arefeen, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, McMaster University, 2007

Majors

Chemical Engineering Program
• Bachelor of Science in Chemical Engineering (p. 862)

Electrical and Computer Engineering Program
• Bachelor of Science in Electrical Engineering (p. 863)

Mechanical Engineering Program
• Bachelor of Science in Mechanical Engineering (p. 866)

Petroleum Engineering Program
• Bachelor of Science in Petroleum Engineering (p. 867)

Minors
• Analysis, Design and Management of Energy Conversion Systems Minor (p. 468)
• Chemical Engineering Minor (p. 393)
• Chemistry Minor (p. 713)
• Control of Mechanical Systems Minor (p. 468)
• Design and Simulation of Mechanical Systems Minor (p. 468)
• Electrical Engineering Minor (p. 431)
• Geology Minor (p. 519)
• Mathematics Minor (p. 737)
• Petroleum Engineering Minor (p. 479)
• Physics Minor (p. 746)
• Political Science Minor (p. 844)
Certificates

The College of Engineering has designed several certificate programs to offer ambitious students the opportunity to go beyond the traditional curriculum and gain specific knowledge in a concentration area. Students are required to consult with their academic advisor prior to submitting an application for a certificate. Enrolling and being accepted into a certificate program does not guarantee registration into required courses or that courses will be offered at Texas A&M University at Qatar. For specific information on each certificate available, visit the College of Engineering website.

Masters

Chemical Engineering Program
• Master of Science in Chemical Engineering (http://catalog.tamu.edu/graduate/qatar/engineering/chemical-engineering-ms/)
• Master of Engineering in Chemical Engineering (http://catalog.tamu.edu/graduate/qatar/engineering/chemical-engineering-meng/)

Doctoral

Chemical Engineering Program
• Doctor of Philosophy in Chemical Engineering

Political Science - Minor

The Political Science minor at Texas A&M University at Qatar gives students an opportunity to enhance their study of any field with an understanding of political, legal and regulatory processes in the United States and/or internationally. Since nearly all human activities are influenced by politics, understanding the dynamics between organizational structures and human behavior can give students greater insight into the factors shaping their major field of study. Through the Political Science minor, Texas A&M University at Qatar is committed to equipping students with the analytical skills to understand and influence group choices in whatever setting they find themselves. The minor offers flexibility by allowing students to work closely with liberal arts faculty to design coursework tailored to individual student objectives.

Program Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
<td>3</td>
</tr>
<tr>
<td>POLS 100 to 499 (p. 1118)¹</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

¹ Must have a minimum of 6 hours at the 300-400 level.

Must make a grade of C or better in all course.

Texas A&M Qatar Campus

General Information

General Information for Texas A&M University at Qatar Students

Programs of Study at Texas A&M University at Qatar Students (p. 844)
College Prerequisite Policy (p. 844)
ENGR (p. 845)
Course Credit (p. 845)
Extension and Correspondence Courses (p. 845)
Registration and Academic Status (p. 845)
Grading System (p. 845)
Withdrawal (p. 846)
Transcripts (p. 846)
Graduation Application, Diploma and Commencement (p. 846)
Language of Instruction (p. 846)

Programs of Study at Texas A&M University at Qatar

Texas A&M University's College of Engineering strives to provide its students with a high-quality education that will prepare them for a wide range of careers at the forefront of the engineering field. The curriculum is designed to accomplish this by closely integrating cutting-edge basic and applied research with innovative classroom instruction. Texas A&M University's engineering programs are routinely ranked among the best in the U.S., and graduates are highly sought-after to provide leadership and innovative solutions to global challenges.

Our faculty members maintain active research programs in a wide range of areas. In addition, our undergraduate students participate in numerous co-op and internship programs, which give them the opportunity to apply their knowledge to real-world challenges in a variety of settings.

At Texas A&M University at Qatar, engineering students take courses in the fundamental disciplines—mathematics, sciences, and liberal arts—that will prepare them for the rigorous technical training that follows. This training is dedicated to specialized studies in one of the four engineering fields offered at Texas A&M University at Qatar. After completing intensive, demanding course work and practical experience, students are ready to step into their professional fields and make immediate, meaningful contributions.

College Prerequisite Policy

The following prerequisite policy applies to any student in a College of Engineering undergraduate degree program and to any student who seeks admission to an undergraduate degree program in the College of Engineering. This policy is in addition to prerequisite policies imposed by the University (Texas A&M University Student Rules). For complete details concerning this policy, students should contact their Undergraduate Advising Office.
Students must earn a grade of C or better in all courses identified in each College of Engineering undergraduate degree program and any prerequisites for these courses. If a student earns a grade of D or F in any of these courses, the student is required to repeat the course before enrolling in a more advanced course that has the D/F course as a prerequisite. A student may attempt a course no more than three times, including courses graded Q or W but excluding those graded NG, unless approval has been received from their department. A student must complete all prerequisites for a course with a grade of C or better by the start of the semester in which the student plans to enroll in the course.

A student is responsible for checking the prerequisites for each course to ensure the prerequisite requirements have been satisfied. A student who registers for a course for which he/she lacks the necessary prerequisite course(s) and/or the prerequisite grade requirement will be required to drop the course. A student who is told to drop a course and is still enrolled by the deadline set each semester may be administratively dropped by their department. If a student is administratively dropped from a course, the student is responsible for all financial obligations associated with the drop. An administrative drop may adversely impact (including, but not limited to): health insurance benefits, financial aid, athletic eligibility, INS status, veterans’ benefits, and eligibility to participate in extracurricular activities.

Other Requirements

All required coursework must be taken for a grade to satisfy requirements for a degree in the College of Engineering. Courses cannot be taken on a satisfactory/unsatisfactory basis to satisfy this requirement.

ENGR[X]

ENGR[X] is a college-wide, zero-credit-hour required program that is composed of approved engineering-centric activities that meet the criteria of high-impact learning experiences. Undergraduate students can use their participation in one of these activities to partially satisfy their ENGR[X] requirement. Full satisfaction of the ENGR[X] requirement includes participating in an engineering-centric activity and submitting a meaningful, self-reflection that discusses the impact and overall experience on the student’s education.

Each engineering department identifies the activities it will accept in satisfying a student’s ENGR[X] requirement. Students should consult with their academic advisor for approved activities.

Course Credit

Credit by Examination

Undergraduate students at Texas A&M University at Qatar may earn course credits by demonstrating superior achievement on tests offered through several examination programs. Credit by examination is available to freshmen who plan to enter the university and to students who are currently enrolled. Credit earned by examination does not contribute to a student’s grade point ratio. The university awards credits for scores on certain tests published by the Advanced Placement Program (AP), the College Level Examination Program Computer-Based Testing (CLEP CBT), the SAT Subject Tests, DANTES Subject Standardized Tests (DSST) and the International Baccalaureate (IB) Program. Texas A&M University at Qatar also offers qualified students opportunities to earn credits by taking departmental examinations prepared by the faculty. Information concerning credit by examination may be obtained from the Academic Services Office (https://www.qatar.tamu.edu/students/academic-services/).

Please note the regulations (p. 72) concerning credit by examinations.

Departmental Examinations for Entering Freshmen and Currently Enrolled Students

Qualified entering freshmen may take departmental tests after being officially admitted into Texas A&M University at Qatar. Currently enrolled students can also take the exams throughout the year. Offerings vary from campus to campus and not all tests are available, contact the Academic Services Office (https://www.qatar.tamu.edu/students/academic-services/) for registration information. The tests are prepared by participating Texas A&M University at Qatar departments.

Extension and Correspondence Courses

Students may apply a maximum of 30 semester hours of approved extension class work and correspondence study toward a degree. Students may apply up to 12 hours of correspondence credit earned through an accredited institution toward the requirements for an undergraduate degree, even though Texas A&M does not offer courses by correspondence.

Correspondence courses taken through the Defense Activity for Nontraditional Education Support (DANTES) may be accepted and included in the 12 hours allowed.

In order for a student in residence at Texas A&M to receive credit for correspondence work toward a bachelor’s degree, he or she should:

- obtain advance written permission from the dean of his or her college;
- present appropriate evidence of having completed the course.

Data and Research Services at Texas A&M University is authorized to act as an agent to receive correspondence courses.

Registration and Academic Status

Registration for the fall and spring semesters is accomplished at several times. During the fall and spring semesters (in November and April), a preregistration period is held for currently enrolled and reenrolled students to register for the next semester. There are periods of announced open registration for students who were unable to preregister during the scheduled preregistration period. New Student Conferences serve as an opportunity for new undergraduate students to register. Further information concerning registration may be obtained from the academic calendar published in this catalog or from the Office of Records. The schedule of classes is available online.

More information may be found here (p. 78).

Grading System

Because students attend a college or university to extend their education, grades are usually given as an indication of the proficiency of their endeavors. The student’s semester grade in a course shall be based upon performance and/or participation in class, exercises and tests, laboratory work and final examination as applicable to the course. The proportionate weight assigned to each of the factors shall be determined by the department administering the course.

More information may be found here (p. 80).
Withdrawal from Texas A&M University at Qatar

An official withdrawal from the university will result when a student drops all in progress and courses not yet started in a particular term. A student who withdraws from the university before the completion of a semester or summer term is required to comply with the official withdrawal procedure. This process is initiated by submitting a request through the Student Withdrawal channel on the My Record tab in the Howdy portal. Students may not withdraw after the Q-drop deadline. The student’s dean will retain the authority to support a student withdrawal after the deadline.

If a student is enrolled in one or more inter/intra-session (‘minimesters’) or summer terms and chooses to withdraw, all current and future in progress courses for the entire semester will be dropped. The student will be ineligible to register for courses for the remainder of that semester.

STUDENTS RECEIVING FINANCIAL AID or SPONSORSHIPS should talk to their sponsor before withdrawing. Withdrawing from the university does not cancel all tuition and fees. Failure to comply may result in your owing a substantial sum rather than having a zero balance or refund. In addition, withdrawing may affect your immigration status. Please check this carefully before submitting the withdrawal form (https://www.qatar.tamu.edu/students/office-of-records/student-forms/).

For university policy regarding withdrawal, see the Texas A&M University Student Rules (http://student-rules.tamu.edu/).

Transcripts

Students applying for admission to Texas A&M are required to submit transcripts of previous academic work and in some cases, results of standardized tests. The submission of altered documents or the failure to furnish complete and accurate information on admission forms will be grounds for disciplinary action.

Students and former students may request an official transcript by completing the transcript request form (https://www.qatar.tamu.edu/students/office-of-records/student-forms/) online or in person at the Office of Records located on the first floor of the Engineering Building in Education City, Doha. Individuals who previously attended Texas A&M University at Qatar may obtain an official transcript of their completed coursework, provided they have no financial obligations to Texas A&M, Texas A&M University at Qatar, or the Qatar Foundation. A fee, which according to state law must be paid in advance, will be charged for each copy. During grading and degree posting, official transcripts may be produced for enrolled students only if all courses for that semester or term are shown as in progress (IP) or have all final grades posted.

Graduation Application, Diploma and Commencement

Formal application for degrees at Texas A&M University at Qatar is a two-step process. An online application must be submitted via the Howdy portal, as well as a supplemental application to the Office of Records, by the deadline stated in the Texas A&M University at Qatar academic calendar. Under unusual circumstances, an application for a degree may be accepted after the stated deadline.

All students must have settled all financial obligations to the university and Qatar Foundation prior to receiving a diploma.

Graduate and undergraduate students completing their degree in July or December will have the opportunity to participate in the commencement ceremony in May, following the completion of their degree. Students must participate in the commencement ceremony of their home campus.

Language of Instruction

The language of instruction at Texas A&M University at Qatar is English. All teaching, exercise and practical material are provided in English.

Academic Calendar

Texas A&M University at Qatar Calendar

All dates and times are subject to change.

Fall Semester 2020*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event (Coursework Details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 18-20</td>
<td>Tuesday-Thursday. AGGIE LIFE 101 (required for all new students).</td>
</tr>
<tr>
<td>August 23</td>
<td>Sunday. First day of fall classes. All courses to be held online/remote only.</td>
</tr>
<tr>
<td></td>
<td>First day to apply for December graduation.</td>
</tr>
<tr>
<td>September 1</td>
<td>Tuesday. Last day for adding/dropping courses with no record for the fall semester, 4:30 p.m.</td>
</tr>
<tr>
<td>September 7</td>
<td>Monday. Official census date (12th class day).</td>
</tr>
<tr>
<td>September 17</td>
<td>Thursday. Undergraduate change of curriculum period ends, 4:30 p.m.</td>
</tr>
<tr>
<td>September 24</td>
<td>Thursday. Last day to apply for December graduation, 4:30 p.m.</td>
</tr>
<tr>
<td>September 30</td>
<td>Wednesday. Undergraduate degree plan approval deadline.</td>
</tr>
<tr>
<td>October 11-15</td>
<td>Sunday-Thursday. Fall Break (No classes. Offices remain open).</td>
</tr>
<tr>
<td>October 22</td>
<td>Thursday. Mid-semester grades due by noon, Office of Records.</td>
</tr>
<tr>
<td>November 19</td>
<td>Thursday. Last day for all students to drop courses with no academic penalty (Q-drop), 4:30 p.m.</td>
</tr>
<tr>
<td>November 26</td>
<td>Thursday. Reading Day (no classes. Offices remain open).</td>
</tr>
<tr>
<td>December 3</td>
<td>Thursday. Last day for face-to-face meetings to be held. All assignments and projects that require face-to-face interaction must be completed at this time. The only remaining graded activities that are permissible are those which may be accomplished remotely and final exams.</td>
</tr>
<tr>
<td>December 6</td>
<td>Sunday. Last day of fall semester classes. All courses to be held online/remote only.</td>
</tr>
</tbody>
</table>

Redefined day - Students attend their Thursday classes.
Spring Semester 2021*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 7</td>
<td>Monday. Reading day (no classes or finals).</td>
</tr>
<tr>
<td>December 8-10</td>
<td>Tuesday-Thursday. Fall semester final examinations for all students. All final exams to be held online/remote only.</td>
</tr>
<tr>
<td>December 13</td>
<td>Sunday. Fall semester final examinations for all students. All final exams to be held online/remote only.</td>
</tr>
<tr>
<td>December 14</td>
<td>Monday. Final grades due for all students by 6:00 p.m., Office of Records.</td>
</tr>
<tr>
<td>December 17</td>
<td>Thursday. Qatar National Day</td>
</tr>
<tr>
<td>December 18</td>
<td>Friday. Qatar National Day Observed (offices closed).</td>
</tr>
<tr>
<td>December 20-24</td>
<td>Sunday-Thursday. Semester break (offices closed).*</td>
</tr>
</tbody>
</table>

*All dates are subject to change.

^Dates for the Eid holidays are subject to change; however, the University will be closed for a three-day period during each Eid.

Summer Semester 2021*

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 1</td>
<td>Saturday. Qatar Foundation Convocation.*</td>
</tr>
<tr>
<td>May 2-3</td>
<td>Sunday-Monday. Spring semester final examinations.*</td>
</tr>
<tr>
<td>May 4</td>
<td>Tuesday. Final grades due for degree candidates by 6:00 p.m., Office of Records.</td>
</tr>
<tr>
<td>May 6</td>
<td>Thursday. Commencement Ceremony.</td>
</tr>
<tr>
<td>May 7</td>
<td>Friday. Final grades due for all non-degree candidates by noon, Office of Records.</td>
</tr>
</tbody>
</table>

* All dates are subject to change.

Application Information (p. 848)

Candidacy Requirements (p. 848)

Types of Admission and Application Calendar (p. 848)

Freshman Admission (p. 849)

Notification of Application Status (p. 850)

Preferred Preparatory Coursework (p. 850)

How to Be Admitted (p. 850)

Placement Tests (p. 851)
Candidacy Requirements

The Texas A&M College of Engineering is considered one of the world's premier programs, with globally recognized faculty renowned for their teaching and research excellence. Admission into the program is open to freshman and transfer candidates, and is highly competitive. Therefore, Texas A&M at Qatar is seeking candidates who have a proven record of academic achievement and who merit admission into the program. Only the best-qualified candidates will be admitted, so it is important that the application reflect what you have accomplished in your college preparatory schooling.

Entry into the Texas A&M at Qatar program depends upon completion of the entire application, submission of the required supporting documents and college entrance test and placement test results, and an interview conducted by members of the Texas A&M at Qatar Admissions Board, if applicable. All of these requirements determine admittance. Texas A&M at Qatar seeks candidates who are committed to meeting the academic rigors of the program, who are global in their personal perspective, and who will thrive in a diverse and culturally rich environment.

Types of Admission and Application Calendar

<table>
<thead>
<tr>
<th>At the Time of Application</th>
<th>Term</th>
<th>Opening Date</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>Fall</td>
<td>Sept. 1</td>
<td>March 1</td>
</tr>
<tr>
<td>An applicant who:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is a degree-seeking applicant and is without college credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is still in high school, with or without college credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer</td>
<td>Spring</td>
<td>Sept. 1</td>
<td>Oct. 15</td>
</tr>
<tr>
<td>An applicant who:</td>
<td>Fall</td>
<td>January 15</td>
<td>Apr. 1</td>
</tr>
<tr>
<td>• is a degree-seeking applicant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has graduated from high school or equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• has enrolled in a post-secondary institution after graduation from high school</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not have a bachelor's degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not qualify for readmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readmission</td>
<td>Contact the Office of Admissions</td>
<td>+(974) 4423-0043</td>
<td>www.exploretamuq.com (http://www.exploretamuq.com)</td>
</tr>
<tr>
<td>An applicant who:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• is a former degree-seeking Texas A&M undergraduate student</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• does not have a bachelor's degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• did not officially register for the previous semester (excluding summer sessions) at Texas A&M Readmission does not include applicants whose only previous enrollment at Texas A&M has been as a non-degree student.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Freshman Admission

Definition of a Freshman

A freshman is defined as a degree-seeking applicant who has not attended a university prior to entrance into the program, or an applicant who is still in high school or in a secondary school program who may have taken university courses and received college credits as an element of the secondary school curriculum or requirements. If an applicant has enrolled in a foundation program at a college or university he or she is still considered to be a freshman.

Items Necessary to Complete an Application File

An application is reviewed to make a decision about admission only after the required documents and test scores and meeting all of the admission requirements. The information provided in this section of the catalog will help guide the candidate through the admission process. Candidates must submit all of the following information by the admission deadline to be considered for admission:

1. Completed online application.
2. Passport copy (resident permit if required).
4. Official college/university and/or Academic Bridge Program transcripts.
5. Official test scores.
7. Resume/curriculum vitae (CV).
8. Reference forms.
9. Application fee.

Specific Admission Requirements

1. Completed application
An application for Texas A&M at Qatar can be found at www.qatar.tamu.edu/admissions/apply (https://www.qatar.tamu.edu/admissions/apply/).

2. Passport
Submit a legible copy of the candidate’s passport and resident permit if required.

If the candidate is a non-Qatari and resides in Qatar, the candidate must submit a copy of his or her resident permit.

3. Official high school transcript or an official completion document from a secondary school program
Freshman applicants who have not graduated from high school or who have not completed a secondary school program at the time of application must submit a current official transcript listing all high school/secondary course work taken, credit earned, grades and, if calculated by the school, respective class rank. All will be used as an indication of the candidate’s academic preparation.

 • Freshman applicants who apply and are admitted prior to having graduated from high school or having completed their final year of secondary school must submit an official transcript that indicates the graduation or completion date prior to the first day of class in order to remain eligible to enroll.
 • Freshman and transfer applicants who have graduated at the time of application are to submit an official high school or secondary school program transcript that includes course work, credits earned, grades and class rank, and date of graduation.
 • Readmission applicants are not required to submit a high school transcript as a part of the application file.
 • To be considered official, a transcript must bear an original signature of a school official or an original school seal.
 • Transcripts in a language other than English must be accompanied by an official English translation. Applicants who have attended more than one high school should submit official transcripts from each school attended.
 • Emailed copies are not official and will not be accepted.

4. Official college and/or Academic Bridge Program (ABP) transcripts
An official transcript is required from every post-secondary institution attended even if the applicant did not earn credit or receive a course grade, or if the course is not transferable. This includes attendance

1 An applicant who has enrolled in a post-secondary institution since high school graduation, with or without credit received, must apply as a transfer applicant; excepting approved foundation programs.
at the ABP and any colleges or universities. Course work from one college posted on the transcript of another college will not satisfy this requirement. Failure to acknowledge attendance and provide transcripts from all schools attended may be considered a fraudulent admissions application.

- Official transcripts on paper are to be sent by the sending institution in a sealed envelope. The transcript will not be considered official if the student has had access to the actual transcript.
- Transcripts in a language other than English must be accompanied by an official English translation.
- Emailed copies are not official and will not be accepted.
- Evaluation of college and university transcripts for transfer credit will be based on the transfer admission procedures outlined in this catalog.

5. Official test scores
 Either the SAT or ACT examination is required for admission consideration.
 - Priority consideration will be given to candidates who achieve a competitive test score in all sections of either examination. It is expected that all sections of these examinations will be given full attention.
 - SAT and ACT scores must be from a test date within five years of the planned date of enrollment.

ENGLISH LANGUAGE TEST SCORES
If your native language is not English, you are required to submit proof of English proficiency.

TOEFL scores of 550 or higher on the paper-based test, an Internet-based TOEFL score of 80 or higher, and an IELTS overall band score of 6.0 or higher are considered competitive. In lieu of TOEFL or IELTS, university officials may consider as a substitute an SAT-evidence based reading and writing (EBRW) score of 560 (prior to March 2016, an SAT critical reading score of 500) or higher or an ACT English score of 21 or higher. Candidates whose native language is English do not have to submit TOEFL/IELTS scores.

- TOEFL and IELTS test scores must be from a test date within two years of the planned date of enrollment.
- All test scores must be sent directly from the testing agency.

The institutional code for Texas A&M are:

- TOEFL - 4290
- SAT - 4290
- ACT - 5270

6. Essay
 An essay is a required element of the application form. The essay is designed to give the candidate the opportunity to present his or her uniqueness, special skills, challenges faced, and other considerations that will provide insight into the candidate.

7. Resume/CV
 In resume form, the candidate should document academic and non-academic accomplishments, achievements and recognitions. These areas include extracurricular activities, leadership roles, community service, awards, talents, sports and employment.

8. Reference forms
 Two personal reference forms must be completed and submitted by officials from the candidate's graduating high school. The forms (http://cdn.qatar.tamu.edu/assets/forms/admissions/reference-form.pdf) can be found online at the Texas A&M at Qatar website.

9. Application fee
 The application fee is QAR 330, or $90 USD, payable to Texas A&M at Qatar.

 The application fee is non-refundable. Applicants have the option to pay online.

 All items necessary to complete the application become the property of Texas A&M at Qatar and should be sent to:
 - Office of Admissions
 - Texas A&M University at Qatar Education City
 - P.O. Box 23874
 - Doha, Qatar

Notification of Application Status
Check the applicant information website at www.qatar.tamu.edu/admissions/apply to verify your application has been received and to determine if any credentials are missing. Please allow two weeks to process credentials.

The Office of Admissions will make every effort to inform applicants of incomplete files through the applicant website. If incomplete applications are received within one month of the closing date, there may not be sufficient time for the Office of Admissions to notify applicants. All items necessary to complete an application must be received by the Office of Admissions by the closing date to ensure consideration for admissions.

Preferred Preparatory Coursework
The following list shows recommended minimum courses. Most candidates who are offered admission will have taken full advantage of the most challenging courses offered at their high school or secondary program.

- Four years of mathematics to include algebra, geometry, algebra II, and an advanced mathematics course, with calculus being the preferred subject.
- Four years of science which must come from biology, chemistry, and physics.
- English language preparatory courses indicating a high proficiency of understanding course content and concepts taught in the English language.

How to Be Admitted
Entry into the Texas A&M at Qatar program depends upon completion of the entire application, submission of the required supporting documents and college entrance test and placement test results, and an interview conducted by members of the Admissions Board, if applicable. All of these requirements determine admittance. Admission into the program is highly competitive. Applicants who are high achieving in all areas are most competitive for admission.

Applicants may be admitted one of three ways. Due to the limited size of the entering class, the number of students accepted from each category is limited.

1. Academic admits
Applicants qualify for academic admission if they:

- Successfully complete the required high school course work and achieve excellent grades.
- Achieve minimum college entrance tests as follows:
 - SAT math score of 670 or ACT math score of 29.
 - IELTS score of 7 or TOEFL score of 100.
- Students who do not submit TOEFL or IELTS scores must submit a minimum SAT Evidence-based reading and writing (EBRW) score of 660 (prior to March 2016 an SAT critical reading score of 600) and achieve a combined SAT math and EBRW score of 1360, or the ACT English and composite score equivalents.

Students will be admitted according to availability of spots.

2. **Review admits**

If an applicant does not qualify for academic admission, the complete application file will be considered through an extensive holistic review. Factors considered include:

- Academic achievements — class rank, school curriculum and required course work, and college admission test scores.
- Personal achievements — involvement in extracurricular activities, community service, leadership, employment and summer activities, as well as any talents, awards and honors.
- Information shared in essays and resumes.

Students will be admitted according to availability of spots.

3. **Provisional admission into the Aggie Gateway Program**

The program is designed to offer high-achieving Gateway students from Qatar and the Gulf Corporation Council (GCC) (as well as other countries if space is available) who do not quite meet the minimum test scores the chance to enroll in courses at Texas A&M at Qatar for 12 months. Once students meet the criteria of the Aggie Gateway Program, they can become full-time engineering students.

Students will be admitted according to availability of spots.

Placement Tests

Texas A&M at Qatar will administer placement tests to admitted students. Each accepted student may be required to participate in English and/or Mathematics placement exams. Details regarding the exams will be provided once a student has committed to the university.

Application Calendar and Notification

Freshman application to Texas A&M usually occurs from September 1 through March 1. Priority consideration will be given to those candidates who submit a completed application early. Failure to meet the application deadline will disqualify the applicant from admission.

Candidates will be notified of acceptance once admission decisions are made, which is usually in April and May. New student orientation will occur the week prior to the start of classes, with dates to be announced, and attendance is mandatory for those admitted. Classes normally start in August.

Candidates admitted to Texas A&M at Qatar will be notified by telephone or email, followed by a written admission confirmation letter mailed to the student’s home address or collected at the Office of Admissions. Candidates denied admission will be notified by email and/or postal correspondence to the permanent address specified on the application for admission.

When to Apply

Students currently enrolled in high school or secondary school program who wish to be considered for admission to Texas A&M University at Qatar should apply while in their senior or final year of their high school or secondary school program. Candidates are strongly encouraged to take the necessary college entrance examinations before the beginning of their final year in high school or secondary school.

Additional English Proficiency Requirements for Admitted Undergraduate Students Whose Native Language Is Not English

The criteria for admission into Texas A&M at Qatar differ slightly for those students whose native language is not English. These applicants must demonstrate the ability to speak, write and understand the English language. Undergraduate students may meet this requirement in one of the following ways:

1. Have an official TOEFL score of 600 on the paper-based test or 100 on the Internet-based test.
2. Have an official IELTS score of 7.0 on the overall band.
3. Have an official SAT Evidence-based reading and writing (EBRW) score of 560 (prior to March 2016 an SAT critical reading score of 500) or ACT English score of 21.
4. Transfer from an accredited U.S. institution of higher education with at least 30 semester credit hours, including the equivalent to Texas A&M ENGL 103 or ENGL 104 with a grade of C or better.
5. Achieve English language proficiency verification by taking an English language proficiency or placement examination prior to enrolling for the first semester at Texas A&M at Qatar. (If foundation English is required, the student will be enrolled in a pre-university English course, which will extend the time required to complete a degree.)

Transfer Admission

Transfer admission will be considered if the applicant has a successful record of proven academic rigor from a university whose accreditation is recognized by Texas A&M. Applicants wishing to transfer to Texas A&M at Qatar should have completed 24 transferable hours at the time of application and must have at least a 2.5 grade point ratio (GPA). Transfer admission decisions are very competitive; thus, admission standards are not known until the review for admission occurs. Preference is given to the applicant with the highest GPA and credit hours. Applicants who drop or withdraw from courses frequently and who do not achieve satisfactory grades routinely will be at a disadvantage in the review for admission.

The entire application, including the essay, is considered in reviewing the transfer applicant for admission. Applicants with less than a 2.5 GPA will be denied admission. Only the most qualified transfer candidates will be admitted. For more transfer admission information, please visit the website at exploretamuq.com (http://exploretamuq.com/).

Definition of a Complete Transfer Application

To be considered a candidate for transfer admission to Texas A&M University at Qatar, the prospective student must formally apply by submitting all of the required documents and meeting all of the admissions requirements. Candidates must submit all of the following information by the deadline to be considered for admission:
1. Completed online application at www.qatar.tamu.edu/admissions/apply. (https://www.qatar.tamu.edu/admissions/apply/)
2. Passport copy (resident permit if required).
4. Official college/university and/or Academic Bridge Program transcripts.
5. Official test scores.
7. Resume/curriculum vitae (CV).
8. Application fee.

For additional information, see Specific Admissions Requirements (p. 849) listed above. SAT/ACT scores are recommended but not required.

Additional Information for Transfer Applicants
1. At least a 2.0 GPA on course work in progress during the semester (excluding summer terms) immediately prior to enrollment at Texas A&M is a condition of admission.
2. Grades for all transferable courses are used in the computation of the GPA. This includes:
 • Failing grades, repeated courses, Withdraw Failing (WF), Incomplete, etc.
 • Grades reported as Incomplete are computed as Fs.
 • Plus and minus grade designations are not used; C+ is computed as a C, B- as a B, etc.
3. Credit-by-examination courses that are transcripted from other colleges or universities may be transferred if sequential course work with credit is also indicated. If there is evidence that the credit-by-examination courses are part of the student’s program of study at that institution, credit will be awarded for those courses that meet the transfer guidelines.
4. Course work taken as credit-by-examination must be listed as a specific course on an official college transcript to be considered in the admissions process and for transfer of credit.

Transfer Course Credit Policy
Transfer credit on coursework completed at the time of application to Texas A&M University at Qatar is determined when an official transcript from the originating institution is presented as part of the application for admission or readmission process. An official transcript is required from every post-secondary institution attended (including dual credit earned in high school) even if the applicant did not earn credit or receive a course grade, or if the course is not transferable.

The transfer of course credit will be determined by the Office of Records on a course-by-course basis. Credit submitted for transfer must be on an official transcript received by the Office of Records from the Registrar of the institution where the credit was earned. Course content will be determined from the catalog description or the syllabus. The transferability of credit decision will be based on the criteria as specified by Texas A&M University (see Transfer Course Credit Policies (http://catalog.tamu.edu/undergraduate/general-information/admission/#transferadmissiontext) for more information). All criteria are to be considered together, for example, criterion 10 may be qualified by criterion 7.

Credit from Non-Accredited Schools
Students who transfer to Texas A&M from an institution of higher education that is not accredited by one of the regional accrediting associations may validate the work taken at the institution by one of the following methods:
1. Successful completion of a comprehensive departmental examination or nationally standardized examination that is approved by the department.
2. Successful completion of a higher level course in the same subject area when approved by the head of the department and the dean of the college.

Credit will be given to students transferring from non-accredited public colleges in Texas for work completed with grades of C or better if they earn a grade point of 2.0 (C average) on the first 30 hours of residence work at Texas A&M.

Credit from Foreign Institutions
Transfer work from institutions following other than the U.S. educational system with instruction in English will be evaluated on an individual basis. A-level examinations with a grade of C or better will transfer. Baccalaureate II examinations will not transfer; however, these students may take placement and proficiency examinations to receive credit by examination. Credit will be given for work satisfactorily completed in an international institution offering programs recognized by Texas A&M. Official credentials submitted directly from the Office of Records and a listing of courses completed and grades awarded must accompany any request for transfer credit. Transfer work will be awarded by course title unless previous arrangements have been made using the Texas A&M at Qatar equivalency form or the course has been evaluated and approved as transferable to Texas A&M at Qatar. Courses must be equivalent in character and content to courses offered at Texas A&M. Credit will not be awarded from international institutions that are not academically accredited by the Ministry of Education or other appropriate authority in the home country.

No English composition courses will be transferred from institutions located in non-English-speaking countries. American history and American political science (government) courses will not transfer from foreign institutions outside the United States.

Courses taken at language training centers or institutes are generally not awarded transfer credit. A transcript from such an institution must be issued through the Office of the Registrar at a Texas A&M–recognized university, institute or language training center. Credentials of all language training centers and institutes are carefully checked.

Admission Criteria for Other Application Types
Readmission Criteria
Admission decisions for readmission are based on the following:
• GPA on Texas A&M University at Qatar coursework;
• GPA on coursework since leaving Texas A&M University at Qatar;
• Desired major; and
• Information presented in the application and essay/statement of purpose if provided.

If you were previously admitted but did not enroll and attend class through the official census date, you do not qualify as a readmit, and you must apply as either a freshman or transfer student.
If you were previously enrolled at Texas A&M University at Qatar but did not attend class through the official census date of the previous long semester, then you must apply for readmission.

Transcripts from institutions attended since the last enrollment at Texas A&M University at Qatar are required. Please contact the Office of Admissions for readmission deadlines.

Post-baccalaureate Undergraduate Criteria

Admission is limited and is intended for applicants with a degree who wish to apply for further study at the undergraduate level to pursue a second bachelor's degree.

Additional requirements to complete a post-baccalaureate application:

- an official transcript indicating the receipt of a recognized baccalaureate degree
- a statement explaining why enrollment at Texas A&M University at Qatar is necessary
- official transcripts from all colleges attended (official high school transcript not required)

Admission decisions for post-baccalaureate undergraduates consider:

- GPA on transferable college coursework
- completion of prerequisite coursework
- information presented in the application

Priority is given to qualified applicants for their initial degree; therefore, post-baccalaureate undergraduate admission may be limited or may not be available.

Transient-Session Only Criteria

Admission is considered for applicants who wish to attend one specific session only and who present appropriate credentials for the level of specified coursework and apply within the processing period for the specific session.

Additional requirements to complete a transient-session only application include:

- A statement explaining why enrollment at Texas A&M University at Qatar is desired.
- An official college transcript showing the latest collegiate coursework attempted.

Change of Curriculum to Another Campus

Texas A&M offers certain undergraduate degrees at two branch campuses in addition to the main campus. While enrolled as a student in residence at any one of the Texas A&M locations, students may apply for a change of curriculum to another campus for a future semester. Students must comply with the established change of curriculum procedures and requirements of their desired major, department, and college, and space must be available. Final approval is granted by the academic dean or departmental advisor for that major.

Suspected Fraudulent Admissions Applications

Applicants for admission to Texas A&M University at Qatar should be aware that the information submitted will be relied upon by university officials to determine their status for admission and residency. By signing and submitting an admission application, the applicant certifies that the information in, and submitted with, the application is complete and correct and may be verified by university officials.

All students applying to Texas A&M University are expected to follow the Aggie Code of Honor which states “An Aggie does not lie, cheat or steal nor tolerate those who do.” Applicants found to have misrepresented themselves or submitted false information on the application will receive appropriate disciplinary action which may include rejection of the application, withdrawal of any offer of acceptance, cancellation of enrollment or any other appropriate disciplinary action deemed necessary. In all instances of disciplinary action, the application fee is non-refundable.

Pursuant to the 2020-2021 undergraduate catalog and Texas A&M student rule 24.4.1 (http://student-rules.tamu.edu/rule24/), acts of dishonesty include but are not limited to:

- Withholding material information from the University, misrepresenting the truth during a University investigation or student conduct conference, and/or making false statements to any University official.
- Furnishing false information to and/or withholding information from any University official, faculty member, or office.
- Forgery, alteration, or misuse of any University document, record, or instrument of identification.

For prospective undergraduate students (admitted but not enrolled), the initial determination of whether an individual has submitted a fraudulent application will be made by the Assistant Director of Admissions, with a right of appeal to the Director of Admissions for undergraduate students. For prospective graduate students, initial appeals will be made to the Executive Director of Graduate Studies.

For enrolled students, the initial determination of whether a student submitted a fraudulent application will be made by the Director of Records, with final right of appeal to the Associate Dean of Academic Affairs or Assistant Dean of Academic and Student Affairs.

Any University official who suspects that a prospective or enrolled student has submitted a fraudulent admission application must notify the Director of Admissions or Director of Records.

Tuition and Fees

Tuition and Fees for Texas A&M University at Qatar

Tuition and Fees (p. 854)

Payment of Tuition and Fees (p. 854)

Financial Obligation for Graduating Students (p. 854)

Citations (p. 854)

Cancelling of Registration (p. 854)

 Fees for Special Items or Services (p. 854)

Application Fees (p. 854)

Diploma Fees (p. 854)

Refund Policy (p. 854)

Financial Assistance/Scholarships (p. 855)
Tuition and Fees
As a state institution, Texas A&M has held firmly to the premise that the Qatar campus should remain affordable, and therefore should follow the same tuition and fee structure as that of the main campus. All tuition and fee amounts provided herein represent the most accurate figures available at the time of this publication and are subject to change without notice.

Full details on tuition rates are available at www.qatar.tamu.edu/students/tuition-financial-aid-and-scholarships (http://www.qatar.tamu.edu/students/tuition-financial-aid-and-scholarships/).

Educational expenses for the nine academic months will vary according to personal needs. University rules regarding tuition and fees and all related payments in place at the time of publishing are reflected here. All are subject to change.

Payment of Tuition and Fees
Students must meet all financial obligations to the university by their due dates. Officials at Texas A&M at Qatar calculate the appropriate tuition and fees of each student enrolled, and the Qatar Foundation issues to each student his or her respective tuition statement. Students are then responsible for making payment to the Qatar Foundation’s cashier office. Students will receive their invoices via their Texas A&M at Qatar email addresses. Failure to pay amounts owed may result in cancellation of the student’s registration and being barred from future enrollment and receiving official transcripts. Qatar Foundation policy requires that tuition and fees be paid as early as possible in the semester. Arrangements for paying tuition in installments should be made with the Academic Services Office and the Qatar Foundation Finance Office.

Financial Obligation for Graduating Students
According to Texas A&M University Student Rules and Chapter § 54.007 (c) of the Texas Education Code, all financial obligations owed to the university and/or to the Qatar Foundation must be paid by the end of the semester. Failure to settle all financial obligations will result in withholding a student’s diploma at graduation. Additionally, a block will be placed on the student’s account, which will prohibit registration in subsequent semesters and the receipt of official transcripts.

Citations
- Section 14.15 of the Texas A&M University Student Rules states “The student must have settled all financial obligations to the University.”
- Chapter § 54.007 (c) of the Texas Education Code states “A student who fails to make payment prior to the end of the semester may be denied credit for the work done that semester.”

Cancelling of Registration
Once students have registered for classes and subsequently wish to withdraw from the university prior to the first day of classes, they must do the following to prevent being charged tuition/fees for the term:

1. Contact the Office of Records prior to the first day of classes and complete a withdrawal form indicating the intent to officially withdraw from the university.
2. Contact the Academic Services Office.
3. Contact the sponsoring agency if the student is sponsored.

Failure to request cancellation of an unwanted registration may result in grades of F or I in all courses for the semester. The student will be held responsible for paying all fees for the semester, regardless of whether he or she attended classes.

Cancellation for Nonpayment of Tuition or Fees
If notified by the Qatar Foundation of nonpayment, the university reserves the right to cancel registration for any semester in which a student is enrolled.

Fees for Special Items or Services

Application Fees
The application-for-admission fee for undergraduate and graduate applicant is: QAR 330, or $90 USD, and is non-refundable.

Diploma Fee
A non-refundable fee per degree sought is assessed the semester a student applies for graduation. This fee is payable each time a student applies for graduation. A late diploma fee is charged at the rate of QAR 185, or $50 USD, in addition to the diploma fee above, to those who apply for graduation after the set deadline.

Refund Policy

Withdrawal from Texas A&M at Qatar
Once registered for classes, a student is considered officially enrolled unless otherwise restricted from enrolling. Stopping payment to the Qatar Foundation or allowing the check or bank draft to be returned unpaid by the bank for any reason does not constitute official withdrawal. The withdrawal process is specified in the section “Cancelling of Registration.” A withdrawal form found online at www.qatar.tamu.edu/students/office-of-records/student-forms (http://www.qatar.tamu.edu/students/office-of-records/student-forms/) explains exactly what the student needs to do. Failure to follow procedures for withdrawing from the university may result in financial penalties and delays with future enrollment, and course work may be recorded as incomplete and failed. Once a student registers, he or she is responsible for the total cost of the tuition and fees assessed if the withdrawal process is not followed properly, and refunds will occur only within the specified refund time periods as listed in the section “Tuition and Fee Adjustments.” Recipients of Qatar Foundation financial assistance should talk to a financial aid representative at the Qatar Foundation before withdrawing. Sponsored students should talk to a representative from their respective sponsoring agency prior to withdrawing.

Tuition and Fee Adjustments

Fall and Spring Semester and Eight-Week Summer Semester
By 4 p.m. on the last business day before the first day of class

<table>
<thead>
<tr>
<th>Period</th>
<th>Refund Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>During the first five class days</td>
<td>100%</td>
</tr>
<tr>
<td>During the second five class days</td>
<td>80%</td>
</tr>
<tr>
<td>During the third five class days</td>
<td>70%</td>
</tr>
<tr>
<td>During the fourth five class days</td>
<td>50%</td>
</tr>
<tr>
<td>After the fourth five class days</td>
<td>25%</td>
</tr>
</tbody>
</table>

Five-Week Summer Term
By 4 p.m. on the last business day before the first day of class

<table>
<thead>
<tr>
<th>Period</th>
<th>Refund Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Contact the sponsoring agency if the student is sponsored.
Financial Assistance/Scholarships

The financial assistance program is designed for all students who have demonstrated financial need for assistance to meet college expenses and who are making satisfactory academic progress, as defined by the policies of the Qatar Foundation Financial Services Office. Financial aid is awarded by Texas A&M at Qatar, and applicants are expected to make a maximum effort to assist with college expenses. The financial assistance resources of Qatar Foundation and university scholarships should be viewed only as supplementary to the financial resources of the applicant and family.

Only those students who have been accepted for enrollment into the university may apply for Qatar Foundation financial aid and/or for university scholarships. Information about Qatar Foundation financial aid can be found at http://www.qatar.tamu.edu/students/tuition-financial-aid-and-scholarships (https://www.qatar.tamu.edu/students/tuition-financial-aid-and-scholarships/).

Services

Services for Qatar Campus Students

<table>
<thead>
<tr>
<th>Services</th>
<th>Student Activities (p. 858)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Advising</td>
<td>Student Government Association (p. 858)</td>
</tr>
<tr>
<td>The Academic Success Collaborative (p. 855)</td>
<td>Student Wellness and Counseling (p. 858)</td>
</tr>
<tr>
<td>Aggie Life 101 for New and Transferring Undergraduates (Orientation) (p. 856)</td>
<td>Ombudsperson (p. 858)</td>
</tr>
<tr>
<td>The Association of Former Students (p. 856)</td>
<td>On-Campus Housing (p. 859)</td>
</tr>
<tr>
<td>Campus Safety and Security (p. 856)</td>
<td>Academic Advising</td>
</tr>
</tbody>
</table>
| Career Services (p. 856) | The primary purpose of academic advising at Texas A&M at Qatar is to assist students in the development of meaningful educational plans that are compatible with their personal abilities and goals. The ultimate responsibility for making decisions about personal goals and educational plans rests with the individual student. The academic advisor assists by helping to identify and assess alternatives and the consequences of decisions. Academic advising is a continuous process of clarification and evaluation.

The objectives for academic advising for the university and its component units include facilitating the following for each student:

• Clarifying personal and career goals.
• Developing suitable educational plans.
• Selecting appropriate courses and other educational experiences.
• Interpreting institutional requirements.
• Increasing student awareness of available educational resources.
• Evaluating student progress toward established goals.
• Enhancing decision-making skills.
• Reinforcing responsible student self-direction.
• Using referrals to other institutional and community support services, where appropriate.

The advising system of Texas A&M Qatar Campus includes professional staff advisors, faculty liaisons and administrators working together to ensure the total educational development of students by meeting intellectual, academic, personal and career needs. All students are required to meet with an academic advisor each semester in order to register for classes in the subsequent semester, or they will be blocked from registration.

More information can be found at https://www.qatar.tamu.edu/students/academic-services/academic-advising (https://www.qatar.tamu.edu/students/academic-services/academic-advising/)

The Center for Teaching & Learning

The Center for Teaching & Learning (CTL) welcomes all students seeking to enhance their academic skills and to engage in deep learning. The CTL staff, which includes peer tutors and professional writing consultants, offers one-to-one tutoring and small-group collaborations that cover topics/subjects including writing, mathematics, physics, chemistry, core introductory and sophomore-level engineering courses, presentation skills, and digital composing. The CTL team also provides support for students who want to improve their overall study skills.

More information can be found at https://tamqctl.com/learning/.
Aggie Life 101 for New and Transferring Undergraduates (Orientation)

Each year, Aggie Life 101 is held for undergraduate students entering Texas A&M at Qatar. New students are required to attend Aggie Life 101 in order to accept their offer of admission and register for classes. Families are encouraged to attend Aggie Life 101 with their students and participate in sessions designed especially for them to learn more about what their student will be experiencing as a new Aggie.

Aggie Life 101 provides students with the tools they will need to get started on their careers at Texas A&M at Qatar and offers a chance to learn about the many opportunities available to members of the Aggie community. During this program, new students will meet with academic advisors, register for their first semester courses, and learn the traditions and values of being a Texas A&M Aggie student. Since their first year is important to their continued success at Texas A&M at Qatar, the program will acquaint new students with student life activities and services available at the university. In addition, Aggie Life 101 offers social programs that provide students an opportunity to interact with other students. Each year, current students volunteer as orientation leaders to help new students and their families connect with Texas A&M at Qatar. For questions concerning Aggie Life 101, please contact the Department of Student Affairs at dsa@qatar.tamu.edu or (+974) 4423-0047.

The Association of Former Students

- Aggie Ring.
- Alumni Services, Giving and Events.
- Traveling Aggies.

Campus Safety and Security

- In an emergency situation dial +974.4454.0999 from within Education City or 999 from outside Education City.
- Report incidents immediately to Texas A&M University at Qatar security (333 from a Texas A&M Engineering Building phone or +974.4423.0333 from a mobile or outside phone).

Information on campus safety and security is available here (https://www.qatar.tamu.edu/other/safety-and-security/); and the Annual Security Report is located here (https://urc.tamu.edu/clery-act/clery-annual-reports/).

Career Services

The Career Services Office offers advising and assistance to students seeking internships and full-time employment, while supporting the recruiting initiatives of local and international companies. Career Services assists students as they prepare for their job searches by coordinating informational sessions and workshops on topics such as resume writing, interviewing skills and career readiness. The office also hosts two annual recruiting events, the Career Networking Event at Texas A&M at Qatar and the spring career fair in collaboration with all Education City universities. A variety of guest speakers from industry are hosted each year. Students learn about opportunities in specific companies and on general issues related to the workplace. The Career Services Office provides students with other opportunities for industry engagement ranging from corporate competitions to participation in local and regional conferences.

More information can be found at https://www.qatar.tamu.edu/students/career-services (https://www.qatar.tamu.edu/students/career-services/)

Critical Incident Response Team

The purpose of the Critical Incident Response Team (CIRT) is to respond to incidents involving Texas A&M at Qatar students and to serve as the university contact when students are involved in incidents away from the campus.

Texas A&M at Qatar is committed to providing an educational climate that is conducive to the personal and professional development of each individual. Even with a small university community, Texas A&M at Qatar and the Department of Student Affairs realize that crises, or critical incidents, will occur and that these crises can have a significant effect on the entire university, Education City and local communities. Such critical incidents require an effective and timely response. The Department of Student Affairs has developed CIRT consisting of Texas A&M at Qatar staff to best respond to these critical student incidents. CIRT can be reached at (+974) 4423-0333.

The goals of CIRT are as follows:

- To coordinate the university’s response to critical incidents involving students while paying special attention to the safety and security needs of members of the university community.
- To offer counseling, guidance and appropriate support to members of the university community, their families and university caregivers.
- To use critical incidents, when appropriate, as teachable moments that may enhance the quality of life for all those touched by critical incidents.

Disability Services

The mission of Disability Services is to ensure accessibility for all students to University programs. The Department of Student Affairs Counseling and Wellness Program administers Disability Services at Texas A&M University at Qatar. Disability Services, with the assistance of Disability Services at Texas A&M University, offers accommodations counseling, evaluation referral, disability-related information, and adaptive technology counseling and equipment for academically related purposes. Although Disability Services does not offer disability evaluation and/or testing, tutoring, personal expenses, attendants or scholarships, we will provide referral information.

More information can be found at https://www.qatar.tamu.edu/students/student-affairs/disability-services (https://www.qatar.tamu.edu/students/student-affairs/disability-services/)

The Engineering Enrichment Program

The Engineering Enrichment Program (EEP) is designed to drive innovation and entrepreneurship and empower students with an exceptional engineering experience. The program offers a series of short training courses throughout the year, providing more hands-on experience in different engineering fields such as; electronics, fabrication, machining, and programming. It inspires students and enriches their knowledge with new valuable skills to become experts and make a difference. Students will have the chance to complement their engineering degree with additional certifications and participate in international competitions. This program encourages all students to build competencies and share big ideas, as they work towards becoming unique engineering leaders.
Global Educational Opportunities

Higher education is not immune to the trend of globalization. To adapt to this phenomenon and prepare graduates for an increasingly interdependent global community, Texas A&M University at Qatar is committed to providing global learning opportunities for all students. Whether it be study abroad programs, service-learning trips, research abroad, language training, international conferences or workshops, or global leadership programs, students at Texas A&M University at Qatar can choose from a variety of experiences that can increase their cultural competence, expand their global worldview, and augment their marketability in a rapidly globalizing world. Some opportunities on offer are as follows:

Study Abroad
Texas A&M University at Qatar students are able to study in a variety of different locations and countries. The flagship program is an exchange with the Texas A&M main campus in College Station, Texas. This program is offered every semester and the summer session. The program operates as a cohort model, and students are selected through a competitive application process. Texas A&M University at Qatar assists in arranging flights, housing, transportation and university check-ins.

Texas A&M University at Qatar students are also eligible to participate in programs on offer through the Study Abroad Programs Office operated by the main campus. Students can choose from many different disciplines, programs and countries. These programs can differ in length from summer sessions, semester-long programs or intersessions.

Faculty-Led Programs
Every year, Texas A&M faculty lead a group of students on a global academic experience. Traveling with a faculty mentor, a group of students will travel to an international location, be exposed to engineering topics in a global context, and experience a different culture. Often, students will be joined by fellow Texas A&M students from the main campus and students from the host institution. Faculty-led programs provide students a rich experience that can impact their academic and professional careers by providing them with unique networking opportunities and an enriching cultural experience that can assist with increasing cultural competence.

Research Exchange for Undergraduates
Texas A&M University is a division I research institution. Boasting some of the world’s renowned faculty, Texas A&M University is known for producing groundbreaking research. Students at Texas A&M University at Qatar are eligible to participate in the Research Exchange for Undergraduates, a program designed to partner Texas A&M at Qatar students with a faculty member on the main campus in College Station. This experience can allow students to understand engineering research in a global context and contribute to the growing field of knowledge. This program will provide students an opportunity to network with faculty members on the main campus, experience a new culture, and have the potential to publish their research.

Information Technology
The mission of the Information Technology (IT) department is to provide a robust, secure and innovative environment that supports Texas A&M University at Qatar’s goals in teaching and lifelong learning, research, and engagement. IT strives to embody and uphold Texas A&M’s tradition of organizational excellence. The department is comprised of five groups that provide over 75 services to faculty, staff and students.

Educational Technology
The Educational Technology group serves faculty and students by promoting and assisting in the use of technology for instruction. Providing systems such as eCampus and Echo360 Lecture Capture, the group also manages classroom technologies and academic software including audiovisual systems.

Enterprise Applications
The Enterprise Applications (EA) group performs business process analysis and develops, administers, and maintains automation to achieve greater efficiencies. EA oversees all electronic communication with the Texas-based administrative systems for student information, financial accounting and payroll, including troubleshooting the processes, applications, and data feeds employed and ensuring secure operation. EA also provides support for many of the university’s web resources, including Marhaba, the intranet portal.

Network and Security
The Network and Security group provides and manages the network, telecommunications and security infrastructure of the branch campus. The group ensures compliance with all laws, policies, procedures, guidelines and industry best practices for operating and securing the Texas A&M at Qatar network. The group strives to increase community awareness regarding cyber-security, prevent cyber-attacks, and remediate the effects of viruses, worms, spyware and other malware.

Service Desk
The Service Desk provides a single point of contact for all IT-related queries, service requests and communications. The team provides user orientation and training. The Service Desk proactively communicates information regarding IT services, updates and policies.

Systems Engineering
The Systems Engineering group is responsible for providing computing infrastructure and services. This team maintains and supports mission-critical systems including physical and virtual infrastructure, directory and authentication services, file and database services, e-mail services, data backups and disaster recovery, data center monitoring, desktop and server security, and print services.

Leadership Activities
The Department of Student Affairs offers a wide variety of leadership development programs that provide an excellent opportunity for students to develop personal leadership in a global and intercultural context. The Student Leadership Exchange Program takes place every spring break and allows a group of student leaders from the Doha campus to visit the College Station campus during their spring break and then a group of student leaders from College Station to visit Doha during their spring break. An emphasis is placed on these students using their Aggie connection to communicate across cultural differences and build leadership. The Department of Student Affairs offers service opportunities each year for students to give back to others. The most
well known of these is the Aggie Service Learning Experience, which is an international service trip that allows Aggies to use collective strengths and talents in order to meet an expressed community need while learning about another culture and expanding personal horizons. Additional programs include LeaderShape, which is a six-day residential experience focused on introducing student leadership concepts to all students and challenges them to be a force for change within their student organizations and communities.

The Texas A&M Qatar Campus Library

The Texas A&M Qatar Campus Library supports the teaching, research and outreach missions of the university in an environment that fosters learning and inquiry. A core professional collection of over 7,000 titles is complemented by a basic collection in the arts and humanities of around 3,000 volumes. Students may also request books and journal articles from the five libraries on the main campus, where there is a print collection of around 5 million volumes.

Extensive online resources are available to students both within the library and on desktop or mobile devices via remote access. This includes more than 100,000 electronic journals and newspaper titles, over 1,000 databases, and more than 1.3 million electronic books.

Students can locate books and thousands of journals by author, title, subject and keyword using the basic online catalog, LibCat, at libcat.tamu.edu. Alternately, they can use the time-saving multi-search tool Quick Search, which allows searching of multiple databases at one time.

An experienced librarian is also available Texas hours via online chat, which is a great way to get help when starting a research project. GetItForMe is a document delivery service that supplies print books or electronic copies of journal articles and book chapters free of charge to all students. Print books borrowed from the main campus generally arrive in five to 10 working days. Electronic copy is usually emailed within two working days. Material not available from the main campus libraries can often be obtained either from other libraries in Qatar or around the world. Professional librarians are also available on campus to teach individuals and groups how to use library tools and resources.

More information can be found at library.qatar.tamu.edu (https://qatar.library.tamu.edu/).

Department of Student Affairs

The mission of the Department of Student Affairs at Texas A&M at Qatar is to create a vibrant campus culture that:

• Embodies the Texas A&M Core Values.
• Resonates with Aggie Spirit.
• Upholds Qatar’s unique, rich culture.
• Promotes the holistic and intercultural development of students.
• Prepares students for excellence in the engineering discipline in a diverse global society.

If students experience problems or difficulties or just need advice about where to go for assistance, they are encouraged to contact the Department of Student Affairs at dsa@qatar.tamu.edu or (+974) 4423-0047.

More information can be found at https://www.qatar.tamu.edu/students/student-affairs/

Student Activities

The Department of Student Affairs empowers students to organize into recognized clubs and organizations and plan their own campus activities. Program coordinators within the department advise student organizations and assist them in managing their own events.

Involvement in one or more of the university’s 30-plus organizations can add an important dimension to one’s college experience. It is a way to balance one’s life, meet new people, and develop interpersonal and leadership skills. In addition, prospective employers often look at what students have accomplished and experienced outside of their coursework. The recognized student organizations include the Institute of Electrical and Electronic Engineers, the American Society of Mechanical Engineers, the Society of Petroleum Engineers, the American Institute of Chemical Engineers, the Society of Women Engineers, the Qatari Student Association, and many others. The recognized student organizations include a variety of events such as business meetings, conferences, social events, sponsored guest speakers, workshops and field trips. For all these reasons, Student Affairs supports the belief that students can learn from experiences as well as from textbooks.

University sports teams are part of the activities offered and include basketball, soccer and cricket for men and basketball and soccer for women. Tryouts will be held for these teams each fall semester.

Student Government Association

The representative governing body for all students at Texas A&M at Qatar is the Student Government Association (SGA). This body is directly responsible for representing the interests of students to the administration and to the entire university community. SGA works with the administration on issues of concern to the general student population.

SGA consists of three representatives elected from each class, committee chairs, a vice president and the student body president. These officers are elected annually in April. SGA can be reached by email at SGA@qatar.tamu.edu.

More information can be found at https://tamuqatar.campuslabs.com/engage/organization/student-government-association/)

Student Wellness and Counseling

The Student Wellness and Counseling Programs promote the process of developing a healthy lifestyle. By participating in awareness activities, educational programs and counseling, Aggies can enhance their personal wellness with improved physical health, emotional stability, supportive relationships, spiritual growth and academic/career satisfaction. Services for students in the Wellness Program include academic skills counseling and testing, career counseling and testing, personal counseling, stress management and biofeedback, outreach programming, crisis and consultation, and disability services.

More information can be found at https://www.qatar.tamu.edu/students/student-affairs/health-and-wellness/

Ombudsperson

Based in the Office of Student Affairs, the Undergraduate Ombuds assists students with resolving conflicts on an informal and confidential basis. The Ombuds is equally open and accessible to all parties in disputes.
that may arise when there are differing expectations or conflicting policies regarding academic issues. Such occurrences may happen to undergraduates in their roles as students, employees, interns, or in many of the other roles that affect their education. Students should visit the Department of Student Affairs in the Texas A&M Engineering Building for more information regarding Ombuds services.

On-Campus Housing

Student housing in Education City is available to students enrolled with Texas A&M University at Qatar (TAMUQ) on a first-come, first-served basis.

Living on campus can be an excellent way to make new friends from around the world in what will prove to be one of the most diverse living environments possible. In addition to making new friends, you will find a supportive community environment with staff members who are available to assist you and will offer programs and events for residents.

To learn more about living on campus, visit the following website: http://www.hbku.edu.qa/en/life-hbku/hbku-student-housing (http://www.hbku.edu.qa/en/life-hbku/hbku-student-housing/)

If you wish to live in Education City student housing, please complete the following:

- Submit an online request for housing: https://orgsync.com/23486/forms/show/47844 (https://orgsync.com/23486/forms/show/47844/)
- Once the Department of Student Affairs (DSA) has received your information in, we will notify the Qatar Foundation that you are a TAMUQ student who is eligible for housing and are interested in applying for a space in the residence halls.

With the information you submit above, they will create an account for you and send an email invitation to complete the full housing application.

You will be asked to submit the following to complete the online Housing application:

- Housing Application Form filled in its entirety.
- Provide a scanned passport photo and scanned copy of your passport.
- Provide a scanned receipt showing that you have paid your refundable Damage Deposit (2000 QR).
- Confirmation of the date of your arrival in Doha, Qatar.

Please note: If eligible for family housing, additional documents required will need to be submitted with your application (i.e. visa status, marriage certificate, dependent’s birth certificate, residency permit, etc.)

Any remaining balance of your housing fees (depending on the housing option selected) will be due when you check in. The Housing Agreement for the 2019-2020 academic year will be made available with the Housing Application. Please read this document carefully.

Assignments within student housing are currently open on a rolling basis where applications are processed in the order they were completed and submitted, and room assignment will be done based on eligibility, preference, and availability. There is no deadline to apply, but once all rooms are filled students will be placed on a waiting list and are not guaranteed housing.

There are separate residence halls for male and female students. In addition, students have access to a communal lounge with computers, printers, cable television, DVDs, and video in each residential area. Laundry facilities with washers and dryers are available. Wireless Internet is available throughout the residence halls.

Qatar Foundation Housing and Residence Life staff work closely with student residents to maintain a safe, comfortable and healthy living-learning environment. Staff members are available to help students with life transitions associated with living in a community residential environment.

For more information about student housing or to check the status of your application after receiving their notice, please email housing@qf.org.qa.

For questions about the application process, please email TAMUQ DSA at dsa@qatar.tamu.edu.

Facilities

Texas A&M University at Qatar Facilities

The Texas A&M University at Qatar engineering building is one of the most advanced facilities for engineering education in the world. Designed by the famous father-son Mexican architect team Legoretta + Legoretta, the 55,000 square meter (592,000 square feet) facility combines modernist elements with traditional Islamic architectural motifs. The building is fully wireless and features high-tech classrooms, teaching laboratories and computer laboratories. The research rotunda provides additional research laboratories that give future Aggie engineers firsthand experience.

Texas A&M Qatar campus’s home in Education City also includes a library with a core professional collection of 10,000 titles and a number of journals and DVDs relating to the liberal arts, humanities, and basic sciences. Students also have access to books and journals from the libraries on the main campus, from collections that exceed 5 million volumes. Extensive online resources are available to students in the library and remotely, including more than 2 million electronic books and thousands of subscription electronic journals and databases.

Policies

University Statement for Individuals with Disabilities (p. 859)
University Statement on Harassment and Discrimination (p. 860)
Aggie Honor Code (p. 860)
University Student Rules (p. 861)

University Statement for Individuals with Disabilities

Texas A&M University (TAMU) is committed to maintaining an accessible campus community and providing reasonable accommodations to qualified students, faculty, staff and visitors, including making its web sites accessible and usable. TAMU does not discriminate on the basis of an individual’s disability and complies with Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) as amended.

Students are protected from discrimination regarding access to and participation in TAMU’s programs and activities.#TAMU provides academic adjustments and auxiliary aides to accommodate needs of
students with disabilities, as defined under the law, who are otherwise qualified to meet the institution’s academic requirements.

Students with disabilities who would like to request accommodations may contact the following:

- TAMU, Texas A&M Health's (TAMH) College of Nursing, Irma Lerma Rangel College of Pharmacy College Station, College of Medicine, and School of Public Health should contact Disability Resources (979) 845-1637 or disability@tamu.edu.
- TAMH College of Dentistry should contact the Office of Academic Affairs (214) 828-8978 or bramsey@tamu.edu to request accommodations.
- TAMU School of Law should contact the Office of Student Affairs at (817) 212-4020 to request accommodations.
- TAMH Irma Lerma Rangel College of Pharmacy in Kingsville should contact the Disability Resource Center at TAMU at Kingsville at (361) 593-3024 to request accommodations.
- TAMU at Galveston (TAMUG) should contact Counseling and Career Services at (409) 740-4736 or studentservices@tamu.edu.
- TAMU at Qatar (TAMUQ) should contact the campus psychologist, Dr. Steve Wilson +974-4423-0047 or stephen.wilson@qatar.tamu.edu.

Students with a disability who believe they have experienced discrimination may contact Kevin McGinnis, Chief Risk, Ethics, and Compliance Officer, at the J. K. Williams Building, Suite 302, College Station, TX 77843. He may be contacted at civilrights@tamu.edu or at (979) 458-0308.

To report incidents, request accommodations, or inquire about discrimination based on disability, you may contact Peggy Zapalac, ADA Coordinator, at (979) 845-8115 or ADA.Coordinator@tamu.edu. The office address is 750 Agronomy Road, Suite 2101, College Station, TX 77843. Her telephone number is: (979) 458-8167 and email address is civilrights@tamu.edu. Such reports will be immediately forwarded to the Chief Risk, Ethics, and Compliance Officer for investigation and resolution. The Title IX website can be found at http://urc.tamu.edu/title-ix/.

Aggie Honor Code

Integrity is a fundamental core value of Texas A&M University at Qatar. Academic integrity requires a commitment by all faculty, students, and administrators to:

- Remain constantly focused on the quality of the academic programs;
- Achieve and maintain academic excellence in all courses and programs to assure the value of Texas A&M University at Qatar degrees;
- Demand high academic standards from all members of the Aggie community.

All Texas A&M University at Qatar students, graduate and undergraduate, part-time or full-time, in residence or in distance education, are expected to follow the guiding rule of the Aggie Honor Code:

‘An Aggie does not lie, cheat, or steal or tolerate those who do.’

Upon accepting admission to Texas A&M University at Qatar, a student immediately assumes a commitment to uphold the Honor Code, to accept responsibility for learning, and to follow the philosophy and rules of the Honor System, which may be found at https://aggiehonor.tamu.edu/. A student will be required to state his/her commitment on examinations, research papers, and other academic work. Ignorance of the rules does not excuse any member of the Texas A&M University from the requirements or the process of the Honor System.
Academic integrity violations are taken seriously, and are adjudicated by the Academic Services Office (ASO). ASO is responsible for educating the campus community regarding the Aggie Honor Code, responding to academic violation reports, and facilitating remediation efforts for students found to be in violation of the Aggie Honor Code. The website, https://www.qatar.tamu.edu/students/academic-services/aggie-honor-system (https://www.qatar.tamu.edu/students/academic-services/aggie-honor-system/), defines the types of infractions and the possible consequences. Students are urged to review this information.

In addition to adherence to the Honor Code, a student (graduate student in particular) who is completing a thesis, record of study, dissertation, and publication may fall under the additional federal requirements promulgated by the Office of Research Integrity (Scientific Misconduct Regulations – 42 CFR part 50), as well as Texas A&M System Regulations and Texas A&M University Rules (Texas A&M System Regulations – Ethics in Research and Scholarship – 15.99.03, and Texas A&M University rules and standard administrative procedures – Responsible Conduct in Research and Scholarship – 15.99.03.M1, 15.99.03.M1.01-06).

University Student Rules

Each student enrolled at Texas A&M University Qatar Campus is responsible for being fully acquainted with and complying with the Texas A&M University Student Rules. Specific rules, information and procedures may be found in publications pertaining to each particular service or department. Students are encouraged to reference the website at http://student-rules.tamu.edu (http://student-rules.tamu.edu/) for current published rules and regulations.

For information concerning federal and state policies, please reference the appendices (p. 1299) in this catalog.

Chemical Engineering Program

Chemical engineering is a broad field of engineering and thus requires a diverse preparation in science and engineering. Distinguishing chemical engineering from other engineering disciplines is its use of chemical and biochemical reactions to produce products and materials for society. Traditionally, chemical engineers have provided leadership in the petrochemical, refining, chemical, polymer and food processing industries. Because of strengths in the foundation sciences of mathematics, chemistry, physics and biology, as well as in engineering, this leadership role has now extended to the biochemical, biomedical, high-tech materials, semiconductor and microelectronics, nanotechnology, and environmental quality and safety industries, and a host of other areas. Chemical engineers have consistently commanded starting salaries among the highest of all college graduates because of the combined breadth and depth of their education.

Program Mission

The Chemical Engineering Program (CHEN) at Texas A&M at Qatar will:

• Provide the best environment possible for students, staff and faculty to aspire to excellence and to develop to the maximum of their potential.

• Our graduates will have the competencies to become leaders in the process industries, business, government and education.

• We will use state-of-the-art facilities, equipment and tools in our teaching and research. We will work as a part of the international community to help develop creative solutions to problems of national and international importance.

Program Educational Objectives

The objectives of the Chemical Engineering Program at Texas A&M at Qatar are:

1. Graduates will apply the foundation, depth and breadth of knowledge for successful chemical engineering careers in industry or government.

2. Graduates will apply effective communication, leadership and teaming skills.

3. Graduates will have a sense of responsibility, be ethical in the conduct of their profession, and have an appreciation for the impact of their profession on society.

The chemical engineering curriculum provides a balanced education in virtually all aspects of chemical engineering principles and practice, and includes education in economics, humanities and communication. Chemical engineering courses emphasize fundamentals and methods that are applicable to the analysis, development, design and operation of a wide variety of chemical engineering systems and processes, thereby providing the necessary background for entry into the wide array of activities described above. At the same time, specific example applications provide the student with insight into the ability of chemical engineers to work in such a variety of areas. The sequence of courses converges in the senior year into a comprehensive capstone design course that includes elements of economics, safety and environmental issues. The course provides an experience much like that of an industry design project. It is this philosophy of fundamentals, applications and design that has enabled the chemical engineering graduates to adapt readily to a dynamic and rapidly changing world and to solve problems they have not previously experienced.

To supplement course work, well-equipped laboratories provide the students with experiences in operating and analyzing a variety of unit operations and process control equipment and in using modern computational tools and software used in chemical engineering.

The CHEN electives are to be taken from a prescribed list. Other courses may also be acceptable, with special approval.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

The undergraduate program in Chemical Engineering at Texas A&M University at Qatar is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

Majors

• Bachelor of Science in Chemical Engineering (p. 862)

Minors

• Chemical Engineering Minor (p. 393)
Chemical Engineering - BS

Chemical engineers are concerned with the application of knowledge gained from basic sciences and practical experience to the development, design, operation and management of plants and processes for economical and safe conversion of chemical raw materials to useful products. Because chemical engineering is the most broadly based of all engineering disciplines, the chemical engineer is in great demand in diverse technical and supervisory areas in a wide variety of industries and has consistently commanded one of the highest starting salaries of all college graduates.

In addition to dominating the extensive chemical, petroleum and petrochemical industries, for which Qatar and the rest of the Middle East are one of the world’s leading regions, chemical engineers are leaders in such areas as food and pharmaceutical processing, biochemical and biomedical engineering, pollution control and abatement, polymers and plastics, ceramics and other advanced materials, corrosion, automation and instrumentation, aerospace materials, computer technology and data processing, safety, environmental control, and many others.

Visit the Chemical Engineering Program’s website at www.qatar.tamu.edu/programs/chemical-engineering (https://www.qatar.tamu.edu/programs/chemical-engineering/).

Program Requirements

The freshman year is identical for degrees in electrical engineering, mechanical engineering, petroleum engineering. The freshman year is slightly different for chemical engineering in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory</td>
<td>1,2</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>Fundamentals of Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 216/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 216</td>
<td>II - Mechanics</td>
<td>1</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Semester Credit Hours 32

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 227</td>
<td>Organic Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 237 & Organic Chemistry Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHEN 204</td>
<td>Elementary Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td>1</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 228</td>
<td>Organic Chemistry II</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 238 & Organic Chemistry Laboratory</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CHEN 205</td>
<td>Chemical Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN 399</td>
<td>Mid-Curriculum Professional Development</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN 304</td>
<td>Chemical Engineering Fluid Operations</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 320</td>
<td>Numerical Analysis for Chemical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 322</td>
<td>Chemical Engineering Materials</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 354</td>
<td>Chemical Engineering Thermodynamics II</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Science elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 322</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>3</td>
</tr>
</tbody>
</table>
Computer Engineering Program is twofold: In support of the university mission, the mission of the Electrical and Program Mission better future for mankind. an exciting and productive career with endless opportunities in shaping a computer technologies and sciences for the benefit of humanity. By through research, development and the application of electrical and computer engineering has advanced national and global prosperity underwater, space exploration and national security. Electrical and computers and sophisticated sensors and control systems used in procedure systems, sophisticated domestic appliances, cell phones, communication, global positioning system, medical diagnostic and wireless technologies for broadband communications; controlling complex systems; and developing hardware and software systems that are at the core of most devices we interact with on a daily basis. The rapid industrialization and computerization of Qatar’s economy create a need for highly skilled electrical and computer engineers capable to plan, design, implement and manage this transformation. Studying electrical and computer engineering prepares students for assuming key roles with high ethical responsibility in developing and managing the information, communication, and electrical energy infrastructures of Qatar and the world economy.

Program Educational Objectives
The objectives of the Electrical and Computer Engineering Program at Texas A&M University at Qatar describe what graduates of the program are expected to attain within a few years after graduation. These Program Educational Objectives are:

1. Be competitive as electrical engineers in a diverse range of careers while maintaining high ethical standards.
2. Assume leadership in their professional disciplines, organizations and communities around the world.
3. Seek advanced knowledge through continuous learning such as pursuing graduate degrees/courses in their discipline or other fields.
4. Continue developing effective teamwork and communication skills.

The extent to which the program is meeting these objectives is periodically assessed through instruments such as alumni surveys and employer/recruiter surveys. The goal is to continually improve the program’s ability to meet these educational objectives. The electrical engineering curriculum and individual course contents are periodically evaluated and adjusted in order to further support the ability to achieve the program objectives. The program welcomes comments and suggestions from any interested individuals regarding the above program objectives and/or how the program can better meet these objectives.

Before commencing coursework in the major, students must be admitted to the major or have the approval of the department.

The undergraduate program in Electrical and Computer Engineering at Texas A&M University at Qatar is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org/.

Majors

• Bachelor of Science in Electrical Engineering (p. 863)

Minors

• Electrical Engineering Minor (p. 431)

Electrical Engineering - BS

Electrical engineering is a challenging but exciting and rewarding field of study. It is a rich and rapidly advancing field that plays a significant role in shaping all facets of modern society. This includes generating, transmitting and storing electrical energy; developing and utilizing wired and wireless technologies for broadband communications; controlling complex systems; and developing hardware and software systems that are at the core of most devices we interact with on a daily basis. The rapid industrialization and computerization of Qatar’s economy create a need for highly skilled electrical and computer engineers capable to plan, design, implement and manage this transformation. Studying electrical and computer engineering prepares students for assuming key roles with high ethical responsibility in developing and managing the information, communication, and electrical energy infrastructures of Qatar and the world economy.

Total Program Hours 128

Electrical and Computer Engineering Program

Almost any technology that distinguishes the 20th and 21st centuries from previous centuries has the imprint of electrical and computer engineering - electric power, radio, television, radar, satellite communication, global positioning system, medical diagnostic and procedure systems, sophisticated domestic appliances, cell phones, computers and sophisticated sensors and control systems used in underwater, space exploration and national security. Electrical and computer engineering has advanced national and global prosperity through research, development and the application of electrical and computer technologies and sciences for the benefit of humanity. By choosing electrical and computer engineering our graduates embark on an exciting and productive career with endless opportunities in shaping a better future for mankind.

Program Mission

In support of the university mission, the mission of the Electrical and Computer Engineering Program is twofold:

• To provide quality education, well grounded in the fundamental principles of engineering, that prepares students for positions in industry, government and academia.
• To serve the industries and the governmental agencies in the State of Qatar through continuing education, outreach activities, consulting and research.

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN 425 Process Integration, Simulation and Economics 1</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 432 Chemical Engineering Laboratory I 1</td>
<td>2</td>
</tr>
<tr>
<td>CHEN 461 Process Dynamics and Control 1</td>
<td>3</td>
</tr>
<tr>
<td>CHEN 481 Seminar 1</td>
<td>1</td>
</tr>
<tr>
<td>CHEN 482 Bioprocess Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>CHEN specialty electives 1,6</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

CHEN 426 Chemical Engineering Plant Design 1	3
CHEN 433 Chemical Engineering Laboratory II 1	2
CHEN 455/ SENG 455 Process Safety Engineering 1	3
University Core Curriculum (p. 25) 4	6
CHEN specialty electives 1,6	3

Total Semester Credit Hours 17

A grade of C or better is required in all CHEN courses.

5 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available in the advising office.

6 See an academic advisor for a list of approved courses.

Texas A&M University
The program curriculum is designed to prepare graduates for work in the highly diverse electrical engineering profession. A solid foundation in physics, chemistry, and mathematics is used to support courses in the fundamentals of electrical engineering.

The program facilitates the integrated use of computers throughout the curriculum, while laboratory work allows students hands-on experience and to apply basic concepts to a wide range of engineering problems. After their exposure to the most recent analytical techniques and technological developments, students will implement engineering concepts using state-of-the-art computers and laboratory equipment. After foundation studies in analog and digital circuits, signals and systems, electronics, electromagnetic fields, and computer architecture during the sophomore and junior years, students have access to two main elective tracks in the senior year, namely, electric power systems and communications.

The electric power systems track is designed to train students in the theory and techniques related to electromechanical energy conversion systems, electric power, renewable energy, and power electronic systems. The communication track is designed to prepare students to address challenges in the area of digital and wireless communication systems. Both tracks present similar requirements and provide a broad and rigorous educational experience. The program offers additional elective from computer engineering, control, and biomedical engineering areas.

For more information, please visit the Electrical Engineering Program’s website at www.qatar.tamu.edu/programs/ecen (https://www.qatar.tamu.edu/programs/ecen/).

Program Requirements

The freshman year is identical for degrees in electrical engineering, mechanical engineering, petroleum engineering. The freshman year is slightly different for chemical engineering in that students take CHEM 119 or CHEM 107/CHEN 117 and CHEM 120. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ENGR 216/217</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 216</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
</tbody>
</table>

University Core Curriculum (p. 25) 3

<table>
<thead>
<tr>
<th>Semester Credit Hours</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Semester Credit Hours</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>31</td>
</tr>
</tbody>
</table>

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from language, philosophy and culture, 3 must be from creative arts, 3 from social and behavioral sciences, 6 from American history, and 6 from government/political science. The required 3 hours from international and cultural diversity and 3 hours from cultural discourse may be met by courses satisfying the language, philosophy and culture, creative arts, social and behavioral sciences, and American history requirements if they are also on the approved list of international and cultural diversity or cultural discourse courses.
4 CHEN requires 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEN 117 and CHEM 120; Credit by Examination (CBE) for CHEM 107/CHEN 117 plus CHEM 120.

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECEN 210</td>
<td>Computer Programming and Algorithms</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECEN 248</td>
<td>Introduction to Digital Systems Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENGR 217/218</td>
<td>Experimental Physics and Engineering Lab</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHYS 217</td>
<td>III - Electricity and Magnetism</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ECEN 214</td>
<td>Electrical Circuit Theory</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 311</td>
<td>Topics in Applied Mathematics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>6</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECEN 314</td>
<td>Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 322</td>
<td>Electric and Magnetic Fields</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 325</td>
<td>Electronics</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ENGR 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 222</td>
<td>Modern Physics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td>ECEN 303</td>
<td>Random Signals and Systems</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ECEN 340</td>
<td>Electric Energy Conversion</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECEN 350/355</td>
<td>Computer Architecture and Design</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CSCE 350</td>
<td>Computer Architecture and Design</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ECEN 370</td>
<td>Electronic Properties of Materials</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester Credit Hours</td>
<td>3</td>
</tr>
</tbody>
</table>
The mission of the Mechanical Engineering Program is to serve the management and administrative positions as well. Many mechanical engineers are promoted to mechanics, manufacturing, plant engineering, research and development, specification and evaluation, thermal systems analysis, fluid and solid mechanical engineers includes design, construction, controls, materials characterization, specification and analysis of materials used in design and control systems, and works with the generation, conversion, transmission and utilization of mechanical and thermal power. Assignments often include analysis and synthesis of mechanical, thermal and fluid systems. Mechanical engineers are also responsible for characterization, specification and analysis of materials used in design and manufacturing. Manufacturing systems, robotics, electromechanical devices and control systems are also the purview of the mechanical engineer. Graduates in mechanical engineering are among the most successful careers in industry, government and academia. Many students enhance their education by participating in professional internships, which offer opportunities for employment in engineering positions, while working toward a degree. Numerous study abroad programs are also available for gaining experience and perspectives in the international arena. Participation in student chapters of professional and honor societies provides leadership opportunities, collegial activities and learning experiences outside the classroom. Students may also participate in research projects through individually directed studies courses with a professor. The Mechanical Engineering Program culminates with a senior capstone design course sequence highlighted by real-life projects sponsored by various industries. Students benefit from the challenges and gratification that come through direct interaction with practicing engineers.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

The undergraduate program in Mechanical Engineering at Texas A&M University at Qatar is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

Majors
- Bachelor of Science in Mechanical Engineering (p. 866)

Minors
- Analysis, Design and Management of Energy Conversion Systems Minor (p. 468)
• Control of Mechanical Systems Minor (p. 468)
• Design and Simulation of Mechanical Systems Minor (p. 468)

Mechanical Engineering - BS

Mechanical engineering (MEEN) at Texas A&M at Qatar challenges students and helps them to develop their full creative potential. Texas A&M at Qatar’s program consists of three main areas: thermal-fluid sciences, systems and controls, and mechanics and materials. The courses taken in these areas enable students to develop the technical tools and skills required for enhancing design development. The education is broad and supports students being able to choose a variety of employment or further study opportunities.

Texas A&M at Qatar received ABET accreditation in the fall of 2008. According to ABET, an engineering education accreditation organization, mechanical engineers apply principles of engineering, basic science and mathematics to model, analyze, design and realize physical systems, components or processes and work professionally in both thermal and mechanical systems. Mechanical engineering is a diversified profession because all industries, including oil and gas industries, chemical industries, and built environment, need mechanical engineers for designing, maintaining, testing and managing operations. In addition to industry, mechanical engineers may work for governmental and consulting organizations, and mechanical engineers may continue their studies and earn graduate degrees in MEEN or other disciplines.

For more information, visit the Mechanical Engineering Program’s website at https://www.qatar.tamu.edu/programs/mechanical-engineering/.

Program Requirements

The freshman year is identical for degrees in electrical engineering, mechanical engineering, and petroleum engineering. The freshman year is slightly different for chemical engineering in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107 & CHEM 117</td>
<td>General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/PHYS 216</td>
<td>Experimental Physics and Engineering Lab II - Mechanics</td>
<td>2</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 217/PHYS 217</td>
<td>Experimental Physics and Engineering Lab III - Electricity and Magnetism</td>
<td>2</td>
</tr>
<tr>
<td>MATH 251 or MATH 253</td>
<td>Engineering Mathematics III</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 210</td>
<td>Geometric Modeling for Mechanical Design</td>
<td>2</td>
</tr>
<tr>
<td>MEEN 225</td>
<td>Engineering Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Principles of Statistics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 215 or ECEN 214</td>
<td>Principles of Electrical Engineering or Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing</td>
<td>3</td>
</tr>
<tr>
<td>ISEN 302</td>
<td>Economic Analysis of Engineering Projects</td>
<td>2</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 315</td>
<td>Principles of Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 368</td>
<td>Solid Mechanics in Mechanical Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 399</td>
<td>High Impact Experience</td>
<td>0</td>
</tr>
</tbody>
</table>

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 260</td>
<td>Mechanical Measurements</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 344</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
</tbody>
</table>
Petroleum Engineering Program

Petroleum engineering is primarily concerned with the safe and economic extraction of oil, gas and other natural resources from the earth. This is accomplished through drilling, completions, and operation of wells while considering safety of personal and the natural environment. The field of petroleum engineering also covers the management of subsurface reservoirs in which the resources are found.

Program Mission

The mission of the Petroleum Engineering Program at Texas A&M at Qatar is to create, preserve, integrate, transfer and apply petroleum engineering knowledge, and to produce capable future engineers and enhance the capabilities of current practitioners. The curriculum includes study of:

- Characterization and evaluation of subsurface geological formations and their resources.
- Application of reservoir engineering principles and practices for optimizing resource development and management.
- Procedures for drilling and completing wells and design and analysis of well systems.
- Design and analysis of systems for producing, injecting and handling fluids.
- Use of project economics, safety, and resource valuation methods for design and decision making under conditions of risk and uncertainty.

There is a heavy emphasis on mathematics, computer applications, communication skills, and interdisciplinary problem-solving. The department encourages its students to work as interns during the summer months. A minimum of six weeks of approved experience is required for graduation.

Program Educational Objectives

The Program Education Objectives of the Petroleum Engineering Program are to produce graduates who will, within a few years of graduation:

1. Effective engineers that continue to develop personally and professionally into prospective leaders; and,
2. Successful in demonstrating their obligations to the profession and the society.

Before commencing course work in the major, students must be admitted to the major or have the approval of the department.

The undergraduate program in Petroleum Engineering at Texas A&M at Qatar is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

Majors

- Bachelor of Science in Petroleum Engineering (p. 867)

Minors

- Petroleum Engineering Minor (p. 479)

Petroleum Engineering - BS

Petroleum engineering is primarily concerned with the safe and economic extraction of oil, gas and other natural resources from the earth. This is accomplished through drilling, completions, and operation of wells while considering safety of personal and the natural environment. The field of petroleum engineering also covers the management of subsurface reservoirs in which the resources are found.

Petroleum engineering graduates have a variety of careers in the upstream and midstream oil and gas industry open to them. They include working as geoscientists, petrophysicists, drilling engineers, reservoir engineers, or production engineers. Their activities include quantifying...
oil and gas reserves, well design, well performance evaluation, reservoir modeling, production optimization, and treatment planning.

Texas A&M at Qatar’s petroleum engineering students are prepared for the workplace through participation in research on topics such as drilling and production challenges, multiphase flow in porous media, and petrophysics. Student participation in research further develops the human capital of Qatar. Fourth-year students also complete a senior design project in which they develop a detailed reservoir model, make a recommendation for optimized reservoir development, and present their findings to industry experts.

Petroleum engineering faculty members contribute to the local industry and community. They develop research projects that directly improve hydrocarbon recovery, production, and treatment from local Qatari reservoirs. In addition, they provide continuing education courses and expertise to local industry.

Program Requirements

The freshman year is identical for degrees in electrical engineering, mechanical engineering, and petroleum engineering. The freshman year is slightly different for chemical engineering in that students take CHEM 119 or CHEM 107/CHEM 117 and CHEM 120. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

First Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students</td>
<td>4</td>
</tr>
<tr>
<td>& CHEM 117</td>
<td>and General Chemistry for Engineering Students Laboratory</td>
<td>1, 2</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation 1</td>
<td>2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I 1, 3</td>
<td>4</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 1, 4</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 16 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 216/</td>
<td>Experimental Physics and Engineering Lab I -</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 216</td>
<td>Mechanics 1</td>
<td></td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II 1, 3</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and Science 1</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25) 1, 4</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 15 |

Second Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 210</td>
<td>Technical and Business Writing 1</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 217/</td>
<td>Experimental Physics and Engineering Lab II -</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 217</td>
<td>Electricity and Magnetism 1</td>
<td></td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics II 1</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 221</td>
<td>Statics and Particle Dynamics 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 225</td>
<td>Introduction to Drilling Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Science 1</td>
<td></td>
</tr>
</tbody>
</table>

| Semest er Credit Hours | 17 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 305</td>
<td>Mechanics of Materials 1</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 104</td>
<td>Physical Geology 1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 308</td>
<td>Differential Equations 1</td>
<td>3</td>
</tr>
<tr>
<td>MEEN 315</td>
<td>Principles of Thermodynamics 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 311</td>
<td>Reservoir Petrophysics 1</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 17 |

Third Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 404</td>
<td>Geology of Petroleum 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 301</td>
<td>Petroleum Engineering Numerical Methods 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 310</td>
<td>Reservoir Fluids 1</td>
<td>4</td>
</tr>
<tr>
<td>PETE 314</td>
<td>Transport Processes in Petroleum Production 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 336</td>
<td>Petroleum Technical Presentation 1</td>
<td>1</td>
</tr>
<tr>
<td>PETE 353</td>
<td>Petroleum Project Evaluation 1</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 17 |

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE 321</td>
<td>Formation Evaluation 1</td>
<td>4</td>
</tr>
<tr>
<td>PETE 323</td>
<td>Fundamentals of Reservoir Engineering 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 324</td>
<td>Well Testing 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 325</td>
<td>Petroleum Production Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>PETE 337</td>
<td>Junior Student Paper Contest 1</td>
<td>0</td>
</tr>
<tr>
<td>PETE 355</td>
<td>Drilling Engineering 1</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 16 |

Summer

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE 300</td>
<td>Summer Practice 1</td>
<td>0</td>
</tr>
</tbody>
</table>

| Total Semester Credit Hours | 0 |

1 A grade of C or better is required.
2 CHEN requires 8 hours of freshman chemistry, which may be satisfied by CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Credit by Examination (CBE) for CHEM 119 or CHEM 107/CHEM 117 plus CHEM 120.
3 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
4 Of the 18 hours shown as University Core Curriculum electives, 3 must be from creative arts, 3 from social and behavioral sciences, 6 from American history, and 6 from government/political science. The required 3 hours from international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, and American history requirements if they are also on the approved list of international and cultural diversity or cultural discourse courses.
The core curriculum focuses on the development of six skills that have been shown to be effective in preparing students for the job market and in democratic society.

- Critical Thinking Skills – to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
- Communication Skills – to include effective development, interpretation and expression of ideas through written, oral and visual communication.
- Empirical and Quantitative Skills – to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
- Teamwork – to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.
- Personal Responsibility – to include the ability to connect choices, actions and consequences to ethical decision-making.
- Social Responsibility – to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities.

Overview

The Texas A&M Core Curriculum, in compliance with the Texas Core Curriculum, provides students with a foundation of knowledge of human cultures and the physical and natural world, develops principles of personal and social responsibility for living in a diverse world, and advances intellectual and practical skills that are essential for all learning. In support of the Core Curriculum, the supporting academic programs enhance the individual degree programs and university graduation requirements.

The core curriculum focuses on the development of six skills that have been shown to be effective in preparing students for the job market and in a diverse world and democratic society.

A grade of C or better is required in all courses.

Supporting Academic Programs

For additional information, please reference http://core.tamu.edu.

Geosciences

College of Geosciences

Students at Texas A&M at Qatar will have the opportunity to take courses in two areas within the College of Geosciences. Geology, the major focus, deals with the processes and forces acting at the surface and within the earth; with the materials of the earth, its forms and structures; and with the history of its development and the evolution of life on its surface and in its waters. Geophysics may also be offered. This deals primarily with the physics of the solid earth, from the measurement and understanding of its internal structure and physical properties, to plate motions and their effect on continents and ocean basins, to detection of its natural resources through remote sensing.

Liberal Arts

College of Liberal Arts

Examples of history show us that a liberal arts education is the foundation of a strong and progressive society. The Liberal Arts Program offers students an opportunity to explore the intellectual achievements of humankind through a disciplined and responsible study of issues that have been of enduring importance to people. Thus, courses in liberal arts help students develop sensitivity to the questions and values that confront them in their daily lives. At the same time, skills are built that can be put to use in solving complex problems. One of the program’s principal objectives is to achieve the hallmark of an educated person: a fundamental knowledge of the forces that have shaped and continue to direct our cultural identities.

Science

College of Science

Chemistry

An understanding of chemistry is critical to an understanding of life and its associated activities. Chemistry and chemical principles profoundly influence the way we live, communicate and interact with one another, so it is little wonder that a strong background in chemistry provides a solid foundation for a variety of careers of major importance in the 21st century. Chemistry is uniquely positioned at the crossroads between the biological and physical sciences. By exploiting their understanding of both realms, chemists and other professionals with strong backgrounds in chemistry have made, and continue to make, major contributions to improve the human condition. Major technological and biological discoveries almost always depend on a fundamental understanding of chemistry, and the pursuit of these discoveries, as a way to improve the world in which we live, drives those who seek to be a part of the process.

The Chemistry Program at Texas A&M at Qatar offers course work and research in various areas of chemistry, organized into a program leading to a minor degree in chemistry.

Mathematics

A comprehensive understanding of mathematics is a key foundation to engineering. The Texas A&M at Qatar mathematics curriculum is structured to teach mathematical concepts that enhance students’ analytical abilities and to use quantitative mathematical tools and apply them to problems in engineering. Students will learn coordinate systems, vectors, analytical geometry, functions, differentiation and integration techniques, computer algebra systems (Maple and Matlab),

Total Program Hours 128

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>PETE 401</td>
<td>2</td>
</tr>
<tr>
<td>PETE 404</td>
<td>3</td>
</tr>
<tr>
<td>PETE 410</td>
<td>3</td>
</tr>
<tr>
<td>PETE 436</td>
<td>1</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective 1,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ENGR 482/PHIL 482</td>
<td>3</td>
</tr>
<tr>
<td>PETE 402</td>
<td>3</td>
</tr>
<tr>
<td>PETE 437</td>
<td>0</td>
</tr>
<tr>
<td>University Core Curriculum (p. 25)</td>
<td>6</td>
</tr>
<tr>
<td>Technical elective 1,5</td>
<td>3</td>
</tr>
<tr>
<td>Semester Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Total Semester Credit Hours</td>
<td>97</td>
</tr>
</tbody>
</table>

5 See an academic advisor for a list of approved courses.
multiple integration techniques, gradients, line and surface integrals, Stokes' theorems, differential equations, matrices, determinants, and topics in applied mathematics, such as Fourier series and wavelets with application to data compression and signal processing.

Physics

Physics is the science that investigates and tries to understand the basic laws of nature. In this pursuit, it deals with the entire range of natural phenomena, from the smallest domain of subnuclear particles to the largest domain of distant objects in the universe.

This breadth of interests is reflected in the type of work pursued by physicists. Some physicists are interested in research on problems that are at the frontiers of knowledge. Some apply this newly acquired knowledge to make practical advances. Still others use knowledge of physics as a basis for careers in teaching or administration.
COURSE DESCRIPTIONS

All undergraduate courses offered in the University are described on each subject page. The course numbering scheme is as follows: 100–199, primarily open to freshmen; 200–299, primarily open to sophomores; 300–399, primarily open to juniors; and 400–499, primarily open to seniors.

Figures in parenthesis before the course description indicate the Texas Common Course Number(s). Those figures identified with an asterisk should reference the Texas Common Course Numbering System (p. 1306) in this catalog for additional information.

The unit of credit is the semester hour, which involves one hour of theory or from two to four hours of practice per week for one semester of 15 weeks. Figures following the credit hours indicate the clock hours per week devoted to theory and practice, respectively. Theory includes recitations and lectures; practice includes work done in the laboratory, shop, drawing room, field or other. When courses are cross-listed, credit cannot be received for both courses. Any course may be withdrawn from the session offerings in case the number of registrations is too small to justify offering the course.

Field trips may be required for which departmental fees may be assessed to cover costs.

AALO - Arabic & Asian Language (AALO)

AALO 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in an Asian Language, selected for each student individually; written or oral reports.
Prerequisite: Approval of Arabic and Asian Language Office Director.

AALO 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of an Asian language. May be repeated for credit.
Prerequisite: Approval of Arabic and Asian Language Office Director.

AALO 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects selected for each student individually; written or oral reports.
Prerequisite: Approval of Arabic and Asian Language Office Director.

AALO 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of an Asian language. May be repeated for credit.
Prerequisite: Approval of Arabic and Asian Language Office Director.

ACCT - Accounting (ACCT)

ACCT 209 Survey of Accounting Principles
Credits 3. 3 Lecture Hours.
Accounting survey for non-business majors; non-technical accounting procedures, preparation and interpretation of financial statements and internal control. May not be used to satisfy degree requirements for majors in business. Business majors who choose to take this course must do so on a satisfactory/unsatisfactory basis.

ACCT 210 Survey of Managerial and Cost Accounting Principles
Credits 3. 3 Lecture Hours.
A survey of managerial and cost accounting for non-business majors; accounting responsibility of the manager, job and process cost systems, budgeting, cost-volume-profit analysis for decision-making. May not be used to satisfy degree requirements for majors in business. Business majors who choose to take this course must do so on a satisfactory/unsatisfactory basis.
Prerequisite: ACCT 209.

ACCT 229 Introductory Accounting
Credits 3. 3 Lecture Hours.
(ACCT 2301, 2401) Introductory Accounting. Analysis, recording and reporting of business transactions; partnership and corporation accounting; analysis and use of financial statements.
Prerequisite: Sophomore classification; also taught at Galveston campus.

ACCT 230 Introductory Accounting
Credits 3. 3 Lecture Hours.
(ACCT 2302, 2402) Introductory Accounting. Continuation of ACCT 229. Use of budgets; introduction to cost accounting; cost control techniques and methods of measuring performance.
Prerequisites: ACCT 229 and sophomore classification; also taught at Galveston campus.

ACCT 231 Survey of Accounting Principles
Credits 3. 3 Lecture Hours.
A survey of managerial and cost accounting principles related to financial reporting; emphasizing income measurement and accounting for assets. BBA accounting majors must earn a minimum grade of C for graduation.
Prerequisite: Grade of C or higher in ACCT 229; grade of D or higher in ACCT 230; admission to upper division in Mays Business School.

ACCT 315 Intermediate Accounting for Non-Accounting Majors I
Credits 3. 3 Lecture Hours.
Revenue recognition, principles of asset valuation, and disclosure requirements for corporations; interpretation of financial statements, rather than their preparation. May not be used as a directed or free elective for accounting majors and does not count towards the accounting requirement for the CPA exam.
Prerequisite: ACCT 230 and admission to upper division in Mays Business School.

ACCT 316 Intermediate Accounting for Non-Accounting Majors II
Credits 3. 3 Lecture Hours.
Includes the measurement and disclosure requirements for liabilities and stockholders’ equity, SEC registration statements, and cash flow reporting; focus on the analysis and interpretation of financial statements rather than their preparation. Does not qualify as a directed or free elective for accounting majors and does not count towards the accounting requirement for the CPA exam.
Prerequisite: ACCT 315 or ACCT 327.

ACCT 321 Professional Development Seminar
Credits 2. 2 Lecture Hours.
Exposure to professional issues of professional accounting practice using a workshop format.
Prerequisite: Admission to Professional Program.

ACCT 322 Professional Development Seminar – BBA
Credit 1. 1 Lecture Hour.
Exposure to professional issues in the practice of accounting, including potential careers and employers.
Prerequisite: Accounting major or approval of instructor.

ACCT 327 Financial Reporting I
Credits 3. 3 Lecture Hours.
Study of theoretical basis for financial accounting concepts and principles related to financial reporting; emphasizing income measurement and accounting for assets. BBA accounting majors must earn a minimum grade of C for graduation.
Prerequisite: Grade of C or higher in ACCT 229; grade of D or higher in ACCT 230; admission to upper division in Mays Business School.
ACCT 328 Financial Reporting II
Credits 3. 3 Lecture Hours.
Continued study of accounting concepts and principles related to
reporting long-debt and owners’ equity; including reporting issues of
leases, retirement benefits, income taxes and international accounting
standards.
Prerequisite: ACCT 327 with a grade of C or better.

ACCT 329 Cost Management and Analysis
Credits 3. 3 Lecture Hours.
Theory, concepts and methods relating to use of information and design
of systems to aid managers in planning, controlling, decision making,
evaluating performance and reporting financial results.
Prerequisite: ACCT 315 or ACCT 327 with a grade of C or better.

ACCT 403 Energy Accounting
Credits 3. 3 Lecture Hours.
Overview of the oil and gas industry and specialized financial accounting
procedures associated with the industry; emphasis on accounting for
exploration, development, production, depletion and amortization, joint
operations, asset impairment and retirement obligation; includes reserve
accounting/disclosure related to the above topics.
Prerequisite: ACCT 327 with C or better.

ACCT 405 Income Tax
Credits 3. 3 Lecture Hours.
Introduction to federal income tax legislation pertaining primarily to
corporations and individuals.
Prerequisite: ACCT 327 with a grade of C or better.

ACCT 407 Auditing
Credits 3. 3 Lecture Hours.
Introduction to auditing theory and procedures pertaining to financial
statements, in the context of both external auditing, by certified public
accountants, and internal auditing; preparation of working papers.
Prerequisite: ACCT 327 with a grade of C or better.

ACCT 408 Internal Auditing
Credits 3. 3 Lecture Hours.
Reading and evaluation of current theory and procedures used by internal
auditors; selected case studies; statistical methods of forming auditing
judgment.
Prerequisite: ACCT 327 with a grade of C or better.

ACCT 410 Fraud Examination
Credits 3. 3 Lecture Hours.
Principles and methodologies of detecting and deterring fraud using
accounting, auditing, and investigative skills; includes skimming, larceny,
is appropriations, fraudulent statements, interviewing witnesses and
support for litigation.
Prerequisites: ACCT 327 with a grade of C or better; junior or senior
classification.

ACCT 421 Critical Communication Skills for Accountants
Credits 2. 2 Lecture Hours.
Development of oral and written communication skills necessary for
successful careers in public and corporate accounting.
Prerequisite: ACCT 327 with a grade of C or better.

ACCT 426 Taxation of Low-Income Filers
Credits 3. 3 Lecture Hours.
Overview of the Federal income tax and its impact on low-income filers;
includes socio-economic forces impacting low-income families and
individuals; topics explored through community service and academic
learning.
Prerequisites: Admission to upper division in Mays Business School and
approval of instructor.

ACCT 427 Accounting and Financial Information Systems
Credits 3. 3 Lecture Hours.
Overall data flow systems emphasizing financial data and computerized
systems, for accounting majors; flow and logic concepts, developing
meaningful control concepts and data reporting techniques.
Prerequisite: ACCT 229 with a grade of C or better.

ACCT 430/IBUS 430 Global Immersion in Accounting
Credits 3. 3 Lecture Hours.
Combination of classroom work in the spring and a field trip to the
selected country in summer; introduction to international opportunities
within the public accounting firms; meet with former students to gain a
local and corporate view of business in the selected country.
Prerequisites: ACCT 327 and approval of instructor.
Cross Listing: IBUS 430/ACCT 430.

ACCT 445/IBUS 445 International Accounting
Credits 3. 3 Lecture Hours.
Introduction and examination of accounting issues unique to
multinational enterprises and international business activity; only
ACCT 445/IBUS 445 sections count for the accounting coursework
requirements for the CPA exam.
Prerequisites: ACCT 315 or ACCT 327; FINC 341.

ACCT 447/FINC 447 Financial Statement Analysis
Credits 3. 3 Lecture Hours.
Development of an analytical approach to financial statements,
integrating relevant finance and accounting concepts and principles;
current topics in financial analysis.
Prerequisites: ACCT 315 or ACCT 327; FINC 341 with a grade of C or
better.
Cross Listing: FINC 447/ACCT 447.

ACCT 450 Accounting Ethics
Credits 3. 3 Lecture Hours.
Integration of ethical reasoning, objectivity, independence and other
core values into the development of a professional accountant; critical
analysis of the ethical lapses which have occurred in business and the
accounting profession; exploring ways to integrate ethical behavior into
professional life.
Prerequisites: ACCT 427; junior or senior classification.

ACCT 484 Accounting Internship
Credits 0 to 3. 0 to 3 Other Hours.
A directed internship in an organization to provide on-the-job training
under the supervision of accounting professionals in organizational
settings appropriate to the student’s professional objectives. May be
taken for credit up to three hours. Must be taken on a satisfactory/
unsatisfactory basis.
Prerequisites: Accounting major or approval of department head.

ACCT 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed study of selected problems in the area of accounting not
covered in other courses.
Prerequisites: Accounting major and approval of department head.
ACCT 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of accounting. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

ACCT 491 Research
Credits 1 to 4. 1 to 4 Lecture Hours.
Research conducted under the direction of an accounting faculty member in Mays Business School or a faculty member in the Office of Undergraduate Research. May be repeated one time for credit.
Prerequisites: Junior or senior classification and approval of instructor.

AERO - Aerospace Engineering (AERO)

AERO 201 Introduction to Flight
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Standard atmosphere, basic aerodynamic theory, airfoil and wing descriptions, wing structures, introduction to orbital mechanics, elementary aerospace vehicle performance, aircraft stability and control and experiential introduction to aerospace engineering.
Prerequisites: Grade of C or better in ENGR 102 and PHYS 206; grade of C or better in ENGR 216/PHYS 216 or PHYS 216/ENGR 216; grade of C or better in MATH 251 or MATH 253 or concurrent enrollment; Aerospace Engineering majors only.

AERO 202 Introduction to Flight Mechanics
Credit 1. 1 Lecture Hour.
Introductory material in aerospace engineering; development of standard atmosphere; aerodynamic theory; airfoil and wing descriptions; aircraft performance.
Prerequisites: Admitted to major degree sequence in aerospace engineering; MEEN 221 or equivalent; MATH 251 or MATH 253 or concurrent enrollment.

AERO 210 Introduction to Aerospace Mechanics
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Planar kinematics; fundamentals of Newtonian mechanics; system of particles and rigid bodies; the effect of friction forces on motion and static equilibrium; rectilinear and curvilinear motion of particles; translational momentum; moments of inertia; angular momentum; planar motion of rigid bodies; impact dynamics; situations involving variable mass; introduction to orbital mechanics.
Prerequisites: Grade of C or better AERO 201; grade of C or better in MATH 308 or registration therein.

AERO 211 Aerospace Engineering Mechanics
Credits 3. 3 Lecture Hours.
Fundamentals of Newtonian mechanics; static equilibrium of particles, system of particles and rigid bodies; free body diagrams; rectilinear and curvilinear motion of particles; linear momentum; angular momentum; friction; plane motion of rigid bodies; beams and trusses.
Prerequisites: Grade of C or better in ENGR 102 and PHYS 206; grade of C or better in ENGR 216/PHYS 216 or PHYS 216/ENGR 216; grade of C or better in MATH 251 or concurrent enrollment; Aerospace Engineering majors only.

AERO 212 Introduction to Aerothermodynamics
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Study of thermodynamic properties and processes, heat and work, first and second laws of thermodynamics, power and refrigeration ideal cycles, psychrometrics.
Prerequisites: Grade of C or better in CHEM 107 and CHEM 117; grade of C or better in MATH 308, or concurrent enrollment; AERO majors.

AERO 214 Introduction to Aerospace Mechanics of Materials
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental concepts for deformable bodies (conservation of linear and angular momentum, kinematics and thermostaticity); notions of stress and strain and illustrative examples for engineering applications; introduction to experimental methods and reporting, instrumentation and uncertainty analysis; measurement of elastic and thermal material properties.
Prerequisites: Grade of C or better in AERO 211; grade of C or better in MATH 308, or concurrent enrollment.

AERO 222 Introduction to Aerospace Computation
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Review of basic skills required for developing computer programs and introduction to more advanced concepts in scientific computing to solve aerospace engineering problems; numerical and analytical methods of solving engineering problems involving interpolation and extrapolation; function approximation; numerical differentiation; integration; solutions to linear and non-linear equations and systems of equations; eigenvalues and eigenvectors, numerical integration of differential equations with aerospace engineering applications.
Prerequisites: Admitted to major degree sequence in aerospace engineering; grade of C or better in ENGR 102; grade of C or better in MATH 308 or concurrent enrollment.

AERO 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of aerospace engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

AERO 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in aerospace engineering. May be taken three times.
Prerequisites: Freshman or sophomore classification and approval of instructor.

AERO 299 Mid-Curriculum Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.

AERO 301 Theoretical Aerodynamics
Credits 3. 3 Lecture Hours.
Fundamentals of incompressible flow, conservation principles, continuity, momentum, rotationality, circulation, lift, drag, potential flow, thin airfoil theory, panel methods, airfoil design, high lift devices, finite wing theory, vortex lattice methods, and wing design.
Prerequisites: Grade of C or better in AERO 201, AERO 212, and MATH 308; grade of C or better in AERO 222 or concurrent enrollment.
AERO 303 High Speed Aerodynamics
Credits 3. 3 Lecture Hours.
Fundamentals of compressible flow, acoustic waves, shock and expansion waves, shock-expansion theory, supersonic airfoil design, small perturbation theory, conical flow theory, supersonic wing panel methods, supersonic wing design, similarity theory, cone flow, unsteady waves, and theory of characteristics.
Prerequisite: Grade of C or better in AERO 301.

AERO 304 Aerospace Structural Analysis I
Credits 3. 3 Lecture Hours.
Structural design considerations; mechanics of structures; introduction to elasticity; constitution of materials; analysis of typical aerospace structures in bending, extension, torsion and shear.
Prerequisites: Grade of C or better in AERO 214 and MATH 308; grade of C or better in AERO 222 or concurrent enrollment.

AERO 306 Aerospace Structural Analysis II
Credits 3. 3 Lecture Hours.
Work and energy principles; analysis of indeterminate structures by classical virtual work and finite elements; introduction to elastic stability of columns; application of energy methods to determine stresses, strains and displacements in typical aerospace structures; design considerations in aerospace structures.
Prerequisite: Grade of C or better in AERO 304.

AERO 307 Aerospace Engineering Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Intermediate and advanced topics in instrumentation, signal conditioning, data acquisition analysis for aerospace-related measurements; emphasis on technical reporting and data presentation; measurements of materials strain, deformation, pressure, velocity and aerodynamic forces; experimental investigations of static and dynamic response of structures; use of nonintrusive optical techniques; uncertainty analysis; linear regression, Fourier transform and power spectra; tests for statistical significance.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; grade of C or better in AERO 222, AERO 301, AERO 304, AERO 310, ECEN 215, or concurrent enrollment.

AERO 310 Aerospace Dynamics
Credits 3. 3 Lecture Hours.
Spatial kinematics; general motion of particles; Euler angles; Newton-Euler methods for translation and rotation of rigid bodies; work-energy and impulse momentum principles applied to aerospace systems; Linear theory of free and forced vibrations and dynamic response of single and multi-degree of freedom systems; frequency response of first and second order systems with instrumentation applications.
Prerequisites: Grade of C or better in AERO 211 and MATH 308; grade of C or better in AERO 222 or concurrent enrollment.

AERO 321 Dynamics of Aerospace Vehicles
Credits 3. 3 Lecture Hours.
Derivation of the nonlinear flight dynamics equations; linearization; aircraft static stability and control; longitudinal and lateral dynamic stability; development of state-space models; stability derivatives; longitudinal and lateral modes and transfer functions; flying qualities; elements of configuration design; response to control inputs.
Prerequisites: Grade of C or better in AERO 301 and AERO 310.

AERO 351 Aerothermodynamics and Propulsion
Credits 3. 3 Lecture Hours.
Aerothermodynamics of gases; laws of thermodynamics; equilibrium conditions; mixtures of gases; combustion and thermochemistry; compressible internal flows with friction, heat transfer and shock; turbojet cycle analysis and performance; chemical rockets.
Prerequisite: Grade of C or better in AERO 303 or concurrent enrollment.

AERO 401 Aerospace Vehicle Design I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Aerodynamic design, specification, arrangement, performance analysis, weight and balance, stability.
Prerequisites: Grade of C or better in AERO 303, AERO 306, AERO 321, and AERO 351; grade of C or better in AERO 307 or concurrent enrollment.

AERO 402 Aerospace Vehicle Design II
Credits 2. 6 Lab Hours.
Continuation of AERO 401. System optimization by examination and analysis of necessary trade-offs.
Prerequisite: Grade of C or better in AERO 401.

AERO 404 Mechanics of Advanced Aerospace Structures
Credits 3. 3 Lecture Hours.
Advanced analysis techniques for aerospace structures; material anisotropy, plasticity, fatigue and fracture; laminated materials; solution of plane elasticity, plate and multi-component structural configurations; buckling of beams and plates; application of finite element analysis.
Prerequisites: Grade of C or better in AERO 304 and junior or senior classification.

AERO 405 Aerospace Structural Design
Credits 3. 3 Lecture Hours.
Overall structural integrity of complete aerospace systems; structures subjected to critical loads; design considerations in aerospace structures.
Prerequisite: Grade of C or better in AERO 306.

AERO 411 Applications of Fracture Mechanics to Aerospace Structures
Credits 3. 3 Lecture Hours.
Foundations of linear elastic fracture mechanics of aerospace structure; calculation of stress intensity factors and energy release rates; crack growth under fatigue loading; ASTM standards for fracture testing; the role of fracture mechanics in the analysis and design of aerospace structures.
Prerequisite: AERO 304 or equivalent with a grade of C or better.

AERO 413 Aerospace Materials Science
Credits 3. 3 Lecture Hours.
Relationship between aerospace engineering material properties and microstructure; mechanical and thermal properties; environmental degradation; mechanical failure.
Prerequisite: Grade of C or better in AERO 304.

AERO 417 Aerospace Propulsion
Credits 3. 3 Lecture Hours.
Air breathing propulsion; design and analysis of inlets, compressors, combustors, turbines and nozzles; application to aeronautical and ground transportation.
Prerequisite: Grade of C or better in AERO 351.

AERO 419 Chemical Rocket Propulsion
Credits 3. 3 Lecture Hours.
Nozzles and heat transfer in rockets, liquid and solid propellant systems; combustion and combustion stability; flight performance including trajectories, multistaging and exchange rate curves; rocket testing.
Prerequisite: Grade of C or better in AERO 351.
AERO 420 Aeroelasticity
Credits 3. 3 Lecture Hours.
Classical analysis of fundamental aeroelastic phenomena with application to aerospace vehicles; flutter, divergence, control effectiveness.
Prerequisites: Grade of C or better in AERO 303, AERO 306, AERO 310.

AERO 424 Spacecraft Attitude Dynamics and Control
Credits 3. 3 Lecture Hours.
Introduces fundamental concepts of satellite attitude dynamics and control; includes derivations of environmental disturbances due to gravity gradient, aerodynamic, and solar radiation pressure; includes treatments of attitude control subsystems, such as thrusters, reaction wheels, CMGs, and magnetic torquers, and their designs.
Prerequisite: Grade of C or better in AERO 321.

AERO 426 Space System Design
Credits 3. 3 Lecture Hours.
Introduces prevailing practices and processes used in modern space system design; applies knowledge in component engineering disciplines to a design challenge of interest to NASA or DoD; utilizes instruction in systematic methods of design and on dynamics of teamwork; when possible concludes with detailed design using an engineering design facility.
Prerequisites: Grade of C or better in AERO 306, AERO 321, AERO 351.

AERO 428 Electromagnetic Sensing for Space-Borne Imaging
Credits 3. 3 Lecture Hours.
Study IR and Visible range imaging systems to obtain high resolution imaging of objects from space; this area has numerous applications and areas of advanced development; following instruction in needed background on optics, telescopes, and interferometry, perform preliminary design of imaging system with a different imaging design offered each year.
Prerequisites: Grade of C or better in AERO 306, AERO 321, AERO 351.

AERO 430 Numerical Simulation
Credits 3. 3 Lecture Hours.
Numerical and analytical simulation of physical problems in sciences and engineering using applied methods; developing and using numerical techniques for physical problems described by nonlinear algebraic equations, ordinary and partial differential equations.
Prerequisite: Grade of C or better in AERO 222 or MATH 417.

AERO 435 Aerothermochemistry
Credits 3. 3 Lecture Hours.
Composition of chemically reacting gases (air and propellant); thermodynamic functions based on classical and quantum mechanical theories; calculation of gas temperatures; equilibrium, frozen and non-equilibrium flows through nozzles and shock waves.
Prerequisite: Grade of C or better in AERO 303.

AERO 440 Cockpit Systems and Displays
Credits 3. 3 Lecture Hours.
Design, development, and implementation of cockpit systems and multifunction displays; cockpit system requirements and specifications; human-machine interfaces, Flight Management Systems, navigation and guidance systems; 3-D real-time displays of weather, traffic, and terrain; characteristics and missions of air vehicles; project design and cost analysis.
Prerequisite: Grade of C or better in AERO 321 or junior or senior classification in computer science.

AERO 445 Vehicle Management Systems
Credits 3. 3 Lecture Hours.
Introduction to vehicle management systems for manned and unmanned air and space vehicles; system centric concepts, requirements definition, specifications, and architectures; reliability analysis, health monitoring, and mission management; SISO digital design of integrated flight control, propulsion control and structural control; introduction to vehicle autonomy; design and analysis methods, industrial examples.
Prerequisite: Grade of C or better in AERO 422.

AERO 451 Human Spaceflight Operations
Credits 3. 3 Lecture Hours.
Essential aspects of human spaceflight operations as performed by NASA; in-depth understanding of the state-of-the-art in spacecraft operations, including spacecraft systems, ground and launch operations, mission management and on-orbit activities such as science, robotics, spacewalking and human health maintenance; applications to future space systems.
Prerequisite: Grade of C or better in AERO 310 or equivalent; senior classification.

AERO 452 Heat Transfer and Viscous Flows
Credits 3. 3 Lecture Hours.
Navier-Stokes and boundary layer equations; exact and approximate solutions; laminar boundary layers; origin of turbulence; transition; turbulent boundary layers; viscous airfoil design; one and two dimensional heat transfer; methods for steady and transient heat conduction; thermal boundary layers; convection; and radiation.
Prerequisite: Grade of C or better in AERO 303 and AERO 351.
AERO 455 Helicopter Aerodynamics
Credits 3. 3 Lecture Hours.
Hovering theory, hovering and vertical flight performance, factors affecting hovering and vertical flight performance, auto-rotation in vertical descent, concepts of blade motion and control, aerodynamics of forward flight, forward flight performance, operational envelope and introduction to conceptual design of helicopters.
Prerequisites: Grade of C or better in AERO 222, AERO 301, and AERO 310.

AERO 472 Airfoil and Wing Design
Credits 3. 3 Lecture Hours.
Subsonic airfoil design and analysis, subsonic wing design and analysis, swept and delta wings, vortex lift, transonic flow methods, viscous transonic phenomena, transonic airfoil and wing design, optimization and advanced topics such as supersonic panel methods.
Prerequisite: Grade of C or better in AERO 303.

AERO 481 Seminar
Credit 1. 1 Lecture Hour.
Readings, reports, conferences and discussion. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Senior classification in aerospace engineering.

AERO 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems in aerospace engineering assigned to individual students or groups.
Prerequisite: Junior or senior classification or approval of instructor.

AERO 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified field of aerospace engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

AERO 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in aerospace engineering. May be repeated 3 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

AERS - Aerospace Studies (AERS)

AERS 101 Foundations of the USAF
Credit 1. 1 Lecture Hour.
Introduction to the U.S. Air Force and the Air Force Reserve Officer Training Corps (AFROTC); includes Officership, professionalism, military customs and courtesies, and officer opportunities and benefits; AFROTC cadets must register for Leadership Laboratory (AERS 106) as it complements this course with followership experience.

AERS 102 Foundations of the USAF
Credit 1. 1 Lecture Hour.
Continuation of AERS 101; AFROTC cadets must register for Leadership Laboratory (AERS 106) as it complements this course with followership experience.

AERS 105 AFROTC Leadership Lab
Credit 1. 2 Lab Hours.
Designed to give insight into the Air Force and give leadership opportunities to cadets through a variety of experiences; expected to perform a multitude of tasks in both the subordinate and superior roles. Must be taken on a satisfactory/unsatisfactory basis.

AERS 106 AFROTC Leadership Lab
Credit 1. 2 Lab Hours.
Designed to give insight into the Air Force and give leadership opportunities to cadets through a variety of experiences; expected to perform a multitude of tasks in both the subordinate and superior roles. Must be taken on a satisfactory/unsatisfactory basis.

AERS 201 Evolution of Air and Space Power
Credit 1. 1 Lecture Hour.
Examines general aspects of air and space power through a historical perspective; covers the time period from the first use of balloons to the Persian Gulf War; AFROTC cadets must register for Leadership Laboratory (AERS 105) as it complements this course with followership/leadership experience.
Prerequisites: Grade of C or better in AERS 102; concurrent enrollment in AERS 105.

AERS 202 Evolution of Air and Space Power
Credit 1. 1 Lecture Hour.
Continuation of AERS 201; AFROTC cadets must register for Leadership Laboratory (AERS 106) as it complements this course with followership/leadership experience.
Prerequisites: Grade of C or better in AERS 201; concurrent enrollment in AERS 106.

AERS 303 Air Force Leadership Studies
Credits 3. 3 Lecture Hours.
Leadership, management fundamentals, professional knowledge, Air Force personnel and evaluation systems, and leadership ethics; case studies of leadership and management situations as a means of demonstrating and exercising practical application of concepts; Air Force contract individuals (or those seeking a contract) must register for Leadership Lab (AERS 105).
Prerequisites: Grade of C or better in AERS 201; concurrent enrollment in AERS 106.

AERS 304 Air Force Leadership Studies
Credits 3. 3 Lecture Hours.
Continuation of AERS 303; Air Force contract individuals (or those seeking a contract) must register for Leadership Lab (AERS 106).
Prerequisites: Grade of C or better in AERS 303; concurrent enrollment in AERS 106.

AERS 403 National Security Affairs—Preparation for Active Duty
Credits 3. 3 Lecture Hours.
Examines the Constitution and the national security process; focuses on civilian control of the military; the roles of the Services; and the functions of the Air Force commands; Air Force contract individuals (or those seeking a contract) must register for Leadership Lab (AERS 105).
Prerequisites: Grade of C or better in AERS 304; concurrent enrollment in AERS 105; non-Air Force contract students must have approval of instructor and department head.

AERS 404 National Security Affairs—Preparation for Active Duty
Credits 3. 3 Lecture Hours.
National Security Affairs—Preparation for Active Duty. Continuation of AERS 403; Air Force contract individuals (or those seeking a contract) must register for Leadership Lab (AERS 106).
Prerequisites: Grade of C or better in AERS 403; concurrent enrollment in AERS 106; non-Air Force contract students must have approval of instructor and department head.
AFST 201 Introduction to Africana Studies
Credits 3.3 Lecture Hours.
Introduction to the field of Africana Studies; interdisciplinary approach drawing from history, philosophy, sociology, political studies, literature and performance studies; explores the African foundational relationship to and connections with its diaspora populations; covers Africa, the United States, the Caribbean, Europe and South America.

AFST 204/ENGL 204 Introduction to African-American Literature
Credits 3.3 Lecture Hours.
Introduction to the writings of African Americans from the 18th century to the present, emphasizing the major themes and traditions; ENGL-204 also taught at Galveston campus.
Cross Listing: ENGL 204/AFST 204.

AFST 205/ENGL 205 Introduction to Africana Literature
Credits 3.3 Lecture Hours.
Works, literary movements and genres of authors of African descent in the Americas, Europe and Africa.
Cross Listing: ENGL 205/AFST 205.

AFST 206/PSYC 206 Black Psychology
Credits 3.3 Lecture Hours.
Critical examination of psychological experience, theories, and methods from perspectives grounded in the ‘Black experience.’
Cross Listing: PSYC 206/AFST 206.

AFST 209/PSYC 209 Psychology of Culture and Diversity
Credits 3.3 Lecture Hours.
Introduction to various issues surrounding an increasingly interconnected and globalized world by critically examining the dynamic relationship between psychological processes and diverse (e.g., motivation, memory, self, prejudice) socio-cultural contexts.
Prerequisite: PSYC 107.
Cross Listing: PSYC 209/AFST 209.

AFST 252/PHIL 252 Introduction to Hip-Hop Philosophy
Credits 3.3 Lecture Hours.
Introduction to philosophy by way of the major themes and subjects of Hip-Hop; critical advocacy of various philosophical ideals.
Cross Listing: PHIL 252/AFST 252.

AFST 285 Directed Studies
Credits 0 to 4.0 to 4 Other Hours.
Directed studies in the field of Africana Studies. May be taken two times for credit.
Prerequisite: AFST 201; Freshman or sophomore classification; approval of instructor and director.

AFST 291 Research
Credits 0 to 3.0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Africana Studies. May be taken three times for credit.
Prerequisites: AFST 201; freshman or sophomore classification; and approval of instructor.

AFST 300/HIST 300 Blacks in the United States, 1607-1877
Credits 3.3 Lecture Hours.
Blacks in the United States from the colonial period to 1877; the slave trade, slavery, free blacks and the impact of the Civil War and Reconstruction on blacks.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 300/AFST 300.

AFST 301/HIST 301 Blacks in the United States Since 1877
Credits 3.3 Lecture Hours.
Blacks in the United States from the end of Reconstruction to the present; ideologies of black leaders, disfranchisement, lynching and the quest for equality in the 1950s and 1960s.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 301/AFST 301.

AFST 302 Gateway Course
Credits 3.3 Lecture Hours.
Gateway to a series of courses offered for the minor in Africana Studies; explores topics such as Afrocentrism, postcolonial studies, black cultural studies, black feminist theory for a close study of issues among African and African diaspora populations in Africa, the United States, Caribbean, Europe and South America.

AFST 303 Psychology of Women of Color
Credits 3.3 Lecture Hours.
Interdisciplinary theories to study the unique yet intersectional experiences of women from different racial groups, ethnicities, nationalities and cultural backgrounds; scholarly research from the diversity science field; contemporary topics that have developed in a global context; examination of complex issues, which affect women of color across the lifespan.
Prerequisite: Grade of C or better in AFST 201 or PSYC 107 or WGST 200, or approval of instructor.
Cross Listing: PSYC 303 and WGST 303.

AFST 317/SOCI 317 Racial and Ethnic Relations
Credits 3.3 Lecture Hours.
Status of racial and ethnic groups such as Native Americans, African Americans, Latino Americans, Asian Americans, European Americans, and other groups in the political, economic, legal and social systems of the United States.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: SOCI 317/AFST 317.

AFST 323/SOCI 323 Sociology of African Americans
Credits 3.3 Lecture Hours.
Major elements of the Afro-American subculture in relation to white American society and its major social institutions.
Prerequisites: SOCI 206.
Cross Listing: SOCI 323/AFST 323.

AFST 324 Africana Social Sciences
Credits 3.3 Lecture Hours.
Exploration of a significant topic pertaining to Africa and/or its diaspora in the social sciences.
Prerequisite: Junior or senior classification.
AFST 325 Africana Humanities
Credits 3. 3 Lecture Hours.
Exploration of a significant topic pertaining to Africa and/or its Diaspora in the humanities and arts.
Prerequisite: Junior or senior classification.

AFST 326 Africana Popular Culture
Credits 3. 3 Lecture Hours.
Dynamics of popular culture and classic theories of society; popular and public cultural forms in context of globalization and the Africana Diaspora.
Prerequisite: Junior or senior classification or approval of instructor.

AFST 327/PERF 327 Popular Musics in the African Diaspora
Credits 3. 3 Lecture Hours.
Examination of a range of popular musics from the twentieth century that have emerged in conjunction with the historical global spread of peoples and cultures from the African continent; technical knowledge about music is not required; focus on social and cultural contexts for popular music.
Prerequisite: Junior or senior classification or approval of instructor.

AFST 329/ENGL 329 African-American Literature Pre-1930
Credits 3. 3 Lecture Hours.
Major works of the African-American literary tradition from the 18th century to 1930 studied within cultural and historical context.
Prerequisites: 3 credits of literature at 200-level or above.

AFST 338/COMM 338 Critical Race Discourse
Credits 3. 3 Lecture Hours.
Critical analysis of communication and dialogue on race; causes and symptoms of structural racism; social/racial hierarchies as they influence and are influenced by communication and dialogue.
Prerequisites: Junior or senior classification or approval of instructor.

AFST 339/ENGL 339 African-American Literature Post-1930
Credits 3. 3 Lecture Hours.
Major works of the African-American literary tradition from the 1930s to the present studied in their cultural and historical context.
Prerequisites: 3 credits of literature at 200-level or above.

AFST 344/HIST 344 History of Africa to 1800
Credits 3. 3 Lecture Hours.
Origins of humankind in Africa; development and spread of pastoralism, agriculture and iron-working; formation of states and empires; impact of Christianity and Islam; rise of international trade in gold, ivory and slaves; African diaspora.
Prerequisite: Junior or senior classification.

AFST 345/HIST 345 Modern Africa
Credits 3. 3 Lecture Hours.
Survey of Africa since 1800; pre-colonial African states and societies; establishment and impact of European colonial rule; rise of nationalist movements; achievement of independence; problems of political stability and economic development in contemporary Africa; South Africa's apartheid regime and its opponents.
Prerequisite: Junior or senior classification.

AFST 346/HIST 346 History of South Africa
Credits 3. 3 Lecture Hours.
Selected themes in the history of South Africa from the African Iron Age to the Apartheid regime; history of race relations in the 19th and 20th centuries and the rise of modern industrial state.
Prerequisite: Junior or senior classification or approval of instructor.

AFST 352/PHIL 352 Africana Philosophy
Credits 3. 3 Lecture Hours.
Presentation of the seminal ideas of several influential Africana thinkers; recovery of the neglected traditions in which these thinkers locate themselves.
Prerequisite: Junior or senior classification or approval of instructor.

AFST 357/HIST 357 Out of Africa: The Black Diaspora and the Modern World
Credits 3. 3 Lecture Hours.
History and cultures of the peoples of the African Diaspora from the fourteenth through the nineteenth centuries; social, political, and economic impact on Africa, the Americas, Europe, and the Arab World; emphasis on race, gender, identity, and migration.
Prerequisite: Junior or senior classification or approval of instructor.

AFST 362/HIST 302 Women and War in the African Diaspora
Credits 3. 3 Lecture Hours.
Case studies of women and war in the African diaspora in a wide historical and comparative context; social, economic, and cultural influence of war on women's lives; women as victims, combatants, and refugees; historical construction of race, ethnic and gender identity during times of conflict.
Prerequisite: Junior or senior classification.

AFST 379/ENGL 379 Postcolonial Literatures
Credits 3. 3 Lecture Hours.
Exploration of key terms, themes and debates within global literature written by colonized, occupied and diasporic peoples.
Prerequisites: 3 credits of literature at 200-level or above.

AFST 391 Africana Feminisms
Credits 3. 3 Lecture Hours.
Exploration of a significant topic in feminist theory by and about women from Africa and/or its Diaspora, from various disciplinary perspectives and historical periods, and with application to societal debates and controversies.
Prerequisite: Junior or senior classification.

AFST 393/ENGL 393 Studies in Africana Literature and Culture
Credits 3. 3 Lecture Hours.
Literary movements, genres, groups of authors, topics or issues in the literature and culture of people of African descent.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification or approval of instructor.

Cross Listing: ENGL 393/AFST 393.
AFST 398/FILM 398 Africana Cinema
Credits 3. 3 Lecture Hours.
Overview of African cinema; historical survey of cinema from Africa and the African Diaspora; introducing films produced in several geographical regions and reflecting different filmmaking traditions. May be taken two times for credit.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: FILM 398/AFST 398.

AFST 401 Slavery in World History
Credits 3. 3 Lecture Hours.
Comparative history of human slavery; slavery in the Ancient World, Asia, Africa; varieties of modern slavery in the New World since 1500; abolition of slavery and continuing forms of human bondage in the contemporary world.
Prerequisite: Junior or senior classification.

AFST 422 Race, Ethnicity, Crime and Justice
Credits 3. 3 Lecture Hours.
Racial/ethnic disparities in criminal offending and victimization, as well as different experiences with law enforcement, judicial, and correctional agencies.
Prerequisites: SOCI 220 or equivalent.
Cross Listing: SOCI 422 and LMAS 422.

AFST 425/COMM 425 Rhetoric of the Civil Rights Movement
Credits 3. 3 Lecture Hours.
Rhetorical evaluation of theoretical literature and pragmatic episodes that shaped the U.S. Civil Rights Movement; examination of significant speeches, documents, and protest activities in their historical, political, and social contexts.
Prerequisite: Junior or senior classification.
Cross Listing: COMM 425/AFST 425.

AFST 481 Seminar
Credits 3. 3 Lecture Hours.
Comparative studies of slave societies in the modern world; history and analysis of African American feminism; comparative analyses of the social, political, and economic condition of African Americans and other African peoples of the diaspora.
Prerequisite: AFST 302; junior or senior classification.

AFST 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Directed internship in a public or private organization to provide students with applied experience; opportunity to observe first hand issues and problems covered in Africana Studies courses; designed to enhance and clarify the student's career objectives.
Prerequisite: Approval of instructor.

AFST 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Selected fields of Africana Studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: AFST 201; junior or senior classification; approval of instructor.

AFST 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in Africana Studies. May be repeated for credit.

AFST 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Africana Studies. May be taken for a maximum of 18 hours credit.
Prerequisites: AFST 201; junior or senior classification; and approval of instructor.

AGCJ - Ag Comm & Journalism (AGCJ)

AGCJ 105 Introduction to Agricultural Communications
Credits 3. 3 Lecture Hours.
Introduction to mass communication, its history, role in society, and especially its unique role in agriculture; importance of mass communication and the communication methods used in modern society; foundation for an understanding of agricultural news and information. Only one of the following will satisfy the requirements for a degree: AGCJ 105 and JOUR 102.

AGCJ 281 Journalism Concepts for Agriculture
Credits 3. 3 Lecture Hours.
The role of the news media in covering government, the court systems, corporations, taxation, and insurance; a practical perspective on how journalists interact with public and private institutions from a legal, ethical and social standpoint.
Prerequisite: Grade of C or better in AGCJ 105 or concurrent enrollment.

AGCJ 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected issue in field of agricultural communications with emphasis on collection, synthesis and interpretation of information.
Prerequisite: Approval of department advisor.

AGCJ 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Special topics in an identified area of agricultural development. May be repeated for credit.
Prerequisite: Approval of department advisor.

AGCJ 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in agricultural communications and journalism. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of department advisor.

AGCJ 305 Theory and Practice of Agricultural Publishing
Credits 3. 3 Lecture Hours.
Audience identification, publication content, management and design; analyze existing agricultural publications, identify audiences, advertising base and content.
Prerequisites: AGCJ 105; junior or senior classification.

AGCJ 306 Theory and Practice of Agricultural Public Relations
Credits 3. 3 Lecture Hours.
Public relations between agricultural producers and their suppliers as a critical part of agricultural communication; public relations objectives, strategies, tactics, evaluation and execution theory and practice examined.
Prerequisites: Grade of C or better in AGCJ 105; junior or senior classification.
AGCJ 307 Design for Agricultural Media
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles and practices of agricultural media design, including design and production of printed publications and graphics; computer assisted design and production of media pieces. Required for AGCJ majors and minors.
Prerequisite: Junior or senior classification.

AGCJ 308 Agricultural Photography
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Develop knowledge of photography, editing software, and composition techniques used in the agricultural communications field; develop photography and photo editing skills to a satisfactory level as demonstrated by performance on assignments and exams.
Prerequisite: Junior or senior classification.

AGCJ 312 Editing for Agricultural Audiences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles and practices of editing for agricultural and technical audiences including improving and tightening copy; writing headlines, titles, and subheads; photo editing and captions, graphics and layout; print, broadcast, interactive and other media.
Prerequisites: AGCJ 105; junior or senior classification.

AGCJ 313 Agricultural Media Writing I
Credits 3. 2 Lecture Hours. 2 Lab Hours.
News gathering, writing, editing and ethics for current and emerging mediums used in agricultural communication; includes news identification, basic news writing methods, introduction to public relations, broadcast and Internet writing, interviewing skills, proper use of direct quotes and other news style. Only one of the following will satisfy the requirements for a degree: AGCJ 313 and JOUR 203.
Prerequisite: Grade of C or better in AGCJ 105 and AGCJ 312.

AGCJ 314 Agricultural Media Writing II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Interpretive agricultural news gathering and writing for all media types; basic media law and ethics, interviewing skills with assigned practice writing about agriculture, and science and technology, including meeting and event coverage both on and off campus; print, broadcast, interactive and other media.
Prerequisites: Grade of C or better in AGCJ 312 and AGCJ 313; junior or senior classification.

AGCJ 366 Radio Broadcasting
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Survey of American broadcasting, development, and impact; influence on society, basic principles, mass communication theory, station operating programming, advertising, rating methods, regulation, and censorship; in-depth analysis of current issues and developments.
Prerequisite: Junior or senior classification.

AGCJ 404 Communicating Agricultural Information to the Public
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Use of agricultural journalism principles and techniques to communicate scientific information related to agriculture, agribusiness, natural resources and life sciences to the general public; communication processes include audience identification, writing, editing and production of agricultural science-based manuscripts for popular and refereed publications.
Prerequisite: Junior or senior classification.

AGCJ 405 Agricultural Publications Production
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Study and practice of the principles and concepts of designing, writing, editing, producing and distributing the AgriLeader magazine and Web site; includes practical applications of writing feature articles, magazine and Web site design, advertising sales, layout and graphics. May be repeated one time for credit.
Prerequisites: Grade of C or better in AGCJ 312; junior or senior classification.

AGCJ 406 Agricultural Public Relations Methods
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Agricultural public relations campaign analysis; public relations case studies and methods including writing public relations plans for agricultural entities, producing public relations components and evaluating public relations objectives, strategies and tactics.
Prerequisites: Junior or senior classification.

AGCJ 407 Web Authoring in Agricultural Communication
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Study and practice of basic website design theories, principles and writing for the web; use of web authoring software (not a programming class) to create online publications tailored for agricultural audiences; emphasizes informative content and functional design.
Prerequisites: Grade of C or better in AGCJ 307; junior or senior classification.

AGCJ 408 Advertising Copy and Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Creative aspects of advertising strategy, copywriting, typography and design in a variety of visual media; learn to make and evaluate advertising.
Prerequisites: Grade of C or better in AGCJ 307 and AGCJ 313; junior or senior classification; approval of instructor.

AGCJ 409 Television Production for Agricultural Journalists
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental concepts required to develop a broadcast quality video production; uses the high definition facilities of KAMU-TV and TTVN; hands-on experience in video production including producing, shooting and hosting a professional program series broadcast on KAMU-TV.
Prerequisite: Junior or senior classification.

AGCJ 411 Audience and Communications Research Methods
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Evaluation and implementation of research designs and methods used in audience and communications research; data collection methods and strategies, including interviews, observations, focus groups, surveys and content analyses, use of descriptive and comparative analyses to develop data-driven personas and recommendations for engaging target audiences.
Prerequisite: Junior or senior classification.

AGCJ 413 Emerging Media in Agriculture
Credits 3. 3 Lecture Hours.
Popular emerging media in agriculture to communicate, build and market a brand online; understanding the strategy behind the posts and other communications; create emerging media communications strategies for academic or business entities that may be implemented upon completion of course.
Prerequisite: Grade of C or better in AGCJ 313.
AGCJ 466 Advanced Radio Broadcasting
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Project-based instruction; a practical guide to producing, presenting, programming and managing a radio station. May be taken four times for credit.
Prerequisites: AGCJ 366; junior or senior classification or approval of instructor.

AGCJ 481 Senior Seminar
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Identification of communication-related issues; strategic planning to meet goals; measurable communication outcomes; writing, designing, creating and distributing communications products to clients; measuring effectiveness; working in teams.
Prerequisites: Grade of C or better in AGCJ 313; senior classification.

AGCJ 485 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Directed individual study of selected problems in agricultural communications, communication methods and the communication profession with emphasis on collection, analysis and presentation of information.
Prerequisites: Junior or senior classification; approval of department advisor.

AGCJ 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of agricultural communications and journalism. May be repeated for credit.
Prerequisite: Junior or senior classification.

AGCJ 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in agricultural communications and journalism. May be repeated 3 times for credit.
Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of department advisor.

AGCJ 494 Internship
Credits 1 to 6. 1 to 6 Other Hours.
Supervised internship and independent study related to the student's professional interest.
Prerequisites: Junior or senior classification; approval of department advisor.

AGCJ 499 Internship
Credits 1 to 6. 1 to 6 Other Hours.
Supervised internship and independent study related to the student’s professional interest.
Prerequisites: Junior or senior classification; approval of department advisor.

AGEC - Agricultural Economics (AGEC)

AGEC 105 Introduction to Agricultural Economics
Credits 3. 3 Lecture Hours.
(AGRI 2317) Introduction to Agricultural Economics. Characteristics of our economic system and basic economic concepts; survey of the farm and ranch firm and its organization and management; structure and operation of the marketing system; functional and institutional aspects of agricultural finance; government farm programs.

AGEC 117 Critical Thinking and Decision Making in Agricultural Economics
Credit 1. 1 Other Hour.
An introductory seminar in the Department of Agricultural Economics; emphasis on resources and opportunities available in the department; awareness and understanding of professional development; emphasis on writing as a critical communication skill.
Prerequisites: AGEC 105, ECON 203, or grade of C or better in ECON 202; freshman classification; Agricultural Economics and Agribusiness majors only.

AGEC 216 Fundamentals of the AgriFood Sales Industry
Credit 1. 1 Lecture Hour.
Fundamentals of professional business to business sales in AgriFood firms; opportunities to interact with successful salespeople in AgriFood firms; focus on career development, exploration of undergraduate internships in professional sales and identification of basic sales theories currently in use in AgriFood firms; learning to network extensively with AgriFood industry professionals and developing a mentor relationship.

AGEC 217 Fundamentals of Agricultural Economics Analysis
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Relates contemporary agribusiness issues to economic and financial management, illustrating their integration toward pragmatic applications in the agricultural industry; lab focuses on the integration of mathematics and economics with computer skills directed toward spreadsheets, databases, web pages, and communications software.
Prerequisites: AGEC 105; ENGL 103 or ENGL 104; MATH 168, MATH 140, or MATH 166; MATH 142; sophomore or junior agricultural economics or agribusiness majors; or approval of department head.

AGEC 223 Establishing Agribusiness Entrepreneurship Networks I
Credits 1. 1 Lecture Hour.
Introduction to successful entrepreneurs and other professionals, identifying suggested strategies and tactics in starting and sustaining viable rural and metropolitan business ventures; emphasis on importance of and how to develop relationships with a broad spectrum of mentors.
Prerequisite: Open to all majors.

AGEC 235 Foundations of Money Education
Credits 3. 3 Lecture Hours.
Preparation for a financially challenging world and introduction to concepts and methods of personal financial planning; financial planning process, time value of money, taxation, credit, housing, insurance, employee benefits, family economics and building a personal financial plan.

AGEC 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed study of selected problems in agricultural economics.
Prerequisites: AGEC 105; freshman or sophomore classification in agricultural economics, agribusiness, or approval of instructor and department head; 2.5 GPR in major, overall, and CBK courses, if applicable; see an academic advisor in Room 214 AGLS.

AGEC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agricultural economics. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of department head.
AGEC 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in agricultural economics. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of department head; see an academic advisor in Room 214 AGLS.

AGEC 314 Marketing Agricultural and Food Products
Credits 3. 3 Lecture Hours.
Operations involved in movement of agricultural commodities from farmer to consumer via several intermediaries; functions involve buying, selling, transportation, storage, financing, grading, pricing and risk bearing; agricultural supply chain or value chain is studied in detail; marketing aspects of commodities and differentiated goods.
Prerequisites: AGEC 105 or 3 hours of economics; and junior or senior classification.

AGEC 315 Food and Agricultural Sales
Credits 3. 3 Lecture Hours.
Principles of professional sales techniques used in food and agricultural firms; develop a professional sales presentation; study current agribusiness industry professional salespersons.
Prerequisite: Junior or senior classification.

AGEC 316 Building Customer Relationships in AgriFood Selling
Credits 3. 3 Lecture Hours.
Use of emotional intelligence factors in developing business-to-business customer relationships for AgriFood, real estate, finance and other industrial products and services; developing customer relationships with regard to the unique aspects of technical products and services in these industries.
Prerequisites: Junior or senior classification; approval of instructor.

AGEC 317 Economic Analysis for Agribusiness Management
Credits 3. 3 Lecture Hours.
Quantitative methods used to address managerial problems, specifically calculus-based optimization, marginal analysis, elasticities, statistical and forecasting techniques, linear programming, and risk analysis; emphasis on theoretical aspects and applied analysis of managerial problems faced by agricultural firms.
Prerequisites: AGEC 217; ECON 322 or ECON 323; SCMT 303 or STAT 301 or STAT 302 or STAT 303; and junior or senior classification; agricultural economics, agribusiness majors only; or approval of department head.

AGEC 324 Agribusiness Entrepreneurship – Budgeting
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Case study approach to demonstrate a process for evaluating the economic feasibility of a single-enterprise rural or metropolitan business venture; relevant production, marketing and financing costs, in combination with capital ownership and overhead costs; computer spreadsheets including attention to deterministic sensitivity analyses; computer capabilities are essential.
Prerequisites: AGEC 105 or ECON 202; ACCT 209 or ACCT 210 or ACCT 229 or ACCT 230 or AGEC 330 or FINC 341 or FINC 409; junior or senior classification or approval of instructor.

AGEC 325 Principles of Farm and Ranch Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Agribusiness managerial decision making and analysis in different market environments; emphasis is on profit maximization; lab focuses on using computerized methods for evaluating management alternatives for farming and ranching problem situations.
Prerequisites: AGEC 105 or ECON 202; junior or senior classification; knowledge of Excel.

AGEC 330 Financial Management in Agriculture
Credits 3. 3 Lecture Hours.
Principles of financial management of farms, ranches, and other agribusiness firms; financial statements, financial statement analysis, time value of money, investment analysis, firm growth, risk management, credit analysis and best business management practices.
Prerequisites: AGEC 105 or 3 hours of economics; ACCT 209 or ACCT 229; and junior or senior classification.

AGEC 335 Financial Readiness
Credits 3. 3 Lecture Hours.
Personal financial planning for those planning on joining the military; preparation for a financially challenging world and introduction to the concepts and methods of personal financial literacy, budgeting, cash management, debt, credit, deployment finances, insurance, retirement planning, investing, estate planning and taxation.
Prerequisites: Junior or senior classification.

AGEC 340 Agribusiness Management
Credits 3. 3 Lecture Hours.
Survey of management practices using case studies to evaluate management issues in agribusiness firms in the context of the four functions of management such as planning, organizing, leading and controlling; emphasis on best practices throughout the food marketing chain; examination of how businesses and business executives succeed; application of previously learned knowledge in making business decisions similar to those encountered in professional careers.
Prerequisites: AGEC 105 or 3 hours of economics; and junior or senior classification.

AGEC 344 Food and Agricultural Law
Credits 3. 3 Lecture Hours.
Legal principles relevant to the farm family and business; characteristics of legal decisions and rules on property rights, and fencing laws; analysis of global, national, state, and local legal issues in contracts, torts, water, pollution, and natural resources.
Prerequisite: Junior or senior classification.

AGEC 350 Environmental and Natural Resource Economics
Credits 3. 3 Lecture Hours.
Inspection of issues such as environmental degradation, population growth, recycling, water use and depletion, natural habitat protection, water and air pollution, acid deposition, fisheries management, and global warming using economically derived principles and tools.
Prerequisite: Junior or senior classification.

AGEC 402 Survey of International Agricultural Economics: Study Abroad
Credits 3. 3 Lecture Hours.
Examine, from an international setting, the shape of international agriculture; how culture, history, politics and geography in foreign countries affect the production and management of agricultural products; agricultural policy formation; countries’ natural resources and competitive strategies; may be taken 3 times for credit.
Prerequisites: AGEC 105 or 3 hours of economics; junior or senior classification or approval of department head.
AGEC 408 Economics of Foreign Intervention, Conflict and Development
Credits 3. 3 Lecture Hours.
Economic models of conflict and development; dynamic socio-political models of conflict; conflict and vulnerable groups; quantitative techniques and methods in conflict and development research; interaction between poverty, natural resources and conflict in developing countries; role of multilateral, bilateral, and strategic stakeholders in conflict resolution and promotion of economic development.
Prerequisites: AGEC 105 or ECON 202 or equivalent; ENGL 104; or approval of instructor.

AGEC 413 Agricultural Cooperatives
Credits 3. 3 Lecture Hours.
Historical development and principles of cooperative associations in our economic system; organizational and operational aspects of cooperatives; legal considerations, financing, management, and member relations; and future role of cooperatives.
Prerequisites: AGEC 105; AGEC 314; and junior or senior classification.

AGEC 414 Agribusiness and Food Market Analysis
Credits 3. 3 Lecture Hours.
Application of economic and marketing principles to contemporary food and agribusiness marketing; practical marketing management for agribusiness firms; market analysis; and marketing strategy and planning as related to the emerging trends in the global food and agribusiness sector of the economy.
Prerequisites: AGEC 317; FINC 341; MKTG 321; and junior or senior agribusiness majors only.

AGEC 415 Food and Agribusiness Strategic Market Planning
Credits 3. 3 Lecture Hours.
Development of a market plan targeting the food and agribusiness market sector; market analysis; business propositions; action plans for executing the 4 Ps (Product, Price, Place, Promotion); monitoring and measurement.
Prerequisites: AGEC 314 or MKTG 321 or MKTG 409; AGEC 315; junior or senior classification or approval of instructor.

AGEC 416 Sales Management and Advanced Techniques in Professional Technical Selling for AgriFood Firms
Credits 3. 3 Lecture Hours.
Principles and practices of sales management in food and agricultural firms; focus on business-to-business selling situations, theoretical and practical information about sales management for AgriFood firms; application of principles.
Prerequisite: AGEC 315.

AGEC 420 Food Security, Climate and Conflict
Credits 3. 3 Lecture Hours.
Economic models of food production and consumption in conflict regimes; the micro-economics of violence; the dynamic relationships of climate and agricultural production; potential impacts of climate change on food and socio-political security; food security among insurgent groups; conflict resistant food systems; and the shifting relationships between poor and rich nations in relationship to climate, food and conflict.
Prerequisites: AGEC 105 or ECON 202, junior or senior classification, or approval of instructor.

AGEC 422 Land Economics
Credits 3. 3 Lecture Hours.
Economic, institutional, and physical factors involved in the use and control of natural resources; includes elements of introductory land economics as a discipline, economic foundations of land economics, institutional influences on land use, and the effects of public policy on land use.
Prerequisites: AGEC 105 or 3 hours economics; and junior or senior classification.

AGEC 423 Establishing Agribusiness Entrepreneurship Networks II
Credit 1. 1 Lecture Hour.
Engagement opportunities with successful agri/metropolitan entrepreneurs and other professionals, focusing on strategies and tactics for starting and sustaining viable rural and metropolitan business ventures; emphasis on importance of, and how to, develop relationships with a broad spectrum of mentors.
Prerequisites: AGEC 424 or concurrent enrollment; junior or senior classification or approval of instructor. May not enroll in AGEC 223 and AGEC 423 during the same semester.

AGEC 424 Agribusiness Entrepreneurship – Economic Analysis
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Strategic planning regarding economic feasibility of a single-enterprise rural or metropolitan business venture; emphasis on processes for developing a comprehensive enterprise budget and construction and evaluation of risk management alternatives; exchanges with “real-world” entrepreneurs, financial experts and other management personnel; computer capabilities essential.
Prerequisites: AGEC 105 or ECON 202; ACCT 209 or ACCT 210 or ACCT 229 or ACCT 230 or AGEC 324 or AGEC 330 or FINC 341 or FINC 409; junior or senior classification or approval of instructor.

AGEC 425 Agribusiness Entrepreneurship – Financial Analysis
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Strategic planning regarding rural and metropolitan business ventures; emphasis on processes for developing comprehensive economics and financial prospectuses, including enterprise budgets, risk management planning, cash flow budgeting, net worth statements, income budgets, reconciliation statements and shock analysis; mentoring exchanges with “real-world” entrepreneurs, financial experts and other management personnel.
Prerequisites: AGEC 424; and junior or senior classification.

AGEC 429 Agricultural Policy
Credits 3. 3 Lecture Hours.
Analysis of the causes, nature, and effects of government participation in agriculture; and interrelationship of the American agriculture and agribusiness sector with the political and economic system, public administration, and interest group representation.
Prerequisites: AGEC 105, ECON 202 or ECON 203; ENGL 103 or ENGL 104; and junior or senior classification.

AGEC 430 Macroeconomics of Agriculture
Credits 3. 3 Lecture Hours.
Basic functioning of U.S. economy and relationship to agriculture; the differential effects of macroeconomic policy on disposable income, interest rates, unemployment, inflation and exchange rates; impact on agricultural commodity prices, farm input costs, net farm income, farmland values and key financial indicators.
Prerequisites: AGEC 105 or 3 hours of economics; AGEC 317 or concurrent enrollment; AGEC 429; AGEC 330 or FINC 341 or FINC 409; and junior or senior classification.
AGEC 431 Cases in Agribusiness Finance
Credits 3. 3 Lecture Hours.
Financial management of agribusiness firms; advanced topics in financial statement analysis, liquidity management, investment analysis, and capital structure illustrated through examination of agribusiness cases.
Prerequisites: AGEC 317; AGEC 340; FINC 341; and junior or senior agribusiness majors only.

AGEC 432 Rural Real Estate and Financial Analysis
Credits 3. 3 Lecture Hours.
Advanced topics in investment analysis; financial intermediation in agriculture; real estate markets and market analysis; and appraisal valuation.
Prerequisites: AGEC 317 (waived for nonmajors); AGEC 330 or FINC 431 or FINC 409; AGEC 422; ACCT 210 or ACCT 230; and junior or senior classification.

AGEC 433 Rural Financial Markets and Financial Planning
Credits 3. 3 Lecture Hours.
Organization, structure, conduct and regulation of lending institutions serving commercial agriculture and rural borrowers; borrower financial statement analysis, business forecasting, investment analysis and loan application process; lender credit application underwriting standards, credit scoring and loan decision making process; agricultural loan portfolio analysis.
Prerequisites: ACCT 209 or ACCT 229; ACCT 210 or ACCT 230; AGEC 330 or FINC 341 or FINC 409; junior or senior classification.

AGEC 435 Financial Planning for Professionals
Credits 3. 3 Lecture Hours.
Financial planning from a professional perspective; applying basic financial, economic and institutional concepts to advise individuals, families and small businesses in achieving their financial goals; tools and topics include financial analysis, budgeting, credit management, time value of money, investment strategies, income taxes, risk management, and retirement and estate planning.
Prerequisites: AGEC 330, FINC 409 or FINC 341; junior or senior classification.

AGEC 436 Insurance and Estate Planning
Credits 3. 3 Lecture Hours.
Insurance and estate planning for individuals, families and small businesses; applies risk management principles to evaluate various insurance products, including life, disability, long-term care, health, homeowners, auto and liability; estate planning process, tools and considerations.
Prerequisites: AGEC 330, AGEC 435, FINC 409 or FINC 341; junior or senior classification.

AGEC 437 Tax Planning
Credits 3. 3 Lecture Hours.
Applies the principles of income, gift and estate tax planning to enhance household income after taxes; understanding tax laws, reporting requirements and opportunities for planning; identify and implement useful tax planning strategies; focus on practical application for financial planning.
Prerequisites: AGEC 330, AGEC 435, FINC 409 or FINC 341; junior or senior classification.

AGEC 438 Investment Planning
Credits 3. 3 Lecture Hours.
Applying investment principles considering families’ goals, time horizons, risk tolerance and tax implications to build investment portfolios; attributes of various asset classes; asset allocation, selecting securities and portfolio management; developing successful investment programs for personal investors and financial planners.
Prerequisites: AGEC 435 and junior or senior classification.

AGEC 439 Retirement Planning
Credits 3. 3 Lecture Hours.
Retirement planning basics, qualified and nonqualified retirement plans, Social Security provisions and government healthcare plans along with the basics of employee benefits; focus on both quantitative (i.e., calculating retirement needs and plan limits) and qualitative (i.e., retirement age decisions, retirement income management) aspects of retirement.
Prerequisite: AGEC 435 and junior or senior classification.

AGEC 440 Agribusiness Strategic Analysis
Credits 3. 3 Lecture Hours.
Strategic management and economic principles for the agribusiness system; problem recognition and applied managerial/economic decision making with related considerations in marketing, production, or finance for agribusiness firms.
Prerequisites: AGEC 317; AGEC 340; FINC 341; MGMT 363; MKTG 321; and junior or senior agribusiness majors only.

AGEC 441 Financial Planning Capstone
Credits 3. 3 Lecture Hours.
Financial planning process, data gathering, approaches to financial planning, analysis of financial statements and client presentation; case analysis, ethics and professional conduct, use of financial planning software, advanced financial calculator usage, and Microsoft Excel applications.
Prerequisites: AGEC 435, AGEC 436, AGEC 437, AGEC 438 and AGEC 439; junior or senior classification.

AGEC 447 Food and Agricultural Price Analysis
Credits 3. 3 Lecture Hours.
Factors influencing the level of food and agricultural prices; price trends and seasonal variation; methods of forecasting demands and prices; and futures trading.
Prerequisites: AGEC 314; AGEC 317; and junior or senior classification.

AGEC 448 Agricultural Commodity Futures
Credits 3. 3 Lecture Hours.
Activities of commodity futures exchanges; the mechanics of trading futures contracts; the use of futures trading for hedging and forward pricing; and options, basis behavior, and hedging strategies for selected commodities.
Prerequisites: AGEC 105 or 3 hours of economics; AGEC 314; AGEC 317 or concurrent enrollment; and junior or senior classification; or approval of department head.

AGEC 452 International Trade and Agriculture
Credits 3. 3 Lecture Hours.
Changing role of U.S. agriculture in a dynamic world economy; national and international policies and institutions affecting agriculture; and exchange rates, tariffs, and non-tariff barriers.
Prerequisites: AGEC 105 or 3 hours of economics; and junior or senior classification.
AGEC 453 International Agribusiness Marketing
Credits 3. 3 Lecture Hours.
Basic competencies in international marketing of agri-foods; and market entry, pricing, payment, finance, and promotion.
Prerequisites: AGEC 105 or 3 hours of economics; and junior or senior classification.

AGEC 460 Cross-Cutting Issues in Agricultural Economics
Credits 3. 3 Lecture Hours.
Examination of economic theory and its history; emphasis on the areas of agricultural business, finance, macroeconomics, management, marketing, microeconomics, quantitative analysis, resources, and economics policy; emphasis on the ability to properly analyze economic problems.
Prerequisites: AGEC 317; AGEC 314 or MKTG 321 or MKTG 409; AGEC 330 or FINC 341 or FINC 409; AGEC 429; agricultural economics and agribusiness majors only; junior or senior classification or approval of instructor.

AGEC 481 Ethics in Agribusiness and Agricultural Economics
Credit 1. 1 Lecture Hour.
Examination of the principals of ethical business behavior; context created through assigned readings, guest speakers from various law enforcement branches and private industry; student written reports about their own experiences relative to this context; attention given to establishing personal principles for an ethical business career.
Prerequisites: AGEC 217; junior or senior classification; and agricultural economics or agribusiness majors only.

AGEC 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Supervised experience program conducted in the area of the student's interest in agricultural economics and agribusiness. May be taken two times.
Prerequisite: See an advisor in Room 214 AGLS Building.

AGEC 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Special problems not covered by other courses. Content will depend upon problem studied.
Prerequisite: See an advisor in Room 214 AGLS Building.

AGEC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agricultural economics. May be repeated for credit.
Prerequisite: Junior or senior classification.

AGEC 491 Research
Credits 0 to 6. 0 to 6 Other Hours.
Research conducted under the direction of faculty member in agricultural economics. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of department head; see an advisor in Room 214 AGLS Building.

AGLS 105 Research in Agriculture and Life Sciences
Credit 1. 1 Lecture Hour.
An introduction to the research process as applied to agriculture, renewable natural resources and biological sciences.
Prerequisite: Freshman classification, major in College of Agriculture and Life Sciences and approval of instructor.

AGLS 125 Life Sciences Learning Community I
Credits 0-1. 0-1 Lecture Hours.
Development of personal and professional competencies in the life sciences: learning styles, leadership skills, appreciation for the arts; ethics in science, problem solving skills, experimental design, data gathering and interpretation, introduction to life sciences literature, critical analysis skills, and the connectivity between life science disciplines. May be taken two times for credit.
Prerequisites: Freshman classification and approval of instructor.

AGLS 225 Life Sciences Learning Community II
Credit 1. 1 Lecture Hour.
Continuation of the development of personal and professional competencies in the life sciences: ethics in science, problem solving skills, experimental design, data gathering and interpretation, examination of life sciences literature, critical analysis skills, and the connectivity between life science disciplines. May be taken two times for credit.
Prerequisites: Freshman classification and approval of instructor.

AGLS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agriculture and life science. May be repeated for credit.
Prerequisite: Freshman or sophomore.

AGLS 292 Cooperative Education in Agriculture
Credits 2. 4 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study; supervision of the student by the cooperating employer and the instructor; a technical report, approved by the instructor, on a related subject area required.
Prerequisite: Approval of the college coordinator of cooperative education.

AGLS 301 College of Agriculture and Life Sciences Study Abroad
Credits 1 to 18. 1 to 18 Other Hours.
For students in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to approved program and approval of academic dean.

AGLS 392 Cooperative Education in Agriculture
Credits 2. 40 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study. Supervision of the student by the cooperating employer and the instructor; a technical report, approved by the instructor, on a related subject area required.
Prerequisite: AGLS 292.

AGLS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agricultural and life sciences.
AGLS 492 Cooperative Education in Agriculture
Credits 0 to 2. 40 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study; supervision of the student by the cooperating employer and the instructor; a technical report, approved by the instructor; on a related subject area required.
Prerequisite: AGLS 392.

AGSC - Agricultural Science (AGSC)

AGSC 285 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Directed individual study of selected problems in agricultural science with emphasis on collection, analysis and presentation of information. May be repeated for credit.
Prerequisite: Approval of instructor.

AGSC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Special topics in an identified area of agricultural science. May be repeated for credit.
Prerequisite: Approval of department head.

AGSC 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in agricultural science. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

AGSC 301 Introduction to Agricultural Science Teaching
Credits 3. 3 Lecture Hours.
Introduction to agricultural science teaching at the secondary level; an overview of preparing teachers for a changing world including knowledge of learners, subject matter and teaching within the context of agricultural science.
Prerequisite: Junior or senior classification; AGSC 384 or concurrent enrollment.

AGSC 302 Teaching School-Based Agricultural Education & Clinical Professional Experience
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Teaching School-Based Agricultural Education & Clinical Professional Experience. Foundations of school-based agricultural education (SBAE) teaching; an overview of preparing teachers for a changing world including knowledge of learners, subject matter and teaching within the context of agricultural science; clinical field experience for teaching agricultural science in public schools of Texas.
Prerequisites: Junior or senior classification.

AGSC 305 Management of Supervised Agricultural Experiences
Credits 3. 3 Lecture Hours.
Overview of supervised agricultural experiences (SAEs) and content that can be used in the secondary agricultural science program; engagement in SAE programs; management practices for SAE projects including record keeping and student reports.
Prerequisite: Junior or senior classification.

AGSC 373 Managing Safety in the Agricultural Science Program
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Safety principles and procedures, methods of teaching and motivating students in agricultural mechanics; design for those preparing to teach agricultural science in Texas public schools.
Prerequisite: Junior or senior classification.

AGSC 380 Workshop in Agricultural Science
Credits 1 to 4. 1 to 4 Other Hours.
The study, understanding and solution of human-agricultural problems based on theory learned in the classroom, library, laboratory and fieldwork completed by individuals and teams.
Prerequisite: Junior or senior classification.

AGSC 383 Teaching Agricultural Mechanics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Methods of teaching and motivating students in agricultural mechanics; designed for students preparing to teach agricultural science in Texas public schools.
Prerequisites: Grade of C or better in AGSC 301 and AGSC 373.

AGSC 384 Clinical Professional Experience in AGSC
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Clinical field experience for students preparing to teach agricultural science in public schools of Texas; through first-hand observation, students will study learning theories, individual differences, teaching methods, classroom management, curriculum, school climate and culture, and teacher roles and responsibilities.
Prerequisite: Grade of C or better and concurrent enrollment in AGSC 301; junior or senior classification.

AGSC 402 Designing Instruction for Secondary Agricultural Science Programs
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Theory and practice in designing instruction for secondary agricultural science programs including effective planning and delivery methods; designed for students preparing to teach agricultural science in Texas public schools.
Prerequisites: Grade of C or better in AGSC 384 and concurrent enrollment in AGSC 405; grade of C or better in INST 210 or concurrent enrollment.

AGSC 405 Facilitating Complete Secondary Agricultural Science Programs
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Theory and practice in facilitating secondary agricultural science programs: includes classroom instruction, supervised experience, and youth leadership development; designed for students preparing to teach agricultural science in Texas public schools.
Prerequisites: Grade of C or better in AGSC 384 and concurrent enrollment in AGSC 402; grade of C or better in INST 210 or concurrent enrollment.

AGSC 425 Learner Centered Instruction in Agricultural Science
Credits 3. 3 Lecture Hours.
Preparing curriculum materials for secondary agricultural science and adult education programs.
Prerequisites: Grade of C or better in AGSC 402 and AGSC 405 and concurrent enrollment in AGSC 436, AGSC 481, and AGSC 484.

AGSC 436 Professional Teaching Internship in AGSC
Credits 6. 2 Lecture Hours. 12 Lab Hours.
Planning for and teaching secondary agricultural science in selected high schools in Texas; includes 12 weeks of professional teaching experience under the guidance of a university supervisor and a cooperating teacher in the school.
Prerequisites: Grade of C or better in AGSC 402 and AGSC 405 and concurrent enrollment in AGSC 425, AGSC 481, and AGSC 484.
AGSC 481 Seminar
Credit 1. 1 Lecture Hour.
Review of current literature and research as related to program development in light of legislation and policies affecting education in agriculture.
Prerequisite: Grade of C or better in AGSC 402 and AGSC 405.

AGSC 484 Field Experience
Credits 1 to 6. 1 to 6 Other Hours.
An on-the-job supervised experience program conducted in the area of the student's specialization.
Prerequisites: Grade of C or better in AGSC 402 and AGSC 405 and concurrent enrollment in AGSC 425, AGSC 436, and AGSC 481.

AGSC 485 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Directed individual study of selected problems in agricultural science with emphasis on collection, analysis and presentation of information. May be repeated for credit.
Prerequisite: Junior or senior classification; approval of instructor.

AGSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of agricultural science. May be repeated for credit.
Prerequisite: Approval of department head.

AGSC 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in agricultural science. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification; approval of instructor.

AGSM 125 Introduction to Agricultural Systems Management
Credit 1. 2 Lab Hours.
Introduction to technical management of agricultural systems using management projects presented by agricultural managers from industry; problem definition, information search, idea generation and development of management solutions.
Prerequisite: Freshman or sophomore classification or approval of instructor; majors only.

AGSM 201 Agricultural Energy and Power Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
(AGRI 2301) Agricultural Energy and Power Systems. A study of the types of power and energy sources used in agricultural equipment and systems; management considerations for selecting, operating and maintaining internal combustion engines, electric equipment and motors, and renewables as power sources.

AGSM 284 Internship
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
No Credit. Practical experience working in a professional agricultural systems management setting. May be taken three times.
Prerequisite: Freshman or sophomore classification; approval of the instructor.

AGSM 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Selected problems in any phase of agricultural systems management; credit and specific content dependent upon background, interest, ability and needs of student enrolled; individual consultations and reports required.
Prerequisites: Freshman or sophomore classification; approval of department head.

AGSM 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agricultural systems management. May be repeated for credit.
Prerequisite: Approval of instructor.

AGSM 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in agricultural systems management.
Prerequisites: Freshman or sophomore classification and approval of instructor.

AGSM 301 Systems Analysis in Agriculture
Credits 3. 3 Lecture Hours.
Operations research and systems theory applied to management problems in food and agricultural industries; linear programming, queuing theory, simulation and critical path method; provides the knowledge and computer skills to better manage resources for the evolving agricultural industries.
Prerequisites: Grade of C or better in MATH 140 or MATH 168 and MATH 142 or MATH 151.

AGSM 310 Agricultural Machinery Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Selection of a matched complement of power units and machines for farming operations; consider constraints such as crops, season, weather, personnel and capital; apply systems techniques such as linear programming, optimization, queuing theory and inventory models; utilize available software programs and learn to develop electronic spreadsheets and other customized software.
Prerequisites: AGSM 201; grade of C or better in AGSM 301 or concurrent enrollment; grade of C or better in PHYS 201.

AGSM 315/NFSC 315 Food Process Engineering Technology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elementary mechanics, physical and thermal properties of food and processing materials, heat transfer, mass and energy balances, psychrometrics (properties of air), insulation.
Prerequisites: Grade of C or better in PHYS 201 or PHYS 218, or approval of instructor.
Cross Listing: NFSC 315/AGSM 315.

AGSM 325 Agri-Industrial Applications of Electricity
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elements of electric current generation and transmission, applications of electric heating, lighting and power, wiring, motors, energy rates, meter reading, safety rules and regulations.
Prerequisite: AGSM 201; AGSM majors or minors only.
AGSM 335 Water and Soil Management
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Elementary principles of surface and ground water supply, flood control, water distribution systems and irrigation systems; principles of drainage, soil conservation and erosion control; elementary surveying, chaining, leveling and mapping applied to agricultural and natural resource needs; illustrated by practical examples of terracing and farm pond design.
Prerequisite: Grade of C or better in MATH 140 or MATH 168; grade of C or better in CHEM 101 and CHEM 111, or CHEM 107 and CHEM 117, or CHEM 119; or approval of instructor.

AGSM 337 Technology for Environmental and Natural Resource Engineering
Credits 3. 3 Lecture Hours.
For the nonengineering student in the environmental and management sciences; concentrates on the application of technology for solving local environmental problems while considering global issues; reduction of water, air and hazardous waste pollutants; legislative issues and modeling.
Prerequisites: Grade of C or better in MATH 140 or MATH 168 and MATH 142, or MATH 151 and MATH 152, or AGSM 301.

AGSM 360 Occupational Safety Management
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Safety considerations in the work environment, including safety mandates, safety mission, personal and business liability, fire, chemical, dust, machine noise, personal protective devices; design and implementation of safety programs.
Prerequisite: Junior or senior classification.

AGSM 403 Processing and Storage of Agricultural Products
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Factors influencing the nature of biological materials and the preservation of quality throughout the harvesting, handling and processing system; a systems approach to cereal grains includes principles of drying, quality deterioration, storage, conveying and handling; processing of fiber crops.
Prerequisites: AGSM 310 and AGSM 315/NFSC 315; or approval of instructor.

AGSM 417/NFSC 417 Food Process Engineering Technology II
Credits 3. 3 Lecture Hours.
Applications of basic engineering concepts to understand common unit operations in the food (and related) industry.
Prerequisites: AGSM 315/NFSC 315 or NFSC 315/AGSM 315; approval of instructor.
Cross Listing: NFSC 417/AGSM 417.

AGSM 435 Irrigation Principles and Management
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of irrigation and management for efficient use of water; soil-water-plant relationships; methods of application; power and labor requirements; automated systems and components.
Prerequisites: Grade of C or better in MATH 140 or MATH 168; grade of C or better in CHEM 101 and CHEM 111 or CHEM 119.

AGSM 439 Management of Agricultural Systems I
Credits 3. 3 Lecture Hours.
Application of agricultural systems management principles in solving realistic problems faced by agribusiness managers; project selection from problems posed by biological and agricultural industrial consultants; project feasibility study and outline; management and application philosophy; teamwork and communication, economics; product liability and reliability; standards and codes; goal setting and time management.
Prerequisites: Grade of C or better in AGSM 301; ENGL 210, AGSM 310, and AGSM 325; AGSM 335, AGSM 337 and AGSM 403 or concurrent enrollment; must be taken prior to AGSM 440; AGSM majors only.

AGSM 440 Management of Agricultural Systems II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Management of agricultural systems through team solution of management problems posed by agribusiness managers, farmers, extension specialists and other industry consultants; application of management principles to give experience in solving realistic problems faced by agribusiness managers; critical evaluation of results by students, staff and consultants.
Prerequisites: COMM 203; grade of C or better in AGSM 439; should be taken last spring semester prior to graduation.

AGSM 470 Agricultural Electronics and Control
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Technology of electronic systems in agricultural production and processing, sensors, actuators, and controllers, controller hardware and computer bases.
Prerequisite: AGSM 325; or approval of instructor.

AGSM 473 Project Management for Agricultural Systems Technology
Credits 3. 3 Lecture Hours.
Development of fundamental skill set in project management; basic knowledge of project management methods, tools and techniques; includes organization and life cycle, management processes, integration management, time management, cost management, quality management, communications management, risk management, procurement management, stakeholder management.
Prerequisites: Grade of C or better in AGSM 301; senior classification.

AGSM 477 Air Pollution Control and Regulatory Compliance
Credits 3. 3 Lecture Hours.
Overview of federal and state environmental regulations focusing on permitting requirements for agricultural operations; operation of air pollution abatement systems to include cyclones, bag filters, and scrubbers; dispersion modeling; National Ambient Air Quality Standards.
Prerequisites: Grade of C or better in AGSM 301, or grade of C or better in MATH 168 and MATH 142, or equivalent.

AGSM 481 Seminar
Credit 1. 1 Lecture Hour.
Professional development; ethics; career opportunities and topics of interest related to the practice of agricultural systems management.
Prerequisite: Senior classification.

AGSM 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Practical experience working in a professional agricultural and/or food systems management setting. May be taken three times.
Prerequisites: Junior or senior classification; approval of the instructor.
ALEC 350 Global Agricultural Issues
Credits 3. 3 Lecture Hours.
Review of global agricultural issues (products, environment, people, and culture) affecting international agricultural development; concepts and principles underlying the processes of teaching, research, and service opportunities in international agricultural development and education situations.
Prerequisites: Junior or senior classification or approval of instructor.

ALEC 380 Workshop in Agricultural Leadership, Education, and Communications
Credits 1 to 4. 1 to 4 Lecture Hours.
The study, understanding and solution of human-agricultural problems based on theory learned in the classroom, library, laboratory and fieldwork completed by individuals and teams. May be taken three times for credit.
Prerequisite: Junior or senior classification.

ALEC 399 High-Impact Experience
Credits 0. 0 Lecture Hours.
Participation in an approved high-impact learning practice; documentation and self-assessment of learning experience.
Prerequisites: Junior or senior classification; or approval of instructor.

ALEC 412 Technology-Enhanced Instructional Design Strategies for Agriculture
Credits 3. 3 Lecture Hours.
Techniques and applications of technology to enhance instruction of agricultural topics; instructional design principles, instructional strategies, technological tools; the design, development and delivery of technology-enhanced instruction for agriculture and the life sciences. Not intended for majors in education.
Prerequisite: Junior or senior classification.

ALEC 425 Principles of Program Evaluation
Credits 3. 3 Lecture Hours.
Evaluation principles applied to educational programs in agriculture and life science; basic understanding of skills in program evaluation processes, concepts, and theories; develop expertise needed to design and conduct evaluations of youth and adults in extension, community, and school-based programs.
Prerequisite: Junior or senior classification.

ALEC 450 Global Social Justice Issues in Agriculture
Credits 3. 3 Lecture Hours.
An in-depth evaluation of global social justice issues and leadership skills necessary to effectively solve and manage issues in agricultural development; topics include awareness, knowledge and understanding of teaching, research and service opportunities for those seeking careers in global social justice and agricultural leadership.
Prerequisite: Junior or senior classification or approval of instructor.

ALEC 460 Applying International Development Theories in Agriculture
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Practical application of agricultural development theories (geographical, communal, societal, etc.) in real-world settings; high-impact learning, research skill development, international travel or participation in a service-learning project with an international organization.
Prerequisites: Junior or senior classification.

ALEC 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of selected problems in international agriculture leadership, education, and communications.
Prerequisites: Junior or senior classification; approval of department advisor.

ALEC 489 Special Topics in... Special topics in an identified area of international agriculture leadership, education, and communications. May be taken four times for credit.
Prerequisite: Junior or senior classification.

AGSM 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Selected problems in any phase of agricultural systems management; credit and specific content depend on background and interest of student; individual consultations and reports required.
Prerequisites: Junior classification; approval of department head; 2.0 GPR.

AGSM 489 Special Topics in... Special topics in an identified area of agricultural systems management. May be repeated for credit.

AGSM 491 Research
Credits 0 to 3. 0 to 3 Lecture Hours.
Research conducted under the direction of faculty member in agricultural systems management. May be repeated 2 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

ALEC - Ag Leadership, Ed & Comm (ALEC)

ALEC 201 Foundations of Agricultural Leadership, Education and Communications
Credits 2. 2 Lecture Hours.
Survey of historical perspectives and future career opportunities in the field of agricultural leadership, education and communications; addresses undergraduate degree planner and departmental high-impact learning experiences; explores field of study standards for communication and publication; investigates learning preferences and academic support systems.
Prerequisites: Freshman or sophomore classification; AGCJ, AGSC, ALED or USAL-LED majors.

ALEC 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected issue in field of agricultural leadership, education, and communications with emphasis on collection, synthesis and interpretation of information. May be taken four times for credit.
Prerequisite: Approval of department advisor.

ALEC 289 Special Topics in... Special topics in an identified area of agricultural development. May be repeated for credit.
Prerequisite: Approval of department advisor.

ALEC 291 Research
Credits 1 to 4. 1 to 4 Lecture Hours.
Research conducted under the direction of faculty member in agricultural communications and journalism. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of department advisor.

ALEC 300 Global Agricultural Issues
Credits 3. 3 Lecture Hours.
Review of global agricultural issues (products, environment, people, and culture) affecting international agricultural development; concepts and principles underlying the processes of teaching, research, and service opportunities in international agricultural development and education situations.
Prerequisites: Junior or senior classification or approval of instructor.
ALEC 491 Research
Credits 1 to 4. 1 to 4 Lecture Hours.
Research conducted under the direction of faculty member in international agricultural leadership, education, and communications. May be taken three times for credit.
Prerequisites: Junior or senior classification; approval of department advisor.

ALEC 494 Internship
Credits 1 to 6. 1 to 6 Other Hours.
Supervised internship and independent study related to the student’s professional interest. May be taken six times for credit.
Prerequisites: Junior or senior classification; approval of departmental advisor.

ALED - Ag Leadership & Dev (ALED)

ALED 125 Leadership Learning Community I
Credit 1. 1 Lecture Hour.
Offered to students living in the Freshmen Leadership Living Learning Community; fundamentals of developing personal leadership while participating in co-curricular activities; emphasis on the relational model of leadership and global perspective building.
Prerequisites: Freshman classification or approval of advisor.

ALED 202 Introduction to Leadership
Credits 3. 3 Lecture Hours.
Introduction to the academic and scholarly development of leadership theory and leadership models; investigation of leadership theory when applied to a specific context; development of a leadership definition as an inquiry investigation.

ALED 222 Practicing Diverse Leadership and Cultural Exploration
Credits 3. 3 Lecture Hours.
Social theories and historical perspectives of leadership, particularly in terms of class, gender, race, ethnicity, and nationality; multidisciplinary approach to the study of leadership with a special emphasis on culture completed through readings, class lectures, films, group projects and discussions.
Prerequisite: Membership in the Multicultural Services Culture Leadership, Understanding and Exploration for Sophomores Learning Community.

ALED 223 Practicing Diverse Leadership and Cultural Exploration
Credits 3. 3 Lecture Hours.
Social theories and historical perspectives of leadership, particularly in terms of class, gender, race, ethnicity, and nationality; a multidisciplinary approach to the study of leadership with a special emphasis on culture through experiential learning.
Prerequisites: ALED 222 and membership in the Multicultural Services Cultural Leadership, Understanding, and Exploration for Sophomores Learning Community.

ALED 225 Leadership Learning Community II
Credit 1. 1 Lecture Hour.
Offered to students living in the Freshmen Leadership Living Learning Community; fundamentals of peer mentoring while participating in co-curricular activities; emphasis on building supportive relationships on a college campus.
Prerequisites: Freshman classification or approval of instructor; on-campus residence; ALED 125.

ALED 285 Directed Studies in Agricultural Leadership and Development
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected issue in agricultural leadership and development with emphasis on collection, synthesis and interpretation of information.
Prerequisite: Approval of department advisor.

ALED 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of agricultural development. May be repeated for credit.
Prerequisite: Approval of department advisor.

ALED 291 Research
Credits 1 to 4. 1 to 4 Lecture Hours.
Research conducted under the direction of faculty member in agricultural development. May be repeated 2 times for credit. Please see academic advisor in department.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ALED 301 Personal Leadership Education
Credits 3. 3 Lecture Hours.
Development, application and reflection of personal leadership capabilities through self-assessments and experiential learning activities; development of leadership identity through personal leadership inventories including strengths, personality type, values, vision and emotional intelligence.
Prerequisite: ALED or USAL-LED major; junior, or senior classification; grade of C or better in ALED 202.

ALED 308 Cultural Identity Development
Credits 3. 3 Lecture Hours.
Introduction to the academic and scholarly development of leadership theory and leadership models; investigation of leadership theory when applied to a specific context; development of a leadership definition as an inquiry investigation.

ALED 313 Culture Theory, Orientation and Adaptation
Credits 3. 3 Lecture Hours.
Evaluation of culture theory, elements and manifestations of culture, assessing cultural norms of society or groups, adaptation to a new culture for effective leadership.
Prerequisite: Junior or senior classification.

ALED 324 Leadership and Identity Development
Credits 3. 3 Lecture Hours.
Identity development and leadership; dialogue about the implications of their multiple identities in the classroom organizations and in their careers; self-reflections concerning leadership development and active community-based service learning.
Prerequisites: Junior or senior classification.

ALED 339 Agricultural Extension Philosophy and the Land-Grant Mission
Credits 3. 3 Lecture Hours.
Philosophy of Cooperative Extension and roles within the land-grant system; history, organization, program areas and guiding principles; relationship with the teaching and research branches of the land-grant system.
Prerequisite: Junior or senior classification or approval of instructor.

ALED 340 Survey of Leadership Theory
Credits 3. 3 Lecture Hours.
Exploration of leadership as a scholarly discipline; critical analysis of and evolution of multiple leadership models and theories; synthesis of leadership theory through experiential learning; integration of course content with personal experiences.
Prerequisites: ALED or USAL-LED major, junior or senior classification.
ALED 341 Team Learning
Credits 3.3 Lecture Hours.
Team development theory; emphasizes research on team member behaviors, team decision making models and positive conflict in team environments.
Prerequisites: Grade of C or better in ALED 340; junior or senior classification.

ALED 344 Leadership of Volunteers
Credits 3.3 Lecture Hours.
Principles, theories, concepts, techniques and applications for leading volunteers in agriculture and life sciences; nonprofit, governmental and community organizations.
Prerequisites: Grade of C or better in ALED 340; junior or senior classification.

ALED 380 Workshop in Agricultural Leadership and Development
Credits 1 to 4.1 to 4 Lecture Hours.
The study, understanding and solution of human-agricultural problems based on theory learned in the classroom, library, laboratory and fieldwork completed by individuals and teams.
Prerequisite: Junior or senior classification.

ALED 400 Public Leadership Development
Credits 3.3 Lecture Hours.
Major issues in the study of public leadership, development of leadership skills, and field investigation done in conjunction with local public leaders.
Prerequisites: Junior classification and approval of instructor.

ALED 401 Advanced Professional Leadership Development
Credits 3.3 Lecture Hours.
Investigation of the best practices of successful leaders representing various organizational contexts; merging of scholarly mastery of theory with practice.
Prerequisites: Selection for ALED Leadership Fellows Program; grade of C or better in ALED 340 or ALED 301; junior or senior classification.

ALED 422 Cultural Pluralism in Agriculture
Credits 3.3 Lecture Hours.
Selected topics on the diversity of human resources in agriculture; emphasis on working in a multicultural society and developing sensitivity toward different cultures; explores the interrelationships between the contributions of diverse individuals and the state, nation and global success of agriculture.
Prerequisite: Junior or senior classification.

ALED 424 Applied Ethics in Leadership
Credits 3.3 Lecture Hours.
Exploration of ethical and moral theories and the application to multiple leadership contexts and situations.
Prerequisites: Junior or senior classification.

ALED 426 Leading and Training Adult Learners
Credits 3.3 Lecture Hours.
Planning educational training programs, including leadership programs, to implement with an adult audience; includes needs assessment, instructional design, lesson plan development, evaluation and other items related to leading adults.
Prerequisites: Grade of C or better in ALED 340, junior or senior classification.

ALED 440 Leading Change
Credits 3.3 Lecture Hours.
Analysis of change models and theories and the leadership application on individual, organizational and societal changes.
Prerequisite: Junior or senior classification; grade of C or better in ALED 202.

ALED 441 Agricultural Extension Organization and Methods
Credits 3.3 Lecture Hours.
Cooperative extension in agriculture and home economics; development, objectives, organization, program building and methods of teaching.
Prerequisite: Junior or senior classification.

ALED 481 Seminar
Credits 3.3 Lecture Hours.
Individual and team approaches to the review of leadership concepts and their application; observation and discussion of current leadership trends and issues.
Prerequisites: ALED or USAL-LED major; senior classification; grade of C or better in ALED 202, ALED 301, ALED 340, ALED 440, and ALED 424.

ALED 485 Directed Studies in Agricultural Leadership Development
Credits 1 to 4.0 to 4 Lecture Hours. 1 to 4 Other Hours.
Directed individual study of selected problems in agricultural leadership and development with emphasis on collection, analysis and presentation of information.
Prerequisites: Junior or senior classification and approval of instructor.

ALED 489 Special Topics in...
Credits 1 to 4.1 to 4 Lecture Hours.
Special topics in an identified area of agricultural development. May be repeated for credit.
Prerequisite: Junior or senior classification.

ALED 491 Research
Credits 1 to 4.1 to 4 Lecture Hours.
Research conducted under the direction of faculty member in agricultural development. May be repeated 2 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded. Please see academic advisor in department.
Prerequisites: Junior or senior classification; approval of instructor.

ALED 494 Internship
Credits 1 to 6.1 to 6 Other Hours.
Supervised internship and independent study related to student’s professional interest.
Prerequisites: Grade of C or better in ALED 301; junior or senior classification; 2.0 GPR; approval of instructor.

ANSC - Animal Science (ANSC)

ANSC 101 Introductory Seminar for Animal Science
Credit 1.1 Lecture Hour.
Orientation to programs and opportunities in the Department of Animal Science, to create an awareness of campus resources for financial aid and tutoring, to develop goals for college career and to initiate planning for internship and job opportunities.
ANSC 107 General Animal Science
Credits 3. 3 Lecture Hours.
(AGRI 1319, 1419*) General Animal Science. General understanding of all aspects of the livestock industry; basic agriculture nomenclature of breeds, species and types of livestock; reproduction, nutrition, genetics, food safety, growth and development of beef cattle, sheep, horses, swine, dairy cattle and poultry; brief description of the companion animal industry.

ANSC 108 General Animal Science Laboratory
Credit 1. 2 Lab Hours.
(AGRI 1119, AGRI 1419*) General Animal Science Laboratory. General overview of the beef cattle, dairy cattle, horse, sheep, swine and poultry industries; information on major breeds, anatomy, phenotypic and genotypic selection criteria and production practices for each species; major disciplines of the animal industry including breeding and genetics, nutrition, reproductive physiology and products; utilization of live animals, models and feedstuffs/equipment to enhance experiential learning approach.

Prerequisite: Concurrent enrollment in ANSC 107.

ANSC 110 Animal Production Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Transformative experiences related to beef cattle, dairy cattle, equine, sheep, swine, goats, companion animals, meats, food products and food safety; exposure to available animal science careers and potential areas of future/additional study.

Prerequisites: Grade of C or better in ANSC 107 and ANSC 108.

ANSC 113 Farm Animal Biosystems
Credits 2. 2 Lecture Hours.
Information regarding the processes by which networks of cells are controlled and coordinated within the farm animal.

Prerequisites: Grade of C or better in ANSC 101, ANSC 107 and ANSC 108.

ANSC 117 Texas Barbecue
Credit 1. 1 Lecture Hour.
Survey, demonstration and participation in preparation techniques of Texas barbecue; comparison of regional and international barbecue methods.

Prerequisite: First year students.

ANSC 201 Introductory Equine Care and Use
Credits 2. 2 Lecture Hours.
Survey of basic equine care and use; breeds of horses and their use; care and maintenance of equines including feeding, health care, housing and equipment.

ANSC 207 Art and Heritage of Livestock
Credits 3. 3 Lecture Hours.
Using art as a venue to understand the legacy and heritage of livestock production and livestock's contribution to civilization and society; from man as hunter, agriculturalist, and finally, as industrialist; from cave paintings to Russell and Remington; history of the effects of painting, poetry, architecture and sculpture on agriculture.

ANSC 210 Companion Animal Science
Credits 3. 3 Lecture Hours.
Types, care, physiology, common diseases and common treatments of companion animals (dogs, cats, exotic pets); careers including biomedical research; solutions for problems such as behavior and overpopulation.

Prerequisite: ANSC 107.
ANSC 305 Animal Breeding
Credits 3. 2 Lecture Hours. 2 Lab Hours.
A systems approach to selection and mating of livestock; gene frequency, heritability, relationship, inbreeding, linebreeding, heterosis, crossbreeding, direct and correlated response to selection, and use of pedigree, family, progeny testing and indices for selection.
Prerequisites: Grade of C or better in ANSC 111 and ANSC 113; GENE 301; STAT 301, STAT 302, STAT 303, or ANSC 309; junior classification or approval of instructor.

ANSC 307/NFSC 307 Meats
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integrated studies of the meat animal processing sequence regarding the production of meat-type animals and the science and technology of their conversion to human food.
Prerequisites: Grade of C or better in ANSC 111 and ANSC 113; junior classification or approval of instructor.

ANSC 309 Applied Animal Record Keeping
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Keeping, analyzing and interpreting records to make fully-informed decisions on a day-to-day basis for production and management scenarios; practical application unique to animal science and meat processing.
Prerequisite: Junior or senior classification.

ANSC 310 Animal Nutrition and Feeding
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Nutritional functions of water, protein, carbohydrates, fats, minerals and vitamins and their digestion, absorption, use and excretion; energy, protein and forage feedstuff characteristics and processing; nutritional requirements, ration formulation and feeding methods for farm animals; general course for non-animal science majors.
Prerequisite: Junior or senior classification or approval of instructor; restricted to students in the college of agriculture and life sciences.

ANSC 311 Equine Behavior and Training
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Equine behavior and application of principles of psychology to training horses; systematic approaches to horse training emphasizing principles of learning; equipment and its use; stable management and preparation of horses for competition; separate laboratory sections for students with varying backgrounds.
Prerequisite: Junior or senior classification.

ANSC 312 Intermediate Horse Training and Sales
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Advanced scientific methods and techniques for execution of equine performances in hunter, dressage and stock horse events; anatomical, physiological and psychological implications; preparation of horses and riders.
Prerequisite: Junior or senior classification.

ANSC 314 Wool Evaluation and Grading
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Evaluation of U.S.D.A. grades for wool and mohair; steps involved in processing raw wool into finished fabric; genetic and environmental factors affecting quality characteristics of wool and mohair; grading, evaluation and selection of fleeces for economic value; oral and written defense of judgments.

ANSC 315 Livestock Judging
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Selection and evaluation of beef cattle, swine, sheep and horses. Ability to present accurate, clear and concise oral and written reasons stressed.
Prerequisites: ANSC 107 and ANSC 108; junior or senior classification.

ANSC 316 Equine Selection and Judging
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Detailed evaluation and comparison of horses; selection and critique of athleticism and performance in horses; industry trends addressed; oral and written defense of judgments also explained and expected; required for participation on the Horse Judging Team.
Prerequisite: Junior or senior classification or approval of instructor.

ANSC 317 Meat Selection, Evaluation and Grading
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Selection and grading of carcasses and wholesale cuts of beef, pork and lamb; principles of evaluation included in carcass contests and progeny testing.
Prerequisites: ANSC 107 and ANSC 108.

ANSC 318 Animal Feeds and Feeding
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Scientific approaches associated with precision feeding and diet formulation to match nutrient availabilities of feedstuffs with requirements of various classes of livestock species; emphasis on cost-effective feeding strategies to optimize animal productivity, and end-product quality and safety, while mitigating environmental impacts and enhancing animal health and welfare.
Prerequisite: Grade of C or better in ANSC 111, ANSC 113 and ANSC 303/NFSC 303; junior classification or approval of instructor.

ANSC 320 Animal Nutrition and Feeding
Credits 3. 3 Lecture Hours.
Nutritional functions of water, protein, carbohydrates, fats, minerals and vitamins and their digestion, absorption, use and excretion; energy, protein and forage feedstuff characteristics and processing; nutritional requirements, ration formulation and feeding methods for farm animals; general course for non-animal science majors.
Prerequisite: Junior or senior classification or approval of instructor; restricted to students in the college of agriculture and life sciences.

ANSC 325 Advanced Livestock and Product Evaluation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Advanced evaluation of cattle, swine, sheep and equine; products produced or associated with each species; advanced oral or written defense of judgments associated with changing trends in these industries. May be repeated three times for credit.
Prerequisite: Junior or senior classification.

ANSC 326/NFSC 326 Food Bacteriology
Credits 3. 3 Lecture Hours.
Microbiology of human foods and accessory substances; raw and processed foods; physical, chemical and biological phases of spoilage; standard industry techniques of inspection and control.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: NFSC 326/ANSC 326.

ANSC 327/NFSC 327 Food Bacteriology Lab
Credit 1. 3 Lab Hours.
Laboratory to accompany ANSC 326/NFSC 326 or NFSC 326/ANSC 326.
Cross Listing: NFSC 327/ANSC 327.

ANSC 333 Reproduction in Farm Animals
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Physiological principles of reproductive processes in cattle, sheep, swine, and horses including sperm and ova production, estrus, fertilization, gestation and parturition.
Prerequisites: Grade of C or better in ANSC 111 and ANSC 113; junior classification or approval of instructor.

ANSC 337 Meat Merchandising
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Steps of meat processing and merchandising of retail and foodservice; merchandising practices such as selection, identification, fabrication, pricing, packaging and distribution.
Prerequisites: ANSC 307/NFSC 307; junior or senior classification.
ANSC 351 Current issues in Animal Agriculture
Credits 3. 3 Lecture Hours.
Preparation to project a professional image and the use of communication skills to describe animal agriculture; converse about the strengths and weaknesses of animal agriculture.
Prerequisite: Junior or senior classification.

ANSC 399 Animal Science Experience
Credits 0. 0 Lecture Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from animal science body of knowledge; documentation and self-assessment of learning experience at mid and final curriculum points.
Prerequisite: Junior or senior classification.

ANSC 402 Exploring Animal Industries
Credits 2. 2 Lecture Hours.
Instruction for students nearing the end of their undergraduate studies; theoretical understanding of organizations and human resources available to students; awareness and understanding of the job application process, resume and cover letter writing; networking, professional and business attire; ethics related to job searches and retention.
Prerequisite: Junior or senior classification.

ANSC 404 Behavior and Management of Domestic Animals
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Application of behavior of cattle, horses, sheep, goats and swine to their management; basic principles, physiology of behavior, perception, training, predators, use of dogs in livestock production, stress and animal welfare.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318 and ANSC 333; junior or senior classification or approval of instructor.

ANSC 406 Beef Cattle Production and Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Principles involved for profitable and sustainable, integrated beef cattle production as considered from the perspective of the U.S. cow-calf sector and from an overall systems-based approach.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318 and ANSC 333; junior or senior classification or approval of instructor.

ANSC 408 Management of Stocker and Feedlot Cattle
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Basic principles involved in feeding, management, marketing and disease control of stocker and feeder cattle from weaning through slaughter for economical production of beef.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318, and ANSC 333; STAT 301, STAT 302, STAT 303, or ANSC 309; junior or senior classification.

ANSC 411 Equine Nutrition and Health
Credits 3. 3 Lecture Hours.
Designed to provide knowledge of nutrition and health in the horse; gastrointestinal anatomy, nutrient utilization, feeding management and nutritional requirements; metabolic diseases, infectious diseases, internal and external parasites, and herd health management.
Prerequisite: Junior or senior classification.

ANSC 412 Swine Production and Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Basic principles and their practical application in efficient, economical pork production; all areas of production—breeding and selection, nutrition, housing and equipment, marketing, herd health and economic management.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318, and ANSC 333; junior or senior classification or approval of instructor.

ANSC 414 Sheep and Goat Production and Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
In-depth hands-on experiences related to sheep and goat production and management providing an advanced understanding of small ruminant production.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318, and ANSC 333; junior or senior classification or approval of instructor.

ANSC 415 Brazil: Comparative Ruminant Production
Credits 3. 3 Lecture Hours.
Contrast two scenarios of ruminant production in Brazil; the effects of globalization on the two different production systems.
Prerequisites: ANSC 303/NFSC 303 or ANSC 320 or approval of instructor.

ANSC 418 Equine Exercise Physiology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Changes within the systems of the horse resulting from the physical stresses of exercise, adaptations of systems in response to a training regimen; methodology for measuring improvement in physical condition; foundation for development of training programs for horses in moderate, intense or prolonged performance activities.
Prerequisites: Junior or senior classification and approval of instructor.

ANSC 419 Equine Reproduction
Credits 3. 3 Lecture Hours.
Reproductive anatomy of the stallion and mare; industry and scientific practices; comprehensive analysis of the body of scientific research; development of critical thinking ability to assess and discuss previous research in comparison of needed research.
Prerequisites: ANSC 201 and junior or senior classification or approval of instructor.

ANSC 420 Equine Production and Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Application of biological and biotechnological principles and concepts in areas including genetics, breeding, nutrition, reproduction, immunology, parasitology, anatomy and exercise physiology to efficient production of horses for market; management of equine enterprises.
Prerequisites: ANSC 201 and ANSC 333; junior or senior classification.

ANSC 423 Issues in the Equine Industry
Credits 3. 3 Lecture Hours.
Integration of cumulative knowledge acquired in the equine science curriculum to demonstrate critical thinking and communication skills to address critical issues in the equine industry.
Prerequisites: Junior or senior classification; approval of instructor.
ANSC 429 Dairy Production Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Major principles for profitable and sustainable dairy production for a commercial dairy operation; provides hands-on experiences in dairy cattle management; develops critical thinking skills to make dairy cattle management decisions.
Prerequisites: Grade of C or better in ANSC 318 and ANSC 333; junior or senior classification.

ANSC 434 Animal Reproduction Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Available and emerging technologies including control of ovulation, artificial insemination, embryo manipulation and transfer, in vitro fertilization and animal cloning for managing reproduction of farm animals; hands-on sessions using available technologies including artificial insemination of cattle.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318 and ANSC 333; junior or senior classification or approval of instructor.

ANSC 436 Texas Panhandle Beef Production Tour
Credits 2. 2 Lecture Hours.
Facets of beef production from cow/calf operations to retail product; experiential knowledge of technologies and practices to enhance efficiency to enlighten students regarding the array of career opportunities in the beef production industry.
Prerequisites: Junior or senior classification or approval of instructor.

ANSC 437 Marketing and Grading of Livestock and Meats
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Study of USDA livestock and carcass grades; understanding current market trends for beef, pork, lamb and goat; review of branded and certified programs; principles applied in contracting, breakeven determination, hedging, and grid or formula pricing.
Prerequisites: Junior or senior classification.

ANSC 439 Feedlot Risk Management
Credits 2. 2 Lecture Hours.
Advanced study of livestock marketing techniques; cash sales, video sales, futures and options markets, forward contracting; problem solving in real-time livestock marketing situations; risk of ownership of hypothetical livestock operations.
Prerequisites: junior or senior classification or approval of instructor.

ANSC 447 Advanced Meat Science and Technology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Advanced basic and applied studies of meat science and/or technology utilizing the underlying physiological and structural components for conversion to human food; understanding the influence of pre- and post-harvest factors on meat quality, composition, color, packaging, sensory and preparation factors; applying scientific and business principles to manufacturing and process flow of commercial meat food products and demonstrating knowledge of these principles through development of meat products.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318 and ANSC 333; GENE 301; STAT 301, 302, 303, or ANSC 309; junior or senior classification or approval of instructor.

ANSC 457/NFSC 457 Hazard Analysis and Critical Control Point System
Credits 3. 3 Lecture Hours.
Hazard Analysis and Critical Control Point (HACCP) principles specifically related to meat and poultry; microbiological and process overviews; good manufacturing practices and standard operating procedures development.
Prerequisite: NFSC 326/ANSC 326 or approval of instructor.
Cross Listing: NFSC 457/ANSC 457.

ANSC 467 Processed Meat Food Operations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of scientific and business principles to manufacturing and process flow of commercial meat food products.
Prerequisites: ANSC 307/NFSC 307 or NFSC 307/ANSC 307 or approval of department head.

ANSC 470/NFSC 470 Quality Assurance for the Food Industry
Credits 3. 3 Lecture Hours.
Principles of food system process control including statistical process control (SPC) and the tools required to assure uniform communication and understanding of quality assurance systems.
Prerequisite: Junior or senior classification.
Cross Listing: NFSC 470/ANSC 470.

ANSC 481 Seminar
Credit 1. 1 Lecture Hour.
Review of literature and research problems related to the livestock and food industries; preparation of a technical report including an oral presentation supported by a written technical paper.
Prerequisite: Senior classification.

ANSC 484 Livestock Practicum
Credit 1. 2 Other Hours.
Provides an opportunity to learn skills required in livestock production; planned for students who have had limited farm and ranch experience in one or more species.
Prerequisite: Junior or senior classification in animal science or approval of instructor.

ANSC 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of selected problem in field of animal science.
Prerequisites: Junior or senior classification; written approval of professor supervising the activity; 2.0 GPR in major and overall.

ANSC 487/NFSC 487 Sensory Evaluation of Foods
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of sensory science principles and practices to food systems including an understanding of discriminative, descriptive and consumer sensory techniques.
Prerequisites: CHEM 222 or CHEM 228; junior or senior classification.
Cross Listing: NFSC 487/ANSC 487.

ANSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 8 Lab Hours.
Selected topics in an identified area of animal science. May be repeated for credit.
Prerequisite: Junior or senior classification.
ANSC 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in animal science. May be repeated 3 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisite: Junior or senior classification and approval of instructor; 2.0 GPR in major and overall.

ANSC 494 Animal Science Internship
Credits 0 to 5. 0 to 5 Other Hours.
Independent study and supervised field experience related to the student's professional interest.
Prerequisites: Junior or senior classification or approval of instructor; 2.0 GPR in major and overall.

ANSC 495 International Agriculture and Animal Production
Credits 3. 3 Lecture Hours.
Study of international agriculture and animal production in the world market; impact on foreign economies and culture; considerations of import and export marketing on products to and from the U.S. to provide students the exposure to international economies and cultures; study abroad.
Prerequisites: Grade of C or better in ANSC 107 or approval of instructor.

ANSC 498 Animal Science Capstone
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Senior capstone project for students preparing to enter a career related to animal science or a professional school; individual projects based on a self-selected topic in animal science; includes a paper containing both translational and technical descriptions plus statements regarding the expected financial and social impacts of selected topic.
Prerequisites: Grade of C or better in ANSC 399 and one from the following: ANSC 404, ANSC 406, ANSC 408, ANSC 412, ANSC 414, ANSC 420, ANSC 434, ANSC 447 or DASC 418; junior or senior classification or approval of instructor.

ANTH - Anthropology (ANTH)

ANTH 201 Introduction to Anthropology
Credits 3. 3 Lecture Hours.
(ANTH 2346, HUMA 2323) Introduction to Anthropology. An introduction to the discipline of anthropology through the examination of its four subfields: archaeology, physical anthropology, sociocultural anthropology and linguistics; also taught at Qatar campus.

ANTH 202 Introduction to Archaeology
Credits 3. 3 Lecture Hours.
(ANTH 2302) Introduction to Archaeology. An introduction to the study of the human past through the retrieval, analysis, and interpretation of material remains; also taught at Galveston campus.

ANTH 204 The Prehistoric World
Credits 3. 3 Lecture Hours.
Exploration of the development of human societies and world prehistory from the beginnings of humanity more than two million years ago to emergence of complex civilizations.

ANTH 205 Peoples and Cultures of the World
Credits 3. 3 Lecture Hours.
Survey of human cultures around the world using case studies of customs and cultural organization; case studies exemplifying contrasting types of cultures and societies.

ANTH 210 Social and Cultural Anthropology
Credits 3. 3 Lecture Hours.
(ANTH 2351) Social and Cultural Anthropology. Evolution of cultures; differences, similarities and effects of material and non-material culture on economic, social and political organization; also taught at Galveston campus.

ANTH 222 Cross Cultural Competency
Credits 3. 3 Lecture Hours.
Development of skills vital for effective engagement in an increasingly diverse and interconnected world; personal awareness of biases, attitudes, values, beliefs and ways of knowing; exploration of the impact of culture on our ability to think critically and communicate effectively. Must be taken on a satisfactory/unsatisfactory basis.

ANTH 225 Introduction to Biological Anthropology
Credits 3. 3 Lecture Hours.
(ANTH 2301, 2401*) Introduction to Biological Anthropology. Study of human biology including an examination of evolutionary processes acting on human populations; human genetics; non-human primate anatomy, classification and ecology of primates; the primate paleontological record, and human variation and adaptation.
Prerequisites: Concurrent registration in ANTH 226 recommended; also taught at Galveston campus.

ANTH 226 Introduction to Biological Anthropology Laboratory
Credit 1. 3 Lab Hours.
(ANTH 2101, 2401*) Introduction to Biological Anthropology Laboratory. Exploration of basic evolutionary principles through population genetics; hands-on exposure to the fossils of primate and human evolution along with opportunity to measure, compare, contrast and observe trends that have occurred throughout the Cenozoic era.
Prerequisites: Concurrent registration in ANTH 225 is recommended; also taught at Galveston campus.

ANTH 229 Introduction to Folklore
Credits 3. 3 Lecture Hours.
Study of folklore through selected examples of traditional cultures, their beliefs, customs and art forms such as: tales, folksongs, proverbs, riddles and material culture.

ANTH 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
For individual research in anthropology on subjects not included in established courses. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ANTH 289 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of anthropology. May be repeated for credit.

ANTH 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Anthropology. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ANTH 300 Cultural Change and Development
Credits 3. 3 Lecture Hours.
Anthropological strategies for the study of cultural change and the implication of these strategies for the development of Western and non-Western societies.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 301</td>
<td>Indians of North America</td>
<td>3.0</td>
<td>Native North American cultures from the Arctic to Mesoamerica; their origins, cultures prior to extensive acculturation and their contemporary situations.</td>
</tr>
<tr>
<td>ANTH 302</td>
<td>Archaeology of North America</td>
<td>3.0</td>
<td>Overview of archaeology and prehistory of North America from the arrival of humankind through the development of agriculture to Euro-American contact.</td>
</tr>
<tr>
<td>ANTH 304</td>
<td>Archaeology Roadshow</td>
<td>3.0</td>
<td>Interdisciplinary field-trip in the archaeology and paleoecology of a specific region; high-impact learning experiences in a field setting. May be repeated two times for credit.</td>
</tr>
<tr>
<td>ANTH 305</td>
<td>Fundamentals of Anthropological Writing</td>
<td>1.0</td>
<td>Basic types of writing expected of anthropology students; emphasis on the subject matter of an upper-division anthropology course in which the student is currently enrolled.</td>
</tr>
<tr>
<td>ANTH 308</td>
<td>Archaeology of Mesoamerica</td>
<td>3.0</td>
<td>Development of Indian civilizations in Mexico and Guatemala, including prehistory of the Olmec, Maya, Aztec and other regional cultures to the time of the Spanish conquest.</td>
</tr>
<tr>
<td>ANTH 312</td>
<td>Fossil Evidence of Human Evolution</td>
<td>3.0</td>
<td>Detailed review of fossil antecedents of humans including theoretical implications for an understanding of human evolution.</td>
</tr>
<tr>
<td>ANTH 313</td>
<td>Historical Archaeology</td>
<td>3.0</td>
<td>Use and methods of historical archaeology in locating, documenting, restoring and preserving our historical resources; also taught at Galveston campus.</td>
</tr>
<tr>
<td>ANTH 316</td>
<td>Nautical Archaeology</td>
<td>3.0</td>
<td>Nautical Archaeology Underwater shipwrecks, sunken harbors, and other submerged evidence of human activities; relationship to cultural geography in general; problems of diving technology, surveying and preservation; relevance to modern problems.</td>
</tr>
<tr>
<td>ANTH 317/RELS 317</td>
<td>Introduction to Biblical Archaeology</td>
<td>3.0</td>
<td>Application of archaeology in biblical research; basic overview of the material cultures that are the setting for the biblical narratives. Cross Listing: RELS 317/ANTH 317.</td>
</tr>
<tr>
<td>ANTH 318</td>
<td>Nautical Archaeology of the Americas</td>
<td>3.0</td>
<td>Seafaring in the Americas from the 16th to the 20th centuries based on shipwreck archaeology; ship construction, exploration, commerce, naval warfare and related activity; influence of seafaring on the cultures, economics and history of the Western Hemisphere; also taught at Galveston campus.</td>
</tr>
<tr>
<td>ANTH 323</td>
<td>Nautical Archaeology of the Mediterranean</td>
<td>3.0</td>
<td>The archaeology of ancient seafaring in the Mediterranean from the Stone Age through the Roman Empire.</td>
</tr>
<tr>
<td>ANTH 324/MUSC 324</td>
<td>Music in World Cultures</td>
<td>3.0</td>
<td>Examination of music from an ethnomusicological perspective focusing on musical performance and the complex interrelationship of music to culture, society and daily life; examination of music from a variety of cultures through a series of case studies.</td>
</tr>
<tr>
<td>ANTH 330</td>
<td>Field Research in Anthropology</td>
<td>1.0</td>
<td>Training for students in formulating and solving anthropological problems through field research; problem oriented field research under supervision.</td>
</tr>
<tr>
<td>ANTH 335</td>
<td>Cultures of Central Asia</td>
<td>3.0</td>
<td>Study of anthropological research in Central Asia: ecological adaptations; colonialism and post-colonialism; ethnic politics and ethnic conflict; religion and identity; gender and family; globalization and modernization.</td>
</tr>
<tr>
<td>ANTH 340/RELS 340</td>
<td>Folklore and the Supernatural</td>
<td>3.0</td>
<td>Traditional expressions of the supernatural such as superstition, belief tale and divination classified as folklore genres and their relationships to the cultures in which they develop; theories drawn from anthropology, folklore and related social sciences.</td>
</tr>
<tr>
<td>ANTH 350</td>
<td>European Archaeology</td>
<td>3.0</td>
<td>Overview of archaeology and prehistory of Europe from the evolution of the hominids to the development of agriculture and the rise of civilization; also taught at Galveston campus.</td>
</tr>
<tr>
<td>ANTH 351</td>
<td>Classical Archaeology</td>
<td>3.0</td>
<td>Origins and spread of Western civilization through the material remains of Minoan, Mycenaen, Etruscan, and early Greek and Roman cultures.</td>
</tr>
</tbody>
</table>
ANTH 353/CLAS 353 Archaeology of Ancient Greece
Credits 3. 3 Lecture Hours.
Archaeology of ancient Greece from the Stone Age until the ascent of Rome in the Hellenistic Period; remains of ancient Greek art (sculpture, mosaic, painting), architecture (temples, homes, civic structures), religion (figurines, votive offerings), and social history (coins, inscriptions).
Prerequisite: Junior or senior classification.
Cross Listing: CLAS 353/ANTH 353.

ANTH 354/CLAS 354 Archaeology of Ancient Italy
Credits 3. 3 Lecture Hours.
Archaeology of ancient Italy from the Stone Age until the collapse of the Roman Empire in the fourth century; remains of ancient Etruscan and Roman art (sculpture, mosaic, painting), architecture (temples, homes, civic structures), religion (figurines, votive offerings), and social history (coins, inscriptions).
Prerequisite: Junior or senior classification.
Cross Listing: CLAS 354/ANTH 354.

ANTH 360 Ancient Civilizations of the World
Credits 3. 3 Lecture Hours.
Explores recent discoveries and efforts by archaeologists to understand the rise and fall of states and civilizations that emerged in the Near East, Africa, India, Europe, China, Mesoamerica, and Peru between 3500 BCE and 1500 CE.
Prerequisite: Junior or senior classification.

ANTH 370 Cultural Diversity and Ethics
Credits 3. 3 Lecture Hours.
Examination of the cultural construction of ethical values and how cultural diversity, including beliefs, values and ways of doing business, impacts human technological innovation; focuses on developing a holistic, social-science mindset and application of critical thinking skills.

ANTH 401 Ice Age Humans in North America
Credits 3. 3 Lecture Hours.
Archaeological, environmental and geological evidence related to the timing of human entry into the Americas and megafaunal extinctions at the end of the Pleistocene.
Prerequisite: ANTH 202 or equivalent.

ANTH 402 Archaeological Artifact Conservation
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Analysis of the treatments for artifacts of clay, stone, glass, wood, shell, bone, fiber and metal from archaeological excavations or ethnographic, and historic collections presented in an integrated series of lectures and hands-on laboratory experience.
Prerequisite: Junior or senior classification or approval of instructor.

ANTH 403/RELS 403 Anthrology of Religion
Credits 3. 3 Lecture Hours.
Cross-cultural, theoretical analysis of religion as a cultural phenomenon; exploring the relationships between religion, culture, society and the individual; also taught at Galveston campus.
Cross Listing: RELS 403/ANTH 403.

ANTH 404/WGST 404 Women and Culture
Credits 3. 3 Lecture Hours.
Examines women's lives in evolutionary and cross-cultural perspective; women's roles in subsistence, politics, religion and economics in traditional cultures; women's roles in international development; the cultural and social construction of women's biology cross-culturally including circumcision, menstruation, pregnancy, childbirth and motherhood.
Prerequisite: Junior or senior classification; approval of instructor.
Cross Listing: WGST 404/ANTH 404.
ANTH 419 Indians of Texas
Credits 3. 3 Lecture Hours.
Study of diverse native/immigrant Texas Indian lifeways/cultures from late pre-European to contemporary times; exploration of historical underpinnings, traditional cultures, especially land-use patterns; assessment of tribal relationships with colonial powers, U.S., and Texas governments as evidenced in ethnographic, ethnohistoric, and historical materials; application toward anthropological, archaeological, and human ecology research.
Prerequisites: Junior or senior classification; ANTH 201, ANTH 202, ANTH 205, ANTH 210, ANTH 301, HIST 258, or HIST 308, or approval of instructor.

ANTH 421 Advanced Museum Studies
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Exploration of advanced topics in museum programs; preservation, research, education, outreach; development and implementation; emphasis on historical contexts, disciplinary intersections, ethical obligations and professional responsibilities; service to community, state and national interest and advancement of sciences.
Prerequisite: Grade of C or better in MUST 221/ARCH 221 or MAST 220; junior or senior classification.

ANTH 423 Bioarchaeology
Credits 3. 3 Lecture Hours.
Role of human skeletal studies in reconstructing the biological and cultural past of humans; evidence gleaned from human skeletal remains recovered from archaeological sites such as data regarding diet, health, genetics and migration.
Prerequisites: ANTH 225; junior or senior classification; also taught at Galveston campus.

ANTH 424 Human Evolutionary Ecology: Culture and Cooperation
Credits 3. 3 Lecture Hours.
Examination of evolutionary perspective to explore culture, cooperation and sociality and subsistence behaviors across a wide variety of human cultures; part of the Human Evolutionary Ecology series along with ANTH 424.
Prerequisite: Junior or senior classification.

ANTH 425 Human Osteology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Concepts and methods used by anthropologists to identify, describe and analyze human skeletal remains from forensic and archaeological contexts.
Prerequisites: ANTH 225 and ANTH 226, or VIBS 305; junior or senior classification.

ANTH 426 Anthropology of Food and Nutrition
Credits 3. 3 Lecture Hours.
Anthropological study of human foodways and their nutritional consequences; how environmental, biological and cultural factors interact to produce patterns of food intake, and the effects of such patterns on health, growth and fertility; examples drawn primarily from non-Western societies.
Prerequisite: ANTH 201 or ANTH 210 or ANTH 225 or NUTR 202 or approval of instructor.

ANTH 427 Human Biological Variation
Credits 3. 3 Lecture Hours.
Biological basis of variation in the physical features of modern humans; details of anatomical and physiological differences of living populations to understand their adaptive and historical significance; history of human variation studies rooted in the historical notion of ‘race.’
Prerequisites: ANTH 225 and ANTH 226, or BIOL 214 or BIOL 225; junior or senior classification.

ANTH 430 Applied Anthropology
Credits 3. 3 Lecture Hours.
Theory, ethics and practical applications of anthropological methods and concepts as they relate to planned programs of sociocultural change.
Prerequisites: ANTH 210; junior or senior classification.

ANTH 434 Human Evolutionary Ecology: Reproduction and Parenting
Credits 3. 3 Lecture Hours.
Evolutionary ecology perspective on family-formation patterns, sexuality, reproduction and parenting of humans throughout the life course and across different cultures; part of a Human Evolutionary Ecology series along with ANTH 424.
Prerequisites: Junior or senior classification.

ANTH 435 Medical Anthropology
Credits 3. 3 Lecture Hours.
Overview of medical anthropology, a subfield in anthropology which examines the biological and cultural basis of health and disease in order to understand the influence of culture on the illness experience and treatment.
Prerequisite: Junior or senior classification or approval of instructor.

ANTH 436/RELS 436 Ancient Egypt
Credits 3. 3 Lecture Hours.
Archaeology and history of ancient Egypt from earliest times to the end of the New Kingdom period.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 436/ANTH 436.

ANTH 437 Ethnobotany
Credits 3. 3 Lecture Hours.
Interdisciplinary study of the complex and dynamic relationships that exist between people and plants.
Prerequisite: Junior or senior classification or approval of instructor.

ANTH 440 Studies in Globalization
Credits 3. 3 Lecture Hours.
Selected issues on the anthropology of globalization such as the impact of global circulations of media, money and people on local cultures, identities and politics, migration and political economy. May be taken three times for credit.
Prerequisites: Junior or senior classification or approval of instructor.

ANTH 444/CLAS 444 Classical Archaeology
Credits 3. 3 Lecture Hours.
History of the discipline through the individuals, organizations, excavations, theoretical models and ethical issues that have shaped it.
Prerequisites: Junior or senior classification.
Cross Listing: CLAS 444/ANTH 444.
ANTH 445 Studies in African Diaspora
Credits 3. 3 Lecture Hours.
Examination of topics related to global African diaspora including African
descent populations outside of Africa wherever found (the Americas,
the Caribbean, Europe, Asia, etc.); construction of blackness in Latin
America; diversity of past and present African descent populations in
the Old World; social and political mobilization; religion; popular culture;
cultural politics; politics of identity. May be taken three times for credit.
Prerequisite: Junior or senior classification.

ANTH 446 Ceramic Artifact Analysis
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Methods, methods, and approaches used in the analysis of
archaeological pottery with a focus on the techniques and theories used
to bridge the gap between the recovery of ceramic artifacts and their
interpretation within various anthropological contexts.
Prerequisite: ANTH 202 and approval of instructor; junior or senior
classification.

ANTH 447 Lithic Artifact Analysis
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Laboratory-based course reviewing methods archaeologists use to
analyze stone tools and debitage, including identification of tool-stone
sources, reconstruction of technology, explanation of assemblage
variability, and microscopic use-wear analysis.
Prerequisite: ANTH 202 and approval of instructor; junior or senior
classification.

ANTH 448 Quantitative Methods in Anthropology
Credits 3. 3 Lecture Hours.
Quantitative analytical methods employed by anthropologists; includes
statistical analyses, statistical software and sampling theory commonly
used in anthropological research.
Prerequisites: Junior or senior classification; STAT 302 or STAT 303.

ANTH 458 Quantitative Ethnographic Methods
Credits 3. 3 Lecture Hours.
Quantitative data collection and analytical methods employed by
anthropologists; includes standardized observation, structured
interviews, demography and network analysis; hands-on assignments
involving data collection among local community.
Prerequisite: Junior or senior classification.

ANTH 461 Environmental Archaeology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Exploration of the paleoecological context in which past humans
interacted with the natural environment encompassing plants,
animals and landscape; advanced method, theory and applications in
couenvironmenal reconstruction.
Prerequisites: ANTH 202 or approval of instructor; junior or senior
classification.

ANTH 484 Anthropology Internship
Credits 0 to 3. 0 to 3 Other Hours.
Provides students with the opportunity to gain practical experience in a
variety of settings, including local, state or federal agencies; museums;
non-profit organizations; non-governmental organizations; private firms.
May be taken four times for credit.
Prerequisite: Junior or senior classification.

ANTH 485 Directed Studies
Credits 0 to 9. 0 to 9 Other Hours.
For individual research in anthropology on subjects not included in
established courses. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of instructor; also
taught at Galveston campus.

ANTH 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of anthropology. May be repeated for
credit.

ANTH 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in
Anthropology. May be taken two times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

ARAB - Arabic (ARAB)

ARAB 101 Beginning Arabic I
Credits 4. 4 Lecture Hours.
(ARAB 1411) Beginning Arabic I. Introduction to Modern Standard Arabic
in its written and spoken forms; emphasis on conversation, rudimentary
vocabulary, simple grammar, and reading.

ARAB 102 Beginning Arabic II
Credits 4. 4 Lecture Hours.
(ARAB 1412) Beginning Arabic II. Introduction of more complex
grammatical constructions; vocabulary building; emphasis on putting
acquired vocabulary and grammar to conversational use.
Prerequisite: ARAB 101 or equivalent.

ARAB 104 Intensive Beginning Arabic
Credits 8. 8 Lecture Hours.
(ARAB 1411 and 1412) Intensive Beginning Arabic. Accelerated
elementary language study, with oral, listening, reading and writing
practice. Equivalent to ARAB 101 and ARAB 102.

ARAB 201 Intermediate Arabic I
Credits 3. 3 Lecture Hours.
(ARAB 2311) Intermediate Arabic I. Practice of listening, speaking and
writing skills; vocabulary building; discussion of topics related to daily life
and general aspects of Arab culture.
Prerequisite: ARAB 102 or ARAB 104, or equivalent.

ARAB 202 Intermediate Arabic II
Credits 3. 3 Lecture Hours.
(ARAB 2312) Intermediate Arabic II. Emphasis on comprehending printed
material, perfecting pronunciation, and attending to more complex
grammar; discussion of topics holding general and professional interest;
knowledge of Arab culture and history.
Prerequisite: ARAB 201 or equivalent.

ARAB 204 Intensive Intermediate Arabic
Credits 6. 6 Lecture Hours.
(ARAB 2311 and 2312) Intensive Intermediate Arabic. Accelerated
intermediate language study, with oral, listening, reading and writing
practice. Equivalent to ARAB 201 and ARAB 202.
Prerequisite: ARAB 102 or ARAB 104.

ARAB 221 Introduction to Arabic Language and Society
Credits 3. 3 Lecture Hours.
Examination of critical linguistic issues in the Arab world from a
sociolinguistic perspective, including language and religion; language and
power; language and nationalism; and language and education.
Prerequisite: Approval of instructor.
ARAB 222 Field Studies I: Language, Culture, and Society
Credits 3. 3 Lecture Hours.
Arabic language and culture taught in an Arabic-speaking country; living with a host family; supervised travel of cultural interest; participation in activities of host institution.
Prerequisite: ARAB 102 or ARAB 104, or equivalent.

ARAB 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in an Asian Language, selected for each student individually; written or oral reports.
Prerequisite: Approval of Arabic and Asian Language Office Director.

ARAB 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of Arabic studies. May be repeated for credit.
Prerequisite: Approval of instructor.

ARAB 301 Reading and Composition
Credits 3. 3 Lecture Hours.
Advanced Arabic grammar and readings of average difficulty and of different genres, including literary and journalistic texts and other culturally-enriched materials in order to develop awareness of cultural products, perspectives, and practices found in the Arab world.
Prerequisites: ARAB 202 or ARAB 204, or equivalent; junior or senior classification or approval of instructor.

ARAB 302 Reading and Composition II
Credits 3. 3 Lecture Hours.
Readings of average difficulty and of different genres, including literary and journalistic texts and other culturally-enriched materials; development of writing skills with emphasis on grammatical constructions; expansion of vocabulary and oral expression.
Prerequisites: ARAB 301; junior or senior classification or approval of instructor.

ARAB 321 Business Arabic
Credits 3. 3 Lecture Hours.
Business and financial terminologies useful in the Arab World; cultural etiquette for effective communication in Arabic business settings; oral and written business reports from a variety of authentic sources; language skills and communication strategies for traveling, shopping and conducting financial transactions in the Arab World.
Prerequisites: ARAB 202 or ARAB 204, or equivalent; junior or senior classification or approval of instructor.

ARAB 322 Field Studies II: Language, Culture, and Society
Credits 3. 3 Lecture Hours.
Arabic language and culture taught in an Arabic-speaking country; living with a host family; supervised travel of cultural interest; participation in activities of host institution.
Prerequisites: ARAB 202 or ARAB 204, or equivalent; junior or senior classification or approval of instructor.

ARAB 323 Media Arabic
Credits 3. 3 Lecture Hours.
Analysis of current events in the Arab World; use of print and electronic materials in Arabic from variety of media sources; discussion of different points of view in media representation/coverage; issues pertaining to business, politics, culture and entertainment in the Arab World.
Prerequisites: ARAB 202 or ARAB 204, or equivalent; junior or senior classification or approval of instructor.

ARAB 475 Media and the Middle East
Credits 3. 3 Lecture Hours.
Examination of how media (e.g., literature, news, film, television) contribute to our understanding of historical events in the Middle East; analysis of cultural, social, political and historical circumstances of media representation of events; exploration of various media genres’ techniques and narrative structure. May be taken two times for credit with a focus on different medium.
Prerequisite: Junior or senior classification or approval of instructor.

ARAB 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects selected for each student individually; written or oral reports.
Prerequisite: Approval of instructor and Director of AALO.

ARCH - Architecture (ARCH)

ARCH 205 Architecture Design I
Credits 4. 1 Lecture Hour. 9 Lab Hours.
Issues and methods in designing environments for human habitation and well-being; projects addressing site, functional planning, spatial ordering, form generation through a recognition of the synthesis of space, structure, use and context; reinforcement of appropriate graphic and model building techniques.
Prerequisites: ENDS 105, ENDS 108, ENDS 115.

ARCH 206 Architecture Design II
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Fundamental issues of innovative design processes and creation explored through the creative use of past, present and future materials, tools, and technologies; with an emphasis upon the research of materials, methods, scale, craft and technique as instruments of design, fabrication, and production.
Prerequisites: ARCH 205; ENDS 105, ENDS 108, ENDS 115.

ARCH 212 Social and Behavioral Factors in Design
Credits 3. 3 Lecture Hours.
Social and behavioral factors in the built and natural environment; environmental perception and spatial cognition; social-environmental processes such as privacy and crowding; setting-oriented discussion on residences, education, and the workplace; the psychology of nature and natural resource management; social design and social science contribution to architectural design.
ARCH 213 Sustainable Architecture
Credits 3. 3 Lecture Hours.
A comprehensive introduction to sustainability concepts, techniques and applications at all levels of the built environment, history of contemporary development of sustainable architecture from 1960 to the present; design strategies, environmental technologies and social factors for reducing building energy needs and carbon footprints; global applications of sustainable approaches.

ARCH 216 Computational Methods in Architecture
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Software and processes for computation design in architecture; image editing and creation, vector drawing, 3D modeling, parametric modeling, rendering techniques and simulation.

ARCH 221/MUST 221 Foundations of Museum Studies
Credits 3. 3 Lecture Hours.
Introduction to museums, cultural heritage and collections care; best practices for non-profit institutions, public engagement and the collection, preservation and exhibition of material culture; emphasis on archaeological, ethnographic, and historical collections, or other collections of cultural significance.
Cross Listing: MUST 221/ARCH 221.

ARCH 246 Foundations of Historic Preservation
Credits 3. 3 Lecture Hours.
Exploration and evaluation of the cross-disciplinary work of historic preservation; emphasis on the significance of historic places to societal well-being and conservation alternatives for historic and cultural environments; review of preservation projects and treatments; guest presentations and case studies from practicing professionals and researchers in a variety of fields.

ARCH 249 Survey of World Architecture History I
Credits 3. 3 Lecture Hours.

ARCH 250 Survey of World Architecture History II
Credits 3. 3 Lecture Hours.
(ARCH 1302) Survey of World Architecture History II. A survey of world architecture and the human-designed and built environment from the 13th to the 19th century.

ARCH 260 Comparative Theory in the Built and Virtual Environments
Credits 3. 3 Lecture Hours.
Introduction of cultural theory and the environment; theories, special concepts and ideas relevant to the built and virtual environments with primary focus on the last fifty years; theory, theory building, and application to buildings and urban design; formation of ideas and critical ways of assessing the environment.

ARCH 281 Seminar in Contemporary Architecture
Credit 1. 1 Lecture Hour.
Presentations by and discussions with professionals representing specialty areas related to environmental design through the Department of Architecture Lecture Series. May be taken four times for credit. Must be taken on a satisfactory/unsatisfactory basis.

ARCH 291 Research in Architecture Innovation
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in the College of Architecture. May be repeated 2 times for credit.
Prerequisite: Approval of instructor and department head.

ARCH 305 Architectural Design III
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Integration of architectural theories and philosophy with environmental design systems; study of theoretical approaches to graphic and analytical thinking, problem identification and design dissemination through various media, case studies and problem resolution; conditions and forces associated with a variety of building types and the generation of design solutions.
Prerequisites: Admission to upper level in environmental design; ARCH 249 and ARCH 250.

ARCH 317 Digital Fabrication for Architecture
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Digital fabrication for architecture including software, numerically controlled tools, translation applications and management strategies for digital fabrication workflows; production of building components from three dimensional datasets of virtual architecture proposals.
Prerequisites: Junior or senior classification or approval of instructor; ARCH 216 or approval of instructor.

ARCH 327 Conceptual Structural Analysis
Credits 3. 1 Lecture Hour. 4 Lab Hours.
A non-mathematical investigation of structural systems and components with respect to behavior; selection of the most appropriate structural system for various building typologies.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 328 Architectural Envelopes
Credits 3. 3 Lecture Hours.
Study of roof, wall, glazing and screen systems of significant works in contemporary architecture and the strategies behind their making; focus on innovative materials, surface effects, and performance aspects.
Prerequisite: Junior or senior classification in environmental design.

ARCH 330 The Making of Architecture
Credits 3. 3 Lecture Hours.
Study of significant works of contemporary architecture and materials and strategies used in their making; focus on innovative materials, systems, and partnerships necessary to realize the design.
Prerequisites: Junior or senior classification in environmental design or approval of instructor or ARCH classification.

ARCH 331 Architectural Structures
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Physical principles that govern statics and strength of materials through the design of architectural structures from a holistic view, in the context of architectural ideas and examples; introduction to construction, behavior of materials, and design considerations for simple and complex structural assemblies; computer applications.
Prerequisites: Junior or senior classification in environmental design; MATH 142 or equivalent; PHYS 201.

ARCH 335 Architectural Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Theory and applications of building energy use, envelope design, shading analysis, heating and cooling systems, lighting design; building water supply, plumbing and drainage systems; electrical, acoustical, fire and lightning protection; life safety; transportation systems and construction materials; calculations, equipment selection, and component sizing as they relate to building design.
Prerequisites: Junior or senior classification in environmental design; PHYS 201.
ARCH 345 History of Building Technology
Credits 3. 3 Lecture Hours.
Chronological development of civilization and building technology from prehistoric cultures to present; classic and modern materials, structural devices past and present, machine-produced products, prefabrication, construction methodology and servicing.

ARCH 346 Architecture, Heritage and Culture
Credits 3. 3 Lecture Hours.
Global exploration of how architecture and the built environment express culture and identity; theoretical and practical approaches to cultural heritage and conservation.
Prerequisite: Junior or senior classification.

ARCH 347 Documentation of Historic Buildings and Sites
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Techniques for recording historic buildings and sites; measuring and drawing to Historic American Building Survey Standards; field experience in photography, laser scanning, photogrammetry, hand measuring, field notes and record drawing preparation.
Prerequisites: Junior or senior classification or approval of instructor.

ARCH 350 History and Theory of Modern and Contemporary Architecture
Credits 3. 3 Lecture Hours.
Development of modern and contemporary architecture in the 20th and 21st centuries; materials, structure, social and economic changes as well as architectural theory.
Prerequisites: Junior or senior classification.

ARCH 353 History of Product Design
Credits 3. 3 Lecture Hours.
History of product design in Europe and America including the relationship between designer and object, the relationship of design, industry and media over time and design criticism; focus on material/technical and typological approaches, comparative method and content analysis in context of original environment and social history.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 360 Topics in Design Build Community Service
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Contemporary topics in architectural design-build practices including high impact interdisciplinary learning experiences developed through a project-based learning model with a focus on the planning, design, preconstruction, construction and project delivery; team-based approach with those outside of the architecture discipline to design, plan and complete project documents, estimates and undertake the construction activities necessary to make a fully functioning community service project.
Prerequisites: Junior or senior classification or approval of instructor.

ARCH 381 Design Seminar
Credit 1. 1 Lecture Hour.
Presentations by and discussions with professionals representing specialty areas related to architectural fabrication and product design. May be taken three times for credit.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 405 Architectural Design IV
Credits 5. 2 Lecture Hours. 9 Lab Hours.
A comprehensive design studio focused on the integration of design theory with functionally sustainable environmental and structural systems; consideration of a project from site analysis and programming through design detailing.
Prerequisites: Admission to upper level in environmental design; ARCH 305, ARCH 331, ARCH 335; CARC 301 or ARCH 494; concurrent enrollment in ARCH 431 and ARCH 435.

ARCH 406 Architecture Design V
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Topical approaches to design, emphasizing theory and practice of architecture or related disciplines, such as urban design, interior design, health care design, etc.
Prerequisites: Junior or senior classification; admission to upper level in environmental design; ARCH 305, ARCH 331 and ARCH 335; CARC 301 or ARCH 494; students may with approval of the department enroll in the course during the summer term prior to taking ARCH 405, ARCH 431 and ARCH 435 if they are within 20 credit hours of graduation prior to the beginning of the following fall semester.

ARCH 413 Elements of Urban Design
Credits 3. 3 Lecture Hours.
Investigation of design elements shaping the urban environment; emphasis placed on contemporary precedents in architecture, landscape and urbanism to evaluate design complexity on multiple levels: social, political, environmental, economic, cultural and geographic.
Prerequisite: Admission to upper level division in BED or BS-URPN.

ARCH 421 Energy and Sustainable Architecture
Credits 3. 3 Lecture Hours.
Understanding the various design decisions impacting sustainability and energy efficiency; includes participation in an ‘academic’ LEED-NC rating project; interdisciplinary team approach with a design studio architect to perform the LEED-NC rating on the architect’s building; application of reference material, standards, and USGBC material.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 430 History of Ancient Architecture
Credits 3. 3 Lecture Hours.
Architecture of antiquity, examining stylistic, structural and theoretical advancements in building, beginning with Mesopotamian and continuing with Egyptian, Greek and Roman civilizations.
Prerequisite: ARCH 249 or ARTS 149; junior or senior classification or approval of degree coordinator or instructor.

ARCH 431 Integrated Structures
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Selection and economics of structural systems in the context of integrating structural systems into a building through good design; analysis and design of wood, steel, concrete, and composite systems and members in relation to building design.
Prerequisites: Admission to upper level in environmental design; ARCH 305, ARCH 331, ARCH 335; concurrent enrollment in ARCH 405 and ARCH 435.

ARCH 433 Architectural Lighting
Credits 3. 3 Lecture Hours.
Theory and practice of lighting design as an art and science; aperture design for sunlight control; selecting and locating luminaries to enhance interior and exterior surfaces and spaces.
Prerequisite: ARCH 335 or junior or senior classification in EDAS.

ARCH 434 The Role of Sculpture and Painting in Ancient Architecture
Credits 3. 3 Lecture Hours.
Interrelationships of architecture, painting and sculpture in the ancient world including Egypt, Mesopotamia, Crete, Greece and Rome.
Prerequisite: ARCH 249 or ARTS 149; junior or senior classification or approval of degree coordinator or instructor.
ARCH 435 Integrated Systems
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Understanding how to integrate sustainable environmental systems into a building through good design; lectures support studio; systems faculty participate in studio critiques throughout the project.
Prerequisites: Admission to upper level in environmental design; ARCH 305, ARCH 331, ARCH 335; concurrent enrollment in ARCH 405 and ARCH 431.

ARCH 437 Great Medieval Cathedrals
Credits 3. 3 Lecture Hours.
Interrelationships of architecture, sculpture and stained glass, technology and construction, function and form, society and patronage in the great period of medieval building.
Prerequisite: ARCH 250 or ARTS 150; junior or senior classification or approval of degree coordinator or instructor.

ARCH 438 History and Design of Sacred Architecture
Credits 3. 3 Lecture Hours.
Exploration of history and design of sacred architecture; review of historic and contemporary houses of worship; global historic trends in sacred architecture in light of the current development in liturgy and design; significance of sacred places to society and culture.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 441 Baroque and Rococo Architecture
Credits 3. 3 Lecture Hours.
The investigation of the history of architecture, the arts and society, and major creative individuals from the late sixteenth to the early eighteenth centuries.
Prerequisite: ARCH 250 or ARTS 150; junior or senior classification or approval of degree coordinator or instructor.

ARCH 443 Aegean Art and Architecture
Credits 3. 3 Lecture Hours.
Art and architecture of the prehistoric Aegean, ca. 6000-1100-B.C.E.; focus on the built environment, material culture and visual arts of early civilization in the Aegean basin; evidence for regional and vernacular architectural traditions; expressions of power, ideology and social identity through monumental architectural and elite arts of Minoan Crete and Mycenaean Greece.
Prerequisites: Junior or senior classification; approval of instructor or degree coordinator.

ARCH 444 American Architecture
Credits 3. 3 Lecture Hours.
Investigation of indigenous, vernacular and historical American architecture from 1500 to 1920; evolution of construction technologies, changing building forms and finish treatments; identification of historic architectural styles and their influence on 21st century American architecture.
Prerequisites: ARCH 250 or ARCH 350; junior or senior classification, or approval of instructor.

ARCH 451 Strategies in Architectural Management
Credits 3. 3 Lecture Hours.
Emerging strategies in the architecture and construction industry, with an emphasis on understanding the changing structure of the industry and the management of both firms and projects.
Prerequisite: Senior classification or approval of degree coordinator.

ARCH 452 Careers in Architecture
Credits 3. 3 Lecture Hours.
Career opportunities in the profession of architecture; investigations into the composition of architectural practice today and the wide range of specialties represented in architectural firms; interviews with select representative individuals.
Prerequisite: Admission to upper level in environmental design, construction science or landscape architecture.

ARCH 457 Ethics and Professional Practice
Credits 3. 3 Lecture Hours.
Issues and relationships within the business, legal and political environment; introduction to the concepts of architectural specifications and the AIA standard conditions of the construction contract; forms of construction, bidding and contract documents. For undergraduate students pursuing a professional degree and a career in architecture.
Prerequisite: Senior classification in environmental design.

ARCH 458 Cultural and Ethical Considerations for Global Practice
Credits 3. 3 Lecture Hours.
Issues and relationships within the cultural, business, legal and political environments of global practice; differences in the construction contract, bidding and various forms of construction.
Prerequisite: Junior or senior classification.

ARCH 463 Elements of Interior Architecture
Credits 3. 3 Lecture Hours.
Analysis and design of architectural interiors; historical and professional perspectives incorporating programming, space planning and organization; specification and selection of furnishings and materials to satisfy user needs in residential, commercial and institutional settings.
Prerequisites: Admission to upper level in environmental design; concurrent enrollment in ARCH 405, ARCH 431 and ARCH 435 not allowed.

ARCH 465 Introduction to the Built Environment
Credits 1 to 6. 1 to 6 Other Hours.
Fieldwork related to practice of historic preservation and cultural heritage management; methods of documentation, analysis, planning and treatment; emphasis on identification and evaluation of multidisciplinary approaches to historic preservation and heritage conservation in global contexts; topics vary each semester. May be taken for credit up to six hours.
Prerequisites: ARCH 246, ARCH 346, or ARCH 347; junior or senior classification or approval of instructor.

ARCH 481 Seminar
Credit 1. 1 Lecture Hour.
Presentations by and discussions with professionals representing specialty areas related to environmental design; career and academic objectives. May be repeated for up to 4 credit hours. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification or approval of instructor.

ARCH 484 Summer Internship
Credits 6. 12 Other Hours.
Practical experience in an office of design allied professionals; 10-week internship with a minimum of 400 hours continuous employment; departmental pre-approval through the departmental internship coordinator required; post evaluation conducted following the internship. May not be repeated for credit.
Prerequisites: Junior or senior classification or approval of instructor; approval of the environmental design internship coordinator.
ARCH 485 Directed Studies
Credits 1 to 5. 1 to 5 Other Hours.
Special projects in architecture. May be repeated for credit.
Prerequisites: Admission to upper level in environmental design; approval of instructor and department head.

ARCH 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of architecture. May be repeated for credit.
Prerequisite: Junior or senior classification; approval of instructor and degree coordinator.

ARCH 491 Advanced Architecture Innovation Research
Credits 0 to 6. 0 to 6 Other Hours.
Research conducted under the direction of faculty member in the College of Architecture. May be repeated 2 times for credit.
Prerequisite: Admission to upper level in environmental design; approval of instructor and department head.

ARCH 494 Internship
Credits 9. 18 Other Hours.
Practical experience in an office of design allied professionals; fifteen week internship with a minimum of 600 hours of continuous employment; departmental pre-approval through the departmental internship coordinator required; post evaluation conducted following the internship. To be taken only as a requirement for the study away semester. May not be repeated for credit.
Prerequisites: Junior or senior classification; admission to upper level in environmental design; CARC 481; approval of the environmental design internship coordinator.

AREN - Architectural Engr (AREN)

AREN 175/COSC 175 Construction Graphics Communication
Credits 3. 3 Lecture Hours.
Visualization, interpretation and communication of graphical geometry in construction design and engineering; graphical analysis of problems; sketching applications, computer aided design and fundamentals of information modeling software; introduction to common quantitative tools in construction.
Prerequisite: AREN and COSL majors only.
Cross Listing: COSC 175/AREN 175.

AREN 200 Architectural Engineering Foundations
Credits 2. 2 Lecture Hours.
Introduction to the broad field and professional practice of architectural engineering, architectural engineering systems, and the role of the architectural engineer; emphasis on professional engineering design services, design and construction processes and documents, building envelope and materials, structural systems, mechanical systems, lighting systems, building systems integration, building codes and standards, fire safety, professional attributes of architectural engineers, and issues of human performance requirements and sustainability at relates to building system design.
Prerequisite: Sophomore classification or approval of instructor.

AREN 300 Architectural Engineering Systems
Credits 3. 3 Lecture Hours.
Analysis and application of the engineering design process to solve problems associated with the design and operation of building systems, specifically related to HVAC, electrical power and lighting, and structural integrity; communication of solutions to technical problems of building systems, through writing, presentations, and team interactions, typical of architectural engineers in the building industry; emphasis on the engineering design process in architectural engineering, structural systems for buildings, mechanical systems for heating, ventilation, and air-conditioning, electrical lighting for buildings, building fire safety, building acoustics, building codes and standards, interface issues among different building systems, and sustainability aspects of building systems.
Prerequisites: Grade of C or better in AREN 200; junior classification or approval of instructor.

AREN 320 Lighting Engineering for Buildings
Credits 3. 3 Lecture Hours.
Reinforces the fundamentals of illuminating engineering for building interiors; focuses on the design and analysis of electrical lighting systems, including the integration between the lighting design process and the technical foundations of building lighting; emphasis on the fundamentals of lighting engineering and basic engineering methods for building lighting systems, lighting design criteria, lighting calculations, and power budgets.
Prerequisites: Junior or senior classification; major in engineering or approval of instructor.

AREN 330 Mechanical Systems for Buildings
Credits 3. 3 Lecture Hours.
Introduction to qualitative and quantitative engineering concepts of mechanical systems for buildings for architectural engineers, including HVAC systems, control of indoor air pollutants and fire suppression systems; emphasis on thermal behavior of buildings and building envelopes, human comfort requirements and psychometrics, thermal load calculations, HVAC systems/equipment, design of space air-conditioning and its relationship to architectural design, mechanical systems for indoor air quality and for fire suppression.
Prerequisite: Grade of C or better in MEEN 315 or MMET 370.

AREN 399 High Impact Experience for Architectural Engineers
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning experience; reflection on professional outcomes from the National Society of Professional Engineers’ Engineering Body of Knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisite: Junior or senior classification.

AREN 401 Architectural Engineering Design I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Instruction and practice in the design process applied to an architectural engineering design project; application of establishing customer need, determining requirements in terms of function and performance, developing alternative design concepts, performing trade-off studies among performance, cost and schedule, embodiment and detail design and the iteration of the above steps; major architectural engineering design project.
Prerequisites: Grade of C or better in AREN 300, AREN 330, and CVEN 345.
AREN 402 Architectural Engineering Design II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application and extension of fundamentals of engineering design, product detail, and design development process, including case studies; emphasis on project management, marketing considerations, manufacturing detailed design specifications, failure modes, applications of codes and standards, selection of design margins, product (component) development guidelines, intellectual property, product liability and ethical responsibility; major architectural engineering design project.
Prerequisite: Grade of C or better in AREN 401.

AREN 440 Architectural Engineering Heating, Ventilating and Air Conditioning Design
Credits 3. 3 Lecture Hours.
Project-based design course; select and develop the mechanical system for a building, from the programming phase to the design development and working documents; emphasis on the application HVAC principles in the design and analysis of a mechanical system in a real building, including review of building thermal load calculations & energy analysis, HVAC design goals and schematic design, system selection and system design, HVAC design development, HVAC design documents, and energy, environmental, and human comfort considerations in HVAC design.
Prerequisites: Grade of C or better in AREN 300 and AREN 330.

AREN 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Directed individual study within architectural engineering.
Prerequisites: Junior or senior classification and approval of architectural engineering director or delegate.

ARTS - Art (ARTS)

ARTS 103 Design I
Credits 3. 2 Lecture Hours. 4 Lab Hours.
(ARTS 1311) Design I. Two-dimensional design; fundamentals of line, color, form, texture, shape, space and composition.
Prerequisite: Art minors only.

ARTS 104 Introduction to Graphic Design
Credit 1. 2 Lab Hours.
Introduction to the concepts and techniques utilized in graphic design; basic digital camera operations, typography, use of color, design principles; integration of type, graphic elements and images.
Prerequisite: Lower division in Visualization or minor in Art.

ARTS 111 Drawing I
Credits 3. 2 Lecture Hours. 4 Lab Hours.
(ARTS 1316) Drawing I. Introduction to composition and form, media, techniques and subjects; exploring perceptual and descriptive drawing; mark making as a developmental process in art and design practice.
Prerequisite: Art minors only.

ARTS 115 Drawing for Visualization
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Investigation of and practice with media, methods and techniques in communication of design; observational drawing; proportion, form, line and value.
Prerequisite: Lower division in Visualization.

ARTS 149 Art History Survey I
Credits 3. 3 Lecture Hours.
(ARTS 1303) Art History Survey I. Survey of architecture, painting, sculpture and the minor arts from prehistoric times to 14th century.

ARTS 150 Art History Survey II
Credits 3. 3 Lecture Hours.
(ARTS 1304) Art History Survey II. Survey of architecture, painting, sculpture and the minor arts from the 14th century to the end of the 19th century; also taught at Galveston campus.

ARTS 210 Introduction to Digital Photography
Credits 3. 2 Lecture Hours. 3 Lab Hours.
(ARTS 2356) Introduction to Digital Photography. Introduction to photography; digital camera controls; creation, manipulation and critique of the digital image; composition and aesthetics; exposure control; digital workflow.
Prerequisite: Non-visualization majors only.

ARTS 212 Life Drawing
Credits 3. 1 Lecture Hour. 6 Lab Hours.
(ARTS 2323) Life Drawing. Study of the form, volume, structure and movement of the human figure; emphasis on proportion and anatomy.
Prerequisite: Grade of C or better in ARTS 111 or ARTS 115.

ARTS 234 Body Art of Tattoos
Credits 3. 3 Lecture Hours.
History of body art from the Stone Age to present day; aesthetics, sign, symbol, social and cultural significance.

ARTS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of art history or visualization. May be repeated for credit.

ARTS 303 Graphic Design I
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Principles and elements of graphic design; composition problem solving, conceptual thinking and application to visual communication.
Prerequisites: Grade of C or better in ARTS 104 and VIST 284; grade of C or better in VIST 105 or ARTS 103.

ARTS 304 Graphic Design II
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Continuation of ARTS 303; concepts in advanced graphics as a tool for design solutions for publication and promotion; emphasis on creative thinking over technology.
Prerequisites: ARTS 303; junior or senior classification.

ARTS 305 Painting I
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Traditional and contemporary painting approaches and media; emphasis on form, composition, observational representation.
Prerequisite: Grade of C or better in ARTS 111 or ARTS 115.

ARTS 308 Sculpture
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Principles and processes of form making; space and materials; context and content of three-dimensional form.
Prerequisite: Grade of C or better in ARTS 111 or ARTS 115.

ARTS 311 Traditional Photography
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Photographic image as a medium of visual expression; basic theory and practice of still photography; historic development and aesthetic concern for photographic imagery.
Prerequisites: Grade of C or better in ARTS 103 or VIST 205.
ARTS 312 Advanced Photography
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Advanced photographic image-making; development, control and presentation of the expressive photographic image; traditional and/or new media.
Prerequisite: Grade of C or better in ARTS 210, VIST 310, or ARTS 311.

ARTS 315 Figure Drawing For Narrative and Concept Development
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Exploration of contemporary drawing practices and theory; investigation into the relationship with digital media including animation, photography and other digital technologies; development of personal approaches to media, techniques and thematic content; creation of a creative workflow and visual vocabulary.
Prerequisite: Grade of C or better in ARTS 212.

ARTS 325 Digital Painting
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Theory and practice of digital painting media; exploration of traditional and new forms of art making and creativity; emphasis on color theory.
Prerequisites: Grade of C or better in ARTS 111, ARTS 115, or ARTS 305. Field trip required.

ARTS 328 Advanced Painting
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Experiments in spatial design; intermediate aspects of creative process; issues in contemporary art; modeling and construction techniques as they may facilitate the generation of new forms and compositions; formal visual analysis and critique.
Prerequisites: ARTS 305; upper division in Visualization or approval of instructor.

ARTS 329 Texas Art History
Credits 3. 3 Lecture Hours.
The development of visual arts in Texas; an examination of art movements, artists and major works exhibiting a broad range of artistic techniques.
Prerequisite: Grade of C or better in ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 350.

ARTS 330 The Arts of America
Credits 3. 3 Lecture Hours.
Survey of painting, sculpture, crafts and architecture of prehistoric America to the present; emphasis on art as a record of cultural, economic and social evolution.
Prerequisite: Grade of C or better in ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 333 Visual And Material Culture of the Mediterranean
Credits 3. 3 Lecture Hours.
Visual arts and material culture of the Mediterranean world during the Renaissance and early modern period; economic, social, cultural and political influence; field trip required.
Prerequisite: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 335 The Art and Architecture of Rome
Credits 3. 3 Lecture Hours.
Rome as a microcosm of western civilization; a survey of western architectural and art history from antiquity through the Baroque; a focus on the Eternal City’s buildings, paintings, mosaics and sculptures exploring criteria, methods, goals and results of major architectural and artistic movements and the people involved.
Prerequisite: Grade of C or better in ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 339 Themes in Contemporary Art
Credits 3. 3 Lecture Hours.
Thematic survey of art since 1960; exploration of changing roles in art production, performance, presentation and criticism; art and artist in the global context; contemporary theory and criticism.
Prerequisite: Admission to upper division.

ARTS 340 History of the Photographic Image
Credits 3. 3 Lecture Hours.
History of photography; social, cultural, political, scientific and artistic contexts; important photographic themes and photographers.
Prerequisite: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 341 History of Animation
Credits 3. 3 Lecture Hours.
History of the animated image in the nineteenth-century through the twenty-first century; developments, theories and ideologies in computer animation.
Prerequisite: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 342 History of Graphic Design
Credits 3. 3 Lecture Hours.
History of graphic design; understanding visual language, semiotic theory, technological developments associated with graphic design production, social, cultural, political and artistic influence on visual communication.
Prerequisite: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 343 History of Illustration
Credits 3. 3 Lecture Hours.
History of illustration; early scrolls, codices and manuscript illumination; print culture; commercial processes of the 19th and 20th centuries.
Prerequisite: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 345 History of Gaming
Credits 3. 3 Lecture Hours.
Modern game creation and play; theory, history, and development.
Prerequisites: ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 349 The History of Modern Art
Credits 3. 3 Lecture Hours.
Chronological development of late 19th through 20th century art; emphasis on key artists, paintings, sculpture, photography and architecture.
Prerequisite: Junior or senior classification or approval of instructor and undergraduate program coordinator.

ARTS 350 The Arts and Civilization
Credits 3. 3 Lecture Hours.
Investigation of the image of work of selected periods in terms of criticism, aesthetic rationale, specific masters and social significance by going beyond historical chronology.
Prerequisites: Grade of C or better in ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.
ARTS 353 Color Theory
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Aspects of color and color theory including optical phenomena, color theory and perception; application and principles with respect to art and design; two-dimensional and three-dimensional projects examining color theories.
Prerequisites: Upper division in Visualization or minor in Art.

ARTS 403 Graphic Design III
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Advanced graphic design concepts and practices; development of unified graphic campaigns to promote a product, an organization, a publication, a service, or business; advanced problem-solving techniques based on the design process through research, analysis, and presentation; systematic approach to visual development.
Prerequisites: ARTS 303 and ARTS 304; junior or senior classification or approval of instructor and undergraduate program coordinator; knowledge of industry-standard software (Adobe Photoshop, InDesign and Illustrator) is expected.

ARTS 445 Byzantine Art and Architecture
Credits 3. 3 Lecture Hours.
A critical and historical investigation of Mediterranean art and architecture from the third century to the middle of the fifteenth century; emphasis on the artistic achievements from the late antique Mediterranean and the Byzantine Empire; investigation of architectural decoration, public monuments, cultural diversity and controversies over images.
Prerequisite: Grade of C or better in ARTS 149, ARTS 150, ARTS 349, ARCH 249, ARCH 250, or ARCH 350.

ARTS 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems in the fine and applied visual and plastic arts. May be repeated for up to 12 credit hours.
Prerequisite: Approval of instructor and undergraduate program coordinator.

ARTS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified field of the fine or applied visual and plastic arts. May be repeated for up to 9 credit hours.
Prerequisite: Approval of instructor and undergraduate program coordinator.

ASCC - Academic Success Center (ASCC)

ASCC 001 Basic Math Skills
Credits 0. 3 Other Hours.
Developmental instruction in mathematics; includes the integers and rational numbers and applications, exponents, polynomials, solution of equations, graphing, elementary geometry and reasoning skills; also taught at Galveston and Qatar campuses. May not be used for credit toward a degree.

ASCC 002 Basic Writing Skills
Credits 0. 3 Other Hours.
Individualized instruction in English composition based on an analysis of the student's proofreading, revision and editing skills; a programmed sequence of study and practice designed for improvement of writing performance through mastery of basic skills at word, sentence, paragraph and multiparagraph levels; also taught at Qatar campus. May not be used for credit toward a degree.

ASCC 003 Basic Reading Skills
Credits 0. 3 Other Hours.
Individualized instruction in reading based on analysis of the student's reading comprehension skills; study and practice of reading strategies designed to increase reading comprehension skills; also taught at Qatar campus. May not be used for credit toward a degree.

ASCC 004 Reading/Writing Connection
Credits 0. 3 Other Hours.
Individualized instruction designed to refine and practice the basic reading and writing skills by integrating the related concepts of the two areas; also taught at Galveston and Qatar campuses. May not be used for credit toward a degree.

ASCC 005 Fundamental Academic Skills
Credits 0. 0 Lecture Hours.
Designed to address the fundamental reading, writing, and/or mathematical skills for students needing instruction in Adult Basic Education (ABE). May not be used for credit towards a degree.
Prerequisites: Concurrent enrollment in ASCC 001 or ASCC 004; also taught at Galveston and Qatar campuses.

ASCC 101 Application of Learning Theories to College Studies
Credits 0 to 3. 0 to 3 Lecture Hours.
The study of critical theories of learning with application to academic performance; designated as the university's learning framework course, this course is designed to help students understand learning theory and develop strategies for successful completion of college level studies; also taught at Qatar campus.

ASCC 102 Career Awareness
Credits 0 to 3. 0 to 3 Lecture Hours.
Encourages planning career and life goals early in academic career for timely decision-making related to academics, acquiring marketable skills, pursuing relevant experiential education, and participating in student/professional organizations; acquaints students with realities of early career; emphasizes utilization of resources on a timely basis for competitiveness in job market; also taught at Qatar campus.

ASCC 285 Directed Studies
Credits 0 to 3. 0 to 3 Lecture Hours.
Selected topics in Asian Studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: Approval of director of Asian Studies.

ASCC 289 Special Topics in...
Credits 0 to 3. 0 to 3 Lecture Hours.
Selected topics in academic development and improvement.
Prerequisite: Approval of coordinator; also taught at Qatar campus.

ASIA - Asian Studies (ASIA)

ASIA 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Selected fields of Asian Studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: Approval of director of Asian Studies.

ASIA 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in Asian studies. May be repeated for credit.

ASIA 349/HIST 349 The Vietnam War/The American War
Credits 3. 3 Lecture Hours.
Vietnam's relations with the West; French colonialism; origins and development of Vietnamese nationalism; Cold War and American involvement; wartime societies in North and South Vietnam; expansion of the war to Cambodia and Laos; anti-war movements in the United States; reasons for the American defeat; consequences and lessons of the war.
Prerequisites: Junior or senior classification.
Cross Listing: HIST 349/ASIA 349.
ASIA 350/HIST 350 World War II in Asia and the Pacific
Credits 3. 3 Lecture Hours.
Origins and development of Japanese imperialism; Japan’s expansion into East and Southeast Asia and the Pacific; wartime societies; collaboration and resistance; effects of the war in the United States on Japanese-Americans; outcomes of the war; remembrance of the war.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 350/ASIA 350.

ASIA 352/ HIST 352 Modern East Asia
Credits 3. 3 Lecture Hours.
Impact of the West on traditional China and Japan; the response through modernization; rise of nationalism and formation of modern nation states.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 352/ASIA 352.

ASIA 356/HIST 356 Twentieth Century Japan
Credits 3. 3 Lecture Hours.
Industrialization and modernization of Japan; its rise from an isolated nation to a major world power and economic giant.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 356/ASIA 356.

ASIA 401 Slavery in World History
Credits 3. 3 Lecture Hours.
Comparative history of human slavery; slavery in the Ancient World, Asia, Africa; varieties of modern slavery in the New World since 1500; abolition of slavery and continuing forms of human bondage in the contemporary world.
Prerequisite: Junior or senior classification.
Cross Listing: SOCI 463 and WGST 463.

ASIA 463 Gender in Asia
Credits 3. 3 Lecture Hours.
Gender dynamics in Asia; changes in gender roles; women's movements; women and the economy; women and politics; men's and women's private lives.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 401 and HIST 401.

ASIA 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Selected fields of Asian Studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: Approval of director of Asian Studies.

ASIA 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in Asian Studies. May be repeated for credit.

ASIA 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of a faculty member in Asian Studies. May be repeated 3 times for credit.
Prerequisites: 6 credits of ASIA; junior or senior classification; approval of instructor.

ASTR - Astronomy (ASTR)

ASTR 101 Basic Astronomy
Credits 3. 3 Lecture Hours.
(ASTR 1303) Basic Astronomy. A qualitative approach to basic stellar astronomy; earth-moon-sun relationships then studies of distances to stars, stellar temperatures, and other physical properties; birth, life on the main sequence of the H-R diagram, and ultimate fates of stars; not open to students who have taken ASTR 111 or ASTR 314.

ASTR 102 Observational Astronomy
Credit 1. 3 Lab Hours.
(ASTR 1103 or PHYS 1103) Observational Astronomy. Observational and laboratory course which may be taken in conjunction with ASTR 101 or ASTR 314. Use of techniques and instruments of classical and modern astronomy.
Prerequisite: ASTR 101 or ASTR 314, or registration therein.

ASTR 103 Introduction to Stars and Exoplanets
Credits 3. 3 Lecture Hours.
A qualitative study of stellar birth, stellar structure and evolution, stellar nucleosynthesis, the Hertzsprung-Russell Diagram, white dwarfs, neutron stars, supernovae, black holes, proto-planetary systems, origin of the solar system and the search for exoplanets; utilizes active learning methods that incorporate observations from the current generation of ground and space-based telescopes. Open to all majors.

ASTR 104 Introduction to Galaxies and Cosmology
Credits 3. 3 Lecture Hours.
A qualitative study of properties of galaxies, galaxy evolution through cosmic time, galactic archaeology, active galactic nuclei, super-massive black holes, large-scale structure, the expansion history of the universe, cosmological parameters and Big Bang nucleosynthesis; utilizes active learning methods that incorporate observations from the current generation of ground and space-based telescopes. Open to all majors.

ASTR 109/PHYS 109 Big Bang and Black Holes
Credits 3. 3 Lecture Hours.
Designed to give an intuitive understanding of the Big Bang and Black Holes, without mathematics, and de-mystify them for the non-scientist.

ASTR 111 Overview of Modern Astronomy
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(ASTR 1303 and ASTR 1103, ASTR 1403, PHYS 1303 and PHYS 1103, PHYS 1403) Overview of Modern Astronomy. Roots of modern astronomy; the scientific method; fundamental physical laws; the formation of planets, stars, and galaxies; introduction to cosmology; includes an integrated laboratory that reinforces the lecture topics, including hands-on experience with telescopes and imaging of celestial objects; not open to students who have taken ASTR 101 or ASTR 314.

ASTR 119/PHYS 119 Big Bang and Black Holes: Laboratory Methods
Credit 1. 2 Lab Hours.
Hands-on understanding of the concepts surrounding the Big Bang and Black Holes; emphasis on the evidence-based decision making process, methods and presentation; for non-scientists. Companion course for ASTR 109/PHYS 109/ASTR 109.
Prerequisite: ASTR/PHYS 109/ASTR 109 or registration therein.
Cross Listing: PHYS 119/ASTR 119.
ASTR 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum; intended for use as lower-level credit.
Prerequisite: Approval of department head.

ASTR 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of astronomy. May be repeated for credit.
Prerequisite: Approval of instructor.

ASTR 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in astronomy. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ASTR 314 Survey of Astronomy
Credits 3. 3 Lecture Hours.
Primarily for majors in science and engineering. Kepler's laws, law of gravitation, solar system, stars, stellar evolution, nucleosynthesis, cosmology, clusters, nebulae, pulsars, quasars, black holes.
Prerequisite: PHYS 207 or PHYS 208.

ASTR 320 Astrophysical Research Methods
Credits 3. 3 Lecture Hours.
Background and tools used in modern astrophysical research, including reduction of photometric and spectroscopic data, signal-to-noise and error calculations and order-of-magnitude estimates.
Prerequisite: Grade of C or better in ASTR 314 or approval of instructor.

ASTR 401 Stars and Extrasolar Planets
Credits 3. 3 Lecture Hours.
How stars are born, how internal structure changes, nuclear fuel burned and ultimate fate; extrasolar planet detection, formation, properties and habitability.
Prerequisite: ASTR 314.

ASTR 403 Extragalactic Astronomy and Cosmology
Credits 3. 3 Lecture Hours.
Physical makeup of individual galaxies and large scale structure in the universe; origin and eventual fate of the universe; interpretation of observational data as it relates to baryonic matter, Dark Matter and cosmological models with Dark Energy.
Prerequisite: ASTR 314.

ASTR 420 Advanced Astrophysical Research Methods
Credits 3. 3 Lecture Hours.
Advanced research techniques used by modern-day astronomers to obtain, process and analyze data from grounds and space-based telescopes.
Prerequisites: Grade of C or better in ASTR 320 or approval of instructor.

ASTR 485 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum.
Prerequisite: Approval of department head.

ASTR 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified topic of astronomy. May be repeated for credit.
Prerequisite: Approval of instructor.

ASTR 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in astronomy. May be repeated for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

ATMO - Atmospheric Sciences (ATMO)

ATMO 201 Weather and Climate
Credits 3. 3 Lecture Hours.
Structure, energy, and motions of the atmosphere; climate; fronts and cyclones; atmospheric stability; clouds and precipitation; severe storms.

ATMO 202 Weather and Climate Laboratory
Credit 1. 2 Lab Hours.
Practical laboratory experiments and exercises, conducted in the meteorology and computer laboratories, concerning the fundamental physical processes underlying atmospheric phenomena, and the collection, display and interpretation of meteorological information. For non-majors only.

ATMO 203 Weather Forecasting Laboratory
Credit 1. 2 Lab Hours.
Short-range weather forecasting practice; numerical guidance; weather map analysis and discussions.
Prerequisite: ATMO 201 or concurrent enrollment.

ATMO 251 Weather Observation and Analysis
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Standard and experimental weather observing techniques; subjective and objective analysis; application of conceptual models; simple kinematic and dynamic constraints.
Prerequisite: ATMO 203 or concurrent enrollment.

ATMO 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Offered to enable majors in meteorology to undertake and complete with credit in their particular fields of specialization limited investigations not covered by any other courses in established curriculum.
Prerequisite: Freshman or sophomore classification.

ATMO 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of meteorology. May be repeated for credit.
Prerequisite: Approval of instructor.

ATMO 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in atmospheric sciences. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ATMO 320 Astrophysical Research Methods
Credits 3. 3 Lecture Hours.
Standard and experimental weather observing techniques; subjective and objective analysis; application of conceptual models; simple kinematic and dynamic constraints.
Prerequisite: ATMO 203 or concurrent enrollment.

ATMO 321 Computer Applications in the Atmospheric Sciences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to technical computing methods in the atmospheric sciences; use of specialized software and data analysis systems for meteorological applications.
ATMO 324 Physical and Regional Climatology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Climate causes; global and surface energy balance; hydrologic cycle; general circulation; climate change; climate data analysis.
Prerequisites: ATMO 201 and ATMO 203; MATH 308 or registration therein or approval of instructor; ATMO 321 or equivalent; junior or senior classification.

ATMO 326 Environmental Atmospheric Science
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Basic concepts of meteorology as needed in environmental sciences; patterns of meteorological and climatic elements and their relevance in terrestrial ecology and urban sciences; solar and wind energy physics; practical experience in use of instruments to measure micro-climates as they relate to meteorological conditions and analysis of data.
Prerequisites: ATMO 201 or GEOG 203, or approval of instructor.

ATMO 335 Atmospheric Thermodynamics
Credits 3. 3 Lecture Hours.
Application of thermodynamics to Earth's atmosphere; phase changes of water; stability concepts; introduction to physical chemistry.
Prerequisites: CHEM 120; MATH 251; PHYS 206.

ATMO 336 Atmospheric Dynamics
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Kinematic concepts and relationships; equations of motion; geostrophic and accelerated motions; the vorticity equation and Rossby waves.
Prerequisites: ATMO 321, ATMO 335, and MATH 308, or concurrent enrollment; junior or senior classification.

ATMO 352 Severe Weather and Mesoscale Forecasting
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Parcel theory for dry and moist convection; sounding diagrams and their application to atmospheric convection; organization of midlatitude convection and severe weather; thunderstorm forecasting.
Prerequisite: MATH 152 or MATH 172.

ATMO 356 Introduction to Atmospheric Chemistry and Air Pollution
Credits 3. 3 Lecture Hours.
Descriptive introduction of the composition and chemistry of natural and pollutant compounds in the atmosphere; transport, cycling and reactivity of atmospheric material; atmospheric measurements, data processing, air quality and human health issues; air pollution trends and climate change.
Prerequisites: CHEM 119 and CHEM 120 or approval of instructor.

ATMO 370 Student Experiences Abroad in Meteorology
Credits 1 to 4. 1 to 4 Other Hours.
Observation, study and analysis of meteorological phenomena and processes in the regional settings in which they occur; study-abroad experiences.
Prerequisite: ATMO 201 or concurrent enrollment.

ATMO 435 Synoptic-Dynamic Meteorology
Credits 3. 3 Lecture Hours.
Dynamics and diagnosis of synoptic-scale systems; perturbation theory and baroclinic instability; wave energetics, frontogeneses.
Prerequisites: ATMO 336 or equivalent; MATH 308.

ATMO 441 Satellite Meteorology and Remote Sensing
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to satellite orbit dynamics, atmospheric radiative transfer, atmospheric remote sensing methods, and analysis and application of remotelysensed meteorological data.
Prerequisites: ATMO 324, MATH 308; junior or senior classification.

ATMO 443 Radar Meteorology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles of radar theory, hardware, operations and analysis using real-time radar and computer-based case studies; conventional, Doppler and polarimetric weather radar; precipitation estimation, hydrometeor identification and air motion analysis; observations and analyses of thunderstorms, mesocyclones, tornadoes and gust fronts.
Prerequisites: ATMO 352; PHYS 207 or PHYS 219.

ATMO 446 Physical Meteorology
Credits 3. 3 Lecture Hours.
Physics and meteorology of clouds and precipitation; atmospheric electricity; radiative transfer.
Prerequisite: ATMO 335.

ATMO 455 Numerical Weather Prediction
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Basic principles of computer models of the atmosphere; parameterizations; use and critical evaluation of models and model output.
Prerequisites: MATH 308; ATMO 336 or registration therein.

ATMO 456 Practical Weather Forecasting
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Advanced weather forecasting techniques with application to a variety of forecasting problems, both public and private sector.
Prerequisites: ATMO 435 or registration therein; junior or senior classification.

ATMO 459 Tropical Meteorology
Credits 3. 3 Lecture Hours.
Tropical climatology; structure, evolution, and motion of tropical cyclones; tropical cyclone hazards; large-scale tropical phenomena.
Prerequisites: ATMO 336; ATMO 352 or concurrent enrollment.

ATMO 461 Broadcast Meteorology
Credit 1. 2 Lab Hours.
Instruction in the practice of broadcast meteorology; practice in and preparation of weather forecast products and demonstration videotapes. May be taken two times for credit with faculty advisor approval.
Prerequisites: ATMO 335 or registration therein; MATH 308 or registration therein; junior or senior classification.

ATMO 463 Air Quality
Credits 3. 3 Lecture Hours.
Atmospheric pollution sources, transport, sinks, and effects; monitoring of air pollutant emissions and of ambient concentrations; use of models to simulate air pollution; regulation of emissions and ambient concentrations; greenhouse gas emissions regulations.
Prerequisite: CHEM 119 or CHEM 107 or approval of instructor; junior or senior classification.

ATMO 464 Laboratory Methods in Atmospheric Sciences
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Instruction in chemical techniques used to monitor the atmosphere and other earth systems; sampling strategies; survey of current literature focusing on development of new techniques.
Prerequisites: CHEM 119 and one semester of calculus (MATH 171 or equivalent).
ATMO 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Supervised internship at National Weather Service or in broadcast meteorology or elsewhere with faculty advisor approval; must complete a report and have a letter from supervisor for credit. May be taken three times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: ATMO 251; approval of faculty advisor.

ATMO 485 Directed Studies
Credits 1 to 23. 1 to 23 Other Hours.
Offered to enable majors in meteorology to undertake and complete with credit in their particular fields of specialization limited investigations not covered by any other courses in established curriculum.
Prerequisite: Junior or senior classification.

ATMO 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of meteorology. May be repeated for credit.

ATMO 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in atmospheric sciences. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

ATTR - Athletic Training (ATTR)

ATTR 201 Field Experience in Athletic Training I
Credit 1. 4 Lab Hours.
Field based experience in athletic training to provide on-the-job training designed to enhance and clarify career objectives; knowledge and skill development in professional behaviors, injury prevention and risk management.
Prerequisite: Kinesiology majors.

ATTR 202 Field Experience in Athletic Training II
Credit 1. 4 Lab Hours.
Field based experience in athletic training to provide on-the-job training designed to enhance and clarify career objectives; knowledge and skill development in recognition and evaluation of common injuries and illnesses and their management.
Prerequisite: Grade of B or better in ATTR 201.

ATTR 301 Field Experience in Athletic Training I
Credit 1. 4 Lab Hours.
Field based experience in athletic training to provide on-the-job training designed to enhance and clarify career objectives; knowledge and skill development in the treatment and rehabilitation of athletic injuries.
Prerequisite: Grade of B or better in ATTR 202.

ATTR 302 Field Experience in Athletic Training II
Credit 1. 4 Lab Hours.
Field based experience in athletic training to provide on-the-job training designed to enhance and clarify career objectives; knowledge and skill development in athletic training administration; exploration of policy and position statements; professional development.
Prerequisite: Grade of B or better in ATTR 301.

BAEN - Biological & Ag Engr (BAEN)

BAEN 201 Analysis of Biological and Agricultural Engineering Problems
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Overview of Biological and Agricultural Engineering discipline through case studies and engineering design problems; introduction to engineering design utilizing computer programming, 3-D computer-aided modeling and 2-D engineering drawings; introduction to manufacturing processes.
Prerequisites: Grade of C or better in ENGR 102; grade of C or better in MATH 151; grade of C or better in CHEM 107 and CHEM 117, or CHEM 102 and CHEM 112, or CHEM 120.

BAEN 281 Professional Development Seminar
Credit 1. 1 Lecture Hour.
Familiarization with engineering design process used in professional environments where BAEN and AGSM graduates are employed; discussion of professional development topics; improvement of technical communication skills. May be taken 4 times for credit.

BAEN 284 Internship
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
No Credit. Practical experience working in a professional biological and agricultural engineering setting. May be taken three times.
Prerequisite: Freshman or sophomore classification; approval of the instructor.

BAEN 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Selected problems in any phase of agricultural engineering; credit and specific content dependent upon background, interest, ability and needs of student enrolled; individual consultations and reports required.
Prerequisites: Freshman or sophomore classification; approval of department head.

BAEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of agricultural engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

BAEN 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in biological and agricultural engineering.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BAEN 301 Biological and Agricultural Engineering Fundamentals I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamental engineering concepts related to agricultural systems including the environment (soil, water, and air), plant and animal production systems and processing, and associated machines and facilities; application of techniques for data collection and analysis to problems in biological and agricultural engineering; design of experiments and communication of experimental results.
Prerequisite: Grade of C or better in MEEN 221 or concurrent enrollment.
BAEN 302 Biological and Agricultural Engineering Fundamentals II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of microbiology and biochemistry as they apply to biological and agricultural engineering systems to produce useful products and/or benign wastes; topics include microbiology, chemistry of biomolecules, microbial metabolism, bioenergetics, kinetics, mass transfer, bioreactor design, bioprocesses, and downstream processing.
Prerequisites: Grade of C or better in BIOL 113 or BIOL 111; Grade of C or better in CHEM 222 or CHEM 227 or concurrent enrollment.

BAEN 320 Engineering Thermodynamics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
First and second laws of thermodynamics; properties of pure substances; analysis of closed and open systems; applications to steady-flow and non-flow processes; power and refrigeration cycles; psychrometrics.
Prerequisites: Grade of C or better in BIOL 113 or BIOL 111; Grade of C or better in CHEM 222 or CHEM 227 or concurrent enrollment.

BAEN 340 Fluid Mechanics
Credits 3. 3 Lecture Hours.
Fundamentals of fluid properties; basic conservation principles of momentum, energy and continuity; flow through closed conduits; open channel flow; principles of turbomachines and compressible flow.
Prerequisites: Grade of C or better in MEEN 221 or CVEN 221; grade of C or better in MATH 251 or MATH 253 or concurrent enrollment.

BAEN 354 Engineering Properties of Biological Materials
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Relationships between composition, structure and properties of biological materials; definition and measurement of mechanical, physical, thermal and other material properties; variability of properties; application of properties to engineering analysis and design of biological and agricultural processes and systems.
Prerequisite: Grade of C or better in MEEN 221; grade of C or better in BAEN 320 or concurrent enrollment.

BAEN 365 Unit Operations for Biological and Agricultural Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Theoretical and practical understanding of basic unit operations required to design processes and equipment in the agricultural, biological, environmental, and food industries, with unique constraints presented by biological and agricultural systems considered in design of all units.
Prerequisites: Grade of C or better in BAEN 340; grade of C or better in CVEN 305 or concurrent enrollment; junior or senior classification.

BAEN 366 Transport Processes in Biological Systems
Credits 3. 3 Lecture Hours.
Basic principles governing transport of energy and mass; application of these principles to analysis and design of processes involving biological, environmental and agricultural systems.
Prerequisites: Grade of C or better in BAEN 320, BAEN 340, and BAEN 365 or concurrent enrollment; grade of C or better in MATH 308; junior or senior classification.

BAEN 370 Measurement and Control of Biological Systems and Agricultural Processes
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Theory and application of sensors and techniques in the design of systems for automatic control in biological systems and agricultural production and processing; sensor operation; signal processing; control techniques; automation and robotics.
Prerequisite: Grade of C or better in ECEN 215.
BAEN 431/CHEN 431 Fundamentals in Bioseparations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Design principles and application of chemical engineering unit operations to the production of therapeutic and bioactive molecules.
Prerequisite: Grade of C or better in BAEN 302, BMEN 282, CHEN 282, or CHEN 482.
Cross Listing: CHEN 431/BAEN 431.

BAEN 460 Principles of Environmental Hydrology
Credits 3. 3 Lecture Hours.
Hydrologic cycle; precipitation, evaporation, evapotranspiration, infiltration, percolation, runoff, streamflow; groundwater and surface water flow; transport of contaminants in surface water; measurement and analysis of hydrologic data for engineering design.
Prerequisites: Grade of C or better in BAEN 340.

BAEN 464 Irrigation and Drainage Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Engineering principles and design of both surface and pressurized irrigation systems; introduction to the design of surface and subsurface drainage systems including crop water requirements, soil moisture, irrigation scheduling, surface irrigation, sprinkler irrigation, trickle irrigation, pumps, pipelines, irrigation canals, irrigation wells, and surface and subsurface drainage.
Prerequisite: Grade of C or better in BAEN 340.

BAEN 465 Design of Biological Waste Treatment Systems
Credits 3. 3 Lecture Hours.
Management and treatment of high organic content wastes, with emphasis on agricultural and food processing wastes; engineering design of biological waste treatment processes; regulatory aspects affecting management of agricultural wastes.
Prerequisites: Grade of C or better in BIOL 113 or BIOL 111 and CHEM 222 or CHEM 227, or BAEN 302.

BAEN 468 Soil and Water Conservation Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Engineering principles of soil and water conservation; open channel flow principles, hydraulic grade stabilization, erosion control, storm water management, design of structures for floodwater routing, culvert design, design of waterways and agricultural reservoirs, stream bank protection, water quality assessment, groundwater flow, surface water modeling.
Prerequisites: Grade of C or better in BAEN 340.

BAEN 469 Water Quality Engineering
Credits 3. 3 Lecture Hours.
Nonpoint source pollution processes including transport mechanisms and contaminant fate; design of best management practices for abating nonpoint source pollution.
Prerequisites: Grade of C or better in BAEN 340 or equivalent.

BAEN 471/CHEN 471 Bioreactor Engineering
Credits 3. 3 Lecture Hours.
Fundamentals of microbial and enzyme kinetics; basic biochemical reaction theory and reactor systems; heterogeneous reactions and transport considerations in enzyme and cell reactors, and immobilized systems; bioreactor design considerations in bioprocessing.
Prerequisite: Grade of C or better in CHEN 282, CHEN 482, or BAEN 302; junior or senior classification or approval of instructor.
Cross Listing: CHEN 471/BAEN 471.

BAEN 477 Air Pollution Engineering
Credits 3. 3 Lecture Hours.
Design of air pollution abatement equipment and systems to include cyclones, bag filters and scrubbers; air pollution regulations; permitting; dispersion modeling; National Ambient Air Quality Standards.
Prerequisite: Grade of C or better in BAEN 340, CVEN 311/EVEN 311, or MEEN 344.
Cross Listing: MEEN 477 and SENG 477.

BAEN 479 Biological and Agricultural Engineering Design I
Credits 3. 3 Lecture Hours.
Capstone design project selection from problems posed by biological and agricultural engineers in industrial practice; completion of project feasibility study and outline; design philosophy, teamwork and communication; economics; product liability and reliability; use of standards and codes; goal setting, professional development, and time management; project to be completed in BAEN 480.
Prerequisites: Grade of C or better in BAEN 340 and BAEN 365; grade of C or better in BAEN 366 or BAEN 370; Grade of C or better in BAEN 354 and BAEN 375 or concurrent enrollment.

BAEN 480 Biological and Agricultural Engineering Design II
Credits 3. 6 Lab Hours.
Continuation of engineering design experience through team solution of design problem developed in BAEN 479; preparation of design solution under supervision of biological and agricultural engineering staff and clients; critical evaluation of results by students; staff and industrial consultants.
Prerequisites: Grade of C or better in BAEN 479.

BAEN 481 Seminar
Credit 1. 1 Other Hour.
Review of current literature dealing with agricultural engineering problems presented by staff members and students.
Prerequisite: Senior classification.

BAEN 484 Internship
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
No Credit. Practical experience working in a professional biological and agricultural engineering setting. May be taken three times.
Prerequisite: Junior or senior classification; approval of the instructor.

BAEN 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Selected problems in any phase of agricultural engineering. Credit and specific content dependent upon background, interest, ability and needs of student enrolled. Individual consultations and reports required.
Prerequisites: Junior or senior classification and approval of department head.

BAEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of agricultural engineering. May be repeated for credit.
Prerequisite: Approval of department head.

BAEN 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in biological and agricultural engineering. May be repeated 2 times for credit.
Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.
BEFB-Bilingual Ed Field Based (BEFB)

BEFB 425 Student Teaching in Hispanic Bilingual Education
Credits 3. 3 Lecture Hours.
Observation and participation in Hispanic bilingual education classroom activity; supervised student teaching in accredited school. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: 2.5 GPA in teaching fields and professional development; approval of department head; senior classification. Must be taken concurrently with BEFB 426.

BEFB 426 Effective Instruction of Hispanic Students of Diverse Abilities
Credits 3. 3 Lecture Hours.
Field-based application of effective instructional strategies for teaching Hispanic bilingual students of diverse abilities. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: 2.5 GPA in teaching fields and professional development; approval of department head. Must be taken concurrently with BEFB 425.

BEFB 470 Bilingual Assessment and Monitoring
Credits 3. 3 Lecture Hours.
Assessment of language ability for second language learners; assessment instruments in bilingual/ESL programs; scoring and evaluation of second language assessment instruments.
Prerequisites: Junior or senior classification; BEFB 472 and BEFB 474. Must be taken concurrently with BEFB 476.

BEFB 472 Bilingual and Dual Language Methodologies
Credits 3. 3 Lecture Hours.
Use of theory and effective teaching practice in promoting student's development of strong social and academic skills; relationship of culture to language.
Prerequisites: Junior or senior classification. Must be taken concurrently with BEFB 474.

BEFB 474 Biliteracy for Bilingual and Dual Language Classrooms
Credits 3. 3 Lecture Hours.
Social and linguistic characteristics of second language learners influencing literacy skills; reading and literature instruction for second language learners; reading and writing process across the curriculum for second language learners.
Prerequisites: Junior or senior classification. Must be taken concurrently with BEFB 474.

BEFB 476 Content Area Instruction for Bilingual Programs
Credits 3. 3 Lecture Hours.
Use of theory and various approaches for integrating English as a second language; learning strategies relating to how plans, procedures and units engage language teachers, students and learning environments.
Prerequisites: Junior or senior classification. Must be taken concurrently with BEFB 474.

BEFB 482 Seminar in Teachers as Effective Communicators
Credit 1. 1 Lecture Hour.
Effective communication techniques for working with learners, colleagues, administrators and stakeholders; professional and social linguistic protocols for bilingual education teachers.
Prerequisites: Junior or senior classification; concurrent enrollment in BEFB 472 and BEFB 474.

BESC - Bioenvironmental Sci (BESC)

BESC 201 Introduction to Bioenvironmental Sciences
Credits 3. 3 Lecture Hours.
A broad survey of environmental science with an emphasis on scientific literacy, current events, global and international issues and historic context.

BESC 204 Molds and Mushrooms: The Impact of Fungi on Society and the Environment
Credits 3. 3 Lecture Hours.
Introduction to the fungi and the impact these organisms have on society and the environment; includes life cycles of fungi, classification schemes, pathogens of plants, animals and humans, fungi in food production; toxic fungi and the law; and others.

BESC 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individually supervised research or advanced studies for lower-division undergraduate students to independently investigate special problems not available in existing courses.
Prerequisite: Approval of instructor in consultation with departmental advisor.

BESC 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in bioenvironmental sciences. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BESC 311 International Perspectives on Environmental Issues
Credits 3. 3 Lecture Hours.
The role of the United Nations and other institutions that promote international cooperation toward sustainable development goals; influence of cultural views on critical thinking about environmental issues, including population, water and agriculture, biodiversity and energy.
Prerequisite: Junior or senior classification or approval of instructor; must attend two mandatory pre-departure meetings.

BESC 314 Pathogens, the Environment and Society
Credits 3. 3 Lecture Hours.
The impact of microorganisms (bacteria, fungi and viruses) on the development of modern culture and society; the role pathogens played in the history of mankind and the influence of the changing environment on emerging diseases.
Prerequisite: Junior or senior classification.

BESC 320 Water and the Bioenvironmental Sciences
Credits 3. 3 Lecture Hours.
Critical understanding of salient issues relating to fresh water as a limited and important bioenvironmental resource.
Prerequisite: Junior or senior classification.

BESC 357 Biotechnology for Biofuels and Bioproducts
Credits 3. 3 Lecture Hours.
Biotechnology issues in developing bioenergy as a renewable energy source; emphasis on the three generations of bioenergy and enabling technologies; special topics include recent advances in bioenergy research, government policy, and industrial development.
Prerequisite: BESC 201 and junior or senior classification.
BESC 367 U.S. Environmental Regulations
Credits 3. 3 Lecture Hours.
Investigation of the legal infrastructure of the U.S. associated with regulating environmental impacts; examination of major U.S. environmental statutes associated with air and water quality, toxic substances, waste and hazardous substance release, energy and natural resources; review the relationship between U.S. policy and international environmental regulations.
Prerequisites: BESC 201 or GEOS 105.

BESC 401 Bioenvironmental Microbiology
Credits 3. 3 Lecture Hours.
The interactions of microorganisms in diverse environments; applied aspects of microbial interactions in the environment, their effects on the environment, and potential use to solve environmental problems.
Prerequisites: CHEM 222 or CHEM 227; or approval of instructor.

BESC 402 Microbial Processes in Bioremediation
Credits 3. 3 Lecture Hours.
Metabolic pathways of microbes involved in the biodegradation of hazardous materials; ecological requirements for biotreatability of contaminated sites; emphasis on factors affecting microbial growth; strategies for in situ bioaugmentation.
Prerequisite: CHEM 222 or CHEM 227.

BESC 403 Sampling and Environmental Monitoring
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to environmental sampling and methodology; strategies and analyses of sampling data; overview of current applications of sampling and monitoring in the environmental sciences; emphasis on practical aspects of sampling from air, soil and water; detection and quantification of microbial and chemical unknowns in environmental media.
Prerequisite: Junior or senior classification or approval of instructor.

BESC 411 Environmental Health and Safety Compliance
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Investigation of various Environmental Health and Safety (EHS) practices necessary for compliance with state and federal regulations; reinforcement of real-world understanding; tour several regulated facilities on campus and learn about the particular TAMU-EHS compliance management strategies for each (utilities, underground storage tanks, wastewater treatment and hazardous waste facility).
Prerequisite: BESC 367 or similar regulation intensive course and approval of instructor.

BESC 481 Seminar
Credit 1. 1 Lecture Hour.
Capstone course for topics in bioenvironmental sciences; critical analysis of environmental issues through written themes and presentations. May be taken three times for credit.
Prerequisites: BESC 201 and senior classification in BESC major.

BESC 484 Field Experience
Credits 1 to 4. 1 to 4 Other Hours.
An on-the-job supervised experience program conducted in the area of the student's specialization.
Prerequisite: Junior or senior classification or approval of department head.

BESC 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems for advanced undergraduates to permit study of subject matter not available in existing courses.
Prerequisite: BESC 201 or approval of instructor.

BESC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 1 to 4 Lab Hours.
Selected topics in an identified area of bioenvironmental sciences. May be repeated for credit.
Prerequisite: BESC 201 or approval of instructor.

BESC 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in bioenvironmental sciences. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

BICH - Biochemistry (BICH)

BICH 101/GENE 101 Perspectives in Biochemistry and Genetics
Credit 1. 1 Lecture Hour.
Introduction to biochemistry and genetics and their relationship to the biological, biophysical and chemical sciences.
Prerequisite: Biochemistry and genetics major or approval of instructor.
Cross Listing: GENE 101/BICH 101.

BICH 281 Seminar in Biochemical Research
Credit 1. 1 Lecture Hour.
Round table discussions with visiting seminar speakers; review current literature; topics including cutting edge research in biochemistry.
Prerequisites: BICH 107 and freshman or sophomore classification in biochemistry or approval of instructor.

BICH 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Introduction to laboratory research.
Prerequisite: Freshman or sophomore classification in biochemistry or approval of instructor.

BICH 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of biochemistry. May be repeated for credit.
Prerequisite: Freshman or sophomore classification in biochemistry or approval of instructor.

BICH 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Biochemistry. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor; biochemistry majors only.

BICH 303 Elements of Biological Chemistry
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Survey of the biochemical sciences designed for the non-biochemistry major; overview of the chemistry and metabolism of biologically important molecules, the biochemical basis of life processes, cellular metabolism and regulation. Students requiring biochemistry in greater depth should register for BICH 410 and BICH 411.
Prerequisite: CHEM 222 or CHEM 227; not open to biochemistry majors.

BICH 403 Cellular Biophysics
Credits 3. 3 Lecture Hours.
Current topics in cellular biophysics and systems biology; quantitative and predictive perspectives of cellular life; basic tools of biophysics such as fluorescence imaging and data analysis.
Prerequisites: BIOL 112 and MATH 152; BICH 440 or concurrent enrollment.
BICH 404 Biochemical Calculations
Credits 2. 2 Lecture Hours.
Quantitative and computational approaches to biochemical problems.
Prerequisites: Grade of C or better in BICH 440 or concurrent enrollment; junior or senior classification.

BICH 406 Molecular Mechanisms of Cell Interactions
Credits 3. 3 Lecture Hours.
Current topics in biomolecules, natural product antibiotics and application in infectious diseases, modern and historical approaches to antibiotic discovery, biomedical glycombology, glycosylation in diseases and pathobiology.
Prerequisites: BICH 441.

BICH 407 Horizons in Biological Chemistry II
Credit 1. 1 Lecture Hour.
Application of formal classroom instruction; applied view of biochemical concepts; use of biochemical principles to ascertain, evaluate, and make judgments on research information. May be taken five times.
Prerequisite: BICH 411 or BICH 441.

BICH 409 Principles of Biochemistry
Credits 3. 3 Lecture Hours.
A rigorous survey of topics in biochemistry; topics include structure and function of molecules within living cells, major metabolic pathways and their regulation and role in disease; provides preparation for advanced study in the health sciences.
Prerequisite: CHEM 228.

BICH 410 Comprehensive Biochemistry I
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Structure, function and chemistry of proteins and carbohydrates; kinetics, mechanisms and regulation of enzymes; metabolism of carbohydrates.
Not open to biochemistry or genetics majors.
Prerequisite: CHEM 228 or approval of instructor.

BICH 411 Comprehensive Biochemistry II
Credits 3. 3 Lecture Hours. 1 Lab Hour.
A continuation of BICH 410. Structure, function, chemistry and metabolism of lipids and nucleic acids; cellular metabolism viewed from the standpoint of energetics and control mechanisms; interrelationships of metabolic pathways. Not open to biochemistry or genetics majors.
Prerequisite: BICH 410.

BICH 412 Biochemistry Laboratory I
Credit 1. 3 Lab Hours.
Selected methods used to identify, isolate, purify and characterize biomolecules. Not open to biochemistry or genetics majors.
Prerequisite: BICH 410 or registration therein.

BICH 414 Biochemical Techniques I
Credits 2. 6 Lab Hours.
Techniques currently used in biochemistry such as spectrophotometry, column chromatography (gel filtration, ion exchange) electrophoresis and immunoelectrophoresis, performed in purification of proteins, enzymes and nucleic acids. For majors in biochemistry, genetics, molecular and cell biology and microbiology.
Prerequisite: BICH 440 or BICH 410.

BICH 419/GENE 419 Computational Techniques for Evolutionary Analysis
Credits 3. 3 Lecture Hours.
Computational techniques for studying evolution; algorithms for construction and analysis of evolutionary relationships.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: GENE 419/BICH 419.

BICH 431/GENE 431 Molecular Genetics
Credits 3. 3 Lecture Hours.
Molecular basis for inheritance; gene structure and function, chromosomal organization, replication and repair of DNA, transcription and translation, the genetic code, regulation of gene expression, genetic differentiation and genetic manipulations.
Prerequisites: BICH 410 or BICH 440; GENE 301 or GENE 302 or GENE 320/BIMS 320.
Cross Listing: GENE 431/BICH 431.

BICH 432/GENE 432 Laboratory in Molecular Genetics
Credits 2. 6 Lab Hours.
Laboratory for molecular genetics providing technical experience with tools of molecular biology.
Prerequisite: GENE 301, GENE 302, or GENE 320/BIMS 320; BICH 431/GENE 431 or GENE 431/BICH 431.
Cross Listing: GENE 432/BICH 432.

BICH 440 Biochemistry I
Credits 3. 3 Lecture Hours.
Rigorous treatment of the structure, function and chemistry of proteins and carbohydrates; kinetics, mechanisms and regulation of enzymes; metabolism of carbohydrates. Course designed for biochemistry and genetics majors and honors students only.
Prerequisite: Grade of C or better in CHEM 228 and concurrent enrollment in BICH 404, or approval of instructor.

BICH 441 Biochemistry II
Credits 3. 3 Lecture Hours.
Continuation of BICH 440; structure, function, chemistry and metabolism of lipids and nucleic acids, cellular metabolism viewed from the standpoint of energetics and control mechanisms; interrelationships of metabolic pathways. Course designed for biochemistry and genetics majors and honors students only.
Prerequisite: Grade of C or better in BICH 440.

BICH 450/BIOL 450 Genomics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
The study of genomic data includes consideration of the logic behind the most important genomic approaches, as well as their capabilities and limitations in investigating biological processes; the science of accessing and manipulating genomic data; and practical applications, including development of an hypotheses-driven datamining experiment.
Prerequisites: BIOL 213, GENE 301 or GENE 302, BICH 431/GENE 431 or GENE 431/BICH 431; or BIOL 351; junior or senior classification or approval of instructor.
Cross Listing: BIOL 450/BICH 450.

BICH 456 RNA World
Credits 3. 3 Lecture Hours.
Emphasizes novel roles and mechanisms of newly discovered RNA species including non-coding RNA’s; RNA silencing, circular RNA’s, RNA guided epigenetic regulation, clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas immunity, genome editing, telomerase biogenesis, riboswitches, exosome, editosome and RNA remodeling.
Prerequisites: GENE 301 or GENE 302, BICH 410, BICH 440, BIOL 351, or BIOL 413.

BICH 460 Genome Annotation with Ontologies
Credit 1. 2 Lab Hours.
Use of ontologies as structured controlled vocabularies for the organization of biological data; annotation based on critical reading of the scientific literature. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Prerequisite: Special roles of animals.
Animal, human and environmental health of common species as well as special roles of animals.

BIMS 125 Animals in Society
Credit 1. 2 Lab Hours.
Introduction to integration of humans and animals in society, focusing on animal, human and environmental health of common species as well as special roles of animals.
Prerequisite: Freshman classification.

BIMS 201 Introduction to Phenotypic Expression in the Context of Human Medicine
Credit 2. 2 Lecture Hours.
Study of human genetics with respect to gene expression as it pertains to the cell cycle, development, cancer, aging and epigenetics; discussions and debates surrounding medical examples and case studies.
Prerequisite: BIOL 112, CHEM 227; or approval of instructor.

BIMS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of biomedical science. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BIMS 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in biomedical sciences. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BIMS 301 Biomedical Sciences Study Abroad
Credits 2 to 12. 2 to 12 Lecture Hours.
For students in approved programs abroad. May be repeated for credit. Maximum 3 hours free elective credit in the BIMS degree plan. Must be taken on a satisfactory/unsatisfactory basis.

BIMS 320/GENE 320 Biomedical Genetics
Credit 3. 3 Lecture Hours.
Fundamental genetic principles as applied to biomedical science; Mendelian inheritance, linkage and genetic mapping, mutagenesis and pedigree analysis; molecular basis of gene function and inherited disease; gene therapy and genetic counseling. Only one of the following will satisfy the requirements for a degree: GENE 301, GENE 302, GENE 315 or GENE 320/BIMS 320.
Prerequisites: Junior or senior classification; BIMS major with a minimum overall 2.5 TAMU GPA.
Cross Listing: GENE 320/BIMS 320.

BIMS 392 Cooperative Education in Biomedical Science
Credits 2 to 20. 20 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study. Supervision of the student will be by the cooperating employer and the instructor. A technical report, approved by the instructor, on a related subject area will be assigned. May be repeated for credit.
Prerequisites: Approval of the college coordinator of cooperative education; BIMS major with a minimum overall 2.5 TAMU GPA.

BIMS 405/GENE 405 Mammalian Genetics
Credit 3. 3 Lecture Hours.
Comparative mammalian genetic systems with emphasis on laboratory animals; organization and expression of mammalian genes; development and use of genetically defined animals in biomedical and genetic research.
Prerequisites: GENE 301, BIMS 320/GENE 320 or GENE 320/BIMS 320; junior or senior classification.
Cross Listing: GENE 405/BIMS 405.
BIMS 421/GENE 421 Advanced Human Genetics
Credits 3. 3 Lecture Hours.
A rigorous, analytical approach to genetic analysis of humans including diagnosis and management of genetic disease in humans; transmission of genes in human populations; human cytogenetics; the structure of human genes; human gene mapping; molecular analysis of genetic disease; genetics screening and counseling.
Prerequisites: GENE 302; BICH 410 or BICH 440.
Cross Listing: GENE 421/BIMS 421.

BIMS 481 Seminar in Biomedical Science
Credit 1. 1 Other Hour.
Recent advances in biomedical sciences.
Prerequisites: Junior or senior classification in life sciences majors; BIMS major with a minimum overall 2.5 TAMU GPA.

BIMS 484 Biomedical Science Field Experience
Credits 2. 2 Other Hours.
On-the-job training in the Biomedical Science industry; development of objectives and goals; evaluation by supervisor required.
Prerequisite: Approval of department head; BIMS major with a minimum overall 2.5 TAMU GPA.

BIMS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of problems in the biomedical sciences with emphasis in the allied health professions, hospital administration, and the health-related industry approved by the instructor.
Prerequisites: Junior or senior classification; approval of instructor; BIMS major with a minimum overall 2.5 TAMU GPA.

BIMS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of biomedical science. May be repeated for credit.
Prerequisite: Junior or senior classification; BIMS major with a minimum overall 2.5 TAMU GPA.

BIMS 491 Research
Credits 0 to 12. 0 to 12 Other Hours.
Research conducted under the direction of faculty member in biomedical sciences. May be repeated 2 times for credit.
Prerequisites: 2.5 overall TAMU GPA; grade of C or S or better in a directed studies or research course in the college of veterinary medicine and biomedical sciences or approval of instructor; junior or senior classification and approval of instructor.

BIOL - Biology (BIOL)

BIOL 100 Horizons in Biology
Credits 0-1. 0-1 Lecture Hours.
Introduction to the study of biology at Texas A&M University; gain knowledge of departmental and campus resources to assist and enhance the pursuit of a degree in biology, microbiology, molecular and cellular biology or zoology.
Prerequisites: First-year and first-time-in-college freshman majoring in BIOL, MBIO, BMCB and ZOOL.

BIOL 101 Botany
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(BIOL 1311 and 111, BIOL 1411) Botany. Structure, physiology and development of plants with an emphasis on seed plants. (Not open to students who have taken BIOL 111 and BIOL 112 or BIOL 113); includes laboratory that reinforces and provides supplemental information related to the lecture topics.

BIOL 111 Introductory Biology I
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(BIOL 1306 and 1106, 1406) Introductory Biology I. First half of an introductory two-semester survey of contemporary biology that covers the chemical basis of life, structure and biology of the cell, molecular biology and genetics; includes laboratory that reinforces and provides supplemental information related to the lecture topics; also taught at Galveston campus.

BIOL 112 Introductory Biology II
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(BIOL 1307 and 1107, 1407) Introductory Biology II. The second half of an introductory two-semester survey of contemporary biology that covers evolution, history of life, diversity and form and function of organisms; includes laboratory that reinforces and provides supplemental information related to the lecture topics.
Prerequisite: BIOL 111; also taught at Galveston campus.

BIOL 113 Essentials in Biology
Credits 3. 3 Lecture Hours.
(BIOL 1308, BIOL 1408) Essentials in Biology. One-semester biology for non-majors; overview of essential biological concepts and their application to real world and contemporary issues; topics include evolution, biodiversity, cellular, molecular and forensic biology, genetics and heredity to scientific literacy, human impact on the environment, genetically modified organisms and emerging diseases.

BIOL 206 Introductory Microbiology
Credits 4. 3 Lecture Hours. 4 Lab Hours.
(BIOL 2320 and 2120, BIOL 2321 and 2121, BIOL 2420, BIOL 2421) Introductory Microbiology. Basic microbiology of prokaryotes and eukaryotes; main topics include morphology, physiology, genetics, taxonomy, ecology, medically important species and immunology; mandatory laboratory designed to give hands-on experience and to reinforce basic principles.
Prerequisites: BIOL 101, BIOL 107, BIOL 110, or BIOL 113; CHEM 119. May not be used for credit by biology, molecular and cell biology, microbiology, predentistry or premedicine majors.

BIOL 213 Molecular Cell Biology
Credits 3. 3 Lecture Hours.
Explores the molecular basis of cell structure, function and evolution; gene regulation, cell division cycle, cancer, immunity, differentiation, multicellularity and photosynthesis; may not take concurrently with, or after the completion of, BIOL 413.
Prerequisites: BIOL 112; CHEM 120.

BIOL 214 Genes, Ecology and Evolution
Credits 3. 3 Lecture Hours.
A genetically-based introduction to the study of ecology and evolution; emphasis on the interactions of organisms with each other and with their environment.
Prerequisite: BIOL 112.
BIOL 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Problems in various phases of plant, animal and microbial science.
Prerequisites: Freshman or sophomore classification; approval of ranking professor in field chosen and Undergraduate Advising Office.

BIOL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of biology. May be repeated for credit.
Prerequisite: Approval of instructor.

BIOL 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of faculty member.

BIOL 302 Careers in Biology
Credit 1. 1 Lecture Hour.
Development of job search skills; utilization of career resources; self-assessment of career interests and career objectives; strategies for professional correspondence and networking; business etiquette and interviewing techniques; insight into life science career opportunities.
Prerequisites: Junior or senior classification; department of biology majors only; or approval of instructor.

BIOL 318 Chordate Anatomy
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Classification, phylogeny, comparative anatomy, and biology of chordates; diversity, protochordates, vertebrate skeletons, shark and cat anatomy studied in laboratory.
Prerequisite: BIOL 214 or approval of instructor.

BIOL 319 Integrated Human Anatomy and Physiology I
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Integrated approach to cellular, neural, skeletal, muscular anatomy and physiology; includes some histology, histopathology, radiology and clinical correlations.
Prerequisite: BIOL 111 and BIOL 112, or BIOL 107.

BIOL 320 Integrated Human Anatomy and Physiology II
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Continuation of BIOL 319. Integrated approach to endocrine, cardiovascular, respiratory, digestive, urinary, reproductive and developmental anatomy and physiology; includes some histology, histopathology, radiology and clinical correlations.
Prerequisite: BIOL 319 or approval of instructor.

BIOL 335 Invertebrate Zoology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Morphology, taxonomy, natural history and phylogeny of invertebrate animals, with emphasis on biodiversity; class includes both lecture and lab. Labs include study of preserved material and demonstration of living animals in aquarium and terraria.
Prerequisite: BIOL 214 or approval of instructor.

BIOL 344 Embryology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to general and comparative embryology; molecular and cellular mechanisms of development; genetics and early development of selected invertebrates (C. elegans, Drosophila and sea urchin) and emphasis on vertebrates (frog, fish, chick and mouse).
Prerequisite: BIOL 213 or GENE 302.

BIOL 350 Computational Genomics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Hands-on approach to obtaining, organizing and analyzing genome-related data; emphasis on asking and answering biologically relevant questions by designing and performing experiments using computers; understanding biology from a computational perspective.
Prerequisite: Junior or senior classification in life sciences, engineering, mathematics, chemistry.

BIOL 351 Fundamentals of Microbiology
Credits 4. 3 Lecture Hours. 4 Lab Hours.
Introduction to modern microbiology with emphasis on prokaryotes; includes microbial cell structure, function, and physiology; genetics, evolution, and taxonomy; bacteriophage and viruses; pathogenesis and immunity; and ecology and biotechnology; includes laboratory experience with microbial growth and identification.
Prerequisites: BIOL 112; CHEM 227, and CHEM 237 or CHEM 231; or approval of instructor; also taught at Galveston campus.

BIOL 352 Diagnostic Bacteriology
Credits 4. 2 Lecture Hours. 6 Lab Hours.
Practical experience in handling, isolation and identification of pathogenic microorganisms using biochemical tests and rapid identification techniques.
Prerequisite: BIOL 351 or approval of instructor.

BIOL 357 Ecology
Credits 3. 3 Lecture Hours.
Analysis of ecosystems at organismal, population, interspecific and community levels. BIOL 358 is the laboratory for this lecture course.
Prerequisite: BIOL 214 or approval of instructor.

BIOL 358 Ecology Laboratory
Credit 1. 3 Lab Hours.
Quantitative analyses of freshwater and terrestrial ecosystems; includes data sampling and presentation of results in written and oral formats; required fieldtrips; analysis of competition and predator-prey interactions using ecological models.
Prerequisite: BIOL 357 or concurrent enrollment; junior or senior classification.

BIOL 388 Principles of Animal Physiology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to how animals function, including basics of neurophysiology, endocrinology, muscular, cardiovascular, respiratory, endocrine, and metabolic physiology; broadly comparative in scope and encompassing adaptation of physiological systems to diverse environments; the laboratory stresses techniques used for monitoring and investigating physiological mechanisms and responses to environmental changes.
Prerequisites: BIOL 214 or CHEM 228 or approval of instructor.

BIOL 401 Critical Writing in Biology
Credit 1. 1 Lecture Hour.
Reading scientific papers and writing short synopses of papers with a focus on learning how to think and write like a scientist; fills the current Writing Intensive 'W' course requirement for biology.
Prerequisites: BIOL 213 and BIOL 214; junior or senior classification.

BIOL 402 Communicating Biological Research to the Public
Credit 1. 1 Lecture Hour.
Interpret scientific papers; analyze how research findings are communicated to lay audiences; write synopses of research findings for the general public.
Prerequisites: BIOL 213 and BIOL 214; junior or senior classification.
BIOL 405 Comparative Endocrinology
Credits 3. 3 Lecture Hours.
Basic principles of endocrinology including structure and functions of hormones in vertebrates; hormonal control of growth, metabolism, osmoregulation, and reproduction; endocrine techniques and mechanism of hormone action.
Prerequisites: BIOL 214 and CHEM 227.

BIOL 406/GENE 406 Bacterial Genetics
Credits 3. 3 Lecture Hours.
A problem oriented course surveying the manipulation and mechanisms of genetic systems in bacteria; recombination, structure and regulation of bacterial genes, plasmids and phages.
Prerequisites: BIOL 351; GENE 302.
Cross Listing: GENE 406/BIOI 406.

BIOL 413 Cell Biology
Credits 3. 3 Lecture Hours.
Structure, function, and biogenesis of cells and their components; interpretation of dynamic processes of cells, including protein trafficking, motility, signaling and proliferation.
Prerequisites: BIOL 213 or GENE 302; BICH 410 or BICH 440.

BIOL 414 Developmental Biology
Credits 3. 3 Lecture Hours.
Concepts of development in systems ranging from bacteriophage to the mammalian embryo; use of recombinant DNA technology and embryo engineering to unravel the relationships between growth and differentiation, morphogenesis and commitment, aging and cancer.
Prerequisite: BIOL 413 or concurrent enrollment or approval of instructor.

BIOL 423 Cell Biology Laboratory
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Modern methods of study of cell structure and cell function.
Prerequisites: BICH 410 and BIOL 413, or concurrent enrollment or approval of instructor.

BIOL 430 Biological Imaging
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Still and video photography and photomicrography, computer-based digital image analysis and processing of biological images; theory and principles of light and electron microscopy including transmission and scanning electron microscopy; optical contrast methods for light microscopy including phase contrast, DIC, polarizing light and confocal laser scanning microscopy.
Prerequisite: Junior classification or approval of instructor.

BIOL 434/NRSC 434 Regulatory and Behavioral Neuroscience
Credits 3. 3 Lecture Hours.
Cell biology and biophysics of neurons; functional organization of the vertebrate nervous system; physiological basis of behavior.
Prerequisites: BIOL 213; BIOL 319, BIOL 320, BIOL 388, BIOL 413, NRSC 235/PSYC 235, or PSYC 235/NRSC 235, or approval of instructor.
Cross Listing: NRSC 434/BIOI 434.

BIOL 435 Laboratory for Regulatory and Behavioral Neuroscience
Credit 1. 3 Lab Hours.
Study of modern methods and tools used to investigate nervous system structure and function.
Prerequisite: BIOL 213; BIOL 319, BIOL 320, BIOL 388, BIOL 413, BIOL 434/NRSC 434, NRSC 434/BIOI 434, NRSC 235/PSYC 235, or PSYC 235/NRSC 235, or approval of instructor.

BIOL 437 Molecular and Human Medical Mycology
Credits 3. 3 Lecture Hours.
Principles of fungal pathogenesis, diagnosis and antifungal therapies, and relevant genetic and molecular tools for studying human pathogens and drug delivery.
Prerequisites: BIOL 351; junior or senior classification; or approval of instructor.

BIOL 438 Bacterial Physiology
Credits 3. 3 Lecture Hours.
Structure and function of prokaryotic cells, with emphasis on evolutionary adaptations to different environmental, developmental, and pathogenic selections pressures; formation of teams and preparation of presentations on specific topics in microbiology.
Prerequisites: BIOL 351; BIOL 406/GENE 406 or concurrent enrollment; BICH 410, BICH 431/GENE 431 and GENE 302 strongly recommended.

BIOL 440 Marine Biology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to biology of common organisms inhabiting bays, beaches and near-shore oceanic waters with special reference to Gulf of Mexico biota; emphasis on classification, distribution, history, ecology, physiology, mutualism, predation, major community types and economic aspects of marine organisms.
Prerequisite: BIOL 214 or approval of instructor.

BIOL 444 Neural Development
Credits 3. 3 Lecture Hours.
Cellular and molecular mechanisms of nervous system development including neural induction and the basis of complex behaviors; use of a wide range of model organisms with a specific emphasis on vertebrate nervous system development.
Prerequisites: BIOL 213, BIOL 319, BIOL 320, BIOL 413, BIOL 388, NRSC 235/PSYC 235 or PSYC 235/NRSC 235.

BIOL 445 Biology of Viruses
Credits 3. 3 Lecture Hours.
Structure, composition and life cycles of viruses; methods used to study viruses; their interaction with host cells; mechanisms of pathogenicity and cellular transformation; responses of the host to viral infection, and vaccine applications; in-depth study of the life cycles of the major classes of viruses and discussion of emerging viruses.
Prerequisite: BIOL 213 or BIOL 351 or approval of instructor.

BIOL 450/BICH 450 Genomics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
The study of genomic data includes consideration of the logic behind the most important genomic approaches, as well as their capabilities and limitations in investigating biological processes; the science of accessing and manipulating genomic data; and practical applications, including development of an hypotheses-driven datamining experiment.
Prerequisites: BIOL 213, GENE 301 or GENE 302, BICH 431/GENE 431 or GENE 431/BICH 431, or BIOL 351; junior or senior classification or approval of instructor.
Cross Listing: BICH 450/BIOI 450.

BIOL 451 Bioinformatics
Credits 3. 3 Lecture Hours.
Introduction to the entire field of bioinformatics; theoretical background of computational algorithms, with an emphasis on application of computational tools related to modern molecular biological research.
Prerequisite: BIOL 213, GENE 301, or GENE 302, or BIMS 320/GENE 320 or GENE 320/BIMS 320 and junior or senior classification, or approval of instructor.
BIOL 454 Immunology
Credits 3. 3 Lecture Hours.
Introduction to basic immunological concepts and principles of serology.
Prerequisite: BIOL 351 or equivalent or approval of instructor.

BIOL 455 Laboratory in Immunology
Credits 2. 6 Lab Hours.
Practical application of serological principles which include precipitation, agglutination and blood banking principles; techniques in tissue culture and hybridoma technology also included.
Prerequisite: BIOL 454 or registration therein.

BIOL 456 Medical Microbiology
Credits 3. 3 Lecture Hours.
Microbiology, epidemiology and pathology of human pathogens with an emphasis on bacterial agents.
Prerequisite: BIOL 351 or approval of instructor.

BIOL 461 Antimicrobial Agents
Credit 1. 1 Lecture Hour.
Understanding of antimicrobial agents, limitations of use, biosynthesis and regulation, and challenges in development as new therapeutics.
Prerequisites: BICH 410 or BICH 440 and BIOL 351 or VTPB 405.

BIOL 462/WFSC 462 Amazon River Tropical Biology
Credits 3. 3 Lecture Hours.
History, ecology, evolutionary-biology, geography and culture of the Amazon River and Rio Negro; exploration of the world's most bio-diverse river during a 10-day expedition from Manaus, Brazil; survey biota, record observations about the ecosystem, select research topics, development of presentations.
Prerequisites: BIOL 107, BIOL 112, BIOL 113, BIOL 357 or RENR 205; or approval of instructor.
Cross Listing: WFSC 462/BIOL 462.

BIOL 466 Principles of Evolution
Credits 3. 3 Lecture Hours.
Evolutionary patterns, mechanisms and processes at the organismal, chromosomal and molecular levels; modes of adaptation and the behavior of genes in populations.
Prerequisite: GENE 302 or approval of instructor.

BIOL 467 Integrative Animal Behavior
Credits 3. 3 Lecture Hours.
Examines how behavior contributes to survival and reproduction, and how evolutionary history and ecological circumstance interact to shape the expression of behavior; focus on integrative nature of behavior; how the interaction of evolutionary processes, mechanistic constraints, and ecological demands determine behavioral strategies.
Prerequisite: BIOL 214, BIOL 357, BIOL 388, BIOL 405, BIOL 434/ NRSC 434, or BIOL 466, or approval of instructor.

BIOL 480 Departmental Colloquium
Credit. 1. 1 Lecture Hour.
Attend presentations given by renowned scientists from various fields of biology; learn about new developments in science; stay abreast of current and trending research topics.
Prerequisites: Senior classification; majors in BIOL, MICRO, BMCB and ZOOL.

BIOL 481 Seminar in Biology
Credit 1. 1 Lecture Hour.
Recent advances. Restricted to senior undergraduate majors in biology, microbiology, botany or zoology.

BIOL 484 Internship
Credits 0 to 4. 0-1 Other Hours.
Directed internship in a private firm or public agency to provide research experience appropriate to the student's degree program and career objectives. May be taken two times.
Prerequisite: Approval of internship agency and advising office.

BIOL 485 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Problems in various phases of plant, animal and bacteriological science.
Prerequisites: Junior classification; approval of ranking professor in field chosen and Undergraduate Advising Office.

BIOL 487/VTPB 487 Biomedical Parasitology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Helminth and protozoan parasites of medical and veterinary importance; life cycles, morphology, taxonomic classification, economic and public health aspects and current topics in parasitic diseases.
Prerequisites: BIOL 107 or BIOL 114; junior classification or approval of instructor.
Cross Listing: VTPB 487/BIOL 487.

BIOL 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 10 Lab Hours.
Selected topics in an identified area of biology. May be repeated once for credit.

BIOL 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member. May be taken two times. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisite: Approval of departmental faculty member.

BIOL 492 Biomedical Therapeutics Development
Credit 1. 1 Lecture Hour.
Basic aspects of the biotechnology business; includes key aspects of biotechnology patents, the main steps in preclinical drug development and company structure and funding.
Prerequisites: BIOL 213 or equivalent; CHEM 227 and CHEM 228.

BIOL 495 Biology Capstone: Research Communication in the Life Sciences
Credits 2. 2 Lecture Hours.
Culmination of capstone research experience; formalization of research results in written and oral forms; introduction to primary genres or scientific writing; apply principles of rhetoric and composition to diverse methods of professional communication.
Prerequisite: BIOL 452, BICH 464, BIOL 400, BIOL 493 or BIOL 491 or approval of instructor.

BIOL 496 Ethics in Biological Research
Credit 1. 1 Lecture Hour.
Fraud in science, how to recognize it, and how to avoid committing fraud; includes the basis of ethics and plagiarism, negotiation techniques and conflict management, the regulations and ethics covering animal and human experiments, record-keeping, data management and peer review.
Prerequisites: BIOL 491, NRSC, 491, BICH 491, GENE 491, BIMS 491, CHEM 491, or concurrent enrollment, or approval of instructor.
BMEN - Biomedical Engineering (BMEN)

BMEN 101 Introduction to Biomedical Engineering
Credit 1. 1 Lecture Hour.
Overview of biomedical engineering and the biomedical engineering industry, including specialties, degree requirements and scholastic programs in the Department of Biomedical Engineering.
Prerequisite: Biomedical Engineering major or minor.

BMEN 207 Computing for Biomedical Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the principles of computer programming for biomedical applications including program design and development, programming techniques and documentation; introduction to and programming in the LabVIEW and MATLAB environments.
Prerequisites: Admitted to major degree sequence; MATH 152, and ENGR 102 or ENGR 112.

BMEN 211 Biomedical Applications of Signals and Systems
Credits 3. 3 Lecture Hours.
Quantitative analysis of biomedical and physiological signals; Fourier and Laplace transforms; filtering of biomedical signals; electrical circuits an analog representations of physiological systems as model systems; A/D conversion and sampling.
Prerequisites: Admitted to major degree sequence; PHYS 207 or PHYS 208; MATH 308 or concurrent enrollment.

BMEN 253 Medical Device Design I
Credit 1. 3 Lab Hours.
FDA design controls for medical device development in a regulated environment; small-scale team biomedical engineering design project.
Prerequisite: Grade of C or better in BMEN 207.

BMEN 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Allows students to undertake special projects in biomedical engineering at an earlier point in their studies than required for BMEN 485.
Prerequisite: Approval of Director of Undergraduate Programs.

BMEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of biomedical engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

BMEN 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in biomedical engineering. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BMEN 305 Bioinstrumentation
Credit 1. 3 Lab Hours.
Introduction to biomedical instrumentation design; hands on acquisition of biomedical signals; design, building and testing of bioinstrumentation circuits including analog signal amplifiers and analog filter circuits.
Prerequisite: Grade of C or better in BMEN 211; grade of C or better in BMEN 321 or concurrent enrollment.

BMEN 321 Biomedical Electronics
Credits 3. 3 Lecture Hours.
Introduction to biomedical signals; basic circuit analysis for biomedical signals; design of bioamplifier circuits; characteristics of linear and nonlinear circuit elements; design of basic electronic circuits, principles and practice of bioelectronic measurements.
Prerequisites: Grade of C or better in BMEN 211; junior or senior classification; Biomedical Engineering major or minor.

BMEN 322 Biosignal Analysis
Credits 3. 3 Lecture Hours.
Design and application of analog and digital signal analysis in biomedical engineering; characteristics of biomedical signals; design considerations for analog-to-digital and digital-to-analog circuitry; biosignal transformation methods; analog and digital filter design for biomedical signals.
Prerequisite: BMEN 321.

BMEN 341 Biofluid Mechanics
Credits 3. 3 Lecture Hours.
Introduction into the mechanics of fluids in biomechanics, including blood, synovial fluid and physiological solutions, with an emphasis on the importance of mechanobiology and the formation of biological problems within the context of 1) kinematics, 2) the concept of stress, 3) linear momentum balance, 4) constitutive relations, and 5) boundary conditions.
Prerequisites: MATH 308; Biomedical Engineering major or minor; junior or senior classification.

BMEN 343 Introduction to Biomaterials
Credits 3. 3 Lecture Hours.
Properties of natural and man-made materials commonly encountered in biomedicine and biomedical engineering; an integrated approach in the presentation of material structures, characteristics and properties; the basics of material structures, including crystalline and chemical structure, and microstructure; and bulk properties and characteristics of the materials developed from the microscopic origins.
Prerequisites: MATH 308 and CHEM 227; Biomedical Engineering major or minor; junior or senior classification.

BMEN 344 Biological Responses to Medical Devices
Credits 3. 3 Lecture Hours.
Selection and characterization of materials in implantable and tissue contacting medical devices; biodegradation, biocompatibility, hemocompatibility and cell-material interactions of biomaterials.
Prerequisite: Grade of C or better in BMEN 343; grade of C or better in BMEN 345 or concurrent enrollment; VTPP 435 or concurrent enrollment; biomedical engineering major or minor.

BMEN 345 Biomaterials Lab
Credit 1. 3 Lab Hours.
Experimental methods used to prepare and characterize polymeric biomaterials used in biomedical engineering; related fundamental aspects of forming a hypothesis, experimental design, empirical observation, data collection, interpretation and presentation of data.
Prerequisite: Grade of C or better in BMEN 343.

BMEN 350 Statistics for Biomedical Engineering
Credits 3. 3 Lecture Hours.
Evaluation of the efficacy of clinical research; quantitative methods used in clinical trials in biomedical engineering; ethical and regulatory issues that must be considered during the design and implementation of any clinical trial, or pre-clinical study.
Prerequisites: Junior classification; admitted to the major degree sequence (upper level).
BMEN 353 Medical Device Design II
Credit 1. 3 Lab Hours.
Identification of needs for biomedical engineering design solutions, development of design proposals, analysis of design project requirements and constraints.
Prerequisite: Grade of C or better in BMEN 253 or equivalent; junior or senior classification.

BMEN 361 Biosolid Mechanics
Credits 3. 3 Lecture Hours.
Introduction to the mechanics of deformable media in biomedical engineering, including medical devices, biomaterials, and soft and hard biological tissues: emphasis on biomechanics and mechanobiology and formulation of problems within the context of basic continuum biomechanics; problems include analytical solutions for stress-strain analysis of extension, distension, bending, buckling, and torsion of biosolids.
Prerequisites: MATH 308; Biomedical Engineering major or minor; junior or senior classification.

BMEN 399 Engineering Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: Admission to biomedical engineering; junior or senior classification or approval of instructor.

BMEN 400/VTPP 401 History of Human and Veterinary Medicine in Europe
Credits 4. 4 Lecture Hours.
Addresses the major developments in human and veterinary medicine in Europe from the Middle Ages to the present; explores key events and figures in medical history and analyzes issues of current biomedical concern in a historical context; for example, animal rights, ethics of humane experimentation, euthanasia.
Prerequisites: Admitted to major degree sequence in biomedical engineering; VTPP 434.
Cross Listing: VTPP 401/BMEN 400.

BMEN 401 Principles and Analysis of Biological Control Systems
Credits 3. 3 Lecture Hours.
Techniques for generating quantitative mathematical models of physiological control systems and devices; the behavior of physiological control systems using both time and frequency domain methods.
Prerequisite: BMEN 321.

BMEN 402 Biomedical Optics Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Biomedical optics technology; basic engineering principles used in developing therapeutic and diagnostic devices; hands-on labs including optical monitoring, diagnostic and therapeutic experiments.
Prerequisite: PHYS 207 or PHYS 208 or approval of instructor; Biomedical Engineering major or minor.

BMEN 404 FDA Good Laboratory and Clinical Practices
Credits 3. 3 Lecture Hours.
Implementation of Good Laboratory Practices (GLP) for the submission of preclinical studies and use of Good Clinical Practices (GCP) in clinical trials in accordance with Food and Drug Administration (FDA) regulations; includes similarities and differences in GLP and GCP critical for the introduction of new drugs and medical devices.
Prerequisites: BMEN 253; junior or senior classification.

BMEN 406 Medical Device Path to Market
Credits 3. 3 Lecture Hours.
Path to market for a medical device with specific attention to the regulatory affairs to enable the development of an appropriate regulatory strategy due to the highly regulated global environment.
Prerequisites: BMEN 253; junior or senior classification, or approval of instructor.

BMEN 420 Medical Imaging
Credits 3. 3 Lecture Hours.
The principles of the major imaging modalities including x-ray radiography, x-ray computed tomography (CT), ultrasonography and magnetic resonance imaging; including a brief discussion on other emerging imaging technologies such as nuclear imaging (PET and SPECT).
Prerequisites: Grade of C or better in BMEN 211; junior or senior classification.

BMEN 422 Bioelectromagnetism
Credits 3. 3 Lecture Hours.
Electric, magnetic and electromagnetic phenomena associated with biological tissues; source modeling based on physiological current including line and volume conductor models as well as electromagnetic-based stimulation, sensing and imaging.
Prerequisites: Admission into the degree sequence of the major and BMEN 321 or approval of instructor.

BMEN 425 Biophotonics
Credits 3. 3 Lecture Hours.
Theory and application of optical instrumentation, including light sources, lasers, detectors, and optical fibers; instrumentation and engineering in biomedical applications of optics in therapeutics, diagnostics, and biosensing.
Prerequisites: Admitted into the major degree sequence in biomedical engineering; junior or senior classification.

BMEN 427 Magnetic Resonance Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Design, construction and application of instrumentation for MR imaging; fundamentals of the architecture of an MR spectrometer and the gradient subsystem used for image localization; emphasis on the radiofrequency sensors and systems used for signal generation and reception.
Prerequisites: Grade of C or better in ECEN 322 or BMEN 420; junior or senior classification.

BMEN 428/CSCE 461 Embedded Systems for Medical Applications
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of embedded system architecture and programming; fundamentals and theoretical foundations of wireless communication systems; hands-on experiences of how an embedded system could be used to solve problems in biomedical engineering; projects on wireless sensors and imaging for medical devices.
Prerequisite: BMEN 211, CSCE 350/ECEN 350, or CSCE 315, or approval of instructor.
Cross Listing: CSCE 461/BMEN 428.

BMEN 431 Biomolecular Engineering
Credits 3. 3 Lecture Hours.
Foundations for understanding and experimental approaches for measuring and manipulating biomolecules; proteins, nucleic acids and carbohydrates; thermodynamics and kinetics of biomolecular reactions.
Prerequisites: Junior or senior classification; Biomedical Engineering majors only; or approval of instructor.
BMEN 432 Molecular and Cellular Biomechanics
Credits 3. 3 Lecture Hours.
Introduces biomolecules and their assemblies that play structural and
dynamical roles in subcellular to cellular level mechanics; emphasis
on quantitative/theoretical descriptions; discussions of the relevant
experiment approaches to probe these nano to micro-scale phenomena;
includes topics in self-assembly of cytoskeleton and biomembranes,
molecular motors, cell motility, and mechanotransduction.
Prerequisite: BMEN 361.

BMEN 433 Biomedical and Cellular Engineering Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Laboratory biosafety and biohazard awareness; cell culture protocols and
standards for biocompatibility testing; setting protocols for cellular and
biomolecular projects; bioimaging, bioassays and biomolecule activity
testing.
Prerequisites: VTPP 435; BMEN 431 or concurrent enrollment; majors
in biomedical engineering; junior or senior classification; or approval of
instructor.

BMEN 448 Healthcare Technology in the Developing World
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Principles of operation for major types of medical equipment; physiology
underlying the measurement; major functional (system) pieces for each
instrument; typical problems/applications of each instrument.
Prerequisites: MATH 152, PHYS 208, and approval of instructor.

BMEN 450 Case Studies
Credit 1. 1 Lecture Hour.
Examines process through which clinically defined problems are
addressed from the perspective of biomedical engineering through the
use of case studies; includes issues of technology transfer and clinical
evaluation.
Prerequisites: Admitted to major degree sequence; junior or senior
classification.

BMEN 452 Mass and Energy Transfer in Biosystems
Credits 3. 3 Lecture Hours.
Transport phenomena associated with physiological systems and their
interaction with medical devices; exchange processes in artificial life
support systems and diagnostic equipment.
Prerequisites: BMEN 341; MATH 308; Biomedical Engineering major or
minor.

BMEN 453 Analysis and Design Project I
Credits 2. 6 Lab Hours.
Group or team biomedical engineering analysis and design project
involving statement, alternative approaches for solution, specific system
analysis and design.
Prerequisites: Grade of C or better in BMEN 321 and BMEN 353.

BMEN 454 Analysis and Design Project II
Credits 2. 0 Lecture Hours. 6 Lab Hours.
Continuation of BMEN 453.
Prerequisite: Grade of C or better in BMEN 453.

BMEN 457 Orthopedic Biomechanics
Credits 3. 3 Lecture Hours.
Development of competencies in biomechanical principles using practical
elements and clinical case studies; application of biomechanical
knowledge to the evaluation of musculoskeletal tissues and structures,
and treatment options for musculoskeletal dysfunction.
Prerequisite: BMEN 361 or equivalent course approved by instructor.

BMEN 458 Motion Biomechanics
Credits 3. 3 Lecture Hours.
Skeletal anatomy and mechanics; muscle anatomy and mechanics;
theory and application of electromyography; motion and force measuring
equipment and techniques; inverse dynamics modeling of the human
body; current topics in musculoskeletal biomechanics research.
Prerequisites: BMEN 207 or approval of instructor; junior or senior
classification.

BMEN 461 Cardiac Mechanics
Credits 3. 3 Lecture Hours.
Application of continuum mechanics and computational solid mechanics
to the study of the mammalian heart; utilization of continuum mechanics
and finite element analysis in solving non-linear boundary value problems
in biomechanics.
Prerequisites: BMEN 341 and BMEN 361.

BMEN 463 Soft Tissue Mechanics and Finite Element Methods
Credits 3. 3 Lecture Hours.
Application of continuum mechanics and finite element methods to
the study of the mechanical behavior of soft tissues and associative
applications in biomedicine.
Prerequisites: BMEN 341 and BMEN 361.

BMEN 465 Biomechanics Experiential Learning Lab
Credit 1. 3 Lab Hours.
Applications in biomechanics (solid and fluid); includes experimental
methods used to investigate biomechanical factors in the assessment
of therapeutic interventions; mechanical testing load frames; motion
capture systems, high speed imaging and flow systems; hypothesis
forming, experimental design, empirical observation, data collection and
interpretation, and presentation of results.
Prerequisite: Grade of C or better in BMEN 361.

BMEN 468 Advanced Biomechanics
Credits 3. 3 Lecture Hours.
Application of fluid and solid mechanics to problems in biomedical
engineering ranging from molecular-level to organ-level, including the
mechanics of the cell cytoskeleton, whole cells, blood, arteries and the
heart.
Prerequisites: BMEN major; BMEN 341 and BMEN 361; or approval of
instructor.

BMEN 469 Entrepreneurial Pathways in Medical Devices
Credits 3. 3 Lecture Hours.
Overview of fundamental elements and development steps for an
effective strategy pathway including regulatory pathway for
commercialization of medical product/medical device innovations;
application of the basic regulations and associated requirements and
enforcements for product market approval; exploration of product quality
test method design requirements; understanding of the applicable
regulations and standards pertaining to the design, testing, approval and
marketing of medical devices.
Prerequisite: Admitted to major degree sequence (upper-level) in
biomedical engineering.

BMEN 471 Numerical Methods in Biomedical Engineering
Credits 3. 3 Lecture Hours.
Application of numerical analysis to analyze molecular, cellular and
physiological systems, using general techniques including programming
in MATLAB to analyze steady and dynamic systems.
Prerequisites: BMEN 207 and VTPP 434.
BMEN 480 Biomedical Engineering of Tissues
Credits 3. 3 Lecture Hours.
Introduction to aspects of tissue engineering with an emphasis placed on tissue level topics including tissue organization and biological processes, with insights from recent literature (state-of-the-art).
Prerequisite: BMEN 343.

BMEN 482 Polymeric Biomaterials
Credits 3. 3 Lecture Hours.
Preparation, properties, and biomedical applications of polymers including polymerization; structure-property relationships; molecular weight and measurement; morphology; thermal transitions; network formation; mechanical behavior; polymeric surface modification; polymer biocompatibility and bioadhesion; polymers in medicine, dentistry, and surgery; polymers for drug delivery; polymeric hydrogels; and biodegradable polymers.
Prerequisite: BMEN 343.

BMEN 483 Polymeric Biomaterial Synthesis
Credits 3. 3 Lecture Hours.
Overview of polymer synthetic routes and key structure-property relationships with emphasis on the design of polymeric systems to achieve specific properties; tissue engineering and drug delivery applications will be used as model systems to explore the process of biomaterial design from synthesis to device evaluation.
Prerequisite: BMEN 343 or approval of instructor.

BMEN 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Industry experience from both an experiential perspective as well as networking; reflect upon the experience gained during an internship with an outside entity; learn what it takes to be successful in industry.
Prerequisites: BMEN 343 or approval of instructor.

BMEN 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Allows students to undertake special projects in biomedical engineering.
Prerequisite: Approval of instructor or Director of Undergraduate Programs.

BMEN 486 Biomedical Nanotechnology
Credits 3. 3 Lecture Hours.
Nanotechnology applications in biomedicine; concepts of scale; unique properties at the nanoscale; biological interaction, transport, and biocompatibility of nanomaterials; current research and development of nanotechnology for medical applications, including sensors, diagnostic tools, drug delivery systems, therapeutic devices, and interactions of cells and biomolecules with nanostructured surfaces.
Prerequisite: BMEN 343, senior classification or approval of instructor.

BMEN 487 Drug Delivery
Credits 3. 3 Lecture Hours.
Mechanisms for controlled release of pharmaceutically active agents and the development of useful drug delivery systems; controlled release mechanisms including diffusive, convective, and erosive driving forces by using case studies related to oral, topical and parenteral release in a frontier interdisciplinary scientific research format.
Prerequisites: BMEN 343; senior classification in biomedical engineering or approval of instructor.

BMEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 1 to 4 Lab Hours.
New or unique areas of biomedical engineering which are of interest to biomedical engineering and other undergraduate students.

BMEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in biomedical engineering. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor.

BOTN - Botany (BOTN)

BOTN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of botany. May be repeated for credit.
Prerequisite: Approval of instructor.

BOTN 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Freshman or sophomore classification and approval of instructor.

BOTN 485 Directed Studies
Credits 3. 3 Lecture Hours.
Problems in various phases of plant, animal and bacteriological science.
Prerequisites: Junior classification; approval of ranking professor in field chosen and Undergraduate Advising Office.

BOTN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Junior or senior classification and approval of instructor.

BUSN - Mays Business School (BUSN)

BUSN 101 Freshman Business Initiative
Credits 3. 3 Lecture Hours.
Freshman orientation to business and to Mays Business School; introduction to majors within the business school and associated career opportunities; introduction and development of personal and professional competencies, with emphasis on self-leadership, business communication, ethical decision making, and teamwork.
Prerequisite: Freshman admitted to Mays Business School.

BUSN 125 Business Learning Community I
Credits 3. 3 Lecture Hours.
Focuses on the base competencies that relate to effectively managing people, tasks and organizations, and change and innovation; develops skills in personal and professional competencies, analytical and critical thinking skills, written and oral communication skills, interpersonal skills and problem-solving skills; research emphasis.
Prerequisite: Selection for Mays Business School Honors Program.

BUSN 225 Business Competency
Credits 3. 3 Lecture Hours.
Application of core business competencies of leadership, communication, decision making, ethics and teamwork.
Prerequisites: BUSN 101 or BUSN 125; selection for Mays Business School Honors Program.
BUSB 232 Resource Development
Credits 3. 3 Lecture Hours.
Examination of resource development and the fundraising process in nonprofit organizations and social enterprises; introduction to the funding methods and interconnectedness of government, individuals, foundations and corporations as nonprofits seek to address societal challenges; overview of donor motivations, sources of support, staff/board roles in fundraising, earned income strategies and ethical practices.
Prerequisites: Mays Business School majors only.

BUSB 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problem in business not covered in other courses. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification admitted to Mays Business School and approval of instructor.

BUSB 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of business and public service. May be repeated for credit.
Prerequisite: Freshman or sophomore in business.

BUSB 299 Professional and High Impact Experiences
Credits 0. 0 Other Hours.
Participation in professional and/or high impact experiences. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.

BUSB 302 Nonprofit Perspectives
Credit 1. 1 Lecture Hour.
Examination of the size, scope and distinctiveness of the nonprofit sector; development of a comprehensive view of the nonprofit sector by engaging with a diversity of perspectives from private, government or nonprofit organizations.
Prerequisite: Mays Business School major; junior or senior classification or approval of instructor.

BUSB 392 Cooperative Education in Business
Credits 2. 40 Other Hours.
Educational work assignment in the field in which the student is interested. Supervision will be by employer with technical report required at semester's end. May be taken three times for credit.

BUSB 401 Mays Business Fellows I
Credits 3. 3 Lecture Hours.
A seminar for the development of leadership and management skills.
Prerequisite: Selection for Mays Business Fellows Program.

BUSB 403 Transformational Leader Portfolio
Credits 3. 3 Lecture Hours.
Self-assessment of development as a Mays Transformational Leader (MTL); compilation and evaluation of evidence of Mays Transformational Leadership mindsets, competencies and business acumen; preparation of portfolio; creation of professional development plan.
Prerequisite: Junior or senior classification or approval of instructor.

BUSB 432 Strategic Philanthropy
Credits 3. 3 Lecture Hours.
Examination of historical trends in philanthropy; participation in grant making process through the lens of a private foundation; engagement with local and national philanthropic leaders; development of personal philanthropic ethic through a grant making simulation that includes due diligence, writing grants and reaching collective decisions.
Prerequisites: Junior or senior classification or approval of instructor.

BUSB 481 Seminar
Credit 1. 1 Lecture Hour.
Exploration of current business topics or competencies. May be taken four times for credit.
Prerequisites: Junior or senior classification or approval of instructor.

BUSB 484 Internship
Credits 1 to 3. 1 to 3 Other Hours.
Professional internship or practical experience in a field in which the student is interested, under the direction of the business honors director or a business school faculty member. May be taken two times for credit.
Prerequisite: Business honors major or approval of instructor.

BUSB 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Directed study on selected problems in the area of business administration not covered in other courses. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School; approval of instructor.

BUSB 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of business and public service. May be repeated for credit.
Prerequisite: Junior or senior in business.

BUSB 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in Mays Business School. May be repeated 1 times for credit.
Prerequisites: Junior or senior classification admitted to Mays Business School and approval of instructor.

CARC - College of Architecture (CARC)

CARC 101 Cultural and Social Issues in the Natural, Built and Virtual Environment
Credits 3. 3 Lecture Hours.
Introduction to cultural and social issues in planning, design, construction, creativity and the visual arts; exploration of how individual and collective values and beliefs are expressed in the practice of architecture, landscape architecture, urban planning, construction science and the arts; how these fields internalize and reify these values while creating the natural, built and virtual environments; emphasis on civil discourse to help recognize positionality and work collaboratively in a multicultural society.

CARC 181 First Year Seminar
Credit 1. 1 Lecture Hour.
Seminar on various contemporary topics; introduction to high quality college instruction and research; focus on writing, speaking, exploration, discussion and research. May be taken two times for credit.
Prerequisite: First time in college and College of Architecture undergraduate studies.

CARC 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.
CARC 300 College of Architecture Study Abroad
Credits 1 to 18. 1 to 18 Other Hours.
For students in approved study abroad programs participating in reciprocal educational exchange programs. May be repeated for credit.
Prerequisite: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 301 Field Studies in Design Innovation
Credits 1 to 18. 1 to 18 Other Hours.
Design innovation in international and domestic environments away from the Texas A&M University campus; emphasis on the cultural, social, economic, geographical, climatic and technological factors influencing design solutions for human needs. May be taken up to two times in the same semester.
Prerequisite: Junior or senior classification; CARC 481; approval of assistant dean for international programs and initiatives.

CARC 311 Field Studies in Design Communication
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Design communication in international and domestic environments away from the Texas A&M University campus; emphasis on the tools, methods and techniques for design communication. May be taken up to two times in the same semester.
Prerequisite: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 321 Field Studies in Design Technology
Credits 3. 3 Other Hours.
Design technology in international and domestic environments away from the Texas A&M University campus; emphasis on structural, material and environmental systems and methods of construction utilized to realize design solutions. May be taken up to two times in the same semester.
Prerequisite: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 331 Field Studies in Design Philosophy
Credits 3. 3 Other Hours.
Design philosophy in international and domestic environments away from the Texas A&M University campus; emphasis on the historical, philosophical, cultural, social and economic factors that influence design solutions. May be taken up to two times in the same semester.
Prerequisites: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 481 Seminar
Credit 1. 1 Lecture Hour.
Preparatory seminar for select College of Architecture study away and internships; topics include introduction to the language, culture and history of study abroad location. Must be taken the spring semester before the student's study away semester. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Individual research in architecture, construction science or landscape architecture in an international or domestic environment away from the Texas A&M University campus. May be taken up to two times in the same semester.
Prerequisite: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of architecture. May be repeated for credit.
Prerequisites: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CARC 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification; approval of assistant dean for international programs and initiatives.

CEHD - Coll of Ed & Human Dev (CEHD)

CEHD 100 Introduction to Teacher Professional Responsibility
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
Information, access and skills required for new education candidates to successfully complete the teacher education program; engagement of prospective teachers seeking initial certification in the knowledge and critical analysis of the educator certification requirements in the State of Texas; includes educator preparation, state certification requirements, completion of mandated training for compliance with the Texas Education Agency; case studies and exercises with professional responsibility and ethical considerations in real-life situations interspersed throughout curriculum. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Admission to a teacher certification program.

CEHD 101 Learning Community Foundations of Leadership
Credit 1. 1 Lecture Hour.
Exploration of leadership identity, and reflection on lessons learned during the first year of college. Must be taken on a satisfactory/unsatisfactory basis.

CEHD 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of education and human development. May be repeated for credit.
Prerequisite: Approval of instructor.

CEHD 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in the College of Education and Human Development. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

CEHD 300 Education and Human Development Study Abroad
Credits 1 to 18. 1 to 18 Lecture Hours.
For students in approved programs to study abroad. May be repeated for credit.
Prerequisites: Approval of department head; junior or senior classification.

CEHD 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in the College of Education and Human Development. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
CHEM - Chemistry (CHEM)

CHEM 100 Horizons in Chemistry
Credit 1. 1 Lecture Hour.
An introduction to chemistry and its relationship to and influence on society; emphasis on chemical demonstrations and the practical application of chemical phenomena. For chemistry majors.
Prerequisite: Major in chemistry or approval of instructor.

CHEM 106 Molecular Science for Citizens
Credits 3. 3 Lecture Hours.
(Chem 1305, 1405*) Molecular Science for Citizens. Molecules that control daily life explored via a conceptual approach to molecular science; properties, synthesis, transformations and utility of important molecules; fuels, fibers, metals, pharmaceuticals, foods, biomolecules and structural materials; pollution, consumerism, energy production, disease, biotechnology and risk-benefit analysis considered; also taught at Galveston campus.

CHEM 107 General Chemistry for Engineering Students
Credits 3. 3 Lecture Hours.
(Chem 1309, 1409*) General Chemistry for Engineering Students. Introduction to important concepts and principles of chemistry; emphasis on areas considered most relevant in an engineering context; practical applications of chemical principles in engineering and technology. Students completing CHEM 107 and changing majors to curricula requiring CHEM 101 and CHEM 102 may substitute CHEM 107 for CHEM 101. Only one of the following will satisfy the requirements for a degree: CHEM 107 and CHEM 101.
Prerequisite: Concurrent enrollment in CHEM 117; also taught at Galveston and Qatar campuses.

CHEM 116 Molecular Science for Citizens Laboratory
Credit 1. 3 Lab Hours.
(Chem 1105, 1405*) Molecular Science for Citizens Laboratory. The importance of molecular science to daily life illustrated by using experiments, demonstration and videos; designed to accompany CHEM 106.
Prerequisite: CHEM 106 or registration therein; also taught at Galveston campus.

CHEM 117 General Chemistry for Engineering Students Laboratory
Credit 1. 3 Lab Hours.
(Chem 1109, 1409*) General Chemistry for Engineering Students Laboratory. Introduction to important concepts and principles of chemistry in the laboratory; emphasis on areas considered most relevant in an engineering context; practical applications of chemical principles in engineering and technology. Students completing CHEM 117 and changing majors to curricula requiring CHEM 111 and CHEM 112 may substitute CHEM 117 for CHEM 111. Only one of the following will satisfy the requirements for a degree: CHEM 117 and CHEM 111.
Prerequisites: CHEM 107 or registration therein; also taught at Galveston and Qatar campuses.

CHEM 119 Fundamentals of Chemistry I
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(Chem 1311 and 1111, 1411) Fundamentals of Chemistry I. Introduction to modern theories of atomic structure and chemical bonding; chemical reactions; stoichiometry; states of matter; solutions; equilibrium; acids and bases; coordination chemistry; methods and techniques of chemical experimentation; qualitative and semiquantitative procedures applied to investigative situations; also taught at Galveston campus.

CHEM 120 Fundamentals of Chemistry II
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(Chem 1312 and 1112, 1412) Fundamentals of Chemistry II. Theory and applications of oxidation-reductions systems; thermodynamics and kinetics; complex equilibria and solubility product; nuclear chemistry; descriptive inorganic and organic chemistry; introduction to analytical and synthetic methods and to quantitative techniques to both inorganic and organic compounds with emphasis on an investigative approach.
Prerequisites: CHEM 119, or CHEM 107 and CHEM 117; also taught at Galveston and Qatar campuses.

CHEM 220 Physics and Chemistry of Inorganic Materials
Credits 3. 3 Lecture Hours.
Structure, properties and function of materials developed from an atomistic and molecular perspective emphasizing quantum chemical descriptions; elements of solid-state chemistry and physics including bonding, crystal structure and symmetry, origin of electronic band structure, synthesis and characterization tools in materials chemistry and role of finite size effects.
Prerequisite: CHEM 102 and CHEM 120; concurrent enrollment in PHYS 208.

CHEM 222 Elements of Organic and Biological Chemistry
Credits 3. 3 Lecture Hours.
Organic chemistry and its applications to biological and agricultural chemistry, including chemistry of functional groups, acid-base and redox chemistry, stereochemistry and chemistry of important biological compounds. Not to be used as the basis for further study in organic chemistry or biochemistry.
Prerequisite: CHEM 101, CHEM 119, or CHEM 107.

CHEM 227 Organic Chemistry I
Credits 3. 3 Lecture Hours.
(Chem 2323, 2423*) Organic Chemistry I. Introduction to chemistry of compounds of carbon; general principles and their application to various industrial and biological processes.
Prerequisite: CHEM 102 or CHEM 120; concurrent enrollment in CHEM 237 is suggested; also taught at Galveston and Qatar campuses.

CHEM 228 Organic Chemistry II
Credits 3. 3 Lecture Hours.
(Chem 2325, 2425*) Organic Chemistry II. Continuation of CHEM 227.
Prerequisite: CHEM 227; concurrent registration in CHEM 238 is suggested; also taught at Galveston and Qatar campuses.

CHEM 231 Techniques of Organic Chemistry
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Techniques of organic chemistry; preparation, properties of typical organic compounds; separation, purification, analysis, and characterization of organic compounds.
Prerequisites: CHEM 112 or CHEM 120, CHEM 227 or concurrent enrollment.

CHEM 234 Organic Synthesis and Analysis
Credits 3. 1 Lecture Hour. 6 Lab Hours.
The synthesis of significant types of organic compounds and study of their properties; laboratory separations of mixtures of organic substances, identification of compounds by functional group tests and preparation of derivatives; instrumental methods of separation, identification and analysis.
Prerequisites: CHEM 228 or concurrent enrollment; CHEM 231 or CHEM 237.
CHEM 237 Organic Chemistry Laboratory
Credit 1. 3 Lab Hours.
(CHEM 2123, 2423*) Organic Chemistry Laboratory. Operations and techniques of elementary organic chemistry laboratory; preparation, reactions and properties of representative organic compounds.
Prerequisites: CHEM 102 and CHEM 112, or CHEM 120; CHEM 227 or concurrent enrollment; also taught at Galveston and Qatar campuses.

CHEM 238 Organic Chemistry Laboratory
Credit 1. 3 Lab Hours.
(CHEM 2125, 2425*) Organic Chemistry Laboratory. Continuation of CHEM 237.
Prerequisites: CHEM 228 or registration therein; CHEM 237 or CHEM 231; also taught at Galveston and Qatar campuses.

CHEM 242 Elementary Organic Chemistry Laboratory
Credit 1. 3 Lab Hours.
Operations and techniques of elementary organic chemistry laboratory with emphasis on experiments for students of agriculture.
Prerequisite: CHEM 222 or registration therein.

CHEM 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Introduction to research, library and laboratory work designed for the freshman or sophomore students.
Prerequisite: Approval of department head.

CHEM 289 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Selected topics in an identified area of chemistry. May be repeated for credit.
Prerequisite: Approval of instructor.

CHEM 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in chemistry. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

CHEM 301 Elements of Physical Chemistry
Credits 3. 3 Lecture Hours.
Thermodynamics, Quantum theory, spectroscopy, reaction kinetics, electrochemistry and macromolecules; may not be used by chemistry majors.
Prerequisites: CHEM 102 or CHEM 120; MATH 151 and MATH 152, MATH 140 and MATH 142, MATH 168 and MATH 142, or MATH 147 and MATH 148, or equivalent; PHYS 201 or PHYS 218, or PHYS 206 and PHYS 226; Galveston campus.

CHEM 311 Physical Chemistry Laboratory
Credit 1. 3 Lab Hours.
Quantitative experiments designed to illustrate some principles of thermodynamics, quantum theory, kinetics and spectroscopy; may not be used by chemistry majors.
Prerequisites: CHEM 310, CHEM 322, or CHEM 327, or concurrent enrollment; Galveston campus.

CHEM 315 Fundamentals of Quantitative Analysis
Credits 3. 3 Lecture Hours.
Quantitative and statistical methods of analysis; solution chemistry; chemical equilibrium of analytically useful reactions; advanced analytical methods including electrochemistry, separations and kinetic methods.
Prerequisite: CHEM 102 or CHEM 120.

CHEM 316 Quantitative Analysis
Credits 2. 2 Lecture Hours.
Introductory quantitative chemical analysis; error propagation and statistics; chemical equilibrium for titrations of weak acids, polyprotic acids, and EDTA; basic chemical instrumentation including spectrophotometry, electrochemistry, and chromatography.
Prerequisite: CHEM 102 or CHEM 120; also taught at Galveston and Qatar campuses.

CHEM 318 Quantitative Analysis Laboratory
Credit 1. 3 Lab Hours.
Laboratory work consists of selected experiments in quantitative analysis designed to typify operations of general analytical lab, including chemical analyses by volumetric and gravimetric methods; introduction to chemical measurements by spectroscopic and separations techniques and associated instrumentation.
Prerequisites: CHEM 112 or CHEM 120; CHEM 315 or CHEM 316, or concurrent enrollment; also taught at Galveston and Qatar campuses.

CHEM 322 Physical Chemistry for Engineers
Credits 3. 3 Lecture Hours.
Quantum theory, spectroscopy, statistical mechanics, kinetic theory, reaction kinetics, electrochemistry and macromolecules.
Prerequisites: CHEM 102 or CHEM 120; CHEN 205 and CHEN 354; MATH 152 or equivalent; also taught at Galveston and Qatar campuses.

CHEM 325 Physical Chemistry Laboratory I
Credit 1. 3 Lab Hours.
Quantitative experiments involving physical chemistry principles in areas such as thermodynamics, electrochemistry, molecular structure and equilibria using modern instrumentation.
Prerequisite: CHEM 327 or registration therein.

CHEM 326 Physical Chemistry Laboratory II
Credit 1. 3 Lab Hours.
Quantitative experiments involving physical chemistry principles in such areas as kinetics, properties of gases, phase equilibria and macromolecules using modern instrumentation.
Prerequisite: CHEM 328 or registration therein.

CHEM 327 Physical Chemistry I
Credits 3. 3 Lecture Hours.
Introduction to quantum mechanics, exactly solvable model problems; many electron systems and approximate methods; chemical bonding and the electronic structure of molecules; rotational, vibrational, and electronic spectroscopy; molecular symmetry.
Prerequisite: MATH 152 or MATH 172; MATH 221, MATH 251 or MATH 253 encouraged; PHYS 208 or equivalent; PHYS 218 or equivalent. Replaces CHEM 324 in previous catalogs.

CHEM 328 Physical Chemistry II
Credits 3. 3 Lecture Hours.
A rigorous treatment of first, second, and third laws of thermodynamics; applications to gases (both ideal and real), liquids, solutions and phase equilibria; statistical thermodynamics; kinetic theory of gases; introduction to chemical kinetics.
Prerequisite: CHEM 327. Replaces CHEM 323 in previous catalogs.

CHEM 362 Descriptive Inorganic Chemistry
Credits 3. 3 Lecture Hours.
Introduction to inorganic chemistry with a focus in descriptive inorganic chemistry, bonding theories in inorganic molecules and in the solid state, redox chemistry, descriptive main group and transition metal chemistry; ligand field theory, molecular magnetism and electronic spectra in transition metal complexes.
Prerequisites: CHEM 102 or CHEM 120.
CHEM 383 Chemistry of Environmental Pollution
Credits 3. 3 Lecture Hours.
Chemical pollutants in the air, in water and on land; their generation, chemical reactivity, action on environment and disappearance through chemical mechanisms; chemistry of existing pollution abatement.
Prerequisites: CHEM 102 or CHEM 104; junior or senior classification; also taught at Galveston campus.

CHEM 415 Analytical Chemistry
Credits 3. 3 Lecture Hours.
Theory and practical aspects of modern instrumental methods of quantitative analysis; instrumental approaches to selectivity and sensitivity; examples of major, minor and trace component analysis.
Prerequisite: CHEM 315.

CHEM 433 Advanced Inorganic Chemistry Laboratory
Credits 2. 6 Lab Hours.
Preparation, characterization and properties of bioinorganic, organometallic and macromolecular inorganic compounds; special techniques (glove box manipulations and double-manifold Schlenk lines) for handling air-sensitive materials.
Prerequisite: CHEM 362 or registration therein.

CHEM 434 Analytical Instrumentation Laboratory
Credits 2. 6 Lab Hours.
Practical application of modern instrumental methods of quantitative analysis: atomic and molecular techniques to conduct chemical characterizations and analyses.
Prerequisites: CHEM 318; CHEM 415 or concurrent enrollment.

CHEM 446 Organic Chemistry III
Credits 3. 3 Lecture Hours.
Principles and applications of organic chemistry for students majoring in chemistry, chemical engineering, materials science, biological, and physical science: emphasis on chemical reactivity, mechanistic chemistry, and synthesis.
Prerequisites: CHEM 228 or approval of instructor.

CHEM 456 Chemical Biology
Credits 3. 3 Lecture Hours.
Application of chemical principles to biological phenomena; capstone course for advanced students, integrating organic or inorganic chemistry with biology.
Prerequisites: CHEM 228 or equivalent; junior or senior classification.

CHEM 462 Inorganic Chemistry
Credits 3. 3 Lecture Hours.
Periodic relationship of elements, their compounds, principles of their bonding and applications.
Prerequisites: CHEM 328 and CHEM 362.

CHEM 464 Nuclear Chemistry
Credits 3. 3 Lecture Hours.
Properties of the nucleus; radioactivity; decay kinetics; nuclear masses; theory of radioactive decay; nuclear reactions; radiochemistry; nuclear energy; hands-on demonstrations; applications to non-nuclear problems.
Prerequisites: CHEM 322 or CHEM 327; CHEM 315 or CHEM 316 recommended; also taught at Galveston campus.

CHEM 466 Polymer Chemistry
Credits 3. 3 Lecture Hours.
Mechanisms of polymerization reactions of monomers and molecular weight distributions of products; principles, limitations and advantages of most important methods of molecular weight determination; relationship of physical properties to structure and composition; correlations of applications with chemical constitution.
Prerequisites: CHEM 228 and CHEM 315 or equivalents; also taught at Galveston and Qatar campuses.

CHEM 468 Materials Chemistry of Inorganic Materials
Credits 3. 3 Lecture Hours.
Structure, bonding and reactivity of inorganic solids developed from a perspective emphasizing models of chemical bonding, symmetry and electronic structure; methods for characterizing extended periodic solids; descriptions of band structure and contrasts to molecular orbital theory; synthetic routes, quantum confinement and finite size effects of relevance to nanoscale materials.
Prerequisites: Grade of C or better in CHEM 102 or CHEM 120; PHYS 208 or equivalent; junior or senior classification.

CHEM 470 Industrial Chemistry
Credits 3. 3 Lecture Hours.
Applications of organic and inorganic chemical reactions in the manufacture of commercial products; chemistry of petroleum refining and petrochemical processing; industrial polymerization processes; commodity and fine chemical production; influence of kinetics and thermodynamics on economics of industrial chemical production; pollution abatement technology.
Prerequisites: CHEM 228; junior or senior classification.

CHEM 481 Seminar
Credits 2. 2 Lecture Hours.
Preparation of oral and written reports on selected topics from recent technical publications.

CHEM 483 Green Chemistry
Credits 3. 3 Lecture Hours.
Environmentally benign chemistry; the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances; twelve principles of Green Chemistry; atom economy; use of renewable resources; catalysis for Green Chemistry; alternative solvents and reaction media; energy and the environment.
Prerequisites: CHEM 228; CHEM 362 recommended; junior or senior classification; also taught at Galveston campus.

CHEM 485 Directed Studies
Credits 1 to 16. 1 to 16 Other Hours.
Introduction to research, library and laboratory work.
Prerequisites: Senior classification and approval of chemistry advisor; also taught at Galveston campus.

CHEM 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of chemistry; also taught at Galveston campus. May be repeated for credit.

CHEM 491 Research
Credits 0 to 10. 0 to 10 Other Hours.
Active research of basic nature under the supervision of Department of Chemistry faculty member. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Chemistry major; junior classification or approval of chemistry advisor.
CHEN - Chemical Engineering (CHEN)

CHEN 204 Elementary Chemical Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Solution of elementary problems by application of mass balances, energy balances and equilibrium relationships.
Prerequisites: Grade of C or better in CHEM 120, ENGR 102, and MATH 152; grade of C or better in PHYS 206, and PHYS 216/ENGR 216 or ENGR 216/PHYS 216; admission to chemical engineering major or approval of department.

CHEN 205 Chemical Engineering Thermodynamics I
Credits 3. 3 Lecture Hours.
First and second laws of thermodynamics; volumetric properties of pure fluids; heat effects; applications to flow processes, power cycles, refrigeration.
Prerequisites: CHEN 204.

CHEN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of special projects or studies in chemical engineering processes or operations, for lower division students. Credit not applicable to degree requirements in chemical engineering.
Prerequisites: Freshman or sophomore classification; approval of department head.

CHEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of chemical engineering for lower division students. May be repeated for credit. Credit not applicable to degree requirements in chemical engineering.
Prerequisite: Approval of instructor.

CHEN 301 Engineering Workplace Writing
Credits 3. 3 Lecture Hours.
Processes for preparing documents commonly developed by engineers in the workplace; database research; electronic collaboration; ethics, planning, drafting, revising, and editing reports, proposals, correspondence, instructions, procedures, and presentations for the engineering workplace; meets ABET communication requirements.
Prerequisites: ENGL 104 or equivalent; junior or senior classification in chemical engineering or approval by CHEN.

CHEN 304 Chemical Engineering Fluid Operations
Credits 3. 3 Lecture Hours.
Fundamentals of fluid mechanics with applications to design and analysis of process equipment.
Prerequisites: CHEN 204 with a grade of C or better; CHEN 205 or concurrent enrollment; MATH 308 with a grade of C or better.

CHEN 320 Numerical Analysis for Chemical Engineers
Credits 3. 3 Lecture Hours.
Applications of numerical analysis techniques to mathematical models of processes common to chemical and associated industries; computational methods and software for analysis of chemical engineering processes.
Prerequisites: CHEN 205 with a grade of C or better; MATH 308 with a grade of C or better; or approval of department.

CHEN 322 Chemical Engineering Materials
Credits 3. 3 Lecture Hours.
Overview of materials science with particular emphasis on classes of materials relevant to chemical engineers.
Prerequisite: Grade of C or better in CHEN 204, MATH 251 or concurrent enrollment, and CHEN 205 or concurrent enrollment; or approval of department.

CHEN 323 Chemical Engineering Heat Transfer Operations
Credits 3. 3 Lecture Hours.
Heat transfer operations.
Prerequisite: Grade of C or better in CHEN 205 and CHEN 304.

CHEN 324 Chemical Engineering Mass Transfer Operations
Credits 3. 3 Lecture Hours.
Mass transfer operations with applications to design and analysis of process equipment.
Prerequisites: Grade of C or better in CHEN 354; grade of C or better in CHEN 323 or concurrent enrollment; or approval of department.

CHEN 354 Chemical Engineering Thermodynamics II
Credits 3. 3 Lecture Hours.
Applications of thermodynamics to pure and mixed fluids; phase equilibria and chemical reaction equilibria.
Prerequisites: CHEN 205 and MATH 308 with a grade of C or better; or approval of department.

CHEN 364 Kinetics and Reactor Design
Credits 3. 3 Lecture Hours.
Kinetics of reactions and application of fundamental principles to design and operation of commercial reactors.
Prerequisites: Grade of C or better in CHEN 320; grade of C or better in CHEN 323 and CHEN 324, or concurrent enrollment, or approval of department.

CHEN 399 Mid-Curriculum Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: CHEN 204 and ENGL 210; junior or senior classification or approval of instructor.

CHEN 409 Mathematical Models of Chemical Processes
Credits 3. 3 Lecture Hours.
Development of the mathematical models of chemical and physical processes common to the petroleum processing, chemical and associated industries.
Prerequisite: CHEN 324.

CHEN 422/BAEN 422 Unit Operations in Food Processing
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Design of food process engineering systems; basic concepts of rheology and physical properties of foods; fundamentals of heat and mass transfer and process control.
Prerequisites: Grade of C or better in CHEN 205 and CHEN 304, or CVEN 305.
Cross Listing: BAEN 422/CHEN 422.

CHEN 425 Process Integration, Simulation and Economics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integration, simulation, and economic methods involved in the design of chemical processes and equipment.
Prerequisites: Grade of C or better in CHEN 320, CHEN 323, CHEN 354, and CHEN 324 or concurrent enrollment.

CHEN 426 Chemical Engineering Plant Design
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Integration of material from other chemical engineering courses with applications to the design of plants and processes representative of the chemical and related process industries.
Prerequisites: Grade of C or better in CHEN 425 and CHEN 364.
CHEN 430/SENG 430 Risk Analysis in Safety Engineering
Credits 3. 3 Lecture Hours.
Concepts of risk and risk assessment, which uses all available information to provide a foundation for risk-informed and cost-effective engineering practices; examples and exercises are drawn from a variety of engineering areas.
Prerequisite: Junior or senior classification.
Cross Listing: SENG 430/CHEN 430.

CHEN 431/BAEN 431 Fundamentals in Bioseparations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Design principles and application of chemical engineering unit operations to the production of therapeutic and bioactive molecules.
Prerequisite: Grade of C or better in BAEN 302, BMEN 282, CHEN 282, or CHEN 482.
Cross Listing: BAEN 431/CHEN 431.

CHEN 432 Chemical Engineering Laboratory I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Laboratory work based on CHEN 304 and CHEN 323.
Prerequisites: Grade of C or better in CHEN 323 and ENGL 210.

CHEN 433 Chemical Engineering Laboratory II
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Laboratory work based on CHEN 324, CHEN 364, CHEN 432, and CHEN 461.
Prerequisites: Grade of C or better in CHEN 324, CHEN 364, CHEN 432, and CHEN 461.

CHEN 440 Introduction to Transport Phenomena
Credits 3. 3 Lecture Hours.
Unifying principles and analytical description of phenomena of momentum transport (viscous flow), energy transport (heat conduction and convection) and mass transport (diffusion) in continuous media; similarities and differences in these phenomena.
Prerequisite: Senior classification or approval of instructor.

CHEN 450 Microfabrication and Microfluidics Technology
Credits 3. 3 Lecture Hours.
Micro Electro Mechanical Systems (MEMS) technology; study the fundamentals of fluidics, heat and mass transfer, surface chemistry, and electrochemical interactions.
Prerequisite: Junior or senior classification.

CHEN 451 Introduction to Polymer Engineering
Credits 3. 3 Lecture Hours.
Fundamentals of polymer reaction kinetics, morphology, chemical and rheological properties with applications to polymer synthesis, production and processing operations.
Prerequisite: Senior classification in chemical engineering or approval of instructor.

CHEN 455/SENG 455 Process Safety Engineering
Credits 3. 3 Lecture Hours.
Applications of engineering principles to process safety and hazards analysis, mitigation, and prevention, with special emphasis on the chemical process industries; includes source modeling for leakage rates, dispersion, analysis, relief valve sizing, fire and explosion damage analysis, hazards identification, risk analysis, accident investigations.
Prerequisite: Senior classification in any engineering major.
Cross Listing: SENG 455/CHEN 455.

CHEN 456 Advanced Chemical Process Optimization I
Credits 3. 3 Lecture Hours.
State-of-the-art optimization based techniques for process synthesis, process design and process operability; emphasis on mathematical modeling via mixed integer and continuous optimization formulations and application to heat integration problems; use modeling/optimization software systems.
Prerequisites: Senior classification or approval of instructor.

CHEN 457 Environmental Engineering
Credits 3. 3 Lecture Hours.
Overview of environmental engineering for chemical engineers; analyzing and solving environmental problems associated with engineered systems; emphasis on water/wastewater quality and treatment, air pollution control, and soil and hazardous waste management; includes guest lectures and field trips.
Prerequisites: CHEN 304 and CHEN 354 or approval of instructor; junior or senior classification; Qatar campus.

CHEN 458 Fundamentals of Environmental Remediation Processes
Credits 3. 3 Lecture Hours.
Fundamental approach to various remediation technologies; topics in environmental thermodynamics and mass transfer; adsorption, desorption, ion exchange, air stripping extractions, chemical oxidation, biodegradation.
Prerequisites: CHEN 354 and CHEN 324.

CHEN 459 Gas and Petroleum Processing
Credits 3. 3 Lecture Hours.
Design and operation of petroleum and gas processing facilities including hydrate suppression, dehydration, sweetening, sulfur recovery, LPG and liquid recovery, refining operations; analysis of the design and operations involving a large degree of process simulation.
Prerequisites: Grade of C or better in CHEN 323.

CHEN 460/SENG 460 Quantitative Risk Analysis in Safety Engineering
Credits 3. 3 Lecture Hours.
Fundamental concepts, techniques, and applications of risk analysis and risk-informed decision making for engineering students; practical uses of probabilistic methods are demonstrated in exercises and case studies from diverse engineering areas.
Prerequisite: Senior or graduate classification.
Cross Listing: SENG 460/CHEN 460.

CHEN 461 Process Dynamics and Control
Credits 3. 3 Lecture Hours.
Analysis of process dynamics and methods for the design of automatic control systems for chemical process plants.
Prerequisite: Grade of C or better in CHEN 320 and CHEN 364 or concurrent enrollment.

CHEN 463 Systems Biology
Credits 3. 3 Lecture Hours.
Experimental and computational techniques in systems biology; includes high throughput experiments, data analysis, modeling and simulation; discussed in the context to specific applications such as signal transduction.
Prerequisite: CHEN 482 or approval of instructor.

CHEN 469 Chemical Engineering Car Design
Credit 1. 1 Lecture Hour.
Application of chemical, physical and engineering principles in design process, idea generation and development of design concepts, economic, safety and performance analysis. May be taken four times for credit.
Prerequisites: CHEN 204, CHEN 205; junior or senior classification or approval of instructor.
CHEN 471/BAEN 471 Bioreactor Engineering
Credits 3. 3 Lecture Hours.
Fundamentals of microbial and enzyme kinetics; basic biochemical reaction theory and reactor systems; heterogeneous reactions and transport considerations in enzyme and cell reactors, and immobilized systems; bioreactor design considerations in bioprocessing.
Prerequisite: Grade of C or better in CHEN 282, CHEN 482, or BAEN 302; junior or senior classification or approval of instructor.
Cross Listing: BAEN 471/CHEN 471.

CHEN 475 Microelectronics Process Engineering
Credits 3. 3 Lecture Hours.
State-of-the-art process engineering principles on microelectronics, especially for the fabrication of very large scale integrated circuits (VLSICs); fundamental unit processes, such as thin film deposition, thermal growth, lithography, etching and doping, material structures and properties, and basic device operation principles.
Prerequisites: CHEN 354 and CHEN 364 or approval of instructor; CHEM 322.

CHEN 476 Applied Catalysis
Credits 3. 3 Lecture Hours.
Principles of catalysis and applications to industrial reactions; catalyst preparation, methods for catalyst characterization, deactivation mechanisms and regeneration techniques, catalyst testing (laboratory and industrial reactors), fundamentals of kinetics of heterogeneous reactions; applications to selected industrial processes.
Prerequisites: Grade of C or better in CHEN 354; Grade of C or better in CHEN 364 or concurrent enrollment; junior or senior classification; Qatar campus.

CHEN 481 Seminar
Credit 1. 2 Lab Hours.
Preparation of oral and written reports on selected topics from recent technical publications.
Prerequisites: Senior classification in chemical engineering; grade of C or better in CHEN 432 or concurrent enrollment and ENGL 210.

CHEN 482 Bioprocess Engineering
Credits 3. 3 Lecture Hours.
Application of engineering principles to design of biocatalysts and bioprocesses.
Prerequisite: Grade of C or better in CHEN 205; junior or senior classification.

CHEN 485 Directed Studies
Credits 1 to 5. 1 to 5 Other Hours.
Work covers one or more problems in chemical engineering processes or operations.
Prerequisite: Approval of department head.

CHEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of chemical engineering. May be repeated for credit.
Prerequisite: Senior classification in chemical engineering or approval of instructor.

CHEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in chemical engineering. May be repeated 2 times for credit.
Prerequisites: Junior or Senior classification and approval of instructor.

CHIN 101 Beginning Chinese I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(CHIN 1411) Beginning Chinese I. Introduction to Chinese language, culture and history; development of communicative skills in daily conversation; ability to read and write about 150 commonly used Chinese characters.

CHIN 102 Beginning Chinese II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(CHIN 2311) Intermediate Chinese I. Development of comprehhension and production of spoken Chinese, with emphasis on connected discourse; acquisition of advanced language points; ability to read and write 250 or more characters.

CHIN 201 Intermediate Chinese I
Credits 3. 3 Lecture Hours.
(CHIN 2311) Intermediate Chinese I. Development of comprehhension and production of spoken Chinese, with emphasis on connected discourse; acquisition of advanced language points; ability to read and write 250 or more characters.

CHIN 202 Intermediate Chinese II
Credits 3. 3 Lecture Hours.
(CHIN 2312) Intermediate Chinese II. Continued development of effective communication skills in different aspects of daily Chinese conversation; ability to read and write simple, short paragraphs in Chinese.

CHIN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in Chinese, selected for each student individually; written or oral reports.
Prerequisite: Approval of instructor and Director of AALO.

CHIN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Chinese studies. May be repeated for credit.
Prerequisite: Approval of instructor.

CHIN 301 Reading and Composition
Credits 3. 3 Lecture Hours.
Development of advanced proficiency in reading and writing through contact with various written and spoken styles of modern Chinese as reflected in newspaper reports, radio and TV broadcasts.
Prerequisites: CHIN 202; junior or senior classification or approval of instructor.

CHIN 302 Reading and Composition II
Credits 3. 3 Lecture Hours.
Advanced proficiency in reading comprehension through contact with various written materials; development of cultural proficiency; development of writing skills with emphasis on new characters, new vocabulary and new sentence structures.
Prerequisites: CHIN 301; junior or senior classification or approval of instructor.

CHIN 405 Modern Chinese Fiction
Credits 3. 3 Lecture Hours.
Analysis of major Chinese literary and other prose works of the twentieth and twenty-first centuries; taught in English. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
CHIN 465/FILM 465 Chinese Film
Credits 3. 3 Lecture Hours.
Consideration and analysis of major works and directors of Chinese film; interpretation of culture through film; relationship of film to history, literature and other arts; taught in English. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FILM 465/CHIN 465.

CHIN 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects selected for each student individually; written or oral reports.
Prerequisite: Approval of instructor and Director of AALO.

CHIN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of Chinese studies. May be repeated for credit.
Prerequisite: Approval of instructor.

CLAS - Classics (CLAS)

CLAS 101 Beginning Classical Greek I
Credits 4. 4 Lecture Hours.
Introduction to the language and culture of Greece; basic grammar and vocabulary; readings and slide lectures designed to place language study in its cultural and artistic context.

CLAS 102 Beginning Classical Greek II
Credits 4. 4 Lecture Hours.
Continuation of CLAS 101; basic grammar and vocabulary; readings and slide lectures designed to place language study in its cultural and artistic context.
Prerequisite: CLAS 101.

CLAS 121 Beginning Latin I
Credits 4. 4 Lecture Hours.
(LATI 1411) Beginning Latin I. Introduction to grammar and vocabulary with a contrastive approach; reading of graded material.

CLAS 122 Beginning Latin II
Credits 4. 4 Lecture Hours.
(LATI 1412) Beginning Latin II. Completion of elementary grammatical structures; introduction to Latin historians.
Prerequisite: CLAS 121.

CLAS 211 Intermediate Greek
Credits 3. 3 Lecture Hours.
Completion of study of grammar and syntax; introduction to reading ancient Greek authors in the original language.
Prerequisite: CLAS 102.

CLAS 220 History of Christianity: Origins to the Reformation
Credits 3. 3 Lecture Hours.
History of Christian doctrine, ecclesiastical organization, and religious practice, origins through Reformation, with emphasis on religion and society; life and teachings of Jesus; apostolic church; patriotic period; Christianization of Roman Empire and northern Europe; monasticism; medieval church; Gregorian reform; heresy; papal monarchy; schism and conciliarism; reformations of the sixteenth century.
Cross Listing: HIST 220 and RELS 220.

CLAS 221 Intermediate Latin I
Credits 3. 3 Lecture Hours.
(LATI 2311) Intermediate Latin I. Practice in reading Latin prose writings, especially historical writings and letters.
Prerequisite: CLAS 122.

CLAS 222 Intermediate Latin II
Credits 3. 3 Lecture Hours.
(LATI 2312) Intermediate Latin II. Practice in reading Latin poetry writings, especially Virgil, Horace and Ovid.
Prerequisite: CLAS 221.

CLAS 236/HIST 236 War and Violence in the Ancient World
Credits 3. 3 Lecture Hours.
Equipment, organization, tactics and strategy on land and sea in the wars of the Ancient World, including the Near East, Greece and Rome; use of force and violence in the furtherance of political objectives and social control; winners, losers and survivors.
Cross Listing: HIST 236/CLAS 236.

CLAS 250 Greek and Roman Civilization
Credits 3. 3 Lecture Hours.
Introduction to the civilizations of classical antiquity from Bronze Age Greece to the dissolution of the Roman Empire; examination of major social, intellectual, and political developments in ancient Greece and Rome.

CLAS 251/RELS 251 Classical Mythology
Credits 3. 3 Lecture Hours.
Introduction to the most important myths of the Greeks and Romans; ancient and modern methods of interpreting myths; the role of myths in ancient literature; readings in English.
Cross Listing: RELS 251/CLAS 251.

CLAS 261 Great Books of the Classical Tradition
Credits 3. 3 Lecture Hours.
Survey of important and enduring works of literature, history and philosophy from Classical Antiquity (8th century BC to 2nd century AD), with emphasis on questions of morality and mentality.

CLAS 262 Great Books of Christian Antiquity and the Latin Middle Ages
Credits 3. 3 Lecture Hours.
Survey of important and enduring works of literature, history, and philosophy from Christian Late Antiquity and the Latin Middle Ages (4th to 13th centuries AD) with emphasis on questions of morality, religion, and mentality.

CLAS 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Individual supervision of readings or assigned projects in Classical Languages, selected for each student individually.
Prerequisite: Approval of instructor and department head.
CLAS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Classical Languages. May be repeated for credit.
Prerequisite: Approval of instructor.

CLAS 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in classical studies. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of department head.

CLAS 311 Advanced Greek: New Testament
Credits 3. 3 Lecture Hours.
Readings of the New Testament and works contemporary with it in the original language; introduction to the linguistic, historical, literary and cultural background of the New Testament. May be repeated for credit with different readings.
Prerequisite: CLAS 211.

CLAS 312 Advanced Classical Greek Poetry
Credits 3. 3 Lecture Hours.
Readings of selections from ancient Greek authors of poetry (lyric, epic, or drama) in the original language; discussion of the intellectual, historical, and literary background of the works, and of the lives and thought of the writers. May be repeated for credit with different readings.
Prerequisite: CLAS 211.

CLAS 313 Advanced Classical Greek Prose
Credits 3. 3 Lecture Hours.
Readings of selections from ancient Greek authors of prose (history, oratory, letters, philosophy) in the original language; discussion of the intellectual, historical, and literary background of the works, and of the lives and thought of the writers. May be repeated for credit with different readings.
Prerequisite: CLAS 211.

CLAS 320 Survey of Latin Literature
Credits 3. 3 Lecture Hours.
Latin literature from the republican through the imperial period; systematic overview of the development of literary genres and themes, to provide context for the intensive study of individual authors in other courses.
Prerequisite: CLAS 222 or equivalent.

CLAS 321 Advanced Latin Prose
Credits 3. 3 Lecture Hours.
Readings of selections from ancient Roman authors of prose (history, oratory, letters, philosophy) in the original language; discussion of the intellectual, historical and literary background of the works, and of the lives and thought of the writers. May be repeated for credit with different readings.
Prerequisite: CLAS 222 or equivalent.

CLAS 322 Advanced Latin Poetry
Credits 3. 3 Lecture Hours.
Readings of selections from ancient Roman authors of poetry (lyric, satire, epic, or drama) in the original language; discussion of the intellectual, historical, and literary background of the works, and of the lives and thought of the writers. May be repeated for credit with different readings.
Prerequisite: CLAS 222 or equivalent.

CLAS 330 Women in Ancient Greece and Rome
Credits 3. 3 Lecture Hours.
Survey of women in classical Greece and Rome; emphases on female occupations and family relationships, legal and political status, traditional values, notorious women, how women were viewed and how they viewed themselves.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 330 and WGST 330.

CLAS 352 Greek and Roman Drama
Credits 3. 3 Lecture Hours.
Dramatic literature of Ancient Greece and Rome; works of the major classical playwrights; the origins of comedy and tragedy; visual and musical aspects of production; political and intellectual ideas as reflected in the plays; readings in English.

CLAS 353/ANTH 353 Archaeology of Ancient Greece
Credits 3. 3 Lecture Hours.
Archaeology of ancient Greece from the Stone Age until the ascent of Rome in the Hellenistic Period; remains of ancient Greek art (sculpture, mosaic, painting), architecture (temples, homes, civic structures), religion (figurines, votive offerings), and social history (coins, inscriptions).
Prerequisite: Junior or senior classification.
Cross Listing: ANTH 353/CLAS 353.

CLAS 354/ANTH 354 Archaeology of Ancient Italy
Credits 3. 3 Lecture Hours.
Archaeology of ancient Italy from the Stone Age until the collapse of the Roman Empire in the fourth century; remains of ancient Etruscan and Roman art (sculpture, mosaic, painting), architecture (temples, homes, civic structures), religion (figurines, votive offerings), and social history (coins, inscriptions).
Prerequisite: Junior or senior classification.
Cross Listing: ANTH 354/CLAS 354.

CLAS 371 In Search of Homer and the Trojan War
Credits 3. 3 Lecture Hours.
The nature, background, authorship and historicity of the Iliad and the Odyssey; Aegean culture in the Stone, Bronze and early Iron ages; the value of Greek epics as historical documents; oral poetry; the Trojan War in Greek literature; readings in English; also taught at Galveston campus.

CLAS 372 Greek and Roman Epic
Credits 3. 3 Lecture Hours.
Study of the ancient epic in its historical and cultural context; oral poetry; Homer, archaeology, and history; creation of Greek mythology; Alexandrian written epic; early Latin epic; Virgil's Aeneid as national epic; Virgil and the Homeric tradition; Silver Age Latin epics; readings in English.
Prerequisite: Sophomore classification or approval of instructor.

CLAS 410 Seminar in Classical Studies
Credits 3. 3 Lecture Hours.
Exploration of a significant topic, work, or period in Greek or Roman literature, culture, or history; emphasis on development of research skills in Classical Studies. May be taken three times for credit.
Prerequisite: Junior or senior classification, or approval of instructor.
CLAS 415/FILM 415 The Ancient World in Film
Credits 3. 3 Lecture Hours.
Study of modern films as they relate to ancient literary texts that inspired them or with which they share common themes; relationship between Greek epic, tragedy, and comedy and their cinematic adaptations; treatment of Rome as an idea or ideal in the work of both ancient Romans and modern filmmakers.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: FILM 415/CLAS 415.

CLAS 417/ANTH 417 Naval Warfare and Warships in Ancient Greece and Rome
Credits 3. 3 Lecture Hours.
Extensive survey of Greek and Roman warships, naval warfare, naval strategy and tactics drawing upon archaeological evidence, literary documentation and iconographic material, from the Bronze Age (Ancient Egypt and the mythical Trojan War) to the Imperial Roman Navy.
Prerequisite: Junior or senior classification.
Cross Listing: ANTH 417/CLAS 417.

CLAS 418 Intellectual History from the Ancient Near East to the Early Middle Ages
Credits 3. 3 Lecture Hours.
Political, social, cultural and religious histories of significant figures, groups, schools of thought and movements in western Afro-Eurasia from the Assyrian Empire to the later Roman Empire; developments in political theory, literature, sociology, arts, architecture, music, philosophy, law, sciences and education.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 418 and RELS 418.

CLAS 426/HIST 426 The Ancient Greeks
Credits 3. 3 Lecture Hours.
Greek History and civilization from the Archaic Age to Alexander the Great (8th-late 4th century B.C.).
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: HIST 426/CLAS 426.

CLAS 427/HIST 427 The Roman Republic
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the beginnings of the Republic to its incipient disintegration.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: HIST 427/CLAS 427.

CLAS 428/HIST 428 The Roman Empire: Principate
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the late Republic to the consolidation of the state of Late Antiquity.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: HIST 428/CLAS 428.

CLAS 429/HIST 429 The Roman Empire: Transformations
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the rise of Christianity as an imperial religion to the end of Late Antiquity.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: HIST 429/CLAS 429.

CLAS 444/ANTH 444 Classical Archaeology
Credits 3. 3 Lecture Hours.
History of the discipline through the individuals, organizations, excavations, theoretical models and ethical issues that have shaped it.
Prerequisites: Junior or senior classification.
Cross Listing: ANTH 444/CLAS 444.
COMM 230/JOUR 230 Communication Technology Skills
Credits 3. 3 Lecture Hours.
Introduction to interactive media and media literacy skills in the digital domain; survey of technology histories, standards, and markets for industries such as multichannel TV, digital radio, video games, streaming media, publishing, teleconferencing, and social networking.
Prerequisite: Enrollment in communication or telecommunication media studies majors, USLA-BA-JNS concentration, or JOUR minor.

COMM 240 Rhetorical Criticism
Credits 3. 3 Lecture Hours.
Principles and practice of the analysis of speeches and other forms of public discourse; compares systems of rhetorical criticism, such as neo-classical analysis, mythic analysis, rhetorical genres and close textual analysis.

COMM 243 Argumentation and Debate
Credits 3. 3 Lecture Hours.
(SPCH 233S) Argumentation and Debate. Principles of argumentation and skills of debate, including reasoning, evidence, refutation, and briefing.

COMM 245 Difficult Dialogues on Power, Privilege, and Difference
Credits 3. 3 Lecture Hours.
Introduction to the practice of difficult dialogues; skills development in the use of the dialogical tools of active listening, perspective-taking, deliberation, collaborative decision-making, teamwork and collective problem-solving in the context of bias, prejudice, discrimination, power, equity and privilege.

COMM 250/JOUR 250 New Media and the Independent Voice
Credits 3. 3 Lecture Hours.
Examination of new media as independent voices for cultural and political movements; principles governing the design, presentation, and evaluation of blogs as a persuasive medium in society.
Cross Listing: JOUR 250/COMM 250.

COMM 257/RELS 257 Communication, Religion and the Arts
Credits 3. 3 Lecture Hours.
Introduction to artistic, religious communication; survey of communication art and media art practices across religious contexts; consideration of communication aesthetics that mediate religious experience.
Cross Listing: RELS 257/COMM 257.

COMM 260 Introduction to Communication and Sports
Credits 3. 3 Lecture Hours.
Introduction to the process of communicating sports to the public via television, blogging, online sites and print articles; evaluation of sportscasts; writing about sporting events; examination of the types of communication used within sporting teams.

COMM 275 Introduction to Social Media
Credits 3. 3 Lecture Hours.
Theoretical and practical approaches to social media; overview of social media, social media concepts and theories; social media applications and contexts.

COMM 280 Careers in Communication
Credit 1. 1 Lecture Hour.
Introduction to careers in communication; emphasis on strengths and personality in selecting a profession, application letters, information interviews, mock interviews; must be taken on satisfactory/unsatisfactory basis.
Prerequisites: Sophomore classification or approval of instructor; COMM and TCMS majors.

COMM 285 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Individual supervision of readings or assigned projects in communication. May be taken two times for credit.
Prerequisites: Approval of instructor and department head.

COMM 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of communication. May be repeated for credit.
Prerequisite: Approval of instructor.

COMM 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in the department of communication. May be repeated 3 times for credit.
Prerequisites: GPA 2.5 or higher; freshman or sophomore classification and approval of instructor and department head.

COMM 301 Rhetoric in Western Thought
Credits 3. 3 Lecture Hours.
Historical and critical evaluation of rhetorical theory from the classical era to the contemporary period—from Aristotle to Kenneth Burke. Major theories of communication and persuasion developed in Europe and America.
Prerequisite: Junior or senior classification.

COMM 302/POLS 302 The Mass Media and Politics
Credits 3. 3 Lecture Hours.
Examination of mass media impact on politics and political behavior, and governmental impact on the mass media.
Prerequisite: POLS 206 or approval of department head; junior or senior classification.
Cross Listing: POLS 302/COMM 302.

COMM 303 Communication Data Applications
Credits 3. 3 Lecture Hours.
Overview of communication using big data; data management, extraction and visualization; message construction, message critique; uses and applications in the field of communication and media for evidence-based arguments, persuasion, education and digital storytelling.
Prerequisite: Junior or senior classification.

COMM 305 Theories of Communication
Credits 3. 3 Lecture Hours.
Theoretical approaches to human communication, including selected theories of language behavior, interpersonal and small group interaction, and persuasion.
Prerequisite: Junior or senior classification, or approval of instructor.

COMM 307/JOUR 301 Communication Law and Policy
Credits 3. 3 Lecture Hours.
Law and policy that create the context and consequences for communication via mass media, social media, organizational, group and interpersonal communication, free speech, free press, libel, privacy, copyright, cybersecurity, constitutional principles, international law and human rights, fairness, equity and diversity in communication.
Prerequisite: Junior or senior classification, or approval of instructor; COMM-307 also taught at Galveston campus.
Cross Listing: JOUR 301/COMM 307.
COMM 308 Research Methods in Communication
Credits 3.3 Lecture Hours.
Survey of methods used in communication research including quantitative, interpretive and rhetorical methods; formulating research questions, determining the appropriate method, planning and designing the research, data collection, and data analysis and interpretation.
Prerequisite: MATH 140, MATH 168, MATH 166, or STAT 201; MATH 131, MATH 142, MATH 151, or PHIL 240, or MATH 151 or MATH 152.

COMM 309 Research Method Projects
Credits 3.3 Lecture Hours.
Research methods in communication including experimental, survey, interpretive and critical methods; emphasis on research design, data collection, analysis, interpretation and presentation; project based.
Prerequisites: Grade of C or better in COMM 308; STAT 303; junior or senior classification.

COMM 310 Communication Intervention
Credits 3.3 Lecture Hours.
Communication interventions for personal, organizational, and institutional change; survey of major communication intervention theories in contexts such as voting, purchasing, joining, or adopting; individual-level, interpersonal level, and community-level models of change; application of social science-based models to guide communication intervention strategies effectively.
Prerequisites: Grade of C or better in COMM 305; junior or senior classification.

COMM 311 Interpersonal Communication
Credits 3.3 Lecture Hours.
Speech interaction in person-to-person settings; concepts of perception, attraction, self-disclosure, listening, and conflict management through communication; speech interaction patterns and stages in the development of interpersonal communication.
Prerequisite: Junior or senior classification.

COMM 312 Organizational Communication
Credits 3.3 Lecture Hours.
Speech communication behavior and networks within organizations; recent research on speech communication systems, communication climate, and communication barriers in organizational settings.
Prerequisite: Junior or senior classification.

COMM 313 Media Psychology
Credits 3.3 Lecture Hours.
Examine the role of media and its impact on human behavior, emotions and thoughts; topics include mass media, social media and how they influence individual and societal functioning across a range of important psychological topics; e.g., self-image, sexual behavior, mental health, violence.
Prerequisites: PSYC 107.
Cross Listing: PSYC 316/COMM 316.

COMM 314/PSYC 314 Media Psychology
Credits 3.3 Lecture Hours.
Examine the role of media and its impact on human behavior, emotions and thoughts; topics include mass media, social media and how they influence individual and societal functioning across a range of important psychological topics; e.g., self-image, sexual behavior, mental health, violence.
Prerequisites: Grade of C or better in COMM 307/JOUR 301 or JOUR 301/COMM 307; junior or senior classification or approval of instructor.
Cross Listing: JOUR 317/COMM 317.

COMM 315 Interpersonal Communication
Credits 3.3 Lecture Hours.
Speech interaction in person-to-person settings; concepts of perception, attraction, self-disclosure, listening, and conflict management through communication; speech interaction patterns and stages in the development of interpersonal communication.
Prerequisite: Junior or senior classification.

COMM 316/PSYC 316 Media Psychology
Credits 3.3 Lecture Hours.
Examine the role of media and its impact on human behavior, emotions and thoughts; topics include mass media, social media and how they influence individual and societal functioning across a range of important psychological topics; e.g., self-image, sexual behavior, mental health, violence.
Prerequisites: PSYC 107.
Cross Listing: PSYC 316/COMM 316.

COMM 317/JOUR 317 Social Media Law
Credits 3.3 Lecture Hours.
Laws and regulations applied to social media, including communication law applied to enduring issues in the social media context; legal problems unique to social media; free speech, commercial speech and employment law as they affect individual users of social media as well as groups and organizations promoting points of view or products via social media, and employers.
Prerequisites: Grade of C or better in COMM 307/JOUR 301 or JOUR 301/COMM 307; junior or senior classification or approval of instructor.
Cross Listing: JOUR 317/COMM 317.

COMM 320 Organizational Communication
Credits 3.3 Lecture Hours.
Speech communication behavior and networks within organizations; recent research on speech communication systems, communication climate, and communication barriers in organizational settings.
Prerequisite: Junior or senior classification.

COMM 321 Strategic Communication Case Studies
Credits 3.3 Lecture Hours.
Strategic communication practice; application of skills including communication research, media writing and advanced media writing, visual media and public speaking; service-learning as not-for-fee consultant to a community organization.
Prerequisites: Grade of C or better in COMM 323 and COMM 322; junior or senior classification or approval of instructor.

COMM 322 Communication Tactics
Credits 3.3 Lecture Hours.
Examination of strategic use of communication tactics; analysis of new and digital media in organizational and public communication; skill development in strategic use of communication tactics including writing for new media, researching, planning, integrating and evaluating effectiveness of traditional and new media tactics in strategic public communication.
Prerequisite: Grade of C or better in COMM 323, junior or senior classification.

COMM 323 Strategic Communication
Credits 3.3 Lecture Hours.
Application of strategic communication tools to create and influence policy, to improve profit and non-profit strategic communication planning.
Prerequisite: Junior or senior classification.

COMM 324 Communication Leadership and Conflict Management
Credits 3.3 Lecture Hours.
Communication perspective of leadership, of conflict, of management of conflict in interpersonal, group and societal contexts; models of leadership as communication phenomenon; use of symbols by leaders to foster collaboration, systemic constructionist approach.
Prerequisite: Junior or senior classification.

COMM 325 Persuasion
Credits 3.3 Lecture Hours.
Theory of effective persuasive communication in interpersonal, small group, and public settings; audience analysis, ethics of persuasion, motivational factors, psychological and rhetorical principles, source credibility, and theories of attitude change.
Prerequisite: Junior or senior classification.

COMM 326 Event and Communication Planning
Credits 3.3 Lecture Hours.
Role of integrated communication in event planning; approaches for implementation in specific contexts such as conferences, professional meetings, celebratory events and programs for community outreach; professional, interpersonal and organizational coordination of information, people and budget; theory-informed action (praxis) approach.
Prerequisites: Junior or senior classification, or approval of instructor.

COMM 327 American Oratory
Credits 3.3 Lecture Hours.
Survey of significant American oratory; critical analysis of important speeches in their historical, political, social, and philosophical contexts.
Prerequisite: Junior or senior classification.

COMM 330 Technology and Human Communication
Credits 3.3 Lecture Hours.
Nontechnical survey of how modern technologies influence human communication including an introduction to communication technologies; the influence of technology on interpersonal communication, group decision-making and public communication; an analysis of argumentation and persuasion in technological issues.
Prerequisite: Grade of C or better in COMM 230/JOUR 230.
COMM 335 Intercultural Communication
Credits 3.3 Lecture Hours.
Communication variables in intercultural contexts including culture and
meaning, nonverbal styles across cultures, patterns of symbolic transfer,
culture shock and communication, values in intercultural dialogue.
Prerequisite: Junior or senior classification; also taught at Qatar campus.

COMM 338/AFST 338 Critical Race Discourse
Credits 3.3 Lecture Hours.
Critical analysis of communication and dialogue on race; causes and
symptoms of structural racism; social/racial hierarchies as they influence
and are influenced by communication and dialogue.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: AFST 338/COMM 338.

COMM 340 Communication and Popular Culture
Credits 3.3 Lecture Hours.
Survey of theories and concepts of popular culture; dynamic relationships
between pop culture and television, film, sports, politics and leisure.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 342 The Rhetoric of Gender and Health
Credits 3.3 Lecture Hours.
Study of field of rhetoric of health and medicine with specific attention
to the study of gender, including issues in reproduction, expertise and
illness; range of methods and methodological approaches within the
field.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 342 and WGST 342.

COMM 343 Communication and Cultural Discourse
Credits 3.3 Lecture Hours.
Examination of key concepts and theories relevant to communicating in
an increasingly diverse world; consideration of the mutual constitution
of culture and communication; investigation of multiple axes of identity;
critical/cultural approach; public advocacy project.
Prerequisites: Junior or senior classification or approval of instructor.

COMM 345/FILM 345 Media Industries
Credits 3.3 Lecture Hours.
Survey of the business organization, economic structures and processes,
and regulations of the media industry.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FILM 345/COMM 345.

COMM 346 Media, Culture and Identity
Credits 3.3 Lecture Hours.
Media representations relating to power, privilege and difference;
communication theories and concepts centered on how media and
technology-use shape, and are shaped by, identity; critical analysis of
media as sites for negotiation and construction of identities such as
gender, race, ethnicity, sexuality, social class, physical/mental ability,
nationality and religion; reflection on and analysis of bias, prejudice,
discrimination, power, equity and privilege.
Prerequisites: Junior or Senior classification or approval of instructor.

COMM 350 Theories of Mediated Communication
Credits 3.3 Lecture Hours.
Survey of different theories of mediated communication processes and
effects; functions of theories in social scientific research on media and
mediated processes.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 354 Money, Power and Communication
Credits 3.3 Lecture Hours.
Interrelationships between money and power and communication;
the influence of media and communication on power and money;
communication law and policy; the political economy of local, national,
and global communication networks.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 360 Cultural History of the Media
Credits 3.3 Lecture Hours.
Origins and development of the mass media; their influence on social,
political, and cultural change; history of mass communication from
historical, sociological, and cultural perspectives.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 365/JOUR 365 International Communication
Credits 3.3 Lecture Hours.
Mass media, international, and cross-cultural audiences; theoretical,
pragmatic, political and ethical issues; including cultural differences,
comparative media systems, development communication, patterns of
world news flow, political propaganda, impact of international advertising
and other issues.
Prerequisite: Junior or senior classification; COMM-365 also taught at
Galveston and Qatar campuses.
Cross Listing: JOUR 365/COMM 365.

COMM 370 Health Communication
Credits 3.3 Lecture Hours.
Survey of theory and research in health communication, including
interaction between patients and providers, communication in health care
organizations, health care campaigns, and cultural meanings of health
and illness.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 375 Media Audiences
Credits 3.3 Lecture Hours.
Media audiences; research and theory; processes and effects of mass
communication; audience members’ uses and interpretations of media;
topics including political media, news, and entertainment, health and
information campaigns, children and other special audiences.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 403 Media, Children and Adolescents
Credits 3.3 Lecture Hours.
Critical analysis of popular culture and mass media issues related to
children and adolescents; deconstruction of media created by, for and
about children and youth.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 407/WGST 407 Gender, Race and Media
Credits 3.3 Lecture Hours.
The contributions of women and ethnic groups to the evolution of the
media; the portrayal of women and ethnic groups in the mass media;
issues resulting from the recognition of women and ethnic groups as
media audiences.
Prerequisites: Junior or senior classification and approval of instructor.

COMM 410 Radio, Records, and Popular Music
Credits 3.3 Lecture Hours.
History of radio and record industries; communication technology
and media industries related to American popular music; interaction
of communication technologies, media industries, social and cultural
processes in evolution of popular music.
Prerequisite: Junior or senior classification or approval of instructor.
COMM 411/WGST 411 Representations of Motherhood
Credits 3. 3 Lecture Hours.
Examination of understandings of motherhood from a humanities perspective and over a variety of cultures and time periods, as reflected in written, media and/or oral texts.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: WGST 411.

COMM 415 New Media and Civil Society
Credits 3. 3 Lecture Hours.
Critical analysis of new media technologies, civic participation, and social capital in democratic, non-democratic, and nascent civil societies around the world.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 420/WGST 420 Gender and Communication
Credits 3. 3 Lecture Hours.
Survey of the role of gender in communication processes; focus on communication differences between men and women in contexts such as the family, school and work organizations; discussion of media influence in gender stereotypes.
Cross Listing: WGST 420.

COMM 425/AFST 425 Rhetoric of the Civil Rights Movement
Credits 3. 3 Lecture Hours.
Rhetorical evaluation of theoretical literature and pragmatic episodes that shaped the U.S. Civil Rights Movement; examination of significant speeches, documents, and protest activities in their historical, political, and social contexts.
Cross Listing: AFST 425.

COMM 428/WGST 428 Women’s Rhetoric
Credits 3. 3 Lecture Hours.
Examination of the historical imbrication of masculinity and rhetoric in relation to women’s participation in political life, reception of women’s rhetoric in the public sphere, and remembrance and representation of women as rhetorical agents throughout history; consideration of women’s rhetoric in various cultural arenas.
Prerequisite: Junior or senior classification.
Cross Listing: WGST 428.

COMM 431 Rhetoric of Social Movements
Credits 3. 3 Lecture Hours.
Survey of events and rhetorical documents of major U.S. social movements, including abolitionist, labor, socialist, women’s rights, civil rights, pro-life, gay and lesbian, and student movements.
Prerequisites: COMM 301; junior or senior classification.

COMM 434 Topics in Rhetorical Theory
Credits 3. 3 Lecture Hours.
Application of rhetorical theories and concepts to rhetorical problems and methods; emphasis on the relationship between theory and practice. May be taken two times for credit.
Prerequisite: Junior or senior classification.

COMM 435/FILM 445 Rhetoric of Television and Film
Credits 3. 3 Lecture Hours.
Critical analysis of television and film; close readings of such mediated texts; special attention to writing television and film criticism.
Prerequisite: Junior or senior classification.
Cross Listing: FILM 445.

COMM 437 Visual Communication
Credits 3. 3 Lecture Hours.
Critical analysis of visual communication including photographs, advertising, memorials, tattoos, comics, public protest.
Prerequisite: Junior or senior classification.

COMM 438 Propaganda
Credits 3. 3 Lecture Hours.
Examination of common propaganda strategies in contemporary mass mediated environments.
Prerequisite: Junior or senior classification.

COMM 440 Political Communication
Credits 3. 3 Lecture Hours.
Rhetorical analysis of messages, media and speakers in political campaigns, institutions and movements.

COMM 443 Communication and Conflict
Credits 3. 3 Lecture Hours.
Communication principles for addressing conflict situations through such practices as negotiation, mediation and arbitration; the study of strategies, influence and language in conflict management approaches.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 446 Communication, Organizations and Society
Credits 3. 3 Lecture Hours.
Communicative processes through which organizations influence and are influenced by the societies from which they draw their members.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 447 Communication, Group Processes and Collaboration
Credits 3. 3 Lecture Hours.
Communication processes in teamwork including collaboration in dyads, teams, and group processes that contribute to or detract from team effectiveness.
Prerequisites: COMM 210; junior or senior classification.

COMM 450 Media Campaigns
Credits 3. 3 Lecture Hours.
Principles of designing media campaigns as applied to commercial advertising, political advertising and health campaigns; processes that drive the planning and execution of these campaigns.
Prerequisite: Junior or senior classification or approval of instructor.

COMM 452 Cultural Studies of Communication Technology
Credits 3. 3 Lecture Hours.
Exploration of theories concerning technology; emphasis on technological culture; examination of the emergence of and societal reactions to technologies during modern era; consideration of utopian/dystopian discourse of technology in popular media narratives; contemplation of technology as constitutive of power and knowledge.
Prerequisite: Junior or senior classification.

COMM 453 Communication and Video Games
Credits 3. 3 Lecture Hours.
Business and industry aspects of video games; cultural and social aspects of gaming.
Prerequisite: Junior or senior classification.

COMM 458/JOUR 458 Global Media
Credits 3. 3 Lecture Hours.
Study of globalization through media ownership; content, flow, cultural values, political power and technological impact; implications of globalization for local economies and audiences.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: JOUR 458.
COMM 460 Communication and Contemporary Issues
Credits 3. 3 Lecture Hours.
Rhetorical and other critical approaches to study how communication practices influence the construction of social issues. May be taken two times.

COMM 470 Communication in Health Care Contexts
Credits 3. 3 Lecture Hours.
Principles of health communication applied in situations ranging from physician-patient communication to public health campaign theory, design, implementation and evaluation. May be taken two times.

COMM 471 Media, Health and Medicine
Credits 3. 3 Lecture Hours.
Analysis and evaluation of representations of health in media; examination of gender, class and race as they intersect with health issues.
Prerequisite: Junior or senior classification.

COMM 476 Advanced Social Media
Credits 3. 3 Lecture Hours.
Analysis of social media platforms and social media accounts used by organizations and individuals in professional contexts; production of individual posts for various purposes and goals; production of photos, videos and graphics for social sharing.
Prerequisites: Grade of B or better in COMM 275; junior or senior classification.

COMM 480/RELS 480 Religious Communication
Credits 3. 3 Lecture Hours.
The role of religious communication as manifested in speeches, sermons, debates, campaigns, and social movements throughout history. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 480/COMM 480.

COMM 482 Health Humanities Senior Seminar
Credits 3. 3 Lecture Hours.
Capstone course; application of skills and knowledge acquired during health humanities concentration coursework; exposure to specialized methods of inquiry; development and execution of an individualized final project.
Prerequisites: ENGL 107, COMM 107, or HHUM 107; junior or senior classification.
Cross Listing: ENGL 482 and HHUM 482.

COMM 483 Health Communication Practicum
Credits 0-1. 0-1 Other Hours.
Directed individual health communication practicum.
Prerequisites: Junior or senior classification and approval of instructor.

COMM 484 Internship in Communication
Credits 0 to 23. 0 to 23 Other Hours.
Directed internship in a public or private organization to provide students with on-the-job training and applied research experience; application of communication theory and practice in career settings; designed to enhance and clarify students’ career objectives. May be repeated for credit. Must be taken S/U.
Prerequisites: Cumulative GPR of 2.5 or higher for credits taken in residence; approval of department head.

COMM 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Directed individual study of identified topics in communication; may include specific research, readings or other approved project in any area of communication; written report is required. May be repeated for credit.
Prerequisites: Cumulative GPR of 2.5 or higher; approval of instructor and department head.

COMM 487 Communication, Diversity and Social Justice Capstone Experience
Credits 0-1. 0-1 Other Hours.
Directed individual communication, diversity, social justice capstone experience.
Prerequisites: Junior or senior classification and approval of capstone director.

COMM 488 Global Media Practicum
Credits 0-1. 0-1 Other Hours.
Directed global media experience.
Prerequisites: Junior or senior classification and approval of instructor.

COMM 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of communication. May be repeated for credit.

COMM 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in the department of communication. May be taken four times for credit.
Prerequisites: GPA 2.5 or higher; junior or senior classification and approval of instructor and department head.

COMM 497 Independent Honors Studies
Credits 0 to 3. 0 to 3 Other Hours.
Directed independent studies for upper division Honors students, regardless of academic major, in select aspects of communication. May be repeated for credit.
Prerequisites: Junior or senior classification either as Honors student or with GPR of 3.25; letter of approval from head of student’s department.

COSC 153 Introduction to the Construction Industry
Credits 3. 3 Lecture Hours.
Characteristics of the construction industry; types of construction companies; contracts; people involved in a project, their responsibilities and interrelationships; evolution of a project; interpreting working drawings; construction bonds; contract documents.

COSC 175/AREN 175 Construction Graphics Communication
Credits 3. 3 Lecture Hours.
Visualization, interpretation and communication of graphical geometry in construction design and engineering; graphical analysis of problems; sketching applications, computer aided design and fundamentals of information modeling software; introduction to common quantitative tools in construction.
Prerequisite: AREN and COSL majors only.
Cross Listing: AREN 175/COSC 175.
COSC 184 Construction Safety I
Credit 1. 1 Lecture Hour.
Administration and application of the OSHA Act in the construction industry; includes standards, the general duty clause, competent person, and hazard identification; fulfills the requirements for the ten-hour OSHA certifications.
Prerequisite: Construction science major.

COSC 202 Introduction to Housing
Credits 3. 3 Lecture Hours.
Overview of the social, economic, environmental and cultural impacts of housing on communities and nations; varied prospective to understand the different facets of housing and their impacts on the human experience; critical thinking skills to gain knowledge and to be informed of housing choices.

COSC 253 Construction Materials and Methods I
Credits 3. 3 Lecture Hours.
(ARCH 2312) Construction Materials and Methods I. Materials, methods and sequences of the construction process; emphasis on design, specification, purchase and use of concrete, masonry and wood.

COSC 254 Construction Materials and Methods II
Credits 3. 3 Lecture Hours.
Analysis of materials and methods used in the design and construction of buildings with a particular emphasis on structures using structural steel reinforced concrete and dimensional framing lumber.
Prerequisite: COSC 253.

COSC 275 Estimating I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Systems approach to determining required quantities of construction materials; quantification of various types of foundation systems, structural systems and building envelope systems; excerpts of contract documents from a variety of different building projects.
Prerequisites: COSC 175/AREN 175; COSC 254.

COSC 284 Introduction to Applied Workplace Ethics, Etiquette and Communications
Credit 1. 1 Lecture Hour.
Professional ethics, etiquette and communication for employment preparation with a construction or construction related company; various case studies emphasizing personal accountability, integrity and codes of conduct; etiquette and communication of all forms will be presented, applied and discussed in reflective writing assignments in order to prepare to meet the professional expectations of employers upon graduation.
Prerequisite: Construction science majors.

COSC 285 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Special project in construction science. Project must be approved by the department.
Prerequisite: Approval of department head.

COSC 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in construction science. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor.

COSC 301 Construction Surveying
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Practical applications of surveying to the practice of construction project management; distance, grade and angular measurement; surveying equipment and its application to construction layout and control; surveying documentation and field work; introduction to other three dimensional measurement and positioning systems.
Prerequisite: Admission to upper level in Construction Science.

COSC 303 High Performance Residential Building
Credits 3. 3 Lecture Hours.
Exploration into the concepts of homebuilding operations using green building methods, tools to reach consumers, organizational and operational theories and market driven green building solutions; alignment with ICC 700 National Green Building Standard; operations of publicly traded and private production homebuilders and best practices; application for the professional designation of Certified Green Professional (CGP) given by the National Association of Home Builders (NAHB) upon completion.
Prerequisites: Upper division construction science major or approval of instructor.

COSC 310 Design and Construction Leadership Education I
Credit 1. 1 Lecture Hour.
Promotion of personal leadership skills utilized within the design and construction professions; primary understanding and developing management skills with specific attention to developing personal attributes and skills necessary for achieving organizational goals.
Prerequisites: CARC majors only pursuing the minor in leadership in the design & construction professions; junior or senior classification or approval of instructor.

COSC 321 Structural Systems I
Credits 3. 3 Lecture Hours.
Introduction to the physical principles that govern classical statics and strengths of materials through the design of architectural structures.
Prerequisite: Admission to upper level in Construction Science.

COSC 325 Mechanical, Electrical and Plumbing Systems in Construction I
Credits 3. 3 Lecture Hours.
Design, operation, materials and installation methods of mechanical, electrical and plumbing systems in construction.
Prerequisite: Admission to upper level in construction science or minor in facility management.

COSC 326 Mechanical, Electrical and Plumbing Systems in Construction II
Credits 3. 3 Lecture Hours.
In depth coverage of mechanical, electrical and plumbing (MEP) system operations, materials and installation methods; development of MEP drawings, specifications and contract documents as used in MEP specialty contracting industry.
Prerequisite: COSC 325.

COSC 333 Project Management for Facility Managers
Credits 3. 3 Lecture Hours.
Overview of project management for facility managers covering concepts and components of project management and their interrelationships in construction practice.
Prerequisite: Minor in facility management; junior or senior classification or approval of instructor.
COSC 353 Construction Project Management
Credits 3. 3 Lecture Hours.
An introduction to construction project management covering concepts of project selection, estimating bidding, scheduling, subcontracting practices, cost controls, project documentation, construction bonds, insurance, payments and the elements of close out; development of professional communication skills through prepared multi-media presentations.
Prerequisite: Admission to upper level in Construction Science.

COSC 375 Estimating II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Quantification and pricing of direct field costs and general condition costs from construction documents; the preparation of complete lump sum bid package ready for project execution; complete set of contract documents required.
Prerequisites: Admission to upper level in Construction Science; COSC 275.

COSC 381 Professional Ethics in the Construction Industry
Credit 1. 1 Lecture Hour.
Principles of ethical behavior in preparation for a professional internship with a construction or construction-related company; various construction company case studies emphasizing personal accountability, integrity, moral courage, individual, association and company codes of conduct; accepted business practices, decision making, company cultures, peer pressure, public opinion.
Prerequisite: Admission to upper level in Construction Science.

COSC 410 Design and Construction Leadership Education II
Credit 1. 1 Lecture Hour.
Development of competencies in various leadership and management practices that are useful in an array of situations; emphasis on organizational leadership and management development with specific attention to intragroup relationships and techniques for achieving group goals.
Prerequisites: COSC 310, CARC majors only pursuing the minor in leadership in the design and construction professions; junior or senior classification or approval of instructor.

COSC 411 Seminar in Design and Construction Executive Leadership
Credit 1. 1 Lecture Hour.
Promotes an understanding of leadership and builds the capacity to understand and meet the challenges involved in developing and leading ethical and sustainable organizations in today's economy; examination of theory, conceptualizing, reflection and application; share experiences in everyday life and learn to predict outcomes based on theoretical models.
Prerequisite: COSC 410; CARC majors only pursuing the minor in leadership in the design and construction; junior or senior classification or approval of instructor.

COSC 421 Soil and Structural Analysis.
Credits 3. 3 Lecture Hours.
Advanced structural analysis of steel and concrete members with an introduction to soil properties and constituents; utilizations of computer analysis tools.
Prerequisite: COSC 321.

COSC 440 Interdisciplinary Capstone
Credits 3. 3 Lecture Hours.
A senior capstone for students preparing to enter the designbuild sector of the construction industry; integration of the design and construction processes into a single, cohesive project delivery system, starting with project inception, and carrying through construction, operation and maintenance of various types of construction projects.
Prerequisites: COSC 475; must be taken last full semester or summer before graduation.

COSC 441 Residential Capstone
Credits 3. 3 Lecture Hours.
A senior capstone course for students preparing to enter the residential construction industry; project management of residential projects, including market analysis, site analysis, residential design, building codes, estimating, scheduling, financing, subcontracting, marketing, business planning and current trends in design and construction.
Prerequisites: COSC 475; must be taken last full semester or summer before graduation.

COSC 442 Commercial Capstone
Credits 3. 3 Lecture Hours.
A senior capstone course for students preparing to enter the commercial construction sector; project management of commercial construction projects, including aspects of design, bidding/estimating; presentation, value engineering, contracts/negotiation, contractor relations, cost controls, management during construction, close out, and post-construction requirements.
Prerequisites: COSC 475; must be taken last full semester or summer before graduation.

COSC 443 Industrial Capstone
Credits 3. 3 Lecture Hours.
A senior capstone course for students preparing to enter the industrial construction sector; project management of industrial construction projects including project acquisition, planning and staffing, engineering, procurement, construction, start-up, close out, operations and maintenance, and turn-arounds.
Prerequisites: COSC 475; must be taken last full semester or summer before graduation.

COSC 446 Specialty Capstone
Credits 3. 3 Lecture Hours.
Senior capstone course for students preparing to enter the mechanical, electrical or other specialty construction company; project management of specialty contracts including project acquisition, schematic system design, estimating/bidding, scheduling, systems integration, value engineering, management during construction of crews and procurement, contract administration, business planning and current industry issues.
Prerequisites: COSC 475; must be taken last full semester or summer before graduation.

COSC 450 Facility Management Principles and Practices
Credits 3. 3 Lecture Hours.
Principles of facility management; the life cycle of a project; strategic planning; performance measurements; life cycle cost approach; building sustainability; maintenance management; and industry practices.
Prerequisite: Admission to upper level in construction science or minor in facility management.
COSC 459 Industrial Construction
Credits 3. 3 Lecture Hours.
Industry specific knowledge such as concepts of developing construction management strategies of industrial projects, materials and methods, structural and mechanical components; preparation to effectively resolve challenges faced in the industrial construction sector.
Prerequisites: Admission to upper level in construction science; COSC 375.

COSC 461 Building Information Modeling System
Credits 3. 3 Lecture Hours.
Exploration of a data-rich, object-oriented, and parametric digital representation of the facility, from which views and information can be extracted and analyzed for construction project acquisition, planning, and control.
Prerequisite: Admission to upper level in Construction Science.

COSC 463 Introduction to Construction Law
Credits 3. 3 Lecture Hours.
Introduction to basic contract and tort issues and their application in the construction industry; delineation of the various types of contracts and remedies available to parties involved in a construction project; additional related topics including bidding, delays, mechanics liens, site conditions, warranties and the Uniform Commercial Code as it relates to the construction industry, introduction to legal research and reasoning as used by professional contractors.
Prerequisite: Admission to upper level in Construction Science.

COSC 464 Construction Safety II
Credits 3. 3 Lecture Hours.
Administration and application of the Occupational Safety and Health Administration Act in the construction industry; includes OSHA standards, the general duty clause, competent person and hazard identification; fulfills the requirements for the thirty-hour OSHA, CPR and First Aid certifications.
Prerequisite: Admission to upper-level in construction science; COSC 184.

COSC 465 Advanced Topics in Construction Law
Credits 3. 3 Lecture Hours.
Legal issues affecting construction, including the parties to construction work, contracting, responsibilities and risk, risk management, damages, handling of claims and disputes, indemnification, bonds, insurance, bankruptcy, labor and employment, and subcontract management; litigation and alternative dispute resolution methods regularly used in the construction industry.
Prerequisite: COSC 463.

COSC 468 Risk Management in the Built Environment
Credits 3. 3 Lecture Hours.
Decision-making and risk analysis concepts in the context of the built environment and construction projects; major categories and tools of risk management regularly used in the construction industry such as contracts, insurance and bonds.
Prerequisites: Admission to upper level in construction science and COSC 463 or concurrent enrollment.

COSC 474 Facility Management Internship
Credits 3. 3 Lecture Hours.
An internship (10 weeks, 400 hours) in a facility management related position that exposes the student to facility management activities; daily logs, monthly reports, final report and completion letter required; distance education off-campus course; does not satisfy College of Architecture semester away requirement.
Prerequisites: COSC 450; approval of internship faculty coordinator.

COSC 475 Construction Project Planning
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Development of parameter cost estimates for activities that relate to the construction of a building project; work packages sequenced, planned and leveled to develop a working project execution document; development of procedures to monitor actual field progress.
Prerequisite: COSC 353, COSC 375.

COSC 477 Construction Project Controls
Credits 3. 3 Lecture Hours.
Introduction to construction related financial documents including schedule of values, labor and operations cost reports, income statements, balance sheets and construction budgets; emphasis on the development of techniques required to effectively monitor the financial aspects of a construction project.
Prerequisite: COSC 353.

COSC 481 Seminar
Credit 1. 1 Lecture Hour.
Seminar discussion of construction equipment selection, utilization maintenance and operating cost.
Prerequisite: Must be taken last full semester before graduation.

COSC 484 Internship - 10 Week
Credits 3. 3 Other Hours.
An internship (10 weeks, 400 hours) with a construction or construction-related company that exposes the student to construction-related activities; daily logs, monthly reports, final report and completion letter required; distance education course with non-resident status; does not satisfy the College of Architecture semester away requirement.
Prerequisites: COSC 184 and COSC 284; approval of internship faculty coordinator.

COSC 485 Directed Studies
Credits 1 to 5. 1 to 5 Other Hours.
Special problems in building construction.
Prerequisite: Admission to upper-level in Construction Science.

COSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of construction science. May be repeated for credit.
Prerequisite: Admission to upper-level in Construction Science.

COSC 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in construction science. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Admission to upper level in Construction Science and approval of instructor.

COSC 494 Internship
Credits 7. 7 Other Hours.
An internship (15 weeks, 600 hours) with a construction or construction-related company that exposes the student to construction-related activities, daily logs, monthly reports, final report and completion letter required; distance education course with non-resident status. No other TAMU courses may be taken while enrolled in COSC 494.
Prerequisites: COSC 184 and COSC 284; approval of internship faculty coordinator.
CSCE 110 Programming I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Basic concepts in using computation to enhance problem solving abilities; understanding how people communicate with computers, and how computing affects society; computational thinking; representation of data; analysis of program behavior; methods for identifying and fixing errors in programs; understanding abilities and limitation of programs; development and execution of programs.

CSCE 111 Introduction to Computer Science Concepts and Programming
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Computation to enhance problem solving abilities; understanding how people communicate with computers, and how computing affects society; computational thinking; software design principles, including algorithm design, data representation, abstraction, modularity, structured and object oriented programming, documentation, testing, portability, and maintenance; understanding programs' abilities and limitations; development and execution programs.

CSCE 120 Program Design and Concepts
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Extend prior programming knowledge to create computer programs that solve problems; use the C++ language; apply computational thinking to enhance problem solving; analyze, design and implement computer programs; use basic and aggregate data types to develop functional and object oriented solutions; develop classes that use dynamic memory and avoid memory leaks; learn error handling strategies to develop more secure and robust programs.
Prerequisite: Grade of C or better in ENGR 102, CSCE 110, CSCE 111, or CSCE 206, or equivalent.

CSCE 121 Introduction to Program Design and Concepts
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Computation to enhance problem solving abilities; computational thinking; understanding how people communicate with computers, how computing affects society; design and implementation of algorithms; data types, program control, iteration, functions, classes, and exceptions; understanding abstraction, modularity, code reuse, debugging, maintenance, and other aspects of software development; development and execution of programs.
Prerequisite: Programming course (high school or college).

CSCE 181 Introduction to Computing
Credit 1. 1 Lecture Hour.
Introduction to the broad field of computing; presentations from industry and academia about how computer science concepts are used in research and end products; includes a major writing component.

CSCE 201/CYBR 201 Fundamentals of Cybersecurity
Credits 3. 3 Lecture Hours.
Basic terminology, concepts, technology, and trends of cybersecurity; foundations of cybersecurity to include cryptography, public key infrastructure, standards and protocols, physical security, network fundamentals; workings of systems, networks, infrastructure; legal and ethical issues in cybersecurity.
Cross Listing: CYBR 201/CSE 201.

CSCE 206 Structured Programming in C
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(COSC 1420) Structured Programming in C. Basic concepts, nomenclature and historical perspective of computers and computing; internal representation of data; software design principles and practice; structured and object-oriented programming in C; use of terminals, operation of editors and executions of student-written programs.

CSCE 221 Data Structures and Algorithms
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Specification and implementation of basic abstract data types and their associated algorithms including stacks, queues, lists, sorting and selection, searching, graphs, and hashing; performance tradeoffs of different implementations and asymptotic analysis of running time and memory usage; includes the execution of student programs written in C++.
Prerequisite: CSCE 113 or CSCE 121; CSCE 222/ECEN 222 or ECEN 222/CSCE 222, or concurrent enrollment.

CSCE 222/ECEN 222 Discrete Structures for Computing
Credits 3. 3 Lecture Hours.
Provide mathematical foundations from discrete mathematics for analyzing computer algorithms, for both correctness and performance; introduction to models of computation, including finite state machines and Turing machines.
Prerequisite: MATH 151.
Cross Listing: ECEN 222/CSCE 222.

CSCE 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in computer science. May be taken three times for credit.
Prerequisite: Approval of instructor.

CSCE 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in computer science. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

CSCE 310 Database Systems
Credits 3. 3 Lecture Hours.
File structures and access methods; database modeling, design and user interface; components of database management systems; information storage and retrieval, query languages, high-level language interface with database systems.
Prerequisites: CSCE 221 with a grade of C or better; junior or senior classification.

CSCE 312 Computer Organization
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to computer systems from programmer's perspective including simple logic design, data representation and processor architecture, programming of processors, memory, control flow, input/output, and performance measurements; hands-on lab assignments.
Prerequisites: Grade of C or better in CSCE 221, or concurrent enrollment; or approval of instructor.
CSCE 313 Introduction to Computer Systems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to system support for application programs, both on single node and over network including OS application interface, inter-process communication, introduction to system and network programming, and simple computer security concepts; hands-on lab assignments.
Prerequisite: CSCE 221 with a grade of C or better; CSCE 312 or corequisite CSCE 350/ECEN 350.

CSCE 314 Programming Languages
Credits 3. 3 Lecture Hours.
Exploration of the design space of programming languages via an in-depth study of two programming languages, one functional and one object-oriented; focuses on idiomatic uses of each language and on features characteristic for each language.
Prerequisites: Grade of C or better in CSCE 221, or concurrent enrollment; or approval of instructor.

CSCE 315 Programming Studio
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Intensive programming experience that integrates core concepts in Computer Science and familiarizes with a variety of programming/development tools and techniques; students work on 2 or 3 month-long projects each emphasizing a different specialization within Computer Science; focuses on programming techniques to ease code integration, reusability, and clarity.
Prerequisites: CSCE 312 and CSCE 314; or CSCE 350/ECEN 350.
Corequisite: CSCE 313.

CSCE 320/STAT 335 Principles of Data Science
Credits 3. 3 Lecture Hours.
Theoretical foundations, algorithms and methods of deriving valuable insights from data; includes foundations in managing and analyzing data at scale, e.g. big data; data mining techniques and algorithms; exploratory data analysis; statistical methods and models; data visualization.
Prerequisites: STAT 211 or ECEN 303; STAT 212 or CSCE 222/ECEN 222.
Cross Listing: STAT 335/CSCE 320.

CSCE 350/ECEN 350 Computer Architecture and Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Computer architecture and design; use of register transfer languages and simulation tools to describe and simulate computer operation; central processing unit organization, microprogramming, input/output and memory system architectures.
Prerequisites: Grade of C or better in ECEN 248; junior or senior classification.
Cross Listing: ECEN 350/CSCE 350.

CSCE 399 High-Impact Experience
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; documentation and self-assessment of learning experience.
Prerequisite: Junior or senior classification.

CSCE 402 Law and Policy in Cybersecurity
Credits 3. 3 Lecture Hours.
Examination of law and policy issues related to cybersecurity for the spectrum of cybersecurity jobs; includes procurement, operations and maintenance, governance and oversight, protection and defense, analysis, intelligence collection and operation and investigation cybersecurity jobs.
Prerequisites: Junior or senior classification.

CSCE 410 Operating Systems
Credits 3. 3 Lecture Hours.
Hardware/software evolution leading to contemporary operating systems; basic operating systems concepts; methods of operating systems design and construction including algorithms for CPU scheduling, memory and general resource allocation, process coordination and management; case studies of several operating systems.
Prerequisites: CSCE 313 and CSCE 315.

CSCE 411 Design and Analysis of Algorithms
Credits 3. 3 Lecture Hours.
Study of computer algorithms for numeric and non-numeric problems; design paradigms; analysis of time and space requirements of algorithms; correctness of algorithms; NP-completeness and undecidability of problems.
Prerequisite: Grade of C or better in CSCE 221 and CSCE 222/ECEN 222; junior or senior classification or approval of instructor.

CSCE 412 Cloud Computing
Credits 3. 3 Lecture Hours.
Operating system and distributed systems fields that form the basis of cloud computing such as virtualization, key-value storage solutions, group membership, failure detection, peer to peer systems, datacenter networking, resource management and scalability; popular frameworks such as MapReduce and HDFS and cases studies on failure determination.
Prerequisite: Grade of C or better in CSCE 315.

CSCE 413 Software Security
Credits 3. 3 Lecture Hours.
Basic principles of design and implementation of defect-free software, code reviews including tool-assisted review by static and dynamic analysis, risk analysis and management and methods for software security testing.
Prerequisites: Grade of C or better in CSCE 315 or approval of instructor.

CSCE 416/ECEN 416 Hardware Design Verification
Credits 3. 3 Lecture Hours.
Hardware functional verification; case studies on verification in integrated circuit design; introduction to industry best practices; introduction to logic functional verification.
Prerequisites: CSCE 312, CSCE 350/ECEN 350, or ECEN 350/CSCE 350, or equivalent in computer architecture; familiarity with C/C++/Verilog/VHDL programming.
Cross Listing: ECEN 416/CSCE 416.

CSCE 420 Artificial Intelligence
Credits 3. 3 Lecture Hours.
Fundamental concepts and techniques of intelligent systems; representation and interpretation of knowledge on a computer; search strategies and control; active research areas and applications such as notational systems, natural language understanding, vision systems, planning algorithms, intelligent agents and expert systems.
Prerequisite: CSCE 411 or approval of instructor.
CSCE 421/STAT 421 Machine Learning
Credits 3.3 Lecture Hours.
Theoretical foundations of machine learning, pattern recognition and generating predictive models and classifiers from data; includes methods for supervised and unsupervised learning (decision trees, linear discriminants, neural networks, Gaussian models, non-parametric models, clustering, dimensionality reduction, deep learning), optimization procedures and statistical inference.
Prerequisites: Grade of C or better in MATH 304 and STAT 211; grade of C or better in CSCE 221 or STAT 404.
Cross Listing: STAT 421/CSCE 421.

CSCE 429 Software Development, Globalization and Culture Abroad
Credits 3.3 Lecture Hours.
Software development cycle; software outsourcing model, execution and practices; software industries on products, services and consultancy; software globalization; and offshore development culture; travel abroad required.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 430 Problem Solving Programming Strategies
Credits 3.2 Lecture Hours. 3 Lab Hours.
Methods for analyzing fundamental programming problems from a variety of domains and implementing solutions quickly and efficiently; problems based on competitive programming contests to develop skills in problem analysis, coding and testing; solving problems will involve identifying and applying a range of algorithmic solutions; includes dealing with combinatorics, dynamic programming, graphs, numerical calculations, string processing and geometry, along with other specialized algorithms.
Prerequisites: CSCE 411 or approval of instructor.

CSCE 431 Software Engineering
Credits 3.2 Lecture Hours. 2 Lab Hours.
Application of engineering approach to computer software design and development; life cycle models, software requirements and specification; conceptual model design; detailed design; validation and verification; design quality assurance; software design/development environments and project management.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 433 Formal Languages and Automata
Credits 3.3 Lecture Hours.
Basic types of abstract languages and their acceptors; the Chomsky hierarchy; solvability and recursive function theory; application of theoretical results to practical problems.
Prerequisite: CSCE 411 or approval of instructor.

CSCE 434 Compiler Design
Credits 3.3 Lecture Hours.
Programming language translation; functions and general organization of compiler design and interpreters; theoretical and implementation aspects of lexical scanners; parsing of context free languages; code generation and optimization; error recovery.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 435 Parallel Computing
Credits 3.3 Lecture Hours.
Overview of parallel computing technology and programming methods; includes multiprocessor architectures, programming tools, parallel performance, parallel algorithms, and applications of parallel computing.
Prerequisites: CSCE 315 and junior or senior classification or approval of instructor.

CSCE 436 Computer-Human Interaction
Credits 3.3 Lecture Hours.
Comprehensive study of the Computer-Human Interaction (CHI) area; includes history and importance of CHI; CHI design theories; modeling of computer users and interfaces; empirical techniques for task analysis and interface design; styles of interaction and future directions of CHI including hypermedia and computer-supported collaborative work.
Prerequisite: CSCE 315 or concurrent enrollment or approval of instructor.

CSCE 438 Distributed Systems
Credits 3.3 Lecture Hours.
Principles and techniques for engineering distributed systems with topics including communication, concurrency, programming paradigms, naming, managing shared state, caching, synchronization, reaching agreement, fault tolerance, security, middleware and distributed applications; design, implement and debug large software systems.
Prerequisite: CSCE 313; junior or senior classification, or approval of instructor.

CSCE 440 Quantum Algorithms
Credits 3.3 Lecture Hours.
Introduction to the design and analysis of quantum algorithms; basic principles of the quantum circuit model; gives a gentle introduction to basic quantum algorithms; reviews recent results in quantum information processing.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 441 Computer Graphics
Credits 3.3 Lecture Hours.
Principles of interactive computer graphics; 2-D and 3-D rendering pipelines, including geometric object and view transformations, projections, hidden surface removal, and rasterization; lighting models for local and global illumination; hierarchical models of 3-D objects; systems and libraries supporting display and user interaction.
Prerequisite: CSCE 221; junior or senior classification or approval of instructor.

CSCE 442 Scientific Programming
Credits 3.3 Lecture Hours.
Introduction to numerical algorithms fundamental to scientific and engineering applications of computers; elementary discussion of error; algorithms, efficiency; polynomial approximations, quadrature and systems of algebraic and differential equations.
Prerequisites: CSCE 221 with a grade of C or better; MATH 304 or MATH 308 or concurrent enrollment.

CSCE 443/VIST 487 Game Development
Credits 3.2 Lecture Hours. 2 Lab Hours.
Aesthetic and technical aspects of computer game development, including game mechanics, story development, content creation and game programming; includes game design, interface design, 3D modeling and animation, graphics algorithms, shader programming and artificial intelligence; group project includes the design and development of a game from start to finish.
Prerequisites: CSCE 441 or VIST 486 or approval of instructor; junior or senior classification.
Cross Listing: VIST 487/CSCE 443.
CSCE 444 Structures of Interactive Information
Credits 3. 2 Lecture Hours. 2 Lab Hours.
A systems approach to the programming, design, authoring and theory of hypermedia; object-oriented visual and interactive programming; visual design, including color, space, text and layering; the reference as a multidisciplinary structure; collecting and sampling; ontologies, maps and navigation as means of structuring information; create dynamic hypermedia that is expressive and interpretive.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 445 Computers and New Media
Credits 3. 3 Lecture Hours.
Potential and realized impact of computers in the design of new media; relationship between authors and readers of interactive material; influence of media design on the content expressed.
Prerequisite: CSCE 221 or approval of instructor.

CSCE 446/VIST 477 Virtual Reality
Credits 3. 3 Lecture Hours.
Theory and practice of virtual reality; interactive 3D virtual environments; input/output devices, 3D interaction techniques, augmented reality, role of realism in VR, navigation techniques, design guidelines and evaluation methods.
Prerequisite: Grade of C or better in VIST 271, CSCE 221, or CSCE 441.
Cross Listing: VIST 477/CSCE 446.

CSCE 447/VIST 476 Data Visualization
Credits 3. 3 Lecture Hours.
Visual representation and design of data and information; 3D visualization, infographics, data narratives, principles of visual data encoding and interaction techniques.
Prerequisite: Grade of C or better in VIST 271, or CSCE 221, or CSCE 441.
Cross Listing: VIST 476/CSCE 447.

CSCE 451 Software Reverse Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Overview of the compilation mechanism to generate executable files and raw binary codes from source codes; executable file formats for an operating system to run the binary code; disassembly algorithms and control graph analysis; static and dynamic analyses; case studies on code obfuscation, codebreaking, malware analysis.
Prerequisite: CSCE 313 or approval of instructor.

CSCE 452 Robotics and Spatial Intelligence
Credits 3. 3 Lecture Hours.
Algorithms for executing spatial tasks; path planning and obstacle avoidance in two- and three-dimensional robots—configuration space, potential field, free-space decomposition methods; stable grasping and manipulation; dealing with uncertainty; knowledge representation for planning—geometric and symbolic models of the environment; task-level programming; learning.
Prerequisite: CSCE 315 or approval of instructor.

CSCE 456 Real-Time Computing
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to principles and applications of real-time computing; system architecture; D/A and A/D conversion; synchronous data acquisition and analysis; computers in real-time control; asynchronous monitoring and control; resource scheduling; interfacing issues; lectures and laboratory.
Prerequisites: CSCE 313 and MATH 152.

CSCE 461/BMEN 428 Embedded Systems for Medical Applications
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of embedded system architecture and programming; fundamentals and theoretical foundations of wireless communication systems; hands-on experiences of how an embedded system could be used to solve problems in biomedical engineering; projects on wireless sensors and imaging for medical devices.
Prerequisite: BMEN 211, CSCE 350/ECEN 350, or CSCE 315, or approval of instructor.
Cross Listing: BMEN 428/CSCE 461.

CSCE 462 Microcomputer Systems
Credits 3. 2 Lecture Hours. 1 Lab Hour.
Microcomputers as components of systems; VLSI processor and coprocessor architectures, addressing and instruction sets; I/O interfaces and supervisory control; VLSI architectures for signal processing; integrating special purpose processors into a system.
Prerequisite: CSCE 313.

CSCE 463 Networks and Distributed Processing
Credits 3. 3 Lecture Hours.
Basic hardware/software, architectural components for computer communications; computer networks, switching, routing, protocols and security; multiprocessing and distributed processing; interfacing operating systems and networks; case studies of existing networks and network architectures.
Prerequisite: CSCE 313 or approval of instructor.

CSCE 464 Wireless and Mobile Systems
Credits 3. 3 Lecture Hours.
Introduction to wireless and mobile systems; wireless communication fundamentals; wireless medium access control design; transmission scheduling, network and transport protocols over wireless design, simulation and evaluation; wireless capacity; telecommunication systems; vehicular, adhoc, and sensor network systems; wireless security; mobile applications.
Prerequisites: CSCE 313; junior or senior classification or approval of instructor.

CSCE 465 Computer and Network Security
Credits 3. 3 Lecture Hours.
Fundamental concepts and principles of computer security, operating system and network security, secret key and public key cryptographic algorithms, hash functions, authentication, firewalls and intrusion detection systems, IPSec and VPN, wireless and web security.
Prerequisites: CSCE 313 and CSCE 315; junior or senior classification; or approval of instructor.

CSCE 466/ECEN 469 Advanced Computer Architecture
Credits 3. 3 Lecture Hours.
Advanced computer architectures including memory designs, pipeline techniques, and parallel structures such as vector computers and multiprocessors.
Prerequisite: Grade of C or better in ECEN 350/CSCE 350 or CSCE 350/ECEN 350; junior or senior classification.
Cross Listing: ECEN 469/CSCE 469.

CSCE 470 Information Storage and Retrieval
Credits 3. 3 Lecture Hours.
Representation of, storage of and access to very large multimedia document collections; fundamental data structures and algorithms of current information storage and retrieval systems and relates various techniques to design and evaluation of complete retrieval systems.
Prerequisite: CSCE 315 or approval of instructor.
CSCE 477/CYBR 403 Cybersecurity Risk
Credits 3. 3 Lecture Hours.
Risks in cybersecurity; avoidance, acceptance, mitigation, or transference strategies; developing reliable cybersecurity risk assessments to include analysis, categorization, and evaluation; cybersecurity risk audit frameworks.
Prerequisites: Grade of C or better in CYBR 201/CSE 201 or CSCE 201/CYBR 201; junior or senior classification.
Cross Listing: CYBR 403/CSE 477.

CSCE 481 Seminar
Credit 1. 2 Lab Hours.
Investigation and report by students on topics of current interest in computer science.
Prerequisite: Junior or senior classification.

CSCE 482 Senior Capstone Design
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Project-based course to develop system integration skills for solving real-world problems in computer science; significant team software project that integrates advanced concepts across computer science specializations; projects require design, implementation, documentation and demonstration, as well as design methodology, management process and teamwork.
Prerequisites: Senior classification; CSCE 315, CSCE 411, and two additional CSCE tracked courses.

CSCE 483 Computer Systems Design
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Engineering design; working as a design-team member, conceptual design methodology, design evaluations, total project planning and management techniques, design optimization, systems manufacturing costs considerations; emphasis placed upon students' activities as design professionals.
Prerequisites: CSCE 315, CSCE 462 and ECEN 325; senior classification.

CSCE 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Permits work on special project in computer science. Project must be approved by the department.
Prerequisite: Senior classification; also taught at Galveston campus.

CSCE 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Special topics in computer science that are new or unique that are not covered in existing courses.

CSCE 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in computer science. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

CVEN 207 Introduction to the Civil Engineering Profession
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Introduction to the study and practice of civil engineering; specialized subdisciplines of civil engineering; professionalism and professional registration; engineering ethics; exercises in engineering technical communications.
Prerequisite: Grade of C or better in ENGL 103 or ENGL 104; admitted to major degree sequence in civil engineering.

CVEN 221 Engineering Mechanics: Statics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
General principles of mechanics; concurrent force systems; statics of particles; equivalent force/moment systems; centroids and center of gravity; equilibrium of rigid bodies; trusses, frames, and machines; internal forces in structural members; friction; second moments of areas.
Prerequisites: Grade of C or better in MATH 251 or MATH 253, or concurrent enrollment; grade of C or better in PHYS 206 and ENGR 216/PHYS 216 or PHYS 216 and ENGR 216; admitted to major degree sequence in civil engineering.

CVEN 250 Introduction to Graphics and Visualization Applications in Civil Engineering Design
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Graphical communication in the civil engineering design process; introduction to industry standard software; construction documents and contract drawings in civil engineering applications; data analysis; introduction to project visualization.

CVEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of civil engineering. May be repeated for credit.
Prerequisite: Approval of department head.

CVEN 301/EVEN 301 Environmental Engineering
Credits 3. 3 Lecture Hours.
Water quality; material balances; chemical, physical and biological processes; water quality modeling; water and wastewater treatment; air quality; solid and hazardous waste management.
Prerequisites: Grade of C or better in CHEM 107; Grade of C or better in CVEN 302 and MATH 308, or concurrent enrollment.
Cross Listing: EVEN 301/CVEN 301.

CVEN 302 Computer Applications in Engineering and Construction
Credits 3. 3 Lecture Hours.
Application of computers to solution of civil engineering problems using various numerical methods; structured computer programming; mathematical modeling and error analysis; solution of algebraic and differential equations; numerical differentiation and integration; curve-fitting; root-finding.
Prerequisites: Grade of C or better in ENGR 102 and PHYS 206; grade of C or better in MATH 308 or concurrent enrollment; admitted to major degree sequence in civil engineering.

CVEN 303 Civil Engineering Measurement
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to geodetic positions, datums, map projections; theory of civil engineering measurements and errors applied to horizontal and vertical control, curves, earthwork and mapping using state-of-the-art technology for data capture; processing and presentation of result.
Prerequisite: MATH 151; admitted to major degree sequence in civil engineering.

CVEN 304/EVEN 304 Environmental Engineering Lab
Credit 1. 3 Lab Hours.
Environmental measurements on physical, chemical, biological and biotechnological parameters of water.
Prerequisites: CVEN 301/EVEN 301 or CVEN 301/EVEN 301, or concurrent enrollment; CVEN 311/EVEN 311 or concurrent enrollment; or approval of instructor.
Cross Listing: EVEN 304/CVEN 304.

CVEN - Civil Engineering (CVEN)
CVEN 305 Mechanics of Materials
Credits 3. 3 Lecture Hours.
Applications of conservation principles and stress/deformation relationships for continuous media to structural members; axially loaded members; thin-walled pressure vessels; torsional and flexural members; shear; moment; deflection of members; combined loadings; stability of columns; nonsymmetrical bending, shear center; indeterminate members; elastic foundations.
Prerequisites: Grade of C or better in CVEN 221, MEEN 221 or MEEN 225; also taught at Qatar campus.

CVEN 306 Materials Engineering for Civil Engineers
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Scientific concepts of civil engineering materials; relationship between macroscopic material properties and response and microscopic properties; physical, mechanical, surface, fracture, and rheological properties of civil engineering materials including metals, composites, and polymers.
Prerequisites: Grade of C or better in CHEM 107 and CVEN 221; grade of C or better in PHYS 207, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; grade of C or better in CVEN 305 and MATH 308, or concurrent enrollment.

CVEN 307 Transportation Engineering
Credits 3. 3 Lecture Hours.
Fundamental principles and methods in planning, design, and operation of transportation systems; driver and vehicle performance capabilities; highway geometric and pavement design principles; traffic analysis and transportation planning.
Prerequisite: Grade of C or better in CVEN 302 or concurrent enrollment.

CVEN 311/EVEN 311 Fluid Dynamics
Credits 3. 3 Lecture Hours.
Fluid properties; statics; kinematics; basic conservation principles of continuity, energy and momentum; similitude and hydraulic models; incompressible flow in pipes; fluid dynamic drag.
Prerequisites: Grade of C or better in MATH 251 and CVEN 221; grade of C or better in CVEN 302, or concurrent enrollment; CVEN 311 also taught at Galveston campus.
Cross Listing: EVEN 311/CVEN 311.

CVEN 315 Sensor Technology for the Built Environment
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of sensor technology including laboratory safety, error analysis, statistical analysis, electrical circuits, data acquisition, signal conditioning, signal analysis, strain gages, laser technology, image acquisition and analysis, fiber optic sensors, wireless sensors; its applications in civil engineering; and hands-on demonstrations relevant to the natural and built environment.
Prerequisites: CVEN 302, junior or senior classification, or approval of instructor.

CVEN 322 Civil Engineering Systems
Credits 3. 3 Lecture Hours.
Economic analysis and evaluation of engineering projects; application of systems analysis to civil engineering design; systems synthesis and optimization techniques; assignments apply engineering economics, statistical methods and optimization techniques to civil engineering problems.
Prerequisite: Grade of C or better in STAT 211 or concurrent enrollment; grade of C or better in CVEN 302 or concurrent enrollment; admitted to major degree sequence in civil engineering.

CVEN 336 Fluid Dynamics Laboratory
Credit 1. 2 Lab Hours.
Basic fluid mechanics instrumentation; flow visualization and measurements; experimental verification and reinforcement of the principles and concepts introduced in CVEN 311/EVEN 311 and CVEN 311/CVEN 311.
Prerequisites: Grade of C or better in CVEN 311/EVEN 311 or CVEN 311/CVEN 311, or concurrent enrollment.

CVEN 339/EVEN 339 Water Resources Engineering
Credits 3. 3 Lecture Hours.
Quantitative hydrology, precipitation, hydrograph analysis, reservoir and stream routing; groundwater, Darcy equation, well equation, well design; probability concepts in design; water law; dams; reservoirs; spillways; open channel and pipe network hydraulics; pumps; urban stormwater drainage; flood damage mitigation.
Prerequisite: CVEN 311/EVEN 311.

CVEN 342 Materials of Construction
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Physical and mechanical properties of construction materials; portland cement concrete, bituminous materials, wood, ferrous and non-ferrous metals, glass, plastics and masonry units; proportioning of concrete mixtures including admixtures.
Prerequisites: CVEN 302 or registration therein; CVEN 305 and CVEN 306; ENGL 203, ENGL 210, ENGL 241 or ENGL 301.

CVEN 343 Portland Cement Concrete Materials for Civil Engineers
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Physical and chemical characteristics of Portland cement concrete systems; constituent materials; mixture proportioning; fresh concrete characteristics; hardened concrete properties; durability characteristics; and concrete construction methods.
Prerequisites: CVEN 302 or registration therein; CVEN 305 and CVEN 306; ENGL 203, ENGL 210, ENGL 241 or ENGL 301.

CVEN 345 Theory of Structures
Credits 3. 3 Lecture Hours.
Structural engineering—functions of structure, design loads, reactions and force systems; analysis of statically determinate structures including beams, trusses and arches; energy methods of determining deflections of structures; influence lines and criteria for moving loads; analysis of statically indeterminate structures including continuous beams and frames.
Prerequisites: Grade of C or better in CVEN 302 or concurrent enrollment; grade of C or better in CVEN 305; also taught at Galveston campus.

CVEN 349 Civil Engineering Project Management
Credits 3. 3 Lecture Hours.
Basic elements of management of civil engineering projects; roles of all participants in the process—owners, designers, contractors and suppliers; emphasis on contractual aspect of the process—project estimating, planning and controls.
Prerequisite: CVEN 302 and CVEN 322, or concurrent enrollment.

CVEN 363 Engineering Mechanics: Dynamics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of first principles to model dynamic particles and rigid body systems with ordinary differential equations; solutions to models using analytical and numerical approaches; interpreting solutions/performance measures; linear vibrations; modeling of civil engineering systems and evaluating dynamic response to natural hazards.
Prerequisites: CVEN 302, CVEN 305 and MATH 308.
CVEN 365 Introduction to Geotechnical Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Physical properties of soils; classification systems, soil exploration, permeability, consolidation, compaction, and shear strength; laboratory tests conducted to determine the physical and engineering soil properties needed for application in geotechnical engineering design.
Prerequisites: CVEN 302 or registration therein; CVEN 305, ENGL 203, ENGL 210, ENGL 241 or ENGL 301.

CVEN 399 Mid-Curriculum Professional Development Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
No Credit. Participation in an approved high-impact learning practice; reflection on professional outcomes from civil engineering body of knowledge; documentation of experience appropriate to eventual professional licensure; self-assessment of learning at mid-curriculum point.
Prerequisites: Grade of C or better in CVEN 207, CVEN 250, CVEN 303, CVEN 306, CVEN 311/EVEN 311, CVEN 322, CVEN 345, and CVEN 363.

CVEN 400 Design Problems in Civil Engineering Credits 3. 2 Lecture Hours. 3 Lab Hours.
Applications of civil engineering principles to the design and preparation of the plans and specifications of civil engineering projects.
Prerequisites: CVEN 303, CVEN 322, CVEN 345 and CVEN 399; senior classification; or approval of instructor.

CVEN 402/EVEN 402 Engineered Environmental Systems Credits 3. 3 Lecture Hours.
Unit operations and processes in environmental engineering; physical, chemical and biological treatment of water and wastewater; treatment system analysis and design.
Prerequisite: Grade of C or better in CVEN 301/EVEN 301 or even 301/CVEN 301.
Cross Listing: EVEN 402/CVEN 402.

CVEN 403 Applied Civil Engineering Surveying Credits 2. 6 Lab Hours.
Application of land surveying principles; topographic surveying, boundary surveying, and construction staking through field exercises using state-of-the-art equipment and data capture/analysis techniques; preparation of topographic and boundary maps with related documents; presentation of results.
Prerequisites: CVEN 303; junior or senior classification.

CVEN 405 Construction Management of Field Operations Credits 3. 3 Lecture Hours.
Effects of industrialization on construction methods and resultant construction management problems.
Prerequisite: CVEN 349.

CVEN 406/EVEN 406 Environmental Protection and Public Health Credits 3. 3 Lecture Hours.
Communicable and noncommunicable diseases; environmental risk assessment; environmental assessments; comprehensive environmental planning; small water and wastewater systems; solid waste management; hazardous spills and waste management; vector control; environmental administration.
Prerequisite: Grade of C or better in CVEN 301/EVEN 301 or even 301/CVEN 301; or approval of instructor.
Cross Listing: EVEN 406.

CVEN 413/EVEN 413 Natural Environmental Systems Credits 3. 3 Lecture Hours.
Water quality assessment of natural environmental systems; development and calibration of models to describe fate and transport of contaminants in aquatic systems; application of models to design of water quality control facilities.
Prerequisite: Grade of C or better in EVEN 301/CVEN 301 or CVEN 301/EVEN 301.
Cross Listing: EVEN 413/CVEN 413.

CVEN 417 Bituminous Materials Credits 3. 2 Lecture Hours. 3 Lab Hours.
Origin, production, specifications and tests of bituminous materials and paving mixtures used in construction and maintenance of roads and pavements, pavement surface properties, pavement distress and correction alternatives.
Prerequisites: Senior classification in engineering; CVEN 342 or CVEN 343 or approval of instructor.

CVEN 418 Highway Materials and Pavement Design Credits 3. 3 Lecture Hours.
Theory and practice in pavement design; pavement performance; structural design of pavement layers; types of materials used in pavement layers; characterization of pavement layer materials; introduction to pavement management concepts.
Prerequisites: CVEN 307; CVEN 342 or CVEN 343.

CVEN 423 Geomatics for Civil Engineering Credits 3. 2 Lecture Hours. 3 Lab Hours.
Use of GIS, GPS, Survey and Remotely-sensed data integrated with predictive models for infrastructure management systems.
Prerequisite: CVEN 303 or approval of instructor.

CVEN 424 Civil Engineering Professional Practice Credits 2. 1 Lecture Hour. 2 Lab Hours.
Professional practice issues; current civil engineering issues that impact design, construction, and operation of the civil engineer facilities; developing engineering solutions that better serve society; business and public policy concerns; life-long learning; problem solving; professional licensure.
Prerequisites: CVEN 322 and CVEN 399; senior classification in civil engineering.

CVEN 435 Geotechnical Engineering Design Credits 3. 2 Lecture Hours. 3 Lab Hours.
A design course covering prediction of settlement, analysis of the stability of slopes, prediction of bearing capacity of shallow and deep foundations and determination of earth pressures acting on retaining structures; a general course in geotechnical engineering design for undergraduates and for graduate students not primarily interested in the geotechnical field, but desiring additional study beyond the introductory undergraduate level.
Prerequisite: CVEN 365.

CVEN 436 Case Histories in Geotechnical Engineering Credits 3. 2 Lecture Hours. 2 Lab Hours.
Examination of geotechnical problems through the use of case studies associated with foundations, waste disposal, slope stability retaining structures, soil improvement and other civil engineering works.
Prerequisite: CVEN 365.
CVEN 444 Structural Concrete Design
Credits 3. 3 Lecture Hours.
Behavior, design, and detailing of reinforced concrete structural members according to the ACI Building Code Requirements; design for ultimate limit states (flexible, shear, and axial loads) and serviceability requirements (cracking and deflection); applications include continuous beams and moment frames.
Prerequisites: Grade of C or better in CVEN 345; grade of C or better in CVEN 342 or CVEN 343, or concurrent enrollment.

CVEN 445 Matrix Methods of Structural Analysis
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Analysis of framed structures using linear algebra concepts; matrix algebra and solution of linear algebraic equations; energy principles and virtual work; stiffness; coordinate transformations; use of commercial software for structural analysis.
Prerequisites: Grade of C or better in CVEN 345 and CVEN 363.

CVEN 446 Structural Steel Design
Credits 3. 3 Lecture Hours.
Design of structural steel elements found in building structures, including tension members, compression members, beams, beam-columns and base plates; design of bolted and welded simple connections; design of bolted eccentric connections; design of bolted and welded partially and fully restrained connections.
Prerequisite: CVEN 345; also taught at Galveston campus.

CVEN 449 Visualization and Building Information Modeling in Structural Engineering Design
Credit 1. 1 Lecture Hour.
Graphical communication in the structural engineering design process; introduction to Building Information Modeling (BIM); construction documents and contract drawings in structural engineering applications, data analysis and project visualization.
Prerequisites: Grade of C or better in CVEN 250 and CVEN 345.

CVEN 450 AutoCAD in Civil Engineering
Credit 1. 3 Lab Hours.
Review and application of basic commands and operations in AutoCAD; overview of civil engineering design projects and land surveying; use of AutoCAD Civil 3D or proprietary packages for reduction of land surveying data.
Prerequisites: Grade of C or better in CVEN 250 or ENDG 105; junior or senior classification.

CVEN 451 Public Works Engineering
Credits 3. 3 Lecture Hours.
Public works engineering; service demand estimates; water, wastewater and solid waste collection systems; urban drainage; code enforcement and public decision making.
Prerequisites: CVEN 301/EVEN 301 and CVEN 339/EVEN 339.

CVEN 454 Urban Planning for Engineers
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Urban planning from an engineering point of view; determinants of land use patterns, planning data collection and analysis; location and design requirements for various land uses; interrelationship of transportation and land use; and methods of plan development.
Prerequisite: CVEN 307.

CVEN 455 Urban Stormwater Management
Credits 3. 3 Lecture Hours.
Hydrologic, hydraulic, and general civil engineering design and implementation of stormwater systems including drainage and detention storage facilities, floodplain regulation measures, and flood control structures; stormwater aspects of land development and public works engineering; flood hydrology and hydraulics; institutional aspects of urban stormwater management.
Prerequisite: CVEN 339/EVEN 339 or approval of instructor.

CVEN 456 Highway Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Theory and practice in highway design; highway classification and design criteria, location studies, design of vertical and horizontal alignment, cross section, pavement, intersections and highway drainage elements.
Prerequisites: CVEN 307 and CVEN 399; senior classification; or approval of instructor.

CVEN 457 Urban Traffic Facilities
Credits 3. 3 Lecture Hours.
Driver, vehicle and roadway characteristics related to design and operation of traffic facilities; selection and design of traffic control devices and information systems for streets and highways; accident analysis and tort liability related to traffic engineering.
Prerequisite: CVEN 307.

CVEN 458/EVEN 458 Hydraulic Engineering of Water Distribution Systems
Credits 3. 3 Lecture Hours.
Pressure conduit hydraulics; design, modeling, and analysis of water conveyance and distribution systems including pipelines, pipe networks, and pumps.
Prerequisite: Grade of C or better in CVEN 339/EVEN 339 or EVEN 339/CVEN 339 or approval of instructor.
Cross Listing: EVEN 458/CVEN 458.

CVEN 462/EVEN 462 Engineering Hydrogeology
Credits 3. 3 Lecture Hours.
Groundwater in the hydrologic cycle; aquifer properties; well hydraulics, testing, and design; groundwater quality; and groundwater management and sustainability.
Prerequisites: Grade of C or better in CVEN 311/EVEN 311 or EVEN 311/CVEN 311; Grade of C or better in CVEN 301/EVEN 301, EVEN 301/CVEN 301, CVEN 339/EVEN 339, or EVEN 339/CVEN 339; junior or senior classification; or approval of instructor.
Cross Listing: EVEN 462/CVEN 462.

CVEN 463/EVEN 463 Engineering Hydrology
Credits 3. 3 Lecture Hours.
Occurrence, distribution and properties of natural waters of the earth; measurement and engineering analysis of hydrologic phenomena including precipitation, streamflow and groundwater, hydrologic design of water resources development and management projects.
Prerequisite: Grade of C or better in CVEN 339/EVEN 339 or EVEN 339/CVEN 339.
Cross Listing: EVEN 463/CVEN 463.
CVEN 464 Environmental Fluid Mechanics
Credits 3. 3 Lecture Hours.
Examination of fluid and mass transport in naturally occurring flows; includes Navier-Stokes equations; molecular and turbulent diffusion; advective, reacting transport equation; dispersion; river, lake, estuary and atmospheric mixing; dissolution boundary layers; wastewater outfalls; introduction to environmental quality numerical modeling.
Prerequisites: Grade of C or better in CVEN 311/EVEN 311, or approval of instructor.

CVEN 465 Coastal Resilience
Credits 3. 3 Lecture Hours.
Mechanics of wave motion, coastal water level fluctuations, wave transformation, coastal processes, wave forecasting, coastal structures, and coastal development and management; planning and design of coastal engineering projects.
Prerequisites: Grade of C or better in CVEN 311/EVEN 311, or approval of instructor.

CVEN 473 Engineering Project Estimating and Planning
Credits 3. 3 Lecture Hours. 3 Lab Hours.
Application of cost estimating and planning techniques for civil engineering projects; introduction to labor, materials and equipment costing; productivity analysis; indirect and general overhead costs; preparation of approximate and definitive estimates; and integration of time/cost relationships through critical path method and resource leveling.
Prerequisites: CVEN 349; senior classification.

CVEN 483 Analysis and Design of Structures
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Overall procedure of analysis and design including functions, loads, layouts of force systems; analysis, specifications, cost comparisons, and maintenance as applied to typical building structures.
Prerequisites: CVEN 365 or concurrent enrollment; CVEN 399, CVEN 444 and CVEN 446; senior classification; or approval of instructor.

CVEN 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Research and design problems of limited scope approved on an individual basis intended to promote independent study; results of study presented in writing.
Prerequisite: Approval of department head.

CVEN 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of civil engineering. May be repeated for credit.
Prerequisite: Approval of department head.

CVEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty members in civil engineering. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

CYBR - Cybersecurity (CYBR)

CYBR 201/CSCE 201 Fundamentals of Cybersecurity
Credits 3. 3 Lecture Hours.
Basic terminology, concepts, technology, and trends of cybersecurity; foundations of cybersecurity to include cryptography, public key infrastructure, standards and protocols, physical security, network fundamentals; workings of systems, networks, infrastructure; legal and ethical issues in cybersecurity.
Cross Listing: CSCE 201/CYBR 201.

CYBR 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study in cybersecurity. May be repeated for credit.

CYBR 289 Special Topics in...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of cybersecurity. May be repeated for credit.

CYBR 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in cybersecurity topics. May be repeated for credit.

CYBR 403/CSCE 477 Cybersecurity Risk
Credits 3. 3 Lecture Hours.
Risks in cybersecurity; avoidance, acceptance, mitigation, or transference strategies; developing reliable cybersecurity risk assessments to include analysis, categorization, and evaluation; cybersecurity risk audit frameworks.
Prerequisites: Grade of C or better in CYBR 201/CSCE 201 or CSCE 201/CYBR 201; junior or senior classification.
Cross Listing: CSCE 477/CYBR 403.

CYBR 466/ECEN 466 Unconditionally Secure Electronics
Credits 3. 3 Lecture Hours.
Data security; cryptography; key exchange; conditional security; unconditional (information-theoretic) security; quantum key distribution; the Kirchhoff-law-Johnson-noise (KLJN) key exchange, electronic noise; advanced issues of KLJN; schemes, protocols, attacks, defense, privacy amplification, credit cards, PUF, autonomous vehicles and smart grids.
Prerequisites: Grade of C or better in ECEN 214; grade of C or better in ECEN 303 or STAT 211; junior or senior classification.
Cross Listing: ECEN 466/CYBR 466.

CYBR 484 Professional Internship
Credits 0 to 6. 0 to 6 Other Hours.
Directed internship in an organization to provide students with a learning experience supervised by professionals in organizational settings appropriate to the student's professional objectives.

CYBR 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study in cybersecurity. May be repeated for credit.

CYBR 489 Special Topics in...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of cybersecurity. May be repeated for credit.

CYBR 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in cybersecurity topics. May be repeated for credit.
DASC - Dairy Science (DASC)

DASC 418 Dairy Science Consortium
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Advanced topics including concepts of herd dynamic modeling, advanced dairy nutrition and forage production, human resource development, OSHA safety concepts and training for dairy, advanced reproductive programs, young-stock and heifer management, precision management, facilities and heat stress reduction programs.
Prerequisites: Grade of C or better in ANSC 305, ANSC 307/NFSC 307, ANSC 318, and ANSC 333; junior or senior classification or approval of instructor.

DASC 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems in dairy production or dairy manufacturing.
Prerequisites: Junior or senior classification; written approval of professor supervising the activity; 2.0 GPR in major and overall.

DCED - Dance Education (DCED)

DCED 168 Visual and Performing Arts--Jazz Dance III
Credits 2. 4 Lab Hours.
Advanced study of jazz dance; reviews historical background and cultural heritage including significant jazz artists and their influence on jazz dance and society; increased development of coordination, endurance and flexibility necessary to performing extensive jazz combinations; placement exam required on the second day of class.
Prerequisite: KINE 167 or approval of instructor.

DCED 202 Dance Appreciation
Credits 3. 3 Lecture Hours.
(DANC 2303) Dance Appreciation. Survey of dance as a cultural and artistic form in numerous countries; exploration of the development and influence of dance in various cultures; analysis of various genres of artistic dance and their development; discussion of aesthetic principles of dance as an art form and how choreographers are influenced by society to create work.

DCED 203 Dance Production
Credits 3. 3 Lecture Hours.
Overview of philosophy, major aspects and common elements in producing dance concerts; lighting, sound, stage design, terminology, costuming, management, production designs, practical experience with on-stage performances.
Prerequisites: Dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 222 Introduction to Dance Science
Credits 2. 2 Lecture Hours.
Introduction to the field of dance science including history, related professions and organizations, post graduate work and current research in the field; exploring basic anatomy and kinesiology concepts relevant to dance; injury prevention, common injuries in dance and return to dance procedures; wellness concepts directly related to dance nutrition, physiological and psychological issues for dancers.
Prerequisites: Dance science majors or approval of instructor.

DCED 260 Ballet I
Credits 2. 5 Lab Hours.
(DANC 1241) Ballet I. Introduction to ballet technique for dancers; series of barre exercises progressing to center work, explanation of positions of the body and port de bras; understand proper body alignment as it relates to ballet technique; appreciation of ballet as an instrument of expression. May be taken 3 times for credit.
Prerequisites: Dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 271 Modern Dance I
Credits 2. 5 Lab Hours.
Study and understanding of modern dance concepts; lateral curve, contraction, spiral, high curve, high release, rotation versus parallel, body alignment, moving in and out of the floor, fluidity of phrase work, musicality and kinesthetic awareness. May be taken 3 times for credit.
Prerequisites: Dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 301 Dance History
Credits 3. 3 Lecture Hours.
Overview of current dance scene, career fields, education; development of theatrical, social, educational dance from lineage based to contemporary cultures; emphasis on dance in America, genres, roots, heritage, pioneers, crusading artists; impacts, influences, growth, development, trends and continual metamorphosis in the art world.

DCED 303 Health Practices for Dancers
Credits 2. 2 Lecture Hours.
Focuses on health issues common to the dancer such as overtraining, drug use and performance anxiety, anatomy in relation to proper dance technique, misalignments, imbalances and injuries common to the dancer.
Prerequisites: Dance science majors only or approval of instructor; junior or senior classification.

DCED 304 Creative Dance for Children
Credits 3. 3 Lecture Hours.
Theory and practice of creative movement classes for children; the development stages and learning outcomes of creative movement; incorporation of creative movement into children's classes; dance elements and benefits of creative movement; lesson plans and student assessment.
Prerequisite: Junior or senior classification or approval of instructor.

DCED 306 Dance Composition I
Credits 2. 2 Lecture Hours.
Introduces choreographic devices in solo and duet movement studies; exploration of design principles; creating multiple movement studies using various elements of choreography.
Prerequisites: Dance science majors, dance concentration majors and dance minors; or approval of instructor; junior or senior classification.

DCED 308 Safe Practices in Teaching Dance
Credits 3. 3 Lecture Hours.
Effectively teach a dance technique class safely; explore scientific research and evidence through three areas including environmental, physical and psychological components of a dance class for a multitude of genres and ages; create a safe supportive dance environment; application of relevant anatomical principles; develop a safe dance class.
DCED 361 Ballet II
Credits 2. 5 Lab Hours.
Intermediate study of ballet; historical background and the knowledge and understanding of its cultural heritage; increased level of difficulty in barre, center and across the floor; concentration and continual refinement of body/spatial awareness, musicality, alignment and execution of correct classical technique. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 260; dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 372 Modern Dance II
Credits 2. 5 Lab Hours.
Intermediate study of modern dance; reviews, historical background and its development within society; continual study and understanding of modern dance concepts; fall/recovery, contract/release, use of breath and weight, spine work, inversion and spatial awareness. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 271; dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 400 Dance Composition II
Credits 2. 2 Lecture Hours.
Introduces choreographic devices related to group movement studies; explore and create movement studies as a means of first and second function art, use choreographic tools in the dance making process as it relates to group work.
Prerequisites: DCED 306 or approval of instructor.

DCED 401 Dance Pedagogy
Credits 3. 3 Lecture Hours.
Study of dance pedagogy; major aspects of a dance teacher including knowledge of injury prevention, correct technique, preparation, presentation, evaluation of dance materials, levels and technique class; focus on various teaching methods, tools, planning, communication/ instructional skills and learning experiences/styles.
Prerequisites: DCED 301 and DCED 400 or approval of instructor.

DCED 402 Dance Composition III
Credits 2. 2 Lecture Hours.
Choreograph, design and produce a senior concert; accumulation of previous course work in composition should be used to bring the elements of the choreographic process to a final product.
Prerequisites: DCED 400; dance science track majors only; admittance into the professional phase or approval of instructor; junior or senior classification.

DCED 405 Career Preparation in Dance
Credit 1. 1 Lecture Hour.
Preparation for entering desired career field within dance after graduation, including areas of dance performance, dance science, and dance pedagogy; development of materials for self-promotion for jobs or graduate school; develop original portfolio of work.
Prerequisites: Grade of C or better in DCED 303 and DCED 308; approval of instructor.

DCED 462 Ballet III
Credits 2. 5 Lab Hours.
Technical study of classical and contemporary ballet; elevated barre work, traditional components including turns, footwork, adagios, advanced center and floor phrases; study of Cecchetti, Vaganova and collaborative methods; focus on strength, concentration and correct technique on performance combinations. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 361; dance science majors, dance concentration majors and dance minors; or approval of instructor.

DCED 473 Modern Dance III
Credits 2. 5 Lab Hours.
Physical and artistic exploration of both traditional and contemporary training methods; three dimensional spine work, inversion, floor work and dynamics. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 372; dance science majors, dance concentration majors and dance minors; or approval of instructor.

DDHS - Dental Hygiene (DDHS)

DDHS 3020 Theory of Dental Hygiene Practice I
Credits 2. 2 Lecture Hours.
Emphasis on advanced dental hygiene skills and services; provision of services to medically compromised patients.

DDHS 3110 Introduction To Dentistry
Credit 1. 1 Lecture Hour.
Introduction to dental hygiene as it relates to the dental specialties. Guest lecturers will describe what their specialty encompasses and the dental hygienist’s role in that field of dentistry.

DDHS 3120 Dental Anatomy
Credits 2. 2 Lecture Hours.
Form and function of the primary and permanent human dentition; laboratory and seminar emphasis on morphology and comparisons of teeth.

DDHS 3160 Preclinical Dental Hygiene
Credits 6. 4 Lecture Hours. 0.5 Lab Hours. 8 Other Hours.
This course introduces the student to the foundational knowledge and skills needed to provide basic dental hygiene services. With faculty guidance, the student learns how to assess a patient's oral health needs, plan dental hygiene services to meet those needs, and implement and evaluate newly learned preventive and therapeutic procedures.

DDHS 3220 Oral Radiology
Credits 0 to 2. 2 Lecture Hours. 1 Lab Hour. 1 Other Hour.
This course is intended to provide the student with an understanding of the generation, properties, and techniques for use of X-rays in dentistry. The principles of radiation safety and health physics, interpretative recognition techniques and clinical patient management.

DDHS 3250 Biomedical Sciences I
Credits 5. 5 Lecture Hours. 0 Lab Hours.
Structure of the human body, including its anatomy, biochemistry, histology and physiology. Emphasis is placed on the structures of the head and neck region that surrounds the oral cavity.

DDHS 3310 Health Education and Behavioral Science
Credit 1. 1 Lecture Hour.
This course is designed to introduce the student to health education and behavioral science as it relates to educating patients and changing behaviors. Students will gain knowledge in evaluating and delivering educational services to culturally diverse populations.

DDHS 3325 Microbiology
Credits 2.5. 2.5 Lecture Hours. 0 Lab Hours.
A lecture course designed to teach the basic principles of medical microbiology, immunology and the infectious disease process.

DDHS 3340 Biomedical Sciences II
Credits 4. 4 Lecture Hours. 0 Lab Hours.
Structure of the human body, including its anatomy, bio-chemistry, histology and physiology. Emphasis is placed on the structures of the head and neck region that surrounds the oral cavity.
DDHS 3410 Introduction to Pathology
Credit 1. 1 Lecture Hour.
Introduction to Pathology is primarily a didactic lecture oriented course. Although clinically oriented, it is designed to provide a base of knowledge about pathologic processes and specific disease entities. Emphasis is on concepts and vocabulary essential to understanding basic pathologic process; systemic pathology of organ systems and tissues; clinical manifestations that result from biological cellular alterations.

DDHS 3425 Health Promotion and Disease Prevention
Credits 2.5. 2.5 Lecture Hours.
This course introduces the student to the etiology and prevalence of oral diseases and oral problems. The emphasis of the course is on the role of the dental hygienist in the promotion of optimal oral health, the prevention of oral diseases, and the importance of achieving and maintaining excellent personal oral health habits. The importance of and the techniques for educating the patient in self-care skills will also be examined.

DDHS 3530 Applied Dental Materials
Credits 3. 2 Lecture Hours. 2.5 Lab Hours.
Didactic, laboratory and clinical instruction in the principles of the science of dental materials and in procedures within the scope of dental hygiene practice.

DDHS 3830 Clinical Dental Hygiene I
Credits 3. 9 Other Hours.
Comprehensive dental hygiene care through clinical application of procedures. Includes intramural dental hygiene and dental school rotations.

DDHS 4010 National Board Review
Credit 1. 1 Lecture Hour.
Reviews applications of previous course content using a seminar format in preparation for the National Board Dental Hygiene Exam.

DDHS 4015 Pharmacology
Credit 1.5. 1.5 Lecture Hour.
Actions, indications and contraindications of drugs; emphasis on drugs frequently encountered in dentistry.

DDHS 4025 Oral Pathology
Credits 2.5. 2.5 Lecture Hours.
A didactic lecture oriented course. The lecture portion of the course, although, clinically oriented is designed to provide a base of knowledge about pathologic processes and specific disease entities. Diseases unique to the oral regions as well as oral manifestations of systemic disease will be covered. The Clinical Pathologic Conference (CPC) attempts to assimilate that information and apply it to relevant clinical situations in a case-based PDL format. Cases which illustrate a variety of clinical signs and symptoms will be presented with clinical histories. Students will be given the opportunity to develop a differential diagnosis and discuss the implications of this relevant to the patient’s treatment.

DDHS 4020 Periodontics
Credits 0-1. 0-1 Lecture Hours.
Characteristics, etiology and treatment of inflammatory diseases of the supporting tissues of the teeth and their substitutes. Emphasis is placed on the relationship of periodontics to the practice of dental hygiene.

DDHS 4100 Medical Emergencies
Credits 0-1. 0-1 Lecture Hours.
Discussions on the preparations for handling emergencies; prevention, recognition and management of various emergencies. The course includes case scenario presentations and mock hands-on drills.

DDHS 4110 Medical Emergencies
Credits 0. 1 Lecture Hour.
Discussions on the preparations for handling emergencies; prevention, recognition and management of various emergencies. The course includes case scenario presentations and mock hands-on drills.

DDHS 4140 Clinical Dental Hygiene III
Credits 4. 12 Other Hours.
Comprehensive dental hygiene care through clinical application of procedures. Includes intramural dental hygiene and dental school rotations and extramural site rotations.

DDHS 4170 Gerontology
Credit 1. 1 Lecture Hour.
This course will examine the unique considerations a dental professional will encounter when providing care to a geriatric patient. Social, psychological and biological aspects of aging will be discussed. Strategies for patient care will be outlined and discussed. Appropriate community referral agencies will be explored to aid the hygienist in providing assistance to the elderly patient.

DDHS 4210 Professional Ethics
Credit 1. 1 Lecture Hour.
The didactic lecture course and case-based small group decision making exercises draw from general ethics, bioethics, dental-specific ethics and obligations of health-care professionals.

DDHS 4220 Comprehensive Care Seminar
Credits 0 to 2. 0 to 2 Lecture Hours.
Topics and activities designed to integrate dental hygiene care with total patient care; includes a case presentation.

DDHS 4240 Clinical Dental Hygiene IV
Credits 4. 12 Other Hours.
Comprehensive dental hygiene care through clinical application of procedures. Includes intramural dental hygiene and dental school rotations and extramural site rotations.

DDHS 4270 Periodontics
Credit 1. 1 Lecture Hour.
Characteristics, etiology and treatment of inflammatory diseases of the supporting tissues of the teeth and their substitutes. Emphasis is placed on the relationship of periodontics to the practice of dental hygiene.

DDHS 4310 Oral Radiography
Credits 0-1. 0-1 Other Hours.
Provides the student with clinical experience in the application of the principles, procedures and techniques of oral radiography.

DDHS 4320 Perspectives in Dental Hygiene
Credits 2. 2 Lecture Hours.
In addition to preparing the student for private practice dental hygiene positions, this course introduces other potential career options including hospital/clinic administration, sales, consulting, public health, insurance and education. The importance of the dental team concept, résumé writing and interviewing skills will be discussed. Legal, ethical and professional issues involving record keeping, licensing, informed consent, sexual harassment and the standard of care will be explored. The business aspects of dental hygiene, personal financial planning, and insurance options will also be addressed. In addition, this course will prepare students for the Texas Jurisprudence Exam required for state licensure.

DDHS 4310 Oral Radiography
Credits 0-1. 0-1 Other Hours.
Provides the student with clinical experience in the application of the principles, procedures and techniques of oral radiography.

DDHS 4320 Perspectives in Dental Hygiene
Credits 2. 2 Lecture Hours.
In addition to preparing the student for private practice dental hygiene positions, this course introduces other potential career options including hospital/clinic administration, sales, consulting, public health, insurance and education. The importance of the dental team concept, résumé writing and interviewing skills will be discussed. Legal, ethical and professional issues involving record keeping, licensing, informed consent, sexual harassment and the standard of care will be explored. The business aspects of dental hygiene, personal financial planning, and insurance options will also be addressed. In addition, this course will prepare students for the Texas Jurisprudence Exam required for state licensure.

DDHS 4350 Public and Community Health
Credits 0 to 3. 0 to 3 Other Hours.
This course examines dental public health and promotes a greater understanding of the important role of the dental hygienist within the community. The student is exposed to opportunities to promote oral health and prevent dental diseases in the community through organized community-based programs versus the traditional clinical approach.

DDHS 4410 Gerontology
Credit 1. 1 Lecture Hour.
Child development as the basis for management of behavior in the dental environment.

DDHS 4450 Gerontology
Credit 1. 1 Lecture Hour.
Child development as the basis for management of behavior in the dental environment.

DDHS 4530 Public and Community Health
Credits 0 to 3. 0 to 3 Other Hours.
This course examines dental public health and promotes a greater understanding of the important role of the dental hygienist within the community. The student is exposed to opportunities to promote oral health and prevent dental diseases in the community through organized community-based programs versus the traditional clinical approach.
DDHS 4620 Theory of Dental Hygiene Practice II
Credits 2. 2 Lecture Hours.
Fundamental knowledge and techniques in managing patients with special needs.

DDHS 4710 Applied Research Methods
Credit 1. 1 Lecture Hour.
Practical experience in applying principles of research methodology; includes preparation of a formal proposal and table clinic under mentorship of individual faculty.

DDHS 4715 Research Methods
Credit 1.5. 1.5 Lecture Hour.
Identification of research problems and variables; sampling; research design; statistical testing of data; critical review of dental literature; table clinic development for presentation to the public and professional groups.

DDHS 4810 Local Anesthesia and Nitrous Oxide/Oxygen Sedation
Credit 1. 1 Lecture Hour.
The primary method of presentation is lecture, a detailed outline is provided to each student to facilitate the lecture or textbook notes to supplement the outline. Students are given outside assignments to practice dose calculations for each local anesthetic and for a variety of patients. The lecture material is supplemental with videotapes designed to show the correct administration techniques, the neural innervations of each area of the oral cavity and the area anesthetized.

DDHS 4820 Clinical Dental Hygiene II
Credits 2. 6 Other Hours.
Comprehensive dental hygiene care through clinical application of procedures. Includes intramural dental hygiene and dental school rotations and extramural site rotations.

DIVE - Diving Tech and Methods (DIVE)

DIVE 250 SCUBA Diving I
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamental academic knowledge and practical application of SCUBA diving practices and theory; introduction to diving tables and diving physiology.
Prerequisite: Must complete a medical statement showing no contraindications to diving, or have a recreational SCUBA diver’s physical examination.

DIVE 251 SCUBA Diving II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Methods to promote safe, self-reliant diving and improve the diver’s comfort, coordination and strength in the water; to build competency in dive planning and organization.
Prerequisite: Must complete a medical statement showing no contraindications to diving, or have a recreational SCUBA diver’s physical examination; open water certification from a nationally recognized agency; Divers Alert Network (DAN) insurance or equivalent.

DIVE 257 SCUBA Diving III
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Methods to promote safe, self-reliant diving and improve the diver's comfort, coordination and strength in the water; build competency in dive planning and organization; practice accident prevention and effective accident management.
Prerequisites: Must complete a medical statement showing no contraindication to diving or have a recreational scuba diver's physical examination; open water certification from a nationally recognized training agency; Diver's Alert Network (DAN) diving accident insurance or equivalent.

DIVE 330 Rescue Diving
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Relates skills necessary to perform basic life support, administer dive first aid, evacuate victim, assist and rescue other divers in water; illustrate proper dive planning; practice accident prevention and effective accident management.
Prerequisites: Must complete a medical statement showing no contraindications to diving, or have a recreational SCUBA diver’s physical examination; certification as a SDI SCUBA diver or equivalent; Divers Alert Network (DAN) diving accident insurance or equivalent.

DIVE 331 Alternative Diving Technology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Illustrates the realities of operating in the scientific, public safety and military diving disciplines; practice real world training scenarios involving multiple aspects of each of the three fields.
Prerequisites: Must complete a medical statement showing no contraindications to diving, or have a recreational SCUBA diver’s physical examination (or AAUS physical if rating with AAUS); certification as an Advanced and Rescue Diver or equivalent; Divers Alert Network (DAN) diving accident insurance or equivalent; junior or senior classification or approval of instructor.

DIVE 357 Dive Leadership – Divemaster
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Examines divemaster level dive knowledge, dive leadership theory and application, presentation and instructional skills, physical diving skills, logistics and planning, risk management and emergency response, and operational execution; develops a multi-environment capable diving leader.
Prerequisites: Minimum of 18 years of age; current certification in NAUI First Aid for Dive Professionals or Equivalent; current certification in NAUI Oxygen Provider or equivalent; a minimum of verifiable 60 logged open water scuba dives with a minimum of 30 hours bottom time, dives shall be varied in environment, depth, and activities; verification of good physical condition as documented by a medical examination and unconditional approval in the last 12 months; water skills and ability equivalent to that of a NAUI Assistant Instructor; must be certified as a NAUI Master Scuba Diver, NAUI Scuba Rescue Diver, NAUI Advanced Open Water Diver and NAUI Nitrox diver, or their equivalent; divers with evidence of equivalent training experience must pass the NAUI Master Scuba Dive exam prior to beginning of the course; junior or senior classification or approval of instructor.
DIVE 410 AAUS Scientific Diving
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Information and training necessary to qualify as Scientific Divers under the auspices of American Academy of Underwater Sciences and the Scientific Diving Program; implementation of project design, advanced study of diving physics and physiology, diving risk management and risk mitigation.
Prerequisites: Must have a current Science Diving physical examination; Master Level Diver’s Alert Network (DAN) diving accident insurance or equivalent; open water, advanced open water certifications and Nitrox, or approval of instructor; current certification in First Aid, AED, CPR and Emergency Oxygen Administration; Scientific Diving Swim Test.

DIVE 489 Special Topics In...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of diving technology and methods.
Prerequisite: Junior or senior classification or approval of instructor.

ECEN - Electrical & Comp Engr (ECEN)

ECEN 210 Computer Programming and Algorithms
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to C language and common algorithms; computer systems; simple C programs; basic language constructs; file I/O; modular programming and functions; arrays and matrices; pointers and strings; simple data structures; searching, sorting, and numerical algorithms; algorithmic complexity.
Prerequisite: Sophomore classification in an engineering major; Qatar campus.

ECEN 214 Electrical Circuit Theory
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Resistive circuits including circuit laws, network reduction, nodal analysis, mesh analysis; energy storage elements; sinusoidal steady state; AC energy systems; magnetically coupled circuits; the ideal transformer; resonance; introduction to computer applications in circuit analysis.
Prerequisites: Grade of C or better in PHYS 207 or PHYS 208; grade of C or better in CHEM 107, CHEM 102, or CHEM 120; grade of C or better in MATH 308, or concurrent enrollment.

ECEN 215 Principles of Electrical Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamentals of electric circuit analysis and introduction to electronics for engineering majors other than electrical and computer engineering.
Prerequisites: Grade of C or better in MATH 251 or MATH 253; Grade of C or better in PHYS 207 or PHYS 208.

ECEN 222/CSCE 222 Discrete Structures for Computing
Credits 3. 3 Lecture Hours.
Provide mathematical foundations from discrete mathematics for analyzing computer algorithms, for both correctness and performance; introduction to models of computation, including finite state machines and Turing machines.
Prerequisite: MATH 151.
Cross Listing: CSCE 222/ECEN 222.

ECEN 248 Introduction to Digital Systems Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Combinational and sequential digital system design techniques; design of practical digital systems.
Prerequisite: Grade of C or better in MATH 152; grade of C or better in PHYS 207 or PHYS 208, or concurrent enrollment.

ECEN 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Problems of limited scope approved on an individual basis intended to promote independent study.
Prerequisite: Approval of department head.

ECEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of electrical engineering. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ECEN 303 Random Signals and Systems
Credits 3. 3 Lecture Hours.
Concepts of probability and random variables necessary for study of signals and systems involving uncertainty; applications to elementary problems in detection, signal processing and communication.
Prerequisites: Grade of C or better in MATH 251 or MATH 253; Grade of C or better in ECEN 248.

ECEN 314 Signals and Systems
Credits 3. 3 Lecture Hours.
Introduction to the continuous-time and discrete-time signals and systems; time domain characterization of linear time-invariant systems; Fourier analysis; filtering; sampling; modulation techniques for communication systems.
Prerequisites: Grade of C or better in ECEN 214 and MATH 308; junior or senior classification.

ECEN 322 Electric and Magnetic Fields
Credits 3. 3 Lecture Hours.
Vector analysis, Maxwell’s equations, wave propagation in unbounded regions, reflection and refraction of waves, transmission line theory; introduction to waveguides and antennas.
Prerequisites: Grade of C or better in ECEN 214, PHYS 207 or PHYS 208, and MATH 311; junior or senior classification.

ECEN 325 Electronics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to electronic systems; linear circuits; operational amplifiers and applications; diodes, field effect transistors, bipolar transistors; amplifiers and nonlinear circuits.
Prerequisite: Grade of C or better in MATH 311; grade of C or better in ECEN 314, or concurrent enrollment.

ECEN 326 Electronic Circuits
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Basic circuits used in electronic systems; differential and multistage amplifiers; output stages and power amplifiers; frequency response, feedback circuits, stability and oscillators, analog integrated circuits, active filters.
Prerequisites: Grade of C or better in ECEN 314 and ECEN 325; junior or senior classification.
ECEN 333 At the Interface of Engineering and Life Sciences
Credits 3. 3 Lecture Hours.
Broad overview of electrical and computer engineering principles applied to various areas of life sciences; medical imaging and biomedical signal processing; micro/nano devices and systems; computational biology and genomic signal processing; recent trends in interfacing engineering and life science that address emerging grand challenge problems in health, bio-energy and bio-security; taught in a team approach.
Prerequisites: Grade of C or better in ECEN 248; junior or senior classification.

ECEN 338 Electromechanical Energy Conversion
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to magnetic circuits, transformers, electromechanical energy conversion devices such as dc, induction and synchronous motors; equivalent circuits, performance characteristics and power electronic control.
Prerequisite: ECEN 214.

ECEN 340 Electric Energy Conversion
Credits 3. 3 Lecture Hours.
Fundamental topics in power and energy systems; phasors; three-phase circuits; self and mutual inductance; transformers; electromechanical systems; synchronous and induction machines; advanced concepts in electric energy conversion; DC-DC converters; inverters and rectifiers; solar and wind energy systems; DC and single-phase machines.
Prerequisites: Grade of C or better in ECEN 214.

ECEN 350/CSCE 350 Computer Architecture and Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Computer architecture and design; use of register transfer languages and simulation tools to describe and simulate computer operation; central processing unit organization, microprogramming, input/output and memory system architectures.
Prerequisites: Grade of C or better in ECEN 248; junior or senior classification.
Cross Listing: CSCE 350/ECEN 350.

ECEN 370 Electronic Properties of Materials
Credits 3. 3 Lecture Hours.
Introduction to basic physical properties of solid materials; some solid state physics employed, but major emphasis is on engineering applications based on semiconducting, magnetic, dielectric and superconducting phenomena.
Prerequisite: Grade of C or better in PHYS 222; junior or senior classification.

ECEN 399 High Impact Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: Grade of C or better in ECEN 484, ECEN 491, ENGR 484, ENGR 491, or ENGR 385; grade of C or better in ECEN 403, or concurrent enrollment; junior or senior classification.

ECEN 403 Electrical Design Laboratory I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application of design process and project engineering as practiced in industry; team approach to the design process; development of a project proposal; documentation of the proposal, implementation and project; development of execution and validation plan; project execution will begin in ECEN 403 and continue through to ECEN 404.
Prerequisites: COMM 205 or COMM 243 or ENGL 210; grade of C or better in ECEN 314, ECEN 325, ECEN 350/CSCE 350; grade of C or better in ECEN 303, ECEN 322, ECEN 370 or grade C or better in CSCE 315, ECEN 449, STAT 211 or ECEN 303; senior classification.

ECEN 404 Electrical Design Laboratory II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Continuation of ECEN 403; application of the design process and project engineering as practiced in industry; team approach to the design process; completion of project based on proposal from ECEN 403; includes testing, evaluation and report writing.
Prerequisites: Grade of C or better in ECEN 403; senior classification.

ECEN 410 Medical Imaging
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fundamentals of physics and the engineering principles of medical imaging systems; focus on magnetic resonance imaging, x-ray computer tomography, ultrasonography, optical imaging and nuclear medicine; includes systems, sources, energy tissue interaction, image formation and clinical examples; virtual labs, on- and off-campus lab tours.
Prerequisites: Grade of C or better in MATH 225 or MATH 251 or MATH 253; ECEN 444 or grade of C or better in ECEN 314; junior or senior classification.

ECEN 411 Introduction to Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the basic physics of magnetic resonance, the principles of MR imaging and spectroscopy, the major contrast mechanisms in MRI and MR imaging system hardware; development of pulse sequences for different imaging methods, including flow and spectroscopic imaging; will build RF coils.
Prerequisites: Grade of C or better in MATH 251 or MATH 253; grade of C or better in PHYS 207 or PHYS 208; junior or senior classification.

ECEN 412 Ultrasound Imaging
Credits 3. 3 Lecture Hours.
Mathematical analysis of wave propagation, scattering of ultrasound in biological tissues, electronic transducer arrays for the beam forming, models of the received signals and signal processing methods for medical ultrasound imaging of tissues; includes discussions of research related to fundamental ultrasound imaging concepts.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 414 Biosensors
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Hands-on lab experience in the development of miniaturized biosensors; includes microfluidic devices for biosensing.
Prerequisite: Grade of C or better in ECEN 214; senior classification.
ECEN 415 Physical and Economical Operations of Sustainable Energy Systems
Credits 3. 3 Lecture Hours.
Operational issues for sustainable electric energy systems; basic relevant topics in engineering, optimization and economic concepts; modular view of individual electric energy processing components; physical and market operations in electricity industry in support of sustainable energy integration; computer simulations and demonstrations to create and evaluate examples of power systems.
Prerequisites: ECEN 420 or ECEN 460; junior or senior classification.

ECEN 416/CSCE 416 Hardware Design Verification
Credits 3. 3 Lecture Hours.
Hardware functional verification; case studies on verification in integrated circuit design; introduction to industry best practices; introduction to logic functional verification.
Prerequisites: CSCE 312, CSCE 350/ECEN 350, or ECEN 350/CSCE 350, or equivalent in computer architecture; familiarity with C/C++/Verilog/VHDL programming.
Cross Listing: CSCE 416/ECEN 416.

ECEN 419 Genomic Signal Processing
Credits 3. 3 Lecture Hours.
Fundamentals of molecular biology; application of engineering principles to systems biology; topics include unearthing intergene relationships, carrying out gene based classification of disease, modeling genetic regulatory networks, and altering their dynamic behavior.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 420 Linear Control Systems
Credits 3. 3 Lecture Hours.
Application of state variable and frequency domain techniques to modeling, analysis and synthesis of single input, single output linear control systems.
Prerequisites: Grade of C or better in ECEN 314 and MATH 308; junior or senior classification.

ECEN 421 Digital Control Systems
Credits 3. 3 Lecture Hours.
Feedback systems in which a digital computer is used to implement the control law; Z-transform and time domain methods serve as a basis for control systems design. Effects of computer word length and sampling rate.
Prerequisite: ECEN 420 or equivalent.

ECEN 422 Control Engineering and Design Methodology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Modeling, specifications, rating and operating principles of sensors, actuators and other control system components; experiments on conceptual design, simulation and physical implementation of control systems.
Prerequisite: ECEN 420 or equivalent.

ECEN 423 Computer and Wireless Networks
Credits 3. 3 Lecture Hours.
Prerequisite: Grade of C or better in MATH 311; junior or senior classification.
ECEN 441 Electronic Motor Drives
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Application of semiconductor switching power converters to adjustable speed DC and AC motor drives; steady state theory and analysis of electric motion control in industrial, robotic and traction systems; laboratory experiments in power electronic motor drives and their control.
Prerequisite: Grade of C or better in ECEN 214; junior or senior classification.

ECEN 442 DSP Based Electromechanical Motion Control
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Overview of energy conversion and basic concepts on electromechanical motion devices; different control strategies including the solid-state drive topologies; for every electromechanical motion device, its DSP control implementation discussed and implemented in the lab.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 444 Digital Signal Processing
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Digital signal processing; discrete-time signals and systems, linear shift-invariant systems, the discrete Fourier transform and fast Fourier transform algorithm, and design of finite impulse response and infinite impulse response digital filters.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 445 Applied Electromagnetic Theory
Credits 3. 3 Lecture Hours.
Guided wave and wireless methods; applications of Maxwell's equations and electromagnetic wave phenomena to radiation, antennas and microwave circuit design; digital transmission line analysis and design.
Prerequisites: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 446 Information Theory, Inference and Learning Algorithms
Credits 3. 3 Lecture Hours.
Basic concepts and techniques on data compression, error control codes, and information theoretic measures; basic concepts and techniques in statistical inference such as clustering, maximum likelihood, exact marginalization, Monte Carlo methods, importance sampling, and Markov chain Monte Carlo; introduction to neuron and neural networks; support vector machines.
Prerequisites: Grade of C or better in MATH 311; grade of C or better in ECEN 303 or STAT 211; junior or senior classification.

ECEN 447 Digital Image Processing
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Improvement of pictorial information using spatial and frequency domain techniques; two-dimensional discrete Fourier transform; image filtering, enhancement, restoration, compression; image processing project.
Prerequisites: Grade of C or better in ECEN 314; junior or senior classification.

ECEN 448 Real-Time Digital Signal Processing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Features and architectures of digital signal processing (DSP) chips; fundamental compromises amongst computational accuracy, speed and cost; real-time implementation of filtering, audio, image and video processing algorithms; rapid prototyping via MATLAB/Simulink.
Prerequisites: ECEN 444; junior or senior classification.

ECEN 449 Microprocessor Systems Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to microprocessors; 16/32 bit single board computer hardware and software designs; chip select equations for memory board design, serial and parallel I/O interfacing; ROM, static and dynamic RAM circuits for no wait-state design; assembly language programming, stack models, subroutines and I/O processing.
Prerequisites: Grade of C or better in ECEN 248; junior or senior classification.

ECEN 451 Antenna Engineering
Credits 3. 3 Lecture Hours.
Introduction to antenna theory and design; includes antenna performance parameters, analysis of radiation from sources using Maxwell's equations, theory and design of wire antennas, arrays and frequency independent antennas; computer methods for antenna design.
Prerequisite: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 452 Ultra High Frequency Techniques
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to theory and practice of ultra high frequency radio wave generation, transmission and radiation; application of Maxwell's equations to transmission of electrical energy in wave guides.
Prerequisites: ECEN 322 with a grade of C or better; junior or senior classification.

ECEN 453 Microwave Solid-State Circuits and Systems
Credits 3. 3 Lecture Hours.
Microwave solid-state devices and circuits; theory and design of various types of active circuits; applications of these devices and circuits in radar, communication and surveillance systems.
Prerequisites: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 454 Digital Integrated Circuit Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Analysis and design of digital devices and integrated circuits using MOS and bipolar technologies and computer aided simulation.
Prerequisites: Grade of C or better in ECEN 214 and ECEN 248; junior or senior classification.

ECEN 455 Digital Communications
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Digital transmission of information through stochastic channels; analog-to-dialog conversion, entropy and information, Huffman coding; signal detection, the matched-filter receiver, probability of error, baseband and passband modulation, signal space representation of signals, PAM, QAM, PSK, FSK; block coding, convolutional coding; synchronization; communication through fading channels; spread-spectrum signaling; simulation of digital communication systems.
Prerequisites: Grade of C or better in ECEN 314 and ECEN 303 or STAT 211; junior or senior classification.

ECEN 457 Operational Amplifiers
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Analysis of basic operational amplifier and operational transconductance amplifier (OTA) circuits; noise analysis in Op amp and OTA circuits; nonlinear OTA and Op amp circuits; instrumentation amplifiers; transducer circuits; function generators; oscillators and D/A converters and basics of switched-capacitor circuits.
Prerequisite: Grade of C or better in ECEN 325; junior or senior classification.
ECEN 458 Active Filter Analysis and Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Systematic analysis and design for active RC filters; continuous-time; switched-capacitor circuits; filter approximations; synthesis techniques; sensitivity; practical considerations for monolithic integrated filters; experimental and computer-simulation verification.
Prerequisite: Grade of C or better in ECEN 325; junior or senior classification.

ECEN 459 Power System Fault Analysis and Protection
Credits 4. 3 Lecture Hours. 2 Lab Hours.
General considerations in transmission and distribution of electrical energy as related to power systems; calculation of electric transmission line constants; general theory of symmetrical components and application to analysis of power systems during fault conditions.
Prerequisite: Grade of C or better in ECEN 215 or ECEN 314; junior or senior classification.

ECEN 460 Power System Operation and Control
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Load flow studies; power system transient stability studies; economic system loading and automatic load flow control.
Prerequisite: Grade of C or better in ECEN 215 or ECEN 314; junior or senior classification.

ECEN 461 Electronic Noise
Credits 3. 3 Lecture Hours.
Surveying the elements of electronic noise including concept, theory, measurements, analysis and design; focusing on creative pictures, examples and problems.
Prerequisites: Grade of C or better in ECEN 325; grade of C or better in ECEN 303 or STAT 211; junior or senior classification.

ECEN 462 Optical Communication Systems
Credits 3. 3 Lecture Hours.
Principles of optical communication systems; characteristics of optical fibers, lasers and photodetectors for use in communication systems; design of fiber-optic digital systems and other optical communication systems.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 463 Magnetic Resonance Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Design, construction and application of instrumentation for MR imaging; fundamentals of the architecture of an MR spectrometer and the gradient subsystem used for image localization; emphasis on the radiofrequency sensors and systems used for signal generation and reception.
Prerequisites: Grade of C or better in ECEN 322 or BMEN 420; junior or senior classification.

ECEN 464 Optical Engineering
Credits 3. 3 Lecture Hours.
Ray optics; wave optics; propagation, reflection, refraction and diffraction of light; passive optical components, polarization, optical modulators, interferometers and lasers.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 465 Experimental Optics
Credits 4. 2 Lecture Hours. 7 Lab Hours.
In-depth study of experimental optic techniques; opto-mechanical assemblies; passive optics; interferometers; opto-electronics; basic op-amp circuits; feedback and control of optics with electronics.
Prerequisite: Grade of C or better in ECEN 370; junior or senior classification.

ECEN 466/CYBR 466 Unconditionally Secure Electronics
Credits 3. 3 Lecture Hours.
Data security; cryptography; key exchange; conditional security; unconditional (information-theoretic) security; quantum key distribution; the Kirchhoff-law-Johnson-noise (KLJN) key exchange, electronic noise; advanced issues of KLJN; schemes, protocols, attacks, defense, privacy amplification, credit cards, PUF, autonomous vehicles and smart grids.
Prerequisites: Grade of C or better in ECEN 214; grade of C or better in ECEN 303 or STAT 211; junior or senior classification.
Cross Listing: CYBR 466/ECEN 466.

ECEN 467 Harnessing Solar Energy: Optics, Photovoltaics and Thermal Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Solar radiation characteristics and measurement; optical coatings including reflection, transmission, absorption and emissivity; concentrating optics, tracking and etendue limit; photovoltaic cells, modules and systems overview; introduction to solar thermal systems.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 468 Advanced Digital System Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Design, modeling and verification of complex digital systems using hardware description language and electronic system level language.
Prerequisite: Grade of C or better in ECEN 248; junior or senior classification.

ECEN 469/CSCE 469 Advanced Computer Architecture
Credits 3. 3 Lecture Hours.
Advanced computer architectures including memory designs, pipeline techniques, and parallel structures such as vector computers and multiprocessors.
Prerequisite: Grade of C or better in ECEN 350/CSCE 350 or CSCE 350/ECEN 350; junior or senior classification.
Cross Listing: CSCE 469/ECEN 469.

ECEN 470 Laser Principles and Applications
Credits 3. 3 Lecture Hours.
Working understanding of the basic principles of laser science, the major components of laser system and their function; examples of laser applications to science, engineering, medicine and industry.
Prerequisites: Grade of C or better in ECEN 222 and ECEN 370; junior or senior classification.

ECEN 471 Power Management Circuits and Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Overview of modern semiconductor power devices, DC-DC linear regulators, switching regulators and battery chargers; emphasis on mathematical foundations, feedback theory, stability and root locus, multi-stage amplifiers, analysis and design of power electronic circuits including DC-DC and AC-DC converters and power supplies; applications on power electronics and power management circuits.
Prerequisites: Grade of C or better in ECEN 322 and ECEN 370; junior or senior classification.

ECEN 472 Microelectronic Circuit Fabrication
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamentals of MOS and bipolar microelectronic circuit fabrication; theory and practice of diffusion, oxidation, ion implantation, photolithography, etch; yield and reliability considerations; statistical process control; integrated process design, simulation and characterization.
Prerequisites: Grade of C or better in ECEN 325 and ECEN 370; junior or senior classification.
ECEN 473 Microelectronic Device Design
Credits 3. 3 Lecture Hours.
General processes for the fabrication of microelectronic devices and integrated circuits; a review of the electronic properties of semiconductors and carrier transport and recombination; analysis and characterization of p-n junctions, bipolar transistors, and MOS capacitors and transistors; design considerations for achieving optimum performance and practical structures are discussed. Prerequisites: Grade of C or better in ECEN 325 and ECEN 370; junior or senior classification.

ECEN 474 VLSI Circuit Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Analysis and design of monolithic analog and digital integrated circuits using NMOS, CMOS and bipolar technologies; device modeling; CAD tools and computer-aided design; design methodologies for LSI and VLSI scale circuits; yield and economics; test and evaluation of integrated circuits. Prerequisite: ECEN 326.

ECEN 475 Introduction to VLSI Systems Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to design and fabrication of microelectronic circuits; emphasis on very large scale integration (VLSI) digital systems; use of state-of-the art design methodologies and tools; design of small to medium scale integrated circuits for fabrication. Prerequisites: Grade of C or better in ECEN 248 and ECEN 325; junior or senior classification.

ECEN 477 Photonics: Fiber and Integrated Optics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Photonics lab including optical power and spectral measurements of singlemode and multimode optical fibers, hands-on arc fusion splicing, lasers, amplifiers, interferometers, photodetectors, integrated optics, fiber-optic devices, optical modulators. Prerequisite: Grade of C or better in ECEN 248 and ECEN 325; junior or senior classification.

ECEN 478 Wireless Communications
Credits 3. 3 Lecture Hours.
Overview of wireless applications, models for wireless communication channels, modulation formats for wireless communications, multiple access techniques, wireless standards. Prerequisites: ECEN 455; junior or senior classification.

ECEN 479 Wireless Communication Laboratory
Credit 1. 3 Lab Hours.
Application of theoretical concepts learned in ECEN 478; includes weekly experiments using NI PXI and Matlab. Prerequisites: ECEN 478 or registration therein; junior or senior classification; Qatar campus.

ECEN 480 RF and Microwave Wireless Systems
Credits 3. 3 Lecture Hours.
Introduction to various RF and microwave system parameters, architectures and applications; theory, implementation, and design of RF and microwave systems for communications, radar, sensor, surveillance, navigation, medical and optical applications. Prerequisite: Grade of C or better in ECEN 322; junior or senior classification.

ECEN 484 Professional Internship
Credits 0-1. 0-1 Lecture Hours.
Professional internship in a private company, government agency or laboratory, university or organization to provide work and/or research experience related to the student's major and career objectives. May be taken three times for credit. Prerequisites: Grade of C or better in ECEN 214 or ECEN 248; junior or senior classification; approval of instructor and internship agency.

ECEN 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Problems of limited scope approved on an individual basis intended to promote independent study. Prerequisites: Senior classification; approval of department head.

ECEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 7 Lab Hours.
Selected topics in an identified area of electrical engineering. May be repeated for credit. Prerequisite: Approval of instructor.

ECEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in electrical engineering. May be repeated 3 times for credit. Prerequisites: Junior or senior classification and approval of instructor.

ECHE-Early Chldhd Ed Fld Based (ECHE)

ECHE 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in early childhood education. May be repeated 2 times for credit. Prerequisites: Freshman or sophomore classification and approval of instructor.

ECHE 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in early childhood education. May be repeated 2 times for credit. Prerequisites: Junior or senior classification and approval of instructor.

ECMT - Econometrics (ECMT)

ECMT 461 Economic Data Analysis
Credits 3. 3 Lecture Hours.
Concepts of statistical description, probability theory and statistical inference as they apply to economic analysis; data management, data handling and data analysis; focus on economic statistics with emphasis on regression analysis. Prerequisite: Grade of C or better in MATH 140, MATH 166, MATH 152, or MATH 171.

ECMT 463 Introduction to Econometrics
Credits 3. 3 Lecture Hours.
Application of mathematics and statistics to interpret economic phenomena; elementary econometric models and estimation techniques useful for estimating economic relationships and theories. Prerequisites: Grade of C or better in ECON 323; grade of C or better in ECMT 461, STAT 211 or STAT 303.
ECMT 475 Economic Forecasting
Credits 3. 3 Lecture Hours.
Econometric approach to prediction and forecasting; data mining and in-sample overfitting; exploratory data analysis; model selection; recursive techniques; structural change; nonlinear models; causality; forecast evaluation and combination; practical issues in real world prediction and forecasting.
Prerequisite: ECMT 463 with a grade of C or better; junior or senior classification.

ECON - Economics (ECON)

ECON 202 Principles of Economics
Credits 3. 3 Lecture Hours.
(ECON 2302) Principles of Economics. Elementary principles of economics; the economic problem and the price system; theory of demand, theory of production and the firm, theory of supply; the interaction of demand and supply; also taught at Galveston campus.

ECON 203 Principles of Economics
Credits 3. 3 Lecture Hours.
(ECON 2301) Principles of Economics. Measurement and determination of national income, employment and price; introduction to monetary and fiscal policy analysis; the effects of government deficits and debt, exchange rates and trade balances.
Prerequisite: ECON 202 or approval of undergraduate advisor; also taught at Galveston campus.

ECON 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed studies in specific problem areas of economics. May be repeated for credit.
Prerequisite: Freshman or sophomore classification; approval of instructor.

ECON 289 Special Topics in...
Credits 3. 3 Lecture Hours.
Selected topics in an identified area of economics. May be repeated for credit.
Prerequisite: Approval of undergraduate advisor.

ECON 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in economics. May be taken three times for credit.
Prerequisite: Freshman or sophomore classification.

ECON 311 Money and Banking
Credits 3. 3 Lecture Hours.
Fundamental principles of money, credit, and banking; arbitrage conditions in domestic and international capital markets; theoretical and institutional analysis of money markets.
Prerequisite: ECON 203 with a grade of C or better; also taught at Galveston campus.

ECON 312 Poverty, Inequality and Social Policy
Credits 3. 3 Lecture Hours.
Determinants of inequality in market earnings; philosophical and economic reasons for redistributing income; issues in measurement of inequality and poverty; examination of major social insurance and welfare programs and how they affect income distribution and performance of the economy.
Prerequisite: ECON 323 with a grade of C or better.

ECON 315 Sports Economics
Credits 3. 3 Lecture Hours.
Application of economic concepts to the business and practice of sports; taxpayer funding of stadiums; applications of game theory to sports; impact of imperfect information; pricing strategies; testing models of discrimination in sports markets.
Prerequisite: ECON 202 with a grade of C or better.

ECON 318/WGST 318 The Economics of Gender and Race
Credits 3. 3 Lecture Hours.
Theories and evidence on gender and race differences in labor market outcomes; labor supply and the role of family formation; the effect of human capital and discrimination on earnings; analysis of government policies; international comparisons.
Prerequisites: ECON 323 with a grade of C or better; junior or senior classification.
Cross Listing: WGST 318/ECON 318.

ECON 320 Economic Development of Europe
Credits 3. 3 Lecture Hours.
Development of wage system expansion of markets, Industrial Revolution, relation of industrial development to political policy.
Prerequisites: ECON 202 and ECON 203 with a grade of C or better.

ECON 323 Microeconomic Theory
Credits 3. 3 Lecture Hours.
Determination of prices and their role in directing consumption, production and distribution under both competitive and non-competitive market situations.
Prerequisites: ECON 202 with a grade of C or better; MATH 142, MATH 151, MATH 131, or MATH 171; also taught at Galveston campus.

ECON 328 Economics of Education
Credits 3. 3 Lecture Hours.
Application of economic analysis to education policy; theoretical basis for private and public investment in education; returns to education; the importance of school resources, school financing, school choice, and accountability.
Prerequisites: Grade of C or better in ECON 202; Grade of C or better in ECMT 461, STAT 211, or STAT 303.

ECON 330 Economic Development
Credits 3. 3 Lecture Hours.
A study of the less developed world; economic problems and solutions.
Prerequisites: Grade of C or better in ECON 202 and ECON 203.

ECON 410 Macroeconomic Theory
Credits 3. 3 Lecture Hours.
Theory of the determination of aggregate levels of national income, employment and prices; monetary and fiscal policy analysis, effects of government debt and deficits.
Prerequisite: ECON 203 with a grade of C or better.

ECON 412 Public Finance
Credits 3. 3 Lecture Hours.
Economic role of governments; the choice of public sector output in a democracy and the effects of various taxes on resource allocation and income distribution.
Prerequisite: ECON 323 with a grade of C or better.
ECON 414 Health Economics
Credits 3.3 Lecture Hours.
Economics of health care in the U.S.; role of third party payers; supply and demand for health care; structure and consequences of public and private insurance; role of competition in health care markets among hospitals, insurance plans, physicians and pharmaceutical manufacturers; role of completion and regulation in medical innovation.
Prerequisite: ECON 323 with a grade of C or better.

ECON 418 Economics of Labor
Credits 3.3 Lecture Hours.
Economics of the labor market including factors affecting the economy's demand for labor and the supply of labor; labor market problems such as unemployment and poverty; the economics of trade unions and collective bargaining.
Prerequisite: ECON 323 with a grade of C or better.

ECON 420 Law and Economics
Credits 3.3 Lecture Hours.
Mutual interaction of the prevailing legal system and economic phenomena; development of a series of testable hypotheses concerning the effects of laws and regulations on incentives and economic behavior; the allocation of resources and the distribution of income.
Prerequisite: ECON 323 with a grade of C or better.

ECON 425 The Organization of Industry
Credits 3.3 Lecture Hours.
Relationships between structure, conduct and performance of industries in the American economy using both theoretical and empirical material; antitrust regulation, pricing, product characteristics, advertising, technical change and environmental effects; the American experience contrasted with that of other countries; growth of international industries.
Prerequisite: ECON 323 with a grade of C or better.

ECON 426 Economics of Antitrust and Regulation
Credits 3.3 Lecture Hours.
Bureaucratic and judicial impact of antitrust laws and other regulatory means on the American economy; efficiency gains and losses associated with price discrimination, predation, cartelization, horizontal merger, vertical integration, resale price maintenance; Supreme Court opinions delivered in landmark antitrust cases.
Prerequisite: ECON 323 with a grade of C or better.

ECON 433 Energy Markets and Policy
Credits 3.3 Lecture Hours.
Economics of energy markets and energy regulation with emphasis on implications for optimal energy policy; sectors include gasoline, oil, electricity, natural gas, renewables, nuclear; economic theory integrated with empirical applications from American and international experience; new energy markets, energy trading, and interaction with environmental policy.
Prerequisites: ECON 323 with a grade of C or better; junior or senior classification or approval of instructor.

ECON 436 Environmental Economics
Credits 3.3 Lecture Hours.
Economic theory and public policy as applied to environmental problems; role of market failure in explaining the existence of pollution; alternative strategies for pollution control and environmental management; global environmental issues.
Prerequisites: ECON 323 with a grade of C or better.

ECON 440 Experimental Economics
Credits 3.3 Lecture Hours.
Experimental techniques in economics and survey of literature in experimental economics; credibility of experimental data and criteria for determining reliability; application of statistical treatment to experimental data.
Prerequisite: ECON 323 with a grade of C or better.

ECON 445 Financial Economics
Credits 3.3 Lecture Hours.
Economic analysis of money and financial markets; market structures, efficiency, institutional features; international markets; arbitrage; derivative securities; asset pricing in complete and incomplete markets; relation to rest of economy.
Prerequisites: Grade of C or better in ECON 323; grade of C or better in ECMT 461, STAT 211, or STAT 303; junior or senior classification.

ECON 449 Economics of Decision-Making Strategy
Credits 3.3 Lecture Hours.
Introduction to principles of decision-making and analysis of strategic interaction; formal modeling of decision problems involving one or more agents, integrating preferences, risk, and uncertainty into analysis, and using principles of game theory to advise choices; applications include search, signaling, design of contracts, agendas and repeated interaction.
Prerequisites: ECON 323 with a grade of C or better.

ECON 452 International Trade Theory and Policy
Credits 3.3 Lecture Hours.
Basis for trade; theory of comparative advantage; determination of product and factor prices; gains from international trade; commercial policy and its implications for income distribution; concept of effective protection; market distortions, policy generated distortions and the arguments for tariffs.
Prerequisite: ECON 323 with a grade of C or better; also taught at Galveston campus.

ECON 459 Games and Economic Behavior
Credits 3.3 Lecture Hours.
Introduction to game theory for advanced undergraduates; definition and existence of an equilibrium point for strategic, repeated and extensive form games; strategic and evolutionary equilibrium refinements; equilibrium selection; applications include auctions, bargaining, oligopoly, strategic market games, team production, voting and behavioral game theory.
Prerequisites: Grade of C or better in ECON 323; MATH 142, MATH 131, MATH 151, or MATH 171.

ECON 460 Introduction to Mathematical Economics
Credits 3.3 Lecture Hours.
Introduction to mathematical economics; application of mathematical tools in economic theory; fundamental results from differential and integral calculus; duality theory in consumer and producer theory; classical optimization techniques, elementary differential equations and stability analysis.
Prerequisites: Grade of C or better in ECON 323 and ECON 410.

ECON 465 Contemporary Economic Issues
Credits 3.3 Lecture Hours.
Application of microeconomic and macroeconomic analyses to evaluate contemporary economic issues. May be taken for credit up to six hours.
Prerequisites: Grade of C or better in ECON 323 and ECON 410.
ECON 470 Program Evaluation
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Economic approaches to program policy evaluation; empirical microeconomic tools; natural experiments; design experimental and quasi-experimental method.
Prerequisite: Grade of C or better in ECON 323; grade of C or better in ECMT 461, STAT 211, or STAT 303; or approval of instructor.

ECON 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Directed internship in an organization to provide on-the-job training and applied research experience with professionals in settings appropriate to economics and student professional interest. Maximum 6 hours can count toward major. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Major in economics; 12 completed hours of economics including ECON 323 with a grade of C or better; 2.5 cumulative GPA; 3.0 GPA in economic courses; pre-approval of the director of economics internship programs.

ECON 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Research and design of specific problem areas approved on an individual basis with the intention of promoting independent study and to supplement existing course offerings. Results of study presented in writing.
Prerequisites: Major or minor in economics; approval of undergraduate advisor.

ECON 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of economics. May be repeated for credit.
Prerequisite: Approval of undergraduate advisor.

ECON 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in economics. May be taken three times for credit.
Prerequisites:Junior or senior classification; grade of C or better in ECON 323, ECON 410, and ECMT 463.

EDCI - Educ Curriculum & Dev (EDCI)

EDCI 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Research problems and readings in areas selected to supplement existing offerings; individual reports, oral and written, required.
Prerequisites: Freshman or sophomore classification; approval of instructor.

EDCI 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of educational curriculum and instruction. May be repeated for credit.
Prerequisite: Approval of department head.

EDCI 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty members in the Department of Teaching, Learning and Culture. May be taken four times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

EDCI 353 Early Childhood through Adolescent Education
Credits 3. 3 Lecture Hours.
(TECA 1311) Early Childhood through Adolescent Education. Early childhood through adolescent approaches and instructional materials appropriate for EC through middle school programs; impact of research and theory on child development from gestation to early adolescence on instructional practices.
Prerequisites: Admission to teacher education.

EDCI 354 Early Childhood and Adolescent Curriculum and Lesson Design
Credits 3. 3 Lecture Hours.
Examination of curriculum models used in educational environments designed for young children through adolescents and the organization of the curriculum; investigation of state-adopted curriculum knowledge and skills standards and materials as well as their use and expansion.
Prerequisites: EDCI 353; TEFB 371 or concurrent enrollment.

EDCI 358 Instructional Methods in Engineering and Technology Education
Credits 3. 3 Lecture Hours.
Instructional methods of teaching and instruction in engineering and technology at the secondary level.
Prerequisites: TEFB 324 or concurrent enrollment; junior or senior classification.

EDCI 364 Creativity and the Young Child
Credits 3. 3 Lecture Hours.
Creative expression in young children with a focus on artistic and musical expression, creative movement and creative dramatics; creativity as related to development of the right hemisphere of the brain.
Prerequisites: EPSY 320; concurrent enrollment in EDCI 453.

EDCI 365 Using Technology Classrooms
Credits 3. 3 Lecture Hours.
Overview of technology as it relates to the design of instruction and practices that support effective teaching and learning; how learning theories are reflected in and supported by technology; current and emerging applications in technology delivered and supported learning environments.
Prerequisite: Junior or senior classification.

EDCI 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Research problems and readings in areas selected to supplement existing offerings; individual reports, oral and written, required.
Prerequisites: Junior or senior classification; approval of instructor.

EDCI 489 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Study of selected topics in an identified area of curriculum and instruction. May be repeated for credit.
Prerequisite: Approval of department head.

EDCI 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty members in the Department of Teaching, Learning and Culture. May be taken four times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
EDTC - Educational Technology (EDTC)

EDTC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of educational technology. May be repeated for credit.
Prerequisite: Approval of instructor.

EHRD - Ed Human Res Develop (EHRD)

EHRD 101 Learning Community of Leadership Development in Human Resource Development and Technology Management
Credit 1. 1 Lecture Hour.
Exploration of leadership identity, reflection on lessons learned during the first year of college. Must be taken on a satisfactory/unsatisfactory basis.

EHRD 203 Foundations of Human Resource Development
Credits 3. 3 Lecture Hours.
Overview of the discipline and field of human resource development; focus on how individuals and groups learn and interact with organizations including motivation, group dynamics, systems theory, organizational culture, learning and change.
Prerequisite: Sophomore classification.

EHRD 201 Legal and Ethical Environment of Human Resource Development
Credits 3. 3 Lecture Hours.
Development of knowledge towards legal and ethical work environment in a corporate and educational setting in human resource development.
Prerequisite: Sophomore classification.

EHRD 285 Directed Studies
Credits 0 to 12. 0 to 12 Lecture Hours.
Directed readings or research problems in industrial education.
Prerequisites: Freshman or sophomore classification; approval or directed studies application.

EHRD 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of industrial education. May be repeated for credit.
Prerequisite: Approval of instructor.

EHRD 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in educational human resource development. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

EHRD 315 Applied Human Resource Development in the Workplace
Credits 3. 3 Lecture Hours.
Training and development context and synthesis of general industry-standard human resource practices in workplace environments for human resource practitioners.
Prerequisites: EHRD 203 and EHRD 210 with a grade of C or better; junior or senior classification.

EHRD 371 Applied Learning Principles
Credits 3. 3 Lecture Hours.
The overarching purpose of the course is to influence adult educators to make more intentional choices toward developmental growth in their work with adult learners; focus on adult learning theories and work strategies; meets writing intensive course requirement.
Prerequisites: Junior or senior classification and approval of instructor.

EHRD 372 Learning and Development in HRD
Credits 3. 3 Lecture Hours.
Concepts, knowledge and skills to access, design, develop, deliver and evaluate training programs; foundation of understanding roles of learning, training and development in organizations and systematic and evidence-based approach for designing and managing quality training programs in organizations.
Prerequisites: Grade of C or better in EHRD 203 and EHRD 210; junior or senior classification; or approval of instructor.

EHRD 374 Organizational Development
Credits 3. 3 Lecture Hours.
Introduction to major theories, concepts, skills and techniques for organization development in business and industry, education and the public sector.
Prerequisites: Grade of C or better in EHRD 203 and EHRD 210; junior or senior classification; or approval of instructor.

EHRD 391 Measurement and Evaluation in Human Resource Development and Technology Management
Credits 3. 3 Lecture Hours.
Measurement and evaluation techniques in the field of Human Resource Development and Technology Management; emphasis on understanding, calculation and application of basic testing, assessment and interpretation methods.
Prerequisites: Junior or senior classification or approval of instructor; EHRD 203 with a grade of C or better; MATH 168 and MATH 142.

EHRD 405 Principles and Practices of Leadership in Human Resource Development and Technology Management
Credits 3. 3 Lecture Hours.
Theories and concepts associated with learning in individuals and organizations; overview of leadership theories and learning theories within a context of developing leadership programs.
Prerequisites: Junior or senior classification and approval of instructor.

EHRD 408 Globalization and Diversity in the Workplace
Credits 3. 3 Lecture Hours.
Assist learners in the identification and understanding of globalization and diversity issues in learning, work and community; exploration of current issues, theories, trends and policy issues.
Prerequisites: Junior or senior classification and approval of instructor.

EHRD 413 Conflict Management and Dialogue
Credits 3. 3 Lecture Hours.
Conflict management principles and practices in the workplace; engagement in meaningful conflict from a training and development perspective.
Prerequisites: Grade of C or better in EHRD 203 and EHRD 210; junior or senior classification; or approval of instructor.

EHRD 477 Project Management in Organizations
Credits 3. 3 Lecture Hours.
Application of principles of project management in organizations; focus on the development of project proposals, project planning using project management software; management of project personnel and resources.
Prerequisite: Junior or senior classification or approval of instructor.
ENGD - Engr Design Graphics (ENDG)

ENDG 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Special problems in engineering design graphics to fit needs of individual students.
Prerequisite: Approval of instructor.

ENDG 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of engineering design graphics.
Prerequisite: Approval of instructor.

ENDS - Environmental Design (ENDS)

ENDS 101 Design Process
Credits 3. 3 Lecture Hours.
(ARCH 1311) Design Process. Fundamental design processes, issues and theories relevant to design resolution and the creation of new ideas; creative thought processes from the formation of ideas through incubation to final product and future impact on the physical environment and society.

ENDS 105 Design Foundations I
Credits 4. 1 Lecture Hour. 8 Lab Hours.
Visual and functional design principles; development of skills in perception, thought and craft as they apply to the formation of two- and three-dimensional relationships; design attitudes and environmental awareness.
Prerequisite: Major in environmental design.

ENDS 106 Design Foundations II
Credits 4. 1 Lecture Hour. 6 Lab Hours.
Approaches to problem identification and problem solving emphasizing an awareness of human, physical and cultural factors influencing design; reinforcement of visual and verbal communication as applied to the design process.
Prerequisite: ENDS 105.

ENDS 108 Design and Visual Communication Foundations II
Credits 5. 1 Lecture Hour. 12 Lab Hours.
Approaches to problem identification and problem solving emphasizing human, physical and cultural factors influencing architectural design; understanding of space, materiality and tectonics in a human body scale; development of drawing methods with emphasis on analytical drawing; reinforcement of visual and verbal communication as applied to design processes.
Prerequisite: ENDS 105 and ENDS 115.

ENDS 115 Design Communication Foundations
Credits 3. 1 Lecture Hour. 4 Lab Hours.
(ARCH 1307) Design Communication Foundations. Introduction to and practice of tools, methods, techniques available for graphic communication; graphic communication and the design process; observation and other forms of free-hand drawing and drawing systems that develop representational and descriptive capabilities.
Prerequisite: Major in environmental design.

ENDS 116 Design Communication Foundations II
Credits 3. 1 Lecture Hour. 4 Lab Hours.
(ARCH 1308) Design Communication Foundations II. Introduction to design drawing using a wide variety of tools ranging from conventional drafting and drawing equipment to the latest digital graphic applications; a focused investigation of analytical drawing as it contributes to the design process; experience of a wide variety of drawing conventions intended to equip students to navigate a design process.
Prerequisites: ENDS 115 and concurrent enrollment in ENDS 106.

ENDS 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems in environmental design. May be repeated for up to 12 credit hours.
Prerequisite: Approval of instructor and degree coordinator.

ENDS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of environmental design. May be repeated for up to 9 credit hours.
Prerequisite: Approval of instructor or department head.
ENGL 104 Composition and Rhetoric
Credits 3.3 Lecture Hours.
(ENGL 1302) Composition and Rhetoric. Focus on referential and persuasive researched essays through the development of analytical reading ability, critical thinking and library research skills; for freshman and sophomore students only; also taught at Galveston and Qatar campuses.

ENGL 107 Introduction to the Health Humanities
Credits 3.3 Lecture Hours.
Introduction to the methods and approaches of the health humanities; exposure to key scholarship in this field as well as major methods and approaches; application of such skills to the analysis of cultural case studies such as illness narratives or contemporary debates in scientific bioethics.
Cross Listing: COMM 107, HHUM 107, and PHIL 107.

ENGL 202 Environmental Literature
Credits 3.3 Lecture Hours.
Texts from various periods and locations and in various genres and media that focus on the relationship of human beings to the rest of the natural world; topics vary from each section.

ENGL 203 Writing about Literature
Credits 3.3 Lecture Hours.
Exploration of literature by genre and/or theme; literary analysis and interpretation; intensive writing about literature; also taught at Galveston campus.

ENGL 204/AFST 204 Introduction to African-American Literature
Credits 3.3 Lecture Hours.
Introduction to the writings of African Americans from the 18th century to the present, emphasizing the major themes and traditions; ENGL-204 also taught at Galveston campus.
Cross Listing: AFST 204/ENGL 204.

ENGL 205/AFST 205 Introduction to Africana Literature
Credits 3.3 Lecture Hours.
Works, literary movements and genres of authors of African descent in the Americas, Europe and Africa.
Cross Listing: AFST 205/ENGL 205.

ENGL 206 Twenty-first Century Literature and Culture
Credits 3.3 Lecture Hours.
Exploration of the literary and cultural forms of the twenty-first century, focusing on a variety of national and transnational origins.

ENGL 207 Human Thinking and Digital Culture
Credits 3.3 Lecture Hours.
Introduction to methodology, scope and practice of digital humanities; overview of digital research culture; evaluation of digital media as tools for thinking.

ENGL 209/LING 209 Introduction to Linguistics
Credits 3.3 Lecture Hours.
Nature of human language and of linguistics; includes an introduction to phonology, syntax, semantics and morphology and the role of spoken and written discourse in sustaining societal arrangements.
Cross Listing: LING 209/ENGL 209.

ENGL 210 Technical and Business Writing
Credits 3.3 Lecture Hours.
(ENGL 2311) Technical and Business Writing. Focus on writing for professional settings; correspondence and researched reports fundamental to the technical and business workplace—memoranda, business letters, research proposals and presentations, use of graphical and document design; emphasis on audience awareness, clarity of communication and collaborative team-work; also taught at Galveston and Qatar campuses.

ENGL 211/INTS 211 Foundations in Cultural Studies
Credits 3.3 Lecture Hours.
Introduction to history, influence and major ideas of Cultural Studies; use of culture as a means to critique social problems and understand social forces; analysis of culture in its relationship to power; participation in project investigating contemporary U.S. youth subcultures.
Cross Listing: INTS 211/ENGL 211.

ENGL 212 Shakespeare
Credits 3.3 Lecture Hours.
Exploration of selected works of Shakespeare; also taught at Galveston campus.

ENGL 219 Literature and the Other Arts
Credits 3.3 Lecture Hours.
Imaginative literature in conversation with aesthetic principles and such other arts as painting, sculpture, architecture, film and music; also taught at Qatar campus.

ENGL 220 Graphic Novel
Credits 3.3 Lecture Hours.
An exploration of origins and development of the graphic novel.

ENGL 221/MODL 221 World Literature
Credits 3.3 Lecture Hours.
(ENGL 2332) World Literature. Survey of world literature from the ancient world through the sixteenth century in relation to its historical and cultural contexts; texts selected from a diverse group of authors, traditions and genres.
Cross Listing: MODL 221/ENGL 221.

ENGL 222/MODL 222 World Literature
Credits 3.3 Lecture Hours.
(ENGL 2333) World Literature. Survey of world literature from the seventeenth century to the present in relation to its historical and cultural contexts; texts selected from a diverse group of authors, traditions and genres.
Cross Listing: MODL 222/ENGL 222.

ENGL 227 American Literature: The Beginnings to Civil War
Credits 3.3 Lecture Hours.
(ENGL 2327) American Literature: The Beginnings to Civil War. Representative writers, genres and movements of the period.
ENGL 228 American Literature: Civil War to Present
Credits 3. 3 Lecture Hours.
(ENGL 2328) American Literature: Civil War to Present. Expressions of the American experience in realism, regionalism and naturalism; varieties of modernist and contemporary writing; the rise of ethnic literature and experimental literary forms.

ENGL 231 Survey of English Literature I
Credits 3. 3 Lecture Hours.
(ENGL 2322) Survey of English Literature I. Literature of England from Anglo-Saxon times through the 18th century.

ENGL 232 Survey of English Literature II
Credits 3. 3 Lecture Hours.
(ENGL 2323) Survey of English Literature II. Literary works from the late 18th century to the 21st century by authors in Great Britain and its colonies.

ENGL 235 Elements of Creative Writing
Credits 3. 3 Lecture Hours.
(ENGL 2307) Elements of Creative Writing. Initiation into the craft of creative writing in prose and poetry; extensive reading in the genres; peer workshops.

ENGL 241 Advanced Composition
Credits 3. 3 Lecture Hours.
Focuses on the writing of advanced academic and professional prose by integrating computer technology in the analysis and production of that prose.

ENGL 251/FILM 251 Introduction to Film Analysis
Credits 3. 3 Lecture Hours.
Fundamental aspects of film analysis and criticism; ENGL-251 also taught at Galveston and Qatar campuses.

ENGL 253 Introduction to Cultural Studies and Popular Culture
Credits 3. 3 Lecture Hours.
Introduction to Cultural Studies and Popular Cultural. An introduction to the history, theories and methods of contemporary cultural studies. The course will explore key concepts in cultural theory to examine specific aspects of popular culture as well as cultural sites and practices so as to expand upon the analytical and critical thinking skills learned in ENGL 104 and 203.

ENGL 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Readings selected for specific need of major or minor in English.

ENGL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of English. May be repeated for credit.

ENGL 291 Research
Credits 0 to 3. 0 to 3 Lecture Hours.
Research conducted under the direction of faculty member in English.
Prerequisites: 3 hours of 200-level literature; freshman or sophomore classification and approval of instructor.

ENGL 292 Introduction To Literature And Medicine
Credits 3. 3 Lecture Hours.
Introduction to methodology, scope and practice of literature and medicine studies; analysis of autobiographies, novels and poetry dealing with health and illness; evaluation of sources from different disciplinary perspectives as a tool for critical thinking.

ENGL 303 Approaches to English Studies
Credits 3. 3 Lecture Hours.
A writing intensive exploration of the methodologies and major topics of English studies.
Prerequisite: ENGL 104 or registration therein; junior or senior classification or approval of instructor.

ENGL 304 Topics in Digital Research
Credits 3. 3 Lecture Hours.
Topics in the studies of digital humanities; introduction to making/interpreting digital materials, the surrogates of books, paintings, etc., that form our cultural heritage, as well as digitally-born literature, art and culture; reflection on digital cultures/digital archives; theory and practice of creating and research digital resources. May be taken three times for credit.
Prerequisite: Junior or senior classification or approval of instructor.

ENGL 305 Texas Literature
Credits 3. 3 Lecture Hours.
Examination of Texas literature, culture and multi-media; exploration of the development of Texas identities and responses to the rich cultural diversity within the state; topics vary from each section.
Prerequisite: Junior or senior classification.

ENGL 306 Transnational Literature and Culture
Credits 3. 3 Lecture Hours.
Examination of texts written in English that de-center the nation-state as the central way to organize cultural comparison; includes colonialism, economics, empire, globalization, migration, race and refugees.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification or approval of instructor.

ENGL 308 History of Literary Criticism
Credits 3. 3 Lecture Hours.
History of literary thought from antiquity to the present, including writers such as Plato, Aristotle, 'Longinus;' Sidney, Shelley, and Dryden; analysis of genres such as tragedy, lyric, and film; critical approaches such as new criticism, structuralism, deconstruction, Marxism, feminism, new historicism, and film studies.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 309/INTS 311 Cultural Politics
Credits 3. 3 Lecture Hours.
Exploration of the concept of cultural politics across several academic disciplines in the humanities and social sciences; broad interrogation of relationships that mediate culture and power in national and international contexts; focus on how culture shapes and is shaped by society, political perspectives and actions.
Prerequisites: Junior or senior classification; or approval of the instructor.
Cross Listing: INTS 311/ENGL 309.

ENGL 310/LING 310 History of the English Language
Credits 3. 3 Lecture Hours.
Phonological, grammatical and lexical history of the English language; brief discussion of some other Indo-European languages; principles of linguistic change, as reflected in English.
Prerequisite: Junior or senior classification.
Cross Listing: LING 310/ENGL 310.

ENGL 313 Medieval English Literature
Credits 3. 3 Lecture Hours.
Old and Middle English literature exclusive of Chaucer, including such authors and works as Beowulf, The Dream of the Rood, Sir Gawain and the Green Knight, Piers Plowman, Malory, Julian of Norwich, Kempe, the mystery plays and the lyrics.
Prerequisite: 3 credits of literature at 200-level or above.
ENGL 314 The English Renaissance
Credits 3.3 Lecture Hours.
Period course in the poetry, prose and drama of England in the 16th century.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 315 Seventeenth-Century Literature
Credits 3.3 Lecture Hours.
Period course in English poetry, prose and drama of the 17th century.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 316 Eighteenth-Century Literature and Culture
Credits 3.3 Lecture Hours.
Period course in English poetry, prose and drama of the 18th century.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 317 Early British Drama
Credits 3.3 Lecture Hours.
Period course in early British, non-Shakespearean drama to 1642.
Prerequisite: 3 credits of literature at the 200-level or above.

ENGL 318 Utopian Literature in the English Tradition
Credits 3.3 Lecture Hours.
Exploration of the theories and practices of historical and contemporary utopian literature through representative writers and texts.
Prerequisites: 3 credits of literature at 200-level or above.

ENGL 320 Technical and Professional Editing
Credits 3.3 Lecture Hours.
Principles and techniques of technical editing for print and electronic media, including standards, style, copy-editing, comprehensive editing and project management.
Prerequisite: ENGL 210.

ENGL 321 Nineteenth-Century Literature (Romantic)
Credits 3.3 Lecture Hours.
Representative texts in English generated throughout the British empire in the late-18th and early-19th centuries.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 322 Nineteenth-Century Literature (Victorian)
Credits 3.3 Lecture Hours.
Period course in English poetry and prose of major Victorian authors.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 323 The American Renaissance
Credits 3.3 Lecture Hours.
Period course in the American Renaissance, covering such writers as Emerson, Hawthorne, Thoreau, Alcott, Fuller, Douglass, Melville, Poe, Stowe and Whitman.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 324/FILM 324 Science Fiction and Film
Credits 3.3 Lecture Hours.
History and trajectory of science fiction film into the 21st century by filmmakers such as Kubrick, Jenkins, Cameron, Coogler and others.
Prerequisites: 3 credits of literature at 200-level or above.
Cross Listing: FILM 324/ENGL 324.

ENGL 329/AFST 329 African-American Literature Pre-1930
Credits 3.3 Lecture Hours.
Major works of the African-American literary tradition from the 18th century to 1930 studied within cultural and historical context.
Prerequisites: 3 credits of literature at 200-level or above.
Cross Listing: AFST 329/ENGL 329.

ENGL 330 Arthurian Literature
Credits 3.3 Lecture Hours.
Legend of King Arthur in English and American literature from its Medieval origins to the present.
Prerequisite: Junior or senior classification; also taught at Galveston campus.

ENGL 331 Fantasy Literature
Credits 3.3 Lecture Hours.
An exploration of origins and development of fantasy literature, including representative writers, genres and texts.
Prerequisites: Junior or senior classification.

ENGL 333/WGST 333 Lesbian, Gay, Bisexual, Transgender and Queer Literatures
Credits 3.3 Lecture Hours.
Multi-ethnic study of American Literature, the writings of Black Americans, American Indians, Latinos/Latinas, Jewish Americans, as well as other ethnic groups.
Prerequisite: Junior or senior classification.

ENGL 334 Science Fiction Present and Past
Credits 3.3 Lecture Hours.
Origins and development of the science fiction genre.
Prerequisite: Junior or senior classification; also taught at Galveston campus.

ENGL 335 Literature of the Sea
Credits 3.3 Lecture Hours.
Significance of the sea in fictional and factual accounts, such as novels, short stories, poems and narratives of sailors and seafaring life.
Prerequisites: Three credits of literature at 200 level or above; junior or senior classification or approval of instructor; Galveston campus; also taught at College Station campus.

ENGL 336 Life and Literature of the Southwest
Credits 3.3 Lecture Hours.
Exploration of Southwestern literature, including such authors as Abbey, Anaya, Cabeza de Vaca, Cather, Krutch, McCarty, Momaday, Paz, Paredes and Porter.
Prerequisite: Junior or senior classification.

ENGL 337 Life and Literature of the American South
Credits 3.3 Lecture Hours.
Study of writing and culture of the American South based on reading and analysis of key texts by representative authors.
Prerequisite: Junior or senior classification.

ENGL 338 American Ethnic Literature
Credits 3.3 Lecture Hours.
Multi-ethnic study of American Literature, the writings of Black Americans, American Indians, Latinos/Latinas, Jewish Americans, as well as other ethnic groups.
Prerequisite: Junior or senior classification; also taught at Galveston campus.

ENGL 339/AFST 339 African-American Literature Post-1930
Credits 3.3 Lecture Hours.
Major works of the African-American literary tradition from the 1930s to the present studied in their cultural and historical context.
Prerequisites: 3 credits of literature at 200-level or above.
Cross Listing: AFST 339/ENGL 339.
ENGL 340 Modern and Contemporary Drama
Credits 3. 3 Lecture Hours.
Representative plays and performances from the late nineteenth century to the present.
Prerequisite: 3 credits of literature at 200-level or above.

ENGL 342 The Rhetoric of Gender and Health
Credits 3. 3 Lecture Hours.
Study of field of rhetoric of health and medicine with specific attention to the study of gender, including issues in reproduction, expertise and illness; range of methods and methodological approaches within the field.
Prerequisite: Junior or senior classification.

ENGL 343 Fairy Tales in the English Tradition
Credits 3. 3 Lecture Hours.
An exploration of the history, development, theory, and practice of fairy tales, including representative writers, sub-genres and texts.
Prerequisites: 3 credits of literature at 200-level or above.

ENGL 345 Writers' Studies: Prose or Poetry
Credits 3. 3 Lecture Hours.
A different topic for fiction writers or poets each term; may include historical development of genres; connection between biography and artistic production; study of writers' theories of the art of fiction or poetry.
Prerequisites: ENGL 235; junior or senior classification.

ENGL 347 Writers' Workshop: Prose
Credits 3. 3 Lecture Hours.
Production of advanced, complete stories; peer workshops; extensive reading. May be repeated 1 time for credit.
Prerequisite: ENGL 235; junior or senior classification or approval of instructor.

ENGL 348 Writers' Workshop: Poetry
Credits 3. 3 Lecture Hours.
Production of advanced, complete poems; peer workshops; extensive reading. May be repeated 1 time for credit.
Prerequisite: ENGL 235; junior or senior classification or approval of instructor.

ENGL 350 Twentieth-Century Literature to World War II
Credits 3. 3 Lecture Hours.
Novelists, poets and dramatists writing in English from the late nineteenth to mid-twentieth century.
Prerequisite: Junior or senior classification.

ENGL 351/FILM 351 Advanced Film
Credits 3. 3 Lecture Hours.
A different film topic each term; sample topics include major directors, historical periods, fiction into film, film genres. May be repeated for credit.
Prerequisites: ENGL 251/FILM 251 or FILM 251/ENGL 251 or FILM 301 or approval of instructor; junior or senior classification.
Cross Listing: FILM 351/ENGL 351.

ENGL 352 Literature, World War II to Present.
Credits 3. 3 Lecture Hours.
Novelists, poets and dramatists from the World War II era to the present.
Prerequisite: Junior or senior classification.

ENGL 353 History of Rhetoric
Credits 3. 3 Lecture Hours.
Exploration of the major approaches to the theory and practice of oral and written rhetoric and discourse up to the end of the 19th century.
Prerequisite: Junior or senior classification.

ENGL 354 Modern Rhetorical Theory
Credits 3. 3 Lecture Hours.
Study of 20th and 21st century rhetorical theories and theorists; focus on relationships among rhetoric and culture, such as rhetoric in oral and textual communities, rhetoric as a method of literary interpretation, rhetoric and linguistics, rhetoric as theorized and taught across academic communities.
Prerequisite: Junior or senior classification.

ENGL 355 The Rhetoric of Style
Credits 3. 3 Lecture Hours.
Fosters an appreciation for and better understanding of English prose style; the history of English prose; representative prose models for analysis and imitation; the impact of computer analysis.
Prerequisite: Junior or senior classification.

ENGL 356/FILM 356 Literature and Film
Credits 3. 3 Lecture Hours.
Novels and films based on them; writers and filmmakers such as Virginia Woolf, John Steinbeck, John Ford, Sally Potter, John Huston, Charlotte Bronte and Peter Bogdanavich.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: FILM 356/ENGL 356.

ENGL 357 Native American Rhetorics and Literatures
Credits 3. 3 Lecture Hours.
Examination of Native American rhetorics and literatures with a focus on the relationship between composed, performed, and material rhetorics; covering Native American rhetors and writers from pre-colonization to the present and contextualizing them within contemporary Native issues.
Prerequisite: Junior or senior classification or approval of instructor.

ENGL 358/FILM 358 Screenwriting
Credits 3. 3 Lecture Hours.
Analysis of screenplay structure coupled with writing assignments illustrating principles of form.
Prerequisite: Junior or senior classification.
Cross Listing: FILM 358/ENGL 358.

ENGL 359 Forms of Creative Writing
Credits 3. 3 Lecture Hours.
Major forms of writing in prose or poetry, depending on instructor; analysis of structure coupled with writing assignments illustrating principles of form in narrative and/or lyrical modes. May be taken three times for credit.
Prerequisites: ENGL 235; junior or senior classification.

ENGL 360 Literature for Children
Credits 3. 3 Lecture Hours.
Representative writers, genres, texts and movements.
Prerequisite: Junior or senior classification.

ENGL 361 Young Adult Literature
Credits 3. 3 Lecture Hours.
Survey of historical and contemporary literature for adolescents, including such forms as fantasy, domestic fiction, and the problem novel.
Prerequisite: Junior or senior classification.
ENGL 362/HISP 362 Latino/a Literature
Credits 3. 3 Lecture Hours.
Literature by U.S.-based Latino/a authors writing mostly in English; examination of historical and social contexts of cultural production; may include novels, poetry, short stories, plays, and films to gain understanding of aesthetic expression of diverse Latino/a authors, including but not limited to Mexican Americans, Puerto Ricans, Cuban Americans, and Dominican Americans.
Prerequisite: Junior or senior classification.
Cross Listing: HISP 362/ENGL 362.
ENGL 365/RELS 360 The Bible as Literature
Credits 3. 3 Lecture Hours.
Prerequisite: Junior or senior classification.
Cross Listing: RELS 360/ENGL 365.
ENGL 372 American Poetry
Credits 3. 3 Lecture Hours.
Exploration of the development of American poetic traditions, with an emphasis on the major poetry of 19th and 20th centuries.
Prerequisite: 3 credits of literature at 200-level or above.
ENGL 373 American Realism and Naturalism
Credits 3. 3 Lecture Hours.
Exploration of the literature produced in the United States between the Civil War and World War I, such as works by Twain, James, Freeman, Jewett, Chesnutt, Crane, Dreiser, Wharton.
Prerequisites: 3 credits of literature at 200-level or above.
ENGL 374/WGST 374 Women Writers
Credits 3. 3 Lecture Hours.
History of literature by women in English; emphasis on continuity of ideas and on literary contributions; study of a variety of genres with particular attention to the significance of gender in the racial, social, sexual and cultural contexts of women writing in English.
Prerequisite: Junior or senior classification; ENGL-374 also taught at Galveston campus.
Cross Listing: WGST 374/ENGL 374.
ENGL 375 Nineteenth-Century American Novel
Credits 3. 3 Lecture Hours.
An exploration of the development of the American novel; study of representative novels from the early national period, the American Renaissance, and realism and naturalism.
Prerequisite: 3 credits of literature at 200-level or above.
ENGL 376 The American Novel Since 1900
Credits 3. 3 Lecture Hours.
Representative novels of 20th and 21st century American writers; emphasis on varied literary movements and on thematic and formal innovations as reflections of/responses to social transformations in American society since 1900.
Prerequisite: Junior or senior classification.
ENGL 377 The British Novel to 1870.
Credits 3. 3 Lecture Hours.
Representative works illustrating the development of the novel, by writers resident in Great Britain and its colonies, from its beginnings to the late nineteenth century.
Prerequisite: 3 credits of literature at 200-level or above.
ENGL 378 The British Novel, 1870 to Present.
Credits 3. 3 Lecture Hours.
Representative works illustrating development of the novel by writers resident in Great Britain and its colonies from the late nineteenth century forward.
Prerequisite: Junior or senior classification.
ENGL 379/AFST 379 Postcolonial Literatures
Credits 3. 3 Lecture Hours.
Exploration of key terms, themes and debates within global literature written by colonized, occupied and diasporic peoples.
Prerequisites: 3 credits of literature at the 200-level or above.
Cross Listing: AFST 379/ENGL 379.
ENGL 385 Playwriting
Credits 3. 3 Lecture Hours.
The craft of writing plays and practical experience in writing plays of various lengths; structure, building of ideas into dramatic situations, use of dialogue and movement.
Prerequisite: ENGL 235; junior or senior classification or approval of instructor.
ENGL 386 Creative Nonfiction
Credits 3. 3 Lecture Hours.
Practical study and application of literary nonfiction, the general audience essay, the memoir, and related nonfiction forms; with extensive workshop time and attention given to student writing, expert and peer review as well as readings from authors in the genre.
Prerequisites: ENGL 235; junior or senior classification.
ENGL 390 Studies in British Literature
Credits 3. 3 Lecture Hours.
Exploration of a significant topic or period in British literature; features current faculty research on such topics as Victorian fantasy literature, social identity in medieval Britain and Ireland and children in film. May be repeated 1 time for credit.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.
ENGL 391 Folklore, Literature, and World Cultures
Credits 3. 3 Lecture Hours.
Theories of folklore and vernacular culture; exploration of the relationship between oral literature and the forms of vernacular culture, including film, festival and dance.
Prerequisites: Junior or senior classification.
ENGL 392/RELS 392 Studies in Literature, Religion and Culture
Credits 3. 3 Lecture Hours.
Exploration of literature treating significant religious topics in the context of cultural setting; features current faculty research on such topics as Tolkien and the making of myth, C.S. Lewis, texts and cultures of the Middle East and Victorian women writers and religion. May be repeated one time for credit.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.
Cross Listing: RELS 392/ENGL 392.
ENGL 393/AFST 393 Studies in Africana Literature and Culture
Credits 3. 3 Lecture Hours.
Practical study and application of literatures and culture of people of African descent.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.
Cross Listing: AFST 393/ENGL 393.
ENGL 394 Studies in Genre
Credits 3. 3 Lecture Hours.
Theory and practice of a single genre including analysis of its history and development; features current faculty research on such topics as women standup comics, British short stories and Irish history on stage and screen. May be repeated once for credit.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.

ENGL 395 Topics in Literature and Medicine
Credits 3. 3 Lecture Hours.
Examination of a particular period or genre within literature and medicine studies; analysis of autobiographies, novels and poetry dealing with health and illness; evaluation of sources from different disciplinary perspectives as a tool for critical thinking; topics will vary.
Prerequisite: ENGL 292.

ENGL 396 Studies in American Literature
Credits 3. 3 Lecture Hours.
Exploration of a significant topic or period in American literature; features current faculty research on such topics as Asian-American women writers, American music and literature and American Gothic.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.

ENGL 401 Contemporary Literary Theory
Credits 3. 3 Lecture Hours.
Exposure to the discourses of contemporary theory in engagement with other academic disciplines; study of major theoretical schools, debates, and critiques.
Prerequisites: 3 credits of literature at the 300-level; junior or senior classification.

ENGL 403 Language and Gender
Credits 3. 3 Lecture Hours.
Language and gender from a sociolinguistic perspective; gender in the words and structures of language; gender representation and gendered language use in the media and a variety of sociocultural contexts; language use in intimate relationships; computer-mediated discourse; language, sexuality, and sexual orientation.
Prerequisite: Junior or senior classification.
Cross Listing: LING 403 and WGST 403.

ENGL 412 Studies in Shakespeare
Credits 3. 3 Lecture Hours.
Advanced study of a significant topic in Shakespeare.
Prerequisites: 3 credits of literature at the 300-level; junior or senior classification.

ENGL 414 Milton
Credits 3. 3 Lecture Hours.
In-depth study of poetry and selected prose works of John Milton.
Prerequisite: 3 credits of literature at the 300-level; junior or senior classification.

ENGL 415 Studies in a Major Author
Credits 3. 3 Lecture Hours.
Exploration of a major author as a vehicle for emphasizing intensive analysis, scholarship and literary criticism.
Prerequisite: 3 credits of literature at 300-level; junior or senior classification; also taught at Galveston campus.

ENGL 431 Chaucer
Credits 3. 3 Lecture Hours.
Intensive analysis of Chaucer's works in Middle English, including engagement with published criticism and scholarship.
Prerequisite: 3 credits of literature at 300-level; junior or senior classification.

ENGL 435 Advanced Studies in Creative Writing
Credits 3. 3 Lecture Hours.
Advanced study of specified topics in a creative writing genre or genres. May be repeated two times for credit.
Prerequisites: 3 credits of creative writing at the 300-level; junior or senior classification.

ENGL 460 Digital Authoring Practices
Credits 3. 3 Lecture Hours.
Analysis and practice of authoring in digital environments, including individual and collaborative approaches, audience concerns, theoretical, ethical and stylistic issues; environments and topics may include web design, content management system (CMS), text encoding, project management, usability, version tracking, content authoring and accessibility.
Prerequisites: ENGL 210; junior or senior classification.

ENGL 461 Advanced Syntax and Rhetoric
Credits 3. 3 Lecture Hours.
Points of view toward language study; traditional syntax; points of view toward rhetoric; Christensen's rhetoric of the paragraph; analysis of written discourse.
Prerequisite: Senior classification or approval of instructor.

ENGL 462 Rhetoric in Cultural Context
Credits 3. 3 Lecture Hours.
Theories concerning the influence of socio-cultural context on expressive forms and how such forms are used to achieve social and communicative aims; analysis of examples of written, verbal, and visual rhetorics from various cultures illustrating the impact that expressive forms have on social life.
Prerequisites: ENGL 353, ENGL 354, or ENGL 355; junior or senior classification.

ENGL 474/WGST 474 Studies in Women Writers
Credits 3. 3 Lecture Hours.
A different topic each term examining women's writing through historical period, genre, cross-cultural study and/or feminist literary theory. May be repeated for credit.
Prerequisites: 3 credits of literature at the 300-level; junior or senior classification.
Cross Listing: WGST 474/ENGL 474.

ENGL 481 Senior Seminar
Credits 3. 3 Lecture Hours.
Capstone seminar on significant figures, movements or issues with special attention to methods and materials of scholarship.
Prerequisites: ENGL 303; senior classification.

ENGL 482 Health Humanities Senior Seminar
Credits 3. 3 Lecture Hours.
Capstone course; application of skills and knowledge acquired during health humanities concentration coursework; exposure to specialized methods of inquiry; development and execution of an individualized final project.
Prerequisites: ENGL 107, COMM 107, or HHUM 107; junior or senior classification.
Cross Listing: COMM 482 and HHUM 482.
ENGR 484 Internship
Credits 0 to 3. 0 to 3 Lecture Hours.
Directed internship in a public or private organization to provide students with on-the-job training and applied research experience appropriate to career objectives. May be taken three times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Approval of department head; junior or senior classification; also taught at Galveston campus.

ENGL 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Readings selected for specific need of major or minor in English; also taught at Galveston campus.

ENGR 101 Energy: Resources, Utilization and Importance to Society
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introductory course about current and potential energy sources, the link between energy and wealth, and the consequences of action or inaction concerning energy and the environment.

ENGR 102 Engineering Lab I - Computation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Introduction to the design and development of computer applications for engineers; computation to enhance problem solving abilities; basic concepts of software design through the implementation and debugging of student-written programs; introduction to engineering majors, career exploration, engineering practice within realistic constraints, e.g. economic, environmental, ethical, health and safety, and sustainability; pathways to success in engineering.
Prerequisites: Grade of C or better in MATH 151, or concurrent enrollment; admission to the college of engineering.

ENGR 102 Engineering Lab I - Computation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Introduction to the design and development of computer applications for engineers; computation to enhance problem solving abilities; basic concepts of software design through the implementation and debugging of student-written programs; introduction to engineering majors, career exploration, engineering practice within realistic constraints, e.g. economic, environmental, ethical, health and safety, and sustainability; pathways to success in engineering.
Prerequisites: Grade of C or better in MATH 151, or concurrent enrollment; admission to the college of engineering.

ENGR 111 Foundations of Engineering I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
(ENGR 1201) Foundations of Engineering I. Introduction to the engineering profession, ethics, and disciplines; development of skills in teamwork, problem solving and design; other topics depending on the major include emphasis on computer applications and programming, visualization and CAD tools, introduction to electrical circuits, semiconductor devices, digital logic, communications and their application in systems; Newton's laws, unit conversions, statistics, computers, Excel; basic graphics skills; visualization and orthographic drawings.
Prerequisites: MATH 150 or MATH 151, or concurrent enrollment; admission to the College of Engineering; also taught at Galveston campus.

ENGR 112 Foundations of Engineering II
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Continuation of ENGR 111. Topics include, depending on the major, emphasis on computer applications and programming and solids modeling using CAD tools or other software; fundamentals of engineering science; advanced graphic skills.
Prerequisite: ENGR 111; MATH 151 or concurrent enrollment; admission to the College of Engineering; also taught at Galveston campus.

ENGR 181 Engineering Honors Seminar I
Credit 1. 1 Lecture Hour.
Co-curricular experiences related to academic success, undergraduate research and service in preparation for careers in research and technology leadership.
Prerequisites: Admitted to engineering honors; freshman or sophomore classification.

ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Description and application of laws of physical motion to the solution of science and engineering problems; using sensing, control and actuation for experimental verification of physics concepts while solving engineering problems.
Prerequisites: Grade of C or better in MATH 151 or MATH 171 or equivalent; grade of C or better in ENGR 102; grade of C or better and concurrent enrollment in PHYS 206; also taught at Galveston campus.
Cross Listing: PHYS 216/ENGR 216.

ENGR 217/PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Electromagnetism and electromechanical systems; use of sensing, control and actuation to demonstrate key physical relationships through the transducer relationships linking pressure, temperature and other physical stimuli to changes in electric and magnetic fields.
Prerequisites: Grade of C or better in MATH 152 or MATH 172, or equivalent; grade of C or better in PHYS 206 or equivalent; grade of C or better in PHYS 216/ENGR 216 or ENGR 216/PHYS 216; grade of C or better and concurrent enrollment in PHYS 207; also taught at Galveston campus.
Cross Listing: PHYS 217/ENGR 217.

ENGR 251 Creating a Self-Aware Leader
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamentals of engineering leadership and business; organizational dynamics; self-awareness.
Prerequisites: Grade of C or better in ENGR 102, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; acceptance into the Zachry Leadership Program.
ENGR 260 Engineering Creativity
Credits 2. 2 Lecture Hours.
Designed to provide opportunities to gain knowledge and skills in the areas of creativity, innovation and design thinking through interdisciplinary team design projects and development of rough prototypes.
Prerequisites: ENGR 111 and ENGR 112, or concurrent enrollment.

ENGR 262 Engineering Entrepreneurship Hour
Credit 1. 1 Lecture Hour.
Engagement with successful technology entrepreneurs from technical sectors across engineering and the nation; challenges faced by and characteristics of successful entrepreneurs and their strategies in launching and sustaining businesses on technology innovation; network with highly successful entrepreneurs and develop relations valuable to professional careers; development of speaking and presentation skills; networking with industry professionals in support of entrepreneurship.
Prerequisites: Freshman or sophomore classification in College of Engineering.

ENGR 270 Engineering Projects in Community Service
Credit 1. 1 Lecture Hour.
Project course using team approach to engage students in open-ended community service projects involving non-profit agencies; includes project management, understanding the complete design process, awareness of the customer in engineering design, and the ability to communicate effectively. May be taken six times for credit.
Prerequisites: ENGR 102 or approval of instructor; freshman or sophomore classification in an engineering major.

ENGR 281 Engineering Honors Mentoring and Team Building Seminar Credits 0-1. 0-1 Other Hours.
Selected topics related to peer mentoring and team building while participating in co-curricular activities; emphasis on building supportive relationships on campus; provides practical experience in being a member of a project involving campus or community-based engagement; for those serving as a Coach (i.e., student leader providing light mentoring to the residents) in the Engineering Honors Living Learning Community (Engineering Honors Community of Scholars or ECOS).
Prerequisites: Appointment to be a Coach in ECOS; approval of instructor.

ENGR 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems in any area of engineering.
Prerequisites: Freshman or sophomore classification; approval of department head.

ENGR 289 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

ENGR 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in the college of engineering. May be repeated three times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ENGR 301 College of Engineering Study Abroad
Credits 0 to 18. 0 to 18 Other Hours.
For students in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to approved program; approval of study abroad coordinator.

ENGR 302
Credits 0.

ENGR 311 Enterprise Basics for Technical Entrepreneurs
Credits 3. 3 Lecture Hours.
Aspects of entrepreneurship for a technical enterprise; elements of a business including idea generation, startup financing, staffing, product design and production, marketing and selling a product; focus on the front end of the venture; product design and development, financing, identifying and attracting key personnel, and starting up company.
Prerequisites: Admission to the college of engineering.

ENGR 312 Sales, Operations and Manufacturing for Technology Companies
Credits 3. 3 Lecture Hours.
Challenges faced in a start-up entity with respect to product manufacturing, operations and supply chain management, product pricing strategies, and sales and marketing; focus on small start-up to young mid-size enterprises.
Prerequisites: Junior or senior classification in the college of engineering.

ENGR 333 Project Management for Engineers
Credits 3. 3 Lecture Hours.
Basic project management for engineering; project development and economic justification; estimating; scheduling; network methods; critical path analysis; earned value management; project organizational structures; project risk assessment; resource allocation; ethics; characteristics of project managers.
Prerequisite: Junior or senior classification in the College of Engineering or biological and agricultural engineering or approval of instructor.

ENGR 350 Leading for Impact in Engineering, Business and Society
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental leadership and business topics relevant to engineering and technical careers; business model development; business strategy; leadership theory; empathy.
Prerequisites: Grade of C or better in ENGR 251; acceptance into the Zachry Leadership Program; junior or senior classification or approval by instructor.

ENGR 351 The Role of Engineering and Business in Society
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Exploration of engineering and business contributions to society; political, cultural, societal and economic forces’ impact on engineering; using creativity and imagination to solve engineering and societal challenges.
Prerequisites: Acceptance into the Zachry Leadership Program; ENGR 350; junior or senior classification or approval by instructor.

ENGR 380 Seminar Series in Engineering Project Management
Credit 1. 1 Lecture Hour.
Presentations by practicing engineers and professionals addressing engineering project management process and practice; discussion forum to better understand the opportunities and challenges of engineering project management and the analytical tools and skills required to be successful. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: ENGR 333 or approval of instructor; junior or senior classification in the College of Engineering or biological and agricultural engineering (BAEN).
ENGR 381 Engineering Honors Leadership and Project Management Seminar
Credits 0-1. 0-1 Other Hours.
Selected topics related to leadership and project management theory and practice in the context of co-curricular activities, involving multidisciplinary teams; provides practical experience in leading projects involving community-based engagement and residence-based programming; for those serving as Fellows, student leaders in the Engineering Honors Living Learning Community (Engineering Honors Community of Scholars or ECOS).
Prerequisite: Appointment to be a Fellow in ECOS; approval of instructor.

ENGR 385 Problems for Co-Op Students
Credits 1 to 3. 1 to 3 Other Hours.
Special problems in engineering for cooperative education students. Problems related to student’s work assignment culminating in a research paper. Three hours may be used as technical elective, and one additional hour may be used as free elective. A total of 4 hours may be used toward graduation.
Prerequisite: Approval of department head.

ENGR 399 Engineering Honors
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice within the Engineering Honors (EH) program which includes the EH Living Learning Community (ECOS); reflection on professional outcomes; documentation and self-assessment of learning experience.

ENGR 401 Interdisciplinary Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Instruction and practice in the design process applied to an interdisciplinary design project including establish the customer need; determine requirements in terms of function (what) and performance (how well); develop alternative design concepts; perform trade-off studies among performance, cost and schedule; embodiment and detail design; iterate the above steps; major interdisciplinary design project.
Prerequisites: Senior classification and approval of instructor.

ENGR 402 Interdisciplinary Design II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Product detail and design development process including case studies; may include project management, marketing considerations, manufacturing detailed design specifications; failure modes, applications of codes and standards, selection of design margins; product (component) development guidelines; intellectual property, product liability and ethical responsibility.
Prerequisites: ENGR 401; junior or senior classification.

ENGR 410 Global Engineering Design
Credits 0 to 3. 0 to 3 Lecture Hours.
Intercultural models and their application to engineering design in diverse, multinational and multidisciplinary settings; engineering design project working in international teams of students, faculty and industry experts; applying engineering skills to the project; includes the study and application of intercultural models, global enterprise fundamentals and remote collaboration technologies; required for the International Engineering Certificate.
Prerequisite: Junior or senior classification or approval of instructor.

ENGR 421 Technology Company Management, Leadership, and Corporate Culture
Credits 3. 3 Lecture Hours.
Strategic challenges associated with enterprise management and leadership; establishing and maintaining a sustainable brand; developing an effective corporate culture; dealing with global competition; case studies in strategic thinking.
Prerequisites: Junior or senior classification in the college of engineering.

ENGR 430 Fundamentals of Subsea Engineering
Credits 3. 3 Lecture Hours.
Orientation to subsea engineering fundamentals, including SURF (Subsea, Umbilicals/Controls, Risers, Flowlines) equipment and configurations; exposure to practical, industry focused problems; subsea equipment components; design considerations and design drivers; subsea production operations; integrity critical maintenance activities.
Prerequisite: Junior or senior classification; enrolled in the College of Engineering or approval of instructor.

ENGR 432 Subsea Project Implementation
Credits 3. 3 Lecture Hours.
Overview of the realization of a subsea development project; includes all stages from discovery to pre-commissioning of the subsea infrastructure.
Prerequisites: Grade of C or better in ENGR 430.

ENGR 450 Finding Your Leadership Qualities
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Exploration of personal leadership qualities and perspective; case studies in leadership in engineering enterprises; business etiquette and personal marketing.
Prerequisites: Grade of C or better in ENGR 351; acceptance into the Zachry Leadership Program; junior or senior classification or approval by instructor.

ENGR 451 Leading for a Lifetime: Continual Learning and Influence
Credits 3. 2 Lecture Hours. 2 Lab Hours.
The proposed change is to course name and number as well as including a non-traditional course. This course includes a retreat prior to the start for the semester. The location for the retreat may vary from semester to semester.
Prerequisites: Grade of C or better in ENGR 450; acceptance into the Zachry Leadership Program; junior or senior classification or approval by instructor.

ENGR 456 Engineering Product Lean Launch
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Exercises in the creation of an engineering-centric business using lean startup principles; customer and market validation; value proposition creation; minimum viable product (MVP) development; customer value chain discovery; communication skill training; development of a business model canvas for a student-developed engineering product business idea.
Prerequisite: Junior or senior classification in the College of Engineering.

ENGR 462 Engineering Entrepreneurship Hour
Credit 1. 1 Lecture Hour.
Designed to engage with successful technology entrepreneurs from across the nation; learn about the characteristics of successful entrepreneurs and their strategies in launching and sustaining businesses on technology innovation; network with highly successful entrepreneurs and develop relations valuable to professional careers.
Prerequisites: Junior or senior classification or approval of instructor.
ENGR 470 Engineering Projects in Community Service
Credits 1 to 2. 1 to 2 Other Hours.
Project course using team approach to engage students in open-ended community service projects involving non-profit agencies; includes project management, understanding the complete design process, awareness of the customer in engineering design, and the ability to communicate effectively. May be taken six times for credit.
Prerequisites: ENGR 111 or approval of instructor; junior or senior classification in an engineering major.

ENGR 482/PHIL 482 Ethics and Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Development of techniques of moral analysis and their application to ethical problems encountered by engineers, such as professional employee rights and whistle blowing; environmental issues; ethical aspects of safety, risk and liability and conflicts of interest; emphasis on developing the capacity for independent ethical analysis of real and hypothetical cases.
Prerequisite: Junior classification.
Cross Listing: PHIL 482/ENGR 482.

ENGR 484 International Engineering Internship
Credits 0 to 6. 0 to 6 Lecture Hours.
International Engineering Internship.
Prerequisite: Junior or senior classification.

ENGR 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of problems in any area of engineering. May be taken 3 times for credit.
Prerequisites: Junior or senior classification; approval of the college.

ENGR 489 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours. 0 to 6 Lab Hours.
Selected topics in an identified field of engineering. May be repeated for credit.

ENGR 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in the College of Engineering. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

ENTC - Engineering Technology (ENTC)

ENTC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
I, II, S Selected topics in an identified area of engineering technology. May be repeated for credit.
Prerequisite: Approval of instructor.

ENTC 399 High Impact Experience
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: Grade of C or better in ESET 350, IDIS 343 or MMET 376; approval of instructor.

ENTC 481 Seminar
Credit 1. 1 Lecture Hour.
Presentation of selected topics from current literature and related industrial operations in various technical areas; films showing practical application of manufacturing and industrial processes; lectures from industrial representatives.
Prerequisite: Senior classification.

ENTC 484 Professional Internship
Credit 1. 1 Lecture Hour.
Directed internship in a private firm, government agency/laboratory, or non-governmental organization to provide work and/or research experience related to the student's program and career objectives. May be taken two times for credit.
Prerequisites: Junior and senior classification and approval of internship agency and instructor.

ENTC 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Permits work in a special problem area on an individual basis with the intent of promoting independent reading, research and study; to supplement existing course offerings or subjects not presently covered.
Prerequisites: Senior classification and approval of instructor.

ENTC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of engineering technology.
Prerequisite: Approval of instructor.

ENTC 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in the college of engineering. May be taken four times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

ENST-Environmental Studies (ENST)

ENST 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in environmental studies. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.
ENTO - Entomology (ENTO)

ENTO 101 Introduction to Academic Success in Entomology
Credit 1. 1 Lecture Hour.
Orientation to academic success within higher education and specifically the Bachelor of Science degree in entomology; awareness of academic and campus support services available for student success; development of goals for academic and career planning, including creation and utilization of degree planner; awareness of personal self-management strategies, including learning styles, time management, goal setting, stress management and development of personal strategies for implementation of personal self-management into practice.

ENTO 102 Continuing Academic Success in Entomology
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
Continued exploration to academic success within higher education and specifically the Bachelor of Science degree in Entomology; increase awareness of academic and campus support services available for student success; development of goals for academic and career planning, including creation and utilization of degree planner; awareness of personal self-management strategies, including learning styles, time management, goal setting, stress management, and development of personal strategies for implementation of personal self-management into practice. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: ENTO 101.

ENTO 201 General Entomology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Survey of the major classes of arthropods with special emphasis on species of economic or biological importance; general insect anatomy, physiology, metamorphosis and classification; survey of the biologies of insect orders and major families using common injurious and beneficial species to relate material to production agriculture and the urban environment.

ENTO 208 Veterinary Entomology
Credits 2. 2 Lecture Hours.
Insects and their relatives causation of economic loss, impacts to well-being and transmission of disease pathogens to domestic and companion animals and wildlife as well as health and well-being of humans through occupational or recreational exposure; insect biology, economic importance and principles and methods of prevention and control.
Prerequisite: Co-enrollment in ENTO 209.

ENTO 209 Veterinary Entomology Laboratory
Credit 1. 2 Lab Hours.
Insects and their relatives causation of economic loss, impacts to well-being and transmission of disease pathogens to domestic and companion animals and wildlife, as well as health and well-being of humans through occupational or recreational exposure; laboratory emphasizes identification of major arthropod pests, use of microscopy and dissection equipment.
Prerequisite: Concurrent enrollment with ENTO 208.

ENTO 210 Global Public Health Entomology
Credits 3. 3 Lecture Hours.
Impacts of insects and insect-borne diseases on public health and well-being around the globe; insect biology, bloodfeeding, and transmission of human diseases; role of insect borne diseases on human history, socioeconomic development, and public health infrastructure.
Prerequisite: Freshman or sophomore classification or approval of instructor.

ENTO 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study in entomology.
Prerequisites: Freshman or sophomore classification; approval of instructor and department head.

ENTO 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of entomology. May be repeated for credit.
Prerequisite: Approval of instructor.

ENTO 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in entomology. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ENTO 300/WFSC 300 Field Studies
Credits 3. 3 Other Hours.
Integration of principles of animal and plant ecology with environmental factors to characterize wildlife populations; intensive analysis of specific areas will emphasize either the development of a wildlife management plan or a general vertebrate natural history survey.
Prerequisite: Prior approval of instructor and concurrent enrollment in WFSC 450/ENTO 450 and WFSC 451/ENTO 451.
Cross Listing: WFSC 300/ENTO 300.

ENTO 301 Biodiversity and Biology of Insects
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to orders and most important families of insects; order-level morphology and family-level natural history; collection of insects identified to family level provides introduction to collection methods and specimen preparation.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; BIOL 111 and BIOL 112; junior or senior classification or approval of instructor.

ENTO 305 Evolution of Insect Structure
Credits 3. 2 Lecture Hours. 3 Lab Hours.
External morphology of insects; evolution of form and function.
Prerequisite: ENTO 201, or ENTO 208 and ENTO 209; BIOL 111.

ENTO 306 Insect Physiology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Physiology of insects; structure and function of internal organ systems and their role in insect success.
Prerequisite: ENTO 201, or ENTO 208 and ENTO 209; BIOL 111 and BIOL 112; CHEM 101, CHEM 111, CHEM 102 and CHEM 112, or CHEM 119 and CHEM 120.

ENTO 320 Honey Bee Biology
Credits 3. 3 Lecture Hours.
Introduction of honey bee biology and beekeeping practices to science and non-science majors; honey bees as the model insect to introduce general principles of biology and entomology.
Prerequisite: Junior or senior classification or approval of instructor.

ENTO 321 Beekeeping
Credit 1. 3 Lab Hours.
Basic Knowledge and techniques used in apiculture; tools and knowledge needed to keep bees responsibly and productively.
Prerequisites: ENTO 320 or concurrent enrollment, junior or senior classification or approval of instructor.
ENTO 322 Insects and Human Society
Credits 3. 3 Lecture Hours.
Emphasis on the role insects have played in the development of human cultures; aspects include health, food production and storage, art, music and architecture; overview of historic, present day, and future roles insects will have on environmental movements (green societies), and in underdeveloped, developing and developed societies.
Prerequisite: Junior or senior classification.

ENTO 401 Principles of Integrated Pest Management
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integrated pest management (IPM) concepts, principles, development and application; IPM constitutes a series of pest control tactics and strategies toward more sustainable agriculture, natural resources, and urban and rural health and well-being.
Prerequisite: ENTO 201 or ENTO 208; ENTO 209.

ENTO 402 Field-Crop Insects
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application of management strategies for insect/mite pests of small grains, corn, cotton, rice, sorghum, stored products and sunflower; nature and symptoms of damage, life history and habits of common pests. Laboratory consists of pest and pest damage identification supported by field trips.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209.

ENTO 403 Urban Entomology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Biology, economic importance and control strategies for arthropod pests commonly invading households and commercial structures in urban environments; laboratory consists of urban pest identification and special presentations and demonstrations covering topics related to urban pest problems and their control. Offered in 2011-2012 academic year and alternating years thereafter.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209, or approval of instructor.

ENTO 423 Medical Entomology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Biology, disease relationships, and control of insects and other arthropods parasitic on or in humans; aspect of the fields of clinical and preventative medicine; survey, collection and taxonomy of medically-important arthropods in laboratory sessions.
Prerequisites: BIOL 111; junior or senior classification or approval of instructor.

ENTO 424 Insect Ecology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Provides basic ecological background with an applied interpretation, emphasizing influences of insect populations and communities on ecosystem processes that influence landscape structure, function and change.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; BIOL 111; junior or senior classification or approval of instructor.

ENTO 425 Disease Ecology
Credits 3. 3 Lecture Hours.
Ecological interactions that influence the distribution and abundance of pathogens, vectors, and hosts ultimately determine the spread of disease; impacts of urbanization, climate change, and other human influenced environmental changes on disease dynamics; integration of disease ecology into pathogen and vector monitoring and comprehensive strategies to reduce disease occurrence.
Prerequisite: ENTO 208, ENTO 209 and ENTO 423; junior or senior classification, or approval of instructor.

ENTO 426/VIBS 426 Methods in Vector-Borne Disease Ecology
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Methodological understanding of how vector-borne diseases are studied in the field and laboratory; hands-on exploration of the ecology disease systems in a one health framework; concepts of design, execution and presentation of research projects; outdoor field work and bio-safety level 2 laboratory.
Prerequisites: Junior or senior classification and approval of instructor.
Cross Listing: VIBS 426/ENTO 426.

ENTO 428 Insect Biotechnology
Credits 3. 3 Lecture Hours.
Applications of genetic engineering and biotechnology; specific problems dealing with insects and control of insect pests.
Prerequisites: ENTO 429 or concurrent enrollment; GENE 301, GENE 315, GENE 320/BIMS 320, or FIVS 308; junior or senior classification or approval of instructor.

ENTO 429 Insect Biotechnology Laboratory
Credit 1. 3 Lab Hours.
Basic technical experience in insect molecular biology and biotechnology, including genomic DNA isolation, PCR, cloning, sequencing and gene manipulation techniques; focus on insect applications for improvement of human health and agriculture.
Prerequisites: ENTO 428 or concurrent enrollment; junior or senior classification or approval of instructor.

ENTO 431/FIVS 431 The Science of Forensic Entomology
Credits 3. 3 Lecture Hours.
Explores the science, methodology and technology employed to gather, preserve and present information about insects and other arthropods in such a manner that this information can be used in courts of law as evidence and testimony to help resolve issues of a criminal or civil nature.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FIVS 431/ENTO 431.

ENTO 432/FIVS 432 Applied Forensic Entomology
Credit 1. 3 Lab Hours.
Laboratory-based offering practical experience using scientific information, methodology, technology, and legal procedures inherent to the field of forensic entomology; emphasis on collecting, preserving, and identifying information as evidence and expert witness testimony in courts of law.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: FIVS 432/ENTO 432.

ENTO 435 Case Studies in Problem Solving
Credits 3. 3 Lecture Hours.
Development of reasoning strategies by examining a variety of case studies, science and scientific methods; solving real-world problems as part of an investigative team.
Prerequisite: ENTO 201, or ENTO 208 and ENTO 209; ENTO 482; senior classification or approval of instructor.

ENTO 450/WFSC 450 Caribbean Conservation
Credits 2. 6 Lab Hours.
Provide experience in and appreciation for diverse tropical habitats and the problems associated with conserving these habitats; design and conduct individual research projects on topics of their choice with approval from the instructors on project design and feasibility.
Prerequisites: Concurrent enrollment in ENTO 300/WFSC 300 and ENTO 451/WFSC 451; junior or senior classification.
Cross Listing: WFSC 450/ENTO 450.
ENTO 451/WFSC 451 Caribbean Research Seminar
Credit 1. 1 Other Hour.
Document research activities; keep a journal of activities and research methods during study abroad trips.
Prerequisites: Concurrent enrollment in ENTO 300/WFSC 300 and ENTO 450/WFSC 450; junior or senior classification.

ENTO 455 Field Entomology in the Tropics
Credits 3. 9 Other Hours.
Intensive hands-on, field-based experiences in Costa Rica at the Texas A&M Softis Center for Research and Education; study of insect diversity, behavior and natural history and insight into the challenges in conserving biodiversity; two-week course designed to provide authentic research experiences in a tropical rainforest; involvement in physically demanding fieldwork, extensive collecting and sampling, specimen sorting and preparation, as well as field observation of insect natural history and behavioral experiments; learn how to keep field notes, work in teams to solve research questions and communicate research through various media.
Prerequisites: Grade of C or better in BIOL 111 and BIOL 112; or approval of instructor; any course in entomology recommended.

ENTO 481 Seminar
Credit 1. 1 Lecture Hour.
Report of original investigations, current literature and special features of entomology.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; junior or senior classification.

ENTO 482 Occupational and Professional Development
Credits 2. 2 Lecture Hours.
Organized instruction in written and oral communication; acquaint students with private and public-sector companies and agencies as well as leading professionals from these firms to reinforce academic instruction and prepare students for the transition to employment, graduate and professional schools.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; or approval of instructor.

ENTO 484 Professional Internship
Credits 0 to 4. 0 to 4 Other Hours.
Independent study and supervised field experience related to a professional area of interest in entomology. May be taken two times for credit.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; junior or senior classification or approval of instructor.

ENTO 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Individual problems.
Prerequisites: ENTO 201, or ENTO 208 and ENTO 209; junior or senior classification; approval of instructor and department head.

ENTO 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of entomology. May be repeated for credit.
Prerequisite: Approval of instructor.

ENTO 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Faculty supervised research in entomology. May be taken two times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification or approval of instructor.

EPFB - Edu Psych Field Based (EPFB)

EPFB 210 Family Involvement and Empowerment
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Field-based course that provides information and skills necessary to work with diverse families; addresses need for positive school-family collaboration and characteristics of families throughout the life cycle, the collaboration of educators with families through the special education process, and the provision of family services through community agencies.

EPFB 301 Teaching Skills I
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Study and development of skills focusing on collaboration, instruction, classroom management and professionalism in P-12 schools; field experience in general education settings. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Admission to professional phase of program.

EPFB 401 Teaching Skills II
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Study and development of skills focusing on individual P-12 students' needs with emphasis on delivering complete lessons from a written plan to include Texas Essential Knowledge and Skills (TEKS) and Individualized Educational Program (IEP) objectives, incorporating modifications appropriately, setting behavioral expectations, and using questioning strategies for high level thinking; field experience in two special education settings. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Admission to professional phase of program.

EPSY - Educational Psychology (EPSY)

EPSY 284 Internship
Credits 0 to 7. 0 to 7 Other Hours.
Directed internship in a community, public or private organization to provide on-the-job training and/or applied research experience appropriate to career objectives. May be repeated seven times for credit. Must be taken on a satisfactory/unsatisfactory basis.

EPSY 289 Special Topics In...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of educational psychology. May be repeated for credit.

EPSY 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in educational psychology. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.
EPSY 320 Child Development
Credits 3. 3 Lecture Hours.
Growth and development of the normal child from infancy to adolescence; implications of children's cognitive, language and psychosocial development for success in academic and social interactions.
Prerequisite: Junior or senior classification.

EPSY 321 Adolescent Development
Credits 3. 3 Lecture Hours.
Characteristics of adolescent growth and development emphasizing behavior within secondary school setting; influences of prior development; home, family and community; peer group, as these affect school adjustment and success.
Prerequisite: Junior or senior classification.

EPSY 430 Creativity Theories and Research
Credits 3. 3 Lecture Hours.
Theoretical base of creativity and the research methodologies used to study creativity.
Prerequisite: Junior or senior classification.

EPSY 431 Personal Creativity and Giftedness
Credits 3. 3 Lecture Hours.
Personal giftedness and creativity and its innerrelativity with development, relationships, and learning.
Prerequisite: Junior or senior classification.

EPSY 432 Creativity and Creative Problem Solving
Credits 3. 3 Lecture Hours.
Creativity research; historical background and application of the framework and tools of the Parnes/Osborn Creative Problem Solving Process.
Prerequisite: Junior or senior classification.

EPSY 433 Lateral Thinking
Credits 3. 3 Lecture Hours.
Edward deBono's theories and approach to creativity known as lateral thinking which is used throughout the world to increase creative thinking in individuals.
Prerequisite: Junior or senior classification.

EPSY 435 Educational Statistics
Credits 3. 3 Lecture Hours.
Statistical concepts and techniques and their application in behavioral sciences.
Prerequisite: Junior or senior classification.

EPSY 459 Practicum in Educating the Gifted and Talented
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Theory and strategies for instruction and guidance of the gifted and talented through a supervised experience in a laboratory setting with gifted and talented children and/or adolescents. May be taken two times for credit.
Prerequisites: Approval of department head and instructor; junior or senior classification.

EPSY 484 Field Experiences
Credits 0 to 6. 0 to 6 Other Hours.
University-supervised experience in a professional employment setting related to specializations in guidance and special education. May be repeated to 6 hours total.
Prerequisites: Approval of student's advisor and department head.

EPSY 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Research problems and readings in areas selected to supplement existing offerings; individual reports, oral and written, required.
Prerequisites: Junior or senior classification; approval of instructor.

EPSY 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of educational psychology. May be repeated for credit.
Prerequisite: Approval of instructor.

EPSY 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in educational psychology. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

ESET - Electronic Sys Eng Tech (ESET)

ESET 210 Circuit Analysis
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Electric and magnetic principles of components used in DC and AC circuits; transient analysis; phasor analysis; Ohm's and Kirchhoff's laws, Thevenin's and Norton's theorems, mesh and nodal equations; measurement of current, voltage and waveforms with meters and oscilloscopes.
Prerequisite: Grade of C or better in MATH 151.

ESET 211 Power Systems and Circuit Applications
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of energy systems; power generation/distribution; motors/generators; AC power analysis; power factor correction; application of Thevenin's and Norton's Theorems, Superposition Theorem, and Mesh and Nodal analysis; resonant circuits; passive filters; nonsinusoidal circuits; pulse waveforms; measurements of AC circuits; circuit analysis using Multisim.
Prerequisites: Grade of C or better in ESET 210 and MATH 152; electronic systems engineering technology major.

ESET 219 Digital Electronics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Survey of digital applications, number systems, digital logic devices and circuits, sequential logic.

ESET 269 Embedded Systems Development in C
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to programming using the C programming language and embedded microcontroller systems; fundamental language syntax and symbantics, concentration of the application to embedded systems.
Prerequisites: Grade of C or better in ESET 219 or concurrent enrollment; electronic systems engineering technology or multidisciplinary engineering technology majors.

ESET 300 Industrial Electricity
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Industrial applications of electrical theory, codes, circuitry, wiring devices, motors and controllers, switch gear and solid state controls.
Prerequisite: PHYS 207; grade of C or better in ENGR 217/PHYS 217 or PHYS 217/ENGR 217; junior or senior classification in industrial distribution or engineering technology.
ESET 315 Local-and-Metropolitan-Area Networks
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Design, operation, application and management of LANs and MANs; topologies, cabling systems, protocols, bridges, routers, hubs, switches, security, media and transport systems; Internet and TCP/IP topics including the protocol stack, router operation and addressing issues.
Prerequisites: Grade of C or better in ESET 219; electronic systems engineering technology major.

ESET 319 Engineering Leadership
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Exploration of Emotional Intelligence (EI), identification of personal EI competencies and areas for improvement, and development of these competencies and skills; determination of techniques to anticipate and manage our emotions, and to anticipate and work with the emotions of others.
Prerequisite: Grade of C or better in ENGL 103 or ENGL 104; electronic systems engineering technology major.

ESET 329 Six Sigma and Applied Statistics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Concepts of probability and statistics, mean, variance, Gaussian/uniform/Student/Weibull distributions, and their applications in electronics design, analysis, and troubleshooting; Six Sigma process and tools including Gauge R&R, test of hypotheses, analysis of variance, linear regression, response surface method, control chart, and design of experiments.
Prerequisites: Grade of C or better in ESET 210 and MATH 152; electronic systems engineering technology major.

ESET 333 Product Development
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Process of product development to create an idea; development of a business plan; market research; voice of customer; managing resources; project management; identifying product partners; creating a unique product and/or company.
Prerequisite: Grade of C or better in ENGR 112, ENGR 217/PHYS 217, or PHYS 217/ENGR 217, or concurrent enrollment; electronic systems engineering technology major or embedded systems integration minor.

ESET 349 Microcontroller Architecture
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Microcontrollers including type of circuits and how they function; architecture of microcontrollers; instruction sets and how they are programmed.
Prerequisites: Grade of C or better in ESET 219 and ESET 269; electronic systems engineering technology major.

ESET 350 Analog Electronics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Study of semiconductor devices including diodes, field effect transistors, bipolar junction transistors, and operational amplifiers; applications include signal conditioning, power supplies, active filters, discrete transistor amplifiers, and transistor switching/driver circuits.
Prerequisites: Grade of C or better in ESET 210; grade of C or better in CHEM 107 and CHEM 117, or CHEM 120; grade of C or better in ENGL 103 or ENGL 104, PHYS 218 or ENGR 216/PHYS 216 or PHYS 216/ENGR 216, and MATH 152, and PHYS 206 or PHYS 218; junior or senior classification in electronic systems engineering technology.

ESET 352 Electronics Testing I
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Testing of electronic devices and systems; including test planning, test reporting, test specifications, parametric testing, measurement accuracy, test hardware, sampling theory, digital signal processing based testing, and calibrations; both circuit analysis (2/3) and circuit design (1/3) with several analog and mixed-signal systems.
Prerequisites: Grade of C or better in ESET 300; junior or senior classification in electronic systems engineering technology.

ESET 355 Electromagnetics and High Frequency Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
High frequency concepts including topics in basic electromagnetics, transmission lines, antennas, and RF circuit design; applications including wireless communication systems, fiber optic systems, and high frequency PCB layout.
Prerequisites: Grade of C or better in ESET 211, PHYS 207, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; junior or senior classification in electronic systems engineering technology.

ESET 359 Electronic Instrumentation
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamentals of electronic measurement systems, signals, sampling theorem, analog to digital and digital to analog conversions; signal conditioning; bio-potentials and biomedical transducer characteristics; digital signal processing; computer-based data acquisition using graphical development environment; and digital communication protocols.
Prerequisites: Grade of C or better in ESET 349 and ESET 350; grade of C or better in ENGL 103 or ENGL 104; junior or senior classification in electronic systems engineering technology.

ESET 366 Communications Electronics
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fundamental communications concepts, frequency domain, analog and digital modulation, transmitter and receiver architectures, communication circuits including filters/oscillators/PLLs/amplifiers/mixers, fiber optics.
Prerequisites: Grade of C or better in ESET 350 or concurrent enrollment; junior or senior classification; or approval of instructor.

ESET 369 Embedded Systems Software
Credits 4. 3 Lecture Hours. 3 Lab Hours.
A study of the technical aspects of embedded computer software systems, with emphasis on embedded real-time systems, programming techniques and development methodologies.
Prerequisites: Grade of C or better in ESET 349; junior or senior classification in electronic systems engineering technology.

ESET 400 Industrial Automation
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Industrial applications of electronic devices; instrumentation; AC and DC drives; local area networks; cell and area controllers and advanced applications of programmable controllers.
Prerequisites: Grade of C or better in ESET 300; junior or senior classification in industrial distribution.

ESET 415 Advanced Network Systems and Security
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Advanced topics of the network systems and security including network design and protocol (BGP, IP Routing, IPv6, NAT, DNS); network security (ACLs, TCP/IP security, and VPN); socket programming and cryptographic protocols.
Prerequisites: Grade of C or better in ESET 315; junior or senior classification in electronic systems engineering technology or approval of instructor.
ESET 419 Engineering Technology Capstone I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Project management tools for a formal technical proposal; addresses scope, schedule, risk, cost, milestones and deliverables; planning and initial design of prototype implemented in ESET 420; teams must have sponsor and technical advisor.
Prerequisites: Grade of C or better in ESET 319 or MXET 300, ESET 333 or MMET 361, and ESET 369; must be taken the fall or spring semester immediately prior to ESET 420; senior classification.

ESET 420 Engineering Technology Capstone II
Credits 2. 6 Lab Hours.
Second semester course in capstone design sequence; focus on design implementation, testing, documentation, demonstration, and presentation of a fully functional prototype; professional design tools for schematic capture, printed circuit board layout and software development, integration and validation.
Prerequisites: Grade of C or better in ESET 419; grade of C or better in ESET 352, ESET 415, ESET 455 and ESET 462, or concurrent enrollment; senior classification in electronic systems engineering technology.

ESET 435 Data Communications
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Data communications concepts and techniques involving error detection and correction, data link control, switching, client-server computing, data compression, data security, internet protocol (IP), transmission control protocol (TCP), includes development of a data link control layer and a client server system utilizing socket by using C Programming Language in Visual C++ environment.
Prerequisites: ESET 315 and ESET 369 with a grade of C or better; junior or senior classification in electronic systems engineering technology.

ESET 444 Building Energy Management Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Essential elements of energy management from understanding energy production to consumption; identification of the major components of energy management of buildings, energy audit to business (strategy), Heating Ventilating Air Conditioning (HVAC), control systems, economics (ROI) and engineering system integration.
Prerequisites: Senior classification.

ESET 452 Electronics Testing II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Advanced testing techniques of electronic devices and systems; study of advanced electronics test methodologies; emphasis on circuits containing analog to digital converters (ADCs) and digital to analog converters (DACs); device interface board design and data analysis; both circuit analysis (2/3) and circuit design (1/3) using industry grade state-of-the-art equipment.
Prerequisites: Grade of C or better in ESET 349 and ESET 352; junior or senior classification in electronic systems engineering technology.

ESET 453 Validation and Verification
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Validation of semiconductor devices; differences between validation and production testing; extensive use of Altium for simulation and layout of circuits; use of Spotfire to analyze data acquired as part of validation process; focus on acquisition of valid data and clear and concise presentation of data to stakeholders.
Prerequisites: Grade of C or better in ESET 352; junior or senior classification in electronic systems engineering technology.

ESET 455 Wireless Transmission Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
System engineering aspects of microwave, satellite and cellular communication systems; power budget calculations, propagation analysis, systems descriptions; CNR, CIR; review of modulations practical engineering considerations.
Prerequisites: Grade of C or better in ESET 315 and ESET 355; junior or senior classification in electronic systems engineering technology.

ESET 456 Embedded Sensors and Internet of Things (IoT) Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integration of off-the-shelf sensors and embedded intelligence components to form data acquisition, monitoring and control of remote equipment and systems through wired and wireless networks; algorithm development and implementation in interrupt-driven and RTOS-based firmware environments; collection, reduction, analysis and information extraction of data from multiple edge devices using industry-standard cloud-based software environments.
Prerequisites: Grade of C or better in ESET 355, ESET 359, and ESET 369; junior or senior classification in electronic systems engineering technology.

ESET 462 Control Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Components, principles and techniques fundamental to automated control systems; study of transfer functions, network analysis using Laplace transforms, Z transforms, feedback control systems theory, digital computer simulation and computer-based controls systems.
Prerequisites: Grade of C or better in ESET 359 and ESET 369; junior or senior classification in electronic systems engineering technology.

ESET 469 Embedded Real Time Software Development
Credits 3. 3 Lecture Hours.
Survey of the operation and use of Real Time Kernels as the basis for embedded system firmware development; includes task operation, inter-task communications, synchronization, dynamic memory, multitask system design and defensive programming techniques; embedded RTOS applications.
Prerequisites: Grade of C or better in ESET 369; junior or senior classification in electronic systems engineering technology.

ESSM 102 Introduction to Natural Resources and Ecosystem Management
Credit 1. 1 Lecture Hour.
Introduction to natural resources including range and forest and ecosystem system approach to wildland management; survey of the field of natural resources and related industries.

ESSM 201 Exploring Ecosystem Science and Management
Credit 1. 1 Lecture Hour.
Exploration of knowledge, skills and abilities required for varied careers within ecosystem science and management; development of a professional portfolio and résumé; exploration of career options through team approach; conduct one service project.

ESSM 203 Forest Trees of North America
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Taxonomy, phylogeny, and identification of the important forest trees of North America and their ecological and social uses and benefits.
Prerequisites: BIOL 101, BIOL 107, BIOL 111 or BIOL 113 and BIOL 123 or equivalent.
ESSM 281 Seminar in Ecosystem Science and Management
Credit 1. 1 Other Hour.
Writing intensive, focused on writing and formatting technical documents relevant to ecosystem sciences and management; includes memos, short synthesis papers and one longer review paper.
Prerequisites: RENR, FORS, RLEM, ECOR and SPSA majors only.

ESSM 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in ecosystem science and management. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ESSM 300 Field Studies in Forest Ecosystems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Field-oriented focus on forest ecosystem science and management; problem-solve management questions through data collection and team-based research; investigate the relationships between landowner objectives, mensuration, silviculture, ecology, soils, and regeneration-focused harvesting systems; foster the development of student-faculty relationships; enhance professional knowledge and skills.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 301 Wildland Watershed Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elements of watershed management including range, forest and other natural resources and principles and practices of wildland management for protection, maintenance and improvement of water resource values.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 302 Wildland Plants of North America
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Familiarization with the distribution and economic value of important wildland plants including range, forest and other natural resources in Texas and North America and fundamentals of sight identification of these plants; plant collection required.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 303 Agrostology
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Classification and identification of grasses based on macro- and micromorphological variations of spikelets; interpretation of spikelet variation and use of diagnostic keys to identify important species of North America including range, forest and other natural resources; a grass collection required.
Prerequisites: Junior or senior classification or approval of instructor.

ESSM 304 Rangeland Plant Taxonomy
Credits 4. 2 Lecture Hours. 6 Lab Hours.
Interpretation of plant morphology for keying and identification of important flowering rangeland plants; vegetative and floral characters for important plant families including toxic compounds affecting domestic livestock. Plant collection required.
Prerequisites: Junior or senior classification or approval of instructor.

ESSM 305 Watershed Analysis and Planning
Credits 3. 3 Lecture Hours.
Provide an integrated framework for watershed planning that addresses the related biophysical, social and economic issues; comprehensive in scope and approach giving students the tools and techniques for developing sound watershed management policy and practice; water issues, problems and regulations for Texas.
Prerequisite: Junior or senior classification.

ESSM 306 Plant Functional Ecology and Adaptation
Credits 3. 3 Lecture Hours.
Investigation of physiological mechanisms influencing ecological patterns and processes, including plant acclimation and adaptation in contrasting habitats; abiotic controls on species productivity and distribution; underlying genetic and evolutionary mechanisms contributing to the occurrence of specific genotypes and phenotypes in unique environments.
Prerequisites: RENR 205, any BIOL course, junior or senior classification or approval of instructor.

ESSM 307 Forest Protection
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Destructive agents in forestry as related to importance, identification, cause, extent of losses and protective measures.
Prerequisites: RENR 205, or equivalent, junior or senior classification or approval of instructor.

ESSM 308 Fundamentals of Environmental Decision-Making
Credits 3. 3 Lecture Hours.
Introduction to environmental issues in natural resources management; fundamental principles and methods for understanding biosocial interdependencies in complex environmental issues; use of computer-aided group decision-making techniques to develop cooperative strategies for resolving local or global environmental issues.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 309 Forest Ecology
Credits 3. 3 Lecture Hours.
Life history and general characteristics of trees; structure and function of forest ecosystems; fundamental principles of forest tree physiology and ecology applied to an analysis of tree growth in relation to environmental factors and present day forest management; global changes and forests.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 310 Forest Tree Improvement and Regeneration
Credits 3. 3 Lecture Hours.
Genetic improvement or manipulation of forest trees through breeding or transformation; regeneration of forests including reproduction, nursey production, stand establishment, natural regeneration and problems affecting regeneration.
Prerequisites: BIOL 101, BIOL 113 or equivalent; junior or senior classification.

ESSM 311 Biogeochemistry and Global Change
Credits 3. 3 Lecture Hours.
Framework for understanding biogeochemical cycles, their significance at both global and ecosystem levels of organization, and their contemporary relevance to ecosystem science and management.
Prerequisites: RENR 205, RENR 215, any BIOL and/or CHEM course, junior or senior classification or approval of instructor.

ESSM 313 Vegetation Sampling Methods and Designs in Ecosystems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Basis for vegetation sampling in ecosystems including range, forest and other natural resources; methods for conducting sampling; selection of sampling unit appropriate for vegetation type; sampling statistics; mean comparisons; regression analysis; sampling design principles; development of sampling plan; presentation and interpretation of sampling data.
Prerequisites: Any MATH course satisfying university core curriculum, junior or senior classification or approval of instructor.
ESSM 314 Principles of Rangeland Management Around the World
Credits 3. 3 Lecture Hours.
Basic knowledge of world rangeland ecosystems, how these systems are managed in diverse cultural settings; principles of underlying ecological processes influenced by various land management practices; foster understanding of the values that people in different countries place on rangeland resources; use of these values to enhance geologically sustainable and socially acceptable rangeland management practices.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 315 Rangeland Inventory and Monitoring
Credit 1. 2 Lab Hours.
Theory and methods to inventory rangeland vegetation; sampling design; analysis of inventory data; interpretation of sampling data; preparation of a technical report; presentation of inventory data in text, tables, and graphs using the style of the Rangeland Ecology and Management discipline.
Prerequisites: ESSM 313, junior or senior classification or approval of instructor.

ESSM 316 Range Ecology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Organization and distribution of rangeland ecosystems of the world, with emphasis on North America; community dynamics and functions stressed including biotic history, succession, disturbance regimes, competitive interactions, herbivory, energy flow and nutrient cycling; conservation of rangeland resources.
Prerequisites: RENR 205, RENR 215, ESSM 302, and ESSM 314, junior or senior classification or approval of instructor.

ESSM 317 Vegetation Management
Credits 3. 3 Lecture Hours.
Familiarization with practices that cause changes in rangeland vegetation composition for multiple uses; understanding of criteria for range improvement practices; comparison of expected responses of livestock forage production, watershed parameters and wildlife to vegetation changes following range improvements; systems concept for planning, analysis and implementation of range improvement practices.
Prerequisites: ESSM 314, junior or senior classification or approval of instructor.

ESSM 318 Coupled Social and Ecological Systems
Credits 3. 3 Lecture Hours.
Resilience-based stewardship of social-ecological systems including range, forest and other natural resources; ecological concepts of resilience, sustainability, ecosystem services and vulnerability; investigation of linkages among social and ecological system components; contribution to sustainability and provision of ecosystem services; evaluation of multiple knowledge sources as the basis for adaptive ecosystem management.
Prerequisites: RENR 205, AGEC 105 or equivalent, junior or senior classification or approval of instructor.

ESSM 319 Principles of Forestry
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Theory and practice of forestry in controlling forest establishment, composition, structure and growth; principles of natural and artificial regeneration; intermediate cultural operations; silvicultural systems; use and control of fire in forests; principles of sustainable stand management.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 320 Ecosystem Restoration and Management
Credits 3. 3 Lecture Hours.
A basic conceptual framework for restoration ecology and ecological restoration including range, forest and other natural resources; major principles of ecology related to practical problems confronting humankind, such as, environmental pollution and degradation, exotic species invasions, land use and management trade-offs and consequences; importance of biological diversity.
Prerequisite: RENR 205, RENR 215 or equivalent, junior or senior classification or approval of instructor.

ESSM 324 Forest Measurements
Credits 2. 4 Lab Hours.
Measures and measurement of the dimensions and attributes of forested areas including the diameters, heights, volume and biomass of trees within a well-defined area; tools used for forest measurement; the conduct of forest inventories; summary measures and reports of inventory results; remote sensing and related technologies that assist forest measurements.
Prerequisites: ESSM 313 and ESSM 319 or concurrent enrollment; junior or senior classification.

ESSM 351/RENR 405 Geographic Information Systems for Resource Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geographic Information Systems (GIS) approach to solving spatial problems and managing natural resources, including the acquisition, management, manipulation, analysis, and mapping of spatial and non-spatial databases; identification of natural and relevant features from various data sources; integration of relevant technologies and data; extensive use of GIS software to solve real-world problems. Only one of the following will satisfy the requirements for a degree: ESSM 351/RENR 405, RENR 405/ESSM 351, ESSM 651, BAEN 651 and RENR 651.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RENR 405/ESSM 351.

ESSM 398 Interpretation of Aerial Photographs
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Identification and evaluation of natural and cultural features on aerial photographs; methods for extracting information concerning land use, vegetative cover, surface and structural features, urban/industrial patterns and archaeological sites.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 404 Changing Natural Resource Policy
Credits 3. 3 Lecture Hours.
Process through which environmental policies are changed; study theories of social and political change; teams use theories with their original research on environmental policy problems to create and implement plans for changing environmental policies in their own communities.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 405 Forest Resource Assessment and Management
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Integration of biophysical, economic and social factors in forest resource analysis, management planning and decision making; applications of interdisciplinary knowledge and multiple-use principles to practical forest management problems.
Prerequisite: Senior classification or approval of instructor.
ESSM 406 Natural Resources Policy
Credits 3. 3 Lecture Hours.
Natural resources and forest policy development in the United States and review of current issues in forest and related natural resource policy.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 415 Range Analysis and Management Planning
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Basic concepts and theories of range management systems. Resource inventory, analysis and management planning.
Prerequisites: AGEC 105 or ECON 202, ESSM 314, ESSM 317; junior or senior classification or approval of instructor.

ESSM 416 Fire Ecology and Natural Resource Management
Credits 3. 3 Lecture Hours.
Behavior and use of fire in the management of natural resources including range, forest and other natural resources; principles underlying the role of weather, fuel characteristics and physical features of the environment related to the development and implementation of fire management plans.
Prerequisite: RENR 205 or equivalent, junior or senior classification or approval of instructor.

ESSM 417 Prescribed Fire
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Use of prescribed fire to achieve ecosystem management objectives; understanding of how to plan and implement prescribed fires; coursework on fire behavior, fuel properties and the social aspects of prescribed fire and wildfire; how to safely use fire to achieve multiple outcomes including biodiversity conservation, reduced hazardous fire risk, livestock production and timber management.
Prerequisites: ESSM 416.

ESSM 420 Ecological Restoration of Wetland and Riparian Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
How wetland and riparian areas link terrestrial and aquatic systems and function hydrologically and ecologically within watersheds; integrated approaches for restoration of degraded wetland and riparian systems; improving water resources through vegetation management with a special interest in rangelands.
Prerequisites: RENR 205, junior or senior classification or approval of instructor.

ESSM 430 Advanced Restoration Ecology
Credits 3. 3 Lecture Hours.
A dynamic discipline relying heavily on the fundamentals of ecology; practice translating and communicating key ecological concepts to advanced case studies in ecological restoration; enhance skills for professional applications.
Prerequisites: RENR 205, ESSM 320, ESSM 420; junior or senior classification.

ESSM 440 Wetland Delineation
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Covers the application of the 1987 Wetland Delineation Manual in use by the Army Corps of Engineers (CORPS); field indicators of hydrophic vegetation; hydric soils, wetland hydrology, methods for making jurisdictional determinations in non-disturbed and disturbed areas, recognition of problem wetlands and technical guidelines for wetlands.
Prerequisite: Junior or senior classification.

ESSM 444 Remote Sensing of the Environment
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles and techniques necessary for applying remote sensing to diverse issues in studying and mapping land uses and land covers of the terrestrial environment; emphasizes a hands-on learning approach with theoretical foundations and applications in both aerial and satellite remote sensing, using optical and lidar datasets.
Prerequisite: Junior or senior classification or approval of instructor.

ESSM 446 Unmanned Aerial Systems (UAS) for Remote Sensing
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental components of small unmanned aerial systems (sUAS), sensors and platforms, UAS operational concepts, the principles of UAS data collection, legal framework within which UAS should be operated and applied, data processing software and the generation of orthomosaics and 3D point clouds, emphasizes the use of UAS in a broad spatial sciences, technology and applications context, including vegetated ecosystems.
Prerequisites: ESSM 444 or approval of instructor; junior or senior classification.

ESSM 459 Programming for Spatial Data Applications
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Programming for spatial data applications in general and for natural resources application in particular; basic programming concepts and constructs for the creation and manipulation of spatial data; automating of processes; programming behind spreadsheet and GIS applications.
Prerequisites: ESSM 351/RENR 405 or equivalent, junior or senior classification or approval of instructor.

ESSM 461 Spatial Databases for Data Storage, Manipulation and Analysis
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Relational databases and advanced geodatabase capabilities; types of geodatabases; Structured Query Language including join-types and subqueries; ArcGIS Desktop Advanced.
Prerequisites: ESSM 459; junior or senior classification or approval of instructor.

ESSM 462/GEOG 462 Advanced GIS Analysis for Natural Resources Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Advanced topics in geographic information systems (GIS) to solve natural resource problems; manipulation of raster data types; three-dimensional modeling; emphasis on geoprocessing as it relates to applied projects particularly with habitat suitability models; field and lab use of global positioning systems (GPS); internet-based GIS modeling.
Prerequisites: ESM 351/RENR 405 or AGSM 461 or equivalent or approval of instructor; junior or senior classification.
Cross Listing: GEOG 462/ESSM 462.

ESSM 464 Spatial Project Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Integration of key components of spatial project management to ensure a successful project implementation using life-cycle methodology and spatial project management; strategy and planning, requirements analysis, design, development, deployment, and operations and maintenance; term project working with real world data to develop and manage a spatial project for practical applications.
Prerequisites: ESSM 351/RENR 405 and ESSM 444, junior or senior classification or approval of instructor.
ESSM 480 Plant Identification and Undergraduate Range Management Exam Team Competitions
Credits 0 to 3. 0 to 3 Other Hours.
Knowledge of plants morphology, identification and distribution for the profession of range management; knowledge of range management across the world; weekly tests to train on plant and range management knowledge. May be repeated for credit.
Prerequisites: Junior or senior classification or approval of instructor.

ESSM 481 Senior Seminar
Credit 1. 1 Lecture Hour.
Completion of professional e-portfolio, résumé and job application; exploration of job search, application, and interview; discipline competency exams; program evaluation.
Prerequisite: Senior classification in ESSM degree program.

ESSM 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Supervised experience program conducted in the student’s area of specialization.
Prerequisite: Approval of student’s advisor.

ESSM 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual study and research upon a selected range problem.
Prerequisite: Approval of student’s advisor.

ESSM 489 Special Topics in... Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of rangeland ecology and management. May be repeated for credit.
Prerequisite: Approval of instructor.

ESSM 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in ecosystem science and management. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor.

EURO - European Studies (EURO)

EURO 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in European studies selected for each student individually.
Prerequisites: Approval of instructor and department head.

EURO 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of European studies. May be repeated for credit.
Prerequisite: Approval of instructor.

EURO 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in European languages and cultures. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of department head.

EURO 405/FILM 405 European Cinema
Credits 3. 3 Lecture Hours.
Exploration of key movements in European cinema from 1895 to the present, including both national cinematic traditions, such as Italian Neorealism or French New Wave, and international trends such as Formalism, Expressionism, or Auteurism.
Prerequisite: FILM 251/ENGL 251, FILM 299, or approval of instructor.
Cross Listing: FILM 405/EURO 405.

EURO 441/RUSS 441 The Russian Novel I: Tolstoy and Dostoevsky
Credits 3. 3 Lecture Hours.
Study of the major works of Tolstoy and Dostoevsky; discussion of the literary nature and purpose of novels, especially in the context of Russian culture; taught in English.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RUSS 441/EURO 441.

EURO 442/RUSS 442 The Russian Novel II: The Twentieth Century
Credits 3. 3 Lecture Hours.
Study of major Russian novels from ca. 1900 to the end of Stalinism; exploration of topics relevant to Russia’s experience in the 20th century; taught in English.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: RUSS 442/EURO 442.

EURO 443/RUSS 443 Contemporary Russian Prose
Credits 3. 3 Lecture Hours.
Study of Russian and Soviet 20th century prose literature, with emphasis on post-Stalinist and post-glasnost writers; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: RUSS 443/EURO 443.

EURO 444/RUSS 444 Russian Drama
Credits 3. 3 Lecture Hours.
Introduction to the masterpieces of Russian drama from the 19th century to the present; includes such authors as Pushkin, Chekhov, Gorky, Arbuzov, Rozov and Petrushevskaya; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: RUSS 444/EURO 444.

EURO 446/RUSS 446 Russian Artistic Culture I: Beginnings to 1900
Credits 3. 3 Lecture Hours.
Masterpieces of Russian art, including architecture, dance, theater, music, and literature, from its beginnings until ca. 1900; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: RUSS 446/EURO 446.

EURO 447/RUSS 447 Russian Artistic Culture II: 1890 to Present
Credits 3. 3 Lecture Hours.
Masterpieces of Russian art, including architecture, dance, theater, music, film, and literature, from ca. 1890 to the present; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: RUSS 447/EURO 447.

EURO 451/ITAL 451 Introduction to Italian Culture
Credits 3. 3 Lecture Hours.
Introduction to the culture of the Italian Peninsula, from Middle Ages to present; study of major works of literature, political science, visual arts, music and cinema, to set Italy’s culture in its social and historical context; taught in English.
Prerequisite: ITAL 201 or registration therein, or approval of instructor.
EURO 453/ITAL 453 Italian Literature
Credits 3. 3 Lecture Hours.
Survey of Italian literature; focus on literary portrayal of reality in modern and contemporary Italian culture, the dialogue with the classical tradition, and literature’s potential to affect and be affected by social critique; taught in English.
Prerequisite: ITAL 201 or concurrent enrollment, or approval of instructor.
Cross Listing: ITAL 453/EURO 453.

EURO 456/ITAL 456 Contemporary Italy
Credits 3. 3 Lecture Hours.
Examination of changes in Italian society and culture since World War II, with focus on their narration and interpretation by representative authors and filmmakers, and on multicultural literary production in present-day Italy; taught in English.
Prerequisite: ITAL 201 or concurrent enrollment or approval of instructor.
Cross Listing: ITAL 456/EURO 456.

EURO 484 Internship
Credits 1 to 3. 1 to 3 Other Hours.
Directed Internship in a private firm or public agency to provide experience and learning appropriate to the student’s degree program and career objectives. Must be taken on a satisfactory/unsatisfactory basis. May be taken two times for credit.
Prerequisite: Junior or senior classification.

EURO 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in European studies, selected for each student individually.
Prerequisite: Approval of instructor and department head.

EURO 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of European studies. May be repeated for credit.
Prerequisite: Approval of instructor.

EURO 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in European languages and cultures. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of department head.

EVEN - Environmental Engr (EVEN)

EVEN 201 Introduction to the Environmental Engineering Profession
Credit 1. 1 Lecture Hour.
Introduction to the study and practice of environmental engineering; professionalism and professional registration; engineering ethics; exercises in technical communication.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; or approval of instructor.

EVEN 301/CVEN 301 Environmental Engineering
Credits 3. 3 Lecture Hours.
Water quality; material balances; chemical, physical and biological processes; water quality modeling; water and wastewater treatment; air quality; solid and hazardous waste management.
Prerequisites: Grade of C or better in CHEM 107; Grade of C or better in CVEN 302 and MATH 308, or concurrent enrollment.
Cross Listing: CVEN 301/EVEN 301.

EVEN 304/CVEN 304 Environmental Engineering Lab
Credit 1. 3 Lab Hours.
Environmental measurements on physical, chemical, biological and biotechnological parameters of water.
Prerequisites: CVEN 301/EVEN 301 or CVEN 301/CVEN 301, or concurrent enrollment; CVEN 311/EVEN 311 or concurrent enrollment; or approval of instructor.
Cross Listing: CVEN 304/EVEN 304.

EVEN 311/CVEN 311 Fluid Dynamics
Credits 3. 3 Lecture Hours.
Fluid properties; statics; kinematics; basic conservation principles of continuity, energy and momentum; similitude and hydraulic models; incompressible flow in pipes; fluid dynamic drag.
Prerequisites: Grade of C or better in MATH 251 and CVEN 221; grade of C or better in CVEN 302, or concurrent enrollment; CVEN-311 also taught at Galveston campus.
Cross Listing: CVEN 311/EVEN 311.

EVEN 339/CVEN 339 Water Resources Engineering
Credits 3. 3 Lecture Hours.
Quantitative hydrology, precipitation, hydrograph analysis, reservoir and stream routing; groundwater, Darcy equation, well equation, well design; probability concepts in design; water law; dams; reservoirs; spillways; open channel and pipe network hydraulics; pumps; urban stormwater drainage; flood damage mitigation.
Prerequisite: CVEN 311/EVEN 311.

EVEN 399 Mid-Curriculum Professional Development
Credits 0. 0 Lecture Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from environmental engineering body of knowledge; documentation of experience appropriate to eventual professional licensure; self-assessment of learning at mid-curriculum point.
Prerequisites: EVEN 301/CVEN 301 or CVEN 301/EVEN 301; EVEN 304/CVEN 304; EVEN 311/CVEN 311 or CVEN 301/EVEN 301; CVEN 302; CVEN 221; or approval of instructor.

EVEN 400 Design Problems in Environmental Engineering I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Capstone design project of an interdisciplinary or specialized nature involving both technical and non-technical aspects of an environmental engineering problem; managing a project through the evaluation, selection and preparation of an appropriate design solution for an open-ended problem; project to be completed in EVEN 401.
Prerequisites: EVEN 402/CVEN 402 or CVEN 402/EVEN 402; EVEN 413/CVEN 413 or CVEN 413/EVEN 413; senior classification; admitted to major degree sequence in environmental engineering; or approval of instructor.

EVEN 401 Design Problems in Environmental Engineering II
Credits 2. 0 Lecture Hours. 6 Lab Hours.
Continuation and completion of capstone environmental engineering project developed in EVEN 400; critical evaluation, revision, preparation and communication of final design solution.
Prerequisite: EVEN 400.
EVEN 402/CVEN 402 Engineered Environmental Systems
Credits 3. 3 Lecture Hours.
Unit operations and processes in environmental engineering; physical, chemical and biological treatment of water and wastewater; treatment system analysis and design.
Prerequisites: Grade of C or better in CVEN 301/EVEN 301 or EVEN 301/CVEN 301.
Cross Listing: CVEN 402/EVEN 402.

EVEN 404 Environmental Unit Operations Laboratory
Credit 1. 3 Lab Hours.
Applications of laboratory methods to measure fundamental aspects of behavior of environmental engineering processes; examination of critical chemical, physical and biological processes that control behavior of materials in multiple media (air, water, land) in natural and engineered systems; evaluation of effects of important process variables.
Prerequisites: CVEN 301/EVEN 301 or EVEN 301/CVEN 301; EVEN 304/CVEN 304; CHEM 222 or concurrent enrollment; CVEN 402/EVEN 402 or EVEN 402/CVEN 402 or concurrent enrollment; admitted to major degree sequence in environmental engineering; or approval of instructor.

EVEN 406 Environmental Protection and Public Health
Credits 3. 3 Lecture Hours.
Communicable and noncommunicable diseases; environmental risk assessment; environmental assessments; comprehensive environmental planning; small water and wastewater systems; solid waste management; hazardous spills and waste management; vector control; environmental administration.
Prerequisites: Grade of C or better in CVEN 301/EVEN 301 or EVEN 301/CVEN 301; or approval of instructor.
Cross Listing: CVEN 402/EVEN 402.

EVEN 413/CVEN 413 Natural Environmental Systems
Credits 3. 3 Lecture Hours.
Water quality assessment of natural environmental systems; development and calibration of models to describe fate and transport of contaminants in aquatic systems; application of models to design of water quality control facilities.
Prerequisite: Grade of C or better in EVEN 301/CVEN 301 or CVEN 301/EVEN 301.
Cross Listing: CVEN 413/EVEN 413.

EVEN 458/CVEN 458 Hydraulic Engineering of Water Distribution Systems
Credits 3. 3 Lecture Hours.
Pressure conduit hydraulics; design, modeling, and analysis of water conveyance and distribution systems including pipelines, pipe networks, and pumps.
Prerequisite: Grade of C or better in CVEN 339/EVEN 339 or EVEN 339/CVEN 339 or approval of instructor.
Cross Listing: CVEN 458/EVEN 458.

EVEN 462/CVEN 462 Engineering Hydrogeology
Credits 3. 3 Lecture Hours.
Groundwater in the hydrologic cycle; aquifer properties; well hydraulics, testing, and design; groundwater quality; and groundwater management and sustainability.
Prerequisites: Grade of C or better in CVEN 311/EVEN 311 or EVEN 311/CVEN 311; Grade of C or better in CVEN 301/EVEN 301, EVEN 301/CVEN 301, CVEN 339/EVEN 339, or EVEN 339/CVEN 339; junior or senior classification; or approval of instructor.
Cross Listing: CVEN 462/EVEN 462.

EVEN 463/CVEN 463 Engineering Hydrology
Credits 3. 3 Lecture Hours.
Occurrence, distribution and properties of natural waters of the earth; measurement and engineering analysis of hydrologic phenomena including precipitation, streamflow and groundwater, hydrologic design of water resources development and management projects.
Prerequisite: Grade of C or better in CVEN 339/EVEN 339 or EVEN 339/CVEN 339.
Cross Listing: CVEN 463/EVEN 463.

EVEN 466 Sustainability and Life Cycle Analysis
Credits 3. 3 Lecture Hours.
Definitions of sustainability and sustainable development from social, economic, political, and technical perspectives; life-cycle analysis and quantitative assessment of sustainability; industrial ecology; valuation of environmental goods and externalities; sustainable infrastructure design and management.
Prerequisites: Junior or senior classification or approval of instructor.

FILM - Film Studies (FILM)

FILM 215/INTS 215 Global Cinema
Credits 3. 3 Lecture Hours.
History and theory of global cinema; historical, socio-political, national and international contexts of film production and reception; transnational film.

FILM 251/ENGL 251 Introduction to Film Analysis
Credits 3. 3 Lecture Hours.
Fundamental aspects of film analysis and criticism; ENGL-251 also taught at Galveston and Qatar campuses.
Cross Listing: ENGL 251/FILM 251.

FILM 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Selected fields of film studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: FILM 251/ENGL 251 or FILM 299, and approval of instructor.

FILM 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Special topics in an identified area of film studies.

FILM 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in film.
Prerequisites: FILM 251/ENGL 251 or FILM 299 and freshman or sophomore classification and approval of instructor.

FILM 299 History of Film
Credits 3. 3 Lecture Hours.
Historical development of major periods, movements and styles, including several different national cinemas.

FILM 324/ENGL 324 Science Fiction and Film
Credits 3. 3 Lecture Hours.
History and trajectory of science fiction film into the 21st century by filmmakers such as Kubrick, Jenkins, Cameron, Coogler and others.
Prerequisites: 3 credits of literature at 200-level or above.
Cross Listing: ENGL 324/FILM 324.
FILM 343/WGST 343 Sex, Gender and Cinema
Credits 3. 3 Lecture Hours.
Exploration of a significant topic at the intersection of women's/gender studies and film, such as cinema and sexuality studies, cinema and women, and cinema and masculinity; may include discussion of production, film content, and/or reception.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: WGST 343/FILM 343.

FILM 345/COMM 345 Media Industries
Credits 3. 3 Lecture Hours.
Survey of the business organization, economic structures and processes, and regulations of the media industry.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: COMM 345/FILM 345.

FILM 349 Documentary Cinema
Credits 3. 3 Lecture Hours.
History and theory of documentary cinema; examination of documentary film's ability to both reflect and shape the history of its time. May be taken two times for credit.
Prerequisite: Junior or senior classification, or approval of instructor.

FILM 351/ENGL 351 Advanced Film
Credits 3. 3 Lecture Hours.
A different film topic each term; sample topics include major directors, historical periods, fiction into film, film genres. May be repeated for credit.
Prerequisite: ENGL 251/FILM 251 or FILM 251/ENGL 251 or FILM 299 or approval of instructor; junior or senior classification.
Cross Listing: ENGL 351/FILM 351.

FILM 356/ENGL 356 Literature and Film
Credits 3. 3 Lecture Hours.
Novels and films based on them; writers and filmmakers such as Virginia Woolf, John Steinbeck, John Ford, Sally Potter, John Huston, Charlotte Bronte and Peter Bogdanovich.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: ENGL 356/FILM 356.

FILM 358/ENGL 358 Screenwriting
Credits 3. 3 Lecture Hours.
Analysis of screenplay structure coupled with writing assignments illustrating principles of form.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 358/FILM 358.

FILM 376/PHIL 376 Philosophy, Film and Evil
Credits 3. 3 Lecture Hours.
Application of philosophical methods and analyses to the medium of film; survey of various depictions and treatments of evil within the genre of science fiction; investigation of depictions and treatments of evil arising from consideration of human encounters with alien others.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: PHIL 376/FILM 376.

FILM 394 Studies in Film Genre
Credits 3. 3 Lecture Hours.
Study of a specific film genre, such as Western, Gangster, Mystery, Science Fiction; genre varies each time course is taught; movies are screened and analyzed along with assigned readings that explore characteristics of the genre and its cultural importance. May be repeated for credit.
Prerequisite: ENGL 251/FILM 251, FILM 251/ENGL 251, or FILM 299, or approval of instructor.

FILM 398/AFST 398 Africana Cinema
Credits 3. 3 Lecture Hours.
Overview of African cinema; historical survey of cinema from Africa and the African Diaspora; introducing films produced in several geographical regions and reflecting different filmmaking traditions. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: AFST 398/FILM 398.

FILM 401 National Cinema History
Credits 3. 3 Lecture Hours.
Cinema History of a given film-producing nation other than the United States, such as Japanese Film, Swedish Film, South African Film. May be taken three times for credit.
Prerequisites: ENGL 251/FILM 251, FILM 251/ENGL 251, or FILM 299, or approval of instructor.

FILM 402/PERF 402 Intermedia Performance
Credits 3. 3 Lecture Hours.
Study of theory, history, literature and techniques of intermedia composition and design for film, theatre, dance, interactive media, and other forms of performance; examination of the collaborative creative process; projects in interdisciplinary performance.
Prerequisites: Junior or senior classification.
Cross Listing: PERF 402/FILM 402.

FILM 405/EURO 405 European Cinema
Credits 3. 3 Lecture Hours.
Exploration of key movements in European cinema from 1895 to the present, including both national cinematic traditions, such as Italian Neorealism or French New Wave, and international trends such as Formalism, Expressionism, or Auteurism.
Prerequisite: FILM 251/ENGL 251, FILM 251/ENGL 251, or FILM 299, or approval of instructor.
Cross Listing: EURO 405/FILM 405.

FILM 406 Propaganda and Dissidence
Credits 3. 3 Lecture Hours.
Use of film as a medium to promote political ideology, government propaganda, political dissidence, and subversion, with focus on Europe.
Prerequisite: Junior or senior classification or approval of instructor.

FILM 415/CLAS 415 The Ancient World in Film
Credits 3. 3 Lecture Hours.
Study of modern films as they relate to ancient literary texts that inspired them or with which they share common themes; relationship between Greek epic, tragedy, and comedy and their cinematic adaptations; treatment of Rome as an idea or ideal in the work of both ancient Romans and modern filmmakers.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: CLAS 415/FILM 415.

FILM 417 Film Authorship
Credits 3. 3 Lecture Hours.
Exploration of a major film author (director, screenwriter or writer/director) as a vehicle for emphasizing intensive analysis, scholarship, film criticism and the question of individual authorship with the collective enterprise of filmmaking.
Prerequisites: ENGL 251/FILM 251, FILM 251/ENGL 251, or FILM 299, or approval of instructor.

FILM 425/FREN 425 French Film
Credits 3. 3 Lecture Hours.
Overview of French cinema; historical survey of cinema from France and the French Diaspora; introducing films produced in several geographical regions and reflecting different filmmaking traditions. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FREN 425/FILM 425.
FILM 435/GERM 435 German Film
Credits 3. 3 Lecture Hours.
Consideration and analysis of major works and directors of German Film; interpretation of culture through film; relationship of film to history, literature, and other arts; taught in English. May be repeated for credit.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: GERM 435/FILM 435.

FILM 445/COMM 435 Rhetoric of Television and Film
Credits 3. 3 Lecture Hours.
Critical analysis of television and film; close readings of such mediated texts; special attention to writing television and film criticism.
Prerequisite: Junior or senior classification.
Cross Listing: COMM 435/FILM 445.

FILM 455/ITAL 455 Italian Cinema
Credits 3. 3 Lecture Hours.
Survey of Italian cinema from Neorealism to the present; taught in English.
Prerequisites: Junior or senior classification, or approval of instructor.
Cross Listing: ITAL 455/FILM 455.

FILM 465/CHIN 465 Chinese Film
Credits 3. 3 Lecture Hours.
Consideration and analysis of major works and directors of Chinese film; interpretation of culture through film; relationship of film to history, literature and other arts; taught in English. May be taken two times for credit.
Prerequisite: Junior of senior classification, or approval of instructor.

FILM 481 Seminar in Film Studies
Credits 3. 3 Lecture Hours.
Seminar on a figure, theme, style, movement or theory in film studies, with practice in the methods of research in film studies, culminating in a substantial research paper. Open to seniors enrolled in the interdisciplinary minor in film studies and to others with approval of the Coordinator of Film Studies. May be taken two times for credit.
Prerequisite: FILM 251/ENGL 251 or FILM 299, or approval of instructor; junior or senior classification.

FILM 484 Internship in Film Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed internship in a public or private organization to provide students with applied experience in Film Studies; internship will be supervised by selected agency personnel and appropriate faculty; experiences and requirements will vary slightly according to placement and student interests.
Prerequisite: FILM 251/ENGL 251 or FILM 299; approval of instructor.

FILM 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Selected fields of film studies not covered in depth by other courses. Reports and extensive reading required. May be repeated for credit.
Prerequisite: FILM 251/ENGL 251 or FILM 299, and approval of instructor.

FILM 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Special topics in an identified area of film studies.
Prerequisite: Junior or senior classification or approval of instructor.

FILM 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in film.
Prerequisites: FILM 251/ENGL 251 or FILM 299; approval of instructor.

FINC - Finance (FINC)

FINC 201 Personal Finance
Credits 3. 3 Lecture Hours.
(BUSI 1307) Personal Finance. Financial management problems of the individual consumer; budgeting, insurance, saving and investing, and home financing. May not be used as a finance elective.

FINC 210 Opportunities in Finance I
Credit 1. 1 Lecture Hour.
Introduction to major career paths in finance and assessment of students’ aptitudes and interests with respect to these career paths.
Prerequisite: Freshman or sophomore classification in Mays Business School.

FINC 211 Opportunities in Finance II
Credit 1. 1 Lecture Hour.
Exploration of specific career competencies in various financial workplaces via lectures, practitioner presentations, and field experiences.
Prerequisites: FINC 210 and approval of instructor.

FINC 216 Introduction to Securities and Commodities Trading
Credit 1. 1 Lecture Hour.
Introduction to financial markets and the instruments that trade in them; describes how financial markets operate; compare and contrast a wide variety of common financial instruments, including debt, equity, derivatives and commodities; basic functions of real-world data sources (especially Bloomberg and the Wall Street Journal); and career paths in the field of finance.
Prerequisite: Freshman or sophomore classification in business.

FINC 268 Careers in Energy Finance
Credit 1. 1 Lecture Hour.
Introduction to finance-related careers in the energy industry; business models of energy companies; investment business drivers; activities and characteristics of various industry-specific corporate departments, including Upstream, Downstream, oil and gas commodity trading, risk management, and treasury.

FINC 285 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Directed study of selected problems in the area of finance not covered in other courses. May be taken five times.
Prerequisites: FINC 341 or concurrent enrollment and approval of department head.

FINC 341 Finance (FINC)
Credits 3. 3 Lecture Hours.
Financial practices and financial management of modern business corporations; cash flow, planning, procurement of funds, management of long-term funds and working capital. Only one of the following will satisfy the requirements for a degree: FINC 341 and FINC 342.
Prerequisite: ACCT 230 or concurrent enrollment; ISTM 210 (or AGEC 217 or MARA 250) or concurrent enrollment; MGMT 211 or concurrent enrollment; and admission to upper division in Mays Business School or admission to Maritime Administration; also taught at Galveston campus.
FINC 342 Introductory Finance for the Petroleum Ventures Program
Credits 3. 3 Lecture Hours.
Basic principles of corporate finance, investments, financial institutions, and international finance; the Federal Reserve System; interest rates; time value of money; characteristics and valuation of stocks and bonds; securities markets; business organization; capital budgeting analysis. Only one of the following will satisfy the requirements for a degree: FINC 341 and FINC 342.
Prerequisites: Admission to Petroleum Ventures Program and approval of instructor.

FINC 345 Success Factors in Corporate Finance
Credit 1. 1 Lecture Hour.
Overview of tools and analytical techniques used in corporate finance functions, including analysis and presentation of financial information; one-week immersive experience.
Prerequisites: Grade of C or better in FINC 341; admission to corporate finance certificate program or approval of instructor.

FINC 346 Corporate Finance Capstone
Credits 3. 3 Lecture Hours.
Application of interdisciplinary techniques to identify and solve multifaceted corporate finance problems through use of case studies.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment; admission to corporate finance certificate program or approval of instructor.

FINC 350 Ethics in Financial Decision-Making
Credit 1. 1 Lecture Hour.
Recognition and avoidance of breaches of fiduciary duty in the financial workplace; integration of classical ethical codes of conduct into professional decision-making; analysis and application of practitioner standards of conduct.
Prerequisites: Admission to upper division in Mays Business School; FINC majors only.

FINC 351 Investment Analysis
Credits 3. 3 Lecture Hours.
Operation and functions of the organized security exchanges, fundamental security analysis and technical market analysis.
Prerequisites: ACCT 327 or concurrent enrollment; FINC 210 or concurrent enrollment; FINC 341 with a grade of C or better; SCMT 303 or concurrent enrollment, or AP STAT 301 or AP STAT 302 or AP STAT 303.

FINC 351 Managerial Finance I
Credits 3. 3 Lecture Hours.
Managerial problems of financial managers; financial analysis, current asset management, capital budgeting and capital structure.
Prerequisites: ACCT 327 or concurrent enrollment; FINC 210 or concurrent enrollment; FINC 341 with a grade of C or better; SCMT 303 or concurrent enrollment, or AP STAT 301 or AP STAT 302 or AP STAT 303.

FINC 368 Trade Floor Dynamics
Credits 3. 3 Lecture Hours.
Analysis of trade floor activities and behaviors; organizational and process structure of trade floors; characteristics of trade floors that vary by type of asset traded, trading objectives and contract structure; analysis of operational issues including credit constraints, trade strategies, and regulatory compliance.
Prerequisites: FINC 341 or concurrent enrollment; admission to Trading, Risk and Investment Program (TRIP).

FINC 371 Real Estate Decision-Making
Credits 3. 3 Lecture Hours.
Legal, physical and economic characteristics of real estate; overview of real estate market analysis, real estate valuation procedures and real estate production, marketing and financing methods.
Prerequisite: FINC 341 or concurrent enrollment in FINC 341.

FINC 381 Money and Capital Markets
Credits 3. 3 Lecture Hours.
Role of finance and financial institutions in the money and capital markets in the U.S. including supply of and demand for funds, interest rates and flow of funds analysis.
Prerequisite: FINC 341 with a grade of C or better.

FINC 409 Survey of Finance Principles
Credits 3. 3 Lecture Hours.
Financial survey for non-business majors; financial markets, the investment banking process, interest rates, financial intermediaries and the banking system, financial instruments, time value of money concepts, security valuation and selection, and international finance. May not be used to satisfy degree requirements for majors in business or agribusiness.
Prerequisites: Junior or senior classification; for students other than business and agribusiness.

FINC 422 Applied Investment Analysis
Credits 3. 3 Lecture Hours.
Theoretical and analytical developments in security selection and portfolio management; includes macroeconomic analysis, portfolio theory, and portfolio performance evaluation; concepts applied to the allocation of investments in a student-managed equity portfolio.
Prerequisites: Approval of instructor; FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 423 Options and Financial Futures
Credits 3. 3 Lecture Hours.
Valuation of options and financial futures; risk management and hedging applications using options and financial futures; primary focus on stock options, index options, stock index futures, interest rate futures, foreign exchange futures and futures options.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 424 Trading Risk Management
Credits 3. 3 Lecture Hours.
Mid-office risk management strategies using the energy markets as a focus; develops understanding of commodity market behavior, use of forwards and options for risk management, risk management reporting, Greeks and simulation-based VaR analysis.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 425 Active Portfolio Management
Credits 3. 3 Lecture Hours.
Analysis of investment tactics designed to earn abnormal returns; identification and evaluation of active strategies that exploit capital market anomalies and market inefficiencies; portfolio structuring, stock and sector selection, performance measurement, attribution analysis and benchmarks in inefficient markets.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.
FINC 426 Trading Markets
Credits 3. 3 Lecture Hours.
Issues related to securities trading and securities markets; why and how people trade; the operation, structure and regulation of securities markets; focus on equity markets; comparisons to the markets for derivatives and other securities.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 427 Titans of Investing
Credits 3. 3 Lecture Hours.
Readings from the most influential theorists and practitioners of 20th and 21st century investing; case studies and portfolio sector exercises in an institutional context, based on detailed assessment of global investment risks.
Prerequisites: FINC 341 or FINC 409, or concurrent enrollment in either course; approval of instructor.

FINC 428 Fixed Income Analysis
Credits 3. 3 Lecture Hours.
Characteristics of fixed income securities including Treasury issues, federal agency issues, corporate and municipal bonds, mortgage-backed and asset-backed securities; institutional features fixed income markets; risks of bond investing; fixed income valuation; term structure; trade strategies; modeling and assessing credit risks; hedging with fixed income derivatives.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 435 Managerial Finance II
Credits 3. 3 Lecture Hours.
Case studies in the administration of the financial affairs of business enterprises; working capital management, capital budgeting, capital structure, and mergers and acquisitions.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 436 Corporate Finance Capstone
Credits 3. 3 Lecture Hours.
Application of interdisciplinary techniques to identify and solve multifaceted corporate finance problems through use of case studies.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment; admission to corporate finance certificate program or approval of instructor.

FINC 440 Macro Finance
Credits 3. 3 Lecture Hours.
Recent developments in the nature and causes of financial crises; the role of money; financial liquidity; financial leverage; financial stability regulation; unconventional monetary policy and macroprudential policy.
Prerequisites: FINC 351 and FINC 361; FINC 381 or concurrent enrollment.

FINC 441 Private Equity: Insights, Industry Dynamics and Deal Making
Credits 3. 3 Lecture Hours.
Roles of and interactions between the private equity industry's main participants; growth and development of the industry; business model of private equity firms; different performance metrics used by private equity professionals; focus on leveraged buyouts, venture capital funds, due diligence and term sheets.
Prerequisites: FINC 351 and FINC 361.

FINC 443 Valuation
Credits 3. 3 Lecture Hours.
Theory and application of various approaches to corporate valuation; measuring and managing the value of companies; principles of value creation; fundamental valuation methodology; application of value creation principles to managerial problems; special cases and complex valuation issues.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 445/IBUS 446 International Finance
Credits 3. 3 Lecture Hours.
International business transactions, balance of payments and exchange rate systems, exchange rate risk and hedging techniques, sources of funding, relation to international financial institutions and capital instruments; foreign direct investment; international asset and liability management.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.
Cross Listing: IBUS 446/FINC 445.

FINC 446 Technical Analysis of Financial Markets
Credits 3. 3 Lecture Hours.
Use of price, volume and other non-fundamental, market and behavioral data to analyze and predict security prices; emphasis on pattern recognition and correlation analysis over theory and casual analysis; application of technical analysis as an investment discipline for institutional portfolio management; principles, terminology, techniques and emerging theories of technical analysis.
Prerequisites: FINC 351 and FINC 361.

FINC 447/ACCT 447 Financial Statement Analysis
Credits 3. 3 Lecture Hours.
Development of an analytical approach to financial statements, integrating relevant finance and accounting concepts and principles; current topics in financial analysis.
Prerequisites: ACCT 315 or ACCT 327; FINC 341 with a grade of C or better.
Cross Listing: ACCT 447/FINC 447.

FINC 448 Advanced Investments
Credits 3. 3 Lecture Hours.
Application of finance theory to complex investment problems; implementation of asset pricing models, portfolio theory and arbitrage strategies; implication of principles of market efficiency and behavioral finance for selection of individual securities and portfolios.
Prerequisites: FINC 351 and FINC 361.

FINC 449 Financial Modeling
Credits 3. 3 Lecture Hours.
Computer-based modeling of contemporary problems in investments and corporate finance including asset pricing, portfolio optimization, valuation, capital budgeting, cost of capital, risk assessment, and option pricing; using models to evaluate financial decision variables and alternative investment strategies.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 462 Commercial Bank Management
Credits 3. 3 Lecture Hours.
Problems confronting commercial banks such as development and application of credit standards, decisions on loan applications, liquidity management and profit sensitivity to varying levels of interest rates.
Prerequisite: FINC 381 or concurrent enrollment.
FINC 463 Seminar in Commercial Banking
Credits 3. 3 Lecture Hours.
Cases and problems on contemporary management challenges and problem-solving techniques in commercial banks.
Prerequisite: Junior or senior classification and approval of instructor.

FINC 464 Commercial Credit Analysis
Credits 3. 3 Lecture Hours.
Recognized techniques for assessing the ability and willingness of business firms to service debts as originally agreed; regulatory and ethical requirements for structuring and documenting commercial bank loans to protect interests of shareholders, depositors, and deposit insurers.
Prerequisite: Admission to Mays Commercial Banking Certificate Program, or FINC 361 and approval of advisor.

FINC 465 Seminar in Investment Banking
Credits 3. 3 Lecture Hours.
Cases and problems on fundamentals of valuing publicly and privately held firms, underwriting public and private offerings of debt and equity securities, managing capital market risks, complying with SEC and NASD regulations and managing other financial services commonly offered by investment banks.
Prerequisite: Junior or senior classification and approval of instructor.

FINC 466 Wall Street, Investment Banking and the Financial Markets
Credits 3. 3 Lecture Hours.
Experience, first-hand, the major financial markets of the United States; visits to major Wall Street firms, security and commodity exchanges, and other financial institutions.
Prerequisites: FINC 351 and FINC 361 and approval of instructor.

FINC 468 Entrepreneurial Finance
Credits 3. 3 Lecture Hours.
Analysis of financing for start-up or high-growth businesses; funding sources for early operations, including angel capital, private venture capital, corporate venture capital, strategic alliances and crowdfunding; exit strategies, including initial public offerings (IPO) and mergers and acquisition (M&A).
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 472 Real Estate Finance
Credits 3. 3 Lecture Hours.
Real estate financing instruments, institutions and techniques; trust deed financing, mortgage underwriting and risk analysis, primary and secondary mortgage markets and institutions.
Prerequisites: FINC 351, FINC 361 and FINC 371; ACCT 328 or concurrent enrollment.

FINC 475 Real Estate Investment Analysis
Credits 3. 3 Lecture Hours.
Real estate market analysis, equity investor decision criteria, institutional investment constraints and investment valuation; case analysis of specific real estate investment decisions.
Prerequisites: FINC 351, FINC 361 and FINC 371; ACCT 328 or concurrent enrollment.

FINC 484 Professional Internship
Credits 1 to 6. 1 to 6 Other Hours.
Professional internship with practicing professionals under the direction of a faculty member. Available for free elective only and must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Finance major and approval of instructor and department head.

FINC 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Directed study on selected problems in the area of finance not covered in other courses.
Prerequisites: Approval of department head; FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.

FINC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected area in finance. May include attention to aspects of real estate finance, corporate financial management, investments, or financial institutions and markets.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

FIVS - Forensic & Inv Science (FIVS)

FIVS 101 Introduction to Academic Success in Forensic and Investigative Sciences
Credit 1. 1 Lecture Hour.
Orientation to academic success within higher education and specifically the Bachelor of Science degree in forensic and investigative sciences; awareness of academic and campus support services available for student success; development of goals for academic and career planning, including creation and utilization of degree planner; personal self-management strategies, including learning styles, time management and stress management and development of personal strategies for implementation of personal self-management into practice.

FIVS 102 Continuing Academic Success in Forensic and Investigative Sciences
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
Continued exploration to academic success within higher education and specifically the Bachelor of Science degree in Forensic and Investigative Sciences; increase awareness of academic and campus support services available for student success; develop goals for academic and career planning, including creation and utilization of degree planner; awareness of personal self-management strategies, including learning styles, time management, goal setting, stress management, and development of personal strategies for implementation of personal self-management into practice. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Grade of C or better in FIVS 101.

FIVS 123 Forensic Investigations
Credits 3. 3 Lecture Hours.
Overview of forensics from incident scene to court room verdict; principles, concepts, tools and methodologies used in the science and practice of forensics; examination of various forensic fields; evidence recognition, analysis, interpretation and presentation to diverse audiences.

FIVS 205 Introduction to Forensic and Investigative Sciences
Credits 3. 3 Lecture Hours.
Overview of principles, procedures, and concepts of forensic and investigative sciences; instruction in the definitions, scope, and use of tools, techniques and protocols in forensic applications used to resolve social, regulatory, and legal disputes.
Prerequisite: Freshman or sophomore classification or approval of instructor.
FIVS 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study in forensic and investigative sciences. May be repeated for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor and department head.

FIVS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of forensic and investigative sciences. May be repeated for credit.

FIVS 291 Research
Credits 0 to 4. 0 to 12 Lab Hours.
Research conducted under the direction of a faculty member in the department of entomology. May be repeated 3 times for credit.
Prerequisite: Freshman or sophomore classification.

FIVS 308 Forensic Implications of Inheritance
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Forensic genetics with an emphasis on human molecular genetics, population genetics, and genetic application in the forensic sciences.
Prerequisites: Grade of C or better in BIOL 112; upper division in forensic and investigative sciences; junior or senior classification.

FIVS 316 Biotechnology and Forensics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Illustration of the use of a variety of biotechnology methods for forensic applications; appreciation and understanding of the underlying molecular biology technologies that are used in a diverse array of settings including blood analysis, blood typing, DNA fingerprinting and genetic testing; potential future use of advanced sequencing technologies for forensic applications; consideration of social, ethical and legal implications of these procedures and applications.
Prerequisites: Grade of C or better in FIVS 308.

FIVS 401/SCSC 401 Forensic Soil Science
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Examination of soils biology, chemistry and physical attributes to solve crimes; soil and geologic characteristics associated with crime scene examination; physical, biological and chemical characteristics and use of trace evidence.
Prerequisite: Grade of C or better in FIVS 482.
Cross Listing: SCSC 401/FIVS 401.

FIVS 415 Practice and Principles of Science and Law
Credits 3. 3 Lecture Hours.
Introduction to series of practitioners of forensic science and the justice system; receive instruction on principles, procedures, and practices used in solving legal and societal issues; examine scientific method and scientific knowledge as applied through expert testimony; enhance critical thinking and reasoning skills in studying and debating different positions of current issues of science and law.
Prerequisites: Grade of C or better in FIVS 205 and FIVS 481; grade of C or better in FIVS 431/ENTO 431, FIVS 432/ENTO 432, and FIVS 435, or concurrent enrollment.

FIVS 421 Latent Print Processing
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Information, techniques, and methodologies for processing latent fingerprints and enhancing visible fingerprints at and from crime scenes, as well as from physical evidence.
Prerequisites: Grade of C or better in FIVS 205 and FIVS 422; upper division forensic and investigative sciences academic standing; approval of instructor.

FIVS 422 Crime Scene Investigation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Principles, procedures, processes and hands-on experience for conducting investigations ranging from general crime scene to death investigations.
Prerequisites: Grade of C or better in FIVS 205 and FIVS 482, upper division forensic and investigative sciences academic standing.

FIVS 431/ENTO 431 The Science of Forensic Entomology
Credits 3. 3 Lecture Hours.
Explores the science, methodology and technology employed to gather, preserve and present information about insects and other arthropods in such a manner that this information can be used in courts of law as evidence and testimony to help resolve issues of a criminal or civil nature.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: ENTO 431/FIVS 431.

FIVS 432/ENTO 432 Applied Forensic Entomology
Credit 1. 3 Lab Hours.
Laboratory-based offering practical experience using scientific information, methodology, technology, and legal procedures inherent to the field of forensic entomology; emphasis on collecting, preserving, and identifying information as evidence and expert witness testimony in courts of law.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: ENTO 432/FIVS 432.

FIVS 435 Case Studies in Problem Solving
Credits 3. 3 Lecture Hours.
Development of reasoning strategies by examining a variety of case studies; science and scientific method solving real-world problems as part of an investigative team.
Prerequisites: Grade of C or better in FIVS 316 and FIVS 481; grade of C or better in FIVS 415 or concurrent enrollment; senior classification or approval of instructor.

FIVS 481 Seminar
Credit 1. 1 Other Hour.
Analysis of research topics related to the fields of forensic science and law. May be taken 4 times for credit.
Prerequisite: Grade of C or better in FIVS 482.

FIVS 482 Occupational and Professional Development
Credits 2. 2 Lecture Hours.
Organized instruction in written and oral communication; acquaint students with private and public-sector companies and agencies as well as leading professionals from these firms to reinforce academic instruction and prepare students for the transition to employment, graduate and professional schools.
Prerequisite: Entry to upper division of FIVS program; junior or senior classification or approval of instructor.

FIVS 484 Professional Internship
Credits 0 to 4. 0 to 4 Other Hours.
Independent study and supervised field experience related to a professional area or interest in forensic science. May be taken 3 times for credit.
Prerequisite: Junior or senior classification and approval of instructor.

FIVS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study in forensic and investigative sciences. May be repeated for credit.
Prerequisites: Junior or senior classification; upper-division FIVS only; approval of instructor and department head.
FREN 101 Beginning French I
Credits 4.3 Lecture Hours. 2 Lab Hours.
(FREN 1411) Beginning French I. Elementary language study with oral, written, and reading practice. Preparation for conversation. Part of class preparation will be done in language laboratory.
Prerequisite: FREN 102.

FREN 102 Beginning French II
Credits 4.3 Lecture Hours. 2 Lab Hours.
(FREN 1412) Beginning French II. Continuation of FREN 101. Part of class preparation will be done in language laboratory.
Prerequisite: FREN 101.

FREN 201 Intermediate French I
Credits 3.3 Lecture Hours.
Prerequisite: FREN 102.

FREN 202 Intermediate French II
Credits 3.3 Lecture Hours.
(FREN 2312) Intermediate French II. Continuation of FREN 201 with more advanced material.
Prerequisite: FREN 201.

FREN 221 Field Studies I
Credits 3.3 Other Hours.
French language and culture taught in France; supervised travel of cultural interest, living with local families; participation in the activities and courses of a French university or institute; written and oral reports, exams.
Prerequisite: FREN 102 with a grade of B or higher or approval of instructor; concurrent enrollment in FREN 222.

FREN 222 Field Studies II
Credits 3.3 Other Hours.
French language and literature taught in France in cooperation with a French university or institute; exams, written reports.
Prerequisite: FREN 102 with a grade of B or higher or approval of instructor; concurrent enrollment in FREN 221.

FREN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in French, selected for each student individually.
Prerequisite: Approval of instructor and department head.

FREN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of French. May be repeated for credit.
Prerequisite: Approval of instructor.
FREN 418 Seminar in French Civilization
Credits 3. 3 Lecture Hours.
Discussions and observation of particular events and institutions crucial
to the development of French society and culture; analysis of literary,
artistic and cinematic representations of events and phenomena such
as the French revolution, May 1968, and church and state relations;
conducted in French. May be repeated for credit.
Prerequisites: FREN 300 and FREN 301, FREN 306, FREN 311, FREN 321,
FREN 322, FREN 336, or FREN 375.

FREN 422/WGST 422 Studies in Gender and French Literature
Credits 3. 3 Lecture Hours.
The role of gender in the production, dissemination, reception and
interpretation of literary texts in the French tradition, including
continental France as well as the Francophone literatures of West Africa,
Canada, and elsewhere; taught in English.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: WGST 422/FREN 422.

FREN 425/FILM 425 French Film
Credits 3. 3 Lecture Hours.
Overview of French cinema from its origins to the present; interpretation
of French cultural history and politics through film; taught in English.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: FILM 425/FREN 425.

FREN 481 Seminar in French and Francophone Studies
Credits 3. 3 Lecture Hours.
In-depth exploration of topics in French and Francophone literature,
culture, and/or film, involving individual student research projects. May be
taken two times for credit as topics change.
Prerequisite: Junior or senior classification or approval of instructor.

FREN 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects, selected for each
student individually; written and oral reports.
Prerequisite: Approval of instructor and department head.

FREN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of French. May be repeated for credit.
Prerequisite: Approval of instructor.

FREN 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in French.
May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of department
head.

FRIC 421 Urban Forestry
Credits 3. 3 Lecture Hours.
Conceptual role of trees in improving the urban environment; optimum
use of existing forested areas and the establishment of trees in
appropriate open spaces; tree ordinances, species evaluation, street tree
planning and tree inventory systems.
Prerequisite: Approval of instructor.

FSTC - Food Science & Tech (FSTC)

FSTC 481 Seminar
Credit 1. 1 Lecture Hour.
Guidelines and practice in journal article review and making effective
technical presentations; strategies for conducting a job search;
development of résumés and letters and interviewing targeted for careers
in the food industry or graduate school.
Prerequisite: Senior classification in food science and technology.

GALV - TAMUG Study Abroad (GALV)

GALV 101 Honors Seminar Connections
Credit 1. 1 Other Hour.
Exploration of interdisciplinary connections between academic
disciplines such as science and the humanities; focuses on the question
to consider how science is embedded within culture; proposes the
question on what it means to be human.
Prerequisites: Acceptance to honors program.

GALV 201 Honors Research Methods
Credit 1. 1 Lecture Hour.
Intensive interdisciplinary research; research practices, application of
qualitative and quantitative research methods to questions; emphasis on
social sciences and humanities.
Prerequisites: Grade of C or better in GALV 101 or concurrent enrollment.

GALV 300 TAMUG Study Abroad
Credits 1 to 18. 1 to 18 Lecture Hours.
For students in approved study abroad programs; may be repeated for
credit.

GALV 301 TAMUG Study Abroad
Credits 1 to 18. 1 to 18 Lecture Hours.
For students in approved study abroad programs, may be repeated for
credit.

GALV 401 Honors Service Learning Seminar
Credit 1. 1 Other Hour.
Focus on research on a particular issue; opportunity for discipline
specific writing for publication.
Prerequisites: Grade of C or better in GALV 101 or GALV 201, or approval
of instructor.

GENE - Genetics (GENE)

GENE 101/BICH 101 Perspectives in Biochemistry and Genetics
Credit 1. 1 Lecture Hour.
Introduction to biochemistry and genetics and their relationship to the
biological, biophysical and chemical sciences.
Prerequisite: Biochemistry and genetics major or approval of instructor.
Cross Listing: BICH 101/GENE 101.
GENE 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Introduction to laboratory research.
Prerequisite: Freshman or sophomore classification in genetics or approval of instructor.

GENE 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of genetics. May be repeated for credit.
Prerequisites: Freshman or sophomore classification in genetics; approval of instructor.

GENE 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in genetics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

GENE 301 Comprehensive Genetics
Credits 3. 3 Lecture Hours.
Survey of the fundamental principles of genetics: Physical basis of Mendelian inheritance, expression and interaction of genes, linkage, sex linkage, biochemical nature of genetic material and mutation. Only one of the following will satisfy the requirements for a degree: GENE 301, GENE 302, GENE 315 or GENE 320/BIMS 320. Not open to biochemistry or genetics majors.
Prerequisite: BIOL 111.

GENE 302 Principles of Genetics
Credits 3. 3 Lecture Hours.
Mechanisms of inheritance, stressing the conservation of fundamental genetic processes throughout evolution, from bacteria to humans; mutations and phenotypes, Mendelian genetics, population genetics and evolution, and complex inheritance. Course designed for biochemistry, genetics and all majors in biology. Only one of the following will satisfy the requirements for a degree: GENE 301, GENE 302, GENE 315 or GENE 320/BIMS 320. Not open to biochemistry or genetics majors.
Prerequisite: BIOL 112; concurrent enrollment in GENE 312.

GENE 310 Principles of Heredity
Credits 3. 3 Lecture Hours.
Basic principles of classical genetics, molecular genetics, mutation theory and genetic engineering; emphasis on humans and society. Not open to biochemistry and genetics majors.
Prerequisite: Junior classification.

GENE 312 Comprehensive Genetics Laboratory
Credit 1. 0 Lecture Hours. 3 Lab Hours.
Exercises in Mendelian genetics, meiosis, probability theory in pedigrees, population and quantitative genetics, as well as other genetics theory; molecular techniques to examine DNA and analyze outcomes.
Prerequisite: GENE 301 or GENE 302 or registration therein.

GENE 315 Genetics of Plants
Credits 3. 3 Lecture Hours.
Fundamental genetic principles as applied to plants: transmission, replication, expression and interaction of genes; linkage, recombination and mapping; chromosomal and gene mutation; behavior of genes in populations; selection, mating systems, cytoplasmic inheritance; molecular analysis and manipulation of genes and gene products; genetically modified plants. Not open to biochemistry or genetics majors. Only one of the following will satisfy the requirements for a degree: GENE 301, GENE 302, GENE 315 or GENE 320/BIMS 320.
Prerequisite: BIOL 101 or BIOL 111.

GENE 320/BIMS 320 Biomedical Genetics
Credits 3. 3 Lecture Hours.
Fundamental genetic principles as applied to biomedical science; Mendelian inheritance, linkage and genetic mapping, mutagenesis and pedigree analysis; molecular basis of gene function and inherited disease; gene therapy and genetic counseling. Only one of the following will satisfy the requirements for a degree: GENE 301, GENE 302, GENE 315 or GENE 320/BIMS 320.
Prerequisites: Junior or senior classification; BIMS major with a minimum overall 2.5 TAMU GPA.
Cross Listing: BIMS 320/GENE 320.

GENE 404/HORT 404 Plant Breeding
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of genetics and other sciences to breeding and improvement of horticultural crops; methods and special techniques employed. Offered in even numbered years. Only one of the following will satisfy the requirements for a degree: HORT 404/GENE 404 and SCSC 304.
Prerequisite: HORT 201, SCSC 205, or GENE 302, or approval of instructor.
Cross Listing: HORT 404/GENE 404.

GENE 405/BIMS 405 Mammalian Genetics
Credits 3. 3 Lecture Hours.
Comparative mammalian genetic systems with emphasis on laboratory animals; organization and expression of mammalian genes; development and use of genetically defined animals in biomedical and genetic research.
Prerequisite: GENE 302.
Cross Listing: BIMS 405/GENE 405.

GENE 406/BIOL 406 Bacterial Genetics
Credits 3. 3 Lecture Hours.
A problem oriented course surveying the manipulation and mechanisms of genetic systems in bacteria; recombination, gene structure and regulation of bacterial genes, plasmids and phages.
Prerequisites: GENE 302; BIOL 351.

GENE 411 Biotechnology for Crop Improvement
Credits 3. 3 Lecture Hours.
Use of biotechnology to improve agricultural, horticultural and forest crops; techniques and methods used and case studies where biotechnology has been used to alter traits such as pathogen resistance, protein or oil consumption, ripening, fertility and wood properties.
Prerequisite: BIOL 111 or equivalent.
Cross Listing: MEPS 411 and SCSC 411.

GENE 412 Population, Quantitative and Ecological Genetics
Credits 3. 3 Lecture Hours.
Concepts of population, quantitative and ecological genetics including dynamics of natural populations with emphasis on quantitative effects and ecological interactions.
Prerequisites: GENE 301 or GENE 302.

GENE 419/BICH 419 Computational Techniques for Evolutionary Analysis
Credits 3. 3 Lecture Hours.
Computational techniques for studying evolution; algorithms for construction and analysis of evolutionary relationships.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: BICH 419/GENE 419.
GENE 420 Bioethics
Credits 3. 3 Lecture Hours.
The application of ethical theory to the use of modern genetics and
biochemistry stressing the social implications of genetic engineering,
agricultural manipulation and biotechnology.
Prerequisites: GENE 302; BICH 410 or BICH 440.

GENE 421/BIMS 421 Advanced Human Genetics
Credits 3. 3 Lecture Hours.
A rigorous, analytical approach to genetic analysis of humans including
diagnosis and management of genetic disease in humans; transmission
of genes in human populations; human cytogenetics; the structure of
human genes; human gene mapping; molecular analysis of genetic
disease; genetics screening and counseling.
Prerequisites: GENE 302; BICH 410 or BICH 440.

GENE 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study in genetics not included in established courses.
Prerequisites: Junior or senior classification; approval of instructor and
department head.

GENE 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of genetics. May be repeated for
credit.
Prerequisite: Approval of instructor.

GENE 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Laboratory research supervised by a faculty member.
Prerequisites: Major in genetics; junior or senior classification in genetics
or approval of instructor.

GEOG - Geography (GEOG)

GEOG 201 Introduction to Human Geography
Credits 3. 3 Lecture Hours.
(GEOG 1302) Introduction to Human Geography. A survey of the
major systems of man-land relations of the world and their dissimilar
developments; the processes of innovation, diffusion, and adaptation
stressed with regard to changing relationships between people and their
environment; also taught at Galveston campus.

GEOG 202 Geography of the Global Village
Credits 3. 3 Lecture Hours.
(GEOG 1303) Geography of the Global Village. Survey of world regions;
globalization; environmental problems at multiple scales; human-
environment interactions; cultural coherence and diversity; population
and settlement; geopolitics; social and economic development; place
identification; also taught at Galveston campus.

GEOG 203 Planet Earth
Credits 3. 3 Lecture Hours.
(GEOG 1301) Planet Earth. Earth's physical environment including
climate, water, landforms, and ecosystems; processes that control
these systems and their global distributions; human effects on these
processes.

GEOG 205 Environmental Change
Credits 3. 3 Lecture Hours.
Systems perspective on important attributes, elements, and connections
within earth's physical environment; dynamic nature of environment at
multiple spatial and temporal scales.

GEOG 213 Planet Earth Lab
Credit 1. 3 Lab Hours.
Exercises and maps to illustrate principles of physical geography.

GEOG 215 Geospatial Cornerstone
Credit 1. 1 Lecture Hour.
Professional career options, methods, strategies and skills involved in
successful career planning in the geospatial sciences; highlights high
impact learning opportunities such as study abroad and internships and the
development of scientific communication skills.
Prerequisites: GEOG and GIST majors; sophomore classification or
approval of instructor.

GEOG 232 Cartography and Visualization
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to science and art of map production; principles of thematic
map compilation and design; history of thematic mapping; map
projections; data management and symbolization; common types and
styles of thematic maps.
GEOG 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individually-supervised research or intensive study on topics not covered in regular courses.
Prerequisite: Approval of department head.

GEOG 289 Special Topics In...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of geography. May be repeated for credit.
Prerequisite: GEOG, GIST or USGE majors, or approval of instructor.

GEOG 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geography. May be taken 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

GEOG 301 Geography of the United States
Credits 3. 3 Lecture Hours.
Geographic personality (physical and cultural) of the United States; also taught at Galveston campus.

GEOG 304 Economic Geography
Credits 3. 3 Lecture Hours.
Location of economic activities over the earth; distribution of agriculture, manufacturing, tertiary activities and transportation; economic growth of areas.

GEOG 305 Geography of Texas
Credits 3. 3 Lecture Hours.
Exploration into the geographic personality of Texas; past and current physical and biotic environments; cultural pluralism, including ethnic origins and distinctive human ecologies; and the social, economic and political sources of environmental problems.

GEOG 306 Introduction to Urban Geography
Credits 3. 3 Lecture Hours.
Reasons humankind tends to congregate in cities. Overview of patterns in the geographic distribution of cities, and in the geographic distribution of peoples and activities within cities, and the dynamics of these distributions.

GEOG 309 Geography of Energy
Credits 3. 3 Lecture Hours.
Development of high-energy society; renewable and nonrenewable energy resources; physical and social economies of energy use; geography of energy; energy problems and decisions; dependence of other resources on energy; alternative energy futures.
Prerequisite: Junior classification or approval of instructor.

GEOG 311 Cultural Geography
Credits 3. 3 Lecture Hours.
Human factors which affect man-land relationship; concept of culture, culture areas; population growth and migrations, types of economic activity, urban and transportation geography.

GEOG 312 Data Analysis in Geography
Credits 3. 3 Lecture Hours.
Foundation for collection and analysis of quantitative and qualitative geographic data; emphasis on hands-on, practical experience with commonly used analysis software and qualitative methods including interviewing and archival research; problems commonly encountered in dealing with data.
Prerequisite: STAT 303.

GEOG 320 The Middle East
Credits 3. 3 Lecture Hours.
Regional geography of the Middle East; physical setting and the historical evolution of Middle Eastern landscapes; current issues.
Prerequisites: Junior or senior classification.

GEOG 323 Geography of Latin America
Credits 3. 3 Lecture Hours.
Physical and cultural characteristics of Latin America; physical landscape, cultural succession and the present cultural landscape; details on sub-regions.

GEOG 324 Global Climatic Regions
Credits 3. 3 Lecture Hours.
Climatological processes and their consequences for spatial distributions of climates; survey of earth's climates; relationships among climate, landforms, vegetation, soils and humans.
Prerequisite: GEOG 203 or ATMO 201 or approval of instructor.

GEOG 325 Geography of Europe
Credits 3. 3 Lecture Hours.
Regional geography of European landmass; global, political and cultural characteristics of European geography in historical and ecological contexts.
Prerequisite: Junior or senior classification.

GEOG 327 Geography of South Asia
Credits 3. 3 Lecture Hours.
South Asian geography; political and physical geographic divisions of South Asia; diversity of region; people, history, religion, cultures, political systems, rural and urban settings, climate, and environment; current problems and solutions.
Prerequisite: Junior or senior classification or approval of instructor.

GEOG 330 Resources and the Environment
Credits 3. 3 Lecture Hours.
Changing demand for land and sea resources; international conditions of population growth, resource depletion and geopolitical control; resource perceptions and decision-making.

GEOG 331 Geomorphology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles and fundamentals of landform analysis. Laboratory work in advanced map interpretation.
Prerequisite: GEOL 101 or GEOG 203; also taught at Galveston campus.

GEOG 335 Pattern and Process in Biogeography
Credits 3. 3 Lecture Hours.
Distribution of organisms across the earth and on environmental and cultural processes that have contributed to these patterns of distribution; dynamic nature of biogeographic patterns; impacts of contemporary and prehistoric humans on plant and animal distributions; methods for exploring biogeographic patterns and detecting change.
Prerequisite: Junior or senior classification.
GEOG 352/GEOL 352 GNSS in the Geosciences
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of Global Navigation Satellite Systems (GNSS); basic geodesy, figure of the earth; frames of reference, map projection, datums, ellipsoids; GPS accuracy and precision; applications in earth resource mapping and database creation; elementary GPS phase data processing.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: GEOL 352/GEOG 352.

GEOG 355 Concepts in Geographic Education
Credits 3. 3 Lecture Hours.
Key concepts and generalizations of geography; learning theory applied to geography and environmental education; development of field and computer-based technical/intellectual skills required to teach geography; curriculum and instructional issues related to geography.
Prerequisites: GEOG 201 or GEOG 202; GEOG 203 or equivalent.

GEOG 360 Natural Hazards
Credits 3. 3 Lecture Hours.
Introduction to the types and causes of natural events that pose risk to society; an examination of prevailing concepts and theories of human response and vulnerability; characteristics of natural events; natural hazard paradigms; case studies.
Prerequisites: GEOG 203 or GEOL 101; junior or senior classification; also taught at Galveston campus.

GEOG 361 Remote Sensing in Geosciences
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to the principles, techniques and applications of remote sensing technology in geosciences including the analysis and interpretation of airborne and spaceborne remote sensing data for studying key earth system processes.
Prerequisite: Junior or senior classification.

GEOG 370/MARS 370 Coastal Processes
Credits 3. 3 Lecture Hours.
Introduction to the coastal system, waves and wave dominated coasts, shoreline morphodynamics, tidal and lake coasts, long term coastal development, sea level changes, subtidal and beach ecosystems, coastal dunes and wetlands, structures and organizations, coastal management and coastal hazards.
Cross Listing: MARS 370/GEOG 370.

GEOG 380 Workshop in Environmental Studies
Credits 2 to 6. 2 to 6 Lab Hours.
The study, understanding and solution of human environment problems based on principles learned in the classroom; library, laboratory and field work carried out by individuals and in groups; reports on work accomplished. May be repeated for credit as many as three times.
Prerequisite: GEOG 330.

GEOG 390 Principles of Geographic Information Systems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Basic concepts of design, planning and implementation of geographic information systems.
Prerequisite: Junior or senior classification.

GEOG 391 Geodatabases
Credits 4. 3 Lecture Hours. 2 Lab Hours.
GIS data modeling; introductory and advanced spatial SQL (structured query language); spatial database management system (DBMS) server setup, management and maintenance; spatial DBMS design, implementation, tuning, performance analysis and indexing; connecting spatial data services and warehouses to GIS software.
Prerequisite: Junior or senior classification.

GEOG 392 GIS Programming
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Programming for geographic information science applications; principles of programming syntax and data structures; development of custom GIS programs; integration of programs into commercial GIS platforms.
Prerequisites: GEOG 390 or equivalent, or approval of instructor; junior or senior classification.

GEOG 398 Interpretation of Aerial Photographs
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Identification and evaluation of natural and cultural features on aerial photographs; methods for extracting information concerning land use, vegetative cover, surface and structural features, urban/industrial patterns and archaeological sites.
Prerequisites: Junior or senior classification or approval of instructor.

GEOG 400 Arid Lands Geomorphology
Credits 3. 3 Lecture Hours.
Introduction to the geomorphology of deserts; processes, origin and evolution of arid lands; urban geomorphology in drylands; desertification.
**GEOG 401 Political Geography
Credits 3. 3 Lecture Hours.**
The political process at a variety of geographic scales: international, intranational and urban; origins of territorial organization and conflicts over access to and use of space and its resources.

GEOG 404 Spatial Thinking, Perception and Behavior
Credits 3. 3 Lecture Hours.
Spatial thinking, spatial perception of the environment and the ways thinking and perception influence spatial behavior; role of geospatial technologies in supporting spatial thinking; models of spatial thinking acquisition; cognitive maps and spatial decision making; developing spatial thinking and individual differences.
Prerequisite: Junior or senior classification.

GEOG 405 Field Trips
Credits 1 to 4. 1 to 4 Other Hours.
Supervised field trip to investigate the physical, economic and cultural processes that influence the spatial development and distribution on the landscape. May be repeated for credit.
Prerequisites: GEOG 201, GEOG 202, GEOG 203 or GEOG 205, or concurrent enrollment; approval of instructor.

GEOG 406 Geographic Perspectives on Contemporary Urban Issues
Credits 3. 3 Lecture Hours.
Contemporary readings on spatial patterns and processes in urban environments; sprawl; human-environment interaction; housing; development and growth; concept of place; scale; power and policy.
Prerequisite: GEOG 304 or GEOG 306 or equivalent.

GEOG 420 Geography of Terrorism
Credits 3. 3 Lecture Hours.
Exploration of global terrorism and counter terrorism; regional conflicts and mass violence; construction of places and regions associated with terror; American reactions to global terrorism.
Prerequisite: Junior or senior classification.

GEOG 430 Environmental Justice
Credits 3. 3 Lecture Hours.
Exploration into the spatial variability and human geography of exposure to environmental hazards in U.S. and international contexts; emphasizes environmental equity and environmental racism as it relates to occupational, leisure, and residential geography.
Prerequisites: GEOG 201 or GEOG 202; junior or senior classification.
GEOG 434 Hydrology and Environment
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Examination of hydrologic processes in relation to climate, soils, vegetation, land use practices, and human impacts; natural scientific perspectives emphasized; field and laboratory included.
Prerequisite: GEOG 203 or equivalent.

GEOG 435 Principles of Plant Geography
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Plant distributions, their associations and environmental relationships; survey of the principal explanatory systems; field and laboratory study of area patterns at various geographic scales. A weekend field trip is required.
Prerequisite: BIOL 101 or BIOL 107 or BIOL 301 or approval of instructor.

GEOG 440 History and Nature of Geography
Credits 3. 3 Lecture Hours.
Summary of classical knowledge of world; development of thought on nature of geography from 1800 to present.
Prerequisite: Junior or senior classification.

GEOG 442/GEOS 442 Past Climates
Credits 3. 3 Lecture Hours.
Terrestrial and marine proxy records of past climate variability, including tree rings, coral, and sediments; past climate change events such as the Little Ice Age and Medieval Warm Period; greenhouse gases and global temperature; insight into the nature of climate change and challenges humankind faces in the next few centuries.
Prerequisites: ATMO 201, or GEOG 203, or GEOL 101, or GEOL 104, or OCNG 251, junior or senior classification.
Cross Listing: GEOS 442/GEOG 442.

GEOG 450 Field Geography
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Introduction to field methods; documenting materials, reconnaissance, the field plan; mapping traverse, base maps and aerial photographs; recording techniques; interview procedures. Fields trips required, some on weekends and/or semester breaks, for which departmental fees may be assessed to cover costs.
Prerequisite: 15 hours of geography or equivalent.

GEOG 461 Digital Image Processing in the Geosciences
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Key remote-sensing digital image processing methods; advanced topics in feature extraction, radiometric calibration, image enhancement, pattern recognition and geoscience applications.
Prerequisite: GEOG 361 or equivalent and junior or senior classification.

GEOG 462/ESSM 462 Advanced GIS Analysis for Natural Resources Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Advanced topics in geographic information systems (GIS) to solve natural resource problems; manipulation of raster data types; three-dimensional modeling; emphasis on geoprocessing as it relates to applied projects particularly with habitat suitability models; field and lab use of global positioning systems (GPS); internet-based GIS modeling.
Prerequisites: ESSM 351/RENR 405 or AGSM 461 or equivalent or approval of instructor; junior or senior classification.
Cross Listing: ESSM 462/GEOG 462.

GEOG 467 Dynamic Modeling of Earth and Environmental Systems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Dynamical systems modeling; key concepts and processes in earth and environmental systems; human impact on these systems; model building and testing; system behavior over time; model validation and sensitivity; examples from the applications in earth and environmental sciences.
Prerequisite: GEOG 203 or approval of instructor.

GEOG 475 Advanced Topics in GIS (Geographic Information Systems)
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Advanced Topics in Geographic Information Systems. Topics related to GIS implementation, spatial database design, spatial data analysis, and various advanced GIS applications.
Prerequisite: GEOG 390 or equivalent.

GEOG 476 GIS Practicum
Credits 3. 3 Other Hours.
Introduction to current topics in Geographic Information Science including ethical and legal issues surrounding spatial technologies, proper GIS management practices and professional certification; development of professional research, technical and communication skills through participation in a coordinated internship or independent research project. Meets writing-intensive course requirements for environmental geosciences, environmental studies and geography majors.
Prerequisites: Senior classification and enrollment in Geographic Information Science and Technology or approval of instructor.

GEOG 477 Terrain Analysis and Mapping
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Geomorphometry for land surface characterization; fundamentals of terrain analysis; theory of land surface dynamics; application of software for digital terrain modeling and analysis.
Prerequisites: GEOG 361 and GEOG 390 or equivalents, or approval of instructor; junior or senior classification.

GEOG 478 WebGIS
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Investigation of web-based geographic information systems; introduction to server-oriented architectures for web-based applications and services; development of web applications; management of web servers, web services and databases.
Prerequisites: GEOG 390 or equivalent, or approval of instructor; junior or senior classification.

GEOG 479 Principles of Geocomputation
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Geocomputation including geospatial technologies, computational techniques and algorithms utilizing high-performance computing; fundamental geocomputation principles, artificial and computational intelligence.
Prerequisites: GEOG 361, GEOG 390, GEOG 475; CSCE 110 or CSCE 111.

GEOG 484 Internship
Credits 0 to 12. 0 to 12 Lecture Hours.
Directed internship in a private firm, government agency or non-governmental organization to provide work experience related to the student’s degree program and career objectives.
Prerequisites: Junior or senior classification and approval of internship agency and departmental internship director.

GEOG 485 Directed Studies
Credits 1 to 23. 1 to 23 Other Hours.
Individually supervised research or advanced study on restricted areas not covered in regular courses.
Prerequisite: Approval of department head.
GEOG 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of geography. May be repeated for credit.
Prerequisite: Approval of instructor.

GEOG 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geography. May be repeated for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

GEOL - Geology (GEOL)

GEOL 101 Principles of Geology
Credits 3. 3 Lecture Hours.
(GEOL 1303, GEOL 1403*) Principles of Geology. Physical and chemical nature of the Earth and dynamic processes that shape it; plate tectonics, Earth's interior; materials it is made of, age and evolution, earthquakes, volcanism, erosion and deposition; introduces physical and chemical principles applied to the Earth; also taught at Galveston campus. Not open to students who have taken GEOL 103 or GEOL 104.

GEOL 102 Principles of Geology Laboratory
Credit 1. 2 Lab Hours.
(GEOL 1103, GEOL 1403*) Principles of Geology Laboratory. Laboratory exercise-based introduction to the physical and chemical nature of the Earth and dynamic process that shape it; rock and mineral types; topographic and geologic maps; complements GEOL 101 but can be taken independently; also taught at Galveston campus.

GEOL 104 Physical Geology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Earth materials, structures, external and internal characteristics; physical processes at work upon or within the planet. A working knowledge of high school chemistry and mathematics is required; also taught at Qatar campus.

GEOL 106 Historical Geology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(GEOL 1104 and 1304, 1404) Historical Geology. Hypotheses of Earth’s origin; age dating of geologic materials; development and history of life; plate tectonic reconstructions, geologic history, and paleogeography, with emphasis on the North American plate.
Prerequisite: GEOL 101 or equivalent; also taught at Galveston campus.

GEOL 150 Introduction to the Solid Earth
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to the dynamic earth for careers in geosciences; origin and structure of the earth; earth materials and processes, particularly as they relate to plate tectonics; maps as a basic tool of geologists; not open to students who have taken GEOL 101 or GEOL 104.

GEOL 152 History of the Earth
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Evolution of life, plate tectonics processes, geography and climate through earth's history; the timing of major events in earth history; sedimentary environments and stratigraphy; fossils; biostatigraphic and radiometric dating of rocks; not open to students who have taken GEOL 106.
Prerequisites: GEOL 150, GEOL 101 and GEOL 102, or GEOL 104 or equivalent.

GEOL 180 Introduction to Geology and Geophysics
Credit 1. 1 Lecture Hour.
Introduction to careers in geology and geophysics; campus resources for academic and personal success; tools for developing study skills and navigating the university; use of reflection to assess personal strengths, weaknesses and responsibilities and to devise strategies for improvement.
Prerequisite: Approval of instructor.

GEOL 203 Mineralogy
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Crystallography, crystal chemistry, mineral chemistry, optical crystallography, physical properties, and geologic occurrence of rock-forming and economic minerals.
Prerequisites: MATH 151 or MATH 142; CHEM 119, or CHEM 101 and CHEM 111, or CHEM 107 and CHEM 117; GEOL 150 or equivalent.

GEOL 207 Dinosaur World
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Survey of dinosaur paleobiology and paleoecology; terrestrial paleoclimate and paleoenvironments of the Mesozoic; dinosaur ancestors; appearance and radiation of dinosaurs; paleoecology and paleobiology of major dinosaur groups; extinction of large dinosaurs and the Cretaceous/Paleogene mass extinction; the appearance and ancestry of birds.

GEOL 208 Life on a Dynamic Planet
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Critical events in the Earth's 4.6 billion-year history that shaped life as we know it and the tools to investigate them; interactions between global environments, the evolution of life and the geologically recent development of human societies.

GEOL 210 Geological Communication
Credits 3. 3 Lecture Hours.
Introduction to communicating as a scientist particularly in geological settings; using precise language, illuminating graphs and correct mathematical and chemical symbols to describe geological observations and concepts in writing; using basic statistics to describe geological data and uncertainty; recognizing scientific ethical dilemmas and plagiarism and interpretation.
Prerequisites: MATH 151 or MATH 142; ENGL 104; GEOL 150 or equivalent.

GEOL 250 Geological Field Methods
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamental aspects of geologic mapping; field observation, data gathering and recording, use of a Brunton compass, pace-and-compass mapping, measurement of stratigraphic sections; topographic map use and interpretation, interpretation of geologic map patterns, construction of geologic cross sections; Integrating field and remote data to address geologic problems using GIS software.
Prerequisites: GEOL 152 or equivalent.

GEOL 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed studies in specific problem areas of geology.
Prerequisite: Approval of instructor.

GEOL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of geology. May be repeated for credit.
Prerequisite: Approval of instructor.
GEOL 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geology. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

GEOL 300 Field Geology
Credits 6. 6 Other Hours.
Basic concepts of field relationships and field techniques are used to develop geologic maps, stratigraphic columns, cross-sections and geologic interpretations for a variety of geologic provinces. Course conducted off-campus in a field camp for six weeks.
Prerequisites: GEOL 302, GEOL 306, GEOL 309, GEOL 312 or approval of instructor.

GEOL 301 Mineral Resources
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Origin, geologic relations and geographic distribution of mineral and energy resources; mineral economics, mining and reclamation and global economics in the resource industry; identification and classification of economic minerals including energy resources, base and precious metals, chemical industrial minerals and gemstones.
Prerequisites: GEOL 101 or GEOL 320; CHEM 106 or higher.

GEOL 302 Introduction to Petrology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to the origin and evolution of igneous, sedimentary, and metamorphic rocks; classification and petrographic analysis of major rock types; relationships to tectonic settings.
Prerequisites: GEOL 104 and GEOL 203 or approval of instructor.

GEOL 304 Igneous and Metamorphic Petrology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Origin and evolution of igneous and metamorphic rocks; identification, classification and petrographic analysis; relationships to tectonic settings; genetic processes inferred from laboratory studies and field occurrences.
Prerequisites: GEOL 203; CHEM 120, or CHEM 107 and CHEM 117, or equivalent.

GEOL 305 Paleobiology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of paleobiology; study of organisms important in the marine fossil record; application of paleontology to geologic problems.
Prerequisite: GEOL 106 or approval of instructor.

GEOL 306 Sedimentology and Stratigraphy
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Origin of sediments and sedimentary rocks; climate, weathering, and weathering products; transport, deposition, and depositional environments for sediments; field and laboratory studies in description and interpretation of genesis of sedimentary rocks; principles of stratigraphy and basin analysis; plate tectonics and the formation of sedimentary basins; stratigraphic nomenclature; geologic time and correlation; sequence stratigraphy and basin architecture.
Prerequisite: CHEM 119 or equivalent; GEOL 152 or equivalent.

GEOL 307 Dinosaur World
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Evolutionary development of dinosaurs and Mesozoic geography, climate and terrestrial environments including dinosaur morphology; evolutionary relationships; dinosaur metabolism; and constraints imposed by gigantism; their latitudinal distribution; casual mechanism for dinosaur extinction.

GEOL 309 Introduction to Geological Field Methods
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Geological mapping methods, field observation procedures and data gathering and recording; use of Brunton compass; pace-and-compass mapping; topographic map use and interpretation; measurement of structural elements; interpretation of geologic map patterns; measurement of stratigraphic sections; construction of geologic cross sections; six day geologic mapping project during either spring break or two three-day weekends.
Prerequisites: GEOL 101 or GEOL 104; GEOL 106.

GEOL 310 Planetary Geology
Credits 3. 3 Lecture Hours.
Introduction to planetary science; organization and composition of the solar system, including the planets, satellites and asteroids; surface features and internal structures of the terrestrial planets and moons; the dynamic processes of planetary resurfacing, including volcanism, tectonism, weathering and impacts; the history and future of solar system exploration.
Prerequisites: GEOL 101 or equivalent; junior or senior classification or approval of instructor; also taught at Galveston campus.

GEOL 311 Principles of Geological Writing
Credit 1. 1 Lecture Hour.
Principles of writing for geological reports; format and style for abstracts, grant proposals, journal manuscripts and industry reports; evaluating written reports for revision and editing; using proper referencing and citation style; methods of maintaining clarity in documents; using web tools for geological communication.

GEOL 312 Structural Geology and Tectonics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamentals of the deformation of the lithosphere ranging from plate to atomic scales; stress, strain, experimental rock deformation, microscopic mechanisms and mechanical behaviors; analysis of faults, folds, flow and rock fabrics; subsurface interpretation; regional tectonics of selected areas; practical experience in geometric and kinematic analysis, constructing balanced cross sections.
Prerequisites: GEOL 104 or GEOL 150 or equivalent; MATH 142 or MATH 152; and PHYS 218 or PHYS 201.

GEOL 314 Paleontology and Geobiology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Biogeosphere-geosphere interactions, including procaryote controls on sedimentary geochemistry and organismal distributions, and fossil preservation; fossils in the context of evolutionary theory and global change; identification of important groups of marine fossils; use of fossils to determine the stratigraphic age of rocks and the history of life on Earth.
Prerequisites: CHEM 101, CHEM 107, or CHEM 119; GEOL 306.
GEOL 320 Geology for Civil Engineers
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of physical and engineering geology; properties of minerals, rocks and soils; active surface and subsurface processes; applications to the siting, design, construction, operation and maintenance of engineered works and the protection of the environment. A three-day field trip is required (a field trip fee is charged at registration).
Prerequisite: Sophomore classification.

GEOL 330 Geologic Field Trips
Credits 1 to 3. 1 to 3 Other Hours.
Field trips to observe, analyze and interpret the geology and geophysics of selected localities in Texas and adjacent regions; complements classroom experience. Trip frequencies, duration, dates and study localities vary with semester.
Prerequisite: GEOL 101 or GEOL 104 or approval of instructor. May be repeated for credit.

GEOL 350 Summer Field Geology
Credits 3. 3 Other Hours.
Intense immersive geologic mapping experience, integrating geological skills from throughout the curriculum; concepts of field relationships and field techniques are used to develop geologic maps, stratigraphic columns, cross-sections and geologic interpretations for a variety of geologic provinces; conduct off-campus in a field area or areas for three to four weeks.
Prerequisites: GEOL 304, GEOL 314, GEOL 306, GEOL 250 and GEOL 312.

GEOL 352/GEOG 352 GNSS in the Geosciences
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of Global Navigation Satellite Systems (GNSS); basic geodesy, figure of the earth; frames of reference, map projection, datums, ellipsoids; GPS accuracy and precision; applications in earth resource mapping and database creation; elementary GPS phase data processing.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: GEOG 352/GEOL 352.

GEOL 404 Geology of Petroleum
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Origin, migration and accumulation of petroleum; typical U.S. oil and gas fluids; laboratory work in subsurface geology.
Prerequisites: GEOL 104 or GEOL 150; also taught at Qatar campus.

GEOL 410 Hydrogeology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geologic conditions determining the distribution and movement of ground water and their effect on the hydrologic properties of aquifers.
Prerequisite: MATH 151 and MATH 152, or equivalent; junior or senior classification.

GEOL 420 Environmental Geology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geologic concepts of the nature of geologic environments and the dynamics of geologic processes needed to characterize and quantify human interactions with specific geologic systems including aquifers, watershed, coastlines and wetlands; specific techniques, including geophysical and geochemical techniques, field mapping, geographical information systems and remote sensing used to monitor human-geosphere interactions.
Prerequisites: GEOL 101 or GEOG 203; junior or senior classification or approval of instructor.

GEOL 440 Engineering Geology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of soil, rock and fluid mechanics and basic engineering practices as applied to the analysis of the geologic environment for engineering uses. Designed for geoscience majors who have not had engineering courses.
Prerequisites: GEOL 312 or approval of instructor; PHYS 218.

GEOL 450 Geology Senior Project
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Conducting and communicating a team research project in geology and/or geophysics; formulating a research question and a plan to answer that question; synthesizing and interpreting the geological and geophysical literature; written and oral presentation of findings and critiquing those findings.
Prerequisites: GEOL 210 and GEOL 312, or approval of undergraduate advisor.

GEOL 451 Introduction to Geochemistry
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Chemical principles and processes responsible for the formation and cycling of earth materials, with emphasis on low temperature equilibria and kinetics in rockwater systems.
Prerequisite: GEOL 302 or approval of instructor.

GEOL 478 Earth Science Modeling
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Techniques for building, solving and analyzing numerical models applied to a wide variety of problems in geology, geochemistry, geobiology and geophysics; derivation and scaling of conservation laws; finite difference and finite element techniques; programming in MATLAB or a higher-level language.
Prerequisites: MATH 151; MATH 152; junior or senior classification.

GEOL 481 Seminar
Credit 1. 1 Other Hour.
Review of selected topics in the geological literature; preparation of oral and written reports.
Prerequisite: Approval of department head.

GEOL 484 Internship
Credits 0. 0 Other Hours.
Directed internship in a private firm, government agency or non-governmental organization to provide work experience related to the student's degree program and career objectives. May be taken two times.
Prerequisites: Junior or senior classification and approval of internship agency and approval of instructor.

GEOL 485 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Advanced problems in geology; also taught at Galveston and Qatar campuses.

GEOL 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of geology. May be repeated for credit.
Prerequisite: Approval of instructor.

GEOL 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geology. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.
GEOP - Geophysics (GEOP)

GEOP 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geophysics. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

GEOP 313 Geophysical Field Methods
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Planning, safe execution and analysis of applied geophysical surveying including magnetics, gravity, resistivity, induced polarization, seismic reflection, seismic refraction, ground-penetrating radar, frequency-domain and time-domain electromagnetic induction; experimental design, precise navigation, quality assurance and control, data management, elementary processing, error analysis and estimation, visualization and interpretation procedures.
Prerequisites: GEOP 341; PHYS 206 and PHYS 207, or equivalent; MATH 308; GEOL 250.

GEOP 341 Fundamentals of Geophysics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
The structure, composition and evolution of the earth; the concepts and application of various geophysical methods to infer earth structure, including seismology, gravity and geodesy, magnetics; generation of internal heat and heat loss; quantification of the driving forces of plate tectonics and isostatic topography.
Prerequisites: PHYS 206 and PHYS 207, or equivalent; MATH 308; GEOL 210 and GEOL 150 or equivalent.

GEOP 361 Geophysical Signal Processing
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental concepts in digital signal processing for geophysicists; practical applications of sampling theory, Fourier analysis, filter design, spectral decomposition, instrument deconvolution, and methods of finding hidden signals within geophysical data; Matlab-based laboratory exercises involve analysis of various types of real geophysical/geological data.
Prerequisites: GEOP 341, PHYS 221 and MATH 311 or equivalent.

GEOP 413 Near-surface Geophysics
Credits 3. 3 Lecture Hours.
Fundamentals of traditional and emergent surface and borehole geophysical methods, as they are applied to shallow (less than 100 meters) subsurface investigations; emphasis on electrical, magnetic and electromagnetic methods; seismic reflection and crosswell tomography.
Prerequisites: GEOP 313 and GEOP 361, or approval of instructor.

GEOP 421 Seismology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Mathematical theory of elasticity and seismic wave propagation; properties of body and surface waves and applications to inference of earth structure; introduction to source theory; use of seismic data to determine major earth structures; characteristics of seismic noise fields; influence seismic anisotropy.
Prerequisites: GEOP 361, MATH 311 and PHYS 221, or approval of instructor.

GEOP 435 Methods of Geophysical Exploration
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Introduction to theory of gravity, magnetic, electrical and seismic exploration methods; physical properties of earth materials and their influence on geophysical measurements; limitations of geophysical data in the interpretation of subsurface structure.
Prerequisites: GEOL 309; MATH 251.

GEOP 470 Computational Geophysics
Credits 3. 3 Lecture Hours.
Techniques used in the study of geophysical processes, including heat and chemical transport in the Earth, rock deformation and viscous fluid flow; development of conservation laws, relevant boundary conditions and analytical solutions; introduction to numerical solutions.
Prerequisites: GEOL 101 or GEOL 104; MATH 308; or approval of instructor.

GEOP 484 Internship
Credits 0. 0 Other Hours.
Directed internship in a private firm, government agency or non-governmental organization to provide work experience related to the student’s degree program and career objectives. May be taken two times.
Prerequisites: Junior or senior classification and approval of internship agency and approval of instructor.

GEOP 485 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Advanced problems in geophysics.

GEOP 489 Special Topics In...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in geophysics. May be repeated for credit.
Prerequisite: Junior or senior classification.

GEOP 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in geophysics. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

GEOS - Geosciences (GEOS)

GEOS 101 Introduction to the Geosciences
Credits 0-1. 0-1 Lecture Hours.
Introduction to the geosciences; geography, geology, geophysics, atmospheric sciences and oceanography; areas and opportunities in the various geoscience fields. Open to all freshman and sophomore non-geoscience students interested in geosciences. May be taken three times for credit.
GEOS 105 Introduction to Environmental Geoscience
Credit 3. 3 Lecture Hours.
Key concepts and generalizations of global environmental issues within an Earth systems science framework including climate change, air pollution, land and coastal degradation, water resources and pollution, and habitat loss; environmental ethics, economics and politics; environmental issues in Texas. Enrollment preference will be given to environmental geoscience and environmental studies majors.

GEOS 110 Disasters and Society
Credit 3. 3 Lecture Hours.
Exploration of the science behind disasters; how they occur, the choices society makes that create or affect disasters, how certain populations are privileged during disasters by the decisions society has made and how science informs preparation for and response to future disasters.

GEOS 205 Environmental Geosciences Cornerstone
Credit 1. 1 Lecture Hour.
Professional career options, methods, strategies and skills involved in successful career planning in the environmental sciences; highlights high impact learning opportunities such as study abroad and internships and the development of scientific communication skills.
Prerequisites: ENST and ENSG majors; sophomore classification or approval of instructor.

GEOS 210 Climate Change
Credit 3. 3 Lecture Hours.
Examination of the science of climate change; past and present causes of global-scale climate change; basis for projections of future climate change and its potential impacts; existing and proposed policy responses; critical evaluation of scientific information.

GEOS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
.. Selected topics in an identified area of geosciences. May be repeated for credit.
Prerequisite: Approval of instructor.

GEOS 291 Research
Credit 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in the College of Geosciences. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

GEOS 301 College of Geosciences Study Abroad
Credit 1 to 18. 1 to 18 Other Hours.
For students in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to approved program and approval of academic dean.

GEOS 401 Polar Regions of the Earth: Science, Society and Discovery
Credit 3. 3 Lecture Hours.
Overview of disciplines and topics that define modern polar science in the north and the south; includes history of the Polar Regions, polar geosciences, major polar scientific projects, and special topics; participate as individuals and teams in education, outreach and science projects.
Prerequisite: Junior or senior classification.

GEOS 405 Environmental Geosciences
Credit 3. 2 Lecture Hours. 2 Lab Hours.
Dynamics and human interactions with near-surface environments including land, atmosphere and oceans through problem-based learning; interdisciplinary environmental problem topic, for example, water quality, urbanization, coastal development, or environmental pollution; geoscience techniques used for monitoring human-geosphere interaction.
Prerequisites: GEOS 105; junior or senior classification.

GEOS 410 Global Change
Credit 3. 3 Lecture Hours.
The interaction of the earth, atmosphere, oceans, cryosphere and life, including the impact of human society on the environment and climate; global change modeling; politics, policy and decision making; and personal awareness.
Prerequisite: Junior or senior classification.

GEOS 430 Global Science and Policy Making
Credit 3. 3 Lecture Hours.
Policy making derived from global science and technology; how advice is communicated to the federal government and the public; current and future societal concerns that could affect future policy making; knowledge and information used to set priorities, decide budget allocations, and establish public policy.
Prerequisite: Junior or senior classification or approval of instructor.

GEOS 431 Environmental Regulatory Compliance in Geoscience
Credit 3. 3 Lecture Hours.
Knowledge and practical experience necessary for analyzing and evaluating environmental protection and stewardship principles; application of evolving environmental laws and regulations to the human business enterprise; exploration of the interplay between stakeholders in the development of sound environmental management and regulatory strategies.
Prerequisites: BESC 367 or approval of instructor; junior or senior classification.

GEOS 442/GEOG 442 Past Climates
Credit 3. 3 Lecture Hours.
Terrestrial and marine proxy records of past climate variability, including tree rings, coral, and sediments; past climate change events such as the Little Ice Age and Medieval Warm Period; greenhouse gases and global temperature; insight into the nature of climate change and challenges humankind faces in the next few centuries.
Prerequisites: ATMO 201, or GEOG 203, or GEOL 101, or GEOL 104, or OCNG 251; junior or senior classification.
Cross Listing: GEOG 442/GEOG 442.

GEOS 443 Global Biogeochemical Cycles
Credit 3. 3 Lecture Hours.
Use of biogeochemical cycles to study the Earth system; description of movement and transformation of major elements such as C, N, P and trace elements; flux of material in and out of atmosphere, hydrosphere, pedosphere, and lithosphere; chemical and physical transformations that occur in Earth system.
Prerequisites: CHEM 119 and CHEM 120; select two from ATMO 201, or OCNG 251, or GEOG 203 or GEOG 205, or GEOL 101 or GEOL 104 or GEOL 150.
GEOS 444 The Science and Politics of Global Climate Change
Credits 3. 3 Lecture Hours.
Examination of the policy and scientific debate over climate change; how scientific debates produce 'knowledge'; how political debates produce policies; how policy debates use science; scientific evidence for climate change; impacts of climate change; possible responses to climate change; the political debate over climate change.
Prerequisite: GEOS 210; junior or senior classification or approval of instructor.

GEOS 470 Data Analysis Methods in Geosciences
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Topics and methods encountered while performing research in the geosciences; conceptualization of a scientific problem, data collection and processing, appropriate analysis techniques and data archiving and management; multi-disciplinary approach with an emphasis on real-world applications from environmental, atmospheric, and oceanographic sciences.
Prerequisites: Junior or senior classification; MATH 151; STAT 211, STAT 301, STAT 302, or STAT 303, or concurrent enrollment.

GEOS 471 Data Methods in Geosciences Laboratory
Credit 1. 2 Lab Hours.
Computational techniques required to perform statistical analysis of geosciences data; probability, confidence intervals, linear regression, analysis of variance and principle component analysis and performing statistical analysis using MATLAB; techniques for visualization and interpretation of results; emphasis on real world problems found in environmental, atmospheric, and oceanographic sciences.
Prerequisites: Junior or senior classification; MATH 151; STAT 211, STAT 301, STAT 302, or STAT 303, or concurrent enrollment.

GEOS 481 Seminar
Credit 1. 1 Other Hour.
Acquaint students with current research themes in the environmental field. May be repeated 4 times for credit.
Prerequisite: Junior or senior classification.

GEOS 483 Service Learning in the Geosciences
Credits 3. 3 Other Hours.
Integrates community-engaged experiences with academic course content; includes service activities, critical reflection on the relationship between course content and service experience; emphasis on the ethical and civic dimensions of service in geosciences; professional development training. May be taken up to six hours for credit.
Prerequisites: Approval of instructor.

GEOS 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Provides opportunity to gain practical experience in a working situation either during the semester or summer; work experience must have relevance to the degree sought and/or career objectives. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification and approval of internship agency and departmental director.

GEOS 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Advanced problems in geosciences.

GEOS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of geosciences. May be repeated for credit.

GEOS 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in the College of Geosciences. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

GERM - German (GERM)

GERM 101 Beginning German I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(GERM 1411) Beginning German I. Elementary language study with oral, written and reading practice. Preparation for conversation. Part of class preparation will be done in language laboratory.

GERM 102 Beginning German II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(GERM 1412) Beginning German II. Continuation of GERM 101. Part of class preparation will be done in language laboratory.
Prerequisite: GERM 101.

GERM 104 Intensive Beginning German
Credits 8. 8 Lecture Hours. 0 Lab Hours.
(GERM 1411 and 1412) Intensive Beginning German. Accelerated elementary language study, with oral, listening, reading, and writing practice. Equivalent to GERM 101 and GERM 102.

GERM 201 Intermediate German I
Credits 3. 3 Lecture Hours.
(GERM 2311) Intermediate German I. Readings of average difficulty; review of grammar; practice in conversation composition.
Prerequisite: GERM 102 or GERM 104.

GERM 202 Intermediate German II
Credits 3. 3 Lecture Hours.
(GERM 2312) Intermediate German II. Continuation of GERM 201 with more advanced material. Some literary selections included in class readings.
Prerequisite: GERM 201.

GERM 204 Intensive Intermediate German
Credits 6. 6 Lecture Hours.
(GERM 2311 and 2312) Intensive Intermediate German. Accelerated intermediate-level language study, with oral, listening, reading, and writing practice. Equivalent to GERM 201 and GERM 202.
Prerequisite: GERM 102 or GERM 104.

GERM 221 Field Studies I
Credits 3. 3 Other Hours.
German language and culture taught in Germany; supervised travel of cultural interest; living with local families; participation in the activities and courses of a German university or institute; written and oral reports, exams.
Prerequisites: GERM 102 or GERM 104; GERM 222 or concurrent enrollment.

GERM 222 Field Studies II
Credits 3. 3 Other Hours.
German language and literature taught in Germany in cooperation with a German university or institute; exams, written reports.
Prerequisites: GERM 102 or GERM 104; GERM 221 or concurrent enrollment.
GERM 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in German, selected for each student individually.
Prerequisite: Approval of instructor and department head.

GERM 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of German. May be repeated for credit.
Prerequisite: Approval of instructor.

GERM 310 Composition
Credits 3. 3 Lecture Hours.
Development of writing skills in German; emphasis on grammatical construction; taught in German.
Prerequisites: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 311 Conversation
Credits 3. 3 Lecture Hours.
Development of effective communication skills in spoken German, with emphasis on language appropriate to various social context; taught in German.
Prerequisite: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 315 Literary Investigations: German Short Fiction
Credits 3. 3 Lecture Hours.
Readings of selected works of short prose from the early 20th century to the present with emphasis on principles of literary analysis; conducted in German.
Prerequisites: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 316 Advanced Business German
Credits 3. 3 Lecture Hours.
Continuation of GERM 203; reading and oral practice of German pertinent to business, trade and international commerce.
Prerequisite: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 321 German Culture and Civilization I
Credits 3. 3 Lecture Hours.
German culture and civilization from classical antiquity to 1830; major stylistic periods in literature and the fine arts; conducted in German.
Prerequisite: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 322 German Culture and Civilization II
Credits 3. 3 Lecture Hours.
German culture and civilization from 1830 to the present; conducted in German.
Prerequisite: GERM 202, GERM 204, or GERM 222; junior or senior classification or approval of instructor.

GERM 331 German Literary Expression I
Credits 3. 3 Lecture Hours.
Readings of selected drama, poetry, and prose works of German literature from the Middle Ages through Romanticism; problems involved in defining dramatic, lyric, and epic genres considered; structural and aesthetic elements of literary works; conducted in German.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 332 German Literary Expression II
Credits 3. 3 Lecture Hours.
Readings of selected drama, poetry, and prose works of German literature of the modern era; problems involved in defining dramatic, lyric, and epic genres considered; structural and aesthetic elements of literary works; conducted in German.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 333 Contemporary Germany
Credits 3. 3 Lecture Hours.
Social, political, and economic debates and issues in Germany from 1945 to the present through the arts (literature, film, video, music); focus on post-war reconstruction, divided Germany, and post-reunification periods; conducted in German.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 334 German Drama
Credits 3. 3 Lecture Hours.
Study, analysis and public presentation in German of a major German dramatic work; literary theory and intensive conversational practice combined with skills of language acquisition within a performance setting.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 336 German Fairy Tales
Credits 3. 3 Lecture Hours.
Introduction to and study of fairy tales and children's literature through German tradition in these forms; reception of fairy tales through adaptation and modernization; taught in German.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 362 The Weimar Republic: Literature and Culture
Credits 3. 3 Lecture Hours.
Film, theater and poetry in the turbulent era prior to the Nazi terror; conducted in German.
Prerequisite: GERM 310 or GERM 315, or concurrent enrollment.

GERM 410 Seminar in German Literature and Culture
Credits 3. 3 Lecture Hours.
Survey of major literary and intellectual landmarks of a period in German history (Enlightenment, Romanticism, High Modernism, post-1945); study of literary works in context of social and cultural history, with attention to Germany's particular place in Europe and the world; taught in German. May be taken two times.
Prerequisite: 6 hours in GERM at 300-level, or approval of instructor.

GERM 411 German Author and Genre Studies
Credits 3. 3 Lecture Hours.
Examination of the work of a specific author, such as Goethe, Schiller, Kafka, Brecht, Frisch, or Grass, or the diachronic study of a specific genre, e.g., poetry, drama, prose; taught in German. May be taken two times.
Prerequisite: 6 hours in GERM at 300-level, or approval of instructor.

GERM 435/FILM 435 German Film
Credits 3. 3 Lecture Hours.
Consideration and analysis of major works and directors of German Film; interpretation of culture through film; relationship of film to history, literature, and other arts; taught in English. May be repeated for credit.
Prerequisites: Junior or senior classification, or approval of instructor.
Cross Listing: FILM 435/GERM 435.
GERM 437 German Romanticism: Literature, Theory, Philosophy
Credits 3. 3 Lecture Hours.
From Goethe's 'Faust' to the romantic exaltation of poetry; influence of the romantic movement on European literary theory and philosophy; taught in English.
Prerequisite: Junior or senior classification or approval of instructor.

GERM 440 Global Germany
Credits 3. 3 Lecture Hours.
Impact of globalization on Germany and the globalization of German life and culture from postwar period to the present; analysis of theoretical, historical, fictional and/or cinematic works presenting relationship of modern Germany with world affairs. Course conducted in English.
Prerequisite: Junior or senior classification or approval of instructor.

GERM 441 Representations of the Holocaust
Credits 3. 3 Lecture Hours.
Analysis of artistic mediations of the Holocaust across diverse textual and visual media with particular focus on aesthetic, political, pedagogical, and ethical challenges. Course conducted in English.
Prerequisite: Junior or senior classification or approval of instructor.

GERM 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects, selected for each student individually; written and oral reports.
Prerequisite: Approval of instructor and department head.

GERM 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of German. May be repeated for credit.
Prerequisite: Approval of instructor.

GERM 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in German. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of department head.

HBRW - Hebrew (HBRW)

HBRW 101 Elementary Modern Hebrew I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Elementary language study with oral, written and reading practice; preparation for conversation; part of class preparation to be done in the language laboratory.

HBRW 102 Elementary Modern Hebrew II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Continuation of HBRW 101; part of class preparation to be done in the language laboratory.
Prerequisite: HBRW 101.

HBRW 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual supervision of readings or assigned projects in Hebrew, selected for each student individually.
Prerequisites: Approval of instructor and department head.

HBRW 289 Special Topics in...
Credits 3. 3 Lecture Hours.
Selected topics in an identified area of Hebrew studies. May be repeated for credit.
Prerequisite: Approval of instructor.

HEFB - Health Ed Field Based (HEFB)

HEFB 222/KNFB 222 Teaching and Schooling in Modern Society
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Developing an understanding of students in multiple settings and levels; development, structure, history, finance, and management of schools in a democratic society; philosophical, ethical and moral dimensions of teaching; professional role of teacher.
Prerequisites: Junior or senior classification; majors only.
Cross Listing: KNFB 222/HEFB 222.

HEFB 324/KNFB 324 Technology and Teaching Skills for the 21st Century Learner
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Preparation of future Health and Physical Education teachers with practical skills related to: technology in the classroom/gymnasium, strategies for addressing urban education and English language learners, liability, management and classroom discipline, development of professional communication skills and time management; includes field-based experiences in diverse classroom settings.
Prerequisites: Grade of C or better in HEB 222/KNFB 222 or KNFB 222/HEFB 222; grade of C or better in BIOL 107 or BIOL 111; junior classification.
Cross Listing: KNFB 324/HEFB 324.

HEFB 325/KNFB 325 Introduction to Secondary School Teaching
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduce fundamental teaching skills and theories necessary for preparing reflective teachers; examine classroom management, learning strategies and assessment techniques; classroom lectures combined with field-based experiences to link theory into practice.
Prerequisites: Grade of C or better in HEB 324/KNFB 324; junior classification.
Cross Listing: KNFB 325/HEFB 325.

HEFB 450/KNFB 450 Supervised Student Teaching
Credits 6. 0 Lecture Hours. 6 Other Hours.
Observation and participation in an accredited public school classroom; techniques of teaching student’s teaching fields, and appropriate instructional strategies for assigned student population.
Prerequisites: Grade of C or better in HLTH 415 or KNFB 416.
Cross Listing: KNFB 450/HEFB 450.

HHUM - Health Humanities (HHUM)

HHUM 107 Introduction to the Health Humanities
Credits 3. 3 Lecture Hours.
Introduction to the methods and approaches of the health humanities; exposure to key scholarship in this field as well as major methods and approaches; application of such skills to the analysis of cultural case studies such as illness narratives or contemporary debates in scientific bioethics.
Cross Listing: COMM 107, ENGL 107, and PHIL 107.

HHUM 482 Health Humanities Senior Seminar
Credits 3. 3 Lecture Hours.
Capstone course; application of skills and knowledge acquired during health humanities concentration coursework; exposure to specialized methods of inquiry; development and execution of an individualized final project.
Prerequisites: ENGL 107, COMM 107, or HHUM 107; junior or senior classification.
Cross Listing: COMM 482 and ENGL 482.
HISP - Hispanic Studies (HISP)

HISP 201 Current Issues in Hispanic Studies
Credit 1. 1 Lecture Hour.
Exploration of current issues and concerns in Hispanic Studies through attendance and participation in Hispanic Studies-related events and lectures by noted academics and professionals in Hispanic Studies; in-class discussions. May be taken three times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: ENGL 104.

HISP 204 Spanish and Spanish American Literature in Translation
Credits 3. 3 Lecture Hours.
Survey of literature from the Spanish-speaking world from the Middle Ages to the present; English translations of masterpieces of Spanish language literature; authors such as Cervantes, Lope de Vega, Dario, Garcia Marquez; also taught at Galveston campus. Taught in English.

HISP 205 Don Quixote and the Other Arts
Credits 3. 3 Lecture Hours.
A study of Miguel de Cervantes’ masterwork, Don Quixote, and its representations in other arts such as painting, film and music. Taught in English.
Prerequisite: ENGL 104.

HISP 206 Food in the Hispanic World
Credits 3. 3 Lecture Hours.
A study of food, food preparation and consumption in the Hispanic world from historical, geographical, artistic, social and psychological perspective. Taught in English.
Prerequisite: ENGL 104.

HISP 250 Contemporary Spanish Culture
Credit 1. 1 Lecture Hour.
Cultural and practical orientation for students participating in the summer study abroad programs in Spain; brief introduction to contemporary social and cultural institutions; discussions of Spanish university system; oral reports and final paper; readings and discussion in English and Spanish.
Prerequisite: SPAN 101 or equivalent.

HISP 250 Contemporary Mexican Culture
Credit 1. 1 Lecture Hour.
Introduction to contemporary Mexican social, cultural, and political institutions; discussion of Mexican university system; readings and discussion in Spanish and English. For preparation for study abroad program in Mexico.
Prerequisite: SPAN 101 or equivalent.

HISP 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual supervision of readings or assigned projects in Hispanic Studies, selected for each student individually.
Prerequisites: Approval of instructor and department head.

HISP 289 Special Topics In...
Credits 3. 3 Lecture Hours.
Selected topics in an identified area of Hispanic Studies. May be taken three times for credit.
Prerequisites: ENGL 104; freshman or sophomore classification; approval of department head.

HISP 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research in Hispanic Studies conducted under the direction of faculty member. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

HISP 325 Hispanic Literature and Film
Credits 3. 3 Lecture Hours.
The language of film, and film as fiction; the relationship between film and literature; films as expressions of cultural realities through the adaptation of Hispanic literary works; readings and lectures in English.

HISP 362/ENGL 362 Latino/a Literature
Credits 3. 3 Lecture Hours.
Survey of literature from the Spanish-speaking world in the U.S. written mostly in English; examination of historical and social contexts of cultural production; may include novels, poetry, short stories, plays, and films to gain understanding of aesthetic expression of diverse Latino/a authors, including but not limited to Mexican Americans, Puerto Ricans, Cuban Americans and Dominican Americans.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 362/HISP 362.

HISP 363 Borderlands: U.S. and Mexico
Credits 3. 3 Lecture Hours.
Multiple images of the U.S./Mexico border, their creation, their evolution, and their conflicting representations in filmic, literary and musical texts.
Prerequisites: ENGL 104 and junior or senior classification.

HISP 471/RELS 471 Hispanic Religions
Credits 3. 3 Lecture Hours.
Exploration of the history and practice of Hispanic religion, including spirit possession, evil eye, consumption of sacred substances, healing traditions, ex-votos, relics, prophecy, omens, monsters, astrology, witchcraft, the Inquisition, festivals, pilgrimage, mystics and religious contributions of diverse ethnic groups.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 471/HISP 471.

HISP 474/RELS 474 Diversity Lessons from Medieval Spain
Credits 3. 3 Lecture Hours.
Crucible of cultures--Christian, Jewish, and Muslim--that was medieval Spain and modern implications of that experience in diversity.
Prerequisites: ENGL 104 and junior or senior classification.
Cross Listing: RELS 474/HISP 474.

HISP 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual supervision of readings or assigned projects in Hispanic Studies, selected for each student individually.
Prerequisites: Junior or senior classification; approval of instructor and department head.

HISP 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of Hispanic studies. May be taken three times for credit.
Prerequisites: ENGL 104; junior or senior classification; approval of department head.

HISP 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research in Hispanic Studies conducted under the direction of faculty member. May be taken two times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
HIST - History (HIST)

HIST 101 Western Civilization to 1660
Credits 3.3 Lecture Hours.
(HIST 2311) Western Civilization to 1660. Ancient civilizations, Greek, Roman and Asian, Christianity; medieval civilization in west, eastern Europe; political, social and intellectual developments from earliest human cultures to 1660.

HIST 102 Western Civilization Since 1660
Credits 3.3 Lecture Hours.
(HIST 2312) Western Civilization Since 1660. Religious, dynastic and imperial developments; Industrial Revolution; western democracies; rise of nationalism and communism; central and eastern Europe; intellectual revolution; World Wars I and II and the contemporary world.

HIST 103 World History to 1500
Credits 3.3 Lecture Hours.
(HIST 2321) World History to 1500. Development of major world societies in the premodern era; emergence of agrarian-based modes of production, political states, religious economy and a global division of systems; Eurasian world system and the civilizations of Africa and the Americas.

HIST 104 World History Since 1500
Credits 3.3 Lecture Hours.
(HIST 2322) World History Since 1500. Interaction of major world societies in the modern era; emergence of the modern world-economy and a global division of labor; European imperialism and colonialism and reactions in Africa, Asia and Latin America.

HIST 105 History of the United States
Credits 3.3 Lecture Hours.
(HIST 1301) History of the United States. Colonial heritage; Revolution; adoption of Constitution; growth of nationalism and sectionalism; Civil War; Reconstruction; also taught at Galveston and Qatar campuses.

HIST 106 History of the United States
Credits 3.3 Lecture Hours.
(HIST 1302) History of the United States. Since reconstruction; new social and industrial problems; rise of progressivism; U.S. emergence as a world power; World War I; reaction and New Deal; World War II; contemporary America; also taught at Galveston and Qatar campuses.

HIST 107 Introduction to the Health Humanities
Credits 3.3 Lecture Hours.
Introduction to the methods and approaches of the health humanities; exposure to key scholarship in this field as well as major methods and approaches; application of such skills to the analysis of cultural case studies such as illness narratives or contemporary debates in scientific bioethics.

HIST 210 Russian Civilization
Credits 3.3 Lecture Hours.
Russian history, culture and society from origins to the present; rise of the Russian Empire; autocracy; modernization without liberalization; reforms, reaction, revolution; development of Communist regime; continuity from Imperial to Soviet period in industrialization, bureaucracy and treatment of peasants, nationalities and intellectual opposition; Gorbachev and a new revolution.

HIST 212/RELS 212 Holy War
Credits 3.3 Lecture Hours.
Concepts of holy war in Jewish, Christian and Muslim history; language and literature of holy war; motivations for waging holy war; the relationship between war, martyrdom, pilgrimage and santhood; religious orders engaging in holy war; political aims of holy war; practices of holy war; perspectives of those attacked in holy wars.
Cross Listing: RELS 212/HIST 212.

HIST 213 History of England
Credits 3.3 Lecture Hours.
British, Saxon and Norman origins; national development; struggles between church and state; crown and nobles; nobles and commons; development of parliament.

HIST 214 History of England
Credits 3.3 Lecture Hours.
Agrarian and Industrial Revolutions; relations with Ireland; evolution of democracy; struggles with France and Napoleon; social legislation in the 20th century; growth of Empire until World War II.

HIST 220 History of Christianity: Origins to the Reformation
Credits 3.3 Lecture Hours.
History of Christian doctrine, ecclesiastical organization, and religious practice, origins through Reformation, with emphasis on religion and society; life and teachings of Jesus; apostolic church; patristic period; Christianization of Roman Empire and northern Europe; monasticism; medieval church; Gregorian reform; heresy; papal monarchy; schism and conciliarism; reformations of the sixteenth century.
Cross Listing: CLAS 220 and RELS 220.

HIST 221/RELS 221 History of Islam
Credits 3.3 Lecture Hours.
Key themes in Islam and Islamic history; Orientalism; pre-Islamic Arabia; the Qur’an; Sunni-Shi’i sectarian divisions; Islamic law; theology; sciences; mystical traditions; rituals of the Muslim faith; cross-cultural and religious encounters; holy war; ritual practices; fundamentalism; women in Islam; Islam in the West.
Cross Listing: RELS 221/HIST 221.

HIST 222/RELS 222 History of Christianity, Reformation to Present
Credits 3.3 Lecture Hours.
History of Christian religion from the era of the Reformation (sixteenth century) to the present, with emphasis on social, cultural, political and economic history in relation to Christian structures and theological movements.
Cross Listing: RELS 222/HIST 222.

HIST 226 History of Texas
Credits 3.3 Lecture Hours.
(HIST 2301) History of Texas. History of Texas from Spanish period to present day. Stress placed upon period of Anglo-American settlement, revolution, republic and development of modern state; also taught at Galveston campus.

HIST 230 American Military History, 1609 to Present
Credits 3.3 Lecture Hours.
Main events, personalities and technologies related to American military history; also taught at Qatar campus.

HIST 232 History of American Sea Power
Credits 3.3 Lecture Hours.
Development of American sea power from the 18th century to the present; also taught at Galveston campus.
HIST 234 European Military History
Credits 3.3 Lecture Hours.
Includes societal involvement, democratization of war, technology, strategy, military thought and campaigns.

HIST 236/CLAS 236 War and Violence in the Ancient World
Credits 3.3 Lecture Hours.
Equipment, organization, tactics and strategy on land and sea in the wars of the Ancient World, including the Near East, Greece and Rome; use of force and violence in the furtherance of political objectives and social control; winners, losers and survivors.
Cross Listing: CLAS 236/HIST 236.

HIST 242 United States Maritime History
Credits 3.3 Lecture Hours.
Development of American maritime history from colonial times to the present; Galveston campus.

HIST 258 American Indian History
Credits 3.3 Lecture Hours.
Survey of American Indian history; Pre-Columbian, First Contact, Colonial Conquest, Differentiation between cultural groups; Reservation period, twentieth-century self-determination, and Pan-Indianism; also taught at Qatar campus.

HIST 280 The Historian's Craft
Credits 3.3 Lecture Hours.
The Historian's Craft. The world of the professional historian; meanings and uses of history; current debates; archival research; evidence and argumentation; principles and methods of the analytical narrative.

HIST 285 Directed Studies
Credits 0 to 3.0 to 3 Other Hours.
Selected fields of history not covered in depth by other courses. Reports and extensive reading required.
Prerequisite: Approval of department head.

HIST 289 Special Topics in...
Credits 3.3 Lecture Hours.
Selected topics in an identified area of history. May be repeated for credit.
Prerequisite: Approval of instructor.

HIST 291 Research
Credits 0 to 3.0 to 3 Other Hours.
Research conducted under the direction of faculty member in history.
Prerequisites: 24 hours if history, with 12 or more at 200-level or above; freshman or sophomore classification and approval of instructor.

HIST 300/AFST 300 Blacks in the United States, 1607-1877
Credits 3.3 Lecture Hours.
Blacks in the United States from the colonial period to 1877; the slave trade, slavery, free blacks and the impact of the Civil War and Reconstruction on blacks.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 300/HIST 300.

HIST 301/AFST 301 Blacks in the United States Since 1877
Credits 3.3 Lecture Hours.
Blacks in the United States from the end of Reconstruction to the present; the ideologies of black leaders, disfranchisement, lynching and the quest for equality in the 1950s and 1960s.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 301/HIST 301.

HIST 302 Women and War in the African Diaspora
Credits 3.3 Lecture Hours.
Case studies of women and war in the African diaspora in a wide historical and comparative context; social, economic, and cultural influence of war on women's lives; women as victims, combatants, refugees; historical construction of race, ethnic and gender identity during times of conflict.
Prerequisite: Junior or senior classification.

HIST 303 History and Memory
Credits 3.3 Lecture Hours.
Relationships between past and present; role of change in political, social and cultural contexts across time; social and public functions of historical research; contested relationship between professional historians, politicians and states, cultural institutions, the media and the general public.
Prerequisites: Junior or senior classification or approval from instructor.

HIST 304 Southwest Borderlands
Credits 3.3 Lecture Hours.
Origins and development of Indigenous, Spanish, and Mexican history of Greater Southwest; exploration and conquest; Spanish entradas into Southwest; rise of institutions and colonial society; economic history; examination of social and cultural relations including the gender, Mexican independence; Mexico's far northern frontier, 1821-1848.
Prerequisite: Junior or senior classification.

HIST 305 Chicana/o History since 1848
Credits 3.3 Lecture Hours.
Social, economic and political evolution of Chicanas/os from 1848 to present; includes current issues, legacies of violence, land tenure systems, racial discrimination, changing class relations, gender, civil rights, immigration, identity, and culture.
Prerequisite: Junior or senior classification.

HIST 306 Chicana/o History since 1848
Credits 3.3 Lecture Hours.
Social, economic and political evolution of Chicanas/os from 1848 to present; includes current issues, legacies of violence, land tenure systems, racial discrimination, changing class relations, gender, civil rights, immigration, identity, and culture.
Prerequisite: Junior or senior classification.

HIST 307 Latinx History
Credits 3.3 Lecture Hours.
Latinx communities from the nineteenth century to the present in the U.S.; Mexican Americans, Puerto Ricans, Cubans, and Central and South Americans; differences in historical experiences; role of race, class, politics, immigration, gender and sexuality; cultural identity as expressed in art, literature, folklore and religion; contemporary social, political and economic issues.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 308 History of American Indians in the U.S. South
Credits 3.3 Lecture Hours.
Examination of the role of indigenous populations in the history and formation of the U.S. South; cultural values and social practices; impact of European exploration and African slavery; trade patterns, imperial wars, and removal policies.
Prerequisite: Junior or senior classification.

HIST 316 Latino/a Labor in the United States
Credits 3.3 Lecture Hours.
The experience of Latino/a labor in the United States, from the 19th through the early 21st century; role of gender, race and ethnicity and policy on labor experiences and labor relations; intersections of labor and migration, globalization.
Prerequisite: Junior or senior classification.
HIST 319 U.S. Immigration and Ethnicity
Credits 3. 3 Lecture Hours.
The sources and persistence of ethnic identity in 19th and 20th century America; its interaction with religion, politics, languages, education and social mobility; various nativist and anti-immigrant movements; contrasts and continuities between contemporary immigration patterns and those of earlier eras.

Prerequisite: Junior or senior classification.

HIST 320 History of the Atlantic World
Credits 3. 3 Lecture Hours.
Introduction to the comparative study of the civilizations and cultures that bordered on the Atlantic Ocean; examination of culture and economic exchanges and adaptations, migrations, empire-building, and the emergence of new societies and cultures.

Prerequisite: Junior or senior classification.

HIST 321 The Age of Revolution in the Atlantic World
Credits 3. 3 Lecture Hours.
Origins and events of the revolutions that transformed the Atlantic empires of Great Britain, France, and Spain in the late eighteenth and nineteenth centuries; disruption of old political and economic orders; creation of independent states in the Americas.

Prerequisite: Junior or senior classification.

HIST 322 History of the Iberian World
Credits 3. 3 Lecture Hours.
Introduction to the people and places of the Iberian World, ca. 1500-1900; social, political and economical relations between Spain, Portugal, Asia and the Americas; emergence of a shared culture and cross-cultural exchange.

Prerequisite: Junior or senior classification or approval of instructor.

HIST 325 History of the Caribbean to Emancipation
Credits 3. 3 Lecture Hours.
History of the Caribbean region from human settlement to the late nineteenth century; indigenous peoples; European colonization; colonial societies; challenges to the imperial plantation model.

Prerequisite: Junior or senior classification.

HIST 327 History of the Caribbean Since Emancipation
Credits 3. 3 Lecture Hours.
History of the Caribbean region from the late nineteenth century to the present; links to earlier plantation societies; economic, cultural, social, and political developments.

Prerequisite: Junior or senior classification.

HIST 330 Women in Ancient Greece and Rome
Credits 3. 3 Lecture Hours.
Survey of women in classical Greece and Rome; emphasis on female occupations and family relationships, legal and political status, traditional values, notorious women, how women were viewed and how they viewed themselves.

Prerequisite: Junior or senior classification.

Cross Listing: CLAS 330 and WGST 330.

HIST 331 Medieval Mediterranean, 300-1453
Credits 3. 3 Lecture Hours.
History of the European, North African and Middle Eastern states of the Mediterranean region in the medieval period; emphasis on political, religious, cultural, social, economic, environmental, scientific, institutional and diplomatic issues of the area and its hinterlands.

Prerequisite: Junior or senior classification or approval of instructor.

HIST 333 U.S. Immigration and Ethnicity
Credits 3. 3 Lecture Hours.
The sources and persistence of ethnic identity in 19th and 20th century America; its interaction with religion, politics, languages, education and social mobility; various nativist and anti-immigrant movements; contrasts and continuities between contemporary immigration patterns and those of earlier eras.

Prerequisite: Junior or senior classification.

HIST 334 History of Europe in the Nineteenth Century
Credits 3. 3 Lecture Hours.
Cultural, economic, and political processes that shaped European civilization (east and west); the Napoleon era; industrialization and urbanization; liberalism and socialism; empire and revolution; cultural developments.

Prerequisite: Junior or senior classification.

HIST 335 Europe, 1890-1932
Credits 3. 3 Lecture Hours.
A political, diplomatic, social and cultural history of Europe prior to, during and shortly after World War I.

Prerequisite: Junior or senior classification.

HIST 336 Europe Since 1919
Credits 3. 3 Lecture Hours.
A political, diplomatic, military, economic, social and cultural history of Europe since World War I.

Prerequisite: Junior or senior classification or approval of instructor.

HIST 337 War and European Society in the Twentieth Century
Credits 3. 3 Lecture Hours.
War and social change in Europe during the twentieth century; relationships between front lines and home fronts; government and civil society; gender and war; ethnic and national identities in Eastern, Central, and Western Europe.

Prerequisite: Junior or senior classification.

HIST 338 The Rise of the European Middle Class
Credits 3. 3 Lecture Hours.
Survey of European society and social classes from the origins of capitalism in the Middle Ages to the triumph of the ‘middle class world’ in the 19th century; rise of the middle class, development of bourgeois ideology and culture, and creation of the working class.

Prerequisite: Junior or senior classification.

HIST 339 Eastern Europe Since 1453
Credits 3. 3 Lecture Hours.
Eastern Europe from the fall of the Byzantine Empire to the present; the Ottoman, Habsburg, Russian and Soviet Empires; the origins of modern East European states.

HIST 341 Latin America to 1810
Credits 3. 3 Lecture Hours.
Political history of South America from exploration and settlement to independence; colonial institutions; commercial systems.

Prerequisite: Junior or senior classification.

HIST 342 Latin America Since 1810
Credits 3. 3 Lecture Hours.
Political history of independent South American nations since independence with emphasis upon ABC countries; economic, social and cultural development; foreign relations.

Prerequisite: Junior or senior classification.

HIST 343 Inter-American Relations
Credits 3. 3 Lecture Hours.
Cultural, diplomatic and economic relations in the Western Hemisphere in historical perspective.

Prerequisite: Junior or senior classification or approval of instructor.
HIST 344/AFST 344 History of Africa to 1800
Credits 3. 3 Lecture Hours.
Origins of humankind in Africa; development and spread of pastoralism, agriculture and iron-working; formation of states and empires; impact of Christianity and Islam; rise of international trade in gold, ivory and slaves; African diaspora.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 344/HIST 344.

HIST 345/AFST 345 Modern Africa
Credits 3. 3 Lecture Hours.
Survey of Africa since 1800; pre-colonial African states and societies; establishment and impact of European colonial rule; rise of nationalist movements; achievement of independence; problems of political stability and economic development in contemporary Africa; South Africa's apartheid regime and its opponents.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 345/HIST 345.

HIST 346/AFST 346 History of South Africa
Credits 3. 3 Lecture Hours.
Selected themes in the history of South Africa from the African Iron Age to the Apartheid regime; history of race relations in the 19th and 20th centuries and the rise of a modern industrial state.
Cross Listing: AFST 346/HIST 346.

HIST 347/RELS 347 Rise of Islam, 600-1258
Credits 3. 3 Lecture Hours.
Late-Antiquity; Pre-Islamic Arabia; the rise of Islam and a historical survey of the development of the Islamicate civilizations from c. 600 to the Mongol Conquests c. 1258 with an emphasis on politics, religion, society and culture.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 347/HIST 347.

HIST 348 Modern Middle East
Credits 3. 3 Lecture Hours.
Survey of the Middle East since 1800; introduction to Islam and Islamic civilization; decline of the Ottoman Empire; European imperialism; rise of nationalist movements; Zionism and the emergence of Israel; Arab-Israeli conflict; impact of oil; revolution in Iran and Islamic resurgence.
Prerequisite: Junior or senior classification.

HIST 349/ASIA 349 The Vietnam War/The American War
Credits 3. 3 Lecture Hours.
Vietnam's relations with the West; French colonialism; origins and development of Vietnamese nationalism; Cold War and American involvement; wartime societies in North and South Vietnam; expansion of the war to Cambodia and Laos; anti-war movements in the United States; reasons for American defeat; consequences and lessons of the war.
Prerequisite: Junior or senior classification.
Cross Listing: ASIA 349/HIST 349.

HIST 350/ASIA 350 World War II in Asia and the Pacific
Credits 3. 3 Lecture Hours.
Origins and development of Japanese imperialism; Japan's expansion into East and Southeast Asia and the Pacific; wartime societies; collaboration and resistance; effects of the war in the United States on Japanese-Americans; outcomes of the war; remembrance of the war.
Prerequisite: Junior or senior classification.
Cross Listing: ASIA 350/HIST 350.

HIST 352/ASIA 352 Modern East Asia
Credits 3. 3 Lecture Hours.
Impact of the West on traditional China and Japan; the response through modernization; rise of nationalism and formation of modern nation states.
Prerequisite: Junior or senior classification.
Cross Listing: ASIA 352/HIST 352.

HIST 353 Modern South Asia
Credits 3. 3 Lecture Hours.
Evolution of cultures, politics and societies in Indian sub-continent from c.1500 to present; rise and demise of empires (especially Mughal and British); anti-colonialism and emergence of nation states; social and cultural struggles and debates.
Prerequisite: Junior or senior classification.

HIST 356/ASIA 356 Twentieth Century Japan
Credits 3. 3 Lecture Hours.
Industrialization and modernization of Japan; its rise from an isolated nation to a major world power and economic giant.
Cross Listing: ASIA 356/HIST 356.

HIST 357/AFST 357 Out of Africa: The Black Diaspora and the Modern World
Credits 3. 3 Lecture Hours.
History and cultures of the peoples of the African Diaspora from the fourteenth through the nineteenth centuries; social, political, and economic impact on Africa, the Americas, Europe, and the Arab World; emphasis on race, gender, identity, and migration.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 357/HIST 357.

HIST 359 American Environmental History
Credits 3. 3 Lecture Hours.
History of American attitudes toward nature: use of land, water, timber, oil, coal, wildlife and other natural resources in the United States; conservation movement and significant conflicts over resources; changing perception of the physical environment.

HIST 360 History of Energy in America
Credits 3. 3 Lecture Hours.
Impact of energy upon industrial America; emphasis on relationship between energy and industrial development, emergence of state and federal energy policies, role of energy in foreign policy, growth of energy-oriented industries and impact of energy development on the environment.

HIST 361 Technology and Engineering in Western Civilization, 1400-Present
Credits 3. 3 Lecture Hours.
Man's material culture and his understanding of the physical world since the 15th century; role of the Renaissance and the Scientific, Agricultural and Industrial Revolutions in Europe; the resulting transformations in western civilization.

HIST 362 History of Science
Credits 3. 3 Lecture Hours.
The ideas of the great scientists and their impact on society; the Newtonian Revolution; Lavoisier and the new chemistry; Darwin and evolutionary thought; Enrico Fermi, Robert Oppenheimer and the development of nuclear energy.
HIST 363 History of Science in America
Credits 3. 3 Lecture Hours.
The major developments in the physical and life sciences from colonial times to the present; the lives and scientific contributions of such famous American scientists as Benjamin Franklin, Joseph Henry, Thomas Edison and J. Robert Oppenheimer.

HIST 364 History of Technology and Engineering in America, 1607-Present
Credits 3. 3 Lecture Hours.
American technological development from the colonial times to the present; technology in society, factors affecting technological development, changing attitudes toward technological accomplishments and the effects of technology upon society.

HIST 365/RELS 365 Religion in Early America
Credits 3. 3 Lecture Hours.
Religion in North America from colonial beginnings to eve of Civil War; relations between European Christianity, Native Americans and African Americans; religious pluralism, reform movements, social and political change.
Prerequisite: Junior or senior classification.
Cross Listing: RELS 365/HIST 365.

HIST 366/RELS 366 Religion in Modern America
Credits 3. 3 Lecture Hours.
Religion in America from the Civil War to contemporary period; relationship of religion and racial formation, capitalism, gender, sexuality, immigration; religious pluralism; evangelicalism; role of religious politics and social movements.
Prerequisite: Junior or senior classification.
Cross Listing: RELS 366/HIST 366.

HIST 367 Colonization of North America
Credits 3. 3 Lecture Hours.
Geographic setting; early English, French, Dutch, Swedish discovery, conquest and settlement, 1497-1763; colonial administration; colonial life; inter-colonial wars.

HIST 368 The Birth of the Republic, 1763-1820
Credits 3. 3 Lecture Hours.
Impact of French and Indian War; British colonial policy 1763-1775; War for Independence; Confederation crisis; Constitution-making and ratification; development of political parties; problem of foreign entanglements; War of 1812; conflict of nationalist and sectionalist tendencies; historiography and interpretation.

HIST 369 The United States, 1820-1860
Credits 3. 3 Lecture Hours.
Jacksonian democracy; impact of nationalism and sectionalism; manifest destiny and Mexican War; slavery controversy; expansion.

HIST 370 Civil War and Reconstruction
Credits 3. 3 Lecture Hours.
Survey of background and causes of the war; military, political, economic, and diplomatic aspects of the war; life behind the lines; Reconstruction and post-war adjustments, 1861-1877.

HIST 371 America in the Gilded Age, 1877-1901
Credits 3. 3 Lecture Hours.
The United States from 1877 to 1901; political, cultural and economic developments.

HIST 372 Reform, War and Normalcy: The United States, 1901-1929
Credits 3. 3 Lecture Hours.
Emergence of Progressivism; reform in the cities and states; reforms and foreign policies of the Theodore Roosevelt, William Howard Taft and Woodrow Wilson administrations; World War I and aftermath; Harding-Coolidge normalcy; the Jazz Age; Hoover and the Great Crash.

HIST 373 The Great Depression and World War II
Credits 3. 3 Lecture Hours.
The United States, 1929-1945; cultural, social, economic, and political developments in the nation; global diplomacy and military strategy; also taught at Galveston campus.

HIST 374 The United States After World War II
Credits 3. 3 Lecture Hours.
The United States since World War II; political, economic, cultural and social changes and role as a world leader; also taught at Galveston campus.

HIST 376 Great Scientists in History
Credits 3. 3 Lecture Hours.
History of fundamental scientific principles through biography; Galileo, Newton, Darwin, Mendel, Curie, Einstein, Pauling, and others.
Prerequisite: Junior or senior classification.

HIST 401 Slavery in World History
Credits 3. 3 Lecture Hours.
Comparative history of human slavery; slavery in the Ancient World, Asia, Africa; varieties of modern slavery in the New World since 1500; abolition of slavery and continuing forms of human bondage in the contemporary world.
Prerequisite: Junior or senior classification.
Cross Listing: AFST 401 and ASIA 401.

HIST 402 Germany Since 1815
Credits 3. 3 Lecture Hours.
A survey of the unification of Germany; creation of the German Empire; Weimar Republic; rise and fall of Nazi Germany; and the role of Germany in international diplomacy.

HIST 404 Post 1945 Germanies
Credits 3. 3 Lecture Hours.
Examines Germany from the end of World War II to the end of the 20th century; includes political, social, cultural, and economic life in divided and occupied Germany; covers Germany since reunification in 1990.
Prerequisite: Junior or senior classification.

HIST 405 History of the Holocaust
Credits 3. 3 Lecture Hours.
History of the Nazi Holocaust; Third Reich; Jewish Ghetto life and concentration camps; role of the military, S.S. and German business; lessons and legacies; also taught at Galveston campus.

HIST 406 The Era of the French Revolution and Napoleon, 1715-1815
Credits 3. 3 Lecture Hours.
Origins and events of the French Revolution; Napoleon Bonaparte and the First Empire; social, economic, political and military developments in France and Europe.

HIST 407 History of France Since 1815
Credits 3. 3 Lecture Hours.
Nineteenth century Bourbon, Orleanist, Bonapartist and Republican regimes; France in World Wars I and II; De Gaulle and the role of France in the 20th century.
HIST 409 Youth in Modern Asia: Rebellions and Conformities
Credits 3. 3 Lecture Hours.
Twentieth century history of youth in Asia; social, cultural and political youth movements; roots of rebellions and conformities; colonialism and post-colonialism; war and anti-war movements; role of hippies, class and consumerism; femininity and masculinity; globalization and national identity; religion and morality; education; music.
Prerequisites: Junior or senior classification or approval of instructor.

HIST 410 Russian History to 1801
Credits 3. 3 Lecture Hours.
Origins and Christianization of Russia; establishment and decline of Kievan Rus’ state; Mongol conquest and domination of Russia; rise of Moscow, establishment of tsardom, expansion of state in sixteenth and seventeenth centuries; Peter the Great’s reforms; emergence of Russian Empire as a major power; era of Catherine the Great.

HIST 411 Imperial Russia 1801-1917
Credits 3. 3 Lecture Hours.
The last century of the autocratic Romanov dynasty and the social, intellectual, economic and political forces that ended it; political culture; society in transition, international affairs and revolutionary groups in an era of reform, counter-reform, reaction and industrialization.

HIST 412 Soviet Union 1917-1991
Credits 3. 3 Lecture Hours.
Political and social evaluation of the Soviet system; the Russian Revolution and consolidation of Bolshevik power; Civil War; power struggles among Lenin’s successors; Stalin’s industrial revolution, collectivization, and terror; Khrushchev’s de-Stalinization campaign, stagnation under Brezhnev; Gorbachev’s attempts at radical reform; the collapse of the Soviet Union.

HIST 416 Texas as Border Region
Credits 3. 3 Lecture Hours.
History of Texas since annexation; slavery and its aftermath; border cultures and identities; race and ethnicity; modernization and its discontents.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 418 Intellectual History from the Ancient Near East to the Early Middle Ages
Credits 3. 3 Lecture Hours.
Political, social, cultural and religious histories of significant figures, groups, schools of thought and movements in western Afro-Eurasia from the Assyrian Empire to the later Roman Empire; developments in political theory, literature, sociology, arts, architecture, music, philosophy, law, sciences and education.
Prerequisite: Junior or senior classification.
Cross Listing: CLAS 418 and RELS 418.

HIST 419/RELS 419 Intellectual History, 500 to 1600
Credits 3. 3 Lecture Hours.
Political, social, cultural and religious histories of significant figures, groups, schools of thought and movements in western Afro-Eurasia from the rise of Islam to the Renaissance; developments in political theory, literature, sociology, arts, architecture, music, philosophy, law, sciences and education.
Prerequisite: Junior or senior classification.
Cross Listing: RELS 419/HIST 419.

HIST 420 European Intellectual History from the Enlightenment to 1900
Credits 3. 3 Lecture Hours.
Political and social history of selected major figures and important movements in political theory, literature, sociology, art, economics and philosophy in the 18th and 19th centuries.

HIST 421 European Intellectual History in the Twentieth Century
Credits 3. 3 Lecture Hours.
Political and social history of selected major figures and important movements in political theory, literature, sociology, art, economics and philosophy from the turn of the century to the present.

HIST 425/RELS 425 The Sacred and Profane in History
Credits 3. 3 Lecture Hours.
Case studies of the sacred in varied times and regions; holy persons; holy places; holy objects; language and literature of the sacred; competing concepts of the holy within society; gender and the holy; institutions promoting holy people and places; the impact of social, political, cultural and intellectual developments on the relationship between the sacred and the profane.
Prerequisites: Junior or senior classification.
Cross Listing: RELS 425/HIST 425.

HIST 426/CLAS 426 The Ancient Greeks
Credits 3. 3 Lecture Hours.
Greek History and civilization from the Archaic Age to Alexander the Great (8th-late 4th century B.C.).
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: CLAS 426/HIST 426.

HIST 427/CLAS 427 The Roman Republic
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the beginnings of the Republic to its incipient disintegration.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: CLAS 427/HIST 427.

HIST 428/CLAS 428 The Roman Empire: Principate
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the late Republic to the consolidation of the state of Late Antiquity.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: CLAS 428/HIST 428.

HIST 429/CLAS 429 The Roman Empire: Transformations
Credits 3. 3 Lecture Hours.
Major events and issues in Roman history from the rise of Christianity as an imperial religion to the end of Late Antiquity.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: CLAS 429/HIST 429.

HIST 431 The Kingdom of Ireland, 1541-1800
Credits 3. 3 Lecture Hours.
History of Ireland from the mid sixteenth century through the end of the eighteenth century; impact of religion, politics, warfare, land disputes, famine, and international developments; creation of the United Kingdom.
Prerequisite: Junior or senior classification.

HIST 432 The Nation of Ireland, 1800 to the Present
Credits 3. 3 Lecture Hours.
History of Ireland from the creation of the United Kingdom through the end of the twentieth century; British-Irish relations; agrarian unrest and violence; famine; political, cultural, and religious developments.
Prerequisite: Junior or senior classification.

HIST 435 Sixteenth-Century Britain
Credits 3. 3 Lecture Hours.
Changes in social, cultural, economic, political and religious institutions and organization; growth of the nation state; the ‘new monarchy’; Reformation and religious settlement; international relations; inflation and social dislocation; the role of Parliament.
HIST 436 Seventeenth-Century Britain
Credits 3. 3 Lecture Hours.
Social, political, economic, cultural and religious developments, Puritanism and the Revolution of the 1640s, the Restoration, establishment of constitutional monarchy after 1688, Great Britain’s rise as an imperial power.

HIST 437 Eighteenth Century Britain
Credits 3. 3 Lecture Hours.
Political, social, economical, intellectual, cultural, and imperial history of Great Britain in the eighteenth century.
Prerequisite: Junior or senior classification.

HIST 438 Nineteenth Century Britain
Credits 3. 3 Lecture Hours.
Political, social, economic, cultural, intellectual and military history of Great Britain from 1815 to 1914.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 439 Twentieth Century Britain
Credits 3. 3 Lecture Hours.
Constitutional, political, economic, military, social and cultural history of Great Britain since 1900.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 440 World War II
Credits 3. 3 Lecture Hours.
Origins; military campaigns in Europe, North Africa, Asia, and the Pacific; European, Japanese, Asian, and American home fronts; collapse of Germany; atomic warfare; legacies.
Prerequisite: Junior or senior classification.

HIST 441 History of Mexico, 1821 to the Present
Credits 3. 3 Lecture Hours.
Political, economic and social development of Mexico since independence and her relation to other world powers.

HIST 442 World War II
Credits 3. 3 Lecture Hours.
Examination of the causes and consequences of revolutionary activity, battlefields and homefronts during the War for Independence; social, political and economic impact of the Revolution on diverse peoples and communities both in the new United States and abroad; historical memory of the American Revolution.
Prerequisite: Junior or senior classification.

HIST 443 American Military History to 1901
Credits 3. 3 Lecture Hours.
American military experience from colonial days to 1901; causes, nature and effect of the wars in which the United States has participated.

HIST 444 American Military History Since 1901
Credits 3. 3 Lecture Hours.
American military experience from 1901 to present; causes, nature and effect of wars in which the United States has participated; effect of war on American history.

HIST 445 History of Military Strategy
Credits 3. 3 Lecture Hours.
Military thought and theory, 1700 to the present.
Prerequisite: Junior or senior classification.

HIST 446 Law and Society in the United States through Reconstruction
Credits 3. 3 Lecture Hours.
How political and social conditions in American history have produced fundamental constitutional principles, changes and practices; historical evolution of written and unwritten Constitution; state law, legal theory, legal profession and private law through the Civil War and Reconstruction.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 447 Law and Society in the United States through Reconstruction
Credits 3. 3 Lecture Hours.
Analysis of themes in American legal and constitutional history since 1865; examination of social, cultural, and political context surrounding major Supreme Court decisions; social impact of laws and Supreme Court decisions; investigation of legal activities such as moot court and amicus curiae briefs.
Prerequisites: Junior or senior classification.

HIST 449 History of Brazil, 1822 to the Present
Credits 3. 3 Lecture Hours.
Focus on parts of North America where slavery dominated the economy, politics and demographics; experiences of native, African and European-descended peoples in such regions from the colonial period to the end of slavery; debates about geographical and cultural roots of regional identities.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 450 Southern Identities and Cultures Since Reconstruction
Credits 3. 3 Lecture Hours.
Focus on parts of North America where slavery dominated the economy, politics and demographics; experiences of native, African and European-descended peoples in such regions from the colonial period to the end of slavery; debates about geographical and cultural roots of regional identities.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 451 Southern Identities and Cultures through Reconstruction
Credits 3. 3 Lecture Hours.
Focus on the aftermath of slavery and defeat in those parts of North America where slavery dominated the economy, politics and demographics; transformations in race, culture and politics in such regions and emergence of new identities since Reconstruction; debates over the geographic and cultural roots of the American South.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 452 The American Revolution
Credits 3. 3 Lecture Hours.
The causes and consequences of revolutionary activity, battlefields and homefronts during the War for Independence; social, political and economic impact of the Revolution on diverse peoples and communities both in the new United States and abroad; historical memory of the American Revolution.
Prerequisite: Junior or senior classification.

HIST 453 The American Frontier
Credits 3. 3 Lecture Hours.
Westward movement; patterns of westward expansion, pioneer settlement, the West in diplomacy and influence of frontier on American life and institutions.

HIST 454 The History of the American City
Credits 3. 3 Lecture Hours.
History of American Cities; a social, economic and political study of industry, labor and immigration; development of a metropolitan society.

HIST 455 History of the American City
Credits 3. 3 Lecture Hours.
History of American agricultural development from the Revolutionary period to the present; technological developments, major farm industries, labor, regional development, farm movements and farm programs.

HIST 456 American Agricultural History
Credits 3. 3 Lecture Hours.
History of childhood and family in American history; examination of how region, race, ethnicity, class and gender shape children’s and the family’s experiences; consideration of how social, cultural, economic, and political structures shape ideas about and activities of children and families in America.
HIST 459 American Society and Culture to 1877
Credits 3. 3 Lecture Hours.
Century of social and political thought, religion, science, scholarship and education in the United States.

HIST 460 American Society and Culture Since 1877
Credits 3. 3 Lecture Hours.
Continuation of HIST 459 from 1877 to the present.

HIST 461/WGST 461 History of American Women
Credits 3. 3 Lecture Hours.
Cultural, political, legal and religious factors that helped shape the role and character of women in American society from colonial times to the present; historical role of women in the development of the nation.
Cross Listing: WGST 461/HIST 461.

HIST 462 American Foreign Relations to 1913
Credits 3. 3 Lecture Hours.
History of U.S. foreign relations and policies to 1913.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 463 American Foreign Relations Since 1913
Credits 3. 3 Lecture Hours.
History of U.S. foreign relations and policies since 1913.
Prerequisite: Junior or senior classification or approval of instructor.

HIST 464 International Developments Since 1918
Credits 3. 3 Lecture Hours.
General survey of world politics since close of World War I; problems and ideologies of great powers of Europe and factors and conditions which explain present political tendencies and policies.

HIST 468/LMAS 468 Latinx Civil Rights Movements
Credits 3. 3 Lecture Hours.
Latinx civil rights movements in the twentieth century; Mexican American, Puerto Rican, Cuban, Central American; racism, economic inequality, labor exploitation, segregation, anti-immigrant sentiment, gender discrimination; role of liberalism, multiethnic coalitions, third world liberation movements, revolutionary nationalism, religion; movement philosophies and strategies; contemporary immigrant rights movements.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: LMAS 468/HIST 468.

HIST 469 History of Collective Protest and Violence
Credits 3. 3 Lecture Hours.
Examination of collective protest and violence on a case study basis and in comparative and historical context; emphasis on causes, the nature of participation, assumptions and goals, and the character of repression.
Prerequisite: Junior or senior classification.

HIST 470 American Business History
Credits 3. 3 Lecture Hours.
Management strategy and structure of the modern corporation in 19th and 20th century America and the corporation's changing roles in American society.

HIST 473/WGST 473 Women's History in the Modern U.S.
Credits 3. 3 Lecture Hours.
History of women in the U.S. from the late nineteenth century to the present; role of intersectionality in defining the experience of modern womanhood; women as activists, workers, consumers, mothers, and feminists; experiences, lives and influence of women of color; examination of contemporary social, political and economic histories.
Prerequisite: Junior or senior classification or approval of instructor; HIST-473 also taught at Galveston campus.
Cross Listing: WGST 473/HIST 473.

HIST 474 Topics in Historical Ethnical Conflict
Credits 3. 3 Lecture Hours.
Analysis of a specific instance of historical ethnic conflict; examination of the social, political, religious, and economic factors contributing to that historical conflict; discussion of structural factors influencing ethnic, national and other group efforts to advance claims to separate identity and self-government; case study will vary by semester.
Prerequisite: Senior classification.

HIST 475 Empire and History
Credits 3. 3 Lecture Hours.
Empires in their formative, medieval, early modern and modern periods within a comparative framework with a case-study approach; geographic range varies; politics, religion, culture, literature, arts, economics, environment, race, gender, identity formation, technology, class, medicine, sciences, philosophy, labor, violence, agriculture, immigration, slavery, diplomacy and industrialization. May be taken 3 times for credit.
Prerequisite: Junior or senior classification.

HIST 477/WGST 477 Women and Gender in Modern European History
Credits 3. 3 Lecture Hours.
Women in Europe from the 18th century to the present: women's contributions to their societies; realities of their daily lives and their responses; perceptions of women; role of institutions in defining women's roles; significance for women of industrialization, revolution, warfare, scientific discoveries; interaction of class, race and gender.
Cross Listing: WGST 477/HIST 477.

HIST 481 Seminar in History
Credits 3. 3 Lecture Hours.
Literature of an issue, event, period or people in history; use of primary source materials connected with the field of the seminar; problems of bibliography, historiography and historical method; and experience in writing.
Prerequisite: 21 credits of history, 9 of which must be 300-level or above.
Open to senior history majors or with instructor's approval.

HIST 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Selected fields of history not covered in depth by other courses. Reports and extensive reading required.
Prerequisite: Approval of department head; also taught at Galveston campus.

HIST 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of history.

HIST 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in history.
Prerequisites: 24 hours if history, with 12 or more at 300-level or above; junior or senior classification and approval of instructor.
HIST 497 Independent Honors Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed independent studies for upper division Honors students, regardless of academic major, in selected aspects of history.
Prerequisites: Junior or senior classification either as Honors student or with overall GPR of 3.25 and letter of approval from head of student’s major department and approval of head, Department of History.

HLTH - Health (HLTH)

HLTH 210 Introduction to the Discipline
Credits 3. 3 Lecture Hours.
Concepts essential to understanding the discipline: competencies and career opportunities for professional health educators in school and community settings.
Prerequisites: Current health major.

HLTH 214/KINE 214 Health and Physical Activity for Children
Credits 3. 3 Lecture Hours.
(PHED 1331) Health and Physical Activity for Children. Coordinated school health and physical activity programs appropriate for elementary aged children; focus on the content of the curriculum and the philosophical underpinnings of programming related to health and physical activity.
Cross Listing: KINE 214/HLTH 214.

HLTH 216 First Aid
Credits 2. 2 Lecture Hours.
(PHED 1306) First Aid. Basic first aid instruction leading to University Level, first aid course completion recognition.

HLTH 221 Safety
Credits 3. 3 Lecture Hours.
The magnitude of the accident problem as it relates to individual and community well-being; promotion of safe behavior.

HLTH 222 Concepts in Peer Health Education
Credits 3. 3 Lecture Hours.
Preparation as peer educators and campus community leaders; experiential learning; includes various health topics, program development, presentation and public speaking, communication and group facilitation.

HLTH 231 Healthy Lifestyles
Credits 3. 3 Lecture Hours.
(PHED 1304) Healthy Lifestyles. Health issues relevant to students; included are mental health, use and abuse of drugs, human sexuality, communicable diseases, environmental and consumer health.

HLTH 236 Introduction to Health Disparities and Diversity
Credits 3. 3 Lecture Hours.
Explore in-depth the racial, ethnic, and cultural dimensions that underlie health and health disparities; emphasis on culture, social economic status and governmental policies as they influence the adaptation of health practices.

HLTH 240/KINE 240 Computer Technology in Health and Kinesiology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of current technology in the areas of health and kinesiology; fundamentals of computers and their use; application of commercial software to health and kinesiology settings; use of computer networks for communications and research.
Prerequisite: Freshman or sophomore classification in health or kinesiology.
Cross Listing: KINE 240/HLTH 240.

HLTH 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Work on a specified topic with the intent of promoting independent reading, research and study; supplement existing course offerings or subjects not presently covered.
Prerequisites: Freshman or sophomore classification; approval of instructor.

HLTH 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in health. May be repeated 4 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

HLTH 331 Community Health
Credits 3. 3 Lecture Hours.
Aspects of the community that relate to health; identification and analysis of community health programs; organizational pattern and functions of voluntary and governmental health agencies; organizing the community for health action; and coordination of school and community health programs.
Prerequisite: Grade of C or better in HLTH 231 or concurrent enrollment.

HLTH 332 School Health Program
Credits 3. 3 Lecture Hours.
Background, development, administration and framework of the school health program; role of the school health team; nature and function of school health services and healthful school living.
Prerequisite: Grade of C or better in HLTH 210, HLTH 231, HEB 222/KNFB 222, BIOL 319, and BIOL 320, junior classification.

HLTH 333 Spirituality and Health
Credits 3. 3 Lecture Hours.
Exploration of the relationship between spirituality, religion, health, health education and spiritual health; identification of techniques to measure spiritual health/wellness and enlighten healthcare professionals to the role spiritual health plays in healing; identification of spirituality topics important to health care professionals.
Prerequisite: Grade of C or better in HLTH 231, HLTH 331, or approval of instructor.

HLTH 334 Women's Health
Credits 3. 3 Lecture Hours.
A broad range of health issues that are either unique to women or of special importance to women; information for the health consumer; preparation as an advocate of healthy lifestyles; awareness of the role health plays in the life of all women.
Prerequisite: Junior or senior classification.

HLTH 335 Human Diseases
Credits 3. 3 Lecture Hours.
Causes of disease, course of communicable disease, body’s defense against disease and classification and description of diseases.
Prerequisite: Grade of C or better in BIOL 319, BIOL 320, HLTH 210, HLTH 231, and HLTH 240/KINE 240.

HLTH 342 Human Sexuality
Credits 3. 3 Lecture Hours.
Many aspects of human sexuality; physiology and function of human reproductive system, factors involved in learning sex roles, biological and emotional motivations associated with the sexual aspects of life and their relationship to marriage and family planning.
HLTH 353 Drugs and Society
Credits 3.3 Lecture Hours.
Use and abuse of drugs in today's society; physiological, sociological and psychological factors involved.
Prerequisite: Grade of C or better in BIOL 319, BIOL 320, HLTH 210, HLTH 231, and HLTH 240/KINE 240.

HLTH 354 Medical Terminology for the Health Professions
Credits 3.3 Lecture Hours.
Designed for students interested in pursuing a career in a health, medical, scientific or other helping profession; develop medical word power skills combined with related health and disease knowledge.
Prerequisite: Junior or senior classification.

HLTH 403 Consumer Health
Credits 3.3 Lecture Hours.
#Selection, evaluation and understanding of health information, medical services, advertising of products and sociocultural factors in consumer health protection.
Prerequisite: Junior or senior classification.

HLTH 405 Rural Health
Credits 3.3 Lecture Hours.
Issues facing rural health care; emphasis on understanding the geographical characteristics of rural communities and their affect on health care delivery.
Prerequisites: Grade of C or better in HLTH 331; junior or senior classification.

HLTH 407 Global Health
Credits 3.3 Lecture Hours.
Overview of global health issues; synthesis of historical, cultural, environmental, economic and political perspectives; gathering and understanding international health statistics; cultural, social and political impacts on health and health care behaviors; clinical and population-based approaches to health management and illness resolution; ethical issues implicit in conducting health research; private and public agency relief strategies; opportunities for employment in international health.
Prerequisites: Grade of C or better in HLTH 210, HLTH 231, HLTH 240/KINE 240, BIOL 319, BIOL 320 and COMM 203; grade of C or better in ENGL 103 or ENGL 104.

HLTH 410 Worksite Health Promotion
Credits 3.3 Lecture Hours.
Careful examination of strategies to design, implement and evaluate exercise and health programs in worksites; including health risk assessment, marketing protocol, needs assessment, corporate culture issues, policy development and cost-benefit analysis.
Prerequisite: Grade of C or better in HLTH 210, HLTH 231, HLTH 240/KINE 240, BIOL 319, BIOL 320, and COMM 203; grade of C or better in ENGL 103 or ENGL 104.

HLTH 415 Health Education Methodology
Credits 3.3 Lecture Hours.
Theory and practice in the development and use of creative and traditional health education strategies in secondary schools and community settings; emphasis is given to cognitive, affective and behavioral teaching strategies.
Prerequisites: Grade of C or better in HLTH 210, HLTH 222, HLTH 231, HLTH 240/KINE 240, HLTH 331, BIOL 319, BIOL 320, and COMM 203; grade of C or better in ENGL 103 or ENGL 104; senior classification.

HLTH 421 Elementary School Health Instruction
Credits 3.3 Lecture Hours.
Modern issues, trends, content and material in elementary school health programs; research and instructional strategies essential for reading in content areas with an emphasis on developing the coordinated school health education for health and kinesiology teacher certification majors.
Prerequisite: Grade of C or better in HLTH 210, HLTH 231, HEFB 222/KNFB 222, HEFB 324/KNFB 324, BIOL 319, and BIOL 320; junior classification.

HLTH 425 Health Program Evaluation
Credits 3.3 Lecture Hours.
Theory and practice in evaluation of health programs in school and community; analysis of test results; evaluation of standardized health tests.
Prerequisites: Grade of C or better in HLTH 210, HLTH 222, HLTH 231, HLTH 240/KINE 240, HLTH 331, BIOL 319, BIOL 320, and COMM 203; grade of C or better in ENGL 103 or ENGL 104; senior classification and approved acceptance to field experience.

HLTH 429 Environmental Health
Credits 3.3 Lecture Hours.
Health aspects of environments; health problems related to water, air and noise pollution; pesticides; population and radiation; examination of various micro-environments which either promote or hinder human health and well-being and their implications for community planning and utilization of human resources.
Prerequisite: Junior or senior classification.

HLTH 440 Contemporary Issues for Community Health Interns
Credits 3.3 Lecture Hours.
Preparatory course for advanced students in the community health internship program.
Prerequisite: Grade of C or better in HLTH 210, HLTH 222, HLTH 231, HLTH 240/KINE 240, HLTH 331, BIOL 319, BIOL 320, and COMM 203; grade of C or better in ENGL 103 or ENGL 104; acceptance to internship program.

HLTH 445 Professional Practice in Health Education
Credits 2.2 Lecture Hours.
Information, perspectives and skills to promote health and quality of life effectively in community, school, workplace and health-care settings; boundary-crossing partnerships across health disciplines; the role of collaborative efforts to better meet community health needs.
Prerequisites: Admission to professional phase of program; junior or senior classification.

HLTH 481 Seminar in Allied Health
Credit 1.1 Lecture Hour.
Admission to allied health professional school and/or careers; research on selected allied health fields, discussion of transition from college environment to professional school/career environment including professional development. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification.

HLTH 482 Grant Writing in Health
Credit 1.1 Lecture Hour.
A writing intensive course focused on grant writing in the field of health education and health promotion; grant application written by student on a health-related topic using a recursive writing process. May be taken two times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Grade of C or better in HLTH 210, HLTH 231, HLTH 240/KINE 240, BIOL 319, BIOL 320, and COMM 203; grade of C or better in ENGL 103 or ENGL 104.
HLTH 484 Community Health Internship
Credits 0 to 12. 0 to 12 Other Hours.
Supervised internship at selected community, public or private health agencies.
Prerequisites: Grade of C or better in HLTH 415, HLTH 425, and HLTH 440; completion of all coursework.

HLTH 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed study of special problems within the discipline.
Prerequisites: Junior or senior classification; approval of instructor.

HLTH 489 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Selected topics in an identified area of the discipline. May be repeated for credit.

HLTH 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in health. May be repeated 4 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

HORT - Horticultural Sciences (HORT)

HORT 201 Horticultural Science and Practices
Credits 3. 3 Lecture Hours.
(AGRI 1315, AGRI 1415*, HORT 1301, HORT 1401*) Horticultural Science and Practices. Structure, growth and development of horticultural plants from a practical and scientific approach; environmental effects, basic principles of propagation, greenhouse and outdoor production, nutrition, pruning and chemical control of growth, pest control and branches of horticulture.

HORT 202 Horticultural Science and Practices Laboratory
Credit 1. 3 Lab Hours.
(HORT 1101, AGRI 1115, HORT 1401*, AGRI 1415*) Horticultural Science and Practices Laboratory. Methods and practices related to production of horticultural crops; practical exercises in greenhouse and field.
Prerequisite: HORT 201 or registration therein.

HORT 203 Floral Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles of design illustrated with the use of floral materials; floral design elements and techniques including color, form, line and texture; history and utilization of floral art in society.

HORT 281 Horticulture as a Profession
Credit 1. 1 Lecture Hour.
Comprehensive view of the opportunities in the art and science of horticulture; sub-disciplines by crop (fruit, vegetable, ornamental, floral) and approach (landscape production, sales, management, floral design, research); examination of the national and international scope of horticulture including the major horticultural regions in Texas; construction of a professional e-portfolio.

HORT 291 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in horticulture. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

HORT 301 Garden Science
Credits 3. 3 Lecture Hours.
Identification, propagation, soil management, fertilization, growth control and protection of common garden plants: indoor ornamentals, landscape ornamentals, fruits and vegetables; special topics include home landscaping, container gardens, bonsai, herbs and medicinal plants and hobby greenhouse management. The effects of organic and non-organic practices on the garden ecosystem.

HORT 302 Garden Science Lab
Credit 1. 3 Lab Hours.
Practical activities in identification, propagation, fertilization, media preparation, soil management, irrigation and protection of indoor ornamentals, landscape ornamentals, fruits and vegetables common in gardens in Texas. Organic and non-organic methods.

HORT 306 Trees and Shrubs for Sustainable Built Environments
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Better known woody ornamental trees and shrubs; identification, morphology, classification, nomenclature and adaptability for use in landscape environments.
Prerequisite: BIOL 101, BIOL 111, BIOL 113, HORT 201, HORT 301, LAND 101, or RENR 205, or approval of instructor.

HORT 308 Plants for Sustainable Landscapes
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Identification and use of indigenous and introduced landscape plants; plants for special uses in urban environments; emphasis on plants' ornamental attributes, cultural requirements, and adaptability in urban and suburban environments.
Prerequisite: BIOL 101, BIOL 111, BIOL 113, HORT 201, HORT 301, LAND 101, or RENR 205, or approval of instructor.

HORT 315 Issues in Horticulture
Credits 3. 3 Lecture Hours.
Analysis of contemporary economic, technological, environmental, human resource, and regulatory issues that impact the way global horticultural firms compete; emphasis on problem recognition and analysis of managerial decisions by firms throughout the entire horticultural supply chain.
Prerequisites: HORT 201 and HORT 202.

HORT 319 Fruit and Nut Production
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Rootstocks, cultivars, identification, site selection, pollination, pruning, fruit thinning, dormancy, orchard culture management, irrigation, pest control, harvesting and post harvest physiology of temperate fruit and nut species.
Prerequisite: HORT 201.

HORT 325 Vegetable Crop Production
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Origin, nutritive value, economic importance, botany and cultural practices of the major vegetable crops. Lab activities include organic and non-organic production of major vegetable crops.

HORT 326 Plant Propagation
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles, practices and techniques followed in the sexual and asexual propagation of horticultural plants: seed technology and seed propagation, rooting and propagation of cuttings, graftage and budding systems, layering and propagation by specialized plant structures, biotechnology and tissue culture systems for micropropagation.
HORT 328 Wild Edible, Cultivated and Poisonous Herbs
Credits 3. 3 Lecture Hours.
Identification, reported uses and cultivation of popular garden herbs, historically useful herbs and wild edible and poisonous herbs; the history of phytomedicinal herbs and the role of horticulture in the advent of select modern pharmaceuticals and nutraceuticals; native Texas wild edible and culturally-useful herbs; reported uses and efficacy of essential oils of herbal plants; propagation and production of cultivated herbs and wild edible plants.
Prerequisites: HORT 201 or approval of instructor.

HORT 332 Horticulture Landscape Graphics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Graphic representation of landscape design; demonstrations of technique; examination of drawing examples and drawing production; basic hand graphics techniques for visual-thinking and presentation-quality landscape drawings.
Prerequisite: Junior or senior classification.

HORT 335 Sociohorticulture
Credits 3. 3 Lecture Hours.
Horticulture as it relates to humans through people-plant interactions; use of horticulture to improve quality of life; awareness and appreciation of the economic, environmental, social and health benefits of plants.
Prerequisite: Junior classification.

HORT 360 Landscapes of Sustainable Built Environments
Credits 3. 3 Lecture Hours.
Construction and maintenance considerations for landscapes in urban sustainable environments, specifically green roofs, bioretention cells, rain gardens, and living walls; how to maximize benefits of each system, current trends in regulatory and permitting processes of green infrastructure, and the development of industry-wide guidelines versus standards.
Prerequisites: Grade of C or better in HORT 201 or concurrent enrollment, or junior or senior classification.

HORT 400 Field Studies in Horticulture
Credits 1 to 3. 1 to 9 Other Hours.
History of garden design and the development of the field of Ornamental Horticulture; designs of famous designers Capability Brown and Gertrude Jekyll; pastoral and formal design themes; plant selection and placement from an artistic and functional design perspective; European manipulation of plant form.
Prerequisites: HORT 201 or HORT 301 and approval of instructor.

HORT 404/GENE 404 Plant Breeding
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of genetics and other sciences to breeding and improvement of horticultural crops; methods and special techniques employed. Offered in even numbered years. Only one of the following will satisfy the requirements for a degree: HORT 404/GENE 404 and SCSC 304.
Prerequisite: HORT 201, SCSC 205, or GENE 302, or approval of instructor.
Cross Listing: GENE 404/HORT 404.

HORT 416 Understanding Wine: From Vines to Wines and Beyond
Credits 3. 3 Lecture Hours.
Facets of wine in the United States and around the world; the history of wine, grape growing and winemaking, types of wine, wine etiquette, beer and spirits, sensory evaluation, wine marketing, and winery tasting room and event management.
Prerequisites: Must be 21 years of age; junior senior classification.

HORT 418 Nut Culture
Credits 3. 3 Lecture Hours.
Orchard management, native grove development, cultivars, fruit setting, soils, nutrition, propagation, pest control, harvesting, shelling, storage and marketing of temperate tree nut crops grown in the U.S. with major emphasis on pecans. Offered in odd numbered years.
Prerequisite: HORT 319 or approval of instructor.

HORT 419 Viticulture and Small Fruit Culture
Credits 3. 3 Lecture Hours.
Classic wine grape culture in Europe and U.S. are taught; influence of climate, soil, cultivar, rootstock, canopy and management is presented; nutrition, water, spacing, trellis, pruning, IPM and harvest are integrated for quality yields; culture of muscadines, berries, figs and persimmons are taught. Offered in even numbered years.
Prerequisite: HORT 319 or approval of instructor.

HORT 420 Concepts of Wine Production
Credits 3. 3 Lecture Hours.
Basic wine grapes of the world and where they are produced; evaluation of wine style and quality through formal laboratory tastings.
Prerequisites: HORT 201 or NFSC 201; must be 21 years of age; junior or senior classification.

HORT 421 Enology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Provides a basic understanding of each step of the wine making process; emphasis on home and small scale commercial wine production as related to Texas conditions.
Prerequisites: Must be 21 years of age; junior or senior classification.

HORT 423 Tropical Horticulture
Credits 3. 3 Lecture Hours.
Production, processing and marketing of coffee, bananas, cacao, mango, cashew, pineapple, coconut and root and tuber crops; recent significant developments in plant breeding and cultural practices. Offered in odd numbered years.
Prerequisites: HORT 201 or approval of instructor.

HORT 424 Horticulture as a Medium for Creative Expression
Credits 3. 3 Lecture Hours.
Horticultural plants used in gardens and other art forms throughout world history with particular emphasis given to those horticultural plants represented in Italian landscapes and gardens; characteristics of historical art periods and how to 'read' and interpret historical gardens; identification of plants in various art forms; appreciation for the enjoyment of plants in daily life and how to nurture and care for plants; production and marketing of horticultural plants and flowers in Europe.
Prerequisites: Junior or senior classification; or approval of instructor.

HORT 425 Landscape Maintenance and Construction
Credits 3. 3 Lecture Hours. 3 Lab Hours.
Principles and practices of grading, drainage and construction of residential and small commercial landscapes; cost and bid estimation; soil preparation; transplanting operations; control of landscape diseases and pests; maintenance of landscape areas.
Prerequisite: HORT 201 or approval of instructor.
HORT 426 International Floriculture Marketing
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Importance, cost, and opportunities in marketing floral products, fresh cut flowers, flowering potted plants, foliage plants, and bedding/garden plants; topics include: world production areas, economic value, species grown, marketing channels, retail environments, current/future consumers, postharvest handling, promotion/advertising, perceived/added value, marketing trends and employment opportunities.
Prerequisites: HORT 201; junior or senior classification.

HORT 428 Greenhouse Technology & Sustainable Crop Production Systems
Credits 3. 3 Lecture Hours.
Greenhouse Technology & Sustainable Crop Production Systems.
Technology used to operate and manage energy efficient greenhouses for sustainable production of crops; greenhouse structures, equipment and automation; heating, cooling and ventilating systems; environmental computerized controls; environmental inputs as they affect plant physiological processes and influence plant growth and development including temperature and light, root substrates, water quantity and quality, irrigation efficiency, fertilization sources and integrated pest management; sustainable crop production systems and practices for hydroponics, plug production, photoperiodic crops, vernalization and lighting technology to produce vegetative and reproductive plant products; scheduling, controlling growth, harvesting and marketing practices for commercially important, high quality, high value crops.
Prerequisite: HORT 201, junior or senior classification, or approval of instructor.

HORT 429 Floriculture Crop Production
Credits 3. 3 Lecture Hours. 2 Lab Hours.
Production of floriculture crops in the greenhouse environment; scheduling and controlling crop growth for target market periods; specific flowering crops will be used as models to demonstrate potted flowering plant, cut flower, and garden plant production systems; hands-on crop production experience in lab.
Prerequisite: HORT 201 or approval of instructor.

HORT 431 Nursery Production and Management
Credits 3. 3 Lecture Hours. 2 Lab Hours.
Container, field and protected culture production of ornamental nursery plants (shrubs, trees, ground covers, bedding plants and herbaceous perennials); retail and wholesale nursery-site selection and development, financing, niche-marketing, personnel and labor management; wholesale nursery production cycles and systems, storage and shipping.

HORT 432 Horticulture Landscape Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of the principles and elements of design to planning and developing both exterior residential landscape designs and interior commercial designs
Prerequisites: HORT 332 or concurrent enrollment; HORT 306 or concurrent enrollment, or HORT 308; or approval of instructor.

HORT 435 Urban Horticulture
Credits 3. 3 Lecture Hours.
Introduction to urban horticulture and its role in community development and well-being; emphasis on career opportunities and the roles of the urban horticulture programmer. Offered in odd numbered years.
Prerequisite: Junior or senior classification.

HORT 440 International Horticulture
Credits 3. 3 Lecture Hours.
Examines the source of horticultural commodities; shows how geography, culture, politics, and history influence our markets, gardens and kitchens; educates students on interpreting different garden styles.
Prerequisites: HORT 201 or HORT 301 and approval of instructor.

HORT 442 Horticulture Landscape Design II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Computer-aided-drafting (CAD) to produce site layout, grading and planting plan, and construction details for small-scale landscape design; advanced design principles and practices in their historical context, includes design and drafting of hardscape details, manipulation of earth forms, ecological urban park design to traditional garden design.
Prerequisites: HORT 432; HORT 306 or HORT 308, or concurrent enrollment, or approval of instructor.

HORT 450 Processing Coffee and High-Value Horticultural Crops
Credits 3. 3 Lecture Hours.
Examination of the principles behind coffee processing and other high-value food crops including cultivation; different unit processing operations; methods for preservation; packaging and marketing strategies; and a processing plant visit.
Prerequisite: Junior or senior classification or approval of instructor.

HORT 451 Retail Floristry
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of floral design in a commercial shop enterprise; aspects of design in vase arrangements, personal flowers, sympathy flowers and flowers for special occasions; production costs and profit analysis, selling techniques and customer relations; term project required.
Prerequisite: HORT 203 or approval of instructor.

HORT 452 Floral Design: Weddings and Personal Flowers
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Basic principles of floral design as applied to wedding work; design principles and mechanics as applied to corsages, headpieces, hand bouquets and ceremony and reception decorations; history of wedding traditions; selling and pricing weddings.
Prerequisite: HORT 203 or HORT 451 or approval of instructor.

HORT 453 Floral Art
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Advanced study of floral design as an art form in contrast to a commercial florist operation; interpretive expression of design principles and color stressed along with international design styles.
Prerequisites: HORT 203.

HORT 454 Special Event Design and Production
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Role of event planners, production managers, designers, and decorators within traditional event management practices; analyze how artistic components are used in visual styling to achieve a specific purpose; impact of collaborative planning, effective research, and strong communication skills, social psychological and economic influences as they relate to event planning.
Prerequisite: Junior or senior classification.

HORT 460 Landscape Estimating, Bidding, and Operations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Landscape estimating, bidding and sales processes; business structures, insurance and bonding requirements and business management; overhead costing structures and management; case study involves bidding from a set of landscape plans and specifications.
Prerequisites: Junior or Senior classification.
HORT 481 Seminar
Credits 2. 2 Lecture Hours.
Advanced preparation for the transition from college to the work environment including career investigation, presentation techniques and practice, resume and e-portfolio preparation, and professional development and career advancement; required of all senior students in horticulture.
Prerequisite: Junior or senior classification.

HORT 484 Internship
Credits 1 to 9. 1 to 9 Other Hours.
On-the-job experience program in the student's area of horticultural specialization. May be taken three times for credit.
Prerequisites: Sophomore, junior or senior classification; approval of instructor; 2.0 GPR in major and overall.

HORT 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems and projects in any area of horticulture.
Prerequisite: Junior or senior classification or approval of department head.

HORT 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of horticultural science. May be repeated for credit.
Prerequisite: Approval of instructor.

HORT 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in horticulture. May be repeated 2 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

HUMA - Humanities (HUMA)

HUMA 304/RELS 304 Indian and Oriental Religions
Credits 3. 3 Lecture Hours.
Beliefs and practices of Hinduism, Jainism, Sikhism, Buddhism, Confucianism, Taoism and Shinto with particular attention to their philosophical presuppositions.
Cross Listing: RELS 304/HUMA 304.

HUMA 321 Political Islam and Jihad
Credits 3. 3 Lecture Hours.
Interaction between Islamic movements and politics in various Middle Eastern countries; the meaning and evolution of jihad; the role of Islam as a tool for political and social mobilization.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: INTS 321 and RELS 321.

HUMA 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Directed Studies in humanities. May be repeated for credit.
Prerequisite: Approval of department head.

HUMA 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of humanities. May be repeated for credit.
Prerequisite: Approval of instructor.

IBUS - International Business (IBUS)

IBUS 285 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed study of selected problems in international business not covered in other courses. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification in business.

IBUS 289 Special Topics in...
Credits 1 to 3. 1 to 3 Lecture Hours. 0 to 3 Lab Hours.
Selected topics in an identified area of international business. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification in business.

IBUS 301 Business Study Abroad
Credits 1 to 18. 1 to 18 Lecture Hours.
For students in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School and selected for program; approval of study abroad coordinator and academic dean.

IBUS 401/MKTG 401 Global Marketing
Credits 3. 3 Lecture Hours.
Survey of the aspects involved in marketing goods and services in a global marketplace; social, political, legal and economic issues associated with conducting business globally.
Prerequisite: MKTG 321.
Cross Listing: MKTG 401/IBUS 401.

IBUS 402/MKTG 402 International Marketing: Study Abroad
Credits 3. 3 Lecture Hours.
Introduction to the facets of doing business in an international setting; provides exposure to a variety of foreign cultures; facilitates understanding of the international marketplace in which these students will function.
Prerequisites: MKTG 321 or MKTG 409; junior classification; 2.5 GPR overall.
Cross Listing: MKTG 402/IBUS 402.

IBUS 403/MKTG 403 International Market Entry Strategies
Credits 3. 3 Lecture Hours.
A research-based course in which students prepare an analysis of a country, or region outside the U.S., and use it in the preparation of a marketing plan for a good or service to be introduced and marketed in that country.
Prerequisites: MKTG 321 or MKTG 409; concurrent registration in IBUS 402/MKTG 402 or MKTG 402/IBUS 402; junior or senior classification.
Cross Listing: MKTG 403/IBUS 403.

IBUS 430/ACCT 430 Global Immersion in Accounting
Credits 3. 3 Lecture Hours.
Combination of classroom work in the spring and a field trip to the selected country in summer; introduction to international opportunities within the public accounting firms; meet with former students to gain a local and corporate view of business in the selected country.
Prerequisites: ACCT 327 and approval of instructor.
Cross Listing: ACCT 430/IBUS 430.
IBUS 440/ISTM 440 International Technology Management
Credits 3. 3 Lecture Hours.
Examines global information and communications technology (ICT) business environment; challenges and opportunities for technology companies in the region; history, culture, politics, economic issues, and infrastructure influencing ICT support and innovation in the region; combination of classroom work in the spring and a field trip to the selected country in the summer; repeatable for credit if taken in a different country.
Prerequisites: Junior or senior classification; approval of instructor.
Cross Listing: ISTM 440/IBUS 440.

IBUS 445/ACCT 445 International Accounting
Credits 3. 3 Lecture Hours.
Introduction and examination of accounting issues unique to multinational enterprises and international business activity; only ACCT 445/IBUS 445 sections count for the accounting coursework requirements for the CPA exam.
Prerequisites: ACCT 315 or ACCT 327; FINC 341.

IBUS 446/FINC 445 International Finance
Credits 3. 3 Lecture Hours.
International business transactions, balance of payments and exchange rate systems, exchange rate risk and hedging techniques, sources of funding, relation to international financial institutions and capital instruments; foreign direct investment; international asset and liability management.
Prerequisites: FINC 351 and FINC 361; ACCT 328 or concurrent enrollment.
Cross Listing: FINC 445/IBUS 446.

IBUS 450/ MGMT 450 International Environment of Business
Credits 3. 3 Lecture Hours.
Broad survey of international business issues; analyzes the environment in which international businesses operate; examines international economic issues including trade theory, investment theory, foreign exchange and capital markets, and balance of payments; introduces multinational enterprises, global competition, international organizations, treaties and international law, national trade policies and the determinants of competitiveness of firms in international markets.
Prerequisites: Admission to upper division in Mays Business School.
Cross Listing: MGMT 450/IBUS 450.

IBUS 452/ MGMT 452 International Management
Credits 3. 3 Lecture Hours.
An overview of international management to include international dimensions of organizational behavior; theory, strategy and human resource management; application of theoretical ideas to real-world situations through case analyses, presentations, projects and interactive class discussion.
Prerequisite: MGMT 450/IBUS 450 or MGMT 450/IBUS 450, or concurrent enrollment.
Cross Listing: MGMT 452/IBUS 452.

IBUS 453/ MGMT 453 Emerging Economies: Brazil, Russia, India, China
Credits 3. 3 Lecture Hours.
Examination of present and future dynamics of the emerging economies of Brazil, Russia, India and China and their impact on the developing and developed worlds; importance of BRIC countries and their position in the world; history and development of these countries and the current business environment in each.
Prerequisite: MGMT 363.
Cross Listing: MGMT 453/IBUS 453.

IBUS 455 Asian Business Environment
Credits 3. 3 Lecture Hours.
The scope of business environments of Asia; geographical, demographic and cultural makeup; economic integration; human and cultural elements; financial and communication infrastructures; risk and market analysis; trade and investment patterns; Asian MNC's. May be repeated for credit if taken in a different country.
Prerequisite: Admission to upper division in Mays Business School.

IBUS 456 European Integration and Business
Credits 3. 3 Lecture Hours.
History and institutional structure of the European Union; its regional cultures, values, economies and rifts; challenges faced by corporations and people in the region, including issues involving doing business with the European Union.
Prerequisite: Admission to upper division in Mays Business School.

IBUS 457/ MGMT 457 Global Entrepreneurship
Credits 3. 3 Lecture Hours.
Practical issues associated with taking small- and medium-size business global; includes importing and exporting, developing global strategies, evaluating market opportunities, regional impact on economies and people.
Prerequisite: Admission to upper division in Mays Business School.
Cross Listing: MGMT 457/IBUS 457.

IBUS 459 Latin American Markets
Credits 3. 3 Lecture Hours.
Comparing and contrasting the Latin American, Canadian and U.S. markets across different variables, including culture, economics, social and legal aspects. May be repeated for credit if taken in a different country.
Prerequisite: MKTG 321.

IBUS 484 International Business Internship
Credits 1 to 4. 1 to 4 Other Hours.
International business internship with practicing professionals under the direction of a faculty member.
Prerequisites: Admission to upper division in Mays Business School; approval of department head.

IBUS 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Directed study on selected problems in the area of international business.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

IBUS 489 Special Topics in...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of international business. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

IDIS - Industrial Distribution (IDIS)

IDIS 240 Introduction to Industrial Distribution
Credits 3. 3 Lecture Hours.
Definition, history, types of industrial distribution; range of products; line of distribution; function of and services provided by distributors; distributor operational and financial analyses; measures of organizational effectiveness; employment and advancement opportunities in the field of industrial distribution.
IDIS 330 Sales Engineering
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Sales and sales management techniques for analyzing distribution challenges and providing solutions through effective communication; establishing credibility, effective questioning techniques, developing solutions, presenting solutions, anticipating objections and gaining a commitment, plus techniques for building, developing and compensating an effective sales organization.
Prerequisites: Grade of C or better in IDIS 240 or concurrent enrollment; industrial distribution major.

IDIS 340 Manufacturer Distributor Relations
Credits 3. 3 Lecture Hours.
Approaches and procedures for developing and maintaining effective manufacturer distributor relations: marketing channel design, channel roles, managing uncertainty, legal and ethical imperatives, conflict resolution, decision support and strategic marketing.
Prerequisites: Grade of C or better in IDIS 240 or concurrent enrollment; industrial distribution major.

IDIS 343 Distribution Logistics
Credits 3. 3 Lecture Hours.
Study of concepts, issues and techniques used to plan, analyze and control the logistics network; examination of three key logistical decision-making areas: inventories, facilities and transportation; techniques and technologies for managing and optimizing the logistical (supply) chain.
Prerequisites: Grade of C or better in IDIS 240; STAT 201, STAT 211 or STAT 303; industrial distribution major.

IDIS 344 Distributor Information and Control Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Industrial distribution systems including hardware and software operations; inventory management, vendor evaluation; physical distribution systems; use of bar codes, radio frequency and other automated data entry techniques; purchasing operations.
Prerequisites: Grade of C or better in IDIS 240; industrial distribution major.

IDIS 421 Healthcare Distribution Networks
Credits 3. 3 Lecture Hours.
Examination of the value chain in the health care supply chain; emphasis on distributors in terms of competitive strategy, market power, distinctive capabilities and strategic alliances.
Prerequisites: IDIS 343; industrial distribution major, junior or senior classification; completion of ENGL 104, MATH 151, MATH 152, CHEM 107 and CHEM 117, and PHYS 218 with a grade of C or better.

IDIS 424 Purchasing Applications in Distribution
Credits 3. 3 Lecture Hours.
Applications of purchasing systems, specifically for the distribution industry; emphasis on supplier relations, strategic purchase planning, supplier evaluation, global purchasing techniques, cost analysis, life cycle costing, value analysis; case studies and procurement modeling for distributors.
Prerequisites: Grade of C or better in IDIS 340; grade of C or better in IDIS 343 or concurrent enrollment; junior or senior classification in industrial distribution major.

IDIS 433 Industrial Sales Force Development
Credits 3. 3 Lecture Hours.
Techniques and processes for developing, maintaining and leading high performing industrial sales organizations; organization planning and forecasting processes, processes and procedures for identifying and developing talented sales professionals who can operate within a sales process and provide solutions to customers while growing profitable accounts.
Prerequisite: Grade of C or better in IDIS 330; senior classification in industrial distribution.

IDIS 434 The Quality Process in Distribution
Credits 3. 3 Lecture Hours.
Fundamental concepts in data analytics in distribution operations; using data management tools to process transaction data into useful information; various statistical and analytical models to make strategic decision making; predictive analytics, simulation and risk analysis, linear optimization, and data mining.
Prerequisites: Grade of C or better in IDIS 434; senior classification in industrial distribution.

IDIS 444 Ethics and Leadership in Distribution
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Second semester course in capstone design sequence; addresses the importance of leadership to distribution firms, role of culture, leadership theories, human capital development and management, change management and the importance of ethics.
Prerequisites: Grade of C or better in IDIS 464; grade of C or better in IDIS 433, IDIS 434, and IDIS 450, or concurrent enrollment; must be taken in the last semester of coursework; senior classification in industrial distribution.

IDIS 445 International Sales and Marketing
Credits 3. 3 Lecture Hours.
Principles, cultural aspects of selling in the Latin American market, business-to-business selling environment, and marketing products, services and solutions in Latin America; local/country market analysis, strategic marketing, sales planning, alliances and partnerships, and operational support.
Prerequisite: Junior or senior classification.

IDIS 450 Analytics for Distribution Operation
Credits 3. 3 Lecture Hours.
Fundamental concepts in data analytics in distribution operations; using data management tools to process transaction data into useful information; various statistical and analytical models to make strategic decision making; predictive analytics, simulation and risk analysis, linear optimization, and data mining.
Prerequisites: Grade of C or better in IDIS 343 and IDIS 344; senior classification in industrial distribution.

IDIS 454 New Directions in Distributor Competitiveness
Credits 3. 3 Lecture Hours.
Investigation of new research in distributor competitiveness; focus on defining distribution strategy in changing market places; exploration of the latest applied findings and how companies are successfully implementing initiatives; project management approach to demonstrate the development of competitive advantage and design strategies for implementation.
Prerequisites: Junior or senior classification; completion of ENGL 104, MATH 151, MATH 152, CHEM 107 and CHEM 117, and PHYS 218 with a grade of C or better.
IDIS 455 Humanitarian Distribution Networks
Credits 3. 3 Lecture Hours.
Humanitarian logistics; essential knowledge to model distribution systems in humanitarian environments; supplemented by case studies and a project.
Prerequisites: IDIS 343; junior or senior classification; completion of ENGL 104, MATH 151, MATH 152, CHEM 107 and CHEM 117, and PHYS 218 with a grade of C or better.

IDIS 464 Distributor Operations and Financial Management
Credits 3. 3 Lecture Hours.
First course in a two-semester capstone project course sequence; assessment of firm performance utilizing financial statement analysis and industry studies; methods for planning, implementing and monitoring profitability from distributor operations; procedures for controlling cash flow; credit, receivables, inventory, personnel and productivity; and related financial operations.
Prerequisites: Grade of C or better in IDIS 343; ACCT 209; ENTC 399 or concurrent enrollment; must be taken the long semester immediately prior to IDIS 444; senior classification in industrial distribution major.

IDIS 481 Seminar - Internship Preparation
Credit 1. 1 Lecture Hour.
Develop an understanding of the distribution industry and its opportunities; prepare students for summer internships; provide students with opportunities to network with industry and companies that will be hiring summer interns.
Prerequisite: Minimum of 60 credit hours.

IDIS 484 Professional Internship
Credits 2. 2 Other Hours.
Independent study and on-the-job supervised experience related to a professional area of interest in industrial distribution.
Prerequisites: IDIS 481; junior or senior classification.

IDIS 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Permits work in a special problem area on an individual basis with the intent of promoting independent reading, research and study; to supplement existing course offerings or subjects not presently covered.
Prerequisites: Senior classification and approval of instructor.

IDIS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of industrial distribution.
Prerequisite: Approval of instructor.

INST-Interdisciplinary Studies (INST)

INST 210 Understanding Special Populations
Credits 3. 3 Lecture Hours.
Referral, assessment and categorization of special populations including physical, cognitive and affective characteristics; cultural, ethnic, economic and linguistic differences; giftedness; special education and compensatory programs; awareness of legislative history that results in rights for special populations.
Prerequisite: Sophomore classification or above.

INST 222 Foundations of Education in a Multicultural Society
Credits 3. 3 Lecture Hours.
Historical, philosophical and cultural foundations of education emphasizing education for a multicultural society; also taught at Qatar campus.

INST 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in teaching, learning and culture. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

INST 301 Educational Psychology
Credits 3. 3 Lecture Hours.
Application of psychology to problems of teaching. Nature and operation of principles of learning, transfer of training; nature, measurement and significance of individual differences; conditions influencing efficiency of learning.
Prerequisite: Junior or senior classification.

INST 362 English as a Second Language Methods I
Credits 3. 3 Lecture Hours.
Basic principles of language acquisition, multiple approaches to second language acquisition; individual differences and second language acquisition; stages of second language development; multiple approaches to assessment.

INST 363 English as a Second Language Methods II
Credits 3. 3 Lecture Hours.
Strategies and techniques for teaching English language learners; curriculum design and material development, instruction of English language learners, content area instruction, and language assessment instruments; a historical perspective of the education of English language learners in United States' schools.
Prerequisite: INST 362.

INST 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in teaching learning and culture. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

INTS - International Studies (INTS)

INTS 201 Introduction to International Studies
Credits 3. 3 Lecture Hours.
Introduction to the basic concepts and frameworks for analyzing global events and understanding the current international situation; for freshman and transfer international studies majors.

INTS 205 Current Issues in International Studies
Credit 1. 1 Lecture Hour.
Exploration of current issues and problems in International Studies through attendance of events, lectures by noted international academics and professionals, and in-class discussions. May be taken three times for credit.
Prerequisite: International studies major.

INTS 211/ENGL 211 Foundations in Cultural Studies
Credits 3. 3 Lecture Hours.
Introduction to history, influence and major ideas of Cultural Studies; use of culture as a means to critique social problems and understand social forces; analysis of culture in its relationship to power; participation in project investigating contemporary U.S. youth subcultures.
Cross Listing: ENGL 211/INTS 211.
INTS 215/FILM 215 Global Cinema
Credits 3. 3 Lecture Hours.
History and theory of global cinema; historical, socio-political, national
and international contexts of film production and reception; transnational
film.
INTS 251 Contemporary Issues in the Middle East
Credits 3. 3 Lecture Hours.
Exploration of current political and cultural issues in the Middle East.
INTS 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual supervision of readings or assigned projects in international
studies. May be taken two times for credit.
Prerequisites: Approval of instructor and department head.
INTS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Introduction to the broad range of disciplines and issues explored in the
international studies curriculum. May be repeated for credit.
Prerequisite: Freshman or sophomore classification.
INTS 300 International Experience
Credits 0. 0 Other Hours.
Language immersion program abroad; minimum of ten weeks; completed
after the fourth semester of the target foreign language; study abroad
program, internship, volunteer service work, or a combination of these
options with department approval. Must be taken on a satisfactory/ unsatisfactory basis.
Prerequisites: Grade of C or better in INTS 201; grade of C or better
in ARAB 202, CHIN 202, FREN 202, GERM 202, ITAL 202, JAPN 202,
RUSS 202, SPAN 202, or SPAN 203; major in international studies; junior
or senior classification.
INTS 301 Theories of Globalization
Credits 3. 3 Lecture Hours.
Diverse global and international cultural processes in their economic and
political contexts; analyses of theoretical lenses on transnationalism
including diaspora, hybridity, liminality, marginality, cyborgism, nomadism,
scapes and flows and others; case studies of global cultures.
Prerequisite: Junior or senior classification or approval of instructor.
INTS 311/ENLG 309 Cultural Politics
Credits 3. 3 Lecture Hours.
Exploration of the concept of cultural politics across several academic
disciplines in the humanities and social sciences; broad interrogation of
relationships that mediate culture and power in national and international
contexts; focus on how culture shapes and is shaped by society, political
perspectives and actions.
Prerequisites: Junior or senior classification; or approval of the instructor.
Cross Listing: ENLG 309.
INTS 321 Political Islam and Jihad
Credits 3. 3 Lecture Hours.
Interaction between Islamic movements and politics in various Middle
Eastern countries; the meaning and evolution of jihad; the role of Islam as
a tool for political and social mobilization.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: HUMA 321 and RELS 321.
INTS 401 Urbanism and Modernism
Credits 3. 3 Lecture Hours.
Interdisciplinary examination of the transition from rural traditions to
urban alienation, covering modernist currents in culture, history, politics,
and society; exploration of the problems of urbanism as represented by
the most renowned twentieth-century artists; study of such topics as
modernist urban design, urban alienation, modernist cities, dystopia, and
urbanism.
Prerequisites: International studies major; INTS 201.
INTS 403 Nations and Nationalisms
Credits 3. 3 Lecture Hours.
Interdisciplinary approach where nation is understood as modern political
entity distinct from country; examination of historical and philosophical
origins of idea of nationalism; theories on nationhood, national identity
and rise of nationalism; global variety of concrete test cases to highlight
actual functions (wars, decolonization, symbolic representations in film,
etc.).
Prerequisites: International studies major; INTS 201.
INTS 405 War and Memory
Credits 3. 3 Lecture Hours.
Examination of world wars, colonial wars, genocides, and historical
crimes from the late nineteenth century until the present; analysis of
the changing memory of those traumatic events as evident in historical
accounts, commemorations, film, and literature.
Prerequisites: International studies major; INTS 201.
INTS 407 Diversity in a Globalized World
Credits 3. 3 Lecture Hours.
Examination of the cultural constructs that arise through the encounters
with colonialism from the conquest of the Americas to the present;
cultural studies and literary analysis to identify and interrogate the
common principles of human interaction in the face of cultural diversity.
Prerequisites: International studies major; INTS 201.
INTS 409 Culture, Neoliberalism and Globalism
Credits 3. 3 Lecture Hours.
Examination of largely North Atlantic cultural forms and meanings
that arise in the context of neoliberalism from the late 1970’s to the
present; cultural studies and broad-based social analysis to identify and
interrogate the many relational contexts where power circulates through
urban objects and meanings.
Prerequisites: INTS 201; international studies major; junior or senior
classification.
INTS 410 Gender and the Global Modern
Credits 3. 3 Lecture Hours.
Relationship of the concepts of gender and modernity in the 20th and
the 21st centuries from an international perspective; global theories of
gender and sex across genres.
Prerequisites: INTS 201; junior or senior classification or approval of
instructor.
INTS 481 Senior Seminar in International Studies
Credits 3. 3 Lecture Hours.
Capstone course designed to produce in-depth research projects; based
on student’s international experience and specific area of expertise
acquired in major.
Prerequisites: International Studies major; INTS 201; senior
classification; completed international experience.
INTS 484 Directed Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in a private firm, government or non-profit agency outside the United States; provide on-the-job experience appropriate to the student's program of work and career objectives. To be taken on a satisfactory/unsatisfactory basis. Maximum of 3 credit hours may count towards degree.
Prerequisites: INTS 201; approval of internship coordinator.

INTS 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Research problems and readings for students majoring in international studies; directed independent study of an international issue related to student's area of interest.
Prerequisite: Junior or senior classification or approval of instructor.

INTS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of international studies. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of instructor.

INTS 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in international studies.
Prerequisites: INTS 201; junior or senior classification and approval of instructor.

INTS 497 Independent Honors Study
Credits 3. 3 Other Hours.
Directed independent studies designed to produce a senior honors thesis; based on international experience and interdisciplinary expertise acquired in major.
Prerequisites: INTS major; honors candidate; completed international experience.

ISEN - Indust & Systems Engr (ISEN)

ISEN 101 Introduction to Industrial Engineering
Credit 1. 1 Lecture Hour.
Introduction to industrial engineering; overview of the curriculum; presentations by faculty and industry to familiarize with the department and the scope of industrial engineering applications.

ISEN 210 Fundamentals of Industrial Engineering Design
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Engineering design for product development, problem definition and need identification, information gathering and concept generation, decision making and concept selection; industrial engineering concepts including design for manufacturing, assembly, sustainability and environment; economic decision making and cost evaluation; risk, reliability and safety; quality; robust design and optimization.
Prerequisite: ENGR 102.

ISEN 230 Informatics for Industrial Engineers
Credits 3. 3 Lecture Hours.
Structured programming concepts for implementing mathematical and statistical models in industrial engineering problems; emphasis on introductory production and service system problems and computer-based approaches to solve the problems; engineering applications of probability and statistics concepts.
Prerequisite: CSCE 206, CSCE 111, CSCE 121, or CSCE 110 or equivalent; concurrent enrollment in STAT 211.

ISEN 281 Essential of Modern Manufacturing Methods for Engineering Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamental basis from materials and manufacturing methods selection in engineering design; basic elements and theory of a range of materials manufacturing methods, with specific emphasis on recent developments in the field including rapid prototyping 3D, computer control of machines - tools, automation robotics micro-fabrication and metrology.
Prerequisites: ENGR 112 or ENGR 217/PHYS 217.

ISEN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Problems of limited scope in industrial engineering approved on an individual basis intended to promote independent study.
Prerequisite: Approval of department head.

ISEN 289 Special Topics in...
Credits 1 to 5. 1 to 5 Other Hours.
Selected topics in an identified area of Industrial Engineering. May be repeated for credit.
Prerequisites: Approval of instructor.

ISEN 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in industrial and systems engineering. May be taken four times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ISEN 302 Economic Analysis of Engineering Projects
Credits 2. 2 Lecture Hours.
Principles of economic equivalence; time value of money; analysis of single and multiple investments; comparison of alternatives; capital recovery and after-tax analysis of economic projects.
Prerequisite: MATH 152 or MATH 172; also taught at Qatar campus.

ISEN 303 Engineering Economic Analysis
Credits 3. 3 Lecture Hours.
Principles of economic equivalence; time value of money; analysis of single and multiple investments; comparison of alternatives; capital recovery and tax implications; certainty; uncertainty; risk analysis; public sector analysis and break-even concepts.
Prerequisite: MATH 152.

ISEN 310 Uncertainty Modeling for Industrial Engineering
Credits 3. 3 Lecture Hours.
Models and methods based on probability and statistics for industrial engineering applications; random variables, expectation, distribution fitting, reliability of systems, central limit theorem and interval estimates in the context of production and service systems.
Prerequisites: ISEN 230 or concurrent enrollment, and STAT 211; junior or senior classification.

ISEN 320 Operations Research I
Credits 3. 3 Lecture Hours.
Development and application of fundamental deterministic optimization models and solution methods; focus on quantitative modeling and formulation of linear, integer, and network flow problems; use of computer optimization software to model and solve real-life problems.
Prerequisites: MATH 304 or MATH 323; junior or senior classification.
ISEN 330 Human Systems Interaction
Credits 3. 3 Lecture Hours.
Principles of human factors and ergonomics; emphasis on design to support human capabilities, limitations, and interaction tendencies in sociotechnical work systems; topics include human information processing, physiological and biomechanical functioning, and implications for design of the workplace and jobs; case studies in manufacturing, medicine, aerospace, ground transportation, and computer interaction.
Prerequisites: MMET 181; junior classification.

ISEN 340 Operations Research II
Credits 3. 3 Lecture Hours.
Probabilistic methods for industrial and service systems; stochastic processes used in industrial engineering, including Poisson processes and discrete and continuous-time Markov chains; applications to production operations, inventory control, revenue management, quality control, reliability, digital simulation and finance.
Prerequisites: MATH 304 and ISEN 310; junior or senior classification.

ISEN 350 Quality Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Strategic approach to implementing quality, process and business improvement methods using data analysis tools; total quality management and six sigma approaches to define, measure, analyze, improve and control processes; principles of lean engineering; control charts; process capability analysis; basic metrology, applied statistics, lean principles and process capability.
Prerequisites: ISEN 310 and ISEN 230; junior or senior classification.

ISEN 355 System Simulation
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Systems simulation structure, logic and methodologies; development of simulation models; data handling methods; analysis of simulation data; verification and validation; system simulation languages, models and analysis; applications to industrial situations.
Prerequisites: ISEN 230 and ISEN 310; junior or senior classification.

ISEN 360 Lean Thinking and Lean Engineering in the Process Industries
Credits 3. 3 Lecture Hours.
Philosophical, managerial, and operational principles of lean thinking within the context, tools, and practices of lean engineering; emphasis on the pharmaceutical and process industry; design of lean systems; lean cell design, modeling of lean manufacturing systems, and operation of manufacturing cells; queuing network theory for the analysis of lean systems.
Prerequisites: STAT 211; junior or senior classification for students other than INEN majors.

ISEN 370 Production Systems Engineering
Credits 3. 3 Lecture Hours.
Principles, models, and techniques for planning and analysis of production and distribution systems; application of linear, integer, and nonlinear optimization models and solution methods for aggregate planning, supply chain planning, push (MRP) and pull (JIT) material flow management, inventory control under deterministic and stochastic demands, operations scheduling, and production scheduling.
Prerequisites: ISEN 230 and ISEN 320; junior or senior classification.

ISEN 399 Professional Development
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: ISEN 210 and ISEN 230; junior or senior classification or approval of instructor.

ISEN 405 Facilities Design and Material Handling
Credits 3. 3 Lecture Hours.
Principles of facilities location, layout, and material handling systems and to practice designing facilities; modeling, design, and analysis techniques; methodologies in facilities location, layout, and material handling; integration of ergonomics analysis techniques and their implications on design, layout, safety and quality.
Prerequisites: ISEN 210 and ISEN 320; junior or senior classification.

ISEN 408 Supply Chain and Logistics
Credits 3. 3 Lecture Hours.
Principles, models and techniques for planning, analysis and design of supply chain systems; optimization principles, including linear and integer programming, applied to supply chain planning and operations; information technology, design models, databases, and strategic and tactical decision making.
Prerequisites: ISEN 320, ISEN 340, and ISEN 370; junior or senior classification.

ISEN 410 Advanced Engineering Economy
Credits 3. 3 Lecture Hours.
Principles of economic equivalence; borrowing, lending, and investing; establishing minimum attractive rate of return; replacement analysis; capital budgeting; uncertainty analysis; decision trees.
Prerequisites: ISEN 210 or ISEN 302; junior or senior classification.

ISEN 411 Engineering Management Techniques
Credits 3. 3 Lecture Hours.
Techniques relating to managing engineering activities; engineer’s transition into management; engineering managerial functions; motivation of individual and group behavior; productivity assessment/improvement; managing the quality function and communications.
Prerequisite: Senior classification in industrial engineering.

ISEN 413 Advanced Data Analytics for Industry
Credits 3. 3 Lecture Hours.
Data mining; linear discriminant analysis (LDA), principal component analysis (PCA) and other methods; classification, clustering, and mining, information extraction; dealing with uncertainty, Bayesian inference; neural models, regression and feature selection.
Prerequisites: ISEN 310 and ISEN 350; junior or senior classification.

ISEN 414 Total Quality Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles of total quality engineering; total quality management philosophy, engineering approaches for designing quality into products and processes; off-line experimentation methods for the robust design; emphasis on teamwork and continuous quality improvement.
Prerequisite: STAT 211; junior or senior classification.

ISEN 416 Facilities Location, Layout and Material Handling
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Analytical treatment of facilities location, physical layout, material flow and handling, combined with heuristic algorithms to assist in the design of production/service facilities; fundamental concepts applied through a sequence of design projects.
Prerequisites: ISEN 315; ISEN 316 or registration therein.
ISEN 425 Design and Analysis of Industrial Systems with Simulation
Credits 3. 2 Lecture Hours. 3 Lab Hours.
In-depth study into the design-modeling and subsequent analysis of
contemporary production/service systems; factory/service systems are
modeled using the ARENA/SIMAN V simulation-animation language;
emphasis is placed on the critical analysis of alternative flow designs of
modeled systems using flow and economic parameters to assess system
improvement.
Prerequisites: ISEN 210 and ISEN 355.

ISEN 434 Human Error and Resilient System Design
Credits 3. 3 Lecture Hours.
Human error from a sociotechnical systems perspective; role of error in
complex system failures; human behavioral modes and system design
factors; analytical methods for defining the roles and impact of errors in
large-scale system accidents; real-world case studies.
Prerequisites: ISEN 330; junior or senior classification.

ISEN 440 Systems Thinking
Credits 3. 3 Lecture Hours.
Systems thinking process, systems of systems and the fundamental
considerations associated with the engineering of large-scale systems, or
systems engineering including systems modeling, design and the system
development process.
Prerequisites: MATH 304 or approval of instructor; junior or senior
classification.

ISEN 442 Organizational Systems
Credits 3. 3 Lecture Hours.
Role of people and organizations in the design and development of
complex engineered systems; providing engineers with the skills needed
to effectively manage large-scale system development programs.
Prerequisites: ISEN 330; junior or senior classification.

ISEN 450 Healthcare Systems Engineering
Credits 3. 3 Lecture Hours.
Explores components of healthcare system, existing problems in
healthcare systems; need for engineering to analyze healthcare system
problems; application of industrial engineering tools in improving
healthcare system; role of industrial engineering in addressing healthcare
policy issues.
Prerequisites: ISEN 340 and ISEN 355, or approval of instructor; junior or
senior classification.

ISEN 453 Manufacturing Operations
Credits 3. 3 Lecture Hours.
Analytical principles of manufacturing systems design, analysis and
control; emphasis placed on stochastic analysis; role of variability and
impact on cycle time; push versus pull production strategies including
Kanban and constant WIP control; probability, queueing theory, Little’s Law,
heavy traffic approximations, and queueing networks.
Prerequisites: ISEN 340; junior or senior classification.

ISEN 460 Capstone Senior Design
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Engineering design including identification of a problem; development,
analysis and evaluation of alternative solutions; and recommendations
for and, where possible, development of systems improvement tools;
application of experience and training to provide a product or solution
that helps company clients; balancing client needs with academic
requirements.
Prerequisite: ISEN 210, ISEN 330, ISEN 340, ISEN 350, ISEN 355 and
ISEN 370; junior or senior classification.

ISEN 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Permits work on special project in industrial engineering. Project must be
approved by department head.
Prerequisite: Senior classification in industrial engineering.

ISEN 489 Special Topics in...
Credits 1 to 5. 1 to 5 Lecture Hours. 0 to 5 Lab Hours.
In-depth study of areas of current student interest and recent advances;
normally used for first time offering of new courses.
Prerequisite: Approval of instructor.

ISEN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in industrial
and systems engineering. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
ISTM 313 Foundations of Data Analytics for Non-MIS Majors
Credits 3. 3 Lecture Hours.
Use and application of data modeling, Structured Query Language (SQL), Database Management Systems (DBMS) and data visualization in the solution of business problems. Only one of the following will satisfy the requirements for a degree: ISTM 313 or ISTM 315.
Prerequisites: Admission to upper division in Mays Business School.

ISTM 315 Database Programming
Credits 3. 3 Lecture Hours.
Use and application of Structured Query Language (SQL); Database Management Systems (DBMS) in the solution of business problems; database programming. Only one of the following will satisfy the requirements for a degree: ISTM 313 or ISTM 315.
Prerequisites: ISTM 310; ISTM 320; or approval of instructor.

ISTM 320 Business Systems Analysis and Design
Credits 3. 3 Lecture Hours.
Techniques and methods currently used in system analysis and design including object oriented methods; use of automated tools to support systems development.
Prerequisite: ISTM 250; ACCT 230 and MGMT 211, or concurrent enrollment; admission to upper division in Mays Business School or approval of instructor if major is outside of Mays Business School.

ISTM 325 Business Object Oriented Programming with Java
Credits 3. 3 Lecture Hours.
Introduction of abstract data types, inheritance, object identity, polymorphism as they relate to building business objects and business classes; use of Java programming language depicting the object orientation concepts; use of class libraries and Java packages for business object construction.
Prerequisites: Admission to upper division in Mays Business School; ISTM 250.

ISTM 410 Management of Information Systems
Credits 3. 3 Lecture Hours.
Strategic management of information systems; change and risk management processes during information systems implementation; role of information systems to support business goals; writing business cases for request for proposals and responses; project management techniques.
Prerequisite: ISTM 310; ISTM 320; or approval of instructor.

ISTM 415 Information Systems Capstone Project
Credits 3. 3 Lecture Hours.
Design and development of information system software based on technical specifications; multi-platform environment; database server and web server software deployment.
Prerequisites: ISTM 315; ISTM 410; or approval of instructor.

ISTM 420 Web-Enabled Applications
Credits 3. 3 Lecture Hours.
Distributed business applications using the World Wide Web; advanced discussions of the concepts of internet, intranet, extranet; different methods to design web-enabled applications; active web applications; cutting edge website design; legacy to web integration; use of web-oriented languages.
Prerequisites: Admission to upper division in Mays Business School.

ISTM 425 Complex Business Application Design
Credits 3. 3 Lecture Hours.
Business application development alternatives; COM and CORBA object models; use of Visual Basic; use of ActiveX controls, ActiveX Servers and ActiveX Documents.
Prerequisites: ISTM 250; senior classification.

ISTM 440/IBUS 440 International Technology Management
Credits 3. 3 Lecture Hours.
Examines global information and communications technology (ICT) business environment; challenges and opportunities for technology companies in the region; history, culture, politics, economic issues, and infrastructure influencing ICT support and innovation in the region; combination of classroom work in the spring and a field trip to the selected country in the summer; repeatable for credit if taken in a different country.
Prerequisites: Junior or senior classification; approval of instructor.
Cross Listing: IBUS 440/ISTM 440.

ISTM 450 Business Intelligence and Data Mining
Credits 3. 3 Lecture Hours.
Rationale for Business Intelligence and data mining through business case studies; lab training using data mining software; and process of data mining by using commercial data mining software on large data sets.
Prerequisites: Grade of 'C' or better in SCMT 303 or equivalent; junior or senior classification.

ISTM 455/SCMT 455 Cybersecurity Management
Credits 3. 3 Lecture Hours.
Explores business, managerial and technological aspects of information and cybersecurity; analysis, design, implementation and management issues surrounding effective information security; includes risk management, business continuity planning, and security policy development.
Prerequisite: ISTM 310 or SCMT 375.
Cross Listing: SCMT 455/ISTM 455.

ISTM 481 Information Systems Seminar
Credit 1. 1 Other Hour.
Exposure to professional issues, contemporary information systems topics, potential MIS careers and employers. May be taken three times for credit.
Prerequisite: Admission to upper division in Mays Business School; or approval of instructor.

ISTM 484 Management Information Systems Internship
Credits 1 to 4. 1 to 4 Other Hours.
A directed internship in an organization to provide students with a learning experience supervised by professionals in organizational settings appropriate to the student's professional objectives. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Management Information Systems major and approval of academic advisor and instructor.

ISTM 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problems in an area of management information systems not covered in other courses.
Prerequisites: Admission to upper division in Mays Business School and approval of academic advisor and instructor.

ISTM 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topic in an identified field of management information systems.
Prerequisites: Admission to upper division in Mays Business School and approval of academic advisor and instructor.
ISTM 601 Fundamentals of Business Programming
Credits 3. 3 Lecture Hours.
Business Application Development using both procedural and object-oriented programming techniques; use of component based software design and development for distributed business software systems.
Prerequisite: Graduate business classification or approval of instructor.

ISTM 610 Business Data Communications
Credits 3. 3 Lecture Hours.
Concepts and technology of on-line and network-based systems in business; analysis of data communication requirements, design, selection and application of network technologies including wide and local area networks, distributed processing, network architecture, and systems management and control; software simulation projects emphasized. Classification 6 students may not enroll in this course.
Prerequisites: Graduate classification.

ISTM 612 Management Information Systems
Credits 1 to 3. 1 to 3 Lecture Hours.
Concepts, theories, and the strategic role of information systems as applied to business organizations; highly integrative/cross functional in nature. Classification 6 students may not enroll in this course.
Prerequisite: Enrollment is limited to MBA students.

ISTM 615 Business Database Systems
Credits 3. 3 Lecture Hours.
Information processing and management involving applications and user orientation in a business environment using commercially available database management systems.
Prerequisite: Knowledge of one programming language.

ISTM 620 Systems Analysis and Design
Credits 3. 3 Lecture Hours.
Methodologies, techniques, and tools for information systems analysis and design; the analysis and logical design of business processes and management information systems focusing on the systems development life cycle; techniques for logical system design.
Prerequisite: ISTM 615 or concurrent enrollment.

ISTM 622 Advanced Data Management
Credits 3. 3 Lecture Hours.
Data/database management and advanced SQL techniques; issues of data security, backup and recovery, large scale databases, master data management, concurrent user data access, scalability, and policies.
Prerequisites: ISTM 615 or equivalent; graduate classification in business.

ISTM 624 Advanced Systems Analysis and Design
Credits 3. 3 Lecture Hours.
Advanced topics in business systems analysis and design; alternative methodologies such as agile development, extreme programming, Rational Unified Process; Unified Modeling Language; bench marking and best practices for systems development; cost/benefit analysis, estimation and budgeting for business information systems; testing; patterns, domain-driven design; process modeling; service-oriented architecture and cloud computing.
Prerequisite: ISTM 620 or equivalent; graduate classification in business.

ISTM 630 MIS Project Management and Implementation
Credits 3. 3 Lecture Hours.
Advanced coverage of systems development topics with emphasis on the management and implementation of business computing systems; group project orientation to include feasibility analysis, alternative evaluation and selection, and management approval; use of software engineering tools where appropriate. Classification 6 students may not enroll in this class.
Prerequisite: ISTM 620.

ISTM 631 Information Systems Design and Development Project
Credits 3. 3 Lecture Hours.
Design and delivery of functional, multi-platform application system using current technologies; user interface design emphasized; issues of mobile device forms, software delivery, and development.
Prerequisites: Graduation classification; ISTM 622; ISTM 630.

ISTM 635 Business Information Security
Credits 3. 3 Lecture Hours.
Explores the business, managerial, and technological aspects of information security; analysis, design, and implementation issues surrounding effective information security; authentication, authorization, availability, business continuity planning, confidentiality, disaster recovery, encryption, firewalls, fraud protection, security policy development, integrity, risk management, virus protection, VPNs and wireless security. Classification 6 students may not enroll in this course.
Prerequisite: ISTM 610.

ISTM 637 Data Warehousing
Credits 3. 3 Lecture Hours.
Provides an understanding of the process by which a data warehouse system is designed and developed along with the underlying concepts and software systems; includes OLAP models and their differences with standard OLTP models.
Prerequisite: ISTM 615 or approval of instructor.

ISTM 643 Corporate Information Planning
Credits 3. 3 Lecture Hours.
Concepts regarding the design and use of computer-based management information and decision support systems; combinations of computing hardware and software and design concepts evaluated to meet managers' information needs. Classification 6 students may not enroll in this course.
Prerequisites: ISTM 615 or equivalent or approval of instructor.

ISTM 645 IT Security Controls
Credits 3. 3 Lecture Hours.
Familiarization with planning, design, and implementation of controls to minimize risks to business information; focus on the importance of managing business information security; introduction to the tools, concepts and theories to safeguard an organization's information systems and IT assets; understanding of cryptography and application, operations, and physical security.
Prerequisite: ISTM 635.

ISTM 650 Business Data Mining
Credits 3. 3 Lecture Hours.
Rationale for business Data Mining through case studies of business applications; process of data mining by using commercial Data Mining software on very large data sets; half of the course devoted to lab training in the use of Data Mining software including SAS Enterprise Miner and SPSS Clementine.
Prerequisite: STAT 652 or approval of instructor.
ITAL - Italian (ITAL)

ITAL 101 Beginning Italian I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(ITAL 1411) Beginning Italian I. Elementary language study with oral, written and reading practice; preparation for conversation; part of class preparation will be done in language laboratory.

ITAL 102 Beginning Italian II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(ITAL 1412) Beginning Italian II. Continuation of ITAL 101; part of class preparation will be done in the language laboratory.

ITAL 201 Intermediate Italian I
Credits 3. 3 Lecture Hours.
(ITAL 2311) Intermediate Italian I. Readings of average difficulty; review of grammar; practice in conversation and composition.

ITAL 202 Intermediate Italian II
Credits 3. 3 Lecture Hours.
(ITAL 2312) Intermediate Italian II. Continuation of ITAL 201 with more advanced material.

ITAL 285 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Individual supervision of readings or assigned projects in Italian, selected for each student individually.

ITAL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Italian studies. May be repeated for credit.

ITAL 303 Composition and Conversation
Credits 3. 3 Lecture Hours.
Readings of contemporary Italian prose; intensive review of grammar and syntax; development of written and oral skills; expansion of vocabulary, translations, compositions and short presentation.

ITAL 451/ EURO 451 Introduction to Italian Culture
Credits 3. 3 Lecture Hours.
Introduction to the culture of the Italian Peninsula, from Middle Ages to present; study of major works of literature, political science, visual arts, music and cinema, to set Italy's culture in its social and historical context; taught in English.

ITAL 452/ WGST 452 Women and Gender in Italy
Credits 3. 3 Lecture Hours.
The historical and cultural dynamics forging the notion of woman and gender in Italian society and cultural production; discussion of cultural works, media and theoretical texts concerning subjectivity and language, body and culture; taught in English.

Prerequisite: Approval of instructor and department head.

Cross Listing: EURO 451/ITAL 451.

Cross Listing: WGST 452/ITAL 452.
ITAL 453/EURO 453 Italian Literature
Credits 3. 3 Lecture Hours.
Survey of Italian literature; focus on literary portrayal of reality in modern and contemporary Italian culture, the dialogue with the classical tradition, and literature's potential to affect and be affected by social critique; taught in English.
Prerequisite: ITAL 201 or concurrent enrollment, or approval of instructor.
Cross Listing: EURO 453/ITAL 453.

ITAL 455/FILM 455 Italian Cinema
Credits 3. 3 Lecture Hours.
Survey of Italian cinema from Neorealism to the present; taught in English.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: FILM 455/ITAL 455.

ITAL 456/EURO 456 Contemporary Italy
Credits 3. 3 Lecture Hours.
Examination of changes in Italian society and culture since World War II, with focus on their narration and interpretation by representative authors and filmmakers, and on multicultural literary production in present-day Italy; taught in English.
Prerequisite: ITAL 201 or concurrent enrollment or approval of instructor.
Cross Listing: EURO 456/ITAL 456.

ITAL 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects, selected for each student individually; written and oral reports.
Prerequisite: Approval of instructor and department head.

ITAL 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Italian. May be repeated for credit.
Prerequisite: Approval of instructor.

ITAL 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in interdisciplinary engineering.
Prerequisites: Sophomore classification and approval of interdisciplinary engineering director or delegate.

ITAL 499 High Impact Experience for Interdisciplinary Engineers
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: ITDE major, junior or senior classification.

JAPN 101 Beginning Japanese I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(JAPN 1411) Beginning Japanese I. Elementary language study with oral, written and reading practice; preparation for conversation; part of class preparation to be done in the language laboratory.

JAPN 102 Beginning Japanese II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(JAPN 1412) Beginning Japanese II. Continuation of JAPN 101; part of class preparation to be done in the language laboratory.
Prerequisite: JAPN 101.

JAPN 201 Intermediate Japanese I
Credits 4. 4 Lecture Hours.
Readings of average difficulty; review of grammar; practice in conversation and composition.
Prerequisite: JAPN 102.

JAPN 202 Intermediate Japanese II
Credits 4. 4 Lecture Hours.
Continuation of JAPN 201 with more advanced material.
Prerequisite: JAPN 201.

JAPN - Japanese (JAPN)
JAPN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in Japanese, selected for each student individually; written or oral reports.
Prerequisite: Approval of instructor and Director of AALO.

JAPN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Japanese studies. May be repeated for credit.
Prerequisite: Approval of instructor.

JAPN 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research in Japanese studies conducted under the direction of faculty member approved by the Director of AALO. May be taken 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

JAPN 301 Upper Level Japanese I
Credits 3. 3 Lecture Hours.
Reading and listening practice using authentic and near-authentic materials; conversation practice in different levels of formality; composition and grammar; conducted in Japanese.
Prerequisite: JAPN 202.

JAPN 302 Upper Level Japanese II
Credits 3. 3 Lecture Hours.
Continuation of JAPN 301 with more advanced material.
Prerequisite: JAPN 301.

JAPN 325 Japanese Language and Culture through Manga
Credits 3. 3 Lecture Hours.
Examination of Japanese and Asian visual, linguistic, and cultural traditions, with emphasis on genre of Manga.
Prerequisite: JAPN 202.

JAPN 401 Advanced Japanese I
Credits 3. 3 Lecture Hours.
Readings with selected grammar and kanji lessons; focus on Japanese traditional and popular culture, religion, and history; taught in Japanese.
Prerequisite: JAPN 302 or equivalent.

JAPN 402 Advanced Japanese II
Credits 3. 3 Lecture Hours.
Readings with selected grammar and kanji lessons; focus on Japanese private and business life, education, politics, and contemporary culture; taught in Japanese.
Prerequisite: JAPN 302 or equivalent.

JAPN 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects selected for each student individually; written or oral reports.
Prerequisite: Approval of instructor and Director of AALO.

JAPN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Japanese studies. May be repeated for credit.
Prerequisite: Approval of instructor.

JAPN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research in Japanese studies conducted under the direction of faculty member approved by the Director of AALO. May be taken 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

JOUR - Journalism (JOUR)

JOUR 102 American Mass Media
Credits 3. 3 Lecture Hours.
(COMM 1307) American Mass Media. Introductory survey of mass communication media, their history and social role, to provide an understanding of the development and importance of mass communication media in modern society.

JOUR 200 Mass Media Information
Credits 3. 3 Lecture Hours.
Strategies and procedures in identifying, gathering, analyzing and organizing information for the mass media; sources and methods; evaluation and validation of evidence; legal and ethical considerations.
Prerequisites: Grade of C or better in JOUR 102, freshman or sophomore classification; enrollment in the USLA-BA-JNS concentration or JOUR minor; or approval of program director.

JOUR 203 Media Writing I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
(COMM 2311) Media Writing I. Basic journalistic techniques common to all media; integration of news gathering, writing and editing; ethics. Limited to minors in journalism, or with approval of program director.
Prerequisites: Grade of C or better in JOUR 102 and JOUR 200; enrollment in the USLA-BA-JNS concentration or JOUR minor; or approval of program director.

JOUR 215 Interviewing: Principles and Practice
Credits 3. 3 Lecture Hours.
Theory and practice of methods in selected interview settings; emphasis on communication between two persons, questioning techniques, and the logical and psychological bases of interpersonal persuasion.

JOUR 230 Communication Technology Skills
Credits 3. 3 Lecture Hours.
Introduction to interactive media and media literacy skills in the digital domain; survey of technology histories, standards, and markets for industries such as multichannel TV, digital radio, video games, steaming media, epublishing, teleconferencing, and social networking.
Prerequisites: Enrollment in communication or telecommunication media studies majors, USLA-BA-JNS concentration, or JOUR minor.
Cross Listing: COMM 230/JOUR 230.

JOUR 250 New Media and the Independent Voice
Credits 3. 3 Lecture Hours.
Examination of new media as independent voices for cultural and political movements; principles governing the design, presentation, and evaluation of blogs as a persuasive medium in society.
Cross Listing: COMM 250/JOUR 250.

JOUR 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Research problems related to communication field. Individual work, fitted to special needs of specific student as determined by his or her interests and aptitude.
Prerequisites: Enrollment in USLA-BA-JNS concentration or JOUR minor; approval of the program director.
JOUR 289 Special Topics in...
Credits 3. 3 Other Hours.
Selected topics in an identified area of journalism and mass communication. May be repeated for credit.
Prerequisites: Enrollment in USLA-BA-JNS concentration or JOUR minor.

JOUR 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a chosen faculty member in Journalism Studies. May be taken for a maximum of 3 hours credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

JOUR 301/COMM 307 Communication Law and Policy
Credits 3. 3 Lecture Hours.
Law and policy that create the context and consequences for communication via mass media, social media, organizational, group and interpersonal communication, free speech, free press, libel, privacy, copyright, cybersecurity, constitutional principles, international law and human rights, fairness, equity and diversity in communication.
Prerequisites: Junior or senior classification, or approval of instructor; COMM-307 also taught at Galveston campus.
Cross Listing: COMM 307/JOUR 301.

JOUR 303 Media Writing II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Interpretative news gathering and writing for various media; basic communication law and ethics; assigned practice on campus or other publications.
Prerequisites: JOUR 203, enrollment in journalism minor or USLA-BA-JNS concentration; or approval of program director.

JOUR 304 Editing for the Mass Media
Credits 3. 3 Lecture Hours.
Principles and practice of editing including: improving and tightening text; writing headlines, titles and subheads; self-editing and editing others; tailoring texts for specific audiences; understanding style guides.
Prerequisite: Grade of C or better in JOUR 203; enrollment in journalism minor or USLA-BA-JNS concentration; or approval of program director.

JOUR 317/COMM 317 Social Media Law
Credits 3. 3 Lecture Hours.
Laws and regulations applied to social media, including communication law applied to enduring issues in the social media context; legal problems unique to social media; free speech, commercial speech and employment law as they affect individual users of social media as well as groups and organizations promoting points of view or products via social media, and employers.
Prerequisites: Grade of C or better in COMM 307/JOUR 301 or JOUR 301/COMM 307; junior or senior classification or approval of instructor.
Cross Listing: COMM 317/JOUR 317.

JOUR 341 Mobile Journalism
Credits 3. 3 Lecture Hours.
Multimedia journalism; photography, audio and video as used in journalism; reporting stories; adaptation of storytelling across media platforms; real-time mobile publishing.
Prerequisites: Junior or senior classification or approval of instructor.

JOUR 359 Reporting Sports
Credits 3. 3 Lecture Hours.
Gathering, organizing, researching, evaluating and writing sports information; employing accepted professional sports writing style across various news media platforms.
Prerequisites: Junior or senior classification.

JOUR 365/COMM 365 International Communication
Credits 3. 3 Lecture Hours.
Mass media, international, and cross-cultural audiences, theoretical, pragmatic, political and ethical issues; including cultural differences, comparative media systems, development, communication, patterns of world news flow, political propaganda, impact of international advertising and other issues.
Prerequisite: Junior or senior classification; COMM-365 also taught at Galveston and Qatar campuses.
Cross Listing: COMM 365/JOUR 365.

JOUR 450 Political Reporting
Credits 3. 3 Lecture Hours.
Interviewing; reporting; and writing various types of political stories and commentary; exploration of ethical principles and issues in political reporting including role of free press in a democracy.
Prerequisite: Junior or senior classification or approval of instructor.

JOUR 451 Arts & Entertainment Journalism
Credits 3. 3 Lecture Hours.
Arts & Entertainment Journalism. Journalistic coverage of arts and entertainment issues and events; examination of reviews and feature stories; feature writing and criticism; extensive workshop experience; emphasis on the value of research, self-editing and revision.
Prerequisite: Junior or senior classification or approval of instructor.

JOUR 455 Literary Nonfiction
Credits 3. 3 Lecture Hours.
Explores the art of writing literary nonfiction, a major trend in 21st century journalism; examines several forms of literary nonfiction, including personal essay, memoir, historical biography and modern narrative: to be written in each form; provides extensive workshop experience; emphasizes the value of critiques, self-editing and revision.
Prerequisite: Junior or senior classification or approval of instructor.

JOUR 458/COMM 458 Global Media
Credits 3. 3 Lecture Hours.
Study of globalization through media ownership; content, flow, cultural values, political power and technological impact; implications of globalization for local economies and audiences.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: COMM 458/JOUR 458.

JOUR 468 Magazine Feature Writing
Credits 3. 3 Lecture Hours.
Focus on the ability to communicate through a variety of styles including traditional long-form magazine writing and profiles; critical analysis and adaptation of writing skills for the latest trends in magazine, including audio and multimedia storytelling and the advent of purely digital magazines.
Prerequisites: JOUR 203; junior or senior classification, or approval of instructor; major in university studies-journalism or minor in journalism.

JOUR 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in a private firm or public agency to provide on-the-job experience appropriate to the student's degree program and career objectives. To be taken on a satisfactory/unsatisfactory basis. Maximum of 3 credits may apply toward degree.
Prerequisites: Junior or senior classification; enrollment in USLA-BA-JNS concentration or JOUR minor; approval of instructor.
JOUR 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Research problems related to communication field. Individual work, fitted to special needs of specific student as determined by his or her interests and aptitude.
Prerequisites: Junior or senior classification; enrollment in USLA-BA-JNS concentration or JOUR minor; approval of instructor.

JOUR 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of journalism and mass communication. May be repeated for credit.
Prerequisites: Junior or senior classification; enrollment in USLA-BA-JNS concentration or JOUR minor; or approval of instructor.

JOUR 490 Journalism as a Profession
Credits 3. 3 Lecture Hours.
Exit-level course for interdisciplinary minor in Journalism; requires students to produce publication-quality projects; includes seminars in contemporary news media issues and practices.
Prerequisites: Junior or senior classification; enrollment in USLA-BA-JNS concentration or JOUR minor; and approval of instructor.

JOUR 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a chosen faculty member in Journalism Studies. May be taken for a maximum of 3 hours credit.
Prerequisites: Grade of C or better in JOUR 203; junior or senior classification and approval of instructor.

KINE - Kinesiology (KINE)

KINE 120 The Science of Basic Health and Fitness
Credit 1. 1 Lecture Hour. 1 Lab Hour.
Overview of the human body; scientific fundamentals of stress, fitness, nutrition, disease and drug use; interdisciplinary focus on wellness and longevity; integrated physical activity experiences centering on principles and applications of the scientific basis of conditioning; not open to students who have taken KINE 223; also taught at Galveston campus.

KINE 121 Physical and Motor Fitness Assessment
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Assessment of individual physical fitness and motor ability profiles for students majoring in kinesiology.
Prerequisite: Kinesiology major.

KINE 167 Visual and Performing Arts—Jazz Dance II
Credit 1. 2 Lab Hours.
Visual and Performing Arts—Jazz Dance II. Intermediate study of jazz dance; review of historical background and cultural heritage; includes several jazz styles; proper body mechanics and alignment; placement exam required on the second day of class.
Prerequisite: Beginning jazz dance or approval of instructor.

KINE 175 Gender Neutral Partnering
Credit 1. 2 Lab Hours.
Explores the fundamental principles of partnering; explores the properties of momentum, weight sharing, contact improvisation, breath, timing and trust; develops movement phrases on the principles of impromptu and partnering.
Prerequisite: DCED 372 or approval of instructor.

KINE 198 Health and Fitness Activity
Credit 1. 2 Lab Hours.
Half lecture; half activity; student choice of designated fitness or strength related activities; lecture portion covers current health topics.

KINE 199 Required Physical Activity
Credit 1. 2 Lab Hours.
(Any 1-hour PHED activity course) Required Physical Activity. Selection from a wide variety of activities designed to increase fitness and/or encourage the pursuit of lifetime activity; also taught at Galveston campus.

KINE 201 Pilates Apparatus
Credits 2. 2 Lecture Hours.
Study of Pilates apparatus work as designed by Joseph H. Pilates; basic principles of Pilates including breathing, pelvic and ribcage placement, scapulae stabilization, head and cervical alignment; uses apparatuses such as reformer, cadillac, chair, and barrel; incorporates the use of props such as rollers, mini balls, physioballs, blocks, therabands and pinky balls into apparatus work. May be taken 2 times for credit.
Prerequisites: KINE 198--Pilates Mat I; dance science track majors only or approval of instructor.

KINE 210 The Art of Movement
Credits 3. 3 Lecture Hours.
Introductory course that examines and appreciates movement as expressed by every culture; movement is a function driven by context, whether practical or artistic; this course examines how dance is used to advance personal, social expression via design, patterning, connoted meaning, and inter-connectivity of form; in-class discussions, applications, and presentations, students attend and critique off-campus dance productions to enhance perspective, experience and appreciation of dance movement; Galveston campus; also taught at College Station campus.

KINE 213 Foundations of Kinesiology
Credits 3. 3 Lecture Hours.

KINE 214/HLTH 214 Health and Physical Activity for Children
Credits 3. 3 Lecture Hours.
(PHED 1331) Health and Physical Activity for Children. Coordinated school health and physical activity programs appropriate for elementary aged children; focus on the content of the curriculum and the philosophical underpinnings of programming related to health and physical activity.
Cross Listing: HLTH 214/KINE 214.

KINE 215 Fundamentals of Coaching
Credit 1. 1 Lecture Hour.
(PHED 1321) Fundamentals of Coaching. Study modern theories and applications related to coaching; philosophies, styles, techniques, team organization, liability and administration.
Prerequisite: Kinesiology majors and coaching minors only.

KINE 223 Introduction to the Science of Health and Fitness
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Overview of the human body systems; interdisciplinary focus on wellness, fitness, nutrition, disease, drug use; integrated physical activity centering on principles and applications of conditioning; collect data, evaluate information, formulate plans based on findings; experience with pedometers, heart rate monitors, bioelectrical impedance devices, software and other technology; also taught at Galveston campus.
KINE 240/HLTH 240 Computer Technology in Health and Kinesiology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of current technology in the areas of health and kinesiology; fundamentals of computers and their use; application of commercial software to health and kinesiology settings; use of computer networks for communications and research.
Prerequisite: Freshman or sophomore classification in health or kinesiology.
Cross Listing: HLTH 240/KINE 240.
KINE 260 Movement Lab: Ballet I
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Understand body alignment through ballet technique; assess individual muscular and skeletal imbalances during a ballet technique class; video references of proper body alignment; anatomical explanation and assessment of individual’s use of lateral rotation in ballet technique. May be taken 3 times for credit.
Prerequisites: Grade of B or better in DCED 260; dance science majors, dance concentration majors and dance minors; or approval of instructor.
KINE 271 Movement Lab: Modern Dance I
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Understand body alignment through modern dance; assess individual muscular and skeletal body imbalances during a modern dance class; introduction of how to work with imbalances in the body while executing proper dance technique; understand the structural and muscular alignment of parallel versus lateral rotation. May be taken 3 times for credit.
Prerequisites: Grade of B or better in DCED 271; dance science majors, dance concentration majors and dance minors; or approval of instructor.
KINE 282 Culture of Wellness
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Explore the dimensions of wellness across worldwide cultures; analyze, compare and contrast wellness choices and their impact on the individual and society; investigate a global region and its wellness practices; integrate physical activity experiences that are centered on the history and culture of a focus activity that originated outside the United States.
KINE 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Work on a specified topic with the intent of promoting independent reading, research and study; supplement existing course offerings or subjects not presently covered.
Prerequisites: Freshman or sophomore classification; approval of instructor.
KINE 289 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Selected topics in an identified area of kinesiology. May be repeated for credit.
KINE 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in kinesiology. May be repeated 4 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.
KINE 302 Applied Exercise Physiology for Coaches
Credit 1. 1 Lecture Hour.
Survey of the physiology of exercise with an emphasis on topics in applied physiology that coaches should understand in working with student athletes of both genders and different ages.
Prerequisites: Grade of C or better in KINE 306 or concurrent enrollment; junior or senior classification or approval of instructor.
KINE 305 Sport Nutrition
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Optimal nutritional intake in support of peak performance in sport and dance; food as fuel and which fuels are most important to specific sport/dance activities; the role nutritional supplements can play; fluid balance; weight management for athletes and dancers.
Prerequisites: NFSC 202 or equivalent or approval of instructor; junior or senior classification.
KINE 306 Functional Anatomy for Coaches
Credit 1. 2 Lab Hours.
Introduction to musculoskeletal anatomy and movement analysis and the applications of these topics to basic sport skills.
Prerequisite: Junior or senior classification or approval of instructor.
KINE 307 Lifespan Motor Development
Credits 3. 3 Lecture Hours.
Developmental characteristics and contemporary issues associated with motor behavior across the lifespan.
Prerequisite: Junior or senior classification or approval of instructor.
KINE 308 Integrated Adventure Education
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Philosophy of outdoor education in a physical education program; designing and implementing outdoor adventure activities in an experiential and interdisciplinary manner for reinforcing the Texas Essential Knowledge and Skills.
Prerequisites: Junior or senior classification or instructor approval.
KINE 311 Fundamental Rhythms and Dance
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Appreciation of rhythms and dance movements in a cultural context; analysis of dance performance; basic understanding of the various dance components.
Prerequisite: Approval of instructor.
KINE 312 Coaching of Baseball
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Theory and practice of coaching fundamentals in baseball.
Prerequisite: Grade of C or better in KINE 215.
KINE 314 Coaching of Soccer
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Study of modern theories and applications related to coaching soccer.
Prerequisites: Grade of C or better in KINE 215.
KINE 317 Coaching of Football
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Theory and practice of coaching fundamentals in football.
Prerequisite: Grade of C or better in KINE 215.
KINE 318 Athletic Injuries
Credits 3. 3 Lecture Hours.
Overview of the profession of athletic training; comprehensive analysis of the theories and practices in preventing, recognizing and treating common athletic injuries.
Prerequisites: Grade of C or better in BIOL 319 or KINE 306; junior or senior classification.
KINE 320 Advanced Athletic Injuries
Credits 3. 3 Lecture Hours.
Principles and procedures of therapeutic modalities, therapeutic exercise and rehabilitation as they relate to physical education, athletic training and physical therapy.
Prerequisites: KINE 318 and approval of instructor.
KINE 321 Coaching of Volleyball
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Coaching fundamentals in volleyball.
Prerequisites: Grade of C or better in KINE 215.

KINE 324 Career Development in Coaching and Youth Development
Credits 3. 3 Lecture Hours.
Topic relevant to and career options in the coaching profession; preparation of future coaches and youth development professionals for successful careers; exploration and development of skills and knowledge to lead and manage individuals and teams.
Prerequisites: Junior or senior classification; approval of instructor.

KINE 325 Event and Tournament Operations for Coaches
Credits 2. 2 Lecture Hours.
Develop knowledge and skills related to event and tournament organization; working with sport governing bodies, school officials, comprehending risk management, financial management; classroom experiences, observations and field-based experiences to link theory into practice.

KINE 334 Coaching in Personal Training
Credits 2. 1 Lecture Hour. 2 Lab Hours.
An overview of the knowledge, skills, and expectations associated with being a competent personal trainer or fitness professional; fundamentals in addressing an individual’s health, medical and fitness status, along with comprehending fitness concepts including nutrition, bioenergetics, biomechanics and applied anatomy.
Prerequisites: Grade of C or better in BIOL 111; junior or senior classification; or approval of instructor.

KINE 335 Coaching in Group Fitness
Credits 2. 1 Lecture Hour. 2 Lab Hours.
An overview of the knowledge, skills and expectations associated with being a competent group fitness instructor; creation, application and adaptation of a variety of group fitness classes based on population size, skill level, equipment available and facility space; basic business practices and professional certification procedures that are required of a fitness professional.
Prerequisites: Grade of C or better in BIOL 111; junior or senior classification; or approval of instructor.

KINE 340 Essentials of Strength and Conditioning
Credits 3. 3 Lecture Hours.
Current principles and procedures essential to strength training and conditioning practices; emphasis on development and practical applications of scientific based anaerobic conditioning, flexibility, mobility, muscular strength, power and aerobic endurance program designs.
Prerequisites: Junior or senior classification; grade of C or better in KINE 318 or KINE 320; recommend KINE 199 Majors Aerobic Movement, KINE 199 Majors Resist Flex prior to registering.

KINE 351 Coaching of Basketball
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Theory of fundamental skills needed to coach basketball with emphasis on knowledge of rules, strategies and skill analysis.
Prerequisites: Grade of C or better in KINE 215.

KINE 355 Coaching of Track
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Theory and practice of coaching fundamentals in track and field events.
Prerequisite: Grade of C or better in KINE 215.

KINE 361 Movement Lab: Ballet II
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Self evaluation of correct body alignment and imbalances while executing proper ballet technique; observation and assessment of the student’s progression throughout the semester in regards to proper alignment and technique. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 361; dance science majors, dance concentration majors and dance minors; or approval of instructor.

KINE 372 Movement Lab: Modern Dance II
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Self evaluation of correct body alignment and imbalances while executing proper modern dance technique; observation and assessment of the student’s progression throughout the semester in regards to proper alignment and technique. May be taken 3 times for credit.
Prerequisite: Grade of B or better in DCED 372; dance science majors, dance concentration majors and dance minors; or approval of instructor.

KINE 386 Sport Physiology
Credits 3. 3 Lecture Hours.
Scientific physiological principles as they relate to sport and exercise in the preparation of current and future coaches; emphasis on cognitive, physiological knowledge and practical applications necessary to earn a creditable national certification; safely and effectively train athletic, fitness and general populations.
Prerequisites: KINE 121 and KINE 213; grade of C or better in KINE 302.

KINE 403 Dance Wellness
Credits 3. 3 Lecture Hours.
Using scientific methods to evaluate the dancer’s body; implementation of dance screening process and creation of programs to address specific dance related injuries, imbalances or misalignments; study of current research in dance medicine/science and application of this knowledge to increase longevity of movement.
Prerequisites: BIOL 319, BIOL 320; dance science track majors only; admittance into the professional phase or approval of instructor; junior or senior classification.

KINE 404 Coaching Psychology
Credits 3. 3 Lecture Hours.
Mental aspects of coaching for performance improvement in athletic and exercise settings; focus on coaching applications of theoretical concepts including individual differences, motivation, team and group dynamics, leadership, performance enhancement, positive and negative health behaviors and youth development.
Prerequisite: Junior or senior classification, or approval of instructor.

KINE 406 Motor Learning and Skill Performance
Credits 3. 3 Lecture Hours.
Learning in psychomotor domain; motor learning theories, physiological bases of skill behavior, motor and skill learning, state of performer and application of instructional techniques in motor learning and skill performance.
Prerequisites: Grade of C or better in BIOL 319, BIOL 320, and PHYS 201.

KINE 407 Motor Control and Learning Lab
Credit 1. 3 Lab Hours.
Insight into the perception-action processes that support the learning and control of complex multi-joint movements to perform activities of daily living; reaction time and movement time, random and blocked practice, uni-manual and bi-manual skills; labs and measures collected and linked with papers discussing neural areas supporting action planning, memory encoding and storage, retrieval and forgetting.
Prerequisites: Grade of C or better in KINE 406 or concurrent enrollment; junior or senior classification.
KINE 425 Tests and Measurements
Credits 3. 3 Lecture Hours.
Comprehensive examination of the conceptual and theoretical aspects of measurement and evaluation in the field of kinesiology; emphasis on the application of statistical techniques germane to measurement and evaluation.
Prerequisites: Junior or senior classification; or approval of instructor for non-majors.

KINE 426 Exercise Biomechanics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
An integrated, mechanistic study of biomechanics of human motion during physical activity and exercise; biology and mechanical properties of the human movement system including bones, tendons, ligaments, cartilage, skeletal muscles, joints and whole body systems investigated.
Prerequisites: Grade of C or better in PHYS 201, BIOL 319, and BIOL 320; junior or senior classification; admission to the professional phase of program or approval of instructor for non-majors.

KINE 427 Therapeutic Principles
Credits 3. 3 Lecture Hours.
Examination of human tissue types, characteristics, and physiology pertaining to injury, pain transmission, and the healing process; study of common therapeutic modalities such as ultrasound and electricity with emphasis on physiological mechanisms of effect.
Prerequisites: Grade of C or better in BIOL 319, BIOL 320, and PHYS 201; junior or senior classification.

KINE 429 Adapted Physical Activity
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Kinesiology for individuals with handicapping conditions; emphasis on cognitive recognition of such handicaps as postural deviations, emotional disturbances, convulsive disorders, vision and auditory problems, and other learning disability conditions.
Prerequisite: Grade of C or better in HEFB 222/KNFB 222 or KNFB 222/HEFB 222; grade of C or better in BIOL 107 or BIOL 111; approval of instructor for non-majors.

KINE 431 Ropes Course and Group Process
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Techniques of group facilitation for initiatives of ropes/challenge course events; activity presentation and sequencing, safety techniques and construction principles, and processing experiences for transfer of learning.
Prerequisite: Junior or senior classification; approval of instructor.

KINE 433 Physiology of Exercise
Credits 3. 3 Lecture Hours.
Physiological bases of exercise and physical conditioning; measurement of metabolic efficiency during exercise, neuromuscular efficiency and body composition.
Prerequisites: Grade of C or better in BIOL 319, BIOL 320, and PHYS 201; junior or senior classification; approval of instructor for non-majors.

KINE 435 Physiology of Exercise Lab
Credit 1. 3 Lab Hours.
Investigation of the body's response and adjustment of physiological systems to exercise; benefits to physiological systems from exercise.
Prerequisites: Grade of C or better in KINE 433; junior or senior classification; admission to the professional phase.

KINE 439 Exercise Evaluation and Prescription
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Prerequisites: Grade of C or better in KINE 433 or concurrent enrollment; senior classification; admission to the professional phase of program or approval of instructor for non-kinesiology majors.

KINE 462 Movement Lab: Ballet III
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Peer evaluation of body alignment, imbalances and biomechanics of movement; explanation of kinesthetic principles and injury prevention through ballet technique; conditioning programs for a peer's imbalances and improper technique in a ballet class. May be taken 3 times for credit.
Prerequisites: Grade of B or better in DCED 462; dance science majors; dance concentration majors and dance minors; or approval of instructor.

KINE 473 Movement Lab: Modern Dance III
Credits 2. 0 Lecture Hours. 5 Lab Hours.
Peer evaluation of body alignment, imbalances and biomechanics of movement; explanation of kinesthetic principles and injury prevention through modern dance technique; develop conditioning program for a peer’s imbalances and improper technique in a modern dance class. May be taken 3 times for credit.
Prerequisites: Grade of B or better in DCED 473; dance science majors, dance concentration majors and dance minors; or approval of instructor.

KINE 482 Seminar
Credit 1. 1 Lecture Hour.
Acquaint students with current research and the research process in their chosen field of study (kinesiology). May be taken four times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Grade of C or better in BIOL 319, BIOL 320, KINE 302, and KINE 306; junior or senior classification.

KINE 483 Practicum in Kinesiology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Participation and study in the areas of fitness assessment, exercise and/or sport programming, and fitness/sport administration; acquisition and practice of professional and/or clinical skills in kinesiology.
Prerequisites: KINE 199 (Aerobic Movement); senior classification; admission to the professional phase; approval of instructor.

KINE 484 Internship in Kinesiology
Credits 0 to 12. 0 to 12 Other Hours.
Supervised internship with corporate fitness centers, rehabilitation centers, hospitals, recreation centers and similar agencies and organizations.
Prerequisites: Grade of C or better in KINE 483; completion of all coursework.

KINE 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems in kinesiology assigned to individual students or to groups.
Prerequisites: Junior or senior classification; approval of instructor.

KINE 489 Special Topics in...
KNFB 222/HEFB 222 Teaching and Schooling in Modern Society
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Developing an understanding of students in multiple settings and levels; development, structure, history, finance, and management of schools in a democratic society; philosophical, ethical and moral dimensions of teaching; professional role of teacher.
Prerequisite: Majors only; junior or senior classification.
Cross Listing: HEFB 222/KNFB 222.

KNFB 315 Elementary School Physical Activities
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Physical activities, materials and curriculum in elementary schools.
Prerequisite: Grade of C or better in HEFB 222/KNFB 222 or KNFB 222/HEFB 222; grade of C or better in BIOL 107 or BIOL 111; grade of C or better in PHYS 201; junior or senior classification.

KNFB 324/HEFB 324 Technology and Teaching Skills for the 21st Century Learner
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Preparation of future Health and Physical Education teachers with practical skills related to: technology in the classroom/gymnasium, strategies for addressing urban education and English language learners, liability, management and classroom discipline, development of professional communication skills and time management; includes field based experiences in diverse classroom settings.
Prerequisites: Grade of C or better in HEFB 222/KNFB 222 or KNFB 222/HEFB 222; grade of C or better in BIOL 107 or BIOL 111; junior or senior classification.
Cross Listing: HEFB 324/KNFB 324.

KNFB 325/HEFB 325 Introduction to Secondary School Teaching
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduce fundamental teaching skills and theories necessary for preparing reflective teachers; examine classroom management, learning strategies and assessment techniques; classroom lectures combined with field-based experiences to link theory into practice.
Prerequisites: Grade of C or better in HEFB 324/KNFB 324; junior classification.
Cross Listing: HEFB 325/KNFB 325.

KNFB 416 Middle and Secondary School Physical Activities
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Physical activities, teaching strategies, media techniques and curriculum in middle and secondary schools.
Prerequisites: Grade of C or better in HEFB 222/KNFB 222 or KNFB 222/HEFB 222, or concurrent enrollment; approved acceptance to field experience.

KNFB 450/HEFB 450 Supervised Student Teaching
Credits 6. 6 Other Hours.
Observation and participation in an accredited public school classroom; techniques of teaching student’s teaching fields, and appropriate instructional strategies for assigned student population.
Prerequisites: Grade of C or better in HLTH 415 or KNFB 416.
Cross Listing: HEFB 450/KNFB 450.

LAND - Landscape Architecture (LAND)

LAND 101 Introduction to Landscape Architectural Practice
Credit 1. 1 Lecture Hour.
Explores and evaluates the diversity of landscape architectural practice; defines the traditional practice forms and examines evolving and boundary expanding opportunities for future practice; introduces the departmental curriculum and faculty.

LAND 111 Landscape Architecture Communications I
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Introduction to basic drafting and drawing required for landscape architecture projects, introduction to basic concepts, principles of graphic composition and pencil sketching techniques.

LAND 112 Landscape Architectural Communications II
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Advanced study in traditional and computer-based communication techniques in landscape architecture including studio explorations in concept and analysis graphics, color sketching, perspective drawing and rendering, desktop publishing, image capturing and manipulation, and compilation of graphic presentations; lecture, demonstrations and studio assignments.
Prerequisite: LAND 111 or approval of instructor.

LAND 210 Microclimatic Urban Design: Cool Solutions for Hot Cities
Credits 3. 3 Lecture Hours.
Introduction to methods of designing thermally-comfortable urban microclimates to reduce negative impacts of hot cities on human health and well-being; includes methods of analyzing and illustrating climate data; human thermal comfort modeling; application to urban design and landscape architecture; no previous drawing or design skills necessary.

LAND 211 Landscape Design I
Credits 4. 2 Lecture Hours. 7 Lab Hours.
Beginning studio course in land design; forces that produce useable three-dimensional site-space relationships; problems presented to give a basic knowledge, scope and application of landscape architecture design principles. Overnight field trip required.
Prerequisites: LAND 112; junior or senior classification or approval of instructor.

LAND 212 Landscape Design II
Credits 4. 2 Lecture Hours. 7 Lab Hours.
Continuation of LAND 318; basic design principles that combine natural systems (such as landform, water, vegetation, wildlife habitat, soils, climate) and human-built systems (such as roads, building utilities).
Prerequisites: LAND 211 and LAND 231.
LAND 211 Landscape Design III
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Continuation of LAND 311; land design projects of increased complexity and emphasis on sustainability, with site scale problems used to demonstrate complete design thought. One or more field trips may be required.
Prerequisite: LAND 311.

LAND 232 Landscape Construction II
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Second construction studio course; essential construction materials and systems applied in landscape development; topics include statics and mechanics of simple structures; properties and procedures of wood, masonry and concrete construction; construction sequencing and material costs; development of a construction document package required. Construction observation field trips required.
Prerequisites: LAND 211 and LAND 231; junior or senior classification.

LAND 240 History of Landscape Architecture
Credits 3. 3 Lecture Hours.
Introduction to history of land use, urban design and planning, and site design from prehistory to the present in Europe, Asia, Africa and Australia; contemporary issues in landscape architecture such as sustainability, ecological design, and professional roles, both historically and at present, with comparisons to American examples.
Prerequisite: Sophomore classification or higher.

LAND 241 History and Development of Landscape Architecture in North America
Credits 3. 3 Lecture Hours.
Interaction between people and the land in North America from first settlement to the present; settlement patterns, sustainable land use, urban design and plan, and site design in context of cultural, social, and technological factors; current issues in landscape architecture, landscape urbanism, and land-use planning.

LAND 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in landscape architecture. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

LAND 301 Landscape Architecture Theory
Credits 3. 3 Lecture Hours.
Landscape Architecture. Relevant theoretical discourse in landscape architecture, urban planning and urban design; urban theory, social and cultural theory; critical and creative thinking; ecological planning and design; design process and sustainable development; environmental philosophy and environmental aesthetics.
Prerequisite: Junior classification or approval of instructor.

LAND 311 Landscape Design III
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Design process, sustainable landscape design, synthesis and design refinement; problems to stimulate highly creative self-motivated results, design thinking to integrate behavioral settings into natural and/or built landscape systems.
Prerequisites: LAND 212 and LAND 232; junior or senior classification.

LAND 312 Landscape Design IV
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Continuation of LAND 311; land design projects of increased complexity and emphasis on sustainability, with site scale problems used to demonstrate complete design thought. One or more field trips may be required.
Prerequisite: LAND 311.

LAND 331 Landscape Construction III
Credits 4. 2 Lecture Hours. 4 Lab Hours.
Third construction studio course; sustainable water management techniques in landscape development; theory, principles and techniques of low impact development; construction document preparation, working drawings, project layout and design; theory and principles of irrigation and lighting design. Field trips required.
Prerequisites: LAND 320 and LAND 330; junior or senior classification.

LAND 412 Landscape Design VI
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Capstone studio; advanced study and research designed to go beyond the core design experience; introduction of issues, methodologies, tools and techniques developing in professional practice.
Prerequisite: LAND 312.

LAND 431 Professional Practice
Credits 3. 3 Lecture Hours.
Procedures, management and ethical frameworks in which professional landscape architectural practice occurs; topics include forms of practice, employment, proposal preparation, fee and contract structures, project management, roles of the landscape architect, presentations and public participation, legal and ethical responsibilities.
Prerequisites: Senior classification; approval of instructor.

LAND 484 Summer Internship
Credits 0. 0 Lecture Hours.
Practical experience in an office of design allied professionals; 10 week internship with a minimum of 400 hours; continuous employment; departmental pre-approval through the department internship coordinator required. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Upper level classification and approval of internship coordinator; LAND 321.

LAND 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems in various phases of landscape architecture assigned to individual students or to groups. Consultation and assigned collateral reading.
Prerequisite: Approval of department head.

LAND 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified field of landscape architecture. May be repeated for credit.

LAND 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in landscape architecture. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
LAND 494 Internship
Credits 6. 6 Lecture Hours.
An internship (15 week, 600 hours) with a landscape architecture or landscape architecture-related company that exposes the student to landscape architectural professional practice; monthly reports, final internship portfolio and internship supervisor assessment letter required; distance education course with non-resident status.
Prerequisites: LAND 321 and approval of coordinator.

LBAR - College of Liberal Arts (LBAR)

LBAR 181 First-Year Seminar in the Liberal Arts
Credits 1 to 3. 1 to 3 Lecture Hours.
First-year seminar on interdisciplinary topics of interest in the humanities and social sciences. May be taken on a satisfactory/unsatisfactory basis. May be repeated for credit.
Prerequisites: Freshman or sophomore classification; approval of the dean of liberal arts.

LBAR 200 Topics in Liberal Arts I
Credits 3. 3 Lecture Hours.
Introduction to the program, development of critical thinking skills and international perspectives; introductory course for the Liberal Arts Cornerstone Honors Learning Community.
Prerequisite: Admission to College of Liberal Arts Cornerstone Program Learning Community.

LBAR 203 Foundations of the Liberal Arts: Humanities
Credits 0 to 3. 0 to 3 Lecture Hours.
The intellectual roots and characteristic values and methods of liberal arts studies with emphasis on humanities disciplines. May be taken up to three hours for credit.
Prerequisite: Approval of the dean of liberal arts.

LBAR 204 Foundations of the Liberal Arts: Social Sciences
Credits 0 to 3. 0 to 3 Lecture Hours.
The intellectual roots and characteristic values and methods of liberal arts studies with emphasis on social science disciplines. May be taken up to three hours for credit.
Prerequisite: Approval of the dean of liberal arts.

LBAR 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Readings for specific needs of major or minor in departments in Liberal Arts.

LBAR 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of liberal arts. May be repeated for credit.
Prerequisite: Freshman or sophomore classification in liberal arts or approval of instructor.

LBAR 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Liberal Arts.
Prerequisites: 3 hours of 200-level courses in any department in the College of Liberal Arts; freshman or sophomore classification and approval of instructor.

LBAR 300 Liberal Arts Study Abroad
Credits 1 to 18. 1 to 18 Other Hours.
For students in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to approved program; approval of study abroad coordinator and academic dean.

LBAR 330 Introduction to International Study
Credits 1 to 3. 1 to 3 Lecture Hours.
Readings and research preparatory to participation in a summer or semester at an international site.
Prerequisite: Approval of the dean of liberal arts.

LBAR 331 Studies in European Civilization and Culture I
Credits 1 to 6. 1 to 6 Lecture Hours.
European civilization and culture as seen especially through literature, history, philosophy and the arts. To be taught only at an overseas site.
Prerequisite: LBAR 330 or approval of instructor.

LBAR 332 Studies in European Civilization and Culture II
Credits 1 to 6. 1 to 6 Lecture Hours.
European civilization and culture as seen especially through political, social and economic developments. To be taught only at an overseas site.
Prerequisite: LBAR 330 or approval of instructor.

LBAR 392 Cooperative Education: Liberal Arts
Credit 1. 1 Other Hour.
Educational work assignment for a student in a career-related field; supervision by the employer, co-op coordinator and course instructor; technical report approved by the course instructor required. To be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Approval of college co-op coordinator.

LBAR 400 Topics in Liberal Arts II
Credits 3. 3 Lecture Hours.
Emphasis on developed critical thinking, international perspectives and scholarly research; capstone course in the Liberal Arts Cornerstone Program Honors Learning Community. May be taken 3 times for credit as topics will vary each semester.
Prerequisites: LBAR 200 and admission to College of Liberal Arts Cornerstone Learning Program Community.

LBAR 484 Internship
Credits 0 to 12. 0 to 12 Other Hours.
Directed internship in a private firm, government or non-profit agency; provides experiential learning appropriate to the student’s major and career objectives. Must be taken on a satisfactory/unsatisfactory basis. May be taken a maximum of 12 hours for credit.
Prerequisites: Junior or senior classification and approval of major advisor.

LBAR 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Readings for specific needs of major or minor in departments in Liberal Arts; also taught at Qatar campus.

LBAR 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of liberal arts. May be repeated for credit.

LBAR 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Liberal Arts. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of dean of college.
LDEV - Land Development (LDEV)

LDEV 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Individual instruction in selected aspects of land development not adequately covered by other courses with stress on reports and readings in selected areas of land development.
Prerequisite: Junior classification or approval of instructor.

LDEV 489 Special Topics in...
Credits 1 to 6. 1 to 6 Lecture Hours.
Selected topics in an identified area of land and real estate development. May be repeated for credit.
Prerequisite: Junior classification or approval of instructor.

LING -Linguistics (LING)

LING 209/ENGL 209 Introduction to Linguistics
Credits 3. 3 Lecture Hours.
Nature of human language and of linguistics; includes an introduction to phonology, syntax, semantics and morphology and the role of spoken and written discourse in sustaining societal arrangements.
Cross Listing: ENGL 209/LING 209.
LING 291 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in linguistics.
Prerequisites: LING 209/ENGL 209; freshman or sophomore classification and approval of instructor.

LING 307 Language and Culture
Credits 3. 3 Lecture Hours.
Language and its correlations with other aspects of culture; nature and definition of language; non-technical overview of linguistic science and language as it is related to other behavior.
Prerequisite: Junior or senior classification.

LING 310/ENGL 310 History of the English Language
Credits 3. 3 Lecture Hours.
Phonological, grammatical and lexical history of the English language; brief discussion of some other Indo-European languages; principles of linguistic change, as reflected in English.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 310/LING 310.

LING 403 Language and Gender
Credits 3. 3 Lecture Hours.
Language and gender from a sociolinguistic perspective; gender in the words and structures of language; gender representation and gendered language use in the media, and a variety of sociocultural contexts; language use in intimate relationships; computer-mediated discourse; language, sexuality, and sexual orientation.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 403 and WGST 403.

LING 481 Senior Seminar
Credits 3. 3 Lecture Hours.
Seminar on significant figures, movements and issues in linguistics or rhetoric, with special attention to the methods and materials of scholarship.
Prerequisites: Junior or senior classification; 6 credits in linguistics.
LING 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed individual study of topics in linguistics. May be repeated for credit.

LING 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of linguistics. May be repeated for credit.

LING 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in linguistics. May be repeated 2 times for credit.
Prerequisites: 6 credits of linguistics; junior or senior classification and approval of instructor.

LMAS - Latino/Mex Amer Studies (LMAS)

LMAS 201 Introduction to Latino/Mexican American Studies
Credits 3. 3 Lecture Hours.
Introductory survey of the historical presence of U.S. Latinos and Mexican Americans from an interdisciplinary perspective that incorporates the group’s global origins; application of critical thinking skills to the study of Latinos and Mexican Americans.

LMAS 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems not covered by other courses; course depends upon needs and interest of the student and upon the number of credit hours. May be repeated for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor.

LMAS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of Latino/a, Mexican-American studies. May be repeated for credit.
Prerequisite: Approval of instructor.

LMAS 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Interdisciplinary Critical Studies faculty or affiliated faculty. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Freshman or sophomore classification.

LMAS 422 Race, Ethnicity, Crime and Justice
Credits 3. 3 Lecture Hours.
Racial/ethnic disparities in criminal offending and victimization, as well as different experiences with law enforcement, judicial, and correctional agencies.
Prerequisites: SOCI 220 or equivalent.
Cross Listing: AFST 422 and SOCI 422.

LMAS 468/HIST 468 Latinx Civil Rights Movements
Credits 3. 3 Lecture Hours.
Latinx civil rights movements in the twentieth century; Mexican American, Puerto Rican, Cuban, Central American; racism, economic inequality, labor exploitation, segregation, anti-immigrant sentiment, gender discrimination; role of liberalism, multiethnic coalitions, third world liberation movements, revolutionary nationalism, religion; movement philosophies and strategies; contemporary immigrant rights movements.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: HIST 468/LMAS 468.
LMAS 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Directed internship in a public or private organization to provide students with applied experience; opportunity to observe first hand issues and problems covered in Latino/a and Mexican-American Studies courses; designed to enhance and clarify the student's career objectives. May be taken for credit up to six hours.
Prerequisites: Approval of instructor.

LMAS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of identified topics in Latino/a, Mexican-American studies. May be repeated for credit.
Prerequisites: Junior or senior classification; approval of Instructor.

LMAS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of Latino/a, Mexican-American studies. May be repeated for credit.
Prerequisites: Junior or senior classification; approval of Instructor.

LMAS 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in interdisciplinary critical studies or affiliated faculty. May be repeated for credit.
Prerequisites: Junior or senior classification; approval of Instructor.

MARA - Maritime Administration (MARA)

MARA 205 Introduction to Ships and Shipping
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Introduction to the maritime industry and ships used in transportation of goods and services. Shipboard nomenclature, types and missions of merchant ships, shipbuilding nomenclature and dimensions, shipbuilding materials and methods, modes of cargo handling and their impact on ship design.

MARA 212 Business Law
Credits 3. 3 Lecture Hours.
Legal principles of business, legal reasoning, dispute resolution and procedure, contract law, bankruptcy law, property law, Uniform Commercial Code sections concerning contracts, security interests, negotiable instruments and sales.
Prerequisite: Sophomore classification.

MARA 250 Management Information Systems
Credits 2. 2 Lecture Hours.
Introduction to the concepts and applications of management information systems, including information technology concepts, computer hardware, common business software, software selection and development, management information systems (MIS), decision support systems (DSS), and working in a digital world.

MARA 281 Seminar in Undergraduate Research Methods
Credit 1. 1 Lecture Hour.
An introduction to necessary undergraduate research methods in economics and business; preparation for investigative writing requirements in upper division courses in maritime business administration.

MARA 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study on selected problems in the area of maritime administration not covered in other courses.
Prerequisite: Approval of MARA department head.

MARA 289 Special Topics
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of maritime administration.
Prerequisite: Approval of MARA department head.

MARA 301 Ocean Transportation I
Credits 3. 3 Lecture Hours.
Examination of theory and practice in the management of transportation logistics, labor, rate-making, role of government, international conventions and treaties; exposure to current trends and developments in shipping.
Prerequisites: MARA majors - MARA 205; MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART majors - MART 103; ECON 202 or ECON 203.

MARA 304 Ocean Transportation II
Credits 3. 3 Lecture Hours.
Marine insurance problems and cases and how they relate directly to a ship's officer; hull, cargo, and personal injury cases are examined from the officers' and insurers' points of view; introduction to Admiralty Law and the court process for seamen's rights and ship owners' privileges; actual hearings and trials are observed to complete the background.
Prerequisite: MARA 301 for MART and MARA students.

MARA 324 Managerial Maritime Finance
Credits 3. 3 Lecture Hours.
Continuation of topics introduced in Business Finance (FINC 341) including risk and return, investment valuation, the selection of risky investment projects, capital structure, dividend policy, and methods of raising long-term capital; applications to the maritime industry are made where appropriate.
Prerequisite: FINC 341.

MARA 350 Maritime Business Computer Programming and Security
Credits 3. 3 Lecture Hours.
Concepts of computer programming and security utilizing Visual Basic for Applications with emphasis to business and maritime area specifically, includes basic programming logic, programming in VBA, computer security principles and techniques for enhancing computer security.
Prerequisites: MARA 250 and junior or senior classification.

MARA 363 The Management Process
Credits 3. 3 Lecture Hours.
Management as an academic discipline; goal setting; planning, controlling and decision-making; models for thinking about organizations; organization design; organization change; models for understanding individual behavior; job performance and job satisfaction; interpersonal behavior, motivation and leadership, behavior in work groups; careers in management, ethics and international management.
Prerequisites: MARA majors - MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART and other majors - junior or senior classification.
MARA 373 Personnel Management
Credits 3. 3 Lecture Hours.
Strategic issues in managing human resources; shared responsibilities of line managers and human resource staff for developing and implementing human resource policies and procedures; human resource planning; job design, analysis and evaluation; staffing; compensation; performance appraisal; training and development career management; labor relations; legal, ethical and international issues.
Prerequisite: Junior or senior classification.

MARA 401 Brokerage and Chartering
Credits 3. 3 Lecture Hours.
Operational and legal environment of ship brokerage and chartering; responsibilities of owner and charterer under various charter forms; American, British and Canadian acts governing charters and bills of lading; rules and regulations concerning loading and discharging.
Prerequisites: MARA 301 and senior classification.

MARA 402 Inland Waterways
Credits 3. 3 Lecture Hours.
Development of inland waterways of the U.S. and federal policies relating to them; port and terminal development, competition with other transportation forms, manpower, rates, environmental concerns and the impact of waterway systems on regional economies.
Prerequisites: MARA 301; ECON 202 or ECON 203; junior or senior classification.

MARA 416 Port Operations, Administration and Economics
Credits 3. 3 Lecture Hours.
Concepts of the port and methods of intermodal transfer; port functions divided and analyzed along business lines - economics, management, finance, accounting and marketing; cost studies.
Prerequisites: MARA 301 and junior or senior classification.

MARA 421 Admiralty Law
Credits 3. 3 Lecture Hours.
Essential principles of admiralty, general maritime, and international law as applicable to the marine industry and ocean shipping; evolution and state of the law concerning maritime liens, ship mortgages, rights of seamen and harbor workers, limitation of liability, bills of lading and cargo carriage, collision liability, general average, marine salvage, charter parties, and international rights and responsibilities of ships and shipping.
Prerequisites: MARA majors - MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART and other majors - junior or senior classification.

MARA 424 Intermodal Transportation
Credits 3. 3 Lecture Hours.
Historical development, structure, function, and regulation of highway, rail, water, pipeline, and air transportation systems. Application of economic concepts and principles to transportation development and operations.
Prerequisites: MARA majors - MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART majors - MART 200; ECON 203 and junior or senior classification.

MARA 435 Labor Law and Policy
Credits 3. 3 Lecture Hours.
Federal and state public policy and laws regulating human resource management including National Labor Relations Act, Railway Labor Act, Fair Labor Standards Act, employment discrimination statutes, statutes regarding public sector unionization, and other relevant legal authorities; various forms of dispute settlement including litigation, mediation, fact finding and arbitration; legal ramifications of strategic human resource management decision making.
Prerequisites: MARA majors - MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART and other majors - junior or senior classification.

MARA 440 Global Economy and Enterprise Management
Credits 3. 3 Lecture Hours.
Economic, political, social and ethical environments of international business including the determinants of trade and investment patterns and the logic of government interventions in both trade and capital markets; structure, strategy and operations of the international firm.
Prerequisites: MARA majors - MARA 281; MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration and senior classification; MPPC majors - POLS 232; ECON 203 and senior classification.

MARA 450 Maritime Supply Chain Management
Credits 3. 3 Lecture Hours.
Introduction to the concepts involved in supply chain management (SCM); SCM encompasses the functional areas of procurement, operations management, inbound/outbound transportation, customer service, and information technologies; emphasizes how these functional areas are integrated to achieve the firm's overall objectives.
Prerequisites: SCMT 303 and SCMT 364.

MARA 466 Strategic Management
Credits 3. 3 Lecture Hours.
Strategic issues facing organizations, including top management decision making and social responsibility; environmental and industry analysis; establishing organizational mission and objectives; corporate, business and functional level strategy formulation; global and multidomestic strategies; strategic implementation and control; integrating operations, finance, marketing and human resource strategies; case analysis.
Prerequisites: MARA 281, MARA 363, MKTG 321, SCMT 364, FINC 341, and senior classification.

MARA 470 Environmental Law
Credits 3. 3 Lecture Hours.
Broad background of basic statutes, regulations and cases dealing with the major issues in international and federal environmental law; focus on pragmatic training in statutory, regulatory and treaty reading and interpretation; analysis of administrative and legislative intent for law.
Prerequisites: MARA majors - MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; MART and other majors - junior or senior classification.

MARA 475 Business Leadership
Credits 3. 3 Lecture Hours.
Focus on theory and practice of leadership; familiarize with components, theory and models of leadership; compare/contrast styles; review leadership/followership relationship as a collaborative activity resulting in achieved goals; analyze cultural and global components and ethical issues associated with leadership.
Prerequisite: MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; junior or senior classification.
MARA 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study on selected problems in the area of maritime administration not covered in other courses.
Prerequisites: MGMT 211, ACCT 230, and MARA 250, or concurrent enrollment; admission to upper division in Maritime Administration; cumulative GPA of 2.5 or higher.

MARA 491 Research in Maritime Administration
Credits 0 to 4. 0 to 4 Other Hours.
Research in Maritime Administration. Research conducted under the direction of faculty member in Maritime Administration. May be repeated 2 times for credit. Please see academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

MARA 493 International Maritime Management Experience
Credits 3. 3 Lecture Hours.
Combination of classroom and two week international travel emphasizing cultural and historic aspects of maritime industry; direct contact with managers and regulators in the international maritime industry; examination of different management styles, business practices and regulatory approaches.

MARB 310 Introduction to Cell Biology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Cellular structure/function; prokaryotic vs. eukaryotic cells; examination of cellular membranes and membrane transport; analysis of DNA replication, transcription, and protein translation (an extension of their treatment in MARB 301); introduction to the components and genetics of immunity.
Prerequisites: BIOL 112, CHEM 228, MARB 301; junior or senior classification or approval of instructor; MARS 360 is recommended but not required.

MARB 311 Ichthyology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Freshwater and marine fishes. Subject will be mainly systematic, but evolution, ecology, life history, and economics of more important species will be treated.
Prerequisites: BIOL 112 and MARB 315. Curriculum sophomore, junior or senior classification or approval of instructor.

MARB 315 Natural History of Vertebrates
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Natural history of fishes, amphibians, reptiles, birds, and mammals, with emphasis on coastal Texas vertebrates.
Prerequisites: BIOL 112. Curriculum sophomore, junior or senior classification or approval of instructor.
MARB 320 Fisheries Techniques
Credits 4. 3 Lecture Hours. 3 Lab Hours.
An introduction to theory and techniques in fisheries biology and ecology. Experience with fisheries equipment and techniques will be provided in both field and laboratory. Practical sampling design, collection, and interpretation of data from estuarine, coastal and offshore environments will be addressed.
Prerequisites: BIOL 112, MARB 311. Junior or senior classification or approval of instructor.

MARB 334 Biology of Sea Turtles
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Living sea turtles of the world, with emphasis on species in the Atlantic, Gulf and Caribbean basins. Emphasis includes phylogeny, population biology, ecology, life history, behavior, social and economic aspects and their impact on sea turtle conservation and recovery.
Prerequisites: BIOL 112, MARB 315 or instructor approval.

MARB 335 Fish Physiology
Credits 3. 3 Lecture Hours.
Study of the basic physiology of fishes. Examination of fish cardiovascular, renal, digestive, locomotor, reproductive, and central/peripheral nervous systems. Discussion of physiological adaptations enhancing survival in a water medium.
Prerequisites: BIOL 112. Junior or senior classification or approval of instructor.

MARB 340 Tropical Marine Ecology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Field-oriented experience in coral reef, mangrove, sea grass and other tropical marine ecosystems; emphasis on biodiversity, ecology and conservation issues specific to Yucatan Peninsula of Mexico.
Prerequisites: BIOL 112; all students who dive must either be a current AAUS scientific diver or present a current medical examination (which will be provided by the Diving Safety Officer or instructor) completed within the past 12 months and signed by a doctor, to the instructor before class participation in the pool will be allowed; prior to using scuba equipment, all students must provide proof of open water certification or equivalent diving experience (advanced certification recommended); approval of instructor and the Diving Safety Officer is required before any pool activity takes place; Divers Alert Network insurance, or equivalent, is required.

MARB 360 Marine Conservation Biology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Lectures and laboratories cover the major principles of conservation biology; a new synthetic field that applies concepts of ecology, systematics and evolution, biogeography, genetics, behavioral sciences, and social sciences to the conservation of marine fisheries resources. Lab exercises include morphometric and genetic variation, GIS, molecular systematics and phylogenetic inference.
Prerequisite: Junior or senior classification or approval of instructor.

MARB 403 Cetacean Behavior and Behavioral Ecology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
This course consists of lecture of up to date descriptions of Cetacean behavior and ecology; and of labs that evaluate the literature of topics of present relevance.
Prerequisite: MARB 315. Junior or senior classification or approval of instructor.

MARB 405 Marine Parasitology
Credits 3. 3 Lecture Hours.
Fundamentals of parasitology, with emphasis on marine applications. Survey of major parasites of marine animals and the diseases they cause, especially in ecologically and commercially-important host species.
Prerequisites: BIOL 112, junior or senior classification or approval of instructor.

MARB 406 Life in Extreme Environments
Credits 3. 3 Lecture Hours.
Key metabolic and physiological innovations of extremophile organisms; topics include the molecular biology, biochemistry and physiology of organisms living in extreme environments.
Prerequisites: MARB 315; CHEM 228; junior or senior classification or approval of instructor.

MARB 407 Research and Conservation in Greece-Dolphins, Fisheries and Cultural Heritage
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Lectures, readings and labs on the ecology and behavior of the vertebrate fauna of Greece; laboratory hands-on experience of the marine environment from boats, readings, videos, interpretation and select major peer-review scientific papers and books.
Prerequisites: Junior or senior classification; MARB 315 or approval of instructor.

MARB 408 Marine Botany
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Morphology, systematics, ecology, and biochemistry of representative algae, fungi, and submarine grasses.
Prerequisites: BIOL 112; junior or senior classification or approval of instructor.

MARB 409 Biology of Sharks and their Relatives
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Applied knowledge from ichthyology, marine ecology, and oceanography related to sharks, skates and rays in subtropical and tropical latitudes; emphasis placed on hands-on learning experiences coupled with traditional lectures and reading on Chondrichthyan morphology, physiology, life history, behavior and conservation.
Prerequisites: MARB 315; junior or senior classification, or approval of instructor; MARB 311 recommended.

MARB 410 Animal Behavior
Credits 3. 3 Lecture Hours.
Examination of ethological concepts. Discussion of the development, genetics, physiology, and evolution of animal behavior patterns involved in reproduction, territoriality, aggression, communication, population dispersion, sociality, and sociobiology of invertebrates and vertebrates.
Prerequisites: BIOL 112. Curriculum sophomore, junior or senior classification or approval of instructor.

MARB 414 Toxicology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
History and scope of toxicology as it applies to mammals; where possible, marine species will be used for examples and assigned papers.
Prerequisites: BIOL 112, CHEM 227 and CHEM 228.
MARB 415/WFSC 415 Coastal Marine Biology and Geology of Alaska
Credits 3. 3 Lecture Hours.
Field course conducted in south-central Alaska for two weeks; work at the remote Alice Cove Research Station located in Prince William Sound; conduct research on marine mammals behavior and ecology; exploration of the geology and glaciology.
Prerequisites: BIOL 112.
Cross Listing: WFSC 415/MARB 415.

MARB 416 Marine and Coastal Biology of Patagonia, Argentina
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Study of the marine and coastal biology of Peninsula Valdez located in Patagonia, Argentina; augmented lectures with field observations of marine and terrestrial wildlife and local habitats, visits to a nature center and paleontological museum and cruises to observe marine mammals.
Prerequisites: BIOL 112; junior or senior classification or approval of instructor.

MARB 420 Comparative Animal Physiology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Principles of animal physiology are examined using invertebrate and vertebrate model systems. Topics include osmoregulation in marine vs. freshwater vs. terrestrial organisms, excretion, fluid circulation, nervous system structure and function, muscle activity, sensory neurobiology, and endocrine mediation.
Prerequisites: BIOL 112, CHEM 228, MARB 310. Junior or senior classification or approval of instructor. MARB 360 is recommended but not required.

MARB 423 Mariculture
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Study of factors determining the success of efforts to cultivate estuarine and marine species of economic importance. Mariculture practices used worldwide in the production of algae, mollusks, crustaceans, and fishes will be discussed.
Prerequisite: Junior or senior classification or approval of instructor.

MARB 425 Marine Ecology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Relationship between various marine environments and their inhabitants; intra- and interspecific relationships between organisms; structure and function among marine communities. Laboratory emphasis is placed on study of living material and natural habitats in the Gulf of Mexico.
Prerequisites: MARB 315; senior classification or approval of instructor.

MARB 426 Aquatic Animal Nutrition
Credits 3. 3 Lecture Hours.
Chemistry, digestion, absorption and intermediary metabolism of nutrient classes with special emphasis on their relationship to warmwater fish nutrition. Determination of nutrient requirements, feed evaluation, feed processing, ration formulation and feeding practices.
Prerequisites: CHEM 227. Junior or senior classification or approval of instructor.

MARB 430 Coastal Plant Ecology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Study of the identification, distribution, production, and ecological importance of estuarine, coastal marsh, and dune vascular plants; the interaction of plants with their abiotic and biotic environments; and techniques of vegetation management and evaluation
Prerequisites: BIOL 112. Junior or senior classification or approval of instructor.

MARB 433 Applied Bioinformatics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fundamental concepts and methods in bioinformatics using sequence analysis and practical applications; includes biological databases, sequence and structure alignments, structural bioinformatics, gene prediction and genome analysis; emphasis on understanding and application of these concepts.
Prerequisites: MARB 301; junior or senior classification or approval of instructor.

MARB 435 Marine Invertebrate Zoology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Marine Invertebrate Zoology. General biology of marine invertebrate animals; morphology, evolution, and systematics. Laboratory will stress studies of local fauna.
Prerequisites: BIOL 112. Junior or senior classification or approval of instructor.

MARB 437 Pathology of Marine Animals
Credits 3. 3 Lecture Hours.
Examination of changes or loss of physiological function as related to common diseases (viral, bacterial, parasitic) or injury; mechanisms of disease in cells, tissues and organ systems of marine vertebrates; emphasis on marine mammals; fishes and marine reptiles/birds; clinical manifestations, diagnostics and treatments.
Prerequisites: MARB 315; junior or senior classification or approval of instructor.

MARB 438 Coastal Ornithology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Coastal Ornithology. Field and laboratory studies on the identification, classification, distribution and ecology of birds with special emphasis on birds of the Texas Gulf Coast. Classroom lectures to include anatomy, physiology, behavior and migration. Field trips required.
Prerequisites: MARB 315. Junior or senior classification or approval of instructor.

MARB 445 Marine Fisheries Management
Credits 3. 3 Lecture Hours.
Basic knowledge from marine ichthyology, biology of fishes and biological oceanography related to applied aspects of marine fisheries sciences; emphasis placed on management techniques applicable to tidal-influenced inland water, estuaries, and oceans.
Prerequisite: Junior or senior classification, or approval of instructor.

MARB 460 Fisheries Population Dynamics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Principles and concepts of population dynamics related to fish; methods of estimating abundance, mortality, recruitment and sustainable harvest levels; introduction to models for population analysis with emphasis on stock assessments and quantitative fisheries; basic computer programming to explore population behavior and interactions.
Prerequisites: MATH 142, MATH 147, or MATH 151; MARB 311 or approval of instructor.

MARB 466 Evolutionary Biology
Credits 3. 3 Lecture Hours.
A conceptual examination of evolutionary theory, not a survey of specific organismal evolutions. Evidence for the abiotic origin of life is presented, followed by a discussion of micro-evolutionary (including drift and natural selection) and macro-evolutionary (including evolutionary trends) mechanisms. The course concludes with application of these concepts to human evolution.
Prerequisites: BIOL 112. Junior or senior classification or approval of instructor. MARB 301 is recommended but not required.
MARB 482 Seminar in Marine Biology
Credit 1. 1 Lecture Hour.
Compilation of literature pertaining to topics in marine biology. Emphasis placed on preparation of a written report and presentation of a synopsis of that report.
Prerequisite: Junior or senior classification or approval of instructor.

MARB 484 Undergraduate Internship
Credits 0 to 9. 0 to 9 Other Hours.
Supervised study in a research or teaching laboratory remote from TAMUG. Student involvement is to consist of real-life learning or marine biological research, teaching, management, or a combination of these.
Prerequisite: Junior or senior classification or approval of instructor.

MARB 485 Directed Studies
Credits 1 to 6. 1 to 3 Other Hours.
Per Semester. Special topics and problems in field and/or laboratory work suited to analysis by individuals or small groups concerning aspects of marine biology. Usually requires a report describing techniques and results. Only 3 credit hours may be used in the degree plan curriculum.
Prerequisites: 2.25 GPR. Curriculum sophomore, junior or senior classification or approval of instructor.

MARB 489 Special Topics in Marine Biology
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of marine biology.
Prerequisite: Junior or senior classification or approval of instructor.

MARB 491 Research in Marine Biology
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Marine Biology. Please see academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor.

MARE - Marine Engr Technology (MARE)

MARE 100 Marine Engineering Fundamentals
Credits 3. 2 Lecture Hours. 3 Lab Hours.
A study of basic marine engineering systems, with emphasis on propulsion plants. Introduction to propulsion plant machinery and shipboard safety practices and equipment; offshore oil production; subsea technologies; petroleum product transport and refinery.

MARE 111 Methods in Engineering Technology
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Analytical methods in engineering technology; problem solving, critical thinking, inductive and deductive reasoning, units and conversions, use of computational software, project management; basic calculations in statics, thermodynamics, electric circuits, engineering economics.

MARE 112 Graphics for Engineering Technology
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Graphical communication in engineering and engineering technology; lettering, sketching techniques, geometric construction, multi-view drawings, dimensioning and notation, piping and electrical diagrams, use of 2-D and 3-D CAD software, use of parametric software.

MARE 200 Basic Operations
Credits 4. 4 Lecture Hours.
Practical application of student’s classroom studies while at sea on training ship during sea-training period. Student required to complete several projects relating to engineering plant of ship.
Prerequisite: Grade of C or better in MART 103.

MARE 202 Marine Thermodynamics
Credits 3. 3 Lecture Hours.
Energy Concepts; First and second law of thermodynamics; Carnot and Rankine principles and reversible heat cycles; Properties of processes of vapors; vapor-power cycles and vapor refrigeration cycles.
Prerequisites: MARE 100, MATH 152 or MATH 161 or concurrent enrollment.

MARE 205 Engineering Mechanics I
Credits 3. 3 Lecture Hours.
Statics, basic vector operations, mechanics of particles and rigid bodies. Center of gravity, analysis of structures, friction, moments of inertia.
Prerequisites: Grade of C or better in MATH 151; grade of C or better in PHYS 218 or PHYS 206.

MARE 206 Engineering Mechanics II
Credits 3. 3 Lecture Hours.
Dynamics; scalar and vector solutions of relative linear velocities and acceleration; kinetics; dynamics of translation and rotation; work; energy; impact; momentum.
Prerequisite: MARE 205.

MARE 207 Electrical Power I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application of circuit analysis principles to DC and AC circuits having sources and passive inductors, resistors and capacitors; electrical instrumentation; power and voltage/current phase relationships in AC circuits; balanced three-phase AC power circuits; cable sizing.
Prerequisites: Grade of C or better in MATH 151; grade of C or better in PHYS 208 or PHYS 207, or concurrent enrollment.

MARE 209 Mechanics of Materials
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the study of stresses, strains, and deformation of a solid body which results when static forces are applied. Transformation of stresses and strains, torsion, beam deflection, and combined loadings are discussed.
Prerequisite: MARE 205.

MARE 210 Metallurgy for Marine Engineers
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to structure, properties and engineering application of ferrous and nonferrous materials; beneficiation, production of ferrous and nonferrous metals, destructive and nondestructive testing, protective coatings, strengthening and heat treatment; laboratory includes metallographic procedures, mechanical testing, heat treatment, surface treatment, corrosion testing, recrystallization and failure analysis.
Prerequisites: CHEM 107 and CHEM 117.

MARE 211 Steam Propulsion Plants
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fossil fuel steam generators, shipboard propulsion turbines and condensers, reduction gears, line shafting, internal fittings and fluid flow paths, automatic controls, regulatory requirements for safety device settings, system tests and inspections, boiler water/feed water test and treatment, turbine/reduction gear lubrication, computer aided heat balances, parametric analysis of plant performance.
MARE 217 Circuit Analysis
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Electric and magnetic principles of components used in DC and AC circuits; transient analysis; phasor analysis; Ohm's and Kirchoff's laws, Thévenin's and Norton's theorems, mesh and nodal equations; measurement of current, voltage and waveforms with meters and oscilloscopes.
Prerequisites: Grade of C or better in MATH 151; PHYS 208 or PHYS 207 or concurrent enrollment.

MARE 242 Manufacturing Methods I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Introduction to manufacturing methods used in marine industries emphasizing fabrication techniques including oxy-acetylene cutting and welding, brazing, arc welding, pipe welding and sheet metal fabrication. Laboratory exercises will develop the knowledge and skills needed to perform fabrication operations, routine maintenance and emergency repairs of marine engineering structures and systems.

MARE 243 Manufacturing Methods II
Credit 1. 0 Lecture Hours. 3 Lab Hours.
Continued introduction to manufacturing methods used in marine industries including machine, foundry and forge work and other manufacturing technologies. Laboratory emphasizes machine shop practices including safety, use and care of machine and hand tools; measuring instruments, layout, gauging, cutting speeds and feeds, drilling, tapping, threading, turning and milling.
Prerequisite: Approval of Instructor.

MARE 261 Engineering Analysis
Credits 3. 3 Lecture Hours.
Review of mathematical concepts previously studied (e.g., complex quantities, vectors and calculus), coupled with study of advanced concepts (e.g., differential equations, Laplace Transforms, statistics and numerical methods) with a view to emphasize applications in nuclear engineering, electrical engineering, thermodynamics, heat transfer and turbine theory.
Prerequisite: MATH 152 or MATH 161.

MARE 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems in marine engineering technology not covered by any other course in the curriculum; work may be in either theory or laboratory.
Prerequisite: Approval of department head.

MARE 289 Special Topics
Credits 1 to 5. 0 to 5 Lecture Hours. 3 to 5 Lab Hours.
Selected topics in an identified area of marine engineering technology. May be repeated for credit.
Prerequisite: Approval of instructor.

MARE 300 Intermediate Operations
Credits 4. 4 Lecture Hours.
Training program for second sea-training period. Sea project required of each student under supervision of officer-instructors. Lifeboat and safety training.
Prerequisite: Junior or senior classification or approval of instructor.

MARE 305 Fluid Mechanics Theory
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Theory of incompressible and compressible fluid flow, introduction to fluid power systems and controls, and dynamics of turbomachinery. Mathematical analysis of piping systems to determine pump head, system resistance, and pipe sizing optimization. Topics include physical properties of fluids, continuity equation, Bernoulli's Equation, Darcy's Equation, series and parallel flow, relative roughness, friction factors, dimensional analysis, and laws of similitude.
Prerequisite: Junior or senior classification or approval of instructor.

MARE 306 Electrical Power II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Electrical power generation and distribution; AC and DC rotating machinery; transformers; controllers and safety devices; operation, maintenance and repair procedures and practices; static converters AC/DC and DC/AC that are used in modern electric propulsion systems.
Prerequisite: MARE 207.

MARE 307 Marine Electronics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the theory of electronic circuits. Fundamentals and basic concepts of semiconductors; solid-state components; power supplies; amplifiers; inverters; rectifiers; oscillators; digital and analog integrated circuits. Application in automation, motor controllers, battery-charging systems, communications; and propulsion plant monitoring systems.
Prerequisite: MARE 207.

MARE 309 Marine Construction Materials
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to materials science and engineering, structural, property relationships; advanced manufacturing techniques from the point of view of marine applications such as subsea pipelines, ship hulls, etc.; corrosion and biofouling. Laboratory includes experimental testing of materials properties, materials syntheses and heat treatment techniques.
Prerequisite: CHEM 107 and CHEM 117.

MARE 312 Diesel Propulsion Plants
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Marine Diesel Engines. Comprehensive study of diesel engines, thermodynamics of air standard cycles, actual compression ignition engine cycles, emissions and emission controls, fuel injection systems and turbo charging systems, engine material properties, operational parameters including forces and temperatures resulting from combustion and inertial dynamics. Laboratory includes computer-aided parametric analysis of engine performance and use of low-speed diesel propulsion plant simulator.
Prerequisites: MARE 305, MARE313. Junior or senior classification or approval of instructor.

MARE 313 Heat Transfer
Credits 3. 3 Lecture Hours.
Fundamentals of heat transfer modes and different solution techniques; 1-D and 2-D heat conduction in transient and steady state conditions; convection heat transfer under different flow conditions; forced convection in internal and external flows; analysis and selection of heat exchangers; and, thermal radiation heat transfer.
Prerequisites: MARE 202, MARE 261, and MARE 305 or concurrent enrollment.
MARE 315 Thermodynamics for Technologists
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Thermal and mechanical energy transformations; relationships applied to flow and non-flow processes in power and refrigeration cycles; devices include compressors, turbines, heat exchangers, nozzles, diffusers, pumps and piston-cylinder models; computer modeling.
Prerequisites: Grade of C or better in PHYS 206 or PHYS 218.

MARE 317 Marine Analog Electronics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Study of semiconductor devices including diodes, field effect transistors, bipolar junction transistors and operational amplifiers; applications include signal conditioning, power supplies, active filters, discrete transistor amplifiers and transistor switching/driver circuits.
Prerequisites: Grade of C or better in ESET 210 or MARE 207.

MARE 318 Strength of Materials
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Stress and strain; elastic moduli Poisson's ratio; torsion, bending, unsymmetrical bending; design of beams and shafts; deflection of beams; buckling of columns; material and strength characterization laboratory tests.
Prerequisites: MMET 207 or MARE 210; MMET 275 or MARE 205.

MARE 350 Commercial Cruise Internship
Credits 4. 4 Other Hours.
Training program for second sea-training period; sea project required of each student under supervision of officer-instructors; lifeboat and safety training.
Prerequisites: MARE 100, MARE 200, MART 103. Junior or senior classification or permission of MARR and MART department heads.

MARE 399 High Impact Experience in Marine Engineering Technology
Credits 0. 0 Lecture Hours. 0 Lab Hours. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification.

MARE 400 Advanced Operations
Credits 4. 4 Lecture Hours.
Training program for third sea-training period. At the end of this period each student will have achieved the knowledge and will have demonstrated the ability to take complete charge of a modern marine power plant while underway at sea.
Prerequisite: Junior or senior classification or approval of instructor.

MARE 401 Marine Auxiliary Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Study of the principal shipboard auxiliary systems, including auxiliary fired-boilers, sea water service, ballast, freshwater service, lubricating oil, fuel oil storage and transfer, distilling, refrigeration and steering systems; major components, operation and maintenance, and interrelationship with other auxiliary systems.
Prerequisites: MARE 100, or MARR 101 with a grade of C or better.

MARE 402 Shipboard Automation and Control
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Study of automation in marine power plants; including electronic and pneumatic proportional, integral and derivative control elements; applications in boiler combustion and water level control; engine speed control; remote sensing and performance monitoring systems.
Prerequisites: MARE 307.

MARE 405 Fundamentals of Naval Architecture
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Ship geometry and arrangement; ship-form calculations; intact and damaged stability; ships’ structure; fundamentals of resistance and propulsion; ship motion, maneuverability, and control; introduction to ship design, construction, and overhaul.
Prerequisites: Junior or senior classification or approval of instructor.

MARE 424 Gas Turbine Power Generation
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application of the Brayton cycle to gas turbine power cycles, including ideal gas cycle analysis, compressor design and construction, gas turbine construction, operation and maintenance for marine and industrial installations.
Prerequisites: MARE 202, MARE 205, MARE 309 or concurrent enrollment and permission of instructor.

MARE 434 Offshore Energy, Oil, and Gas Production
Credits 3. 3 Lecture Hours.
Orientation to the offshore and gas industry; petroleum exploration, production, and marketing; platform and floating production facilities; operations; classification of production systems; economics and risk management.
Prerequisite: Junior or senior classification or approval of instructor.

MARE 437 Applied Finite Element Analysis
Credits 3. 3 Lecture Hours.
Fundamental finite element techniques; direct approach and energy formulation; element equations; assembly and solution schemes; computer implementation; applications to field problems.
Prerequisites: MARE 209 and MARE 261.

MARE 441 Engineering Economics and Project Management
Credits 3. 3 Lecture Hours.
Analysis of engineering economics and management, using costs and benefits of various engineering options. Topics include time value of money, cash flows, analysis techniques, interests rates, inflation, depreciation, optimization, statistics, network analysis and critical path programming.
Prerequisite: Junior or senior classification or advisor approval.

MARE 451 Senior Design Project I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Design, modeling, testing and validation processes; design of equipment, components or systems for marine and related power generation applications; complete design process including definition of the problem, research for existing designs and related technologies, conceptualization and evaluation of alternatives, development of preliminary design, refining and generation of final design and documents.
Prerequisites: MARE 206, MARE 209, MARE 305, MARE 306, MARE 307, and MARE 313, or concurrent enrollment; senior classification.

MARE 452 Senior Design Project II
Credits 2. 1 Lecture Hour. 3 Lab Hours.
This course is a continuation of MARE 451. Development of theoretical, computational or experimental models using the design developed in MARE 451. Formulation, construction and/or fabrication work. Refining, experimenting and testing of models considering alternatives. Analyzing results and preparing and submitting design documents including a project report.
Prerequisite: MARE 451 or MARR 451.
MARE 459 Mechanical Vibrations
Credits 3. 3 Lecture Hours.
Basic theory of vibrating systems with single and multiple degrees of freedom and principles of transmission and isolation of vibrations.
Prerequisites: MARE 206; MARE 261.

MARE 481 Seminar
Credit 1. 1 Other Hour.
Preparation of Engineering licensure; ethics and professional practice; safety, health, and the environment; review of engineering mathematics, probability and statistics; review of statics, dynamics, strength of materials, fluid mechanics and materials science; review of heat and mass transport processes; review of electricity, power, magnetism, instrumentation and data.
Prerequisite: Senior classification.

MARE 484 Undergraduate Internship
Credits 0 to 6. 0 to 6 Other Hours.
Supervised study with an approved power generator, either electrical, mechanical, or thermal power. Alternatively, studies can be with a research, manufacturing or repair facility whose primary mission is to support power generation. May be taken for credit up to 6 hours.
Prerequisites: 2.5 GPR and completion of 300 level courses.

MARE 485 Directed Studies
Credits 1 to 8. 1 to 8 Other Hours.
Special problems in marine engineering technology not covered by any other course in the curriculum. May be repeated for credit.
Prerequisites: Approval of department head. Junior or senior classification or approval of instructor.

MARE 489 Special Topics
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of marine engineering technology. May be repeated for credit.
Prerequisites: Junior or senior classification or approval of instructor.

MARE 491 Research in Marine Engineering Technology
Credits 1 to 4. 1 to 4 Other Hours.
Research in Engineering Technology. Research conducted under the direction of faculty member in Marine Engineering Technology. May be repeated 2 times for credit. Please see academic advisor in department.
Prerequisites: Junior or senior classification or approval of instructor.

MARE 497 Directed Research
Credits 1 to 8. 1 to 8 Lecture Hours.
Directed study with an approved power generator, either electrical, mechanical, or thermal power. Alternatively, studies can be with a research, manufacturing or repair facility whose primary mission is to support power generation. May be taken for credit up to 8 hours.
Prerequisites: 2.5 GPR and completion of 300 level courses.

MARE 498 Special Topics
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of marine engineering technology. May be repeated for credit.
Prerequisites: Junior or senior classification or approval of instructor.

MARE 499 Independent Study
Credits 1 to 4. 1 to 4 Lecture Hours.
Independent study in an area of marine engineering technology. May be repeated for credit.
Prerequisites: Approval of instructor. Junior or senior classification or approval of instructor.

MARR - Marine Engineering Technology (MARR)

MARR 101 Marine Engineering Fundamentals
Credits 2. 1 Lecture Hour. 3 Lab Hours.
A study of basic marine engineering systems, with emphasis on propulsion plants; propulsion plant machinery, watch standing organization and duties, shipboard safety practices and equipment.

MARR 102 Engine Room Resource Management and Dynamics
Credit 1. 0 Lecture Hours. 2 Lab Hours.
Marine engineering watch standing and operations, safety and security, effective resource management and control of engine room equipment, leadership and managerial skills.

MARR 200 Basic Operations
Credits 6. 6 Lecture Hours.
Practical application of student's classroom studies while at sea on training ship during sea-training period. Student required to complete several projects relating to engineering plant of ship.
Prerequisite: MART 103.

MARR 300 Intermediate Operations
Credits 6. 6 Lecture Hours.
Training program for second sea-training period. Sea project required of each student under supervision of officer-instructors. Lifeboat and safety training.
Prerequisite: Junior or senior classification or approval of instructor.

MARR 400 Advanced Operations
Credits 6. 6 Lecture Hours.
Training program for third sea-training period. At the end of this period each student will have achieved the knowledge and will have demonstrated the ability to take complete charge of a modern marine power plant while underway at sea.
Prerequisite: Junior or senior classification or approval of instructor.

MARR 451 Senior Capstone Project I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Design, modeling, testing and validation processes; design of equipment, components, or systems for seagoing vessels; use of design manuals, material/equipment specifications and industry regulations applicable to marine engineering technology.
Prerequisites: Grade of C or better in MARE 206; MARE 242, MARE 309, and MARE 313, or concurrent enrollment; senior classification.

MARR 481 Seminar
Credit 1. 1 Other Hour.
Preparation for USCG 3rd Assistant Engineer examination; review or marine engineering safety; review of motor plants; overview of steam plants; review of electricity and electrical control systems; review of refrigeration systems and general subjects.
Prerequisites: Senior classification; enrollment in marine engineering technology license option program.

MARS - Marine Science (MARS)

MARS 101 Marine Science Matters
Credit 1. 1 Lecture Hour.
A non-technical introduction to the field of marine sciences, including biology, ocean activities, and marine industries. Course includes lectures, seminars, outside speakers, and industrial contacts.

MARS 210 Marine Geography
Credits 3. 3 Lecture Hours.
Introduction to the physical and cultural patterns of the coastal zones of the world. Interrelationships between the physical forms and processes and the cultural patterns are used to analyze human use and abuse of the sea.

MARS 252 Introductory Marine Science Laboratory
Credit 1. 3 Lab Hours.
Overview of the global ocean environment and the interrelated sub-disciplines; the important of the ocean for the earth's ecosystems and human impact on the ocean; field work and boat trip, water and benthic sediment collection and analysis; navigation chart work.
Prerequisite: OCNG 251 or concurrent enrollment.
MARS 280 Coastal and Ocean Resources
Credits 3. 3 Lecture Hours.
Coastal and Ocean Resources. Resources from the ocean including food, minerals, transportation and recreation. Methods of recovery and utilization of resources from the ocean, efficiency and cost effectiveness. Provides a foundation for understanding the wealth of resources available from the ocean and its margins, to include the impact of human activity on these resources.

MARS 281 Sophomore Seminar in Marine Sciences
Credit 1. 1 Lecture Hour.
Compilation and discussions of literature pertaining to topics in marine sciences. Emphasis placed upon preparation and presentation of a written report.
Prerequisite: Sophomore standing or approval of instructor.

MARS 285 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special topics and problems suited to analysis by individuals or small groups concerning special aspects of marine sciences.
Prerequisite: Approval of department head.

MARS 289 Special Topics in Marine Sciences
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of marine sciences.
Prerequisite: Approval of instructor.

MARS 303 Computing and Data Display
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elements of programming and data display primarily through the MATLAB computing environment; includes an introduction to statistics and hypothesis testing with MATLAB.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 305 Environmental Micropaleontology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Major animal, plant and protist microfossils groups, ecology, biostratigraphy, paleoenvironmental and paleoclimatic utility, primary preparation techniques, basic microscopy, research design and dissemination. Coastal foraminifera, thecamoebians and ostracods emphasized. Field trips required.
Prerequisites: GEOL 101 and GEOL 102.

MARS 306 Coastal Sedimentary Geology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
A survey of modern coastal sedimentary systems, including principles of sedimentology and sediment analysis; laboratory includes a large group field projects; local field trips required.
Prerequisites: GEOL 101 and GEOL 102.

MARS 310 Field Methods in Marine Sciences
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Techniques of documenting collected materials, the methods of reconnaissance and the mapping of traverses in the major coastal environments; sampling and recording techniques, interview procedures and the use of maps and remotely sensed imagery.
Prerequisites: CHEM 120; PHYS 202, PHYS 208, or PHYS 207, and PHYS 217/ENGR 217; GEOL 101; GEOL 102.

MARS 325 Introduction to GIS for Marine Sciences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geographic Information Systems (GIS) are introduced for marine sciences and management. Basic use of software including creation of GIS models is covered. Creating, editing and querying GIS shape files is treated utilizing one of the standard GIS software packages such as ArcGIS.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 330 Petroleum Geology
Credits 3. 3 Lecture Hours.
Origin, migration and accumulation of petroleum; reservoir rock, traps, accumulation and conditions, and subsurface methods.
Prerequisites: GEOL 101 and GEOL 102.

MARS 340 Geochemistry
Credits 3. 3 Lecture Hours.
Chemical principles and processes that govern the behavior of geologic materials; silica and carbonate low temperature equilibrium and kinetics.
Prerequisites: CHEM 120, GEOL 101, and GEOL 102.

MARS 350 Advanced Computer Applications
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Data manipulation, merging, selection, filtering and querying in Microsoft Office primarily using large real data sets. Introduction to GIS, MatLab and other software relevant to science and/or business applications. Discussion of algorithm development in structured and object oriented programming languages.

MARS 360 Biochemistry
Credits 4. 4 Lecture Hours.
General introductory biochemistry; structures of the four classes of biologically important molecules (proteins, carbohydrates, lipids and nucleotides); how these biomolecules are generated from molecular building blocks; relationship of biomolecule structure to biochemical reactivity such as kinetics and enzyme regulation; membrane phospholipids and glycoproteins and the structure and function of membranes; catabolic reaction pathways of monosaccharides and fatty acids; oxidative phosphorylation and photosynthesis.
Prerequisites: BIOL 111, BIOL 112, CHEM 228. Junior or senior classification or approval of instructor.

MARS 361 Marine Biochemistry Laboratory
Credit 1. 3 Lab Hours.
Selected methods used to characterize, purify, identify and isolate biomolecules. The laboratory is designed to complement the MARS 360 lecture.
Prerequisite: MARS 360 or concurrent enrollment.

MARS 365 Integrated Marine Sciences Laboratory
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Integrated lectures, field and laboratory exercises for data collection and analysis of physical, chemical, biological and geological measurements in ocean, coastal and estuarine environments.
Prerequisites: MATH 142 or 152, PHYS 202 or PHYS 208, OCNG 251, MARS 252, CHEM 102 and CHEM 112, BIOL 112 and GEOL 101 and GEOL 102, junior or senior classification or approval of instructor.

MARS 370/GEOG 370 Coastal Processes
Credits 3. 3 Lecture Hours.
Introduction to the coastal system, waves and wave dominated coasts, shoreline morphodynamics, tidal and lake coasts, long term coastal development, sea level changes, subtidal and beach ecosystems, coastal dunes and wetlands, structures and organizations, coastal management and coastal hazards.
Cross Listing: GEOG 370/MARS 370.
MARS 408 Estuarine and Coastal Hydrodynamics
Credits 3. 3 Lecture Hours.
Physical processes in estuarine and coastal environments in various time scales: turbulent, tidal and residual (subtidal); study of salts, suspended solids, nutrients and heat affected by water movement; physical, biogeochemical processes and mass transport.
Prerequisites: MATH 251, PHYS 218, junior or senior classification or approval of instructor.

MARS 410 Physical Oceanography
Credits 3. 3 Lecture Hours.
Elements of the physics of the ocean; descriptive aspects and theoretical explanations of circulation, characteristic structure and waves.
Prerequisites: OCNG 251, MARS 252, MATH 152, PHYS 208, junior or senior classification or approval of instructor.

MARS 412 Remote Field Investigations in Marine Sciences
Credits 1 to 6. 1 to 6 Lecture Hours.
An overview of marine sciences in remote locations varying by instructor and selected topics; lectures on recent scientific papers, methods and concepts related to field area; individual projects; data collection; data analysis and presentation.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 415 Remote Sensing Technology
Credits 3. 3 Lecture Hours.
An introduction to the uses of remote sensing technology in the marine sciences, including electromagnetic, acoustic, and seismic methods. Generation, transmission, and reception methods. Active and passive systems, multispectral techniques, and signal analysis systems.
Prerequisites: PHYS 202 or 208, BIOL 112. Junior or senior classification or approval of instructor.

MARS 423 Ecological Economics
Credits 3. 3 Lecture Hours.
An integrated study of management of ecology and economics; conceptual and professional economic and environmental policies; ethical concerns and economic benefits of nature to humans, human and nature's economies, and the complex connections between humans and nature with the valuing of ecosystems integrity.
Prerequisite: Junior or senior classification.

MARS 425 Coastal Wetlands Management
Credits 3. 3 Lecture Hours.
Wetlands management laws, regulations, wetland delineation and applications of Geographic Information System (GIS) to wetlands management; biological species in wetlands delineation; basic biogeochemical cycles and interactions in wetlands.
Prerequisites: BIOL 112, GEOL 101, and GEOL 102; concurrent enrollment in MARS 426 or approval of instructor.

MARS 426 Coastal Wetlands Delineation Laboratory
Credit 1. 3 Lab Hours.
Coastal wetlands delineation, including mapping techniques, Geographic Information System (GIS) and theodolite; biological species and biogeochemical factors in wetlands delineation.
Prerequisites: BIOL 112, GEOL 101, and GEOL 102; concurrent enrollment in MARS 425 or approval of instructor.

MARS 428 Coastal Development and Human Health
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Exploration of public environmental health issues associated with urbanization in coastal areas; topics address population pressures on coasts, infectious and chronic disease, the natural and built environment, toxicology, sanitation, forms and media of pollution, and the application of environmental health science to coastal zone management.
Prerequisites: CHEM 120 or equivalent; BIOL 112; junior or senior classification or approval of instructor; CHEM 383 and MARS 325 are recommended but not required.

MARS 430 Geological Oceanography-Plate Tectonics
Credits 3. 3 Lecture Hours.
Understanding the complex interactions of the earth system and the critical role that geological oceanography plays in these interactions, specifically the plate tectonic aspects of geological oceanography.
Prerequisites: GEOL 101, OCNG 251, junior or senior classification or approval of instructor.

MARS 431 Geological Oceanography-Earth's Climate
Credits 3. 3 Lecture Hours.
Understanding the complex interactions of the earth system and the critical role that geological oceanography plays in these interactions, specifically the paleoceanographic/climate change aspects of geological oceanography.
Prerequisites: GEOL 101, OCNG 251, junior or senior classification or approval of instructor.

MARS 432 Peak Oil, Global Warming and Resource Scarcity
Credits 3. 3 Lecture Hours.
The concept of peak oil, resource depletion, and human-induced climate change and the broad consequences for food and water supplies, mortality rates, conflict, migration, and political stability; scientific/social/political debates surrounding these issues, and the individual/local/national/global options for living in a globally-warmed world with declining natural resources.
Prerequisites: Any two from GEOL 101, GEOL 102, OCNG 251, MARS 280, or approval of instructor.

MARS 435 Exploration Geophysics
Credits 3. 3 Lecture Hours.
Physiomechanical properties of rocks and sediments; seismic reflection and refraction principles applicable to offshore, coastal and onshore exploration; determination of media velocity and stratigraphy from reflection and refraction studies in both marine and non-marine systems.
Prerequisites: PHYS 202, PHYS 208, or PHYS 207, and PHYS 217/ENGR 217; GEOL 101; GEOL 102; MATH 151, MATH 142, or MATH 147.

MARS 440 Chemical Oceanography
Credits 3. 3 Lecture Hours.
Composition of sea salt and dissolved material in the ocean; biogeochemistry and measurements of oxygen, nutrient and other major elements, trace metals and radioisotopes; formation, composition and alterations of detrital material and marine sediments and other chemical processes; simple models relating ocean chemistry to the circulation of masses of water.
Prerequisites: CHEM 102, OCNG 251, junior or senior classification or approval of instructor.
MARS 450 Principles of Marine Instrumental Analysis
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamental principles and practical applications for state-of-the-art analytical instrumentation applied to marine and environmental science. Topics include atomic and molecular spectroscopy, gas and liquid chromatography, radiochemistry, x-ray spectroscopy, mass spectrometry and field instrumentation. Students work with instruments and make presentation on them to the class.
Prerequisites: CHEM 102 and 228, PHYS 202, MATH 131 or 151. Junior or senior classification or approval of instructor.

MARS 456 Coastal Water Policy
Credits 3. 3 Lecture Hours.
History, past and present legislation, the government entities and agencies molding the policies affecting coastal water policy in Texas.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 460 Capstone Undergraduate Research Experience I
Credit 1. 1 Lecture Hour.
Methodology for research outlines, organization and strategies; research ethics, writing and presentation of results.
Prerequisites: MARS 491 or concurrent enrollment, senior classification or approval of instructor.

MARS 461 Capstone Undergraduate Research Experience II
Credit 1. 1 Lecture Hour.
Research and scientific communications; development of a scientific abstract, poster presentation, oral presentation or written scientific paper.
Prerequisites: MARS 491 or concurrent enrollment, senior classification or approval of instructor.

MARS 470 Eco-Environmental Modeling
Credits 3. 3 Lecture Hours.
Biological components are in chemical and physical environments which are influenced by the bio-system and flows of energy, water and chemical species. Coupling to the complex atmospheric, aquatic and terrestrial systems is important. Modeling entails mathematical tools and the underlying science, focusing on scientific models, from the simplest to the elaborate.
Prerequisites: CHEM 102, BIOL 112 and MATH 151 or approval of instructor.

MARS 481 Seminar
Credit 1. 1 Lecture Hour.
Problem-oriented discussion session. Topics and reports selected for current relevance. May be repeated once only for credit.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 484 Undergraduate Internship
Credits 0 to 6. 0 to 6 Other Hours.
Supervised study in a research or teaching laboratory within or outside of the Texas A&M University System. Student involvement is to consist of real-life learning or marine sciences research, teaching, management or a combination of these.
Prerequisites: Junior or senior classification or approval of instructor. Approval of the department head.

MARS 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special topics and problems suited to analysis by individuals or small groups concerning special aspects of marine sciences.
Prerequisites: Junior or senior classification or approval of instructor. Approval of department head.

MARS 488 Writing Intensive Directed Studies in Marine Sciences
Credits 1 to 6. 1 to 6 Other Hours.
A writing-intensive course leading to the equivalent of a mini thesis in an area of interest to the faculty and student; introduces students to the rigors of writing for publication in professional journals in their major.
Prerequisite: Junior or senior classification.

MARS 489 Special Topics in Marine Sciences
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of marine sciences.
Prerequisite: Junior or senior classification or approval of instructor.

MARS 491 Research in Marine Sciences
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Marine Sciences. May be repeated 2 times for credit. Please see academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

MART - Marine Transportation (MART)

MART 103 Basic Safety and Lifeboatman Training
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to lifesaving equipment and apparatus, personal survival techniques, personal social and environmental responsibility and introductory medical first aid and CPR; practical lifeboat and survival training for the U.S. Coast Guard certification as life boatman.
Prerequisite: Admission to license option program.

MART 115 Seamanship I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
(STCW). Theory and application of traditional seamanship, such as handling of natural fiber, synthetic and wire ropes, block and tackle and marlinespike; introduction to competencies of the deck department, including safe systems of work, inspections and maintenance, anchoring, mooring operations, ladder use, crane operations and duties of the lookout and quartermaster.
Prerequisite: Admission to deck license option program.

MART 200 Deck Sea Training I: Basic Communications, Navigation and seamanship
Credits 4. 4 Other Hours.
Practical application of shoreside studies aboard training ship during first training cruise; basic projects in communications, navigation, seamanship and rules of the road.
Prerequisites: Grade of C or better in MART 103, MART 115 or MART 203, MART 201, and MART 204, or concurrent enrollment, or approval of MART department head; admission into Deck License Option Program.

MART 201 Vessel Structure and Ship Knowledge
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to ship nomenclature and design, types and methods of ship construction, admeasurement and typical outfitting of various types of commercial vessels; classification societies, shipbuilding materials and methods, structural components and appurtenances of vessels.
Prerequisite: Admission to deck license option program.
MART 202 Ship Stability and Trim
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles of flotation and buoyancy; inclining experiments; free surface;
transverse and longitudinal stability; trim; motion of ship in waves and
seasways; application of stability, trim and stress tables; effect of center
of gravity on seaworthiness and stability; actions in event of partial loss
of intact buoyancy; fundamentals of watertight integrity.
Prerequisites: Grade of C or better in MART 200 or NAUT 200, or
concurrent enrollment; MART 103, MART 115, MART 201 and MART 204,
or concurrent enrollment, or approval of MART department head.

MART 204 Terrestrial Navigation
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamentals of piloting, chart construction and development, aids
to navigation, useful publications, principles of magnetism and
the magnetic compass, great circle, Mercator and middle latitude sailing.
Prerequisites: Admission to deck license option program; algebra and
trigonometry recommended.

MART 205 Marine Surveying
Credits 3. 3 Lecture Hours.
Fundamentals of marine surveying using the various types of maritime
surveys; writing survey reports by meeting regulatory and industry
standards for submission to maritime clients.
Prerequisites: Grade of C or better in MART 115 or MART 203, and
MART 202 (MART majors); or MARR 205 (MARR majors); or MARR 101
(MARR majors); or MARE 100 (MARR-NLO majors); or approval of
instructor.

MART 208 Maritime Meteorology
Credits 3. 3 Lecture Hours.
Weather and forecasting techniques used by merchant mariners to
determine cloud formation, precipitation, visibility, atmospheric pressure,
fronts, ocean currents, weather and voyage routing and ship maneuvering
based upon ship’s technology and reporting equipment; ocean passage
planning.
Prerequisite: MART 204 or concurrent enrollment or approval of
department head.

MART 210 Integrated Navigation I: RADAR/ARPA/ECDIS
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Theory, operation and interpretation of marine radar and automatic radar
plotting aids (ARPA) and Electronic Chart Display Systems (ECDIS);
introductory level watchkeeping, including applied use of radar, ARPA
and ECDIS; U.S. Coast Guard Certification as “RADAR Observer” and
Standards of Training, Certification and Watchkeeping (STCW) Radar and
ARPA endorsements.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade
of C or better in MART 103, MART 115 or MART 203, MART 201 and
MART 204, or concurrent enrollment or approval of department head.

MART 212 Marine Dry Cargo Operations
Credits 3. 3 Lecture Hours.
Modern dry cargo principles associated with handling general cargo,
bulk cargo, refrigerated cargo, dangerous cargo, containers, roll-on roll-
off; cargo ventilation, securing of cargo, stability and trim, cargo gear
stresses and heavy lift operations; documentation required for cargo
operations, along with practical cargo stowage problems.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade
of C or better in MART 103, MART 115 or MART 203, MART 201 and
MART 204, or concurrent enrollment or approval of department head.

MART 213 Liquified Gas Tankers
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Preparation as cargo officer for loading, discharging and transit of
liquefied gas cargoes; emphasis on physical and chemical properties,
operations, safety, firefighting and pollution prevention.
Prerequisites: MART majors - Grade of C or better in MART 200 or
NAUT 200, or concurrent enrollment or approval of MART department
head; MARE majors - Grade of C or better in MARE 200 or MARR 200, or
concurrent enrollment or approval of MART department head.

MART 215 Seamanship II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Topics include mechanical appliances aboard ship, accident prevention,
vessel sanitation, vessel operations, marine inspection laws and
regulations, communications, ship’s business and International
Conventions.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade
of C or better in MART 103, MART 115 or MART 203, MART 201 and
MART 204, or concurrent enrollment or approval of department head.

MART 265 Introduction to Dynamic Positioning OSVDPA Phase I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Basic understanding and operation of Dynamic Positioning technology;
theory and nomenclature of Dynamic Positioning principles and
equipment; practical training utilizing Class C simulators; operating,
maneuvering and familiarization with simulated DP vessels; satisfactory
completion of this course provides the student entry in to the Off Shore
Service Vessel Dynamic Positioning Authority (OSVDPA) scheme.
Prerequisites: Grade of C or better in MART 201, MART 204, and
MART 200; sophomore or junior classification.

MART 285 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Directed study in problems in marine transportation not covered by other
courses in the department.
Prerequisite: Approval of department head.

MART 289 Special Topics in Marine Transportation
Credits 1 to 4. 1 to 4 Lecture Hours.
Study of selected topics in an identified area of marine transportation or
nautical science.
Prerequisite: Approval of department head.

MART 300 Deck Sea Training II: Intermediate Communications,
Navigation and Seamanship
Credits 4. 4 Other Hours.
Practical application of shoreside studies aboard training ship during
second training cruise; intermediate projects in communications,
navigation, seamanship and rules of the road.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade
of C or better in MART 202, MART 210 or MART 306, MART 212 or
MART 312, MART 215 or MART 301, MART 303 and MART 321, or
concurrent enrollment; junior or senior classification or approval of MART
department head.

MART 303 Celestial Navigation
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Full range of celestial navigation; survey of nautical astronomy, sight
reduction, sextants, compass error determination, and solutions of the
navigational triangle by various methods.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade
of C or better in MART 103, MART 115 or MART 203, MART 201 and
MART 204, or concurrent enrollment or approval of MART department head.
MART 305 Ship Construction and Stability
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Shipbuilding nomenclature, dimensions, construction and classification. Classification societies, shipbuilding materials and methods, structural components. Ship's line drawing and form calculations; principles of flotation and buoyancy; inclining experiments; free surface; transverse stability; trim and longitudinal stability; motion of ships in waves, seaways and dynamic loads; ship's structure tests and propulsion; labs focus on manual and computer-based stability and trim calculations using standard industry-based software.
Prerequisites: Junior or senior classification; MART 103, PHYS 201 or PHYS 218 or approval of instructor.

MART 307 Global Maritime Distress Safety System
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Requirements, regulations, equipment, principles and hands-on operating procedures of each Global Maritime Distress Safety System subsystem, including: SARTS, EPIRBS NAVTEX, INMARSAT, SAFETYNET, VHF Survival Craft Transceivers, DSC, and HF Radio telephone; USCG and FCC certification as GMDSS Operator and Maintainer; minimum passing grade 75.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade of C or better in MART 103, MART 115 or MART 203, MART 201 and MART 204, or concurrent enrollment or approval of department head.

MART 308 Fast Rescue Craft
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Search and rescue techniques through fast rescue craft maneuvers and team management; description of various rescue craft and U.S. Coast Guard 'Fast Rescue Craft' Standard of Watchkeeping endorsement.
Prerequisites: MART majors - Grade of C or better in MART 200 or NAUT 200; grade of C or better in MART 103, MART 115 or MART 203, MART 201 and MART 204, or concurrent enrollment or approval of department head; MARE majors - Grade of C or better in MARE 200 or MARE 203; grade of C or better in MART 103.

MART 310 Integrated Navigation II: Electronic Navigation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Theory, operation and application of marine electronic navigation systems and aids; includes marine gyrocompass, vessel steering systems, hydrosonic systems, satellite navigation systems, AIS and VDR; intermediate level watchkeeping, including applied use of radar, ARPA and ECDIS.
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade of C or better in MART 204, MART 210 or MART 306, MART 303 and MART 321, or concurrent enrollment or approval of MART department head.

MART 311 Tug and Towing Operations
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Knowledge associated with the safe, efficient operation of towing vessels through classroom discussion and through underway, hands-on vessel training aboard the T/V Ranger and barges.
Prerequisites: MART 300 or MART 350 or NAUT 300, or concurrent enrollment or approval of department head.

MART 313 Marine Liquid Cargo Operations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles and practice of bulk liquid, gas handling and carriage by water craft; theoretical and practical problems involved in loading, stowing and discharging of petroleum, chemical, elevated temperature and cryogenic cargoes; marine pollution abatement, personnel safety and firefighting techniques and systems.
Prerequisites: MART majors - Grade of C or better in MART 200 or NAUT 200; MART 103, MART 115 or MART 203, MART 201 and MART 204, or concurrent enrollment or approval of department head; MARE majors - Grade of C or better in MARE 200 or MARR 200, MART 103, or concurrent enrollment or approval of MART department head.

MART 315 Seamanship III
Credits 4. 4 Other Hours.
Principles and methods of propulsion and steering of ships including hull, propeller and rudder design; ship handling at sea, in narrow channels, docking, undocking, mooring; study of the principles of hydrodynamics that govern ship movement.
Prerequisites: MART 300 or MART 350 or NAUT 300, or concurrent enrollment or approval of instructor.

MART 321 Navigation Rules, International and Inland
Credits 2. 2 Lecture Hours.
Purpose, application and knowledge of the International Regulations for Preventing Collision at Sea (COLREGS) and the Inland Navigation Rules and Regulations (Inland Rules).
Prerequisites: Grade of C or better in MART 200 or NAUT 200; grade of C or better in MART 103, MART 115 or MART 203, MART 201 and MART 204, or concurrent enrollment or approval of department head.

MART 350 Deck Sea Training II – Commercial Internship
Credits 4. 4 Other Hours.
Practical application of shoreside studies aboard an assigned merchant vessel during second training cruise; intermediate projects in communications, navigation, seamanship, rules for the road and other subjects pertaining to the maritime industry. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Grade of C or better in MART 200 or NAUT 200, MART 202, MART 210 or MART 306, MART 212 or MART 312, MART 215 or MART 301, MART 303, and MART 321, or concurrent enrollment; junior or senior classification or approval of MART department head.

MART 400 Deck Sea Training III: Advanced Communications, Navigation and Seamanship
Credits 4. 4 Other Hours.
Practical application of shoreside studies aboard training ship during third training cruise; advanced projects in communications, navigation, seamanship and rules of the road.
Prerequisites: Grade of C or better in MART 300, MART 350, or NAUT 300; grade of C or better in MART 307, MART 310 or MART 304, and MART 313 or MART 406, or concurrent enrollment; junior or senior classification or approval of MART department head.

MART 401 Maritime Security
Credits 3. 3 Lecture Hours.
Presentation and analysis of historical and current maritime security issues, leading to the understanding of, and proficiency in, security-related duties and responsibilities of licensed Deck Officers aboard ship and of maritime industry personnel ashore.
Prerequisites: MART 300 or MART 350 or NAUT 300, or concurrent enrollment or approval of department head.
MART 403 Advanced Topics in Shipboard Operations
Credits 2. 2 Lecture Hours.
Advanced shipboard operations for the Third Mate, AGT, Oceans as a bridge watchstander or cargo officer on container vessels, bulk carriers, tankers or gas carriers; focus on all areas of concern to a watchstander.
Prerequisites: MART 300 or MART 350 or NAUT 300, or concurrent enrollment or approval of department head.

MART 404 The Navigator
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Intensive application all available means of navigation; including principles of electronic, terrestrial and celestial; demonstration of knowledge, understanding and proficiency in U.S. Coast Guard examination topics.
Prerequisites: MART 300 or MART 350 or NAUT 300, or concurrent enrollment or approval of department head.

MART 410 Integrated Navigation III: Bridge Watchstanding
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Advanced level Bridge Watchkeeping; integration of navigation, communications and seamanship in Bridge Resource Management (BRM) training required under the International Convention on the Standards for Training and Certification of Watchkeepers, using simulator-based teaching techniques.
Prerequisites: Grade of C or better in MART 300, MART 350, or NAUT 300; grade of C or better in MART 321, MART 210 or MART 306, and MART 310 or MART 304, or concurrent enrollment or approval of MART department head.

MART 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Special topics and problems in field and/or laboratory work suited to analysis by individuals or small groups concerning internships of marine transportation; may require a report describing techniques and results. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification or approval of department head.

MART 485 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Directed study in problems in marine transportation not covered by other courses in the department.
Prerequisite: Senior classification or approval of department head.

MART 489 Special Topics in Marine Transportation
Credits 1 to 3. 1 to 3 Lecture Hours. 0 to 3 Lab Hours.
Study of selected topics in an identified area of marine transportation or nautical science.
Prerequisites: Approval of MART department head. Junior or senior classification or approval of instructor.

MART 491 Research in Marine Transportation
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Marine Transportation. May be repeated 2 times for credit. See academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

MART 498 Maritime Medical Care
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Basic and advanced training for medical care of the sick and injured in the maritime environment; fundamentals of identification and assessment of and appropriate interventions for life-threats and other medical or trauma related conditions commonly encountered at sea; must complete course within one year of graduation.
Prerequisites: MART majors - Grade of C or better in MART 300, MART 350, or NAUT 300, or concurrent enrollment or approval of MART department head; MARE majors - Grade of C or better in MARR 300, MARE 300, or MARE 350, or concurrent enrollment or approval of MART department head.

MASC - Integrated Math & Sci (MASC)

MASC 320 Inquiries in Physical Science
Credits 3. 3 Lecture Hours.
Integration and connections among topics in physical sciences–matter, energy, force, motion, scientific cycles; focuses on inquiry emphasizing experimental design, data analysis and collection, and use of models in the physical sciences.
Prerequisites: BIOL 111, BIOL 113 and BIOL 123, CHEM 106 and CHEM 116, GEOL 101 or GEOG 203, ASTR 101 and ASTR 102, and PHYS 205; junior or senior classification; admission to teacher certification.

MASC 351 Problem Solving in Mathematics
Credits 3. 3 Lecture Hours.
Problem solving strategies in math and science; evaluate conjectures and arguments; writing and collaborating on problem solutions; posing problems and conjectures; constructing knowledge from data; developing relationships from empirical evidence; connecting mathematics concepts; readings, discussions, and analyses will model and illustrate mathematics problems solving and proofs.
Prerequisites: 6 hours of mathematics.

MASC 420 Inquiries in Life and Earth Sciences
Credits 3. 3 Lecture Hours.
Integration and connections among topics in the life and earth sciences–diversity, natural selection, ecosystem development, earth’s features, and weather systems; inquiry emphasizing experimental design, data analysis and collection; use of models in the life and earth sciences.
Prerequisites: BIOL 111 or BIOL 113 and BIOL 123, CHEM 106 and CHEM 116, GEOL 101 or GEOG 203, ASTR 101 and ASTR 102, and PHYS 205; junior or senior classification; admission to teacher certification.

MASC 450 Integrated Mathematics
Credits 3. 3 Lecture Hours.
Integration and connections among topics and ideas in mathematics and other disciplines; connections between algebra and geometry and statistics and probability; focus for integration with authentic problems requiring various branches of mathematics.
Prerequisites: MASC 351; admission to teacher education; junior classification.
MASE - Maritime Systems Engr (MASE)

MASE 400 Introduction to Coastal Engineering
Credits 3. 3 Lecture Hours.
Mechanics of shallow water wave motion; wave diffraction, refraction and reflection; wave forecasting; water level fluctuations; coastal processes and geomorphology; erosion control and shoreline stabilization; coastal structures; beach nourishment; dredging; introduction to physical and computer models and modeling techniques; design in coastal engineering.
Prerequisites: OCEN 300; senior classification or approval of instructor. Enrollment in OCSE major degree sequence.

MASE 401 Underwater Acoustics
Credits 3. 3 Lecture Hours.
Fundamentals of underwater acoustics, SONAR equations, propagation of underwater sound, acoustic transducers and arrays, noise in the ocean environment, design and prediction of SONAR systems, ocean engineering applications of underwater sound.
Prerequisites: CVEN 301/EVEN 311, CVEN 336. Junior or senior classification or approval of instructor. Enrollment in OCSE major degree sequence.

MASE 407 Capstone Design II
Credits 3. 6 Lab Hours.
Design of a major engineered system based on a proposal developed in MASE 406 completed as a group project; realistic application of engineering skills and tools, experience managing a significant engineering-design effort. This is a writing-intensive course including a major report and weekly one-page written reports.
Prerequisites: MASE 406. Enrollment in OCSE major degree sequence.

MASE 410 Measurements in the Ocean Laboratory
Credit 1. 3 Lab Hours.
Fundamental techniques and instrumentation for field and laboratory measurements pertaining to coastal and ocean engineering (e.g., currents, wave height, wave/sediment interaction, mass transport, surveying, etc.); experiment planning; data analysis and presentation; written reports on methodology, analysis, and results of experiments.
Prerequisites: OCEN 300, MASE 400. Junior or senior classification or approval of instructor. Enrollment in OCSE major degree sequence.

MASE 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study on selected current problems in the ocean and/or maritime industry. Offered to enable individuals or groups to undertake and complete with credit some specialized investigation not covered by other courses.
Prerequisites: Approval of department head. Junior or senior classification or approval of instructor. Enrollment in OCSE major degree sequence.

MASE 489 Special Topics
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in a identified area of maritime systems engineering. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of instructor. Enrollment in OCSE major degree sequence.

MASE 491 Research in Maritime Systems Engineering
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Maritime Systems Engineering. May be repeated 2 times for credit. Please see academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor. Enrollment in OCSE major degree sequence.

MASE 493 Enrichment in Maritime Systems Engineering
Credits 1 to 3. 1 to 3 Lecture Hours.
Selected topics in a identified area of maritime studies. May be repeated 3 times for credit.
Prerequisites: Junior or senior classification and approval of instructor. Approval of department head. Junior or senior classification or approval of instructor. Approval of department head.

MAST - Maritime Studies (MAST)

MAST 101 Connections
Credit 1. 1 Lecture Hour.
A first year experience seminar to explore the connections between academics disciplines to develop creative and critical thinking strategies which will increase abilities to implement solutions, refine information literacy skills, and identify the resources available for a successful transition from high school to the university environment. Prerequisites: None.

MAST 220 Introduction to Museums and Conservation
Credits 3. 3 Lecture Hours.
Introduction to museums, cultural heritage and collections care; best practice for non-profit institutions, public engagement, and the collection, preservation and exhibition of material culture; emphasis on archaeological, ethnographic and historical collections, or other collections of cultural significance.

MAST 226 Museums, Law and Ethics
Credits 3. 3 Lecture Hours.
Exploration of museum law and ethics; interdisciplinary topics.

MAST 240 Introduction to Maritime Studies
Credits 3. 3 Lecture Hours.
First year experience; exploration of Maritime Studies; interdisciplinary topics.

MAST 252 Crafts of the Maritime World
Credits 3. 3 Lecture Hours.
An exploration of various crafts, skills and aesthetic/design used in and supporting the maritime world; hands-on activities and practical experience of various skills and processes, using traditional tools required to put a ship to sea; from carpentry to rope-making, sewing canvas sails to making blocks.

MAST 265 Elissa Sail Training
Credits 3. 3 Lecture Hours.
Fundamentals of seamanship on a late 19th century square-rigged sailing vessel; train in sailing and maintenance of the 1877 barque ELISSA (owned and operated by the Texas Seaport Museum); lectures and activities in maritime life and seafaring history.

MAST 270 Historic Seafaring and Maritime Heritage
Credits 3. 3 Lecture Hours.
Fundamentals of traditional seamanship and an exploration of the cultures and technologies of seafaring people throughout history and in various geographical locations.

MAST 289 Special Topics
Credits 1 to 3. 1 to 3 Lecture Hours.
Credit Selected topics in a identified area of maritime studies. May be repeated for credit.
MAST 321 Industrial Diving Orientation
Credits 3. 3 Lecture Hours. 2 Lab Hours.
Illustrates the realities of operating in the scientific, commercial and military diving disciplines; practice real world training scenarios involving multiple aspects of each of the three fields.

MAST 333 Viking Archaeology and Norse Mythology
Credits 3. 3 Lecture Hours.
Overview of Viking Age (ca. 800 to 1100 C.E.) in Northern Europe; topics include Norse seafaring, world-view, society, archaeology, religion and cosmology as known from the archaeological and literary record.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 336 Maritime Foreign Policy
Credits 3. 3 Lecture Hours.
Strategies used by governments to guide international actions; objectives of state leaders in decision making; sources, processes, objectives and outcomes of maritime policy choices.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 340 Museums and the Construction of Identities
Credits 3. 3 Lecture Hours.
Examination of the cultural construction of identity within the museum context; personal and collective, corporeal and virtual, national and global identities; ways in which those identities are formed and reformed.
Prerequisites: Junior or senior classification or approval of instructor.

MAST 345 Texas Maritime Culture and History
Credits 3. 3 Lecture Hours.
The coastal peoples, maritime history and culture of the Texas Gulf Coast ranging from pre-historic times to the present day; geography's influence on exploration, resources utilization, development and inland access; Texas ports historic and modern; shipwreck sites and historical texts; La Salle's La Belle, Texas Navy, Mexican War logistics; Civil War Naval actions, Texas Fisheries, tourism and recreation.
Prerequisite: Junior or senior classification.

MAST 350 A History of Wooden Ship Construction
Credits 3. 3 Lecture Hours.
This course is designed to give undergraduate students an overview of ship construction and possible cultural factors that may influence how a shipwright builds a vessel.
Prerequisites: Junior or senior classification or approval of instructor.

MAST 354 Ancient Egyptian Seafaring
Credits 3. 3 Lecture Hours.
Archaeology, iconography and written records of ancient Egypt as they relate to local and international trade by land, river and sea, beginning in Neolithic times (c. 5000 B.C.) to the end of the New Kingdom (c. 1069 B.C.).
Prerequisites: ANTH 316; junior or senior classification or approval of instructor.

MAST 365 Material Culture
Credits 3. 3 Lecture Hours.
Examination of material evidence of human life, from cradles to graves, churches to forts, teapots to landscapes; material culture artifacts, the processes and technologies used to create them and their use in every day life; application to archaeology, museum studies and basic engineering.
Prerequisites: Junior or senior classification or approval of instructor.

MAST 369 Collections Care and Management
Credits 3. 3 Lecture Hours.
Managing collections in libraries, archives and museums; media and collections storage; digitization and metadata processes; use of writing styles and citations.
Prerequisites: MAST 220; junior or senior classification or approval of instructor.

MAST 371 Archaeology of the Pacific
Credits 3. 3 Lecture Hours.
Overview of the archaeology, history and cultures of the Pacific Rim; emphasizing the cultures of Polynesia, Melanesia, and Micronesia.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 411 International Maritime Culture
Credits 3. 3 Lecture Hours.
Strategies used in the exploitation of marine, coastal, and island habitats throughout human evolutionary history and the variety and complexity of adaptations in such environments; lectures and group discussions with occasional slide or movie presentations.
Prerequisites: Junior or senior classification.

MAST 425 Thesis and Technical Writing
Credits 3. 3 Lecture Hours.
Rhetorical techniques for professional expository prose; intertextual argumentation and analysis.
Prerequisite: Junior or senior classification; ENGL 104 and ENGL 203 or ENGL 210.

MAST 470 Advanced Museum Studies
Credits 3. 3 Lecture Hours.
Exploration of advanced topics in museum programs; preservation, research, education, outreach; development and implementation; emphasis on historical contexts, disciplinary intersections, ethical obligations and professional responsibilities; service to community, state and national interest and advancement of sciences.
Prerequisite: MAST 220; junior or senior classification.

MAST 480 Honors Seminar in Service Learning
Credit 1. 1 Lecture Hour.
Opportunities for community service through active community participation; includes structured time for reflection; use of skills and knowledge in real-life situations; extend learning beyond the classroom; foster a sense of caring for others.
Prerequisites: Junior or senior classification or permission from the instructor and must be a member of the Honors Program.

MAST 481 Seminar in Maritime Studies
Credit 1. 1 Lecture Hour.
This course is intended to provide students with the opportunity to conduct in-depth research on a particular issue, event, period, or people in maritime studies.
Prerequisite: This one-credit hour course is open to senior maritime studies majors or approval of instructor.
MAST 484 Undergraduate Internship
Credits 0 to 6. 0 to 6 Other Hours.
Supervised study in a research or teaching laboratory remote from TAMUG. Student involvement is to consist of real-life learning or research, teaching, management, or a combination of these.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 485 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Individually supervised research or advanced study on restricted area not covered in regular courses.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 489 Special Topics
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in a identified area of maritime studies. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of instructor.

MAST 491 Research in Maritime Studies
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Maritime Studies. May be repeated 2 times for credit. Please see academic advisor in department. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

MATH - Mathematics (MATH)

MATH 102 Algebra
Credits 3. 3 Lecture Hours.
(MATH 1314, 1414) Algebra. Sets, structure of number system; absolute values, solution sets of linear and nonlinear equations, of systems of equations, and of inequalities; relations and functions, graphical representations, graphical representations, progressions, mathematical induction, determinants; also taught at Galveston campus.

MATH 140 Mathematics for Business and Social Sciences
Credits 3. 3 Lecture Hours.
(MATH 1324) Mathematics for Business and Social Sciences. Application of common algebraic functions, including polynomial, exponential, logarithmic and rational, to problems in business, economics and the social sciences; includes mathematics of finance, including simple and compound interest and annuities; systems of linear equations; matrices; linear programming; and probability, including expected value. Only one of the following will satisfy the requirements for a degree: MATH 140 and MATH 168.
Prerequisite: High school algebra I and II and geometry; also taught at Galveston campus.

MATH 142 Business Calculus
Credits 3. 3 Lecture Hours.
(MATH 1325) Business Calculus. Limits and continuity; techniques and applications of derivatives including curve sketching and optimization; techniques and applications of integrals; emphasis on applications in business, economics, and social sciences. Only one of the following will satisfy the requirements for a degree: MATH 131, MATH 142, MATH 147, MATH 151 and MATH 171.
Prerequisites: MATH 140 or MATH 150, or equivalent or acceptable score on Texas A&M University math placement exam; also taught at Galveston campus.

MATH 147 Calculus I for Biological Sciences
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to differential calculus in a context that emphasizes applications in the biological sciences. Only one of the following will satisfy the requirements for a degree: MATH 131, MATH 142, MATH 147, MATH 151 and MATH 171.
Prerequisite: MATH 150 or equivalent or acceptable score on TAMU Math Placement Exam; also taught at Galveston campus.

MATH 148 Calculus II for Biological Sciences
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Introduction to integral calculus in a context that emphasizes applications in the biological sciences; ordinary differential equations and analytical geometry. Only one of the following will satisfy the requirements for a degree: MATH 148, MATH 152 and MATH 172.
Prerequisite: MATH 147, MATH 151 or approval of instructor; also taught at Galveston campus.

MATH 150 Functions, Trigonometry and Linear Systems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(MATH 2412) Functions, Trigonometry and Linear Systems. Graphs, functions, college algebra and trigonometry, linear systems and vectors; also taught at Galveston and Qatar campuses.

MATH 151 Engineering Mathematics I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(MATH 2413) Engineering Mathematics I. Rectangular coordinates, vectors, analytic geometry, functions, limits, derivatives of functions, applications, integration, computer algebra. MATH 171 designed to be a more demanding version of this course. Only one of the following will satisfy the requirements for a degree: MATH 131, MATH 142, MATH 147, MATH 151 and MATH 171.
Prerequisite: MATH 150 or equivalent or acceptable score on TAMU Math Placement Exam; also taught at Galveston and Qatar campuses.

MATH 152 Engineering Mathematics II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(MATH 2414) Engineering Mathematics II. Differentiation and integration techniques and their applications (area, volumes, work), improper integrals, approximate integration, analytic geometry, vectors, infinite series, power series, Taylor series, computer algebra. MATH 172 designed to be a more demanding version of this course. Only one of the following will satisfy the requirements for a degree: MATH 148, MATH 152 and MATH 172.
Prerequisite: MATH 151 or equivalent; also taught at Galveston and Qatar campuses.

MATH 161 Engineering Mathematics II
Credits 3. 3 Lecture Hours.
Differentiation and integration techniques and their applications (area, volumes, work), improper integrals, approximate integration, analytic geometry, vectors, infinite series, power series, Taylor series. Only one of the following will satisfy the requirements for a degree: MATH 152, MATH 161 and MATH 172.
Prerequisite: MATH 151 or equivalent; Galveston campus.
MATH 167 Explorations in Mathematics
Credits 3. 3 Lecture Hours.
Application of mathematics to topics of contemporary societal importance using quantitative methods; may include elements of management science (optimal routes, planning and scheduling), statistics (sampling/polling methods, analyzing data to make decisions), cryptography (codes used by stores, credit cards, internet security), fairness (apportionment, voting) patterns (symmetry, tessellations, fractals), world health.
Prerequisites: High school algebra I and II.

MATH 168 Finite Mathematics
Credits 3. 3 Lecture Hours.
Linear equations and applications; systems of linear equations, matrix algebra and applications, linear programming, probability and applications, statistics. Only one of the following will satisfy the requirements for a degree: MATH 140 and MATH 168.
Prerequisites: High school algebra I and II and geometry; also taught at Galveston campus.

MATH 170 Freshman Mathematics Laboratory
Credit 1. 2 Lab Hours.
Computing and problem solving laboratory; introduction to the various mathematical disciplines; development of skills in mathematical problem solving and skills in teamwork. May be taken two times for credit.
Prerequisites: Concurrent enrollment in MATH 150, MATH 171, or MATH 172; admission to College of Science.

MATH 171 Calculus I
Credits 4. 4 Lecture Hours.
Vectors, functions, limits, derivatives, Mean Value Theorem, applications of derivatives, integrals, Fundamental Theorem of Calculus. Designed to be more demanding than MATH 151. Only one of the following will satisfy the requirements for a degree: MATH 131, MATH 142, MATH 147, MATH 151 and MATH 171.
Prerequisite: MATH 150 or equivalent or acceptable score on TAMU Math Placement Exam.

MATH 172 Calculus II
Credits 4. 4 Lecture Hours.
Techniques of integration, applications of integrals, improper integrals, sequences, infinite series, vector algebra and solid analytic geometry. Designed to be more demanding than MATH 152. Only one of the following will satisfy the requirements for a degree: MATH 148, MATH 152 and MATH 172.
Prerequisite: MATH 147, MATH 151 or MATH 171 or equivalent with a grade of C or better.

MATH 200 Horizons of Mathematics
Credit 1. 1 Lecture Hour.
Overview of different areas and topics of mathematics including logic, infinite sets, elements of topology, elements of history of mathematics; introduction to future courses in math degree plans and to some areas of research done by mathematics department faculty; topics may vary at the discretion of the instructor.
Prerequisites: MATH and APMS majors; freshmen or sophomore classification; approval of instructor.

MATH 217 Explorations in Mathematics
Credits 3. 3 Lecture Hours.
Application of mathematics to topics of contemporary societal importance using quantitative methods; may include elements of management science (optimal routes, planning and scheduling), statistics (sampling/polling methods, analyzing data to make decisions), cryptography (codes used by stores, credit cards, internet security), fairness (apportionment, voting) patterns (symmetry, tessellations, fractals), world health.
Prerequisites: High school algebra I and II.

MATH 218 Finite Mathematics
Credits 3. 3 Lecture Hours.
Linear equations and applications; systems of linear equations, matrix algebra and applications, linear programming, probability and applications, statistics. Only one of the following will satisfy the requirements for a degree: MATH 140 and MATH 168.
Prerequisites: High school algebra I and II and geometry; also taught at Galveston campus.

MATH 220 Freshman Mathematics Laboratory
Credit 1. 2 Lab Hours.
Computing and problem solving laboratory; introduction to the various mathematical disciplines; development of skills in mathematical problem solving and skills in teamwork. May be taken two times for credit.
Prerequisites: Concurrent enrollment in MATH 150, MATH 171, or MATH 172; admission to College of Science.

MATH 221 Several Variable Calculus
Credits 4. 4 Lecture Hours.
Vector algebra and solid analytic geometry; calculus of functions of several variables; Lagrange multipliers; multiple integration, theory, methods and application; line and surface integrals, Green’s and Stokes’ theorems; Jacobians. Designed to be more demanding than MATH 251 and MATH 253. Only one of the following will satisfy the requirements for a degree: MATH 221, MATH 251 and MATH 253.
Prerequisite: MATH 148, MATH 152, or MATH 172.

MATH 225 Advanced Spreadsheet Techniques
Credit 1. 1 Lecture Hour.
Advanced commands, formatting and functionality of spreadsheets, with Excel being the particular example.
Prerequisite: MATH or APMS major.

MATH 251 Engineering Mathematics III
Credits 3. 3 Lecture Hours.
(MATH 2315) Engineering Mathematics III. Vector algebra; calculus of functions of several variables, partial derivatives, directional derivatives, gradient, multiple integration, line and surface integrals, Green’s and Stokes’ theorems. MATH 221 designed to be a more demanding version of this course. Only one of the following will satisfy the requirements for a degree: MATH 221, MATH 251 and MATH 253.
Prerequisite: MATH 148, MATH 152, or MATH 172; also taught at Galveston and Qatar campuses.

MATH 253 Engineering Mathematics III
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(MATH 2415) Engineering Mathematics III. Vector algebra; calculus of functions of several variables, partial derivatives, directional derivatives, gradient, multiple integration, line and surface integrals, Green’s and Stokes’ theorems, computer algebra. MATH 221 designed to be a more demanding version of this course. Only one of the following will satisfy the requirements for a degree: MATH 221, MATH 251 and MATH 253.
Prerequisite: MATH 148, MATH 152, or MATH 172.

MATH 281 Seminar in Mathematics
Credit 1. 1 Lecture Hour.
Designed to familiarize students with mathematics pertaining to real world applications in such areas as biology, signal processing, quantum computation and robotics. May be taken four times for credit.

MATH 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems not covered by any other lower-division course in the curriculum; intended for freshman and sophomore students.
Prerequisite: Approval of department head.

MATH 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of mathematics. May be repeated for credit.
Prerequisite: Approval of instructor.

MATH 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in mathematics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.
MATH 300 Foundations of Mathematics
Credits 3. 3 Lecture Hours.
Foundations of mathematics including logic, set theory, combinatorics, and number theory.
Prerequisite: Grade of C or better in MATH 148, MATH 152 or MATH 172, or equivalent.

MATH 302 Discrete Mathematics
Credits 3. 3 Lecture Hours.
Formal structures for describing data, algorithms and computing devices; theory and applications of sets, graphs and algebraic structures.
Prerequisite: MATH 148, MATH 152, or MATH 172.

MATH 304 Linear Algebra
Credits 3. 3 Lecture Hours.
Introductory course in linear algebra covering abstract ideas of vector space and linear transformation as well as models and applications of these concepts, such as systems of linear equations, matrices and determinants. MATH 323 designed to be a more demanding version of this course. Only one of the following will satisfy the requirements for a degree: MATH 304, MATH 309, MATH 311 and MATH 323.
Prerequisite: MATH 148, MATH 152, or MATH 172; junior or senior classification; also taught at Galveston campus.

MATH 308 Differential Equations
Credits 3. 3 Lecture Hours.
Prerequisites: MATH 221, MATH 251, or MATH 253, or concurrent enrollment; knowledge of computer algebra system; also taught at Galveston and Qatar campuses.

MATH 309 Linear Algebra for Differential Equations
Credits 3. 3 Lecture Hours.
Systems of linear equations, matrices, determinants, vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalization, inner product spaces, orthogonal functions, separation of variables, Fourier series, Bessel functions. Only one of the following will satisfy the requirements for a degree: MATH 304, MATH 309, MATH 311 and MATH 323.
Prerequisites: MATH 221, MATH 251, or MATH 253; MATH 308 or concurrent enrollment; junior or senior classification or approval of instructor.

MATH 311 Topics in Applied Mathematics I
Credits 3. 3 Lecture Hours.
Systems of linear equations, matrices, determinants, vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalization, inner product spaces, orthogonal functions; vector analysis, including gradient, divergence, curl, line and surface integrals, Gauss’, Green’s and Stokes’ theorems. Only one of the following will satisfy the requirements for a degree: MATH 304, MATH 309, MATH 311 and MATH 323.
Prerequisites: MATH 221, MATH 251, or MATH 253; MATH 308 or concurrent enrollment; junior or senior classification or approval of instructor; also taught at Galveston and Qatar campuses.

MATH 323 Linear Algebra
Credits 3. 3 Lecture Hours.
Linear equations and matrices; real vector spaces, linear transformations, change of bases, determinants, eigenvalues and eigenvectors, diagonalization, inner products. Designed to include more theory and be more demanding than MATH 304. Only one of the following will satisfy the requirements for a degree: MATH 304, MATH 309, MATH 311 and MATH 323.
Prerequisites: MATH 148, MATH 152 or MATH 172; MATH 300; junior or senior classification or approval of instructor.

MATH 325 The Mathematics of Interest
Credits 3. 3 Lecture Hours.
The mathematical theory associated with interest; annuities; varying annuities; sinking funds and amortization; coupon bonds; valuation of noncallable bonds; yield to maturity; yield curve; spot rates and forward rates; internal rate of return; duration and convexity; portfolio immunization.
Prerequisites: MATH 142, MATH 147, MATH 151 or MATH 171.

MATH 356 Structure of Mathematics I
Credits 3. 3 Lecture Hours.
Informal logic, sets, relations, functions, whole numbers, numeration systems, binary operations, integers, elementary number theory, modular systems, rational numbers and the system of real numbers. Designed primarily for elementary teacher certification. Others must have consent of instructor.
Prerequisites: Must have completed University Core Curriculum mathematics requirements with a grade of C of better.

MATH 366 Structure of Mathematics II
Credits 3. 3 Lecture Hours.
Geometry, measurement and coordinate geometry. Designed primarily for elementary teacher certification. Others must have consent of instructor.
Prerequisite: MATH 365 or equivalent with a grade of C or better.

MATH 367 Basic Concepts of Geometry
Credits 3. 3 Lecture Hours.
Formal development of geometry; finite [Euclidean and non-Euclidean]. Designed primarily for elementary mathematics teacher certification. Others must have consent of instructor.
Prerequisite: MATH 366 or equivalent with a grade of C or better.

MATH 375 Intermediate Real Analysis
Credits 3. 3 Lecture Hours.
Development of the real numbers, limits, foundations and major theorems of calculus. Designed primarily for mathematics teacher certification. Others must have consent of instructor.
Prerequisite: MATH 300 or equivalent.

MATH 376 Intermediate Abstract Algebra
Credits 3. 3 Lecture Hours.
Relations, functions, binary operators, rings, homomorphisms, integral domains and fields. Designed primarily for mathematics teacher certification. Others must have consent of instructor.
Prerequisites: MATH 300 or MATH 302; MATH 304 or equivalent.

MATH 396 Communications in Mathematics
Credit 1. 1 Lecture Hour.
Electronic, written, and oral communications in mathematics.
Prerequisites: MATH 300, junior or senior classification, and mathematics major.
MATH 401 Advanced Engineering Mathematics
Credits 3. 3 Lecture Hours.
Engineering mathematics including Perturbation Theory, Fourier series and partial differential equations. Designed primarily for engineering majors. Others must have consent of instructor.
Prerequisite: MATH 308; also taught at Galveston campus.

MATH 403 Mathematics and Technology
Credits 3. 3 Lecture Hours.
Mathematical problem-solving and communication through the use of various technologies (both hardware and software). Intended primarily, but not limited to, students working toward teacher certification.
Prerequisite: MATH 367 or MATH 467 with a grade of C or better.

MATH 407 Complex Variables
Credits 3. 3 Lecture Hours.
Fundamental theory of analytic functions, including residues and their applications.
Prerequisite: MATH 221, MATH 251, or MATH 253.

MATH 409 Advanced Calculus I
Credits 3. 3 Lecture Hours.
Axioms of the real number system; point set theory of R1; compactness, completeness and connectedness; continuity and uniform continuity; sequences, series; theory of Riemann integration.
Prerequisites: MATH 300; MATH 221, MATH 251 or MATH 253.

MATH 410 Advanced Calculus II
Credits 3. 3 Lecture Hours.
Differential and integral calculus of functions defined on Rm including inverse and implicit function theorems and change of variable formulas for integration; uniform convergence.
Prerequisites: MATH 304 or MATH 323; MATH 409.

MATH 411 Mathematical Probability
Credits 3. 3 Lecture Hours.
Probability spaces, discrete and continuous random variables, special distributions, joint distributions, expectations, law of large numbers, the central limit theorem.
Prerequisite: MATH 221, MATH 251, or MATH 253.

MATH 412 Theory of Partial Differential Equations
Credits 3. 3 Lecture Hours.
Formulation and solution of partial differential equations of mathematical physics; Fourier series and transform methods, complex variable methods, methods of characteristics and first order equations.
Prerequisite: MATH 308 or approval of instructor.

MATH 414 Fourier Series and Wavelets
Credits 3. 3 Lecture Hours.
Fourier series and wavelets with applications to data compression and signal processing.
Prerequisite: MATH 304, MATH 309, MATH 311, or MATH 323; also taught at Qatar campus.

MATH 415 Modern Algebra I
Credits 3. 3 Lecture Hours.
A study of groups, rings, fields with emphasis on the theoretical aspects and proofs.
Prerequisite: MATH 300; MATH 304, MATH 309, MATH 311, or MATH 323.

MATH 416 Modern Algebra II
Credits 3. 3 Lecture Hours.
Continuation of topics introduced in MATH 415 including Galois Theory and the Sylow Theorems with emphasis on the theoretical aspects.
Prerequisite: MATH 415, junior or senior classification.

MATH 417 Numerical Methods
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Numerical methods for applications; qualitative discussion of convergence and stability properties; computer implementation; interpolation and quadrature, initial value problems, matrix decompositions, interactive solution of linear and non-linear systems, least squares approximation, boundary value problems for ordinary differential equations.
Prerequisites: MATH 304, MATH 309, MATH 311, or MATH 323; MATH 308; ability to program; junior or senior classification.

MATH 419 Applications of Actuarial Science
Credits 2. 2 Lecture Hours.
Applications of actuarial science using mathematical and statistical methods to assess risk in the insurance and finance industries; emphasis on probability, statistics, finance and economics; focus on using probabilistic models in the estimation of insurance premiums.
Prerequisite: MATH 411 or STAT 414 or approval of math advisor.

MATH 420 Application of Actuarial Science II
Credits 2. 2 Lecture Hours.
Use of mathematical and statistical methods to price various financial instruments, such as bonds; understanding how the term structure of interest rates affect the price of these instruments.
Prerequisite: MATH 325 or concurrent enrollment, or approval of instructor.

MATH 423 Linear Algebra II
Credits 3. 3 Lecture Hours.
Eigenvalues, similarity and canonical forms, advanced topics to be chosen by the instructor.
Prerequisites: MATH 300 or CSCE 222/ECEN 222; MATH 304 or MATH 323, or approval of instructor.

MATH 425 The Mathematics of Contingent Claims
Credits 3. 3 Lecture Hours.
The mathematical theory associated with asset price dynamics; binomial pricing models; Black-Scholes analysis; hedging; volatility smile; implied volatility trees; implied binomial trees.
Prerequisites: MATH 308; MATH 411, STAT 211 or STAT 414.

MATH 427 Introduction to Number Theory
Credits 3. 3 Lecture Hours.
Prime and composite integers; Euclidean algorithm; modular arithmetic; Chinese remainder theorem; unique factorization; quadratic reciprocity; Riemann zeta function; representation of numbers as a sum of squares.
Prerequisites: MATH 300; MATH 304 or MATH 323.

MATH 431 Structures and Methods of Combinatorics
Credits 3. 3 Lecture Hours.
Enumerative techniques generating functions, partially ordered sets, extremal combinatorics, recursive techniques, generating functions techniques.
Prerequisites: MATH 300 or MATH 308; MATH 325 or concurrent enrollment, or approval of instructor.

MATH 433 Applied Algebra
Credits 3. 3 Lecture Hours.
Applications to number theory, coding theory, and other areas.
Prerequisites: MATH 300 or MATH 302; MATH 304 or MATH 323.
MATH 436 Introduction to Topology
Credits 3. 3 Lecture Hours.
Metric spaces; continuity of metric spaces; topological spaces; basic notions; separation axioms; compactness; local compactness; connectedness; basic notions in homotopy theory; quotient spaces, paracompactness and topological manifolds.
Prerequisites: MATH 300; MATH 221, MATH 251, or MATH 253.

MATH 437 Principles of Numerical Analysis
Credits 4. 4 Lecture Hours. 3 Lab Hours.
Mathematical principles of numerical analysis and their application to the study of particular methods; fixed-point iteration, Newton’s method; normed vector spaces and operators, Schur decomposition, convergent matrices, minimization methods, conjugate gradient method; polynomial interpolation of Lagrange and Hermite; best approximation, Bernstein and Weierstrass Theorems, numerical quadrature.
Prerequisites: MATH 304, MATH 309, MATH 311, or MATH 323; MATH 308; MATH 409; ability to program; junior or senior classification.

MATH 439 Differential Geometry of Curves and Surfaces
Credits 3. 3 Lecture Hours.
Local and global theory of parameterized curves; regular surfaces, local coordinates, first fundamental form, orientation, area; Gauss map, second fundamental form; Gauss Bonnet theorem; additional topics to be selected by the instructor.
Prerequisites: MATH 308; MATH 304 or MATH 323.

MATH 442 Mathematical Modeling
Credits 3. 3 Lecture Hours.
The construction of mathematical models from areas such as economics, game theory, integer programming, mathematical biology and mathematical physics.
Prerequisites: MATH 304, MATH 309, MATH 311, or MATH 323; MATH 308 or equivalent.

MATH 446 Principles of Analysis I
Credits 3. 3 Lecture Hours.
Construction of the real and complex numbers; topology of metric spaces, compactness and connectedness; Cauchy sequences, completeness and the Baire Category Theorem; Continuous Mappings; introduction to Point-Set Topology.
Prerequisites: MATH 409; junior or senior classification.

MATH 447 Principles of Analysis II
Credits 3. 3 Lecture Hours.
Riemann-Stieltjes integration; sequences and series of functions; the Stone-Weierstrass and Arzela-Ascoli Theorems; introduction to Lebesgue measure theory and integration.
Prerequisites: MATH 446 or approval of instructor; junior or senior classification.

MATH 460 Tensors and General Relativity
Credits 3. 3 Lecture Hours.
Vectors and tensors in special relativity, curvature, manifolds, covariant differentiation, Einstein field equations, Schwarzschild geometry and black holes, cosmology, gauge field theories.
Prerequisites: MATH 308; PHYS 331 or MATH 323 or MATH 311; junior or senior classification.

MATH 461 Modern Geometry
Credits 3. 3 Lecture Hours.
Modern development of Euclidean geometry (Hilbert axioms) with historical and philosophical context; independence of the parallel postulate; models of hyperbolic non-Euclidean geometry.
Prerequisite: Grade of C or better in MATH 304, MATH 309, MATH 311, MATH 300 or MATH 323.

MATH 469 Introduction to Mathematical Biology
Credits 3. 3 Lecture Hours.
Introduction to mathematical modeling techniques in the biological sciences; continuous versus discrete models; deterministic versus stochastic models; includes population dynamics and ecology, spread of infectious diseases, population genetics and evolution, spatial pattern formation.
Prerequisites: MATH 304 or MATH 323; MATH 308 or equivalent.

MATH 470 Communications and Cryptography
Credits 3. 3 Lecture Hours.
Introduction to coded communications, digital signatures, secret sharing, one-way functions, authentication, error control and data compression.
Prerequisites: MATH 304 or MATH 309 or MATH 311 or MATH 323; CSCE 110 or CSCE 111 or CSCE 121 or CSCE 206 or ENGR 112; approval of instructor.

MATH 471 Elliptic Curve Cryptography
Credits 3. 3 Lecture Hours.
Theory of the group law on elliptic curves with applications to problems in cryptography; elliptic curves over finite fields, rational numbers, real and complex numbers; elliptic curve based cryptosystems, digital signatures, and factorization methods.
Prerequisites: MATH 415 or MATH 433.

MATH 472 Topological Data Analysis
Credits 3. 3 Lecture Hours.
Topological Data Analysis with a view toward persistent homology of point clouds for applications to data analysis; homology of simplicial complexes over a field; functorial clustering methods; persistent homology; real-world applications to data analysis.
Prerequisites: MATH 304, MATH 309, MATH 311, or MATH 323.

MATH 475 Directed Studies
Credits 1 to 8. 1 to 8 Other Hours.
Special problems in mathematics not covered by any other course in the curriculum. Work may be in either theory or laboratory.
Prerequisite: Approval of department head; also taught at Galveston campus.

MATH 480 The Putnam Challenge
Credit 1. 1 Lecture Hour.
Intensive individualized training for preparation for the Putnam Exam, a national contest for mathematics majors. May be taken four times for credit.
Prerequisites: Approval of instructor; junior or senior classification.
MATH 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Active research of basic nature under supervision of Department of Mathematics or affiliated department graduate faculty member; a maximum of 6 hours of credit can be used in degree plans. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Mathematics or applied mathematical sciences major or minor; junior or senior classification or approval of mathematics advisor; also taught at Galveston campus.

MEEN - Mechanical Engineering (MEEN)

MEEN 210 Geometric Modeling for Mechanical Design
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Foundations of geometric modeling as applied to mechanical design through use of modern computer-aided design (CAD) and physical prototyping tools; basics of systematic design methodology; geometric visualization concepts: multiview orthographic, isometric, oblique, perspective; three-dimensional representations, surface and solid modeling; dimensioning and tolerancing; rapid prototyping using 3D printing.
Prerequisites: Mechanical engineering major; grade of C or better in ENGR 102, and PHYS 206 or PHYS 218.

MEEN 221 Statics and Particle Dynamics
Credits 3. 3 Lecture Hours.
Application of the fundamental principles of Newtonian mechanics to the statics and dynamics of particles; equilibrium of trusses, frames, beams and other rigid bodies.
Prerequisites: For non-mechanical engineering majors; admission to an engineering major; Grade of C or better in PHYS 206 or PHYS 218; grade of C or better in MATH 251 or MATH 253, or concurrent enrollment.

MEEN 222/MSEN 222 Materials Science
Credits 3. 3 Lecture Hours.
Mechanical, optical, thermal, magnetic and electrical properties of solids; differences in properties of metals, polymers, ceramics and composite materials in terms of bonding and crystal structure.
Prerequisites: Grade of C or better in CHEM 102 and CHEM 112, or CHEM 104 and CHEM 114, or CHEM 107 and CHEM 117; grade of C or better in PHYS 206 or PHYS 218.
Cross Listing: MSEN 222/MEEN 222.

MEEN 225 Engineering Mechanics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of the laws of classical mechanics to simplified, plausibly real world problems or interest to mechanical engineering, including the analysis of cables, frames, trusses, beams, machines and mechanisms.
Prerequisites: Mechanical engineering major; grade of C or better in PHYS 206 or PHYS 218; grade of C or better in MATH 251 or MATH 253, or concurrent enrollment.

MEEN 260 Mechanical Measurements
Credits 3. 3 Lecture Hours. 3 Lab Hours.
Introduction to the basic principles of engineering experimentation including: instrumentation and measurement techniques, signal processing and data acquisition, statistical data analysis, and interpretation and reporting of results.
Prerequisites: Grade of a C or better in MEEN 225 or MEEN 221; grade of C or better in ECEN 215 and STAT 211; grade of a C or better in MATH 308 and MEEN 315, or concurrent enrollment.

MEEN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed studies in specific problem areas of mechanical engineering.
Prerequisites: MEEN classification; approval by instructor and department head or delegate.

MEEN 289 Special Topics in...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of mechanical engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

MEEN 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in mechanical engineering. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

MEEN 315 Principles of Thermodynamics
Credits 3. 3 Lecture Hours.
Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles.
Prerequisites: Grade of a C or better in MEEN 221, MEEN 225, or CVEN 221; grade of a C or better in MATH 251 or MATH 253.

MEEN 344 Fluid Mechanics
Credits 3. 3 Lecture Hours.
Application of laws of statics, buoyancy, stability, energy and momentum to behavior of ideal and real fluids; dimensional analysis and similitude and their application to flow through ducts and piping; lift and drag and related problems.
Prerequisites: Grade of C or better in MEEN 315.

MEEN 345 Fluid Mechanics Laboratory
Credit 1. 3 Lab Hours.
Introduction to basic fluid mechanics instrumentation; experimental verification and reinforcement of the analytical concepts introduced in MEEN 344.
Prerequisites: Grade of C or better in MEEN 260; grade of C or better in MEEN 344 or concurrent enrollment.

MEEN 357 Engineering Analysis for Mechanical Engineers
Credits 3. 3 Lecture Hours.
Practical foundation for the use of numerical methods to solve engineering problems: Introduction to Matlab, error estimation, Taylor series, solution of non-linear algebraic equations and linear simultaneous equations; numerical integration and differentiation; initial value and boundary value problems; finite difference methods for parabolic and elliptic partial differential equations.
Prerequisites: Grade of C or better in MATH 308; grade of C or better in MEEN 210 or concurrent enrollment.

MEEN 360 Materials and Manufacturing Selection in Design
Credits 3. 3 Lecture Hours.
Selecting materials and manufacturing processes in design; emphasis on material mechanical properties; microstructure production and control; manufacturing processes for producing various shapes for components and structures; use of design methodology.
Prerequisites: Grade of C or better in MEEN 210 and MEEN 260.
MEEN 361 Materials and Manufacturing in Design Laboratory
Credit 1. 3 Lab Hours.
Experiments in materials characterization and manufacturing processes; emphasis on material mechanical properties; microstructure production and control; manufacturing processes for producing various shapes for components and structures.
Prerequisites: Grade of C or better in MEEN 260; grade of C or better in MEEN 360 or concurrent enrollment.

MEEN 363 Dynamics and Vibrations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Dynamics and Vibration. Application of Newtonian and energy methods to model dynamic systems (particles and rigid bodies) with ordinary differential equations; solution of models using analytical and numerical approaches; interpreting solutions; linear vibrations.
Prerequisites: Grade of C or better in MEEN 225 or MEEN 221, and MATH 308; grade of a C or better in MEEN 357, or concurrent enrollment.

MEEN 364 Dynamic Systems and Controls
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Mathematical modeling, analysis, measurement and control of dynamic systems; extensions of modeling techniques of MEEN 363 to other types of dynamic systems; introduction to feedback control, time and frequency domain analysis of control systems, stability, PID control, root locus; design and implementation of computer-based controllers in the lab.
Prerequisites: Grade of C or better in MEEN 260 and MEEN 363.

MEEN 368 Solid Mechanics in Mechanical Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Stress analysis of deformable bodies and mechanical elements; stress transformation; combined loading; failure modes; material failure theories; fracture and fatigue; deflections and instabilities; thick cylinders; curved beams; design of structural/mechanical members; design processes.
Prerequisites: Grade of a C or better in MEEN 221 or MEEN 225.

MEEN 381 Seminar
Credit 1. 2 Other Hours.
Presentations by practicing engineers and faculty addressing: effective communications, engineering practices, professional registration, ethics, career-long competence, contemporary issues, impact of technology on society and being informed; preparation of a resume, a lifelong learning plan, two papers, two oral presentations and complete an online assessment of the mechanical engineering program.
Prerequisite: Major in mechanical engineering.

MEEN 399 High Impact Experience for Mechanical Engineers
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at midpoint.
Prerequisite: Junior or senior classification.

MEEN 401 Introduction to Mechanical Engineering Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
The design innovation process; need definition, functional analysis, performance requirements and evaluation criteria, conceptual design evaluation, down-selected to an embodiment; introduction to systems and concurrent engineering; parametric and risk analysis, failure mode analysis, material selection, and manufacturability; cost and life cycle issues, project management.
Prerequisites: Grade of C or better in MEEN 360, MEEN 361, MEEN 364, MEEN 441, and MEEN 461.

MEEN 402 Intermediate Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Product design and development process including case studies; project management, marketing considerations, manufacturing, detailed design specifications; failure modes, application of codes and standards, selection of design margins; product (component) development guidelines; intellectual property, product liability and ethical responsibility.
Prerequisite: Grade of C or better in MEEN 401.

MEEN 404 Engineering Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Systematic design of experimental investigations; student teams identify topics and develop experiment designs including: establishing the need; functional decomposition; requirements; conducting the experiment; analyzing and interpreting the results and written and oral reports documenting the objectives, procedure, analysis, and results and conclusion of two or three experiments.
Prerequisites: Grade of C or better in MEEN 360, MEEN 361, MEEN 364 and MEEN 461; grade of C or better in MEEN 401 or concurrent enrollment.

MEEN 406 Energy Management in Industry
Credits 3. 3 Lecture Hours.
Energy systems and components frequently encountered in industrial environments; application of basic principles of thermodynamics, heat transfer, fluid mechanics and electrical machinery to the analysis and design of industrial system components and systems; improved energy utilization.
Prerequisites: Grade of C or better in MEEN 260 and MEEN 315.

MEEN 408 Mechanics of Robotic Manipulators
Credits 3. 3 Lecture Hours.
Forward and inverse kinematics and differential kinematics of robot manipulators, path planning, motion planning, dynamics of robot manipulators and control algorithms; PD/PID control, computed torque algorithm.
Prerequisites: MEEN 364 or equivalent; junior or senior classification.

MEEN 410 Internal Combustion Engines
Credits 3. 3 Lecture Hours.
Thermodynamics of cycles for internal combustion engines and gas turbines, including fuels and combustion; performance characteristics of various types of engines.
Prerequisite: MEEN 344 or equivalent.

MEEN 411 Mechanical Controls
Credits 3. 3 Lecture Hours.
Application of classical and modern control theory techniques to modeling, analysis and synthesis of linear, mechanical control systems.
Prerequisite: MEEN 364.

MEEN 414 Principles of Turbomachinery
Credits 3. 3 Lecture Hours.
Aero-thermodynamic and mechanical design of turbomachinery components including steam and gas turbine stages, compressor stages, and inlet and exhaust systems, and their integration into power and thrust generation units; design and off-design behaviors of turbine and compressor stages and units; design with SolidWorks.
Prerequisites: MEEN 421; junior or senior classification.
MEEN 417/NUEN 417 Basics of Plasma Engineering and Applications
Credits 3. 3 Lecture Hours.
Basic plasma properties and confinement techniques; single particle
orbits in electric and magnetic fields, moments of Boltzmann equation
and introduction to fluid theory; wave phenomena in plasmas and
introduction to plasma kinetic theory; analysis of laboratory plasmas
and plasma applications including fusion, electric propulsion, materials
processing and plasmas enhanced chemistry.
Prerequisites: Grade of C or better in PHYS 208 or equivalent; senior
classification in nuclear, mechanical or aerospace engineering, or
physics.
Cross Listing: NUEN 417/MEEN 417.

MEEN 421 Thermal-Fluids Analysis and Design
Credits 3. 3 Lecture Hours.
Integration of thermodynamics, fluid mechanics and heat transfer
through application to the design of various thermal systems comprised
of several components requiring individual analyses; analysis of the
entire system; representative applications of thermal-fluids analysis with
a design approach.
Prerequisite: Grade of C or better in MEEN 461.

MEEN 431 Advanced System Dynamics and Controls
Credits 3. 3 Lecture Hours.
Unified framework for modeling, analysis, synthesis, design and
simulation of mechanical systems with energy exchange across
multiple domains; study of mechanical, electrical, hydraulic and thermal
subsystems; Newtonian mechanics, rigid body dynamics, multiple
degrees of freedom vibrations and control system design.
Prerequisites: MEEN 364; junior or senior classification.

MEEN 432 Automotive Engineering
Credits 3. 3 Lecture Hours.
Introduction to vehicle dynamics; application of engineering mechanics
principles to analysis of acceleration and braking, cornering and handling;
analysis and design of drive train, suspension, brakes, and tires to
achieve desired performance.
Prerequisite: MEEN 363.

MEEN 433 Mechatronics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Basic principles of digital logic and analog circuits in mechanical
systems; electrical-mechanical interfacing; sensors and actuators; digital
control implementation; precision design and system integration.
Prerequisite: MEEN 364 or equivalent.

MEEN 434 Dynamics and Modeling of Mechatronic System
Credits 3. 3 Lecture Hours.
Mechatronic interactions in lumped parameter and continuum systems;
review of integral and differential electromagnetic laws, including
motions; lumped elements and dynamic equations of motion; linear and
nonlinear actuators and transducers; field transformation and moving
media; electromagnetic force densities and stress tensors.
Prerequisite: MEEN 364.

MEEN 436 Principles of Heating, Ventilating and Air Conditioning
Credits 3. 3 Lecture Hours.
Application of thermodynamics fluid mechanics, and heat transfer to
the design of HVAC equipment; selection of equipment, piping and duct
layouts.
Prerequisite: Grade of a C or better in MEEN 344 or equivalent.

MEEN 437 Principles of Building Energy Analysis
Credits 3. 3 Lecture Hours.
Analysis of building energy use by applying thermodynamics and heat
transfer to building heating and cooling load calculations; heat balance
and radiant time series calculation methods; psychrometric analysis,
indoor air quality, effect of solar radiation on heating and cooling of
buildings. Required design project.
Prerequisites: MEEN 315 or equivalent; junior or senior classification.

MEEN 439 Solar Energy Engineering
Credits 3. 3 Lecture Hours.
Solar energy; solar angles and radiation; solar thermal systems; solar
water heating and space heating; concentrated solar power; energy
storage; solar photovoltaics; solar cell manufacturing; other solar energy
technologies.
Prerequisite: MEEN 315.

MEEN 440 Bio-inspired Engineering Design
Credits 3. 3 Lecture Hours.
Expand design space available to engineering by developing and
understanding of how nature solves problems; study of effective bio-
inspired design and biomimetic applications to draw solutions from
nature; enhance concept generation through the use of bio-inspired
design; use current state of the art methods in bioinspired design; view
nature's solutions to different problems form an engineering perspective.
Prerequisite: MEEN 368, BMEN 361, or BAEN 375.

MEEN 441 Design of Mechanical Components and Systems
Credits 3. 3 Lecture Hours.
Design of machine elements, characteristics of prime movers, loads
and power transmission elements as related to mechanical engineering
design.
Prerequisite: MEEN 368.

MEEN 442 Computer Aided Engineering
Credits 3. 3 Lecture Hours.
Effective and efficient use of modern computer hardware and software in
modeling, design, and manufacturing; simulation of a broad spectrum of
mechanical engineering problems.
Prerequisites: MEEN 363 and MEEN 368.

MEEN 444 Finite Element Analysis in Mechanical Engineering
Credits 3. 3 Lecture Hours.
Introduction to basic theory and techniques; one- and two-dimensional
formulations for solid mechanics applications; direct and general
approaches; broader aspects for field problems; element equations,
assembly and solution schemes; computer implementation,
programming and projects; error sources and application consideration.
Prerequisites: MEEN 357 and 368 or equivalents.

MEEN 445 Mechanics of Compliant Materials
Credits 3. 3 Lecture Hours.
Study of mechanics; three-dimensional analysis tools and techniques
needed to model linear behavior of fluids and solids in response to
imposed loads and deformations.
Prerequisite: Grade of C or better in MEEN 344.

MEEN 451 Viscoelastic Materials
Credits 3. 3 Lecture Hours.
Mechanical and mathematical basis for modeling linear viscoelastic
materials which focus on polymeric solid materials; characterization of
viscoelastic material properties from experimental tests; applications of
stress and deformation relationships for viscoelastic structural members
subjected to axial, torsional, and bending loads.
Prerequisites: Grade of C or better in MEEN 368.
MEEN 453 Additive and Subtractive Processes in Custom Manufacturing
Credits 3.3 Lecture Hours.
Machining theory; traditional and non-traditional machining processes; CNC machines and tools; geometric dimensioning and tolerance (GD&T); additive manufacturing systems and processes; materials in additive manufacturing.
Prerequisites: Grade of C or better in MEEN 360 and MEEN 361, or equivalent.

MEEN 454 Tribology-Mechanical Interface Design
Credits 3.3 Lecture Hours.
History and significance of tribology, rough surfaces, hertzian contact, rough surfaces in contact, friction of surfaces in contact, surface failures/wear, boundary lubrication, fluid properties, thick film lubrication, thin film lubrication, micro- and nano-tribology.
Prerequisites: Grade of C or better in MEEN 344 and MEEN 368.

MEEN 455 Engineering with Plastics
Credits 3.3 Lecture Hours.
Polymer structure, processing, property characterization at the molecular, microscopic and macroscopic dimensional levels for thermoplasts, thermoplastics, elastomers, fibers and advanced fibrous nonparticle filled composites and smart multi-performance structures.
Prerequisite: MEEN 222/MSEN 222; junior or senior classification.

MEEN 458 Processing and Characterization of Polymers
Credits 3.3 Lecture Hours.
Introduction of flow behavior in polymers; structure-property-process relationship; mixing rules for polymer blends; mechanical properties; laboratory demonstrations: injection molding, extrusion, melt mixing, and study of morphology using OM, SEM, and TEM.
Prerequisite: MEEN 222/MSEN 222.

MEEN 459 Sound and Vibration Measurements
Credits 3.3 Lecture Hours.
Basic acoustics, review of vibration theory, wave propagation in vibrating systems, sound radiation from vibrating systems, sound and vibration sensors and instrumentation, data acquisition systems, measurement techniques, spectral analysis, spatial FFT analysis, design of experiments with vibro-acoustic systems, applications.
Prerequisites: MEEN 363; MATH 308.

MEEN 460 Corrosion Engineering
Credits 3.3 Lecture Hours.
Basic corrosion phenomena are described, including mixed potential theory, types of corrosion, experimental methods, and prevention techniques.
Prerequisite: MEEN 360 and MEEN 361, or equivalent.

MEEN 461 Heat Transfer
Credits 3.3 Lecture Hours.
Heat transfer by conduction, convection and radiation: steady and transient conduction, forced and natural convection, and blackbody and gray body radiation; multi-mode heat transfer; boiling and condensation; heat exchangers.
Prerequisite: Grade of C or better in MEEN 344.

MEEN 463 Cogeneration Systems
Credits 3.3 Lecture Hours.
Design and analysis of cogeneration system; selection of the prime mover, matching power and thermal needs, institutional factors, economic evaluations, financial options and the study of actual and hypothetical systems.
Prerequisite: MEEN 421 or equivalent.

MEEN 464 Heat Transfer Laboratory
Credit 1.3 Lab Hours.
Basic measurement techniques in conduction, convection, and radiation heat transfer; experimental verification of theoretical and semi-empirical results; uncertainty analysis.
Prerequisites: Grade of C or better in MEEN 345; grade of C or better or MEEN 461 or concurrent enrollment.

MEEN 467 Mechanical Behavior of Materials
Credits 3.3 Lecture Hours.
Fundamentals of flow and fracture in metals, emphasizing safe design by anticipating response of materials to complex stress and environmental service conditions; micromechanisms of flow, fatigue, creep and fracture; fracture mechanics approach to design. Special emphasis given to microstructure-mechanical property relationship and damage tolerant design.
Prerequisite: MEEN 360 and MEEN 361.

MEEN 469 Alternative Energy Conversion
Credits 3.3 Lecture Hours.
Design and analysis of alternative energy conversion processes and systems that are based on converting energy directly (e.g., fuel cells, photovoltaics), utilizing non-combustible heat sources (e.g., geothermal, ocean gradients, solar and nuclear fission and fusion) and obtaining energy from the environment (e.g., wind, hydroelectric, ocean tides and waves).
Prerequisite: MEEN 315.

MEEN 471 Elements of Composite Materials
Credits 3.3 Lecture Hours.
Fundamentals concerned with relating structure of multiphase materials to physical properties; plastic, metallic and ceramic matrices reinforced with continuous and discontinuous fibers, whiskers and particulates.
Prerequisites: Grade of C or better in MEEN 360, MEEN 361, and MEEN 368.

MEEN 472 Gas Dynamics
Credits 3.3 Lecture Hours.
Fundamental analysis of compressible flows and its application to supersonic airfoils/projectiles, jet and rocket nozzles, normal and oblique shock waves, explosion waves, shock tubes, supersonic wind tunnels, and compressible pipe flows.
Prerequisite: MEEN 344.

MEEN 475 Materials in Design
Credits 3.3 Lecture Hours.
The heuristics of synthesis of material properties, configuration and processing in the optimization of material selection in the design process; product design and development overview, failure mode effects analysis, design margin establishment; role of the generic failure modes and codes and standards; fundamental characteristics of process methods.
Prerequisites: Grade of C or better in MEEN 360 and MEEN 361.

MEEN 477 Air Pollution Engineering
Credits 3.3 Lecture Hours.
Design of air pollution abatement equipment and systems to include cyclones, bag filters and scrubbers; air pollution regulations; permitting; dispersion modeling; National Ambient Air Quality Standards.
Prerequisite: Grade of C or better in BAEN 340, CVEN 311/EVEN 311, or MEEN 344.
Cross Listing: BAEN 477 and SENG 477.
MEEN 480 Research Methods and Experiences
Credits 3. 3 Lecture Hours.
Application of various methodologies used in engineering research, including literature review, study design, data collection, statistical analysis, uncertainty quantification through the Kline-McClintock approach, quality assurance techniques; development of understanding of adviser-advisee relationship fundamentals, personal responsibilities and initiatives, responsive and effective communication; topics include all sub disciplines of mechanical engineering; activities include peer evaluation, relationship building, and collaboration across disciplines.
Prerequisites: Junior or senior classification and approval of instructor; Qatar campus.

MEEN 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems relating to a specific project in some phase of mechanical engineering. A commitment of two semesters with 6 hours 485 credit is required.
Prerequisites: Approval of department head and senior classification.

MEEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of mechanical engineering.
Prerequisite: Approval of instructor.

MEEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in mechanical engineering. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

MEFB - Mid Grds Ed Field Based (MEFB)

MEFB 351 Introduction to Middle Grades: Adolescent Development, Philosophy and Organization
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Study of young adolescents in domains of physical, social, emotional, cognitive, interpersonal, moral growth and development; organizational structure of middle schools supporting development of young adolescents through teaming and interdisciplinary work; investigates roles and responsibilities of middle level teachers.
Prerequisite: Junior classification.

MEFB 450 Social Studies Methods in the Middle Grades
Credits 3. 2 Lecture Hours. 6 Other Hours.
Trends and issues related to middle grades curriculum development and instruction in social studies and Humanities; integration of content, planning, teaching-learning experiences; evaluation of teaching and learning in social studies.
Prerequisites: MEFB 352; admission to teacher education; senior classification.
Corequisites: RDNG 470 and RDNG 490.

MEFB 452 Curriculum and Instruction for Middle Grades
Credits 3. 2 Lecture Hours. 6 Other Hours.
Study of educational theory and instructional strategies appropriate to middle grades education including planning and development of interdisciplinary and multidisciplinary curricula; student centered learning and methodologies.
Prerequisites: Admission to teacher education; senior classification.

MEFB 460 Math Methods in Middle Grades
Credits 3. 2 Lecture Hours. 6 Other Hours.
Examines theories, provides practice in teaching methods essential to successful mathematics learning; focuses on content and criteria central to teaching mathematics for understanding, skill development, and problem solving; readings, discussions, analyses; modeling and practicing mathematics teaching and learning.
Prerequisites: MASC 351 and MASC 450; admission to teacher education; senior classification.
Corequisites: MEFB 452, MEFB 470, RDNG 490.

MEFB 470 Science Methods in Middle Grades
Credits 3. 2 Lecture Hours. 6 Other Hours.
Problems-based-learning course integrating science content, scientific inquiry skills and field-based instruction; technology-mediated teaching, learning, and assessment.
Prerequisites: MEFB 352; admission to teacher education; senior classification.
Corequisites: MEFB 460; MASC 450.

MEFB 497 Supervised Clinical Teaching
Credits 6. 30 Other Hours.
Culmination of teaching education program; integrate and apply knowledge and skills learned from program of study while observing and participating in accredited schools with university supervision. Must be taken on a satisfactory/ unsatisfactory basis.
Prerequisites: Admission and retention in teacher education program; successful completion of all coursework.

MEPS-Molecular & Env Plant Sci (MEPS)

MEPS 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in molecular and environmental plant sciences. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

MEPS 313 Introduction to Plant Physiology
Credits 3. 3 Lecture Hours.
General course dealing with principal life processes of higher plants; influence of environmental factors on these processes. Agricultural and ecological significance of life processes of plants.
Prerequisites: BIOL 111; CHEM 222 or CHEM 227.

MEPS 411 Biotechnology for Crop Improvement
Credits 3. 3 Lecture Hours.
Use of biotechnology to improve agricultural, horticultural and forest crops; techniques and methods used and case studies where biotechnology has been used to alter traits such as pathogen resistance, protein or oil consumption, ripening, fertility and wood properties.
Prerequisite: BIOL 111 or equivalent.
Cross Listing: GENE 411 and SCSC 411.

MEPS 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual problems or research not covered by other coursework. Report required.
Prerequisites: Junior or senior classification and prior approval of instructor or department head.
MEPS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of plant physiology. May be repeated for credit.

MEPS 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in molecular and environmental plant sciences. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded. Prerequisites: Junior or senior classification and approval of instructor.

METR - Meteorology (METR)

METR 302 Weather Reports and Forecasting
Credits 3. 3 Lecture Hours.
Weather and Reports Forecasting. Basic description of atmospheric characteristics and processes relevant to the understanding of weather patterns and atmospheric principles. Prerequisite: Junior or senior classification or approval of instructor; Galveston campus.

MGMT - Management (MGMT)

MGMT 105 Introduction to Business
Credits 3. 3 Lecture Hours.
(BUSI 1301) Introduction to Business. Survey of economic systems, forms of business ownership and running the small business; organizing and managing businesses; managing human resources; managing production and information; managing marketing; introducing financial issues including accounting, money, and banking, securities markets; business issues and challenges including legal and regulatory environment, business ethics, and international business. Limited to students in freshman or sophomore classification.

MGMT 209 Business, Government and Society
Credits 3. 3 Lecture Hours.
Impact of the external environment-legal, political, economic and international-on business behavior; market and non-market solutions to contemporary public policies confronting business persons examined including antitrust law, employment and discrimination law, product safety regulation, consumer protection and ethics. May not be used to satisfy degree requirements for majors in business. Prerequisites: Sophomore classification; for students other than business and agribusiness majors.

MGMT 211 Legal and Social Environment of Business
Credits 3. 3 Lecture Hours.
Role of government in business and society; analysis of social policy and legal institutions; ethical problems in management decisions; administrative law; antitrust law; employment and discrimination law; regulation of business transactions; protection of property rights; regulation of information in markets including securities and product safety; international business law. Prerequisite: Sophomore classification; also taught at Galveston campus.

MGMT 212 Business Law
Credits 3. 3 Lecture Hours.
(BUSI 2301) Business Law. Legal principles of business; legal reasoning; dispute resolution and procedure; contract law; bankruptcy law; property law; Uniform Commercial Codes sections concerning contracts, security interests, negotiable instruments and sales. Prerequisite: Sophomore classification.

MGMT 261 Introduction to Entrepreneurship
Credit 1. 1 Lecture Hour.
Exposure to the mindset of entrepreneurship through interaction with successful entrepreneurs and hands-on activities for exploring the 21st century global entrepreneurial economy. May be taken two times for credit. Prerequisite: Freshman classification in the Startup Living Learning Community.

MGMT 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of business and management. May be repeated for credit. Prerequisite: Approval of instructor.

MGMT 309 Survey of Management
Credits 3. 3 Lecture Hours.
Survey for non-business majors of the basic functions and responsibilities of managers; includes the environmental context of management, planning and decision making, organization structure and design, leading and managing people, and the controlling process; issues of globalization, ethics, quality and diversity integrated throughout the course. May not be used to satisfy degree requirements for majors in business. Prerequisites: Junior classification; for students other than business and agribusiness majors.

MGMT 363 Managing People in Organizations
Credits 3. 3 Lecture Hours.
The role and importance of human behavior in organizations; models for understanding individual, group, and team dynamics, including individual differences, motivation, and leadership; managing organizational change; ethical issues in organizations; cross-cultural issues in managing people in organizations; the organizational context as determined by human resource management and organization design. Prerequisite: MGMT 211; ACCT 230 or concurrent enrollment; ISTM 210, MARA 250, or AGEC 217, or concurrent enrollment; admission to upper division in Mays Business School.

MGMT 372 Advanced Concepts in Organizational Behavior
Credits 3. 3 Lecture Hours.
Builds on the survey of organizational behavior in MGMT 363; review of core concepts and their application in organizational settings; includes personality and individual differences, job design, group and team dynamics, leadership and decision-making, conflict and cooperation, cross-cultural aspects of behavior in organizations. Prerequisite: MGMT 363.

MGMT 373 Managing Human Resources
Credits 3. 3 Lecture Hours.
Strategic issues in managing human resources; shared responsibilities of line managers and human resource staff for developing and implementing human resource policies and procedures; human resource planning, job design, analysis and evaluation, staffing, compensation, performance appraisal; training and development; career management; labor relations; legal, ethical and international issues. Prerequisite: MGMT 363.
MGMT 376/SOCI 376 Entrepreneurial Perspectives
Credits 3. 3 Lecture Hours.
Entrepreneurship as a career choice and its impact on society and economy; definitions of entrepreneurship; discovery of entrepreneurial opportunities and start-up funding; innovation and entrepreneurship theories for analyzing and predicting success of start-up and established entrepreneurial organizations.
Prerequisite: Admission to upper division in Mays Business School.
Cross Listing: SOCI 376/MGMT 376.

MGMT 422 Management Consulting
Credits 3. 3 Lecture Hours.
The field of management consulting from the perspective of both the individual consultant and the consulting firm; fundamentals of diagnosing situations, planning and executing assignments, client management, common mistakes and ethical issues in consulting including a variety of diagnostic and problem-solving methodologies.
Prerequisite: MGMT 363.

MGMT 424 Organizational Design, Change and Development
Credits 3. 3 Lecture Hours.
Aspects of effectively planning for and introducing changes in organizational structures and procedures based on environmental demands; examination of the successful management of organizational and behavioral changes, focusing on planned and unplanned changes, and emphasizing development of change strategies and measurement of change effectiveness.
Prerequisite: MGMT 363.

MGMT 425 Human Resource Selection
Credits 3. 3 Lecture Hours.
Theory and application of methods for the recruitment and selection of managerial, non-professional and professional employees; exposure to scientific issues such as reliability and validity, legal issues such as equal opportunity and affirmative action, and selection techniques such as interviews and testing.
Prerequisite: MGMT 373.

MGMT 427 Human Resource Compensation
Credits 3. 3 Lecture Hours.
Theories and techniques of designing and managing programs of direct compensation and benefits, including the role of rewards in motivation, job evaluation, pay discrimination and comparable worth, internal and external equity comparisons and benefit plans.
Prerequisite: MGMT 373.

MGMT 430/WGST 430 Employment Discrimination Law
Credits 3. 3 Lecture Hours.
Legal issues surrounding employment discrimination, including disparate treatment and impact; intent; affirmative action; sexual harassment; pregnancy, sex, race, religious, salary, disability, age, and ethnic discrimination; policy issues and perspectives to aid human resource specialists and managers.
Prerequisites: Admission to upper division in Mays Business School and senior classification.
Cross Listing: WGST 430/MGMT 430.

MGMT 432 Managing the Nonprofit Organization
Credits 3. 3 Lecture Hours.
Broad trends shaping the nonprofit sector, a primary driver of social change and key player in society and the economy that provides an array of goods and services; complex management challenges that confront nonprofits as they balance their mission and values against the requirements of effective management with limited resources.
Prerequisite: MGMT 363.

MGMT 435 Labor Law and Policy
Credits 3. 3 Lecture Hours.
Federal and state public policy and laws regulating human resource management including National Labor Relations Act, Railway Labor Act, Fair Labor Standards Act, employment discrimination statutes, statutes regarding public sector unionization, and other relevant legal authorities; various forms of dispute settlement including litigation, mediation, fact finding and arbitration; legal ramifications of strategic human resource management decision making.
Prerequisites: Admission to upper division in Mays Business School and senior classification.

MGMT 439 Negotiations
Credits 3. 3 Lecture Hours.
Overview of the various theories and processes of negotiation relevant to the broad spectrum of negotiation problems faced by employees and managers, and in situations outside of organizations; discovery of optimal solutions to problems and means to implement solutions through classroom simulations, role playing and case studies.
Prerequisite: MGMT 363.

MGMT 440 Creativity and Innovation in Business
Credits 3. 3 Lecture Hours.
Examines factors that may foster or stifle individual, team, organizational creative performance; presents techniques that may improve creative thinking skills.
Prerequisite: MGMT 363.

MGMT 450/IBUS 450 International Environment of Business
Credits 3. 3 Lecture Hours.
Broad survey of international business issues; analyzes the environment in which international businesses operate; examines international economic issues including trade theory, investment theory, foreign exchange and capital markets, and balance of payments; introduces multinational enterprises, global competition, international organizations, treaties and international law, national trade policies and the determinants of competitiveness of firms in international markets.
Prerequisite: Admission to upper division in Mays Business School.
Cross Listing: IBUS 450/MGMT 450.

MGMT 452/IBUS 452 International Management
Credits 3. 3 Lecture Hours.
An overview of international management to include international dimensions of organizational behavior, theory, strategy and human resource management; application of theoretical ideas to real-world situations through case analyses, presentations, projects and interactive class discussion.
Prerequisite: MGMT 450/IBUS 450 or IBUS 450/MGMT 450, or concurrent enrollment.
Cross Listing: IBUS 452/MGMT 452.

MGMT 453/IBUS 453 Emerging Economies: Brazil, Russia, India, China
Credits 3. 3 Lecture Hours.
Examination of present and future dynamics of the emerging economies of Brazil, Russia, India and China and their impact on the developing and developed worlds; importance of BRIC countries and their position in the world; history and development of these countries and the current business environment in each.
Prerequisite: MGMT 363.
Cross Listing: IBUS 453/MGMT 453.
MGMT 457/IBUS 457 Global Entrepreneurship
Credits 3. 3 Lecture Hours.
Practical issues associated with taking small- and medium-size business
global; includes importing and exporting, developing global strategies,
evaluating market opportunities, regional impact on economies and
people.
Prerequisite: Admission to upper division in Mays Business School.
Cross Listing: IBUS 457/MGMT 457.

MGMT 460 Managing Projects
Credits 3. 3 Lecture Hours.
Application of management processes to complex interdisciplinary organizational environments through the study of program and project management; adoptions of traditional management theories to the project environment; master typical project management microcomputer software for project planning; resource allocation; project budgeting; and control of project cost, schedule and performance.
Prerequisite: MGMT 363.

MGMT 461 Entrepreneurship and New Ventures
Credits 3. 3 Lecture Hours.
The entrepreneurial process from conception of a business idea to the actual start up of the venture; environmental scanning for new opportunities; matching individual skills and attributes with the requirements of the venture; evaluating the viability, growth potential and markets for the venture; securing financing; beginning operations.
Prerequisites: Admission to upper division in Mays Business School and senior classification.

MGMT 464 The Political Environment of Business
Credits 3. 3 Lecture Hours.
Role of business in contemporary society; the large corporation and its external environment; ownership and control controversy; private and collective choice processes; role of regulation; social issues including pollution, discrimination, consumer protection, corporate social and ethical responsibilities, corporate political activity; international business relations.
Prerequisites: MGMT 363 and senior classification.

MGMT 465 Corporate Governance
Credits 3. 3 Lecture Hours.
Overview of the theories and practice of corporate governance; history of corporations, role and relationship of boards of directors, shareholders and management; concepts of agency cost, shareholder activism, executive compensation and international corporate governance in globalized markets; ethical issues and corporate social responsibility.
Prerequisite: MGMT 363.

MGMT 466 Strategic Management
Credits 3. 3 Lecture Hours.
Strategic issues facing organizations, including top management decision making and social responsibility; environmental and industry analysis; establishing organizational mission and objectives; corporate, business and functional level strategy formulation; global and multidomestic strategies; strategic implementation and control; integrating operations, finance, marketing and human resource strategies; case analysis.
Prerequisites: MGMT 363; FINC 341; SCMT 364; MKTG 321; senior classification.

MGMT 470 Entrepreneurial Small Business
Credits 3. 3 Lecture Hours.
Exploration of practical approaches to growing a small business, evaluating and projecting financial performance, raising capital, legal formations and issues, human resource management, business plan development, franchising and family business; networking opportunities with local business leaders, successful former student entrepreneurs and current student entrepreneurs operating at the student incubator.
Prerequisites: Admission to upper division in Mays Business School and senior classification.

MGMT 475 Leadership Development
Credits 3. 3 Lecture Hours.
Explores the evolution of leadership theory and practice with an emphasis on effective and ineffective leaders' traits, behaviors, and styles in profit and not-for-profit work organizations; reviews critical aspects of leader role behavior from theoretical and practical perspectives; examines leader effectiveness at the individual, group, and strategic level.
Prerequisite: MGMT 363.

MGMT 476/SOCI 476 Entrepreneurship Practice
Credits 3. 3 Lecture Hours.
Practical skills for creating new businesses; evaluating, planning and operational strategy, including assessing the technology; product and service markets, value creation model; financing strategies; legal, regulatory, socio-economic drivers, risks; leadership to develop management team, advisory board; go-to-market strategy; develop own entrepreneurial opportunities or those of faculty and entrepreneurs.
Cross Listing: SOCI 476/MGMT 476.

MGMT 477 Entrepreneurship: The Lean Startup Approach
Credits 3. 3 Lecture Hours.
Application of current lean startup methodologies working directly with existing student entrepreneurs and mentors in preparing for the launch of a real business at the student incubator (Startup Aggieland); act as advocates and consultants assisting with organizational structure, marketing and market validation, financial analysis and risk assessment.
Prerequisites: Junior or senior classification and approval of instructor.

MGMT 478/SOCI 450 Social Entrepreneurship
Credits 3. 3 Lecture Hours.
Applying business principles and practices to solve social, economic and environmental problems; social entrepreneurship concepts and issues in scaling social enterprise ventures including management tools, organization structures, funding sources, impact measurement; experience in opportunity recognition, designing, planning, pitching social mission ventures; build social capital with social enterprise founders.
Cross Listing: SOCI 450/MGTMT 478.

MGMT 481 Seminar in Management
Credit 1. 1 Other Hour.
Discussions and observation of current management practice in the public and private sectors of the nation; reading and discussion of current events and changes taking place in management theory and/or its application and practice in actual business and government situations. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School or admission to Maritime Administration, or approval of instructor; also taught at Galveston campus.
MGMT 484 Management Internship
Credits 1 to 4. 1 to 4 Other Hours.
Internship in management: staffing; planning; organizing; leading and controlling. Enrollment is limited to those who have managerial responsibilities for the resources used by a business firm or the like.
Prerequisites: Management major; MGMT 363; approval of instructor prior to internship.

MGMT 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed study on selected problems in the area of management not covered in other courses.
Prerequisites: Admission to upper division in Mays Business School; senior classification and approval of department head.

MGMT 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of management. Consult the professor offering a particular special topics course for details. May be repeated for credit.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

MICR - Microbiology (MICR)

MICR 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of microbiology. May be repeated for credit.
Prerequisite: Approval of instructor.

MICR 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Freshman or sophomore classification and approval of instructor.

MICR 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of microbiology. May be repeated once for credit.

MICR 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Junior or senior classification and approval of instructor.

MKTG - Marketing (MKTG)

MKTG 298 Marketing Internship Experience
Credits 0. 0 Other Hours.
Participation in a 300-hour internship in a field related to certificate program. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.

MKTG 299 Marketing Professional Organization Involvement
Credits 0. 0 Other Hours.
Participation in an approved professional marketing organization. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.

MKTG 321 Marketing
Credits 3. 3 Lecture Hours.
Exploration of the activities and managerial decisions involved in the provision of products to customers; includes strategic marketing fundamentals, buyer behavior, market segmentation, managerial issues related to the marketing mix (product, pricing, distribution, and promotion) decision variables, and social and ethical issues.
Prerequisite: ACCT 230 and MGMT 211, or concurrent enrollment; ISTM 210, AGEC 217, or MARA 250, or concurrent enrollment; admission to upper division in Mays Business School or admission to Maritime Administration; also taught at Galveston campus.

MKTG 322 Consumer Behavior
Credits 3. 3 Lecture Hours.
Application of behavioral science designed to provide in-depth knowledge of the fundamental theories and concepts of consumer behavior, with an emphasis on consumers in the marketplace as individuals, as decision makers, and as influenced by culture.
Prerequisite: MKTG 321.

MKTG 323 Marketing Research
Credits 3. 3 Lecture Hours.
Nature and uses of marketing research in business; methods of collecting, analyzing and interpreting data needed for business decisions, with specific application to problems in marketing.
Prerequisites: MKTG 321; SCMT 303 or AP STAT 301 or AP STAT 302 or AP STAT 303.

MKTG 325 Services Marketing and Retailing Concepts
Credits 3. 3 Lecture Hours.
Study of how service organizations, including retailers, require a distinctive approach to marketing strategy in development and execution; e.g. banks, schools, hospitals, hotels, professional services and transportation companies; specifically applies marketing concepts in service industry setting; opportunities to meet industry thought leaders in retailing and other service industries.
Prerequisite: MKTG 321.

MKTG 326 Innovations in Retailing
Credits 3. 3 Lecture Hours.
Retail strategies such as channels of distribution, private labels, customer service levels, visual presentation, pricing, and marketing mix that influence a retail business model.
Prerequisite: MKTG 321.

MKTG 335 Professional Selling
Credits 3. 3 Lecture Hours.
General principles of personal selling in both consumer and industrial markets plus specialty selling.
Prerequisite: MKTG 321.

MKTG 336 Managing Business to Business Relationships
Credits 3. 3 Lecture Hours.
Customer relationship management concepts and tools; sales technology; organizational buyer behavior; planning; channels; new products; performance management.
Prerequisite: MKTG 335.

MKTG 345 Social Media and Public Relations
Credits 3. 3 Lecture Hours.
Marketing and promotional strategy related to social media, the internet and interactive media; managing publicity and public relations with a wide variety of stakeholders.
Prerequisite: MKTG 321.

MKTG 346 Marketing Management
Credits 3. 3 Lecture Hours.
Biology faculty member.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Freshman or sophomore classification and approval of instructor.
MKTG 347 Advertising and Creative Marketing Communications
Credits 3. 3 Lecture Hours.
Advertising and integrated marketing communications; market segmentation and targeting; development of multi-media campaigns; emphasis on enhancing creativity, critical thinking, and communication skills.
Prerequisite: MKTG 321.

MKTG 401/IBUS 401 Global Marketing
Credits 3. 3 Lecture Hours.
Survey of the aspects involved in marketing goods and services in a global marketplace; social, political, legal and economic issues associated with conducting business globally.
Prerequisite: MKTG 321.
Cross Listing: IBUS 401/MKTG 401.

MKTG 402/IBUS 402 International Marketing: Study Abroad
Credits 3. 3 Lecture Hours.
Introduction to the facets of doing business in an international setting; provides exposure to a variety of foreign cultures; facilitates understanding of the international marketplace in which these students will function.
Prerequisites: MKTG 321 or MKTG 409; junior classification; 2.5 GPR overall.
Cross Listing: IBUS 402/MKTG 402.

MKTG 403/IBUS 403 International Market Entry Strategies
Credits 3. 3 Lecture Hours.
A research-based course in which students prepare an analysis of a country, or region outside the U.S., and use it in the preparation of a marketing plan for a good or service to be introduced and marketed in that country.
Prerequisites: MKTG 321 or MKTG 409; concurrent registration in IBUS 402/MKTG 402 or MKTG 402/IBUS 402; junior or senior classification.
Cross Listing: IBUS 403/MKTG 403.

MKTG 404 Data Visualization for Marketers
Credits 3. 3 Lecture Hours.
Summarize, analyze and interpret complex data using graphical representation to inform and drive business decisions; data analysis and design principles to effectively explore data and communicate insights from data using visualization techniques.
Prerequisites: MKTG 321.

MKTG 409 Principles of Marketing
Credits 3. 3 Lecture Hours.
Survey of the basic concepts and decisions associated with product, promotion, distribution, and pricing; focuses on developing marketing strategies that contribute to building long-term customer relationships and achieving the organization’s objectives. May not be used to satisfy degree requirements for a major in business.
Prerequisites: Junior classification; for students other than business and agribusiness majors.

MKTG 425 Retail Merchandising
Credits 3. 3 Lecture Hours.
Theories, concepts and practices relating to the merchandising of products for enhancing sales and profit growth of retail businesses; emphasis on retail math, purchasing decisions, vendor negotiations, communications skills, assortment planning and competitive analysis.
Prerequisite: MKTG 321.

MKTG 426 Advanced Retail Case Study
Credits 3. 3 Lecture Hours.
Problems and opportunities faced by retailing organizations; development of an effective strategy through application-oriented seminars and activities, interaction with industry guest speakers and executives; analysis of retail strategies in field settings and completion of a semester long retail audit; participation in a national case competition.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

MKTG 427 Retailing Strategy and Metrics
Credits 3. 3 Lecture Hours.
Survey of the concepts, policies, theories and practices for managing a retail firm in a competitive environment; includes functions of retailers, retail customers, supply chain, legal and ethical behavior; location analysis, pricing, promotion, customer services and layout.
Prerequisites: MKTG 321.

MKTG 430 Marketing Consulting
Credits 3. 3 Lecture Hours.
Consulting tools and techniques, managing client relationships, preparing reports and presentations, problem-solving processes; semester-long client project.
Prerequisites: MKTG 323.

MKTG 431 Marketing Analytics
Credits 3. 3 Lecture Hours.
Data driven marketing strategy, data handling and management techniques, use of statistical software to estimate marketing models, project based course focused on making decision making.
Prerequisite: MKTG 321.

MKTG 432 Corporate Social Responsibility
Credits 3. 3 Lecture Hours.
Study of the role of corporate social responsibility, corporate governance and business ethics with an emphasis on the marketing perspective.
Prerequisites: MKTG 321.

MKTG 435 Advanced Selling
Credits 3. 3 Lecture Hours.
In-depth strategic account planning, extensive role-play and team selling exercises, sales analytics, networking and prospecting, strategic goal setting and time management.
Prerequisites: MKTG 335.

MKTG 436 Sales Leadership
Credits 3. 3 Lecture Hours.
Ethical planning, organizing, staffing, training, motivating and evaluating salespeople; understanding the sales environment and organization as well as career and time management.
Prerequisite: MKTG 335.

MKTG 438 Strategic Digital Marketing
Credits 3. 3 Lecture Hours.
Implications of the internet and related digital technologies for marketing; evolution of the digital marketplace and impact on firms’ marketing mix decisions; competitive advantage; public policy issues; future trends and developments.
Prerequisite: MKTG 321.
MKTG 440 Services Marketing
Credits 3. 3 Lecture Hours.
Focuses on the unique challenges of managing a service-based business; delivering quality service to customers and building strong customer relationships; applicable to for-profit and not-for-profit organizations that depend on service excellence for competitive advantage.
Prerequisite: MKTG 321.

MKTG 441 Service Quality in Healthcare
Credits 3. 3 Lecture Hours.
Preparation for a career in healthcare leadership by focusing on opportunities to improve the service experience of patients, providers and other stakeholders; improve the quality of life; enhance the efficient and effective use of healthcare resources.
Prerequisite: MKTG 321.

MKTG 442 Innovation and Product Management
Credits 3. 3 Lecture Hours.
Opportunity identification, concept generation, concept and program evaluation, development and launch of the various types of new products; specific topics include creativity, design, launch and management of new products.
Prerequisite: MKTG 321.

MKTG 443 The Business of Healthcare
Credits 3. 3 Lecture Hours.
Preparation for contributing to the healthcare system by gaining an understanding of selected business of healthcare topics such as the role of healthcare in the economy, the cost of healthcare, the patient experience, technology and ethics.
Prerequisites: MKTG 321.

MKTG 444 HealthTech for Improving Customer Care
Credits 3. 3 Lecture Hours.
Contemporary examination of the development, marketing and co-created value-in-use aspects of technology products (e.g., databases, applications, mobiles, wearables) in the health industry used to improve the delivery, payment and consumption of care.
Prerequisite: MKTG 321.

MKTG 445 Account Planning and Research
Credits 3. 3 Lecture Hours.
Concepts in account planning; gathering and analyzing data (database analysis, focus groups, interviews, surveys); compilation of research into a situation analysis and creative brief for use in a national advertising case competition.
Prerequisites: MKTG 321, approval of instructor.

MKTG 447 Advanced Advertising: Case Competition
Credits 3. 3 Lecture Hours.
Development of a fully integrated, multi-million dollar budgeted advertising campaign plan; participation in a national case competition.
Prerequisite: MKTG 321; approval of instructor.

MKTG 448 Marketing Strategy
Credits 3. 3 Lecture Hours.
Marketing decision-making and strategies in case situations; integration of product, pricing, distribution, and promotion considerations for the purposes of determining and evaluating the optimal marketing strategy.
Prerequisite: MKTG 323; graduating marketing senior.

MKTG 449 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of marketing. May be repeated once for credit.
Prerequisites: Admission to upper division in Mays Business School and approval of instructor.

MLSC - Military Science (MLSC)

MLSC 121 Introduction to the United States Army I
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Introduction to the United States Army and the Army Reserve Officer Training Corps (ROTC); its purpose in the Army and its advantages; Army customs, courtesies, traditions, and Army values; Army history and individual soldier skills with an emphasis on leadership; includes a leadership laboratory.

MLSC 122 Introduction to the United States Army II
Credits 2. 1 Lecture Hour. 3 Lab Hours.
The second half of an introductory two-semester survey of the United States Army; principles of leadership, Army history, management theory and individual soldier skills; emphasis on critical thinking and problem solving skills; foundation for tactical and leadership concepts; includes a leadership laboratory.

MLSC 221 Tactics and Leadership Theory I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Dimensions of creative and innovative leadership strategies through team dynamics and leadership theories that form the basis of the Army leadership framework (trait and behavior theories); infantry tactics, techniques and procedures; includes a leadership laboratory.

MLSC 222 Tactics and Leadership Theory II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
The second half of a two-semester survey on leadership theory and infantry tactics; emphasis on leading tactical teams in a complex environment; Army planning and orders process; adaptive leadership styles in the context of military operations; case studies on the importance of teamwork and tactics in real-world scenarios; includes a leadership laboratory.

MLSC 321 Adaptive Leadership and Tactical Operations I
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Theoretical and practical application of adaptive leadership as it relates to planning, executing and evaluating complex tactical operations; ability to assess risk, ethical decision-making, managing people and critical thinking skills in a tactical environment; includes a leadership laboratory.
MLSC 322 Adaptive Leadership and Tactical Operations II
Credits 3. 3 Lecture Hours. 1 Lab Hour.
The second half of a two-semester survey on adaptive leadership and tactical operations; ethical decision-making, planning, executing and evaluating military operations at a tactical level; preparation to attend the Leadership, Development and Assessment Course (LDAC) for the Army's commissioning process; includes a leadership laboratory.

MLSC 421 The Army Officer and the Profession of Arms I
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Advanced study, research and practical application of Army training, operations and doctrine; the military as a profession, functioning as a member of a staff, and officer corps; law of land warfare, principles of war, and rules of engagement and their application; duties and responsibilities of a Second Lieutenant in the United States Army; includes a leadership laboratory.

MLSC 422 The Army Officer and the Profession of Arms II
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Dynamics of leadership in a complex world; cultural awareness, terrorism, non-governmental organizations, and operational security; off-site battlefield analysis and application of military concepts; maintaining an ethical climate in an organization, military support structures, and equal opportunity; duties and responsibilities of a Second Lieutenant in the United States Army; includes a leadership laboratory.

MLSC 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed study of problems in the field of military science.
Prerequisite: Junior or senior classification with approval of department head.

MLSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of military science. May be repeated for credit.

MLSC 491 Research
Credits 1 to 4. 1 to 4 Lecture Hours.
Research conducted under the direction of a faculty member in military science. May be taken three times for credit.
Prerequisite: Junior or senior classification or approval of instructor.

MMET - Mfg & Mech Engr Tech (MMET)

MMET 105 Engineering Graphics
Credits 2. 1 Lecture Hour. 3 Lab Hours.
(ENGR 1204, ENGR 1304) Engineering Graphics. Graphical approach to the engineering design process as applied to products; methods of graphical communications, three-dimensional geometry, working drawings, data analysis, computer graphics, introduction to team dynamics and creative problem solving.

MMET 181 Manufacturing and Assembly Processes I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
A survey of metal manufacturing processes; traditional machining, non-traditional machining, welding, fabrication, casting and assembly.
Prerequisite: Grade of C or better in MMET 105, ENGR 102, or ENGR 111, or concurrent enrollment.

MMET 201 Manufacturing and Materials
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Survey of metallic and non-metallic materials; selection and applications of materials; introduction to traditional and non-traditional manufacturing processes, assembly processes, and metrology.
Prerequisite: Grade of C or better in ENGR 102 or ENGR 111, CHEM 107, and CHEM 117; industrial distribution major.

MMET 206 Nonmetallic Materials
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to structure, properties, processing and application of forest products, plastics, ceramics and composites; laboratory includes processing, physical and mechanical testing, applications, surface treatment and material identification.
Prerequisite: CHEM 102 or CHEM 107 with a grade of C or better; manufacturing and mechanical engineering technology or industrial distribution major or approval of department.

MMET 207 Metallic Materials
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to structure, properties and engineering application of ferrous and nonferrous materials; beneficiation, production of ferrous and nonferrous metals, destructive and nondestructive testing, protective coatings, strengthening and heat treatment; laboratory includes metallographic procedures, mechanical testing, heat treatment, surface treatment, corrosion testing, recrystallization and failure analysis.
Prerequisite: CHEM 102 or CHEM 107 with a grade of C or better; manufacturing and mechanical engineering technology or industrial distribution major or approval of department.

MMET 275 Mechanics for Technologists
Credits 3. 3 Lecture Hours.
(ENGR 2301, ENGR 2401) Mechanics for Technologists. Forces, moments and couples in 2-D and 3-D systems; equilibrium of rigid bodies; structural analysis; friction and applications; centroids and moments of inertia.
Prerequisites: Grade of C or better in MATH 152 and PHYS 206 or PHYS 218; manufacturing and mechanical engineering technology major.

MMET 281 Manufacturing and Assembly Processes II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Continuation of MMET 181, polymer manufacturing processes, additive manufacturing, advance manufacturing.
Prerequisites: Grade of C or better in MMET 181 and MMET 206; manufacturing and mechanical engineering technology major or approval of department.

MMET 301 Mechanical Power Transmission
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Overview of the engineering concepts of mechanical power and the components within a system to provide transmission of that power into useful work; experimental application of the related theory as it relates to the industrial distributor; ‘real world’ knowledge learned for application in industry.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; grade of C or better in MATH 151, MATH 152, CHEM 107, CHEM 117, PHYS 206, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; grade of C or better in MMET 201 or concurrent enrollment; junior or senior classification in industrial distribution.
MMET 303 Fluid Mechanics and Power
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fluid mechanics and fluid power applications for technologists; fluid properties; conservation of energy and momentum; incompressible flow in pipes; standard symbols: components and control of hydraulic systems and pneumatic systems.
Prerequisites: Grade of C or better in MMET 275; manufacturing and mechanical engineering technology major.

MMET 307 Computer Design Graphics
Credits 3. 3 Lecture Hours.
Use of microcomputers with currently available CAD software as an aid in the design process and as a means of increasing engineering productivity; review of ANSI standards and an introduction to a variety of computer graphics applications encountered in industry; user-oriented.
Prerequisites: Grade of C or better in MMET 105 or MMET 181.

MMET 313 Industrial Welding Processes
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Theory and practical applications of industrial welding and cutting processes; experience in operation of various machines and processes.
Prerequisites: Grade of C or better in MMET 181, MMET 207 and MMET 376; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 320 Quality Assurance
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Applied statistical process control and design-of-experiment techniques for quality improvement and process characterization; emphasis on organizations operating in a continuous-improvement, customer-driven environment; statistical thinking; control charts; capability analysis of product, process and measurement system; experimental process characterization, prediction models and input variable control.
Prerequisites: Grade of C or better in STAT 211; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 361 Product Design and Solid Modeling
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Design processes and methodologies including quality function deployment, materials and process selection, and design for manufacturing and assembly; fundamentals of modeling part geometry and mechanical assembly using parametric CAD software.
Prerequisites: Grade of C or better in ENGR 216/PHYS 216 or PHYS 216/ENGR 216, MMET 181, MMET 206, MMET 207, and MMET 275; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 363 Mechanical Design Applications I
Credits 3. 3 Lecture Hours.
Principles of design of mechanical components; theories of failure; Soderberg and Goodman diagrams; fatigue and fracture design criteria; materials and their selection to engineering applications; component assembly aspects; design of fasteners and springs as examples.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; grade of C or better in MMET 376, MATH 151, MATH 152, CHEM 107, CHEM 117, PHYS 206, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 370 Thermodynamics for Technologists
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Thermal and mechanical energy transformations; relationships applied to flow and non-flow processes in power and refrigeration cycles; devices include compressors, turbines, heat exchangers, nozzles, diffusers, pumps and piston-cylinder models; computer modeling.
Prerequisites: Grade of C or better in PHYS 206, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 376 Strength of Materials
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Stress and strain; elastic moduli Poisson's ratio; torsion, bending, unsymmetrical bending; design of beams and shafts; deflection of beams; buckling of columns; material and strength characterization laboratory tests.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; grade of C or better in MMET 207, MMET 275, MATH 151, MATH 152, CHEM 107, CHEM 117, PHYS 206, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 380 Computer-Aided Manufacturing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Basic concepts in computer-aided manufacturing with emphasis on a system approach to manufacturing activities; use of numerical control machine tools and other computer based software as applied to different industries.
Prerequisites: Grade of C or better in MMET 181 and MATH 152; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 383 Manufacturing Information Systems
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Use of information technology for manufacturing enterprise applications, including computer-integrated manufacturing, database, computer networking, web-technology and enterprise resource planning.
Prerequisites: Grade of C or better in MMET 380; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 401 Fluid Power Transmission
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Engineering concepts of hydraulics and pneumatic power and its components within a system to provide transmission of that power into useful work; experimental application of the related theory as it relates to the industrial distributor; real world knowledge learned for application in industry.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; grade of C or better in MMET 201, MMET 301, PHYS 207, MATH 151, MATH 152, CHEM 107, CHEM 117, PHYS 206, ENGR 216/PHYS 216 or PHYS 216/ENGR 216, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; junior or senior classification in industrial distribution.

MMET 402 Inspection Methods and Procedures
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Methods and procedures in nondestructive inspection of materials and industrial products; ultrasonics, dye penetrants, magnetic particle, radiography and supportive evaluation methods such as weld sectioning, polishing, etching and macroscopic analysis.
Prerequisites: Grade of C or better in MMET 281 and MMET 376; junior or senior classification in manufacturing and mechanical engineering technology.
MMET 405 Weldability of Ferrous Metals
Credits 3. 3 Lecture Hours.
Applied principles of metallurgy with reference to weldability of ferrous metals.
Prerequisites: Grade of C or better in MMET 207 and MMET 313; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 410 Manufacturing Automation and Robotics
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Hardware for automated work handling, conveyors, loaders, robots, storage devices; power sources and methods of control, electric motors, controllers, program logic controllers, robot programming; interfacing of equipment controls; and manufacturing work cells.
Prerequisites: Grade of C or better in MMET 361, MMET 376, MMET 383 and ESET 300; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 412 Production and Inventory Planning
Credits 3. 2 Lecture Hours. 2 Lab Hours.
An introductory treatment of models and techniques for the planning of production and inventory systems.
Prerequisites: Grade of C or better in MMET 320, MMET 383 and ISEN 302; senior classification in manufacturing and mechanical engineering technology.

MMET 414 Micro/Nano Manufacturing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Product miniaturization and impact; review of atomic structure, electrical and physical properties of materials; ultraprecision machining; microlithography; dry and wet etching/sputtering techniques; isotropic and anisotropic processes; pattern transfer with additive processes; surface micromachining; microreplication processes; introduction to packaging technology and nanometry; manufacturing of selected microsystems (MEMS) and their applications.
Prerequisites: Grade of C or better in CHEM 107, PHYS 207, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 418 Medical Manufacturing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Surveys relevant regulations, biocompatibility of engineering materials, and emphasizes suitable techniques for medical device manufacturing.
Prerequisites: Grade of C or better in MMET 181; junior or senior classification in manufacturing and mechanical engineering technology.

MMET 422 Manufacturing Technology Projects
Credits 2. 1 Lecture Hour. 3 Lab Hours.
A capstone projects course utilizing a team approach to an analysis and solutions of manufacturing problems.
Prerequisites: Grade of C or better in MMET 429; grade of C or better in MMET 410, MMET 412 and MMET 463, or concurrent enrollment; must be taken in fall or spring semester; senior classification in manufacturing and mechanical engineering technology.

MMET 429 Managing People and Projects in a Technological Society
Credits 3. 3 Lecture Hours.
Supervisory and project management duties and responsibilities in technology based organizations and the methods required to fulfill these functions.
Prerequisites: Grade of C or better in ISEN 302 and MMET 361; grade of C or better in MMET 363, or concurrent enrollment; must be taken in the fall or spring semester immediately prior to MMET 422; senior classification in manufacturing and mechanical engineering technology.

MMET 463 Mechanical Design Applications II
Credits 3. 3 Lecture Hours.
Applications of principles of analysis and design of machines and machine elements including linkages, robots, cam and follower systems, shafts, gears, clutches, belt and chain drives; introduction to the mathematical tools for the analysis and design of these machines and machine elements.
Prerequisites: Grade of C or better in MMET 361 and MMET 363; senior classification in manufacturing and mechanical engineering technology.

MODL - Modern Languages (MODL)

MODL 221/ENGL 221 World Literature
Credits 3. 3 Lecture Hours.
(ENGL 2332) World Literature. Survey of world literature from the ancient world through the sixteenth century in relation to its historical and cultural contexts; texts selected from a diverse group of authors, traditions and genres.
Cross Listing: ENGL 221/MODL 221.

MODL 222/ENGL 222 World Literature
Credits 3. 3 Lecture Hours.
(ENGL 2333) World Literature. Survey of world literature from the seventeenth century to the present in relation to its historical and cultural contexts; texts selected from a diverse group of authors, traditions and genres.
Cross Listing: ENGL 222/MODL 222.

MODL 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual supervision of readings or assigned projects, selected for each student individually. Written and oral reports. No class meetings.
Prerequisite: Approval of department head.

MODL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of modern languages. May be repeated for credit.
Prerequisite: Approval of department head.

MODL 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Individual supervision of readings or assigned projects, selected for each student individually. Written and oral reports. No class meetings.
Prerequisite: Approval of department head.

MODL 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of modern languages. May be repeated for credit.
Prerequisite: Approval of department head.
MSEN - Materials Science & Engr (MSEN)

MSEN 201 Fundamentals of Materials Science and Engineering
Credits 3. 3 Lecture Hours.
Fundamental principles of materials science and engineering and their application toward complex engineering challenges; relationship between materials structure and structural and functional properties of engineered materials; property-performance relationships; principle classes of materials, as illustrated through key materials advances; current directions in the field.
Prerequisites: Grade of C or better in MSEN 210 or concurrent enrollment;
Grade of C or better in CHEM 107 or CHEM 119 and PHYS 206.

MSEN 205 Materials in Society
Credits 2. 2 Lecture Hours.
Introduction to the study and practice of materials science and engineering; current topics in materials research and development, focusing on the impact of advanced materials on engineering fields and society; application of scientific engineering principals to guiding materials engineering process, with examples drawn from real-life case studies.
Prerequisite: Grade of C or better in MSEN 201, or concurrent enrollment;
Grade of C or better in CHEM 107 or CHEM 119 and PHYS 206.

MSEN 210 Thermodynamics of Materials
Credits 3. 3 Lecture Hours.
Basic concepts and fundamental laws of thermodynamics; processes and thermodynamic engines; phase equilibria and phase diagrams of simple substances; chemical reactions of condensed phases; computational software for thermodynamic and phase diagram calculations.
Prerequisites: Grade of C or better in MSEN 201, AERO 413, BMEN 343, CHEN 322, CVEN 306, MSEN 222/MSEN 222, MMET 206, MSEN 222/ MEEN 222, or NUEN 265, or concurrent enrollment; grade of C or better in MATH 152 or concurrent enrollment.

MSEN 222/MEEN 222 Materials Science
Credits 3. 3 Lecture Hours.
Mechanical, optical, thermal, magnetic and electrical properties of solids; differences in properties of metals, polymers, ceramics and composite materials in terms of bonding and crystal structure.
Prerequisites: Grade of C or better in CHEM 102 and CHEM 112, or CHEM 104 and CHEM 114, or CHEM 107 and CHEM 117; grade of C or better in PHYS 206 or PHYS 218.
Cross Listing: MEEN 222/MSEN 222.

MSEN 250 Soft Matter
Credits 3. 3 Lecture Hours.
Structure, properties and function of various classes of soft matter including colloids, polymers, amphiphils, liquid crystals and biomacromolecules; basic concepts of viscoelasticity, glass transition, liquid-liquid and liquid-solid transitions and gelation; forces acting between mesoscopic objects; supramolecular self-assembly in soft condensed matter.
Prerequisites: Grade of C or better in CHEM 120; MSEN 201, or concurrent enrollment.

MSEN 260 Structure of Materials
Credits 3. 3 Lecture Hours.
Materials structure over many orders of scale; structure of non-crystalline materials; symmetry, unit cell and the atomic structure of crystalline materials; liquid crystals; structural defects in ordered solids; microstructures and hierarchical structures.
Prerequisites: Grade of C or better in MSEN 201, AERO 413, BMEN 343, CHEN 322, CVEN 306, MSEN 222/MSEN 222, MMET 206, MSEN 222/ MEEN 222, or NUEN 265, or concurrent enrollment.

MSEN 281 Materials Science and Engineering Seminar
Credit 1. 1 Other Hour.
Presentation of technical advances in the field of materials science and engineering; applications toward solving engineering challenges; presentations from visiting industry, academic speakers, and faculty; introduction to current research themes and focal points in industry.
Prerequisite: Grade of C or better in MSEN 201, or concurrent enrollment.

MSEN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problems in the area of materials science and engineering. May be taken for credit 4 times.
Prerequisite: Approval of instructor.

MSEN 289 Special Topics In...
Credits 1 to 3. 1 to 3 Lecture Hours. 0 to 3 Lab Hours.
Selected topics in an identified area of materials science and engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

MSEN 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in materials science and engineering. May be taken for credit 4 times.
Prerequisites: Freshman or sophomore classification and approval of instructor.

MSEN 301 Unified Materials Lab I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integration of materials synthesis, structural characterization and property evaluation; theory and practice of experimental and simulation techniques; emphasis on relationship between processing parameters and resulting materials structure.
Prerequisites: Grade of C or better in MSEN 210 and MSEN 260, or concurrent enrollment.

MSEN 302 Unified Materials Lab II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integration of materials synthesis, structural characterization and property evaluation; theory and practice of experimental and simulation techniques; emphasis on relationship between materials structure and resulting materials physical properties.
Prerequisite: Grade of C or better in MSEN 301 and MSEN 320, or concurrent enrollment.

MSEN 305 Kinetics of Materials
Credits 3. 3 Lecture Hours.
Application of physical principles that drive evolution of materials as they approach thermodynamic equilibrium states; includes Gibbs free energy, driving forces, point defects, diffusion in solids, interface and grain boundary motion, nucleation, growth, transformation diagrams, precipitation, phase separation, ordering and solidification.
Prerequisite: Grade of C or better in MSEN 210.
MSEN 320 Deformation and Failure Mechanisms in Engineering Materials
Credits 3. 3 Lecture Hours.
Survey of deformation and failure mechanisms in different materials, including metals, ceramics, polymers and composites; effect of atomic structure, defects and microstructure on deformation and failure; deformation and failure mechanism maps and effects of temperature and deformation rate.
Prerequisite: Grade of C or better in MSEN 260.

MSEN 325 Properties of Functional Materials
Credits 3. 3 Lecture Hours.
Origins of functional materials properties from their electronic and molecular structure; electron theory in solids; electronic transport and dielectric behavior; optical and magnetic properties; current applications of functional materials.
Prerequisite: Grade of C or better in MSEN 260.

MSEN 330 Numerical Methods for Materials Scientists and Engineers
Credits 3. 3 Lecture Hours.
Computing platforms addressing scientific/engineering problems related to materials science and engineering; analyze data; implement mathematical models of materials behavior; numerical methods to solve materials-related problems.
Prerequisite: Grade of C or better in MATH 308, MSEN 305, and MSEN 320.

MSEN 360 Materials Characterization
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles and techniques used in characterization of different materials, including metals, ceramics, polymers, composites and semiconductor systems; microstructural, chemical/compositional and surface analysis methods; interpretation and analysis of the characterization results.
Prerequisite: Grade of C or better in MSEN 250 and MSEN 260.

MSEN 380 Communicating Materials Science and Engineering
Credit 1. 1 Lecture Hour.
Effective communication of technical topics in materials science and engineering to technical and non-technical audiences; emphasis on written reports.
Prerequisite: Grade of C or better in COMM 205 or ENGL 210; grade of C or better in MSEN 302, or concurrent enrollment.

MSEN 399 High Impact Professional Development
Credits 0. 0 Other Hours.
Student participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: Grade of C or better in MSEN 250 and MSEN 260; junior or senior classification.

MSEN 400 Design and Analysis of Materials Experiments
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Systematic design of experimental investigations; team approach to identify topics and develop experiment designs including establishing the need, associated requirements and objective; conduct experiments; characterize materials; analyze and interpret results; documenting the procedures, analysis, results and conclusions; present written and oral reports.
Prerequisites: Grade of C or better in MSEN 302.

MSEN 401 Materials Research and Design I
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Research and design process; need definition, functional analysis, performance requirements, evaluation criteria, conceptual design evaluation; introduction to systems engineering; parametric and risk analysis, failure analysis, material selection and manufacturability; cost and life cycle issues, project management; topics from sponsored research or an industry-sponsored design project.
Prerequisites: Grade of C or better in MSEN 281, MSEN 205 and MSEN 400.

MSEN 402 Materials Research and Design II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Continuation of MSEN 401; development of innovative solutions to research or industry-provided design challenges; structured framework and methodology for design activities; innovation, computational materials science, synthesis/processing and analysis/characterization of material components; project definition, management, customer interaction and effective team participation; presentations and design reviews.
Prerequisite: Grade of C or better in MSEN 401.

MSEN 410 Materials Processing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Synthesis, properties and processing of technologically important inorganic materials (metals and ceramics); includes thermodynamics and kinetics of different materials processing methods, casting, deformation processing, heat treatments, powder processing and sintering, coating and thin films processing, etc.
Prerequisite: Grade of C or better in MSEN 250, MSEN 305, and MSEN 320; junior or senior classification.

MSEN 415 Defects in Solids
Credits 3. 3 Lecture Hours.
Overview of point, line and surface defects in solids; relates defect properties to diffusion, deformation, phase transformations; focuses on atomic defects in crystals, with additional examples from liquid crystals, superconductors and ferromagnets; incorporates atomistic modeling to examine defect structure.
Prerequisite: Grade of C or better in MSEN 250, MSEN 305, and MSEN 320; junior or senior classification.

MSEN 420 Polymer Science
Credits 3. 3 Lecture Hours.
Types of polymerization; molecular characteristics of polymer chains; single chain statistics and rubber elasticity; phase transitions, glass transition, viscoelasticity and time-temperature superposition; polymer structure at the molecular, microscopic and macroscopic level; polymer thermosets, thermoplastics, elastomers, fibers, and advanced nanoparticle-filled composites.
Prerequisite: Grade of C or better in PHYS 206 and CHEM 120; junior or senior classification; or approval of instructor.

MSEN 426 Polymer Laboratories
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Laboratory to prepare those interested in polymer research with necessary experimental and analytical skills to conduct and analyze experimental work.
Prerequisite: Grade of C or better in MSEN 250, junior or senior classification; or approval of instructor.
MSEN 430 Nanomaterials Science
Credits 3. 3 Lecture Hours.
Nanotechnology and nanomaterials; types, fabrication, characterization methods and applications; current roles in technology and future impact of such systems on industry targeting.
Prerequisite: Grade of C or better in MSEN 260, junior or senior classification; or approval of instructor.

MSEN 440 Materials Electrochemistry and Corrosion
Credits 3. 3 Lecture Hours.
Survey of thermodynamic and kinetic fundamentals of electrochemistry; multiscale materials corrosion mechanisms; details of interfacial aqueous electrochemical mechanisms and the environmental effects when materials are exposed to different conditions.
Prerequisite: Grade of C or better in MSEN 201, AERO 413, BMEN 344, CHEN 322, CVEN 306, MEEN 222/MSEN 222, MMET 207, MSEN 222/MEEN 222, or NUEN 265; or approval of instructor.

MSEN 444 Corrosion and Electrochemistry Lab
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Laboratory practice and principles for corrosion and electrochemistry methods; design, carry out and analyze a series of labs illustrating the most important techniques in the field; builds to an open-ended corrosion engineering problem resulting in preparation of a technical report for a hypothetical client.
Prerequisite: Grade of C or better in MSEN 440, or approval of instructor.

MSEN 446 Corrosion Prevention and Control Methods
Credits 3. 3 Lecture Hours.
Cathodic protection and coatings; functional engineering approach to controlling and preventing aqueous corrosion; impressed current, galvanic anodes, organic, inorganic and hybrid coatings; case studies in oil and gas, energy, automotive and different industries.
Prerequisites: Grade of C or better in MSEN 201, or approval of instructor.

MSEN 458 Fundamentals of Ceramics
Credits 3. 3 Lecture Hours.
Structure-property relationships of ceramics and ceramic composites; atomic bonding in ceramics; crystalline and glassy structures; phase equilibria and ceramic reactions; mechanical, electrical, thermal, dielectric, magnetic and optical properties; ceramic processing; different properties of ceramics will be related to their underlying structure.
Prerequisite: Grade of C or better in MSEN 440, or approval of instructor.

MSEN 470 Computational Materials Science and Engineering
Credits 3. 3 Lecture Hours.
Modern methods of computational modeling and simulation of materials properties and phenomena, including synthesis, characterization and processing of materials, structures and devices; quantum, classical and statistical mechanical methods, including semi-empirical atomic and molecular-scale simulations and other modeling techniques using macroscopic input.
Prerequisites: Grade of C or better in MATH 308, MSEN 305, and MSEN 320.

MSEN 472 Atomistic Simulation of Materials
Credits 3. 3 Lecture Hours.
Modern methods of computational modeling and simulation of materials properties and phenomena at the atomistic scale; quantum, classical and statistical mechanical methods, including semi-empirical atomic and molecular-scale simulations, and other modeling techniques using macroscopic input.
Prerequisite: Grade of C or better in MSEN 470, or approval of instructor.

MSEN 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Practical experience working in a professional materials science and engineering setting offered on an individual basis. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification and approval of instructor.

MSEN 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed study of selected problems in the area of materials science and engineering. May be taken four times for credit.
Prerequisite: Approval of instructor.

MSEN 489 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of materials science and engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

MSEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in materials science and engineering. May be taken four times for credit.
Prerequisites: Junior or Senior classification or approval of instructor.

MUSC - Music (MUSC)

MUSC 102 Fundamentals of Music
Credits 3. 3 Lecture Hours.
(MUSI 1303) Fundamentals of Music. Introduction to the basic elements of music (pitch, rhythm, scales, intervals and triads) and how these elements interrelate to form musical compositions; the application of musical understanding to particular instruments such as the guitar, keyboard, recorder and voice.

MUSC 201 Music and the Human Experience
Credits 3. 3 Lecture Hours.
The study of a circumscribed musical topic in its sociohistorical context; emphasis on the aesthetic, social and cultural issues affecting music rather than on technical analysis. May be repeated for credit.

MUSC 204 Music Theory I
Credits 3. 3 Lecture Hours.
(MUSI 1311) Music Theory I. Structural principles of diatonic harmony and voice leading, phrase and period structure, rhythmic structure and aural and written analysis and composition of small instrumental and vocal musical forms found in common practice period and recent popular musics.
Prerequisites: PERF major or minor, or approval of instructor.

MUSC 205 Music Theory II
Credits 3. 3 Lecture Hours.
(MUSI 1312) Music Theory II. Continuation of structural principles of tonal harmony and voice leading, including chromaticism and modulation; composition and analysis of larger musical forms, including binary, rounded binary, ternary, rondo, theme and variations and sonata form.
Prerequisites: MUSC 204, PERF major or minor, or approval of instructor.
MUSC 209 Global Musicianship
Credits 3. 3 Lecture Hours.
Aesthetics and meaning-making in global music traditions; analysis of musical structures and performance; advanced practice in rhythm, melody, listening skills, harmony, improvisation and oral analysis.
Prerequisites: Major or minor in PERF, or approval of instructor.

MUSC 211 Collaborative Musicianship
Credits 3. 3 Lecture Hours.
Project-based approach to Western music traditions; critical reflection on aesthetics and performance of Western music; cross-cultural influences; notation and ear training; knowledge applied to the creative process.
Prerequisites: Major or minor in PERF, or approval of instructor.

MUSC 214 Perspectives on World Music
Credits 3. 3 Lecture Hours.
A thematic overview of basic issues in ethnomusicology; provides an appreciation for the diversity of ways in which music sound and music making are organized in world cultures; includes music making and the performance event, music and identity, music and nationalism, and music and globalization.

MUSC 215 Fieldwork in World Music
Credits 3. 3 Lecture Hours.
Hands-on experience with readings in and critical analysis of ethnographic musical research; philosophies and practices of fieldwork on the world’s music.

MUSC 221 Guitar Heroes
Credits 3. 3 Lecture Hours.
Survey of social, cultural and aesthetic transformations of music history centered on important classical guitarists; exploration of their performance and compositional/musical styles; analysis of how their contributions gave rise to and revived the guitar’s popularity as a concert-level instrument in both the classical and folk idioms.

MUSC 222 Music of the Americas
Credits 3. 3 Lecture Hours.
Evolution of music of the Americas and the Caribbean; influence of natives, people of forced relocation and people from European communities; the syncretic process of music making.

MUSC 225 History of Jazz
Credits 3. 3 Lecture Hours.
Non-technical survey of jazz as America’s classical music, from the earliest recorded blues through the most recent trends; examination of how jazz has broadly expressed issues of modern life.

MUSC 226 History of Rock
Credits 3. 3 Lecture Hours.
Examination of the development of rock music; emphasis on how the sounds and meaning of music reflects culture, ideology and history; also taught at Galveston campus.

MUSC 227 Popular Music of India
Credits 3. 3 Lecture Hours.
Introduction to Indian popular musics and society; focus on musical, cultural and aesthetic features of “Bollywood” films and film songs; overview of Indian social, cultural and religious expression.

MUSC 228 History of Electronic Music
Credits 3. 3 Lecture Hours.
Historical survey of electronic music, including key technological advancements, people and musical works; exploration of electronic music from different genres and countries.

MUSC 235 Introduction to Composition
Credits 3. 3 Lecture Hours.
Significant styles and techniques in contemporary music including classical, jazz and popular trends; contemporary sonic design achieved through written exercises, reading and critical listening.

MUSC 245 Composition I
Credit 1. 2 Other Hours.
Instruction in composition; the writing of small-form musical compositions employing contemporary styles; techniques in writing for instrumental, vocal, electronic and mixed-media resources. May be taken two times for credit.
Prerequisites: Grade of C or better in MUSC 235, or approval of instructor.

MUSC 255 Keyboard Instruction
Credit 1. 2 Other Hours.
(MUSI 1181, MUSI 1182, MUSI 2181, MUSI 2182) Keyboard instruction.
Instruction in keyboard performance; broad range of literature with special emphasis on the historical and theoretical aspects that reveal the performance practices of specific periods; individual and group laboratory instruction.
Prerequisite: Approval of instructor.

MUSC 280 Ensemble Performance—University Concert Bands
Credit 1. 3 Lab Hours.
Four select musical performing ensembles (Wind Symphony, Symphonic Winds, Symphonic Band, and Concert Band) composed of 65 to 100 members each and devoted to learning the extensive literature written for wind band; activities include at least two concerts per semester; occasional national and international tours each spring. Students may register in up to but no more than two different sections of this course. May be repeated for credit.

MUSC 281 Ensemble Performance—Small Ensembles
Credit 1. 3 Lab Hours.
Participation in small ensemble performance; the study and performance of small ensemble repertory from all historical periods and styles. May be repeated for credit.
Prerequisite: Satisfactory audition.

MUSC 282 Ensemble Performance—Jazz Ensemble
Credit 1. 3 Lab Hours.
A select musical performing ensemble of 18 to 25 members devoted to performing all styles and periods of jazz music from big band to modern jazz; activities include at least 2 performances each semester. May be repeated for credit.
Prerequisite: Satisfactory audition.

MUSC 283 Ensemble Performance—University Orchestras
Credit 1. 3 Lab Hours.
Two select orchestral performing ensembles (Chamber Orchestra and Philharmonic Orchestra) devoted to the rehearsal and performance of orchestral literature of various historical backgrounds; activities include full ensemble rehearsal, individual practice and public performances with the development of knowledge, understanding and appreciation for aspects of music ranging from the Renaissance to the Modern Era.
Prerequisites: Previous orchestral experience; successful audition.
MUSC 290 Ensemble Performance—Choir
Credit 1. 1 Other Hour.
A select musical performing ensemble composed of 40 to 70 members devoted to learning and performing works from the vast repertory of choral music from all historical periods and styles; several performances, occasionally with orchestra, each semester on and off campus. Students may register in up to but no more than two different sections of this course. May be repeated for credit.
Prerequisite: Satisfactory audition.

MUSC 316 Music and Technology
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Study of music produced with the aid of electronic and computer technologies; critical listening and analysis of music literature; understanding of technical concepts; required laboratory provides creative practical experience in studio and live performance applications.
Prerequisite: Junior or senior classification.

MUSC 317 Recording and the Producer
Credits 3. 3 Lecture Hours.
Tools and techniques of studio recording; the studio as compositional tool; recorded literature examining the creative and ideological impact of the producer; recording projects applying course techniques and exploring aesthetic concepts.
Prerequisite: Junior or senior classification.

MUSC 318 Electronic Composition
Credits 3. 3 Lecture Hours.
Project-based study of techniques for creating electronic and mixed-media performance; critical analysis of important electronic and interactive works; interactive media programming techniques for sound and video synthesis, sampling, digital signal processing.
Prerequisites: Junior or senior classification.

MUSC 324/ANTH 324 Music in World Cultures
Credits 3. 3 Lecture Hours.
Examination of music from an ethnomusicological perspective focusing on musical performance and the complex interrelationship of music to culture, society and daily life; examination of music from a variety of cultures through a series of case studies.
Prerequisite: Senior classification.

MUSC 345 Composition II
Credit 1. 2 Other Hours.
Advanced instruction in composition; the writing of large-form musical compositions employing contemporary styles; techniques in writing for instrumental, vocal, electronic and mixed-media resources. May be repeated for credit.
Prerequisite: MUSC 245 with a grade of C or better, or approval of instructor.

MUSC 355 Individual Performance—Keyboard II
Credit 1. 2 Lab Hours.
Advanced instruction in keyboard performance; broad range of literature with special emphasis on the historical and theoretical aspects that reveal the performance practices of specific periods; individual and group laboratory instruction. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor.

MUSC 381 Ensemble Performance
Credits 3. 3 Lecture Hours.
Performance and research in ensemble settings covering a wide variety of genres from world cultures, including contemporary, historical, popular, folk and classical genres.
Prerequisites: Performance Studies major or minor, junior or senior classification, or approval of instructor.

MUSC 400 Senior Seminar and Project
Credits 3. 3 Other Hours.
Culminating senior project on an individually-chosen research topic, presentation of a recital, or lecture-demonstration.
Prerequisites: Senior classification; completion of all 300- and 400-level coursework with a grade of C or better required for the B.A. in Music; music major; approval of instructor, advisor, and department head.

MUST 221/ARCH 221 Foundations of Museum Studies
Credits 3. 3 Lecture Hours.
Introduction to museums, cultural heritage and collections care; best practices for non-profit institutions, public engagement and the collection, preservation and exhibition of material culture; emphasis on archaeological, ethnographic, and historical collections, or other collections of cultural significance.
Cross Listing: ARCH 221/MUST 221.

MXET - Multidiscip Engr Tech (MXET)

MXET 300 Mechatronics I – Mobile Robotic Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Mechanical, electronic, software, control and communications aspects of embedded intelligence-based electromechanical systems with a focus on mobile robotic platforms.
Prerequisites: Grade of C or better in MXET 375, PHYS 207, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; grade of C or better in ESET 359 and ESET 369 or concurrent enrollment.

MXET 375 Applied Dynamic Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Study of translational mechanical system dynamics, rotational mechanical system dynamics, electrical system dynamics modeling, electro-mechanical/mechatronics system dynamics, fluid power dynamics and 2 dimensional rigid body dynamics.
Prerequisites: Grade of C or better in MMET 275; junior or senior classification in an engineering technology major.

MXET 400 Mechatronics II – Industrial Robotic Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Study and analysis of industrial robotics and automation processes necessary for robot-centric work cell design and operation.
Prerequisites: Grade of C or better in MXET 300; grade of C or better in ESET 462 or concurrent enrollment, junior or senior classification in multidisciplinary engineering technology.
NAUT - Nautical Science (NAUT)

NAUT 200 Basic Communications, Navigation and Seamanship
Credits 6. 6 Lecture Hours.
Practical application of classroom studies aboard training ship during first training cruise; basic projects in communications, navigation, seamanship and rules of the road.
Prerequisites: MART 103, MART 203, MART 204 or approval of MART department head.

NAUT 300 Intermediate Communications, Navigation and Seamanship
Credits 6. 6 Lecture Hours.
Practical application of classroom studies aboard training ship during second training cruise; intermediate projects in communications, navigation, seamanship and rules of the road; thorough study made of U.S. Public Health requirements in first aid.
Prerequisites: MART 200 or NAUT 200, 301, 303, METR 302, or approval of MART department head; junior or senior classification or approval of instructor.

NAUT 400 Advanced Communications, Navigation and Seamanship
Credits 6. 6 Lecture Hours.
Practical application of classroom studies aboard training ship during third training cruise; advanced projects in communications, navigation, seamanship and rules of the road.
Prerequisites: NAUT 200, 300, 302, 304 MART 321, 406; junior or senior classification or approval of instructor.

MXET 635 Advanced Applied Dynamics for Mechatronic Systems
Credits 3. 3 Lecture Hours.
Translational mechanical system dynamics, rotational mechanical system dynamics, electrical system dynamics modeling, mechatronics system dynamics, fluid power dynamics, rigid body dynamics and applied dynamics modeling using finite element method; automotive, oil and gas drilling and robotic applications.
Prerequisites: Graduate classification or approval of instructor.

MXET 681 Seminar
Credit 1. 1 Other Hour.
Selected topics presented by the faculty, students and outside speakers.
Prerequisites: Graduate classification or approval of instructor.

MXET 685 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Directed study of topics not within scope of thesis research and not covered by other formal courses. May be repeated for credit.
Prerequisites: Graduate classification or approval of instructor.

MXET 689 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of engineering technology. May be repeated for credit.
Prerequisites: Graduate classification or approval of instructor.

MXET 691 Research
Credits 1 to 23. 1 to 23 Other Hours.
Research for thesis or dissertation. May be repeated for credit.
Prerequisites: Graduate classification or approval of instructor.

MXET 692 Professional Study
Credits 1 to 23. 1 to 23 Other Hours.
Approved professional study of project.
Prerequisites: Approval of Instructor.

NFSC - Nutrition and Food Science (NFSC)

NFSC 201 Food Science
Credits 3. 3 Lecture Hours.
(AGRI 1329) Food Science. The fundamental biological, chemical and physical scientific principles associated with the study of foods; topics include food composition and nutrition, food additives and regulations, food safety and toxicology, food processing, food engineering, food biotechnology, product development and sensory evaluation.

NFSC 202 Fundamentals of Human Nutrition
Credits 3. 3 Lecture Hours.
(BIOL 1322, HECO 1322) Fundamentals of Human Nutrition. Principles of nutrition with application to the physiologic needs of individuals; food sources and selection of an adequate diet; formulation of Recommended Dietary Allowances; nutritional surveillance; for non-nutrition majors only.

NFSC 203 Scientific Principles of Human Nutrition
Credits 3. 3 Lecture Hours.
Chemistry and physiology of proteins, carbohydrates, lipids, vitamins and minerals; their ingestion, digestion, absorption, transport and metabolism.
Prerequisite: CHEM 119; majors only.

NFSC 204 Perspectives in Nutrition and Food Science
Credit 1. 1 Lecture Hour.
Current trends in the fields of nutrition and food science; critical review relevant literature in these fields ranging from popular press to peer-reviewed research; study of original research and market trends in understanding food, food processing, nutrients, health and diseases.
Prerequisites: NUTR and FSTC majors.

NFSC 210 Horizons in Nutrition and Food Science
Credits 2. 2 Lecture Hours.
Introduction to nutrition and food science career opportunities through presentations by nutrition and food science researchers and industry professionals; addresses issues of professionalism including portfolio development, teamwork, and critical thinking skills.

NFSC 211 Scientific Principles of Foods
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Basic principles underlying selection, preparation and preservation of food in relation to quality standards, acceptability and aesthetics. Introduction to composition, nutritive value, chemical and physical properties of foods; introduction to experimental study of foods.
Prerequisites: CHEM 101, CHEM 111; NFSC 202 or NFSC 203; sophomore classification or above.

NFSC 222 Nutrition for Health and Health Care
Credits 3. 3 Lecture Hours.
Analysis of nutrition with emphasis on providing a basic understanding of nutrition and its role in disease prevention and treatment.

NFSC 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed study of selected problems in the area of nutrition and food science.
Prerequisites: Approval of instructor; 2.0 GPR in major and overall.

NFSC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of nutrition and food science. May be repeated for credit.
Prerequisite: Approval of instructor.
NFSC 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in nutrition and food science. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of department head.

NFSC 300 Religious and Ethnic Foods
Credits 3. 3 Lecture Hours.
Understanding religious and ethnic foods with application to product development, production, and nutritional practices; emphasis on different food rules and priorities with attention given to different religious and ethnic groups within the US and around the world.
Prerequisites: Junior or senior classification or approval of instructor; basic knowledge of food science and nutrition helpful.

NFSC 301 Nutrition Through Life
Credits 3. 3 Lecture Hours.
Analysis of nutrition with emphasis on human biological needs through stages of the life cycle; biochemical, physiological and anthropometric aspects of nutrition.
Prerequisites: NFSC 203; junior classification or approval of department head.

NFSC 303/ANSC 303 Principles of Animal Nutrition
Credits 3. 3 Lecture Hours.
Scientific approach to nutritional roles of water, carbohydrates, proteins, lipids, minerals, vitamins, and other dietary components; emphasis on the comparative aspects of gastrointestinal tracts and on digestion, absorption, and metabolism of nutrients.
Prerequisites: CHEM 119 and a grade of C or better in ANSC 113, or CHEM 222 or CHEM 227; junior classification or approval of instructor.
Cross Listing: ANSC 303/NFSC 303.

NFSC 304 Food Service Systems Management
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Principles of food service management used in selecting, storing, preparing and serving food in quantity; emphasis on menu planning, quality control, purchasing, equipment and layout/design; application of basic food service systems management principles, including financial planning and personnel issues.
Prerequisites: NFSC 203 and NFSC 211, junior or senior classification.

NFSC 305 Fundamental Baking
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Fundamentals of baking; chemical and physical properties of ingredients, methods of baking all products, fundamental reactions of dough, fermentation and oven baking.
Prerequisite: CHEM 222 or CHEM 227 or approval of department head.

NFSC 307/ANSC 307 Meats
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Integrated studies of the meat animal processing sequence regarding the production of meat-type animals and the science and technology of their conversion to human food.
Prerequisites: Grade of C or better in ANSC 111 and ANSC 113; junior classification or approval of instructor.

NFSC 311 Principles of Food Processing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Principles and practices of canning, freezing, dehydration, pickling and specialty food manufacture; fundamental concepts of various techniques of preparation, processing, packaging and use of additives; processing plants visited.
Prerequisite: NFSC 201; junior or senior classification or approval of department head or instructor.

NFSC 312 Food Chemistry
Credits 3. 3 Lecture Hours.
The fundamental and relevant chemistry and functionality of the major food constituents (water, carbohydrates, lipids, proteins, phytochemical nutraceuticals) and study of food emulsion systems, acids, enzymes, gels, colors, flavors and toxins.
Prerequisite: NFSC 201; CHEM 227; CHEM 237 or approval of department head or instructor.

NFSC 313 Food Chemistry Laboratory
Credit 1. 3 Lab Hours.
Laboratory exercises investigating specific molecules, such as food acids, enzymes, pigments and flavors, and chemical interactions in foods, such as oxidation reactions, emulsion systems, and functional properties from a fundamental chemistry rather than an analytical perspective.
Prerequisite: NFSC 201; CHEM 227; CHEM 237 or approval of department head or instructor.

NFSC 314 Food Analysis
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Selected standard methods for assay of food components; principles and methodology of both classical and instrumental techniques for food analysis.
Prerequisite: NFSC 201; NFSC 311; CHEM 227; CHEM 237 or approval of department head or instructor.

NFSC 315/AGSM 315 Food Process Engineering Technology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Elementary mechanics, physical and thermal properties of food and processing materials, heat transfer, mass and energy balances, psychrometrics (properties of air), insulation.
Prerequisites: Grade of C or better in PHYS 201 or PHYS 218, or approval of instructor.
Cross Listing: AGSM 315/NFSC 315.

NFSC 320 Understanding Obesity: A Social and Scientific Challenge
Credits 3. 3 Lecture Hours.
Perspectives of obesity in food science, nutrition, health and psychology; study of obesity factors in relation to genetics, exercise physiology and sociology with emphasis on food and nutrition.
Prerequisites: Junior or senior classification or approval of instructor.

NFSC 324 Food Safety and Preventive Controls for Human Food
Credits 3. 3 Lecture Hours.
Microbiological food spoilage, fermentation and safety; U.S. Food and Drug Administration (FDA) recognized curriculum for "preventive controls qualified individual" within the FDA Hazard Analysis and Risk Based Preventive Controls for Human Food regulation.
Prerequisites: Junior or senior classification or approval of instructor.

NFSC 326/ANSC 326 Food Bacteriology
Credits 3. 3 Lecture Hours.
Microbiology of human foods and accessory substances; raw and processed foods; physical, chemical and biological phases of spoilage; standard industry techniques of inspection and control.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: ANSC 326/NFSC 326.
NFSC 327/ANSC 327 Food Bacteriology Lab
Credit 1. 3 Lab Hours.
Laboratory to accompany ANSC 326/NFSC 326 or NFSC 326/ANSC 326.
Cross Listing: ANSC 327/NFSC 327.

NFSC 330 Dairy and Food Technology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Principles and practices involved in processing of milk into market milk, butter, cheese and cheese foods; fundamental principles of these processes as related to their design and control.

NFSC 331 Dairy and Food Technology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Manufacture of frozen, freeze-dehydrated, concentrated and dehydrated dairy foods; fundamental aspects of freezing, concentration and dehydration of foods.
Prerequisite: NFSC 330 or approval of department head.

NFSC 365 Nutritional Physiology of Vitamins and Minerals
Credits 3. 3 Lecture Hours.
Fundamental nutritional significance of fat soluble and water soluble vitamins and minerals to human metabolism, cell biology and physiology; micro-nutrient groups as per metabolic function or biochemical and physiological actions; important dietary sources, absorption, storage, metabolism, (bio)chemistry, deficiency and toxicity of individual nutrients in this context and basis of DRI.

Prerequisites: NFSC 203 and NFSC 301; junior or senior classification.

NFSC 401 Food Product Development
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Design and develop food products using principles of food chemistry, food processing, nutrition, sensory analysis and statistics; team collaborate to improve food product characteristics to meet the needs of a changing society.

Prerequisites: NFSC 201, NFSC 311, NFSC 312, NFSC 313, NFSC 314, NFSC 315/AGSM 315, NFSC 326/ANSC 326, or concurrent enrollment; senior classification or approval of instructor.

NFSC 404 Nutrition Assessment and Planning
Credits 3. 3 Lecture Hours.
Examines the methods of determining the nutritional status of individuals, dietary assessment techniques, planning nutritional care including diet modification and nutrition counseling.

Prerequisites: NFSC 203, NFSC 211 and NFSC 301; junior classification or approval of department head.

NFSC 405/POSC 405 Egg and Poultry Meat Processing
Credits 3. 3 Lecture Hours.
Principles of egg and poultry meat processing, understanding egg and poultry meat markets, egg and meat grading, product safety, packaging and consumer acceptance of shell eggs and poultry meat, specifically turkey and broilers.

Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: POSC 405/NFSC 405.

NFSC 406/POSC 406 Poultry Further Processing
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Science and practice of value-added products; physical, chemical, microbiological and functional characteristics of value-added poultry products as they affect consumer acceptance, efficiency of production and regulatory approval.

Prerequisites: CHEM 222; DASC 326 or NFSC 326/ANSC 326; POSC 309; POSC 405/NFSC 405; junior or senior classification or approval of instructor.

Cross Listing: POSC 406/NFSC 406.

NFSC 407 Nutrition Care and Therapy
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Application of the Nutrition Care Process for clinical diagnoses and conditions; planning of nutritional care plans for complex patients, including the formulation and planning for enteral and parenteral nutrition support.

Prerequisites: NFSC 203, NFSC 211, NFSC 301 and NFSC 404; junior classification; dietetics track; or approval of instructor.

NFSC 410 Nutritional Pharmacometrics of Food Compounds
Credits 3. 3 Lecture Hours.
Nutritional pharmacokinetics and pharmacodynamics of food compounds; specific examples of toxicological and pharmacological effects of food compounds.

Prerequisites: NFSC 201, NFSC 202, NFSC 203, CHEM 222, or CHEM 227, or approval of instructor; junior or senior classification.

NFSC 412 Nutritional Treatment of Disease
Credits 3. 3 Lecture Hours.
Nutritional intervention in pathological conditions, based on biochemical, physiological and psychological effects of disease state; current research in clinical nutrition.

Prerequisites: NFSC 203; NFSC 301, BIOL 319 and BICH 410, or concurrent enrollment; senior classification or approval of instructor.

NFSC 417/AGSM 417 Food Process Engineering Technology II
Credits 3. 3 Lecture Hours.
Applications of basic engineering concepts to understand common unit operations in the food (and related) industry.

Prerequisites: AGSM 315/NFSC 315 or NFSC 315/AGSM 315; approval of instructor.
Cross Listing: AGSM 417/NFSC 417.

NFSC 420 Supervised Research in Mediterranean Nutrition and Food Processing in Italy
Credits 3. 3 Other Hours.
Exploration of principles of Mediterranean diet, European nutrition regulatory aspects, wine-making and food processing in Italy.

Prerequisites: NFSC 201, NFSC 202, or NFSC 203; must be 18 years of age; class and tours taught in English; priority given to majors in FSTC or NUTR.

NFSC 422 Food Processing for Sustainable Nutrition in Brazil
Credits 3. 3 Other Hours.
Sustainable nutrition and food processing in Brazil; hands-on learning at the Federal University of Vicosa, the Amazon Biotechnology Center, food processing plants and other research centers in the Amazon, central Brazil and Rio De Janeiro.

Prerequisites: NFSC 201, NFSC 202, or NFSC 203; must be 18 years of age; class and tours taught in English; priority given to majors in FSTC or NUTR.

NFSC 430 Community Nutrition
Credits 3. 3 Lecture Hours.
Principles of assessing nutrition problems in populations and planning nutrition programs to promote health in communities including nutrition education and food and nutrition policy; introduction to food and nutrition assistance programs.

Prerequisites: NFSC 203 and NFSC 301; junior or senior classification.
NFSC 440 Therapeutic Microbiology: Probiotics and Related Strategies
Credits 3. 3 Lecture Hours.
Topics relevant to alimentary (gastrointestinal) microbiology including (i) the 'normal' intestinal microbiota; (ii) probiotic and prebiotic nutritional supplements; (iii) recombinant pharmabiotics; (iv) gut-associated lymphoid tissue and mucosal immunity; (v) foodborne gastrointestinal pathogens; and (vi) fermented products as functional foods.
Prerequisites: Undergraduate survey course in microbiology or approval of instructor; junior or senior classification.

NFSC 444 Fundamentals of Food Law
Credits 3. 3 Lecture Hours.
History, development of, and fundamental principles behind current food regulations, including food labeling, adulteration, food safety, food additives, dietary supplements, and import and export laws; overview of government agency jurisdiction, international law and ethics.
Prerequisite: NFSC 201; junior or senior classification.

NFSC 446 Commercial Fruit and Vegetable Processing
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Pilot plant and laboratory operations pertaining to processed fruits, vegetables and beverages; new product development emphasized via individual laboratory projects.
Prerequisite: NFSC 311.

NFSC 450 Nutrition and Metabolism of Minerals
Credits 3. 3 Lecture Hours.
The role of minerals in living systems and the exploration of their multitude of functions; chemical properties of minerals and how that relates to function in cells and tissues; consequences of mineral deficiencies based on known functions; insight into experimental approaches used to assess minerals in a living environment.
Prerequisite: NFSC 203, BICH 303, or BICH 410, or approval of instructor.

NFSC 457/ANSC 457 Hazard Analysis and Critical Control Point System
Credits 3. 3 Lecture Hours.
Hazard Analysis and Critical Control Point (HACCP) principles specifically related to meat and poultry; microbiological and process overviews; good manufacturing practices and standard operating procedures development.
Prerequisite: NFSC 326/ANSC 326 or approval of instructor.
Cross Listing: ANSC 457/NFSC 457.

NFSC 469 Experimental Nutrition Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Investigation of tools and molecular techniques used in studies of nutrition and metabolism (e.g. obesity, diabetes, cardiovascular disease, etc.); didactic and hands-on laboratory components; includes model systems, measurements of energy balance, body composition, RNA and protein analyses.
Prerequisites: Junior or senior classification or approval of instructor.

NFSC 470/ANSC 470 Quality Assurance for the Food Industry
Credits 3. 3 Lecture Hours.
Principles of food system process control including statistical process control (SPC) and the tools required to assure uniform communication and understanding of quality assurance systems.
Prerequisite: Junior or senior classification.
Cross Listing: ANSC 470/NFSC 470.

NFSC 471 Critical Evaluation of Nutrition and Food Science Literature: Evidence Based Reviews
Credits 3. 3 Lecture Hours.
Evaluation of scientific literature, research methods within the literature, and the quality of scientific studies to produce an evidence-based review in areas specific to nutrition and food science.
Prerequisites: NFSC 202 or NFSC 203; STAT 302; junior or senior classification; knowledge of technical writing helpful.

NFSC 475 Nutrition and Physiological Chemistry
Credits 3. 3 Lecture Hours.
Fundamentals of physiology, biochemistry and nutrition and their relationship to the organismic and cellular metabolism of animals; biochemical basis of hormonal action.
Prerequisites: NFSC 203, NFSC 301, NFSC 365, and BICH 410; senior classification or approval of department head.

NFSC 481 Seminar
Credit 1. 1 Lecture Hour.
Guidelines and practice in journal article review and making effective technical presentations; strategies for conducting a job search; development of résumés and letters and interviewing targeted for careers in nutrition and food science or graduate school.
Prerequisite: Senior classification in nutrition and food science.

NFSC 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed study on selected problems in the area of nutrition and food science not covered in other courses.
Prerequisites: Junior or senior classification; approval of department head; 2.0 GPR in major and overall.

NFSC 487/ANSC 487 Sensory Evaluation of Foods
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Application of sensory science principles and practices to food systems including an understanding of discriminative, descriptive and consumer sensory techniques.
Prerequisites: CHEM 222 or CHEM 228; junior or senior classification.
Cross Listing: ANSC 487/NFSC 487.

NFSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of nutrition and food science. May be repeated for credit.
Prerequisite: Junior or senior classification.

NFSC 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in nutrition and food science. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.

NRSC - Neuroscience (NRSC)

NRSC 101/VIBS 101 Neuroscience Overview
Credit 1. 1 Lecture Hour.
An introductory survey of neuroscience for freshmen undergraduate students on the basic neuroscience core ideas and neurological disorders.
Cross Listing: VIBS 101/NRSC 101.
NRSC 201/VIBS 201 History of Neuroscience
Credit 1. 1 Lecture Hour.
Wide spectrum of neuroscience discovery beginning at the turn of the 20th Century; emphasis on key discoveries and their rationale, experimental design, experimental methods, major findings and interpretation of results.
Prerequisites: Sophomore classification.
Cross Listing: VIBS 201/NRSC 201.

NRSC 235/PSYC 235 Introduction to Behavioral and Cognitive Neuroscience
Credits 3. 3 Lecture Hours.
Physiological bases of sensation, motor functions, emotion, motivation and complex psychological processes.
Prerequisites: PSYC 107 or BIOL 111.
Cross Listing: PSYC 235/NRSC 235.

NRSC 277/VIBS 277 Introduction to Neuroscience
Credits 3. 3 Lecture Hours.
Neuroscience from the molecular to system levels; fundamental principles and knowledge of neuroscience; current research information on neuroscience.
Prerequisites: Freshman or sophomore classification and approval of instructor.
Cross Listing: VIBS 277/NRSC 277.

NRSC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of neuroscience. May be repeated for credit.
Prerequisite: Approval of instructor.

NRSC 311/PSYC 311 Psychology of Animal Behavior
Credits 3. 3 Lecture Hours.
Problems, principles, and methods of animal psychology; animal learning, motivation, discriminative processes and abnormal, social and instinctual behaviors.
Prerequisites: PSYC 107, BIOL 111, or BIOL 113.
Cross Listing: PSYC 311/NRSC 311.

NRSC 320/PSYC 320 Sensation-Perception
Credits 3. 3 Lecture Hours.
Review of sensory physiology, sensory and perceptual phenomena and the major perceptual theories; current research in the field.
Prerequisites: PSYC 107, junior or senior classification, PSYC 301 and PSYC 302 recommended.
Cross Listing: PSYC 320/NRSC 320.

NRSC 332/PSYC 332 Neuroscience of Learning and Memory
Credits 3. 3 Lecture Hours.
Brain mechanisms of learning and memory from molecular to behavioral levels; synaptic plasticity, model systems, multiple memory systems, diseases of learning and memory.
Cross Listing: PSYC 332/NRSC 332.

NRSC 333/PSYC 333 Biology of Psychological Disorders
Credits 3. 3 Lecture Hours.
Neurobiology and clinical explanation of molecular mechanisms underlying psychiatric disorders and their drug treatments; depression and bipolar, anxiety disorders, mood disorders, psychosis and schizophrenia.
Cross Listing: PSYC 333/NRSC 333.

NRSC 336/PSYC 336 Drugs and Behavior
Credits 3. 3 Lecture Hours.
Physiological, pharmacological and behavioral effects of psychoactive drugs, including short-term and long-term effects of psychoactive drugs, properties of addictive drugs, etiology of addiction, and treatments of drug addiction and withdrawal.
Cross Listing: PSYC 336/NRSC 336.

NRSC 340/PSYC 340 Psychology of Learning
Credits 3. 3 Lecture Hours.
Survey of significant concepts, experimental methods and principles of learning.
Prerequisites: PSYC 107, BIOL 111, or BIOL 113.

NRSC 350/PSYC 350 Cognitive Neuroscience
Credits 3. 3 Lecture Hours.
Research in cognitive neuroscience; methodological advances that enable the study of the human brain safely in the laboratory; complex aspects of the mind like emotion, social behavior and consciousness.
Prerequisite: PSYC 107, PSYC 301, PSYC 302, and NRCS 277 recommended.
Cross Listing: PSYC 350/NRSC 350.

NRSC 360/PSYC 360 Health Psychology and Behavioral Medicine
Credits 3. 3 Lecture Hours.
Health psychology emphasizing behavioral and lifestyle factors in health and illness, prevention and modification of health-compromising behaviors, health care utilization, and psychological management of chronic disorders and psychological management of chronic disorders and terminal illnesses.
Prerequisite: PSYC 107.
Cross Listing: PSYC 360/NRSC 360.

NRSC 401/VIBS 401 Developmental Neurotoxicology
Credits 2. 2 Lecture Hours.
Effects of exposure to toxic substances on the developing nervous system; content to include mechanisms of toxicity of substances potentially devastating to the developing nervous system including lead, mercury and other heavy metals, alcohol, nicotine (smoking), pesticides, flame retardants and others.
Prerequisite: Junior or senior classification.
Cross Listing: VIBS 401.

NRSC 407/VIBS 407 Core Ideas in Neuroscience
Credits 2. 2 Lecture Hours.
General overview of selected core ideas across the full spectrum of neuroscience.
Prerequisite: Junior or senior classification; background in science courses recommended.
Cross Listing: VIBS 407/NRSC 407.
NRSC 434/Biol 434 Regulatory and Behavioral Neuroscience
Credits 3. 3 Lecture Hours.
Cell biology and biophysics of neurons; functional organization of the vertebrate nervous system; physiological basis of behavior.
Prerequisites: BIOL 213; BIOL 319, BIOL 320, BIOL 388, BIOL 413, NRSC 235/PSYC 235, or PSYC 235/NRSC 235, or approval of instructor.
Cross Listing: BIOL 434/NRSC 434.

NRSC 440/PSYC 440 Hormones and Behavior
Credits 3. 3 Lecture Hours.
Principles of hormones and the endocrine system; relationships among hormones, the nervous system and a variety of behaviors in vertebrates including humans.
Prerequisites: PSYC 235/NRSC 235, NRSC 235/PSYC 235, PSYC 340/NRSC 340, NRSC 340/PSYC 340, VIBS 277/NRSC 277, or NRSC 277/VIBS 277, or approval of instructor.
Cross Listing: PSYC 440/NRSC 440.

NRSC 450/VIBS 450 Mammalian Functional Neuroanatomy
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Functional morphology of the domestic animal and human brain using gross specimens, microscopic sections, interactive computer-, DVD-, and video-assisted instructional programs supplemented with clinical case studies.
Prerequisites: Junior or senior classification; BIMS, biology, biochemistry, or psychology majors, or neuroscience minors with overall 3.5 TAMU GPA; or approval of instructor.
Cross Listing: VIBS 450/NRSC 450.

NRSC 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Directed readings or research problems in selected areas designed to supplement existing course offerings conducted under the direction of a member of the Faculty of Neuroscience. May be repeated for credit.
Prerequisite: Approval of member of the faculty of neuroscience.

NRSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of neuroscience. May be repeated for credit.
Prerequisite: Approval of instructor.

NRSC 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a member of the Faculty of Neuroscience. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of member of the faculty of neuroscience.

NUEN - Nuclear Engineering (NUEN)

NUEN 101 Principles of Nuclear Engineering
Credit 1. 1 Lecture Hour.
Introduction to nuclear engineering including global and national energy requirements, radioactivity, radiation protection, and fission and fusion reactor concepts.

NUEN 102 Nuclear Engineering Practice
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisite: NUEN 101.

NUEN 201 Introduction to Nuclear Engineering I
Credits 3. 3 Lecture Hours.
Atomic and nuclear physics discoveries that have led to the development of nuclear engineering, atomic models, relativity, x-rays, types of nuclear reactors; problem solving techniques.
Prerequisites: MATH 251 or registration therein; PHYS 208.

NUEN 265 Materials Science for Nuclear Energy Applications
Credits 3. 3 Lecture Hours.
Materials science fundamentals with an emphasis on nuclear applications; topics will include bonding, crystal structures crystalline defects, mechanical properties and radiation effects in metal, ceramic and polymer materials.
Prerequisites: CHEM 102, or CHEM 104 and CHEM 114, or CHEM 107; PHYS 218.

NUEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of nuclear engineering. May be repeated for credit.
Prerequisite: Approval of department head.

NUEN 301 Nuclear Reactor Theory
Credits 3. 3 Lecture Hours.
An introduction to neutron diffusion theory, neutron moderation, conditions for criticality of nuclear reactors.
Prerequisites: NUEN 302.

NUEN 302 Introduction to Nuclear Engineering II
Credits 3. 3 Lecture Hours.
Basic radioactivity, nuclear and neutron physics as applied to nuclear engineering.
Prerequisites: NUEN 201; MATH 308 or registration therein.

NUEN 303 Nuclear Detection and Isotope Technology Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Interaction of radiation with matter; behavior of various nuclear radiation detectors studied both theoretically and experimentally in laboratory; properties of radionuclides useful to industry considered and evaluated from engineering point of view; writing intensive course.
Prerequisites: NUEN 309/SENG 309; ECEN 215.

NUEN 304 Nuclear Reactor Analysis
Credits 3. 3 Lecture Hours.
The group diffusion method, multi-region reactors, heterogeneous reactors, reactor kinetics, changes in reactivity.
Prerequisite: NUEN 301; MATH 309.

NUEN 309/SENG 309 Radiological Safety
Credits 3. 3 Lecture Hours.
Interactions of nuclear radiations with matter and biological systems; theory and practice of radiation dosimetry as applied to radiation protection; design and application of radiation dosimetry systems for personnel monitoring, area radiation monitoring and accident situation; includes external and internal dosimetry as well as long-term risk analysis.
Prerequisite: NUEN 302.
Cross Listing: SENG 309/NUEN 309.
NUEN 315 Thermodynamics in Nuclear Systems
Credits 3. 3 Lecture Hours.
Introduction of thermodynamic theory and application; thermodynamic properties and conservation of mass and energy; first and second laws of thermodynamics; energy transfer by heat, work and mass; analysis of open and closed systems; key thermodynamic components in nuclear systems including BWR, PWR and other types of reactors; application of thermodynamic cycles to nuclear power systems; and heat and mass balances throughout nuclear systems.
Prerequisites: MEEN 221; MATH 251 or MATH 253.

NUEN 329 Analytical and Numerical Methods
Credits 3. 3 Lecture Hours.
Introduction to use of numerical analysis and advanced analytical techniques for obtaining nuclear reactor flux distributions, temperatures and transients; use of digital computer in obtaining nuclear reactor design information.
Prerequisites: MATH 309 and NUEN 301.

NUEN 405 Nuclear Engineering Experiments
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Experimental measurements of basic nuclear reactor parameters; reactor operation and reactor safety.
Prerequisites: NUEN 303; NUEN 304 or senior classification.

NUEN 406 Nuclear Engineering Systems and Design
Credits 3. 3 Lecture Hours.
Nuclear plant systems; conventional and advanced generation power reactors, nuclear simulators, transient analysis using available software for reactor simulators; nuclear engineering design methodology; problem formulation, criteria, trade-off decisions and design optimization; case studies.
Prerequisite: NUEN 304; MEEN 461 or approval of instructor.

NUEN 410 The Design of Nuclear Reactors
Credits 4. 4 Lecture Hours.
Application of reactor theory and other engineering disciplines in fundamental and practical design of nuclear reactor systems for power applications; use of computer in design operations.
Prerequisites: NUEN 304 and NUEN 406; MEEN 461.

NUEN 417/MEEN 417 Basics of Plasma Engineering and Applications
Credits 3. 3 Lecture Hours.
Basic plasma properties and confinement techniques; single particle orbits in electric and magnetic fields, moments of Boltzmann equation and introduction to fluid theory; wave phenomena in plasmas and introduction to plasma kinetic theory; analysis of laboratory plasmas and plasma applications including fusion, electric propulsion, materials processing and plasma enhanced chemistry.
Prerequisites: Grade of C or better in PHYS 208 or equivalent; senior classification in nuclear, mechanical or aerospace engineering, or physics.
Cross Listing: MEEN 417/NUEN 417.

NUEN 418 Fuel Assembly and 3-D Reactor Core Design and Modeling
Credits 3. 3 Lecture Hours.
Application of state-of-the-art engineering-grade codes in the neutronic design, analysis and modeling of nuclear fuel assembly and core.
Prerequisites: NUEN 304 and junior or senior classification.

NUEN 430 Computer Applications in Nuclear Engineering
Credits 3. 3 Lecture Hours.
Applications of digital computers to solve nuclear engineering problems; nuclear data and cross-section libraries; deterministic methods for linear and non-linear nuclear systems, and Monte Carlo methods for linear nuclear systems.
Prerequisites: NUEN 304, NUEN 329.

NUEN 431 Technical Communications Issues in the Nuclear Industries
Credit 1. 1 Lecture Hour.
Introduction to a variety of topics that present communication challenges; opportunities to learn from a variety of visiting experts concerning the nuances and challenges of, as well as successful methods for, communicating with concerned audiences about technically challenging topics.
Prerequisite: Junior or senior classification or approval of instructor.

NUEN 432 Nuclear Power Plant Fundamentals
Credits 3. 3 Lecture Hours.
Understanding the operation of a nuclear electric general station; includes reactor water chemistry, material science, electrical science; mechanical science, civil engineering for nuclear power plant engineers, and digital process control systems.
Prerequisite: Junior or senior classification in the college of engineering; non-NUEN majors.

NUEN 436 Human Performance for Nuclear Power Plant Engineers
Credits 2. 2 Lecture Hours.
Six modules: human performance fundamentals, the organization and the processes, the individual worker, the engineer, corrective action programs and root cause analysis, and case studies including TMI-2, Chernobyl, Davis-Besse, and Fukushima Daiichi.
Prerequisites: NUEN 432; junior or senior classification in the college of engineering.

NUEN 451 Nuclear Security System Design
Credits 3. 3 Lecture Hours.
The science and engineering associated with the design, evaluation and implementation of systems to secure nuclear and radiological materials; adversary characterization, categorization of nuclear and radiological targets, calculation of consequences associated with failure to protect targets, detection and delay technologies, and mathematical methods for evaluation and managing risk.
Prerequisites: NUEN 303 and NUEN 309/SENG 309 or equivalent, or approval of instructor.

NUEN 460 Nuclear Plant Systems and Transients
Credits 3. 3 Lecture Hours.
Use of engineering principles to elucidate the nuclear, mechanical, electrical and functional interactions among nuclear plant components and systems; reactor protection systems, alarm and trip setpoints, normal and accident transients. Components studied in detail include: core, control rod drive mechanism, neutron source, neutron detectors, primary coolant system, and emergency core cooling system.
Prerequisites: NUEN 301, NUEN 302, NUEN 304, NUEN 406, NUEN 430 or equivalents; MEEN 315, MEEN 344, MEEN 461 or equivalents; junior or senior classification.
NUEN 465 Nuclear Materials Engineering
Credits 3. 3 Lecture Hours.
Explore applications of materials science principles in nuclear energy systems; includes crystal structures and defects, metallurgy, and materials thermochemistry; emphasis on nuclear fuel performance, structural material changes, and waste materials; laboratory demonstrations on materials behavior.
Prerequisites: NUEN 265, MEEN 222/MSEN 222 or equivalent and NUEN 302.

NUEN 475 Environmental Nuclear Engineering
Credits 3. 3 Lecture Hours.
Environmental aspects of nuclear power; natural radiation environment and the distribution of radioactivity added to the environment by human activities; evaluation of effects of radiation and radioactivity on the environment and on humans.
Prerequisite: NUEN 309/SENG 309.

NUEN 479 Radiation Protection Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Analysis of radiation hazard situations and design of nuclear facilities from a safety standpoint.
Prerequisite: NUEN 475.

NUEN 481 Seminar
Credit 1. 1 Lecture Hour.
Designed to broaden the student’s capability, performance and perspective in nuclear engineering through faculty, student and guest presentations.
Prerequisite: NUEN 410 or registration therein or NUEN 479 or registration therein.

NUEN 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Problems of limited scope approved on an individual basis intended to promote independent study; program enrichment for capable students; results presented in writing to staff.
Prerequisites: Junior or senior classification and approval of department head.

NUEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of nuclear engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

NUEN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member in Nuclear Engineering. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

NURS - Nursing (NURS)

NURS 301 Nursing Foundation
Credits 2. 1 Lecture Hour. 1 Lab Hour.
Introduction to nursing skills including such activities as safety, assessment of vital signs, comfort measures, assistance with daily living activities, environmental concerns, positioning and transporting. We will become familiar with the nursing process, communication and documentation tools. An introduction to the simulation center is highlighted in this class. Orientation to clinical sites and expectations for clinical rotation, as well as mandatory clinical site requirements will be completed.
Prerequisites: Admission to the BSN program or approval from the Associate Dean for Academic Affairs.

NURS 305 Nursing Dimensions and Informatics
Credits 3. 3 Lecture Hours.
This course explores the concepts of informatics and professional dynamics in nursing. Basic computer competencies essential to nursing are introduced, along with skills required to locate and evaluate information (info literacy), arid process and communicate findings (info management) related to evidence-based nursing practice. The roles and behaviors of the professional nurse are also introduced. The influence of ethics and cultural/society issues on the nursing profession are explored as well as opportunities for personal and professional development.
Prerequisites: Admission to the BSN program or approval from the Associate Dean for Academic Affairs.

NURS 306 Foundations of Nursing Practice Theory
Credits 5. 5 Lecture Hours.
Role of the professional nurse utilizing the nursing process as a systematic approach assisting individuals toward optimal health; discussion of the scope of human needs and fundamental principles of nursing concepts, nursing theories, health promotion strategies, health assessment techniques and communication skills in providing basic care for the adult.
Prerequisites: Admission to the College of Nursing Program; concurrent enrollment and grade of C or better in NURS 307.

NURS 307 Foundations of Nursing Practice Clinical
Credits 3. 9 Lab Hours.
Application of fundamental principles of nursing concepts, nursing theories, health promotion strategies, health assessment techniques and communication skills employed in providing basic care of the adult; implementation of the nursing process as a systematic approach by obtaining health histories, utilizing interviewing skills, performing physical and psychosocial assessments, establishing a baseline database and formulating initial nursing plans.
Prerequisites: Admission to the College of Nursing Program; concurrent enrollment and grade of C or better in NURS 306.

NURS 312 Introduction to Pathophysiology
Credits 3. 3 Lecture Hours.
An introduction to pathophysiological alterations in major regulatory mechanisms of the body. Provides a foundation for understanding general nursing practice, various diagnostic procedures and selected therapeutic regimens.
NURS 313 Nursing Fundamentals
Credits 5. 3 Lecture Hours. 2 Lab Hours.
An introduction to the scope of human needs, utilization of the nursing process as a systematic approach to meeting those needs and the role of the professional nurse in assisting individuals toward optimal health. Clinical settings are utilized in the application of fundamental concepts, principles of nursing and communication skills that are employed in providing basic client care.
Prerequisite: Admission to the BSN Program.

NURS 314 Health Assessment
Credits 3. 1 Lecture Hour. 2 Lab Hours.
Concepts and principles underlying assessment of the health status of individuals are presented. Emphasis is placed on interviewing skills, health histories, and the physical and psychosocial findings in the well person. Development of communication in the nurse-client relationship and assessment skills are included. Students implement the nursing process by obtaining health histories, performing physical and psychosocial assessments, establishing a database, and formulating initial nursing plans.

NURS 315 Nursing and the Aged
Credits 3. 2 Lecture Hours. 1 Lab Hour.
This course presents an overview of age-related changes including physical, emotional, social and environmental transitions in the aging family. Emphasis is placed on developmental patterns and health promotion in the population.

NURS 316 Pharmacology Principles
Credits 3. 3 Lecture Hours.
Focuses on the basic drug classifications, concepts and principles of pharmacology, with special consideration for the nursing role in developing a comprehensive approach to the clinical application of drug therapy through the use of the nursing process. Nursing implications relative to the utilization of drug therapy are examined.

NURS 317 Adult Nursing I
Credits 6. 3 Lecture Hours. 3 Lab Hours.
This course introduces the student to the use of the nursing process in the care of adults with chronic or non-complex illness. The course uses a systems approach to discuss the effects of illness on individual and family, and to examine the disruption of growth and development patterns across the lifespan from young adult to senior years, emphasizing the nursing process to assist adults in reaching their optimal level of wellness. The course includes clinical laboratory to allow the student the opportunity to apply theoretical concepts to clinical practice in diverse adult populations.

NURS 323 Nursing Care of Women, Families and Newborns
Credits 4. 2 Lecture Hours. 2 Lab Hours.
Study of childbearing families and women's health in normal and high-risk situations; role of the nurse in meeting health needs of women, families and their newborns; supervised clinical experiences and/or simulation experiences in the application of the nursing process in meeting these health needs; promotes acquisition of skills in caring for women, families and newborns during uncomplicated and/or complicated health experiences in a variety of settings.
Prerequisites: Grade of C or better in NURS 306 or NURS 313; grade of C or better in NURS 307 or NURS 314; grade of C or better in NURS 312, NURS 316, and NURS 320.

NURS 385 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Individually supervised study in subject matter to be arranged with faculty.
Prerequisite: Admission to the College of Nursing or approval from the associate dean of academic affairs.

NURS 386 Directed Clinical Studies
Credits 1 to 3. 1 to 3 Other Hours.
Individually supervised study focusing on clinical skills in focused areas to be arranged with faculty.
Prerequisite: Admission to the College of Nursing or approval from the associate dean of academic affairs.

NURS 405 Selected Topics in Nursing
Credit 1. 1 Lecture Hour.
A broad introduction to selected topics of current interest in the role of professional nursing.

NURS 411 Evidence-Based Practice for Nurses
Credits 3. 3 Lecture Hours.
A study of the principles and methodology of research in nursing practice, with emphasis on evidence based practice research; interpret research, identify its methods and significance, and analyze findings in order to be a consumer of nursing research and practitioner of evidence based practice.
Prerequisite: Grade of C or better in NURS 306 or NURS 313; grade of C or better in NURS 307 or NURS 314; grade of C or better in NURS 312 and NURS 316, or with approval from the Associate Dean of Academic Affairs.

NURS 412 Care of Mental Health Clients
Credits 4. 2 Lecture Hours. 2 Lab Hours.
Demonstrates the relevance of psychosocial nursing concepts to all areas of professional practice. Provides a conceptual integration of the nursing process, theories and research from psychosocial sciences and humanities as these relate to the care of persons with mental disorders. Clinical experience provides an opportunity for application of psychosocial concepts and methods in using the nursing process to promote optimal levels of wellness for individuals, families and target groups.
Prerequisites: Grade of C or better in NURS 306 or NURS 313; grade of C or better in NURS 307 or NURS 314; grade of C or better in NURS 312 and NURS 316.

NURS 413 Nursing Care of Children and Families
Credits 4. 3 Lecture Hours. 1 Lab Hour.
A study of the factors influencing health promotion, protection and maintenance of infants, children and adolescents; examination of family theory, growth and development, primary health care, and acute, chronic, and terminal conditions; clinical experience in caring for healthy, at-risk, acutely and chronically ill infants, children, adolescents and their families.
Prerequisites: Grade of C or better in NURS 306 or NURS 313, NURS 307 or 314, NURS 312, NURS 316, and NURS 320.
NURS 420 Adult Nursing II
Credits 6. 6 Lecture Hours.
Critical thinking and problem-solving strategies for care of adults with acute or complex illness and injury; examination of effects of acute illnesses in relation to the injury and in relation to the individual's developmental stage, culture and gender; building on Nursing Care of Adults I, a systems approach is used to analyze and intervene in alterations to the health of the individual and family and to help them reach their optimal level of wellness; includes clinical laboratory to allow the opportunity to integrate theoretical concepts to clinical practice in diverse populations.
Prerequisite: Grade of C or better in NURS 312, NURS 313, NURS 314, NURS 316, and NURS 320.

NURS 421 Care of Community Health Clients
Credits 5. 5 Lecture Hours.
The nursing process is utilized in the study of community/public health nursing practice and common health problems encountered in community settings. Health promotion, maintenance, counseling and coordination of care are utilized in providing care to individuals, families, aggregates and populations in community settings. Principles and skills of public health nursing practice are used to assess a community's health and diagnose community health needs.
Prerequisite: Grade of C or better in NURS 306 or NURS 313, NURS 307 or NURS 314, NURS 312, NURS 316 and NURS 320.

NURS 424 Professional Issues
Credits 2. 2 Lecture Hours.
The purpose of this course is to introduce health professions students to professional and ethical/legal issues in everyday practice in health care, develop self-awareness skills about their own values, and those of others, and provide them with tools to engage in self-reflective practice leading to enhancement of patient-centered care and collaborative team work.
Prerequisites: Admission to the College of Nursing.

NURS 430 Transition to Professional Nursing Practice
Credits 5. 3 Lecture Hours. 2 Lab Hours.
Course reflects content that will prepare senior students for transition of entry into practice. Theories and principles concerning human behavior in organizations, with emphasis on leadership roles encountered in professional nursing practice. Senior nursing students in collaboration with nursing faculty refine coordination of care for a diverse population of clients. A clinical practicum will focus on synthesizing and refining skills in the delivery and management of nursing care to various groups of clients. Concepts of clinical decision-making, and inter-professional dynamics are incorporated in the context of legal, ethical, and evidence-based practice.
Prerequisites: Grade of C or better in NURS 305, NURS 306 or NURS 313, NURS 307 or NURS 314, NURS 315, NURS 320, NURS 411, NURS 412, and NURS 420.

NURS 431 Care of Vulnerable Populations
Credits 1 to 3. 1 to 3 Lecture Hours.
Principles of caring for vulnerable populations; includes characteristics of the vulnerable, clinical issues associated with caring for individuals from vulnerable populations, social justice and resilience; activities include development of care plans for the vulnerable, teaching projects and capacity building; option to utilize 16 hours of community health clinical time to complete a mini-immersion experience.
Co-requisite: NURS 421.

NURS 432 Relations in Healthcare: Teamwork and Communication
Credits 1 to 3. 1 to 3 Lecture Hours.
Preparation for inter and intra professional teamwork and communication to improve the culture for professional collaboration with a shared mental model for excellence in quality and safety; goal for effective teamwork and communication is higher quality, safer patient care through highly effective medical teams that optimize the use of resources, information, and people to achieve the best clinical outcomes for patients.

NURS 434 Case Studies in Patient Safety and Quality
Credits 2. 2 Lecture Hours.
Application of evidence based quality improvement and risk reduction tools and strategies to various case studies with the goal of improving patient safety, outcome, and quality of care; case study evaluation of nursing practice and evidence based practice recommendations which highlight the nurse's professional role in patient safety and quality; application of intra/interprofessional communication and teamwork skills to promote a safe environment for healthcare delivery.
Prerequisite: Junior or senior classification.

NURS 456 Complementary and Alternative Medicine/Health Care
Credits 3. 3 Lecture Hours.
This course is an introduction to the practice of complementary and alternative medicine (CAM)/health care. It will explore both conventional health care and CAM allowing the student to examine each of the entities to gain an understanding of what each practice offers. This knowledge will allow the future health care professional to better inform and facilitate the individual's move toward or maintenance of optimal health and health practices. Alternative health care modalities, such as herbal medicine, acupuncture and massage therapy, will be discussed. Websites and online resources pertinent to the topic will be explored and analyzed, including the National Center for Complementary and Alternative Medicine within the National Institutes of Health.

NURS 457 Introduction to Concepts of Forensic Nursing
Credits 3. 3 Lecture Hours.
This course provides an introduction to forensic science as a collaborative approach to criminal investigation. General concepts and principles of forensic science will be explored with an emphasis on the role of the nurse working with victims of violence. Content to be addressed includes: forensic investigation, evidence collection and management, mechanisms of injury and death using post-mortem forensic analysis, interpersonal crimes of violence, and forensic nursing roles.

NURS 460 Nursing Dimensions and Informatics for the RN
Credits 3. 3 Lecture Hours.
This course is designed to build on the informatics knowledge and skills of the practicing nurse. Emphasis is placed on the application of the ANA Standards for Nursing Informatics and Professional Practice and incorporation of information technology to support patient care and clinical decision-making. The course will assist the students to develop the professional role by incorporation of the philosophy of nursing, nursing theory, and clinical reasoning. The nurse's role in interprofessional practice will be explored. The influence of ethics and cultural/society issues on the nursing profession are explored as well as opportunities for personal and professional development.

NURS 461 Application of Evidence Based Practice for the RN
Credits 3. 3 Lecture Hours.
This course is a study of basic research methodologies and an in depth examination of the professional nurse's role in the application of evidence into clinical practice.
NURS 462 Pathophysiology and Pharmacology for the RN
Credits 4. 4 Lecture Hours.
Students will demonstrate the ability to incorporate the principles of pathophysiology and pharmacology in planning healthcare for individuals across the lifespan.

NURS 463 Health Assessment for the RN
Credits 3. 3 Lecture Hours.
In this course, the concepts and principles underlying assessment of the health status of culturally diverse individuals are presented. An emphasis is placed on reviewing and renewing cognitive, affective, and psychomotor skills to obtain health histories and discover physical and psychosocial findings in the well person. The role of genetics in family histories is examined. Successful completion of the course requires students to successfully complete a head-to-toe health assessment examination with accurate documentation of the findings.

NURS 464 Health Promotion Across the Lifespan for the RN
Credits 3. 2 Lecture Hours. 1 Lab Hour.
This course emphasizes the role of the nurse in health promotion across multiple settings with diverse populations. The student will apply principles of teaching/learning, case management, and genetics/genomics to improve the health of general and vulnerable populations.

NURS 465 Care of the Older Adult for the RN
Credits 2. 2 Lecture Hours.
The student will develop competencies and knowledge necessary for providing care and promote health aging in the older adult.

NURS 466 Community Health for the RN
Credits 5. 4 Lecture Hours. 1 Lab Hour.
In this course, students are introduced to community-based health care of culturally diverse populations. The role of the professional nurse as part of an interprofessional team in health promotion, disease prevention, and management of chronic health problems in community settings is explored. Students apply critical reasoning and information technology skills to develop and implement evidence-based projects that positively impact the quality of life of populations. Practicum experiences are individualized.

NURS 467 Leadership and Management for the RN
Credits 5. 3 Lecture Hours. 2 Lab Hours.
In this course, theories and principles of human behavior in organizations are examined, including an exploration of leadership roles in professional nursing practice. The role of regulatory agencies in the provision of quality health care is explored. Students will participate in the evaluation and planning for quality improvement using nurse sensitive indicators. The students will discern the nurse's role in reducing the financial cost of health care. Practicum experiences are individualized.

NURS 468 Professional Practice Issues for the RN
Credits 2. 2 Lecture Hours.
Professional practice issues such as those related to political action, socio-legal concerns, cultural diversity, and ethics are explored with an emphasis on the advocacy role of the nurse. The importance of the nurse leader as a role model for continued professional growth through lifelong learning is emphasized.

NURS 489 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of nursing. May be repeated for credit.
Prerequisites: Admission to the BSN program or approval from the Associate Dean for Academic Affairs.
NVSC 401 Naval Ships Systems II: Weapons
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Types and purpose of major weapons systems and platforms of the U.S. Naval forces; theory and operational principles of radar, sonar and communication circuits; fire control problem geometry; principles of ballistics, propulsion, launching and guidance of weapons; principles of electronic warfare and nuclear weapons.

NVSC 402 Leadership and Ethics
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Theoretical concepts of Western moral traditions and ethical philosophy; topics include leadership, values, military ethics, Just War Theory, Uniform Code of Military Justice and Naval regulations; examination of ethical foundation for the development of leadership and communication skills; should be taken the semester of graduation.

NVSC 404 Naval Operations and Seamanship
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Relative motion, formation tactics, ship maneuvering behavior and characteristics, applied aspects of ship handling, afloat communications and ship employment; naval warfare, operations concepts, command and control, and joint warfare; review and analysis of case studies involving moral, ethical and leadership issues.
Prerequisite: NVSC 301; junior or senior classification.

NVSC 410 Fundamentals of Maneuver Warfare
Credits 3. 3 Lecture Hours.
Study of the foundational concepts and history of the United States Marine Corps as the premier Maneuver Warfare organization; evolution of amphibious and expeditionary doctrine over time and amid emerging technological challenges; exploration of theoretical concepts utilizing historical case studies.
Prerequisite: Grade of C or better in NVSC 303.

NVSC 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study in problems in the field of naval science not covered by other courses in department.
Prerequisite: Approval of department head.

OCEN - Ocean Engineering (OCEN)

OCEN 201 Introduction to Ocean Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Survey of ocean engineering; concepts and theories of wave-structure interaction; sources of technical information; coastal and ocean structures, moorings, laboratory models; underwater systems; naval architecture; ocean instrumentation; materials and corrosion; hydrographic surveying and positioning, graphics laboratory, recent developments in ocean engineering.
Prerequisite: Grade of C or better in OCEN 221, or concurrent enrollment.

OCEN 213 Principles of Materials Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Description of properties of materials using a unified approach; discussion of the chemical structure, crystalline structure, microstructure, interface structure, and phase diagrams for materials; develop bulk properties and characteristics of metals, polymers, and ceramics; mechanical, electrical, magnetic, thermal, and optical properties for these materials.
Prerequisites: Grade of C or better in OCEN 221 or CVEN 221, or concurrent enrollment.

OCEN 214 Mechanics of Deformable Bodies
Credits 3. 3 Lecture Hours.
Concepts of stress, strain and deformation; factor of safety; stress-strain relationships and material properties; stress concentrations; area moments of inertia; axially loaded members, torsionally loaded members, bending of beams; shear and moment diagrams; stresses due to combined loading; thin-walled pressure vessels; transformation of stress including Mohr’s circle; beam deflections and buckling stability.
Prerequisites: Grade of C or better in OCEN 221 or CVEN 221; grade of C or better in MATH 308 or concurrent enrollment.

OCEN 221 Engineering Mechanics: Statics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
General principles of mechanics; concurrent force systems; statics of particles; equivalent force/moment systems; centroids and center of gravity; equilibrium of rigid bodies; trusses, frames and machines; internal forces in structural members; moments of areas.
Prerequisites: Grade of C or better in MATH 251 or MATH 253, or concurrent enrollment; grade of C or better in ENGR 216/PHYS 216 and PHYS 206; also taught at Qatar campus.

OCEN 261 Applied Numerical Methods
Credits 3. 3 Lecture Hours.
Application of numerical methods to ocean-related engineering problems; development, evaluation and comparison of various techniques for root finding, curve fitting, numerical integration, simultaneous linear algebraic equations, matrix methods, probability and statistics and ordinary differential equations in ocean-related engineering applications.
Prerequisites: Grade of C or better in MATH 308 or concurrent enrollment; also taught at Qatar campus.

OCEN 265 Introduction to Geotechnical Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Physical properties of soils, classification systems, soil exploration, permeability, consolidation, compaction and shear strength; laboratory tests conducted to determine the physical and engineering soil properties needed for application in geotechnical engineering design.
Prerequisite: Grade of C or better in OCEN 214 or CVEN 305.

OCEN 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study on selected current problems in the ocean and/or maritime industry; enables individuals or groups to undertake and complete with credit some specialized investigation not covered by other courses.
Prerequisite: Approval of department head.

OCEN 300 Ocean Engineering Wave Mechanics
Credits 3. 3 Lecture Hours.
Physical and mathematical fundamentals of ocean wave behavior; mechanics of wave motion; use of statistics and probability to develop design wave criteria.
Prerequisite: Grade of C or better in OCEN 201; grade of C or better in OCEN 311 or CVEN 311/EVEN 311, or concurrent enrollment; also taught at Galveston and Qatar campuses.

OCEN 311 Fluid Statics and Dynamics
Credits 3. 3 Lecture Hours.
Fluid properties; statics; kinematics; ideal gas law; conservation of mass; linear momentum and Newton’s Second Law; conservation of energy; Bernoulli’s equation; control volume analysis, similitude and hydraulic models; homogeneous flow in pipes; fluid drag, boundary layer basics.
Prerequisites: Grade of C or better in MATH 251, and OCEN 221 or CVEN 221.
OCEN 336 Fluid Dynamics Laboratory
Credit 1. 2 Lab Hours.
Introduction to laboratory techniques, calibration principles, reports and fluid measurements; determination of fluid properties; visualization of types of flow; experiments in closed conduit flow of air, water and oil; fluid drag and turbomachinery tests; open channel and gravity wave demonstrations.
Prerequisite: Grade of C or better in OCEN 311 or CVEN 311/EVEN 311, or concurrent enrollment.

OCEN 341 Engineering Economics and Project Management
Credits 3. 3 Lecture Hours.
Analysis of engineering economics and management, using costs and benefits of various engineering options; project scheduling covered in detail including PERT, GANT and CPM methods; time value of money, cash flows, analysis techniques, interest rates, inflation, depreciation, optimization, statistics, network analysis and critical path programming.
Prerequisites: Junior or senior classification; enrollment in the OCEN program; also taught at Galveston and Qatar campuses.

OCEN 344 Reinforced Concrete Structures
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Analysis and design of reinforced concrete beams, columns, slabs and footings using ultimate strength methods.
Prerequisites: Grade of C or better in CVEN 345 and OCEN 213; also taught at Galveston and Qatar campuses.

OCEN 345 Theory of Ocean Engineering Structures
Credits 3. 3 Lecture Hours.
Functions of and loadings on ocean engineering structures, including sea walls, harbor structures, sea-going vessels, offshore structures and underwater vehicles; analysis of structures including trusses, beams, plates, shells and arches; introduction to stress and failure analysis; introduction to finite element analysis (FEA) including computational mechanics of ocean engineering structures using FEA.
Prerequisites: Grade of C or better in OCEN 214, or approval of instructor.

OCEN 362 Hydromechanics
Credits 3. 3 Lecture Hours.
Kinematics of fluids; differential analysis of fluid flow; homogeneous, incompressible, irrotational and turbulent flows; Euler equations; Navier-Stokes equations; flow of viscous fluids; pumps; introduction to water waves.
Prerequisites: Grade of C or better in OCEN 311 or CVEN 311/EVEN 311; grade of C or better in MATH 308; also taught at Galveston and Qatar campuses.

OCEN 363 Dynamics and Vibrations
Credits 3. 3 Lecture Hours.
Application of Newtonian and energy methods to model dynamic systems with ordinary differential equations; dynamics and vibrations of linear single-and multi-degree of freedom systems of particles and rigid bodies; solutions of models using analytical approaches; interpreting solutions; application to simple floating systems.
Prerequisites: Grade of C or better in OCEN 221 or CVEN 221; grade of C or better in MATH 308 or concurrent enrollment; also taught at Galveston campus.

OCEN 399 Leadership and Experience
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisites: OCEN 201; junior or senior classification or approval of instructor.

OCEN 400 Basic Coastal Engineering
Credits 3. 3 Lecture Hours.
Mechanics of wave motion; wave refraction, diffraction and reflection; wave forecasting; shore processes; planning of coastal engineering projects; design of seawalls, breakwaters, beach nourishment and fixed and floating installations; dredging; risk analysis.
Prerequisites: Grade of C or better in OCEN 300.

OCEN 401 Underwater Acoustics for Ocean Engineers
Credits 3. 3 Lecture Hours.
Fundamentals of underwater acoustics, SONAR equations, propagation of underwater sound, acoustic transducers and arrays, noise in the ocean environment, design and prediction of SONAR systems, ocean engineering applications of underwater sound.
Prerequisite: Grade of C or better in OCEN 311 or CVEN 311/EVEN 311.

OCEN 402 Principles of Naval Architecture
Credits 3. 3 Lecture Hours.
Elementary principles of naval architecture; ship geometry and hydrostatics; load line and classification regulations; concept of intact and damaged stability; resistance and propulsion of water-borne vehicles; applications to the design consideration of semi-submersibles, catamarans and drilling rigs.
Prerequisite: Grade of C or better in OCEN 311 or CVEN 311/EVEN 311.

OCEN 403 Dynamics of Offshore Structures
Credits 3. 3 Lecture Hours.
Prediction of loads due to wind, current and waves; introduction to concepts of linear structural dynamics and to the design of ocean structures; mooring and towing analysis; fluid-structure interactions; vibration of submerged structures; offshore pipelines; introduction to risk analysis.
Prerequisites: Grade of C or better in OCEN 300 and CVEN 345; grade of C or better in OCEN 363 or concurrent enrollment.

OCEN 405 Finite Element Analysis in Engineering Design
Credits 3. 3 Lecture Hours.
Introduction to the fundamental theory and techniques; direct approach and energy formulation; element equations, assembly and solution schemes; computer implementation, design considerations; applications to field problems; original computer project required.
Prerequisites: Grade of C or better in OCEN 345 or CVEN 345; grade of C or better in OCEN 214 and OCEN 261; also taught at Galveston and Qatar campuses.

OCEN 406 Capstone Design I
Credit 1. 1 Lecture Hour.
Part one of a two-course sequence; development and presentation of detailed proposals for offshore or coastal engineering projects, which will form the basis for OCEN 407 design projects; includes formulation of project objectives, design constraints, delineation of alternatives, scheduling and analysis of economic and environmental impact.
Prerequisites: Grade of C or better in OCEN 300; grade of C or better in OCEN 400, OCEN 402, and OCEN 403, or concurrent enrollment; also taught at Galveston and Qatar campuses.
OCEN 407 Design of Ocean Engineering Facilities II
Credits 3. 3 Lecture Hours. 6 Lab Hours.
Design of structures, equipment and systems for the ocean; environmental, logistical and reliability requirements; complete design process followed through group design project; delineation of alternatives, constraints, economics and environmental consequences included to strengthen real-life problem solving skills.
Prerequisites: Grade of C or better in OCEN 400, OCEN 402, OCEN 403, and OCEN 406.

OCEN 408 Underwater and Moored System Design
Credits 3. 3 Lecture Hours.
Basic principles of thermodynamics, fluid dynamics and human respiration physiology applied to design of underwater habitats, submersibles and diving bells; breathing gas supply for diving systems; heat transfer for underwater systems; pressure vessel design; remotely operated vehicles; subsea flowlines and manifold systems; and design of towed and moored systems.
Prerequisites: Grade of C or better in OCEN 311 or CVEN 311/EVEN 311.

OCEN 410 Ocean Engineering Laboratory
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Fundamental techniques and instrumentation for field and laboratory measurements pertaining to ocean engineering experiment planning; data analysis and data presentation; written reports describing planning, analysis and results of experiments.
Prerequisites: Grade of C or better in OCEN 400, OCEN 402, and OCEN 403.

OCEN 411 Environmental Nearshore Hydrodynamics
Credits 3. 3 Lecture Hours.
Fundamentals of current and shallow water wave motions; beach response to nearshore processes; coastal sediment and pollutant transport including nearshore currents, longshore onshore-offshore transport and shoreline configuration; facilities for shoreline stabilization, backshore protection and inlet stabilization; environmentally conscious coastal engineering design.
Prerequisites: Grade of C or better in OCEN 300.

OCEN 415 Offshore Structure Design
Credits 3. 3 Lecture Hours.
Design of large structures using diffraction analysis; design project: design of a fixed offshore structure including dynamics effects.
Prerequisites: Grade of C or better in CVEN 446 and OCEN 300, or concurrent enrollment; also taught at Galveston and Qatar campuses.

OCEN 421 Naval Architecture Design II
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Ship motion and mooring; theory and practice of naval architecture, basic principles and design calculations; hull structural design considerations; ship resistance and propulsion power prediction; propeller selection concepts; dynamic positioning systems; mobile offshore drilling unit (MODU) design considerations; practical design work on a vessel or MODU of the student's choosing under the guidance of the instructor.
Prerequisites: Grade of C or better in OCEN 362 and OCEN 402.

OCEN 459 Mechanical Vibrations
Credits 3. 3 Lecture Hours.
Basic theory of vibrating systems with single and multiple degrees of freedom and principles of transmission and isolation of vibrations.
Prerequisites: Grade of C or better in OCEN 261 and OCEN 363.

OCEN 461 Ocean Instrumentation and Control Theory
Credits 3. 3 Lecture Hours.
Electrical systems components; analog and digital filters-amplifiers; network analysis; instrument behavior and displacement, velocity, acceleration, force, and flow measurements; simple feedback and control theory for linear electromechanical systems; digital data acquisition.
Prerequisites: Grade of C or better in ENGN 215.

OCEN 463 Hydrodynamics of Offshore Structures
Credits 3. 3 Lecture Hours.
Introduction to offshore structures; wave force formulation; wave forces on small structures; floating structure dynamics; modeling dynamics systems of rigid body motion; structure response statistics.
Prerequisites: Junior or senior classification or approval of instructor; Grade of C or better in OCEN 261, OCEN 363, CVEN 345 and OCEN 300; enrollment in OCEN program; also taught at Galveston and Qatar campuses.

OCEN 465 Subsea Pipeline Design
Credits 3. 3 Lecture Hours.
Design and construction practices of submarine oil/gas pipelines and risers; pipe selections, coating, insulation; route selection; operation and installation stresses; stability during laying and operation due to wave and current action; cost analysis considering long term operability and safety.
Prerequisites: Grade of C or better in OCEN 300 and CVEN 446; also taught at Galveston and Qatar campuses.

OCEN 467 Offshore Random Processes
Credits 3. 3 Lecture Hours.
Basic probability theory and engineering statistics; irregular structural excitation and response; random vibration theory with application to offshore processes and structures; development of extreme values used in design of ocean structures.
Prerequisites: Grade of C or better in OCEN 261, OCEN 363, and OCEN 403; also taught at Galveston and Qatar campuses.

OCEN 474 Port and Harbor Engineering
Credits 3. 3 Lecture Hours.
Engineering background and specific skills for design of marine facilities and harbors; includes development of design criteria, channel design, evaluation of operations and extreme loads, dredging and disposal.
Prerequisites: Junior or senior classification or approval of instructor.

OCEN 481 Seminar
Credit 1. 1 Lecture Hour.
Responsibilities and obligations of new ocean engineers; professional ethics, membership in professional societies and professional registrations; case studies and lectures presented by staff and practicing engineers. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Grade of C or better in OCEN 406.

OCEN 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems in various areas of ocean engineering assigned to individual students or to groups; readings and assignments given and frequent consultations held.
Prerequisite: Approval of program head.

OCEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of ocean engineering. May be repeated for credit.
Prerequisite: Approval of instructor.
Prerequisite: plastics, oil and sound; impact of pollution on society.
Sources and fates of marine pollutants; types of pollutants including various lengths and purposes; addresses preparation for various ocean communication of various forms of writing and for oral presentations of exploration of the fundamental skills required for effective credits 3. 3 lecture hours.

OCNG 203 Communicating Oceanography
Credit 1. 2 Lab Hours.
Learn and practice basic writing skills for ocean science; basic background on the research being conducted in the Department of oceanography through seminars given by Oceanography graduate students.
Prerequisites: OCNG 251.

OCNG 251 Oceanography
Credits 3. 3 Lecture Hours.
(GEOL 1345, GEOL 1445*) Oceanography. Overview of the ocean environment; interrelation of the subdisciplines of ocean sciences; importance of the oceans to human beings; human impact on the oceans; also taught at Galveston campus.

OCNG 252 Oceanography Laboratory
Credit 1. 2 Lab Hours.
(GEOL 1145, GEOL 1445*) Oceanography Laboratory. Hands-on laboratory experiments and exercises demonstrating principles of ocean sciences; emphasis on the unique interdisciplinary nature of the ocean and current ocean issues relevant to today's society. Honors sections and contracts are also available; also taught at Galveston campus.

OCNG 281 Seminar
Credit 1. 1 Other Hour.
Basic background on the research being conducted in the Department of Oceanography through seminars given by Oceanography graduate student; basic writing skills for ocean science through instruction and assignments during the semester.
Prerequisites: OCNG 251; OCNG 252; or approval of instructor.

OCNG 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in oceanography. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Freshman or sophomore classification and approval of instructor.

OCNG 303 Professional Communication in Oceanography
Credits 3. 3 Lecture Hours.
Exploration of the fundamental skills required for effective communication of various forms of writing and for oral presentations of various lengths and purposes; addresses preparation for various ocean science-related careers.
Prerequisite: OCNG 203; COMM 203 or COMM 205, junior or senior classification or approval of instructor.

OCNG 350 Marine Pollution
Credits 3. 3 Lecture Hours.
Sources and fates of marine pollutants; types of pollutants including plastics, oil and sound; impact of pollution on society.
Prerequisite: Junior or senior classification or approval of instructor.

OCNG 404 Ocean Observing Systems
Credits 3. 3 Lecture Hours.
Investigate the rationale behind ocean observing systems; familiarize with the relevant social, scientific design, technology and policy issues associated with observing systems.
Prerequisite: OCNG 251 or approval of instructor.

OCNG 410 Physical Oceanography
Credits 3. 3 Lecture Hours.
Elements of the physics of the sea; descriptive aspects as well as cause and effect relations in respect to currents, thermal structure and waves. Intended for majors in the physical sciences or engineering.
Prerequisites: MATH 152; junior or senior classification.

OCNG 420 Biological Oceanography
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Biological aspects of the marine environment; marine organisms; productivity of the sea; marine pollution and fouling; use of the sea.
Prerequisites: BIOL 112 or OCNG 251; junior or senior classification; also taught at Galveston campus.

OCNG 425 Microbial Oceanography
Credits 3. 3 Lecture Hours.
Diversity and ecology of microorganisms in the ocean; role in the Earth system both in the contemporary ocean and the geological past.
Prerequisites: Junior or senior classification, OCNG 251, or approval of instructor.

OCNG 430 Geological Oceanography
Credits 3. 3 Lecture Hours.
History of Oceanography; physiographic provinces of the oceans, their origins and sediments; geological sampling techniques and geophysical methods; coasts and beaches, paleoceanography; global tectonics.
Prerequisites: OCNG 251 or GEOL 101 or GEOL 104 or GEOG 203; junior or senior classification.

OCNG 440 Chemical Oceanography
Credits 3. 3 Lecture Hours.
Chemical aspects of the marine environment; biogeochemical cycles of organic and inorganic constituents; primary productivity, the carbon dioxide system, nutrient cycles, stable and radioactive isotopes in the sea.
Prerequisites: CHEM 120 and OCNG 251; junior or senior classification.

OCNG 443 Oceanographic Field and Laboratory Methods
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Development of skills needed to collect, prepare and analyze oceanographic samples; perform data analysis, interpretation and reporting for common oceanographic analyses.
Prerequisite: STAT 211, CHEM 120, junior or senior classification or approval of instructor.

OCNG 451 Mathematical Modeling of Ocean Climate
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Problem-based course in theoretical and computer techniques applied to mathematical solutions of ocean climate, including ocean circulation, climate variability, El Niño.
Prerequisite: MATH 308.
OCNG 453 Hydrothermal Vents and Mid-Ocean Ridges
Credits 3. 3 Lecture Hours.
Exploration of the creation of various types of hydrothermal fluids, the associated chemical behavior of vent and plume fluids, and the ecology of hydrothermal vent systems; emphasis on the interdependence of the geological, chemical, and biological aspects of hydrothermal systems.
Prerequisite: OCNG 251; BIOL 112; CHEM 120; junior or senior classification or approval of instructor.

OCNG 456 MATLAB Programming for Ocean Sciences
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Computation techniques for oceanographic data processing using MATLAB; focus on the analysis of oceanographic-related data sets and real-world oceanographic applications; analyze individual data sets.
Prerequisite: Junior or senior classification or approval of the instructor.

OCNG 461 Advanced Oceanographic Data Analysis and Communication
Credits 3. 3 Lecture Hours.
Project design and planning for oceanographers; oceanographic data organization and analysis; synthesis and interpretation of data analysis; technical report writing and presentation.
Prerequisites: OCNG 203, OCNG 410, and GEOS 470, or approval of the instructor.

OCNG 469 Python for Geosciences
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Core language Python programming, scientific programming analysis methods, analysis of large geophysical data sets, plotting geophysical data, interpolation.
Prerequisite: Junior or senior classification.

OCNG 481 Seminar
Credit 1. 1 Lecture Hour.
Analysis, review and critique of current research themes in oceanography based on reading assignments and seminar presentations. May be taken four times for credit.
Prerequisite: Junior or senior classification.

OCNG 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special reading assignments, problems and discussion on oceanographic topics of mutual interest to student and instructor.
Prerequisites: OCNG 251 or approval of instructor. An honors section is also available.

OCNG 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of oceanography. May be taken two times for credit.
Prerequisite: OCNG 251 or approval of instructor. An honors section is also available.

OCNG 491 Research
Credits 0 to 9. 0 to 9 Other Hours.
Research conducted under the direction of faculty member in oceanography. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded. Honors section also available.
Prerequisites: Junior or senior classification and approval of instructor.

PERF - Performance Studies (PERF)

PERF 101 Introduction to Performance Studies
Credits 3. 3 Lecture Hours.
Survey of topics in the interdisciplinary field of performance studies, including forms of performance, performance in everyday life and performance in global and intercultural contexts; in-class performance exercises and discussions; major writing component.

PERF 202 Introduction to Performance Technology
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Basic hardware, software, and aesthetic concepts of technology-based artistic performance; basic electricity, electronics, troubleshooting, audio and video design software, study of significant works, and participation in a departmental production.

PERF 223 Aesthetics of Activism
Credits 3. 3 Lecture Hours.
The use of performance in activist contexts to achieve social and political change; examination of activism, including struggles for social justice, economic equality and civil rights, as performance; examination of the arts, including performance, theatre, music, dress and design, as tools for activism.

PERF 284 Performance Studies Internship
Credits 0 to 4. 0 to 4 Lecture Hours.
Supervised experience program conducted in the area of the student’s interest in performance studies. May be taken three times for credit.
Prerequisite: PERF 101.

PERF 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Directed Studies in specific problems in identified areas of performance studies. May be taken for credit up to 3 hours.
Prerequisites: Approval of instructor and department head; PERF majors and minors only.

PERF 289 Special Topics in...
Credits 3. 3 Other Hours.
 Selected topics in performance studies. May be taken for credit seven times.
Prerequisite: Approval of instructor.

PERF 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in performance studies. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PERF 292 Cooperative Education in Performance Studies
Credits 0 to 3. 0 to 3 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study; supervision of the student by the cooperating employer and the instructor; technical report on a related subject area approved by the instructor. May be taken two times for credit.
Prerequisite: PERF 101.
PERF 301 Performance in World Cultures
Credits 3. 3 Lecture Hours.
Application of the tools of performance studies to explore the enactment of the arts in world cultures and the ways the people of every society express themselves in performance; examination of different genres of performance through music, theatre, verbal art and dress. **Prerequisite:** Junior or senior classification or approval of instructor; PERF-301 also taught at Galveston campus.

PERF 303 Creating Performance
Credits 3. 3 Lecture Hours.
Live and mediated performance; techniques and skills for performance; practical experience; discussion and critical analysis of performance; strategies for devising performance. **Prerequisites:** Major or minor in PERF; junior or senior classification or approval of instructor.

PERF 310 History of Performance in the Ancient World
Credits 3. 3 Lecture Hours.
Historical approach to performance in the ancient world; primary and secondary evidence for performance practice; application of historical methods in the study of performance. **Prerequisites:** Junior or senior classification, or approval of instructor.

PERF 311 History of Performance in the Common Era
Credits 3. 3 Lecture Hours.
Historical approach to performance practices and texts in the Common Era to 1800; transmission of performance styles, techniques and genres across cultures; applications of historical methods in the study of performance. **Prerequisites:** Junior or senior classification or approval of instructor.

PERF 312 History of Performance Modern Era
Credits 3. 3 Lecture Hours.
Development of performance practices and texts in the 19th-21st centuries; performance styles, techniques and genres in and across cultures; application of historical methods in the study of performance. **Prerequisites:** Junior or senior classification or approval of instructor.

PERF 325 Dance and World Cultures
Credits 3. 3 Lecture Hours.
Examination of international relationships between dance, culture, identity, gender, youth and politics; relationships between dancing, gender and politics in specific cultures and in globalization; variety of dance practices around the globe. **Prerequisite:** Junior or senior classification.

PERF 326 Dance and Identity in the United States
Credits 3. 3 Lecture Hours.
Analysis of dance events as complex sites for social action; examines dances performed by diverse groups of people; considers such issues as identity, community, diversity, gender and representation in the United States. **Prerequisite:** Junior or senior classification.

PERF 327/AFST 327 Popular Musics in the African Diaspora
Credits 3. 3 Lecture Hours.
Examination of a range of popular musics from the twentieth century that have emerged in conjunction with the historical global spread of peoples and cultures from the African continent; technical knowledge about music is not required; focus on social and cultural contexts for popular music. **Prerequisite:** Junior or senior classification or approval of instructor. **Cross Listing:** AFST 327/PERF 327.

PERF 328 Japanese Traditional Performing Arts
Credits 3. 3 Lecture Hours.
Study of various genres of Japanese performing arts from the 7th century to the present; understanding the genres in their historical and cultural contexts and recognizing shared aesthetic values. **Prerequisites:** Junior or senior classification or approval of instructor.

PERF 333 Movement in Performance Studies
Credits 3. 3 Lecture Hours.
Embodied practices in performance studies; examination of the role movement plays in aesthetics, communication, religion, society, individual experience and politics; investigation of varied movement practices. **Prerequisites:** Junior or senior classification.

PERF 338 Performing Communities
Credits 3. 3 Lecture Hours.
Consideration of socio-cultural, aesthetic and ethical issues in arts-based community engagement; development of a community-based performance project. **Prerequisites:** Junior or senior classification.

PERF 402/FILM 402 Intermedia Performance
Credits 3. 3 Lecture Hours.
Study of theory, history, literature and techniques of intermedia composition and design for film, theatre, dance, interactive media, and other forms of performance; examination of the collaborative creative process; projects in interdisciplinary performance. **Prerequisites:** Junior or senior classification. **Cross Listing:** FILM 402/PERF 402.

PERF 450 Seminar in 20th-21st Century Performance
Credits 3. 3 Lecture Hours.
Social, political and aesthetic issues and problems in 20th-21st century performance idioms; study of genres, styles, artistic movements; may include performance. May be taken two times for credit when content varies. **Prerequisites:** Junior or senior classification or approval of instructor.

PERF 451 Seminar in Historical Performance
Credits 3. 3 Lecture Hours.
Historical contexts for performance genres, styles or movements prior to the 20th century; texts, performance practices and contexts of performance genres, styles or movements prior to the 20th century; emphasis on historical methods; production participation may be required. May be taken two times for credit if content differs. **Prerequisites:** Junior or senior classification or approval of instructor.

PERF 452 Seminar in Global Performance
Credits 3. 3 Lecture Hours.
Intersection of cultures in performances; representations and expressions of culture; focus on culture as the ground for performance; may culminate in a performance. May be taken two times for credit if content differs. **Prerequisites:** Junior or senior classification or approval of instructor.
PERF 453 Seminar in Performance Ethnography
Credits 3. 3 Lecture Hours.
Theories and methods of ethnographic research; ethnographic research in the study of performance; ethnography of performance; ethnographic field work may be required.
Prerequisites: Junior or senior classification or approval of instructor.

PERF 454 Seminar Performing the City
Credits 3. 3 Lecture Hours.
Vernacular and aesthetic performance traditions in a city or cities; politics, culture, economics and geography of city or cities; may include a faculty-led field trip.
Prerequisites: Junior or senior classification or approval of instructor.

PERF 460 Seminar in Performance Theory
Credits 3. 3 Lecture Hours.
In-depth examination of one or more contemporary theories of performance. Emphasis on problems, research, and innovations relevant to performing and analyzing performance; writing intensive.
Prerequisites: Junior or senior classification or approval of instructor.

PERF 461 Seminar in Folklore
Credits 3. 3 Lecture Hours.
Expressive forms in vernacular culture; folklore genres and traditions of expression; local and regional customs; material culture and narrative; processes of meaning-making; aesthetics in vernacular performance.
Prerequisites: Junior or senior classification or approval of instructor.

PERF 481 Capstone Seminar: Performance as Research
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Capstone senior project on an individually-chosen research topic, presentation of a performance or interdisciplinary project; major writing and oral communication components.
Prerequisites: Performance studies major; completion of all performance studies coursework or taken concurrently with this course; approval of instructor, advisor and department head.

PERF 483 Performance Practicum
Credits 1 to 3. 1 to 3 Other Hours.
Faculty-supervised performance experience in a public setting as part of a department production or an approved external production. May be taken four times for credit.
Prerequisite: Junior or senior classification and approval of instructor.

PERF 484 Performance Studies Internship
Credits 0 to 4. 0 to 4 Other Hours.
Supervised experience program conducted in the area of the student's interest in performance studies. May be taken three times for credit.
Prerequisites: PERF 101; junior or senior classification.

PERF 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Directed Studies in specific problems in identified areas of performance studies. May be taken for credit up to 3 hours.
Prerequisites: Approval of instructor and department head; PERF majors and minors only.

PERF 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in performance studies. May be repeated for credit.
Prerequisite: Approval of instructor.

PERF 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in performance studies. May be taken two times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

PERF 492 Cooperative Education in Performance Studies
Credits 0 to 3. 0 to 3 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study; supervision of the student by the cooperating employer and the instructor; technical report on a related subject area approved by the instructor. May be taken two times for credit.
Prerequisites: PERF 101; junior or senior classification.

PETE - Petroleum Engineering (PETE)

PETE 201 Introduction to Petroleum Engineering
Credit 1. 1 Lecture Hour.
Overview and history of the petroleum industry and petroleum engineering; nature of oil and gas reservoirs, exploration and drilling, formation evaluation, well completions and production, surface facilities, reservoir mechanics, improved oil recovery; impact of ethical, societal, environmental considerations; career development resources, including professional society.
Prerequisite: Approval of department head.

PETE 225 Introduction to Drilling Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to petroleum drilling systems, including fundamental petroleum engineering concepts, quantities and unit systems, drilling rig components, drilling fluids, pressure loss calculations, casing, well cementing, and directional drilling.
Prerequisites: Grade of C or better in MATH 152, PHYS 206, and ENGR 216/PHYS 216 or PHYS 216/ENGR 216; grade of C or better in CHEM 107 and CHEM 117, or concurrent enrollment.

PETE 281 Capstone Seminar: Performance as Research
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Capstone senior project on an individually-chosen research topic, presentation of a performance or interdisciplinary project; major writing and oral communication components.
Prerequisites: Performance studies major; completion of all performance studies coursework or taken concurrently with this course; approval of instructor, advisor and department head.

PETE 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems in various areas of petroleum engineering assigned to individual students or to groups.
Prerequisites: Approval of department head.

PETE 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of petroleum engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

PETE 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member in petroleum engineering. May be taken two times for credit. Registration in multiple sections of this course is possible within a given semester.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PETE 300 Summer Practice
Credits 0.
Required. No Credit. Industry practice to familiarize the petroleum engineering student with practices and equipment of the petroleum industry. Approval of advisor required.
PETE 301 Petroleum Engineering Numerical Methods
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Use of numerical methods in a variety of petroleum engineering problems; numerical differentiation and integration; root finding; numerical solution of differential equations; curve fitting and interpolation; computer applications; introduction to the principles of numerical simulation methods.
Prerequisites: Grade of C or better in MATH 308, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 311 Reservoir Petrophysics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Systematic theoretical and laboratory study of physical properties of petroleum reservoir rocks; lithology, porosity, elastic properties, strength, acoustic properties, electrical properties, relative and effective permeability, fluid saturations, capillary characteristics and rock-fluid interactions such as adsorption and absorption.
Prerequisites: Grade of C or better in MATH 251, PHYS 207, and ENGR 217/PHYS 217 or PHYS 217/ENGR 217; grade of C or better in CHEM 107, CHEM 117, and GEOL 104, or concurrent enrollment.

PETE 314 Transport Processes in Petroleum Production
Credits 3. 3 Lecture Hours.
Basics and applications of fluid mechanics (statics; mass, energy, momentum balances; laminar and turbulent flow, Reynolds number, Moody diagram; non-Newtonian fluid flow; multi-phase flow; flow in porous media, non-Darcy flow; heat transfer (heat conduction, convection, heat exchangers); emphasis on analogies and similarities within mass, energy and momentum transport.
Prerequisites: Grade of C or better in MEEN 315, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 321 Formation Evaluation
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Well-log interpretation for formation evaluation of hydrocarbon-bearing reservoirs; basic rock physics principles; theory of tool operation; analysis of open hole logs and core measurements to estimate hydrocarbon reserves and petrophysical properties of the formation such as porosity, net pay thickness, water/hydrocarbon saturation, permeability and saturation-dependent capillary pressure; formation evaluation of clay-free and shaly-sand formations as well as basic introduction to formation evaluation of organic-shale formations.
Prerequisites: Grade of C or better in PETE 301, PETE 310, PETE 311, and GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 322 Well Testing
Credits 3. 3 Lecture Hours.
Analysis of well performance under varied reservoir conditions including evaluation of unsteady, pseudo-steady and steady state flow; well testing methods used to determine well and reservoir parameters; applications to conventional and unconventional wells producing gas and/or liquids; fundamentals of preparing and operating well test equipment to monitor, measure and gather samples for evaluating well performance.
Prerequisites: Grade of C or better in PETE 301, PETE 310, PETE 311, and GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 323 Fundamentals of Reservoir Engineering
Credits 3. 3 Lecture Hours.
Determination of reserves; material balance methods; aquifer models; fractional flow and frontal advance; displacement, pattern and vertical sweep efficiencies in waterfloods; enhanced oil recovery processes; design of optimal recovery processes; introduction and performance analysis of unconventional reservoirs.
Prerequisites: Grade of C or better in PETE 301, PETE 310, PETE 311, and GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 324 Well Testing
Credits 3. 3 Lecture Hours.
Analysis of well performance under varied reservoir conditions including evaluation of unsteady, pseudo-steady and steady state flow; well testing methods used to determine well and reservoir parameters; applications to conventional and unconventional wells producing gas and/or liquids; fundamentals of preparing and operating well test equipment to monitor, measure and gather samples for evaluating well performance.
Prerequisites: Grade of C or better in PETE 301, PETE 310, PETE 311, and GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 325 Petroleum Production Systems
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Petroleum operation and oil field equipment including onshore and offshore production systems; wellbore inflow and outflow and backpressure analysis; downhole completion and sand control equipment; artificial lift equipment and design; stimulation, workover/completion nomenclature; flow assurance; produced fluids, fluid separation and metering, safety systems, pressure boosting and monitoring.
Prerequisites: Grade of C or better in PETE 301, PETE 310, and PETE 314, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 335 Technical Presentations I
Credit 1. 1 Lecture Hour.
Preparation of a written technical paper proposal on a subject related to petroleum technology and an oral presentation of the proposal in a formal technical conference format.
Prerequisites: Grade of C or better in COMM 203, COMM 205, COMM 243, or ENGL 210; junior or senior classification.

PETE 336 Petroleum Technical Presentation I
Credit 1. 3 Lab Hours.
Preparation of a written technical paper on a subject related to petroleum technology.
Prerequisites: Grade of C or better in ENGL 210; junior or senior classification, petroleum engineering majors only or approval of department head; Qatar campus.

PETE 337 Junior Student Paper Contest
Credits 0.
No Credit. Presentation of a technical proposal on a subject related to petroleum technology judged by petroleum professionals at the junior level departmental student paper contest. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Grade of C or better in PETE 335.
PETE 353 Petroleum Project Evaluation
Credits 3. 3 Lecture Hours.
Economic analysis and investment decision methods in petroleum and mineral extraction industries; depletion, petroleum taxation regulations, and projects of the type found in the industry; mineral project evaluation case studies.
Prerequisites: Grade of C or better in PETE 301 and PETE 310, or concurrent enrollment.

PETE 355 Drilling Engineering
Credits 3. 3 Lecture Hours.
Design and evaluation of well drilling systems; identification and solution of drilling problems; wellbore hydraulics, well control, casing design; well cementing directional drilling, offshore drilling.
Prerequisites: Grade of C or better in CVEN 305, PETE 225, and PETE 314; grade of C or better in PETE 321 and PETE 325, or concurrent enrollment.

PETE 401 Reservoir Simulation
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Solution of production and reservoir engineering problems using state-of-the-art commercial reservoir simulation software, using data commonly available in industry; emphasis on reservoir description, reservoir model design and calibration, production forecasting and optimization, economic analysis and decision making under uncertainty.
Prerequisites: Grade of C or better in PETE 310, PETE 321, PETE 323, PETE 324, and PETE 353.

PETE 402 Integrated Asset Development
Credits 3. 1 Lecture Hour. 6 Lab Hours.
Capstone design encompassing previously acquired skills; project teams formed to solve practical petroleum engineering problems using current tools; technical content of the projects may include any combination of drilling and completion, formation evaluation, inflow/outflow design and analysis, and application of reservoir engineering principles.
Prerequisites: Grade of C or better in PETE 310, PETE 321, PETE 323, PETE 324, and PETE 410.

PETE 404 Integrated Reservoir Modeling
Credits 3. 3 Lecture Hours.
Geophysical, geological, petrophysical and engineering data with geostatistical methods to create reservoir descriptions for dynamic reservoir modeling (simulation); geostatistical concepts such as variogram modeling, kriging and sequential Gaussian simulation; combines several techniques to quantify uncertainty in a realistic dynamic reservoir simulation.
Prerequisite: Grade of C or better in PETE 401, or concurrent enrollment.

PETE 406 High Performance Drilling Design and Operational Practices
Credits 3. 3 Lecture Hours.
Preparation in achieving differentiating drilling performance in the most complex wells; includes training in the underlying physics of each type of performance limiter and real time and engineering practices to address the limitation; performance management workflows and change models required to effectively change the way organizations conduct work essential in achieving higher performance.
Prerequisite: Grade of C or better in PETE 355.

PETE 408 Probabilistic Reserves Evaluation
Credits 3. 3 Lecture Hours.
Oil and gas reserves definitions and reporting regulations; probabilistic reserves estimation methods; unconventional resources characterization; reserves valuation techniques.
Prerequisite: Grade of C or better in PETE 353 or approval of instructor.

PETE 409 Enhanced Oil Recovery
Credits 3. 3 Lecture Hours.
Fundamentals and theory of enhanced oil recovery; polymer flooding, surfactant flooding, miscible gas flooding and steam flooding; application of fractional flow theory; strategies and displacement performance calculations.
Prerequisites: Grade of C or better in PETE 310 or approval of instructor.

PETE 410 Production Engineering
Credits 3. 3 Lecture Hours.
Fundamental production engineering design, evaluation and optimization for oil and gas producing well; well deliverability; formation damage and skin analysis; well completion selection; technologies that improve oil and gas well performance including artificial lift and well stimulation.
Prerequisites: Grade of C or better in PETE 321, PETE 323, PETE 324 and PETE 325.

PETE 412 Surface Production Facilities
Credits 3. 3 Lecture Hours.
Overview of separation and treatment of production fluid; fundamentals of gas-liquid separation; design and performance analysis of two- and three-phase separators; oil desalting, sweetening and stabilization; water treatment; overview of gas separation, dehydration and sweetening.
Prerequisite: Senior classification or approval of instructor; Qatar campus.

PETE 413 Natural Gas Engineering
Credits 3. 3 Lecture Hours.
Flow of natural gas in reservoirs and wellbores and gathering systems; deliverability testing; production surveillance and monitoring; production forecasting, flow measurement; and compressor sizing.
Prerequisites: Grade of C or better in PETE 233, PETE 324, and PETE 325.

PETE 416 Solving Common Production Engineering Problems
Credits 3. 3 Lecture Hours.
Application of petroleum engineering tools, methods and techniques to solve real problems that petroleum engineers encounter in producing individual wells; focus primarily on problems associated with single-phase gas wells and uses Microsoft Excel to solve many of these problems.
Prerequisite: Grade of C or better in PETE 410.

PETE 418 Deterministic Reserves Evaluation
Credits 3. 3 Lecture Hours.
Oil and gas reserves definitions and reporting regulations; deterministic estimation methods; unconventional resources characterization; reserves valuation techniques.
Prerequisite: Grade of C or better in PETE 353 or approval of instructor.

PETE 435 Technical Presentations II
Credit 1. 1 Lecture Hour.
Preparation of a written technical paper on a subject related to petroleum technology and an oral presentation of the paper in a formal technical conference format.
Prerequisites: PETE 337.

PETE 436 Petroleum Technical Presentation II
Credit 1. 3 Lab Hours.
Preparation of a written technical paper on a subject related to petroleum technology and an oral presentation of the paper in a formal technical conference format.
Prerequisites: Grade of C or better in PETE 336; senior classification, petroleum engineering majors only or approval of department head; Qatar campus.
PETE 437 Senior Student Paper Contest
Credits 0.
No credit. Presentation of a technical petroleum engineering topic judged by petroleum professionals at the senior level departmental student paper contest. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Grade of C or better in PETE 435.

PETE 453 Petroleum Entrepreneurship
Credits 3. 3 Lecture Hours.
Exploration of the various aspects of entrepreneurship with a focus on petroleum asset valuation and prospect analysis in the energy sector; exposure to all aspects of the journey including business idea generation, raising early stage capital, staffing the enterprise, developing the business plan and selling the concept to investors.
Prerequisites: Grade of C or better in PETE 353.

PETE 485 Directed Studies
Credits 1 to 5. 1 to 5 Other Hours.
Special problems in various phases of petroleum engineering assigned to individual students or to groups.
Prerequisites: Junior or senior classification and approval of department head.

PETE 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified field of petroleum engineering. Approval of instructor. May be repeated for credit.

PETE 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member in petroleum engineering. May be taken two times for credit. Registration in multiple sections of this course is possible within a given semester.
Prerequisites: Junior or senior classification and approval of instructor.

PHIL - Philosophy (PHIL)

PHIL 107 Introduction to the Health Humanities
Credits 3. 3 Lecture Hours.
Introduction to the methods and approaches of the health humanities; exposure to key scholarship in this field as well as major methods and approaches; application of such skills to the analysis of cultural case studies such as illness narratives or contemporary debates in scientific bioethics.
Cross Listing: COMM 107, ENGL 107, and HHUM 107.

PHIL 111 Contemporary Moral Issues
Credits 3. 3 Lecture Hours.
(PHIL 2306) Contemporary Moral Issues. Representative ethical positions and their application to contemporary social problems; also taught at Galveston campus.

PHIL 205 Technology and Human Values
Credits 3. 3 Lecture Hours.
Interaction of personal and societal values with technology and man's self-image, the future and value change.

PHIL 208 Philosophy of Education
Credits 3. 3 Lecture Hours.
Basic social ideas and concepts of human nature in Western civilization; their implications for theories of education.

PHIL 220 Introduction to Logic
Credits 3. 3 Lecture Hours.
(PHIL 2303) Introduction to Logic. Introduction to formal methods of deductive and inductive logic including, but not limited to, truth-tables, formal deduction and probability theory; also taught at Galveston campus.

PHIL 251 Introduction to Philosophy
Credits 3. 3 Lecture Hours.
(PHIL 1301) Introduction to Philosophy. Perennial problems of philosophy such as the existence of God, the mind/body relationship, the limits of knowledge, the foundations of moral judgment, man and the state; also taught at Galveston campus.

PHIL 252/AFST 252 Introduction to Hip-Hop Philosophy
Credits 3. 3 Lecture Hours.
Introduction to philosophy by way of the major themes and subjects of Hip-Hop; critical advocacy of various philosophical ideals.
Cross Listing: AFST 252/PHIL 252.

PHIL 255 C.S. Lewis: Faith and Philosophy
Credits 3. 3 Lecture Hours.
Methods and subject matter of philosophy through the writings of C.S. Lewis; includes reason, science, imagination, faith, problem of evil, atonement and ethics.

PHIL 282 Ethics in a Digital Age
Credits 3. 3 Lecture Hours.
Exploration of the intersection between ethical and social theories, principles, and values and the interconnected digital world; examination of the interplay between these domains for topics such as cybercrime, privacy, surveillance, security, intellectual property rights, artificial intelligence, cyber warfare, internet governance, computing professionalism, and cyber policy and law.

PHIL 283 Latin American Philosophy
Credits 3. 3 Lecture Hours.
Major philosophers in the history of Latin American philosophy, such as Unamuno, Ortega y Gasset, Vasconcelos, Caso and Gutiérrez.

PHIL 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed studies in specific problem areas of philosophy.
Prerequisite: Approval of department head.

PHIL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of philosophy. May be repeated for credit.
Prerequisite: Approval of instructor.

PHIL 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in the department of philosophy and humanities. May be taken two times for credit.
Prerequisites: Freshman or sophomore classification and approval of department head.

PHIL 305 Philosophy of the Natural Sciences
Credits 3. 3 Lecture Hours.
Critical analysis of scientific methods and achievements; the nature and types of explanation, discovery and confirmation, models and theories.
Prerequisite: Junior or senior classification or approval of instructor.
PHIL 307 Philosophy of the Social Sciences
Credits 3. 3 Lecture Hours.
Nature and objectivity of the social sciences, their paradigms and patterns of explanation.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 314 Environmental Ethics
Credits 3. 3 Lecture Hours.
Moral basis of duties to preserve or protect plants, animals and environmental systems; foundations of environmental law and policy; the idea of nature in philosophy; critique of social and economic analyses of environmental values.
Prerequisite: Sophomore classification or approval of instructor; also taught at Galveston campus.

PHIL 315 Military Ethics
Credits 3. 3 Lecture Hours.
Major ethical issues in modern military practice: ethics of leadership, just war theory, killing of the innocent and the moral status of the rules of war.

PHIL 320 Philosophy of Mind
Credits 3. 3 Lecture Hours.
Relation of mind to body, nature of thought and knowing, the free will problem, death and immortality.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 330 Philosophy of Art
Credits 3. 3 Lecture Hours.
Theories of artistic creation and aesthetic response as exemplified in art forms such as painting, music, poetry, architecture, dance, theater, sculpture and motion pictures.

PHIL 331/RELS 331 Philosophy of Religion
Credits 3. 3 Lecture Hours.
Philosophical problems of Western religion such as the existence of God, the problem of evil, types of theism, rational, empirical and mystical approaches to God.
Cross Listing: RELS 331/PHIL 331.

PHIL 332 Social and Political Philosophy
Credits 3. 3 Lecture Hours.
Metaphysical commitments and political theory, the nature and proper ends of the state, freedom, equality, authority, and justice, considering such writers as Plato, Aristotle, Machiavelli, Locke, Rousseau, Marx, Dewey.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 334 Philosophy of Law
Credits 3. 3 Lecture Hours.
Traditional legal issues such as definitions of law, relationship between law and morality, and punishment considered from a legal perspective.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 341 Symbolic Logic
Credits 3. 3 Lecture Hours.
Elementary symbolic logic beginning with propositional calculus and first order predicate logic, and their applications.
Prerequisite: PHIL 240.

PHIL 342 Symbolic Logic II
Credits 3. 3 Lecture Hours.
Advanced topics in logic such as the theory of identity, higher order logics, logic of sets, elements of modal logic.
Prerequisite: PHIL 240 or PHIL 341, or approval of instructor.

PHIL 351 Theory of Knowledge
Credits 3. 3 Lecture Hours.
Major topics in epistemology such as the problem of induction, perception theory, memory and the problem of other minds.
Prerequisites: Junior or senior classification or approval of instructor.

PHIL 352/AFST 352 Africana Philosophy
Credits 3. 3 Lecture Hours.
Presentation of the seminal ideas of several influential Africana thinkers; recovery of the neglected traditions in which these thinkers locate themselves. May be taken three times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: AFST 352/PHIL 352.

PHIL 353/AFST 353 Radical Black Philosophies of Race and Racism
Credits 3. 3 Lecture Hours.
Critical evaluation of white supremacy, colonialism and the modern construction of race; examination of the historical background for contemporary theories of race.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: AFST 353/PHIL 353.

PHIL 361 Metaphysics
Credits 3. 3 Lecture Hours.
Topics concerning the fundamental nature of reality such as what exists, the mental and the physical, universals and individuals, space and time, God.
Prerequisites: Junior or senior classification or approval of instructor.

PHIL 371 Philosophy of Literature
Credits 3. 3 Lecture Hours.
Philosophical analysis of the major recurrent themes in world literature including fate, the meaning of tragedy, death, odyssey, good and evil, time and eternity, hope and salvation; works selected from a variety of cultures and historical periods.

PHIL 375 Philosophy of the Visual Media
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Aesthetic, ethical and epistemological issues of photography, cinema and video.

PHIL 376/FILM 376 Philosophy, Film and Evil
Credits 3. 3 Lecture Hours.
Application of philosophical methods and analyses to the medium of film; survey of various depictions and treatments of evil within the genre of science fiction; investigation of depictions and treatments of evil arising from consideration of human encounters with alien others.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FILM 376/PHIL 376.

PHIL 381 Ethical Theory
Credits 3. 3 Lecture Hours.
Values and conduct such as moral relativism, self-interest, utilitarianism, rules, nature of valuation, ethical language and argumentation.
Prerequisite: Junior or senior classification or approval of instructor; also taught at Galveston campus.

PHIL 409/WGST 409 Studies in Gender and Philosophy
Credits 3. 3 Lecture Hours.
Analysis, from a gender-studies perspective, of a single figure or concept in the history of philosophy. May be repeated 1 time for credit with a different focus.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: WGST 409/PHIL 409.
PHIL 410 Classical Philosophy
Credits 3. 3 Lecture Hours.
Major philosophers from 600 B.C. to the end of the third century A.D. including the Pre-Socratics, Socrates, Plato, Aristotle, Hellenistic and Roman philosophy and the Neo-Platonists.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 411 Medieval Philosophy
Credits 3. 3 Lecture Hours.
Major philosophers from the early Christian centuries through the 14th century, emphasizing such writers as Augustine, Aquinas, Duns Scotus and William of Ockham.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 412 Seventeenth-Century Philosophy
Credits 3. 3 Lecture Hours.
Significant seventeenth-century texts in metaphysics, epistemology, moral psychology, and political philosophy; authors such as Descartes, Hobbes, Spinoza, Leibniz, and Locke.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 413 Eighteenth-Century Philosophy
Credits 3. 3 Lecture Hours.
Significant eighteenth-century texts from philosophers such as Berkeley, Rousseau, Hume, and Kant.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 414 Nineteenth Century Philosophy
Credits 3. 3 Lecture Hours.
Contributions of such philosophers as Hegel, Marx, Kierkegaard, Nietzsche, Husserl, Mill and Bradley.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 415 American Philosophy
Credits 3. 3 Lecture Hours.
The thought of philosophers such as Peirce, James, Royce, Santayana, Mead, Dewey and Whitehead.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 416 Recent British and American Philosophy
Credits 3. 3 Lecture Hours.
Major philosophers in contemporary Anglo-American thought such as Moore, Russell, Wittgenstein, Ayer, Quine, Austin and Ryle.
Prerequisites: PHIL 240.

PHIL 417 Phenomenology
Credits 3. 3 Lecture Hours.
Phenomenology from its nineteenth-century origins to the present; authors such as Brentano, Husserl, Scheler, Heidegger, Merleau-Ponty, Levinas, Henry, Marion.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 418 Existentialism
Credits 3. 3 Lecture Hours.
Existentialism from its nineteenth-century origins to the present; philosophers such as Kierkegaard, Nietzsche, Buber, Rosenzweig, Sartre, de Beauvoir, and Camus.
Prerequisite: Junior or senior classification or approval of instructor.

PHIL 419 Current Continental Philosophy
Credits 3. 3 Lecture Hours.
Major thinkers concerned with ‘postmodern’ topics in hermeneutics, poststructuralism, critical theory, deconstructionism, contemporary Marxist strategies, semiotics and feminist theory.
Prerequisite: Junior classification or approval of instructor.

PHIL 420 Philosophy of Language
Credits 3. 3 Lecture Hours.
The nature of language; the various uses of language and their philosophical import; the nature of meaning, truth, reference and issues surrounding formal representations of natural languages.
Prerequisites: PHIL 240 and junior or senior classification; or approval of instructor.

PHIL 421 Philosophical Inquiry in Schools
Credits 3. 3 Lecture Hours.
In-depth engagement with the theory and practice of pre-college (K-12) philosophy.
Prerequisites: Junior or senior classification or approval of instructor.

PHIL 422 Modern Jewish Thought and Philosophy
Credits 3. 3 Lecture Hours.
An overview of modern Jewish thought and philosophy spanning Jewish European thinkers from the 18th century to the 20th century.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 464/PHIL 464.

PHIL 423 Ethics and Engineering
Credits 3. 3 Lecture Hours.
Development of techniques of moral analysis and their application to ethical problems encountered by engineers, such as professional employee rights and whistle blowing; environmental issues; ethical aspects of safety, risk and liability and conflicts of interest; emphasis on developing the capacity for independent ethical analysis of real and hypothetical cases.
Prerequisite: Junior classification.
Cross Listing: ENGR 482/PHIL 482.

PHIL 424 Philosophy of Language
Credits 3. 3 Lecture Hours.
The nature of language; the various uses of language and their philosophical import; the nature of meaning, truth, reference and issues surrounding formal representations of natural languages.
Prerequisites: PHIL 240 and junior or senior classification; or approval of instructor.

PHIL 425 Philosophical Inquiry in Schools
Credits 3. 3 Lecture Hours.
In-depth engagement with the theory and practice of pre-college (K-12) philosophy.
Prerequisites: Junior or senior classification or approval of instructor.

PHIL 426 Modern Jewish Thought and Philosophy
Credits 3. 3 Lecture Hours.
An overview of modern Jewish thought and philosophy spanning Jewish European thinkers from the 18th century to the 20th century.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: RELS 464/PHIL 464.

PHIL 427 Ethics and Engineering
Credits 3. 3 Lecture Hours.
Development of techniques of moral analysis and their application to ethical problems encountered by engineers, such as professional employee rights and whistle blowing; environmental issues; ethical aspects of safety, risk and liability and conflicts of interest; emphasis on developing the capacity for independent ethical analysis of real and hypothetical cases.
Prerequisite: Junior classification.
Cross Listing: ENGR 482/PHIL 482.

PHIL 428 Medical Ethics
Credits 3. 3 Lecture Hours.
Critical analysis of major ethical issues in medicine including truth-telling, confidentiality, paternalism, genetics, abortion, infanticide, euthanasia and social justice in health care.

PHIL 429 Ethics and Engineering
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Development of techniques of moral analysis and their application to ethical problems encountered by engineers, such as professional employee rights and whistle blowing; environmental issues; ethical aspects of safety, risk and liability and conflicts of interest; emphasis on developing the capacity for independent ethical analysis of real and hypothetical cases.
Prerequisite: Junior classification.
Cross Listing: ENGR 482/PHIL 482.

PHIL 430 Professional Internship
Credits 0 to 6. 0 to 6 Other Hours.
Prerequisite: Approval of instructor and department head.

PHIL 431 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Prerequisite: Approval of department head.

PHIL 432 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Prerequisite: Approval of instructor.

PHIL 433 Ethical Issues in...
PHLT 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in the department of philosophy and humanities. May be taken two times for credit.
Prerequisites: Junior or senior classification and approval of dean of college.

PHLT 497 Independent Honors Studies
Credits 1 to 3. 1 to 3 Other Hours.
Directed independent studies in specific philosophical problems.
Prerequisites: Junior or senior classification either as Honors students or with overall GPR of 3.25; letter of approval from head of student's major department.

PHLT - Public Health (PHLT)

PHLT 270 Broad Street Learning Community I
Credits 3. 3 Lecture Hours.
Introduction to the program, development of critical thinking skills and international perspectives; introductory for the Public Health Studies Broad Street Honors Learning Community.
Prerequisites: Admission to Broad Street Society Honors Learning Community; public health major.

PHLT 289 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of public health. May be taken three times for credit.
Prerequisite: PHLT major or approval of instructor.

PHLT 301 Public Health Concepts
Credit 1. 1 Lecture Hour.
Familiarization with public health including aspects such as different disciplines within the profession; local, national and international agencies that have interest in public health and public health code of ethics.

PHLT 302 Foundations of Public Health
Credits 3. 3 Lecture Hours.
History, philosophy, development and careers of public health; core values, ethics, concepts, functions and essential services of public health; population health and health improvement.
Prerequisites: Public health major or minor, junior or senior classification, or approval of instructor.

PHLT 303 Social Context of Population Health
Credits 3. 3 Lecture Hours.
Exploration of social determinants of population health and the socio-cultural roots of health improvement; socio-economic, behavioral and other factors that impact human health and contribute to health improvement and health disparities.
Prerequisites: Public health major or minor, junior or senior classification, or approval of instructor.

PHLT 304 Biological Basis of Public Health
Credits 3. 3 Lecture Hours.
Biological mechanisms in individuals and populations affecting human health and disease; adverse health events including diseases, exposure to pathogens and toxins, and nutritional deficiencies.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 305 Epidemiology in Public Health
Credits 3. 3 Lecture Hours.
Principles of epidemiology, a systematic approach to collecting and evaluating information on distributions of health outcomes in populations; history of epidemiology, descriptive epidemiology, epidemiologic methods, association and causation, evidence-based public health and applications.
Prerequisites: Public health major or minor, junior or senior classification, or approval of instructor.

PHLT 306 Border Health
Credits 3. 3 Lecture Hours.
United States-Mexico border public health system; includes issues important to public health at the border; addresses health challenges.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 307 Public Health in the Global Context
Credits 3. 3 Lecture Hours.
Frameworks for understanding population health on a global scale; physical, social, cultural, geographic, political and economic interactions and interdependencies that influence global population health status.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 308 Comparative Global Health Systems
Credits 3. 3 Lecture Hours.
Public health issues from population health and comparative perspectives at the global level; exploration of different public health systems in developing and developed countries.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 309 Population Health Promotion
Credits 3. 3 Lecture Hours.
Major issues in population health promotion, including applying the concept of social determinants of health: the socio-economic, behavioral, and other factors that impact human health to address population health issues.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 310 Public Health Writing
Credit 1. 1 Lecture Hour.
Strategies to become more familiar with types of writing required as public health students or public health professionals; strengthens and increases general writing skills; establishes a foundation for continued development in writing. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 311 Narrative Approach to Public Health
Credit 1. 1 Lecture Hour.
Familiarization with the writing style required for public health; instruction in writing styles and narrative techniques to increase and strengthen writing abilities in public health disciplines such as environmental and occupational health, health promotion and community health sciences, health policy and management, epidemiology and biostatistics. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.
PHLT 313 Health Care and Public Health System
Credits 3. 3 Lecture Hours.
Two distinct systems – health care system: an individual and medical services model and the public health system: population level disease prevention and health education.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 314 Public Health Data Management and Assessment I
Credits 2. 2 Lecture Hours.
Familiarization with using the CDC software Epi-Info for managing, analyzing and assessing population health data; focus on using Epi-Info to produce descriptive data reports including tables and graphs.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 315 Public Health Data Management and Assessment II
Credits 2. 2 Lecture Hours.
Continuation of PHLT 314; familiarization with using the CDC software Epi-Info for managing, analyzing and assessing population health data; focus on using Epi-Info to generate inferential statistics such as confidence intervals and p-values.
Prerequisite: Public health major; PHLT 314; or approval of instructor.

PHLT 330 The Environment and Public Health
Credits 3. 3 Lecture Hours.
Environmental exposures and population health; public health core knowledge; includes methods for defining environmental contamination; identifying contaminants, pathogens and toxins; assessing risks and causality; determining health impact; methods to decrease exposures.
Prerequisite: Public health major or minor, junior or senior classification, or approval of instructor.

PHLT 331 Occupational Safety and Health I
Credits 3. 3 Lecture Hours.
Regulations and topics of relevance to occupational health professionals; includes legislation and regulations, workers’ compensation, accident investigation, industrial hygiene, ergonomics and fire prevention with an emphasis on the health professionals’ role.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 332 Occupational Safety and Health II
Credits 3. 3 Lecture Hours.
Occupational safety and health topics including behavior-based safety, workplace violence, preparedness, hazardous materials, construction, transportation, required written programs and professional resources.
Prerequisite: Public health major; PHLT 331; or approval of instructor.

PHLT 333 Accident Investigation
Credits 3. 3 Lecture Hours.
Principles of accident investigation and how accidents happen in the workplace; integrates procedural, systematic, corrective and formative applications for the occupational health professional.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 334 Fire Safety and Workplace Hazards
Credits 3. 3 Lecture Hours.
Principles of fire safety and other workplace hazards such as electrical hazards, chemical hazards, respiratory hazards, falls, confined spaces, bloodborne pathogens, hearing loss, ergonomics and machine hazards.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 335 Hazardous Materials
Credits 3. 3 Lecture Hours.
Principles of managing materials in the workplace; role of the health and safety professional in hazardous material management and hazard communication.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 370 Broad Street Learning Community II
Credits 3. 3 Lecture Hours.
International perspectives on public health and healthcare, comparative historical, political and cultural effects on public health; second course in the Broad Street Learning Community sequence.
Prerequisites: Grade of B or better in PHLT 270.

PHLT 410 Public Health Communication
Credits 3. 3 Lecture Hours.
Exploration of different communication approaches for addressing public health challenges; basic concepts of public health-specific communication, including risk communication, the use of mass media and evaluation of public health communication programs.
Prerequisites: PHLT 310; public health major; or approval of instructor.

PHLT 411 Project Management in Public Health
Credits 3. 3 Lecture Hours.
Exploration of successful project management and administration in public health settings; includes project development, budgeting and implementation.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 412 Health Advocacy and Policy
Credits 3. 3 Lecture Hours.
Concepts of legal, ethical, economic and regulatory dimensions of public health policy; the roles, influences and responsibilities of the different agencies and branches of government; advocacy for the public’s health at all levels of society.
Prerequisites: Grade of C or better in PHLT 313; public health major; junior or senior classification; or approval of instructor.

PHLT 413 Public Health Informatics
Credits 3. 3 Lecture Hours.
Broad range of knowledge and skills encompassed by PHI; bridging public health data/information needs, information technology and stakeholders; creating user requirements to guide system design; evidence-based public health; electronic health records.
Prerequisite: PHLT 302 or approval of instructor.

PHLT 414 Applications of Epidemiology in Public Health
Credits 3. 3 Lecture Hours.
Application of the concept of distribution, determinants and measurement of health and disease outcomes in populations in real life situations through lectures, case studies and presentations.
Prerequisites: Public health major; PHLT 305; or approval of instructor.

PHLT 415 Emergency Management in Public Health
Credits 3. 3 Lecture Hours.
Principles and practices of emergency management at the local, state, national and international levels; explores stages of emergency management such as preparedness, response and recovery; includes population health and the basic processes, approaches and interventions; emergency management systems in the United States; actors in emergency management.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.
PHLT 416 Public Health Leadership and Ethics
Credits 3. 3 Lecture Hours.
Overview of major leadership and ethical theories, current leadership and ethical issues and their impact on public health practice.
Prerequisite: Public health major; junior or senior classification; or approval of instructor.

PHLT 432 Human Factors and Ergonomic Health and Safety
Credits 3. 3 Lecture Hours.
Principles of ergonomics including principles of anatomy, physiology, instrument design, and work environments; emphasis on ergonomic design, implementing ergonomic programs.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 433 Industrial Inspections and Audit Techniques
Credits 3. 3 Lecture Hours.
Principles of conducting industrial audits for fire, safety and security; emphasis on the role of the health and safety professional, assessing safety programs and meeting regulatory requirements.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 434 Project Cost Benefit and Economics
Credits 3. 3 Lecture Hours.
Estimation and management of project costs; emphasis on improving accuracy of cost projection, making better modifications to cost on work in-progress.
Prerequisites: Public health major; junior or senior classification; or approval of instructor.

PHLT 436 Infectious Disease in the Developing World: Risks, Challenges, and Solutions
Credits 3. 3 Lecture Hours.
Study of the challenges of infectious disease control in the developing world; topics include common infectious diseases, how they spread, social and economic consequences and the factors that influence prevalence.
Prerequisites: Public Health Studies major; junior or senior classification, or approval of instructor.

PHLT 441 Strategies for Population Health Improvement
Credits 3. 3 Lecture Hours.
The three core functions of public health and strategies for improving population health; case studies exploring multiple types of interventions; involves class discussion, break-out groups and group assignments.
Prerequisite: PHLT 302; PHLT 411 or concurrent enrollment; public health major; junior or senior classification; or approval of instructor.

PHLT 445 Applications of Public Health
Credits 3. 3 Lecture Hours.
Combines knowledge and skills related to public health experience and coursework to address public health issues; process of developing, implementing and evaluating public health interventions; role assignment and responsibilities in group assignments and presentations.
Prerequisite: Grade of C or better in PHLT 441; public health major; junior or senior classification; or approval of instructor.

PHLT 470 Global Public Health Systems and Practice Experiences
Credits 3. 3 Other Hours.
Study abroad experiences led by School of Public Health faculty in select countries; lectures prior to departing and lectures and classes in country; engage in public health practice and research activities in country; visit public health agencies and programs in country.
Prerequisites: Junior or senior classification; approval of instructor.

PHLT 484 Public Health Studies Field Experience
Credits 3. 3 Other Hours.
On the job training in the area of public health studies industry; development of objectives and goals; evaluation by supervisor required.
Prerequisites: Approval of instructor; junior or senior classification; public health major with a minimum overall 3.0 TAMU GPA.

PHLT 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problems in the area of public health studies. May be taken four times for credit.
Prerequisite: Approval of instructor.

PHLT 489 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of public health. May be repeated for credit.
Prerequisites: PHLT 485; junior or senior classification and approval of instructor.

PHLT 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in public health studies. May be taken two times for credit.
Prerequisite: PHLT 491; junior or senior classification and approval of instructor.

PHYS 101 Freshman Physics Orientation
Credit 1. 1 Lecture Hour.
Critical thinking skills and problem solving in physics: time management and teaming skills.
Prerequisite: Physics majors; non-majors requires approval of instructor.

PHYS 102 Freshman Physics Orientation II
Credit 1. 1 Lecture Hour.
Critical thinking skills and problem solving in physics: time management and teaming skills. For physics majors. Registration by non-majors requires approval of instructor.

PHYS 109/ASTR 109 Big Bang and Black Holes
Credits 3. 3 Lecture Hours.
Designed to give an intuitive understanding of the Big Bang and Black Holes, without mathematics, and de-mystify them for the non-scientist.

PHYS 119/ASTR 119 Big Bang and Black Holes: Laboratory Methods
Credit 1. 2 Lab Hours.
Hands-on understanding of the concepts surrounding the Big Bang and Black Holes; emphasis on the evidence-based decision making process, methods and presentation; for non-scientists. Companion course for ASTR 109/PHYS 109/PHYS 109/ASTR 109.
Prerequisite: ASTR/PHYS 109/ASTR 109 or registration therein.
Cross Listing: ASTR 119/PHYS 119.

PHYS 123 Physics for Future Presidents
Credits 3. 3 Lecture Hours.
Physics needed to be an effective policy maker or world leader but appropriate for any citizen, since all citizens need to understand the world in which they live and work; fundamental principles of physics made comprehensible and usable by those not in science- or math-related fields.
Prerequisite: Basic math skills; also taught at Galveston campus.
PHYS 125 Soft Matter Physics for Non-physicists
Credits 3. 3 Lecture Hours. 2 Lab Hours.
Modern physics in action with hands-on physics experience in simple experiments for non-physicists majors; introduction to thermodynamics and soft matter physics; heat, temperature, thermodynamic efficiency, phase transitions, mechanical properties of soft matter, heat transfer mechanisms; physical measurements.

PHYS 148 Introduction to Quantum Mechanics
Credits 3. 3 Lecture Hours.
The basic level of concepts of quantum mechanics such as wave-particle duality, complementarity, quantum interference and entanglement, and their applications to fields such as quantum communication and quantum computing
Prerequisites: High school physics and calculus.

PHYS 201 College Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(PHYS 1301 and 1101, 1401) College Physics. Fundamentals of classical mechanics, heat, and sound. Primarily for architecture, education, premedical, predental, and preveterinary medical students; also taught at Galveston campus.

PHYS 202 College Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(PHYS 1302 and 1102, 1402) College Physics. Continuation of PHYS 201. Fundamentals of classical electricity and light; introduction to contemporary physics.
Prerequisite: PHYS 201; also taught at Galveston campus.

PHYS 205 Concepts of Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
General survey physics course for K-8 preservice teachers integrating physics content and laboratory activities relevant to physics-related subject matter included in the current Texas and national standards for elementary school science; includes aspects of mechanics, waves, electricity, magnetism and modern physics.
Prerequisite: Major in interdisciplinary studies or interdisciplinary technology or approval of instructor.

PHYS 206 Newtonian Mechanics for Engineering and Science
Credits 3. 3 Lecture Hours.
Prerequisites: Grade of C or better in MATH 151 or MATH 171, or equivalent; also taught at Galveston and Qatar campuses.

PHYS 207 Electricity and Magnetism for Engineering and Science
Credits 3. 3 Lecture Hours.
(PHYS 2326, PHYS 2526*) Electricity and Magnetism for Engineering and Science. Calculus-based electricity and magnetism; electromagnetic phenomena; basic laws of electricity and magnetism; science and engineering problems involving charges, electromagnetic fields, and electrical circuits.
Prerequisites: Grade of C or better in PHYS 206; grade of C or better in MATH 152 or MATH 172 or equivalent; also taught at Galveston and Qatar campuses.

PHYS 216/ENGR 216 Experimental Physics and Engineering Lab II - Mechanics
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Description and application of laws of physical motion to the solution of science and engineering problems; using sensing, control and actuation for experimental verification of physics concepts while solving engineering problems.
Prerequisites: Grade of C or better in MATH 151 or MATH 171 or equivalent; grade of C or better in ENGR 102; grade of C or better and concurrent enrollment in PHYS 206; also taught at Galveston campus.
Cross Listing: ENGR 216/PHYS 216.

PHYS 217/ENGR 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Electromagnetism and electromechanical systems; use of sensing, control and actuation to demonstrate key physical relationships through the transducer relationships linking pressure, temperature and other physical stimuli to changes in electric and magnetic fields.
Prerequisites: Grade of C or better in MATH 152 or MATH 172, or equivalent; grade of C or better in PHYS 206 or equivalent; grade of C or better in PHYS 216/ENGR 216 or ENGR 216/PHYS 216; grade of C or better and concurrent enrollment in PHYS 207; also taught at Galveston campus.
Cross Listing: ENGR 217/PHYS 217.

PHYS 221 Optics and Thermal Physics
Credits 3. 3 Lecture Hours.
Wave motion and sound, geometrical and physical optics, kinetic theory of gases, laws of thermodynamics.
Prerequisites: PHYS 207 or PHYS 208, or concurrent enrollment; MATH 221, MATH 251, or MATH 253, or concurrent enrollment; MATH 308 or concurrent enrollment; also taught at Qatar campus.

PHYS 222 Modern Physics for Engineers
Credits 3. 3 Lecture Hours.
Atomic, quantum, relativity and solid state physics.
Prerequisites: PHYS 207 or PHYS 208; MATH 308 or concurrent enrollment; also taught at Qatar campus.

PHYS 225 Electronic Circuits and Applications
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Linear circuit theory and applications of solid-state diodes, bipolar and field-effect transistors, operational amplifiers and digital systems.
Prerequisites: PHYS 207 and PHYS 227, or PHYS 208; MATH 308.

PHYS 226 Physics of Motion Laboratory for the Sciences
Credit 1. 2 Lab Hours.
(PHYS 2125, PHYS 2425*) Physics of Motion Laboratory for the Sciences. The first semester laboratory to accompany a two-semester course sequence in introductory physics; topics include material covered in a typical calculus-based introductory physics course on the principles of mechanics and motion.
Prerequisites: MATH 151 or MATH 171; concurrent enrollment in PHYS 206; also taught at Galveston campus.

PHYS 227 Electricity and Magnetism Laboratory for the Sciences
Credit 1. 2 Lab Hours.
(PHYS 2126, PHYS 2526*) Electricity and Magnetism Laboratory for the Sciences. The second semester laboratory to accompany a two-semester course sequence in introductory physics; topics include material covered in a typical calculus-based introductory physics course on the principles of electricity and magnetism.
Prerequisites: MATH 152 or MATH 172; PHYS 206 or PHYS 218; concurrent enrollment in PHYS 207; also taught at Galveston campus.
PHYS 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum; intended for use as lower-level credit.
Prerequisite: Approval of instructor.

PHYS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 6 Lab Hours.
Selected topics in an identified area of physics. May be repeated for credit.
Prerequisite: Approval of instructor.

PHYS 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in physics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PHYS 302 Advanced Mechanics I
Credits 3. 3 Lecture Hours.
Classical mechanics of particles and rigid bodies; review of Newtonian mechanics and foundations of Lagrangian and Hamiltonian formalism.
Prerequisite: PHYS 309 and PHYS 331; PHYS 332 or concurrent enrollment, or approval of instructor.

PHYS 303 Advanced Mechanics II
Credits 3. 3 Lecture Hours.
Applications of Lagrangian and Hamiltonian methods to selected problems of classical mechanics.
Prerequisite: PHYS 302.

PHYS 304 Advanced Electricity and Magnetism I
Credits 3. 3 Lecture Hours.
Electrostatics; dielectrics; electrical current and circuits; magnetic fields and materials; induction; Maxwell's equations.
Prerequisites: PHYS 331; PHYS 332 or concurrent enrollment, or approval of instructor.

PHYS 305 Advanced Electricity and Magnetism II
Credits 3. 3 Lecture Hours.
Radiation and optics. Electromagnetic waves; radiation; reflection and refraction; interference; diffraction; special relativity applied to electrodynamics.
Prerequisite: PHYS 304.

PHYS 309 Modern Physics
Credits 3. 3 Lecture Hours.
Special relativity; concepts of waves and particles; introductory quantum mechanics.
Prerequisite: PHYS 221; also taught at Qatar campus.

PHYS 327 Experimental Physics I
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Laboratory experiments in modern physics and physical optics with an introduction to current, state-of-the-art recording techniques.
Prerequisites: PHYS 225; PHYS 309.

PHYS 328 Experimental Physics II
Credit 1. 1 Lecture Hour. 1 Lab Hour.
Laboratory experiments in modern physics and physical optics with an introduction to current, state-of-the-art recording techniques.
Prerequisites: PHYS 327 or concurrent enrollment.

PHYS 331 Theoretical Methods for Physicists I
Credits 3. 3 Lecture Hours.
Applications involving vectors; vector and additional methods for advanced electricity and magnetism; relationship and solutions of classical wave equation, heat equation, and Schrodinger equation; harmonic motion on finite or periodic lattice and in continuum; tensor and matrix notation in classical mechanics and electricity and magnetism.
Prerequisite: PHYS 221 or approval of instructor.

PHYS 332 Theoretical Methods for Physicists II
Credits 3. 3 Lecture Hours.
Methods to solve the important equations of theoretical physics, emphasizing the effects of boundary conditions and quantization on their solutions and restricted to the essential physical symmetries associated with free space, spheres, cylinders, and rectangles; if time permits, introduction to symmetries in physics and to asymptotic methods.
Prerequisites: PHYS 331; restricted to physics majors.

PHYS 339 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in physics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PHYS 391 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in physics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PHYS 401 Computational Physics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to computational and simulation techniques widely used in physics applications and research, including trajectory integration, wave motion analysis, molecular dynamics, Monte Carlo methods, statistical mechanics of spin systems, phase transitions, quantum evolution, bound state problems, and variational methods.
Prerequisites: PHYS 332; knowledge of a high level language.

PHYS 408 Thermodynamics and Statistical Mechanics
Credits 4. 4 Lecture Hours.
Statistical method, macroscopic thermodynamics, kinetic theory, black body radiation, Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics.
Prerequisite: PHYS 412.

PHYS 412 Quantum Mechanics I
Credits 3. 3 Lecture Hours.
Postulates of wave mechanics; wave packets; harmonic oscillator; central field problem; hydrogen atom; approximation methods.
Prerequisites: PHYS 332; PHYS 309; PHYS 332; junior or senior classification.

PHYS 414 Quantum Mechanics II
Credits 3. 3 Lecture Hours.
Continuation of PHYS 412. Electron spin; addition of angular momenta; atomic structure; time dependent perturbations; collision theory; application of quantum mechanics to atomic, solid state, nuclear or high energy physics.
Prerequisite: PHYS 412.

PHYS 416 Physics of the Solid State
Credits 3. 3 Lecture Hours.
A survey of solid state physics; an introduction to crystal structures and the physics of electrons, lattice vibrations and phonons; applications to semiconductors; magnetism; superconductivity; physics of nanostructures; brief introduction to selected current topics in condensed matter physics.
Prerequisites: PHYS 304 and PHYS 412.

PHYS 418 High Energy Physics
Credits 3. 3 Lecture Hours.
A broad spectrum of elementary particle physics along with historical and recent publication, covering symmetry in quarks and leptons, fundamental interactions, relativistic kinematics, Feynman diagrams, Dirac equation, cross-sections for particle reactions, unification of fundamental forces, accelerators and detectors and other current topics.
Prerequisite: Grade of C or better in PHYS 309 or equivalent.
PHYS 425 Physics Laboratory
Credits 2. 6 Lab Hours.
Experiments in nuclear, atomic, and molecular physics using modern instrumentation and equipment of current research.
Prerequisite: PHYS 327 or equivalent.

PHYS 426 Physics Laboratory
Credits 2. 6 Lab Hours.
Experiments in solid state and nuclear physics. Modern instrumentation and current research equipment are employed.
Prerequisite: PHYS 327 or equivalent.

PHYS 485 Directed Studies
Credits 1 to 4. 1 to 12 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum.
Prerequisite: Approval of instructor; also taught at Galveston campus.

PHYS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
0 to 4 Lab Hours.
Selected topics in an identified field of physics. May be repeated for credit.
Prerequisite: Approval of instructor.

PHYS 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in physics. May be repeated 3 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor; also taught at Qatar campus.

PLPA - Plant Pathology (PLPA)

PLPA 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in plant pathology. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PLPA 301 Plant Pathology
Credits 3. 3 Lecture Hours.
Introduction to fundamental principles of plant pathology; diagnosis, cause and control of plant diseases.
Prerequisites: BIOL 113, BIOL 101, or BIOL 111.

PLPA 303 Plant Pathology Laboratory
Credit 1. 2 Lab Hours.
Isolation, identification of plant pathogens and clinical diagnosis and control of plant diseases.
Prerequisite: PLPA 301 or registration therein.

PLPA 334 Turfgrass Pathology
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Recognizing turfgrass problems and understanding biological mechanisms in the disease process; principles of disease management strategies.
Prerequisite: Junior or senior classification.

PLPA 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special problems for advanced undergraduates to permit study of subject matter not available in existing courses.
Prerequisites: PLPA 301 and prior approval of instructor or department head.

PLPA 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of plant pathology. May be repeated for credit.
Prerequisite: PLPA 301 or approval of instructor.

PLPA 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in plant pathology. May be repeated 3 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

POLS - Political Science (POLS)

POLS 200 Foundations of Political Science
Credits 3. 3 Lecture Hours.
Survey of the scholarly discipline of political science and its theoretical foundations, principal subfields, major research questions and modes of scholarship.

POLS 203 Introduction to Political Theory
Credits 3. 3 Lecture Hours.
Introduction to the study of political theory, with attention to major themes in the history of political thought; discussion of the nature of politics; examination of method in political theory and its relation to the discipline of political science.

POLS 206 American National Government
Credits 3. 3 Lecture Hours.
(GOV 2305) American National Government. Survey of American national government, politics, and constitutional development; also taught at Galveston and Qatar campuses.

POLS 207 State and Local Government
Credits 3. 3 Lecture Hours.
(GOV 2306) State and Local Government. Survey of state and local government and politics with special reference to the constitution and politics of Texas; also taught at Galveston and Qatar campuses.

POLS 209 Introduction to Political Science Research
Credits 3. 3 Lecture Hours.
Introduction to the philosophy and practice of social science and to modes of research in major subfields of political science.
Prerequisite: Political science majors must have completed POLS 209 before they enroll in their last 18 hours of 300- and 400-level POLS courses. This means a student may take no more than 6 hours of upper division (300- and 400-level courses) before completing POLS 209. Enrollment is restricted to political science majors.

POLS 229 Introduction to Comparative Politics
Credits 3. 3 Lecture Hours.
A comparison of political institutions, processes and issues across a wide variety of political systems.
POLS 231 Introduction to World Politics
Credits 3. 3 Lecture Hours.
Analysis of contemporary world from point of view of nation-state; political problems, factors involved in foreign policies and relations of nations; also taught at Galveston campus.

POLS 232 Introduction to Public Policy
Credits 3. 3 Lecture Hours.
Introduction to public policy; social, economic, political and cultural contexts of public policy; study of policy analysis and policymakers; examines public problems, policy choice, and limits of governmental action; Galveston campus.

POLS 233 Politics and Policy in the United States
Credits 3. 3 Lecture Hours.
Survey of institutions of American government, mass political behavior, and policy fields of significant contemporary importance.

POLS 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Individual instruction in selected aspects of political science not adequately covered by other courses.
Prerequisite: Approval of department head.

POLS 289 Special Topics in...
Credits 3. 3 Other Hours.
Selected topics in an identified area of political science and public policy. May be taken for credit seven times.
Prerequisite: POLS 206 or approval of department head.

POLS 291 Research
Credits 0 to 6. 0 to 6 Other Hours.
Research conducted under the direction of a faculty member in political science. May be taken three times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

POLS 302/COMM 302 The Mass Media and Politics
Credits 3. 3 Lecture Hours.
Examination of mass media impact on politics and political behavior; and governmental impact on the mass media.
Prerequisite: POLS 206 or approval of department head; junior or senior classification.
Cross Listing: COMM 302/POLS 302.

POLS 304 Latino Politics in the United States
Credits 3. 3 Lecture Hours.
Survey of historical and contemporary issues in Latino politics in the U.S.; race and ethnicity in the context of U.S. politics; comparisons of racial and ethnic group experiences in the U.S. with those experienced by racial and ethnic groups elsewhere; Latino access to the political system through political participation.
Prerequisite: Junior or senior classification.

POLS 306 Contemporary Political Problems and Issues
Credits 3. 3 Lecture Hours.
Major contemporary political problems and issues with primary emphasis on the U.S. Each term one to three problems or issues will be examined in some depth. Students may register in up to but no more than two different sections of this course. May be repeated for credit.
Prerequisite: POLS 206 or approval of department head. NOTE: POLS 306 courses taken in a study abroad program may not count toward this limit; please consult with the undergraduate advisor.

POLS 308 Game Theoretic Methods in Political Science
Credits 3. 3 Lecture Hours.
Core concepts of game theory to study strategic interaction in politics; game theory using simple mathematical models to describe social situations, understand political and social phenomena; emphasis on model building skills and problem solving.
Prerequisites: POLS 206 and junior or senior classification or approval of department head.

POLS 309 Polimetrics
Credits 3. 3 Lecture Hours.
Theory, techniques, and application of quantitative analysis in political science; focus on quantitative techniques commonly used to evaluate empirical theories of politics.
Prerequisites: POLS 209 and 9 additional hours of political science or approval of instructor.

POLS 312 Ethnic Conflict
Credits 3. 3 Lecture Hours.
Examination of government institutions designed to structure ethnic relations; source of ethnic conflict; mechanisms to facilitate the peaceful resolution of ethnic conflict.
Prerequisite: Junior or senior classification.

POLS 313 Public Opinion
Credits 3. 3 Lecture Hours.
Role of public opinion in a democratic political system--its formation, properties and patterns, with special attention to problems of linking public opinion to public policy.
Prerequisite: POLS 206 or approval of department head.

POLS 314 Interest Groups
Credits 3. 3 Lecture Hours.
Role of interest groups in politics; types of groups and resources; internal dynamics; group strategies/tactics (including PACs); forms of indirect and direct lobbying; influence of groups in political arena.
Prerequisite: POLS 206 or approval of department head.

POLS 315 Political Parties
Credits 3. 3 Lecture Hours.
Organization, history, and activities of political parties and functions they serve in national, state and local politics in the United States and elsewhere.
Prerequisite: POLS 206 or approval of department head.

POLS 316 Urban Politics
Credits 3. 3 Lecture Hours.
Politics at the community level; urban and metropolitan political systems.
Prerequisites: POLS 206 and POLS 207 or approval of department head.

POLS 317/WGST 317 Women in Politics
Credits 3. 3 Lecture Hours.
Role of women in the political system; treatment of women in political theory; effect of law on women's status; women as political leaders; current policy issues of concern to women.
Prerequisite: POLS 206.
Cross Listing: WGST 317/POLS 317.

POLS 318 Theories of International Relations
Credits 3. 3 Lecture Hours.
Examination of major paradigms of international relations; focus on theory development and application to cases.
Prerequisites: POLS 206, POLS 209, and junior or senior classification or approval of department head.
POLS 319 The American Presidency
Credits 3.3 Lecture Hours.
The American Presidency and the primary relationships and responsibilities of the office, dealing with the public, decision making, influencing Congress, and implementing policy.
Prerequisite: POLS 206 or approval of department head.

POLS 320 Race and Politics in the United States
Credits 3.3 Lecture Hours.
The politics of race in the United States: contrast of the political experiences of racial groups with the ideals and realities of democratic political systems.
Prerequisites: POLS 206 and POLS 207 and junior or senior classification.

POLS 322 Western European Government and Politics
Credits 3.3 Lecture Hours.
Political institutions and ideas of major European countries. Prospects for political integration.
Prerequisite: POLS 206 or approval of department head.

POLS 323 Political Systems of Latin America
Credits 3.3 Lecture Hours.
Survey of the major features of the political process in Latin America; key political groups and sources and characteristics of their political power; studies of selected countries.
Prerequisite: POLS 206 or approval of department head.

POLS 324 Politics of Global Inequality
Credits 3.3 Lecture Hours.
Examination of the causes and consequences of economic inequality between rich and poor states; evaluation of competing explanations for poverty of less-developed countries; development strategies employed by poor states; and structure of global economic relations.
Prerequisite: Junior or senior classification.

POLS 325 African Politics
Credits 3.3 Lecture Hours.
Survey of African politics from pre-colonial period to contemporary era; examination of local experience of democracy, governance, economic development in light of varied colonial experiences, independence movements, international political economy, informal sources of political power.
Prerequisites: POLS 206 and POLS 207; junior or senior classification.

POLS 326 Government and Politics of Eastern Europe
Credits 3.3 Lecture Hours.
Political, social and economic transformations in the post-Communist Eastern and Southern European countries; examination of the interrelations between political, economic and social issues that impact the building of new governments and institutions in these countries.
Prerequisites: POLS 206 and POLS 207; junior or senior classification.

POLS 327 Congressional Politics
Credits 3.3 Lecture Hours.
Prerequisite: POLS 206 or approval of department head.

POLS 328 Globalization and Democracy
Credits 3.3 Lecture Hours.
Examination of the political and economic origins of globalization; effects of globalization on advanced industrial democracies; effect on less developed nations; evaluation of the economic, social, cultural and political consequences of globalization.
Prerequisite: Junior or senior classification.

POLS 333 International Cooperation
Credits 3.3 Lecture Hours.
Contemporary issues, problems, and solutions in international cooperation.
Prerequisites: POLS 206; junior or senior classification or approval of department head.

POLS 335 International Conflict
Credits 3.3 Lecture Hours.
Examination of major theoretical explanations of war and conflict resolution.
Prerequisites: POLS 206; junior or senior classification or approval of department head.

POLS 338 Government and Politics of the Former Soviet Union
Credits 3.3 Lecture Hours.
Major political issues of the post-communist transition in the former Soviet Union.
Prerequisite: POLS 206 or approval of department head.

POLS 340 Introduction to Public Administration
Credits 3.3 Lecture Hours.
American public administration; development of public service; the political and constitutional context; organization theory; leadership and decision-making; personnel and resource staff functions; administrative law and regulation; ethics and administrative accountability.
Prerequisite: POLS 206 or approval of department head; also taught at Galveston campus.

POLS 342 Politics and Bureaucracy
Credits 3.3 Lecture Hours.
Public bureaucracy in the context of a political environment; role of experts, the use of political power and problems of bureaucratic accountability and responsibility.
Prerequisite: POLS 206 or approval of department head.

POLS 347 Politics of Energy and the Environment
Credits 3.3 Lecture Hours.
U.S. energy and environmental problems and politics and the political, legal, and institutional factors influencing their development and implementation.
Prerequisites: POLS 206 or approval of department head; junior or senior classification or approval of instructor; also taught at Galveston campus.

POLS 349 Early Political Thought
Credits 3.3 Lecture Hours.
Political thought from Greek antiquity to Renaissance.
Prerequisite: POLS 206 or approval of department head.

POLS 350 Modern Political Thought
Credits 3.3 Lecture Hours.
Political thought from Machiavelli to Marx.
Prerequisite: POLS 206 or approval of department head.

POLS 352 Empirical Democratic Theory
Credits 3.3 Lecture Hours.
Examination of empirical political science theory about the nature and consequences of democratic government in the modern era; study of scientific theory that accounts for the rise, characteristics and behavior of democratic political systems.
Prerequisites: POLS 206, POLS 207, and POLS 209; junior or senior classification.
POLS 353 Constitutional Rights and Liberties
Credits 3. 3 Lecture Hours.
Legal issues, controversies and significant developments in constitutional rights and liberties, and the impact of these developments upon American politics, culture and social institutions.
Prerequisite: POLS 206 or approval of department head; also taught at Galveston campus.

POLS 355 United States Constitutional Development
Credits 3. 3 Lecture Hours.
Leading decisions of the Supreme Court. Trends in our constitutional development since 1789; expansion through judicial interpretation of powers delegated to national government.
Prerequisites: POLS 206 and HIST 105 or approval of department head.

POLS 357 National Judicial Politics
Credits 3. 3 Lecture Hours.
Political factors that influence judicial selection; decision making and policy-making roles and impact of the U.S. Supreme Court and Federal Court System.
Prerequisites: POLS 206, POLS 209, and junior or senior classification or approval of department head.

POLS 358 Comparative Judicial Politics
Credits 3. 3 Lecture Hours.
Survey of the major features of court systems of the world; examination of the role played by courts in the politics of selected nations of the world; comparison of judicial decision making in selected counties; the impact of courts in developing democracies.
Prerequisites: POLS 206 and 207, junior or senior classification.

POLS 359 American Political Thought
Credits 3. 3 Lecture Hours.
American political thought from colonial times to the present.
Prerequisite: POLS 206 or approval of department head.

POLS 362 Latin American Political Thought
Credits 3. 3 Lecture Hours.
Survey of various traditions in the history of Latin American political thought; key texts in the history of political theory in the Spanish-American continent.
Prerequisites: POLS 206; junior or senior classification or approval of instructor.

POLS 364 Global Political Thought
Credits 3. 3 Lecture Hours.
Global perspective on the history of political ideas and contemporary political philosophy; confrontation and conversion of East Asia and Middle Eastern concepts of political problems and Western perspectives; impact of culture on the shaping of political ideas.
Prerequisite: Junior or senior classification.

POLS 365 Asian Governments and Politics
Credits 3. 3 Lecture Hours.
Contemporary political systems of Asia, political institutions, actors and processes.
Prerequisite: POLS 206 or approval of department head.

POLS 366 Political Conflicts of the Middle East
Credits 3. 3 Lecture Hours.
The internal, regional and international politics of the Middle East; study of selected political conflicts; the influence of the region's cultures, religions, natural resources and outside political forces.
Prerequisites: Grade of C or better in POLS 206; junior or senior classification or approval of instructor; Galveston campus.

POLS 367/WGST 367 Women in Government in Comparative Perspective
Credits 3. 3 Lecture Hours.
Examination of women's representation in government based on comparison across multiple nation-states; focus on legislative and executive branches of democratic governments.
Prerequisites: POLS 206; junior or senior classification or approval of department head.
Cross Listing: WGST 367/POLS 367.

POLS 368 Latin American Legislatures
Credits 3. 3 Lecture Hours.
Survey of the major features of the legislative branch in Latin America; examination of the role played by legislatures in the politics of selected countries; studies of executive-legislative relations in selected countries; participation by traditionally excluded groups in legislatures.
Prerequisites: POLS 206, junior or senior classification or approval of department head.

POLS 369 Theories of Democracy
Credits 3. 3 Lecture Hours.
Definitions and justifications of democratic political systems; criticisms of democratic legitimacy, difficulties encountered by actual democratic regimes; methodological problems of assessing the fulfillment of democratic goals.
Prerequisite: POLS 206 or approval of instructor.

POLS 375 Campaigns and Elections
Credits 3. 3 Lecture Hours.
Theories of voter choice; effects of mass media and campaign finance regulations on the conduct and outcome of elections; effects of elections on policy; emphasis on U.S. national elections.
Prerequisite: POLS 206 or approval of department head.

POLS 412 International Political Economy
Credits 3. 3 Lecture Hours.
Politics of international economic relations; interactions between political and economic realms in the contemporary world.
Prerequisites: POLS 206; junior or senior classification or approval of department head.

POLS 413 American Foreign Policy
Credits 3. 3 Lecture Hours.
Evolution of U.S. foreign policies since World War II. Policy process; role of executive, legislative, bureaucratic and private institutions; current foreign policy issues and problems.
Prerequisite: POLS 206 or approval of department head.

POLS 415 Contemporary Issues in American Foreign Policy
Credits 3. 3 Lecture Hours.
Detailed analysis of a selected aspect of American foreign policy.
Prerequisite: POLS 206 or approval of department head.

POLS 423 U.S.-Latin American Relations
Credits 3. 3 Lecture Hours.
Political, economic and social relations between the United States and Latin American nations from independence to the present.
Prerequisites: POLS 206, POLS 207 and POLS 323; junior or senior classification.
POLS 424 Comparative Governmental Institutions
Credits 3. 3 Lecture Hours.
Study of the politics and structure of governmental institutions in a comparative venue; examination of the building blocks by which patterns of governments and institutions can be identified across various political systems of the world; role of institutions across different types of political systems and how they are affected by global economic factors.
Prerequisites: POLS 206 and POLS 207; junior or senior classification.

POLS 429 Issues in World Politics
Credits 3. 3 Lecture Hours.
Selected issues of importance in contemporary world politics. May be repeated for credit.
Prerequisite: POLS 206 or approval of department head.

POLS 432 The Politics of European Union
Credits 3. 3 Lecture Hours.
Examination of the institutional, economic and political forces that led to the development of the European Economic Union; impact of the European Union on world affairs.
Prerequisites: POLS 206 and POLS 207; junior or senior classification.

POLS 435 Voting Behavior
Credits 3. 3 Lecture Hours.
Voting decisions, electoral behavior and consequences for the political system.
Prerequisite: POLS 206 or approval of department head.

POLS 439 Foreign Policy Decision Making
Credits 3. 3 Lecture Hours.
Examination of decision processes in contemporary world politics; individual, group and organizational aspects of decision making in the context of world events.
Prerequisites: POLS 206, POLS 209, and junior or senior classification or approval of department head.

POLS 440 Public Policies and Policymaking
Credits 3. 3 Lecture Hours.
Socio-economic, political, and institutional factors as they affect the development, implementation and impact of public policies. Strategies of choice by political regimes in the formation of public policies.
Prerequisite: POLS 206 or approval of department head.

POLS 447 National Security Policy
Credits 3. 3 Lecture Hours.
Need for national security policy, the factors involved in determining defense policy and the resulting problems; special attention to the United States.
Prerequisite: POLS 206 or approval of department head.

POLS 454 Contemporary Political Ideas
Credits 3. 3 Lecture Hours.
Contemporary political ideas such as liberalism, socialism, communism and fascism; role of ideology in political change.
Prerequisite: POLS 206 or approval of department head.

POLS 455 Traditions of Political Theory
Credits 3. 3 Lecture Hours.
Survey of particular schools or historical periods of normative political theory. May be taken three times.
Prerequisites: POLS 206 and POLS 207; junior or senior classification.

POLS 461 Jurisprudence
Credits 3. 3 Lecture Hours.
History of legal philosophy from the ancient Greeks to the present; exploration of recurring themes such as natural law, legal positivism, legal realism, sociological jurisprudence and Marxist jurisprudence; exposure to various issues, such as liberty, privacy, obedience, responsibility and punishment.
Prerequisite: POLS 206 or approval of department head.

POLS 462/WGST 462 Women and the Law
Credits 3. 3 Lecture Hours.
The legal status of American women from the adoption of the Constitution to the present: constitutional developments; the 19th Amendment and the proposed Equal Rights Amendment; employment; family law; reproductive rights; education; sexual equality in context of other claims to equality; law and social norms.
Prerequisite: POLS 206 or approval of department head.
Cross Listing: WGST 462/POLS 462.

POLS 475 Government and the Economy
Credits 3. 3 Lecture Hours.
Constitutional and legal framework of governmental involvement in economy; governmental budget in management of business cycle; regulation of business activities; governmental economic planning in democratic societies.
Prerequisite: POLS 206 or approval of department head.

POLS 481 Research Seminar
Credits 3. 3 Other Hours.
In-depth study of topics associated with particular sub-field of political science; experience designing and implementing major, original research project.
Prerequisites: POLS 206, POLS 207, POLS 209, 9 credits in POLS at or above 300 level; junior or senior political science major or approval of instructor.

POLS 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in a public organization to provide students with on-the-job training and applied research experience with professionals in settings appropriate to the student's degree plan and career objectives. May be taken three times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Majors only; approval of department head.

POLS 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Individual instruction in selected aspects of political science not adequately covered by other courses.
Prerequisite: Approval of department head; also taught at Qatar campus.

POLS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of political science and public policy. May be repeated for credit.
Prerequisite: POLS 206 or approval of department head.

POLS 491 Research
Credits 0 to 6. 0 to 6 Other Hours.
Research conducted under the direction of a faculty member in political science. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.
POLS 497 Independent Honors Studies
Credits 0 to 4. 1 to 4 Other Hours.
Directed independent studies for upper division Honors students, regardless of academic major, in selected aspects of political science.
Prerequisites: Junior or senior classification either as Honors student or with overall GPR of 3.25; letter of approval from head of student's major department.

PORT - Portuguese (PORT)

PORT 101 Beginning Portuguese I
Credits 4. 4 Lecture Hours. 1 Lab Hour.
(PORT 1411) Beginning Portuguese I. Elementary language study with aural, oral, written, and reading practice; preparation for conversation; part of class preparation done in language laboratory. Students with prior knowledge of or instruction in Portuguese are required to take a placement test before enrolling for the first time in a college Portuguese course.
Prerequisite: PORT 101 with a grade of C or better.

PORT 102 Beginning Portuguese II
Credits 4. 4 Lecture Hours. 1 Lab Hour.
(PORT 1412) Beginning Portuguese II. Continuation of PORT 101; part of class preparation done in language laboratory. Students with prior knowledge of or instruction in Portuguese are required to take a placement test before enrolling for the first time in a college Portuguese course.
Prerequisite: PORT 101 with a grade of C or better.

PORT 201 Intermediate Portuguese I
Credits 3. 3 Lecture Hours.
(PORT 2311) Intermediate Portuguese I. Readings of average difficulty; review of grammar, practice in conversation and composition. Students with prior knowledge of or instruction in Portuguese are required to take a placement test before enrolling for the first time in a college Portuguese course.
Prerequisite: PORT 102 with a grade of C or better.

PORT 202 Intermediate Portuguese II
Credits 3. 3 Lecture Hours.
(PORT 2312) Intermediate Portuguese II. Continuation of PORT 201 with more advanced material. Students with prior knowledge of or instruction in Portuguese are required to take a placement test before enrolling for the first time in a college Portuguese course.
Prerequisite: PORT 201 with a grade of C or better.

POSC - Poultry Science (POSC)

POSC 201 General Avian Science
Credits 3. 3 Lecture Hours.
Introduction to the poultry industry to include past, present and future industry dynamics; avian anatomy/physiology as they impact commercial production; management principles and practices of breeding, incubation, brooding, nutrition, disease control and marketing technology.

POSC 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed studies in specific problem areas of poultry science.
Prerequisite: Approval of instructor.

POSC 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of poultry science. May be repeated for credit.
Prerequisite: Approval of instructor.

POSC 291 Research
Credits 1 to 2. 1 to 2 Other Hours.
Research conducted under the direction of faculty member in poultry science. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor and department head.

POSC 302 Avian Science Laboratory
Credit 1. 2 Lab Hours.
Field trips and application of basic skills in production of poultry meat and eggs. Recommended supplement to POSC 201.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 304 Judging
Credits 3. 6 Other Hours.
Intensive, individualized training in selection standards for meat and egg strains of poultry, grading standards for egg and live and ready-to-cook poultry, and organizing and managing poultry shows; practice requires visits to processing plants. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 308 Avian Anatomy and Physiology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Anatomy and physiology of the major body systems of the bird, including the cardiovascular, gastrointestinal, respiratory, endocrine and reproductive systems; influence of the environment on bird physiology, including effects of stress. Laboratory exercises include dissection and microscopic analysis of the major body system and assessment of environmental conditions.
Prerequisites: BIOL 111; POSC 201; junior or senior classification or approval of instructor.

POSC 309 Poultry Meat Production
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Modern integrated broiler and turkey production; housing and equipment, nutrition, flock health, pest control, grower relations, marketing and financial management; lab involves blood testing, growth trials, posting birds, processing, and observation of a local integrated poultry operation.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 313 Game Birds and Ornamental Fowl
Credits 3. 3 Lecture Hours.
Commercial game bird production; nutrition, incubation, rearing, breeder care, diseases, marketing, housing requirements and economic considerations; management of rare and ornamental fowl.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 316 Breeder and Hatchery Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Housing and equipment, incubation technology, embryology, nutrition and flock health; lab involves hatchery management, blood testing, semen evaluation, artificial insemination, basic embryology and observation of a local hatchery.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 326 Commercial Egg Industry
Credits 3. 3 Lecture Hours.
Production, management, marketing, economics and integration of commercial laying hen operations.
Prerequisite: Junior or senior classification or approval of instructor.
POSC 333 Instincts and Behavior
Credits 3. 3 Lecture Hours.
Investigation of the reasoning behind evolved reproductive strategies with integration of veterinary and avian science perspectives; examination of individual differences in behavior and their development in particular environments.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 381 Investigation of Professional Development in Poultry Science
Credits 2. 2 Other Hours.
An investigation of career options and the research process as applied to poultry science.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 402 Skills in Poultry Evaluation
Credit 1. 2 Lab Hours.
Practical application of judging and husbandry skills used in poultry exhibition and production. Primarily designed for preservice vocational agriculture teachers.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 405/NFSC 405 Egg and Poultry Meat Processing
Credits 3. 3 Lecture Hours.
Principles of egg and poultry meat processing, understanding egg and poultry meat markets, egg and meat grading, product safety, packaging and consumer acceptance of shell eggs and poultry meat, specifically turkey and broilers.
Prerequisite: Junior or senior classification or approval of instructor.

Cross Listing: NFSC 405/POSC 405.

POSC 406/NFSC 406 Poultry Further Processing
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Science and practice of value-added products; physical, chemical, microbiological and functional characteristics of value-added poultry products as they affect consumer acceptance, efficiency of production and regulatory approval.
Prerequisites: CHEM 222; DASC 326 or NFSC 326/ANSC 326; POSC 309; POSC 405/NFSC 405; junior or senior classification or approval of instructor.
Cross Listing: NFSC 406/POSC 406.

POSC 411 Poultry Nutrition
Credits 3. 3 Lecture Hours.
Principles of poultry nutrition with emphasis on all major nutrient classes and their relationships with the avian digestive system.
Prerequisites: CHEM 222 or equivalent; junior or senior classification or approval of instructor.

POSC 412 Poultry Feed Formulation
Credit 1. 1 Lecture Hour.
Practical feeding of poultry with emphasis on specific nutrient requirements of various species and computer least cost diet formulations.
Prerequisites: POSC 411; junior or senior classification or approval of instructor.

POSC 414 Avian Genetics and Breeding
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Basic concepts of avian genetics and breeding principles, inheritance of economically important qualitative and quantitative traits; statistical analysis of breeding results; application of molecular genetics, mating systems analyses, breeder management; and incubation of hatching eggs.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 425 Environmental Physiology
Credits 3. 3 Lecture Hours.
Environmental influences on the physiology of animals and humans; review of shelter engineering to promote animal welfare and production during stressful climatic conditions. Chronic and acute stress in a variety of birds and animals.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 427 Animal Waste Management
Credits 3. 3 Lecture Hours.
An applied approach to current and emerging issues relating to responsible management of animal waste; the role of biological aspects of production management decisions evaluated in an examination of regulatory and environmental requirements; current case studies and exposure to field situations. Field trips may be required for which departmental fees may be assessed.
Prerequisite: Junior or senior classification or approval of instructor.

POSC 429 Advanced Food Bacteriology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Microbiology of foodborne human pathogens of food animals, raw and processed food, and human disease; methods to control incidence of pre- and post-harvest contamination.
Prerequisites: DASC 326 or FSTC 326 or BIOL 351 or VTPB 405; junior or senior classification.

POSC 444 International Poultry Production
Credits 3. 3 Lecture Hours.
Two-week intensive and comparative on-site study of international poultry production; rearing and husbandry, housing and equipment, nutrition, flock health and processing.
Prerequisite: Junior or senior classification.

POSC 454 Animal Welfare
Credits 3. 3 Lecture Hours.
Issues from an animal's perspective; opportunities to study the general questions that typically affect the welfare of an animal; insight to practices that can be used to improve the welfare of an animal.
Prerequisite: Junior or senior classification.

POSC 481 Poultry Science Systems
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Individual and team approaches for the collection, interpretation, synthesis and presentation of information on integration of all aspects of the poultry industry to address issues facing it; emphasis on oral and written communication.
Prerequisite: Senior classification.

POSC 484 Internship
Credits 0 to 5. 0 to 5 Other Hours.
A supervised internship in the poultry industry to provide practical experience in a real world setting that is consistent with the student's professional interests.
Prerequisites: Junior or senior classification and approval of department head.

POSC 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problems not covered by other courses in the department. Content of course will be adapted to interest and needs of students.
Prerequisites: Junior or senior classification and approval of instructor.
Cross Listing: differences, sexual response and love and attraction.

Interface between human sexuality, reproductive development and gender

Credits 3. 3 Lecture Hours.

PSYC 210/WGST 210 Psychological Aspects of Human Sexuality

Prerequisite:

self, prejudice) socio-cultural contexts.

between psychological processes and diverse (e.g., motivation, memory,
and globalized world by critically examining the dynamic relationship

Introduction to various issues surrounding an increasingly interconnected

Credits 3. 3 Lecture Hours.

PSYC 209/AFST 209 Psychology of Culture and Diversity

Introduction to various issues surrounding an increasingly interconnected and
globalized world by critically examining the dynamic relationship between
psychological processes and diverse (e.g., motivation, memory, self, prejudice) socio-cultural contexts.

Prerequisite: PSYC 107.

Cross Listing: AFST 209/PSYC 209.

PSYC 210/WGST 210 Psychological Aspects of Human Sexuality

Interface between human sexuality, reproductive development and gender
roles across the lifespan; theoretical and research literature promotes
understanding of hormonal influences, learning processes, cultural
differences, sexual response and love and attraction.

Prerequisite: PSYC 107.

PSYC 225 Lifespan Development

Credits 3. 3 Lecture Hours.

(PSYC 2314) Lifespan Development. Major theoretical perspectives and
empirical research examining psychological processes across the
lifespan; changes across the lifespan in emotional, cognitive, personality
and social processes; stages of the lifespan including infancy, childhood,
adolescence, adulthood and the end of life.

PSYC 235/NRSC 235 Introduction to Behavioral and Cognitive Neuroscience

Credits 3. 3 Lecture Hours.

Physiological bases of sensation, motor functions, emotion, motivation
and complex psychological processes.

Prerequisites: PSYC 107 or BIOL 111.

Cross Listing: NRSC 235/PSYC 235.

PSYC 245 Introduction to Psychological Science Methods

Credits 3. 3 Lecture Hours.

(PSYC 2317) Introduction to Psychological Science Methods. Basic
elements of statistics and research methods in the psychological and
brain sciences; topics include ethics in psychological research,
measurement, research design and descriptive and inferential statistics.

PSYC 251 Survey of Industrial/Organizational Psychology

Credits 3. 3 Lecture Hours.

Literature and research in the basic theories and practices of I/O psychology including selection, testing, job analysis, performance appraisal, training, employee motivation, job satisfaction, leadership, and group processes within organizations.

PSYC 285 Directed Studies

Credits 0 to 3. 0 to 3 Other Hours.

Directed readings or research problems in selected areas designed to
supplement existing course offerings; individual report required.

Prerequisites: Approval of instructor; major in psychology.

PSYC 289 Special Topics in...

Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.

Selected topics in an identified area of psychology. May be repeated for credit.

Prerequisite: PSYC 107.

PSYC 291 Research

Credits 0 to 3. 0 to 3 Other Hours.

Research conducted under the supervision of a chosen faculty member in
the department of psychology; involves discussion and weekly
presentation of student research projects. May be repeated for credit.

Prerequisites: PSYC 285; freshman or sophomore classification.

PSYC 300/WGST 300 Psychology of Women

Credits 3. 3 Lecture Hours.

Theoretical and research literature relevant to psychological assumptions about the female personality; challenges to and verification of these assumptions by recent experimental studies.

Prerequisite: PSYC 107.

Cross Listing: WGST 300/PSYC 300.

PSYC 301 Elementary Statistics for Psychology

Credits 4. 3 Lecture Hours. 2 Lab Hours.

Practical knowledge of statistics up through analysis of variance.

Practice sessions devoted to numerical problems. Will not satisfy
mathematics requirement in College of Liberal Arts curricula.

Prerequisites: Grade of C or better in PSYC 107; MATH 140 or MATH 150 with a grade of C or better, MATH 168, MATH 142, MATH 166, MATH 151, MATH 171, MATH 131, or MATH 147; major in psychology.

PSYC - Psychology (PSYC)

PSYC 105 First Semester Experience

Credit 1. 1 Lecture Hour.

Development of building blocks essential to success at Texas A&M University and in the Psychology major; introduction to understanding how adjusting to college life and exploring strategies will help manage time and motivation; examination of methods for effective studying and test preparation; information about psychology graduate school and careers in psychology without a graduate-level degree.

Prerequisites: First semester students in psychology.

PSYC 107 Introduction to Psychology

Credits 3. 3 Lecture Hours.

(PSYC 2301) Introduction to Psychology. Introductory course dealing with elementary principles of human behavior; also taught at Galveston campus.

PSYC 206/AFST 206 Black Psychology

Credits 3. 3 Lecture Hours.

Critical examination of psychological experience, theories, and methods from perspectives grounded in the ‘Black experience’.

Cross Listing: AFST 206/PSYC 206.

PSYC 208 Stereotypes, Prejudice, and Minority Experience

Credits 3. 3 Lecture Hours.

Overview of theory and research relating to stereotyping, prejudice,
discrimination, and minority experiences from a social psychological
perspective.

Prerequisite: PSYC 107.

PSYC 209/AFST 209 Psychology of Culture and Diversity

Credits 3. 3 Lecture Hours.

Introduction to various issues surrounding an increasingly interconnected and
globalized world by critically examining the dynamic relationship between
psychological processes and diverse (e.g., motivation, memory, self, prejudice) socio-cultural contexts.

Prerequisite: PSYC 107.

Cross Listing: AFST 209/PSYC 209.

PSYC 210/WGST 210 Psychological Aspects of Human Sexuality

Credits 3. 3 Lecture Hours.

Interface between human sexuality, reproductive development and gender
roles across the lifespan; theoretical and research literature promotes
understanding of hormonal influences, learning processes, cultural
differences, sexual response and love and attraction.

Prerequisite: PSYC 107.

PSYC 302 Research Methods and Design in Psychology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Research techniques in psychology with emphasis on the experimental method; laboratory exercises applied to specific problems in psychology.
Prerequisites: Grade of C or better in PSYC 107 and PSYC 301; major in psychology.

PSYC 303 Psychology of Women of Color
Credits 3. 3 Lecture Hours.
Interdisciplinary theories to study the unique yet intersectional experiences of women from different racial groups, ethnicities, nationalities and cultural backgrounds; scholarly research from the diversity science field; contemporary topics that have developed in a global context; examination of complex issues, which affect women of color across the lifespan.
Prerequisite: Grade of C or better in AFST 201 or PSYC 107 or WGST 200, or approval of instructor.
Cross Listing: AFST 303 and WGST 303.

PSYC 304 Psychology of Sport and Physical Activity
Credits 3. 3 Lecture Hours.
The relationship of psychology to sport; topics include history, application of learning principles, social psychology, personality variables, psychological assessment, youth sport, women in sport, the psychology of coaching, sports law and ethics.
Prerequisite: Junior or senior classification.

PSYC 305 Psychology of Adjustment
Credits 3. 3 Lecture Hours.
Adjustment problems of normal people; application of psychological principles to family, school and community life.

PSYC 306 Abnormal Psychology
Credits 3. 3 Lecture Hours.
Survey of behavior pathology; functional and organic psychoses, psychoneurosis, character disorders, psychophysiological disorders, alcohol and drug addiction and mental retardation; therapeutic and diagnostic methods.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended; also taught at Galveston campus.

PSYC 307 Developmental Psychology
Credits 3. 3 Lecture Hours.
Growth and development of normal child from infancy to adolescence with emphasis on elementary school years.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 311/NRSC 311 Psychology of Animal Behavior
Credits 3. 3 Lecture Hours.
Problems, principles, and methods of animal psychology; animal learning, motivation, discriminative processes and abnormal, social and instinctual behaviors.
Prerequisites: PSYC 107, BIOL 111, or BIOL 113.
Cross Listing: NRSC 311/PSYC 311.

PSYC 315 Social Psychology
Credits 3. 3 Lecture Hours.
Social psychological variables operating on the individual; results of experimental laboratory findings; interaction of personality and social behavior.
Prerequisites: PSYC 107.

PSYC 316/COMM 316 Media Psychology
Credits 3. 3 Lecture Hours.
Examine the role of media and its impact on human behavior, emotions and thoughts; topics include mass media, social media and how they influence individual and societal functioning across a range of important psychological topics; e.g., self-image, sexual behavior, mental health, violence.
Prerequisites: PSYC 107.
Cross Listing: COMM 316/PSYC 316.

PSYC 319 History and Systems of Psychology
Credits 3. 3 Lecture Hours.
Historical analysis of pre-scientific psychology in philosophy and physiology through the period of the psychological 'schools.'
Prerequisite: PSYC 107.

PSYC 320/NRSC 320 Sensation-Perception
Credits 3. 3 Lecture Hours.
Review of sensory physiology, sensory and perceptual phenomena and the major perceptual theories; current research in the field.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.
Cross Listing: NRSC 320/PSYC 320.

PSYC 323 Psychology of Adolescence
Credits 3. 3 Lecture Hours.
Psychological problems of normal teenage individual; ways and means of aiding youth to meet these problems constructively.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 330 Personality
Credits 3. 3 Lecture Hours.
Review of personality theories, techniques of assessment and research relevant to understanding individual differences.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 332/NRSC 332 Neuroscience of Learning and Memory
Credits 3. 3 Lecture Hours.
Brain mechanisms of learning and memory from molecular to behavioral levels; synaptic plasticity, model systems, multiple memory systems, diseases of learning and memory.
Prerequisites: PSYC 235/NRSC 235, NRSC 235/PSYC 235, PSYC 340/NRSC 340, NRSC 340/PSYC 340, VIBS 277/NRSC 277, or NRSC 277/VIBS 277.
Cross Listing: NRSC 332/PSYC 332.

PSYC 333/NRSC 333 Biology of Psychological Disorders
Credits 3. 3 Lecture Hours.
Neurobiology and clinical explanation of molecular mechanisms underlying psychiatric disorders and their drug treatments; depression and bipolar, anxiety disorders, mood disorders, psychosis and schizophrenia.
Prerequisites: PSYC 235/NRSC 235, NRSC 235/PSYC 235, PSYC 340/NRSC 340, NRSC 340/PSYC 340, VIBS 277/NRSC 277, or NRSC 277/VIBS 277.
Cross Listing: NRSC 333/PSYC 333.
PSYC 336/NRSC 336 Drugs and Behavior
Credits 3. 3 Lecture Hours.
Physiological, pharmacological and behavioral effects of psychoactive drugs, including short-term and long-term effects of psychoactive drugs, properties of addictive drugs, etiology of addiction, and treatments of drug addiction and withdrawal.
Cross Listing: NRSC 336/PSYC 336.

PSYC 340/NRSC 340 Psychology of Learning
Credits 3. 3 Lecture Hours.
Survey of significant concepts, experimental methods and principles of learning.
Prerequisites: PSYC 107, BIOL 111, or BIOL 113.

PSYC 345 Human Cognitive Processes
Credits 3. 3 Lecture Hours.
Human cognition and information processing: perception, attention, memory, reasoning and problem solving; experimental methods and data, and contemporary theories of human cognition.
Prerequisites: PSYC 107; junior or senior classification.

PSYC 346 Psychology of Language
Credits 3. 3 Lecture Hours.
Examines theories of how language is acquired, comprehended, produced, stored and used in normal and brain-impaired individuals.
Prerequisites: PSYC 107; or junior or senior classification.

PSYC 350/NRSC 350 Cognitive Neuroscience
Credits 3. 3 Lecture Hours.
Research in cognitive neuroscience; methodological advances that enable the study of the human brain safely in the laboratory; complex aspects of the mind like emotion, social behavior and consciousness.
Prerequisite: PSYC 107; PSYC 301, PSYC 302, and NRSC 277 recommended.
Cross Listing: NRSC 350/PSYC 350.

PSYC 352 Organizational Psychology
Credits 3. 3 Lecture Hours.
Literature and research in basic theories and practices of organizational psychology including employee motivation, leadership, job satisfaction, counterproductive work behaviors, organizational commitment, culture, climate, communication, and group processes within organizations.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 353 Personnel Psychology
Credits 3. 3 Lecture Hours.
Literature and research in basic theories and practices of personnel psychology including job analysis, testing and validation, selection, performance appraisal, training, and legal issues in employment decision making.
Prerequisites: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 354 Conflict and Negotiation
Credits 3. 3 Lecture Hours.
Examination of the field of conflict and negotiation, including the structure and causes of common interpersonal, intragroup, and intergroup conflicts, effective negotiation strategies, ethics, mediation, and the development of negotiating skills.
Prerequisite: PSYC 107.

PSYC 360/NRSC 360 Health Psychology and Behavioral Medicine
Credits 3. 3 Lecture Hours.
Health psychology emphasizing behavioral and lifestyle factors in health and illness, prevention and modification of health-compromising behaviors, health care utilization, and psychological management of chronic disorders and psychological management of chronic disorders and terminal illnesses.
Prerequisite: PSYC 107.
Cross Listing: NRSC 360/PSYC 360.

PSYC 365 Psychology of Aging
Credits 3. 3 Lecture Hours.
Examination of the psychological aspects of the aging process including physiology and health, memory and intellectual functioning, personality and social relationships, emotional health and late life transition.
Prerequisite: PSYC 107.

PSYC 371 Forensic Psychology
Credits 3. 3 Lecture Hours.
Interface between psychology and the legal system; role of psychological theories and data, as well as mental health expertise, in the resolution of criminal trials and civil disputes; legal system's impact on the practice of psychology.
Prerequisite: PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.

PSYC 389 Careers in Psychology
Credits 3. 3 Lecture Hours.
Exploration of graduate study and professional careers in the field of psychology, including teaching, research, and clinical practice; content will include graduate admissions, licensure types, areas of specialization and professional skills related to training and practice in the field of psychology.
Prerequisites: PSYC 107; approval of instructor.

PSYC 407 Behavioral Disorders of Children
Credits 3. 3 Lecture Hours.
Behavior problems related to childhood; psychological aspects of mental retardation, emotional disturbance, physical handicaps and other disorders; causative factors, preventative and therapeutic methods explored; where feasible, practical experience included as requirement.
Prerequisites: PSYC 306; PSYC 307 or equivalent.

PSYC 411 Psychology of Self
Credits 3. 3 Lecture Hours.
Overview of psychological theory and research on issues related to the self, the self-concept and identity, and how these phenomena are integral to the human experience and to mental health and well-being.
Prerequisite: PSYC 107 or approval of instructor.

PSYC 414 Behavior Principles
Credits 3. 3 Lecture Hours.
Behavioral analysis of humans’ complex interactions with their environments: how behavioral repertoires are constructed during maturation process; how existent behaviors are strengthened, weakened or eliminated; and how features of environment exercise control over behavioral components within a repertory.
Prerequisites: 9 hours of psychology; PSYC 107; junior or senior classification; PSYC 301 and PSYC 302 recommended.
PSYC 425 Psychology of Emotion
Credits 3. 3 Lecture Hours.
Examination of the theories and approaches in the psychological study of emotion; topics related to emotion, including predictors of happiness, causes and consequences of emotion, and the role of emotion in society; identification of facial expressions of emotion; examination of techniques that promote happiness.
Prerequisites: PSYC 107.

PSYC 432 Diversity and Inclusion in Organizations
Credits 3. 3 Lecture Hours.
Psychological and organizational theory and research on the experience of diversity and inclusion in organizations.
Prerequisites: PSYC 315, PSYC 352, PSYC 353, or approval of instructor.

PSYC 440/NRSC 440 Hormones and Behavior
Credits 3. 3 Lecture Hours.
Principles of hormones and the endocrine system; relationships among hormones, the nervous system and a variety of behaviors in vertebrates including humans.
Prerequisites: PSYC 235/NRSC 235, NRSC 235/PSYC 235, PSYC 340/NRSC 340, NRSC 340/PSYC 340, VIHS 277/NRSC 277, or NRSC 277/VIHS 277, or approval of instructor.
Cross Listing: NRSC 440/PSYC 440.

PSYC 450 Clinical Psychology
Credits 3. 3 Lecture Hours.
Analysis of the field of clinical psychology with a particular focus on the theoretical and scientific bases for the practice of clinical psychology.
Prerequisites: PSYC majors only; grade of C or better in PSYC 301, PSYC 302 and PSYC 306.

PSYC 470 Psychological Testing and Measurement
Credits 3. 3 Lecture Hours.
Theories and techniques of measurement of psychological concepts; a range of measurement models and procedures; critical tasks of evaluating strategies for measuring psychological concepts and drawing inferences and interpretations from commonly used psychological assessments.
Prerequisites: PSYC 301 recommended; junior or senior classification or approval of instructor.

PSYC 471 Research Writing in Neuroscience
Credit 1. 1 Lecture Hour.
Development of written communication skills; comprehension and communication of neuroscience research concepts to both academics and lay people.
Prerequisite: Junior or senior classification.

PSYC 475 Communicating Neuroscience Concepts
Credit 1. 1 Lecture Hour.
Development of written communication skills; written assignments include summaries of research in the field of neuroscience.
Prerequisite: Junior or senior classification.

PSYC 483 Teaching Scholars
Credits 0 to 3. 0 to 3 Lecture Hours.
Acquisition of experience in educational programs and knowledge about the scientific basis for educational strategies and development of materials in conjunction with serving as a course teaching assistant.
Prerequisites: Major or minor in psychology; junior or senior classification; approval of instructor.

PSYC 484 Field Experiences
Credits 0 to 6. 0 to 6 Other Hours.
Participation in an approved mental health, mental retardation, school, industrial or other approved setting; field experiences supervised by an appropriate professor within an area of student interest; course requirements vary with the setting, the supervising professor and the needs of the individual student. May be repeated for credit.
Prerequisites: PSYC 301 and PSYC 302; 12 hours of psychology; GPR of 2.5 or better in all psychology courses; major in psychology; approval of instructor.

PSYC 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Directed readings or research problems in selected areas designed to supplement existing course offerings. May be repeated for credit.
Prerequisite: Approval of instructor.

PSYC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of psychology. May be repeated for credit.
Prerequisites: PSYC 107 and approval of instructor.

PSYC 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the supervision of a chosen faculty member in the department of psychology; involves discussion and presentation of student research projects. May be repeated for credit.
Prerequisites: PSYC 484 or PSYC 485; approval of instructor.

RDNG - Reading (RDNG)

RDNG 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in reading. May be repeated two times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

RDNG 351 Reading in the Elementary School
Credits 3. 3 Lecture Hours.
Recent trends, issues, materials and procedures considered essential for effective teaching of reading, such as comprehension, word analysis, study skills, motivation, grouping, etc.
Prerequisites: Concurrent enrollment in RDNG 473; junior classification or approval of department head.

RDNG 371 Multicultural and Interdisciplinary Literature for Middle Grades
Credits 3. 3 Lecture Hours.
Focuses on multicultural and interdisciplinary literature appropriate for middle grades students; implements and evaluates effective multicultural, interdisciplinary instruction through selection, use and development of literature in middle grades classroom.
Prerequisite: Junior classification.

RDNG 372 Reading and Writing across the Middle Grades Curriculum
Credits 3. 3 Lecture Hours.
Acquaints middle-grade educators to reading and writing instruction in content area education; focuses on development of grade-appropriate reading/writing competencies and educational techniques appropriate to student development in various subjects.
Prerequisite: Junior classification.
RDNG 373 Teaching Reading Through Children's Literature
Credits 3. 3 Lecture Hours.
Use of past and contemporary literature for the motivation of wide leisure reading in the elementary grades.
Prerequisites: Admission to teacher education.

RDNG 460 Language and Reading
Credits 3. 3 Lecture Hours.
Relationship between language and reading, dialect and reading, and linguistics.

RDNG 465 Reading in the Middle and Secondary Grades
Credits 3. 3 Lecture Hours.
Reading needs of middle and secondary school students with emphasis upon curriculum organization for reading development and assessment of student progress in content area reading.

RDNG 467 Reading and the Language Arts
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Recent trends, issues and research on the impact of listening, oral language, process writing, grammar, spelling and handwriting on the development of reading strategies and communicative competence. Application of research in field settings.
Prerequisites: RDNG 351 and RDNG 473; admission to teacher education; must be taken concurrently with TEFB 410, TEFB 412 and TEFB 413.

RDNG 468 Essential Foundations of Language and Literacy for All Learners
Credits 3. 3 Lecture Hours.
Relationship among literacy, language, dialect and linguistics; role of the child, community and school through stages of literacy and second language learning; literacy instructional procedures for all learners including dyslexia.
Prerequisites: RDNG 351 or RDNG 372 or SPED 412.

RDNG 470 Reading/Language Arts Methods in Middle Grades Education
Credits 3. 2 Lecture Hours. 6 Other Hours.
Investigate current trends and issues in teaching listening, oral language, process writing, spelling, grammar and handwriting; explores relationships among the development of various language arts and the development of reading strategies and communicational competencies of middle school learners; application of best instructional practices informed by research.
Prerequisites: RDNG 351 or RDNG 473; admission to teacher education; senior classification.
Corequisites: RDNG 490; MEFB 450.

RDNG 472 Teaching Writing in Elementary and Middle Grade Classrooms
Credits 3. 3 Lecture Hours.
Focuses on effective methods of writing instruction and assessment for the middle grades; reviews and reinforces sound writing practices; exposes students to theory and research in the area of writing instruction.
Prerequisite: Junior classification.

RDNG 473 Assessment in Reading Instruction
Credits 3. 3 Lecture Hours.
Evaluation and use of commonly used achievement tests, development of criterion referenced tests and interpretation and construction of informal measures for assessing reading skills.
Prerequisites: Grade of C or better in RDNG 351 and RDNG 373.

RDNG 490 Assessment in Reading Instruction in Middle Grades
Credits 3. 2 Lecture Hours. 6 Other Hours.
Evaluation of middle grades students reading performance; selection, understanding, and implementation of formal and informal evaluation procedures in classroom reading assessment, diagnosis, and instruction.
Prerequisites: MEFB 352; admission to teacher education; senior classification; concurrent enrollment in RDNG 470 and MEFB 450.

RDNG 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in reading. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

RELS - Religious Studies (RELS)

RELS 200 Religions of the World
Credits 3. 3 Lecture Hours.
Introduction to academic study of religion and some of the world's major religions; emphasis on the nature of religion, diversity of practice across religious traditions, religious appropriation and functions of religion.

RELS 202 Religion in America
Credits 3. 3 Lecture Hours.
Survey of major themes in religion in America; examines how religion has influenced and been influenced by American history, culture, economics, politics and social consciousness.

RELS 209 Religions of the Ancient World
Credits 3. 3 Lecture Hours.
Religious traditions, ideas and practices of ancient cultures; connections to modern religious traditions.

RELS 212/HIST 212 Holy War
Credits 3. 3 Lecture Hours.
Concepts of holy war in Jewish, Christian and Muslim history; language and literature of holy war; motivations for waging holy war; the relationship between war, martyrdom, pilgrimage and sainthood; religious orders engaging in holy war; political aims of holy war; practices of holy war; perspectives of those attacked in holy wars.
Cross Listing: HIST 212/RELS 212.

RELS 220 History of Christianity: Origins to the Reformation
Credits 3. 3 Lecture Hours.
History of Christian doctrine, ecclesiastical organization, and religious practice, origins through Reformation, with emphasis on religion and society; life and teachings of Jesus; apostolic church; patristic period; Christianization of Roman Empire and northern Europe; monasticism; medieval church; Gregorian reform; heresy; papal monarchy; schism and conciliarism; reformations of the sixteenth century.
Cross Listing: CLAS 220 and HIST 220.

RELS 221/HIST 221 History of Islam
Credits 3. 3 Lecture Hours.
Key themes in Islam and Islamic history; Orientalism; pre-Islamic Arabia; the Qur’an; Sunni-Shi'i sectarian divisions; Islamic law; theology; sciences; mystical traditions; rituals of the Muslim faith; cross-cultural and religious encounters; holy war; ritual practices; fundamentalism; women in Islam; Islam in the West.
Cross Listing: HIST 221/RELS 221.
RELS 222/HIST 222 History of Christianity, Reformation to Present Credits 3. 3 Lecture Hours.
History of Christian religion from the era of the Reformation (sixteenth century) to the present, with emphasis on social, cultural, political and economic history in relation to Christian structures and theological movements.
Cross Listing: HIST 222/RELS 222.

RELS 251/CLAS 251 Classical Mythology Credits 3. 3 Lecture Hours.
Introduction to the most important myths of Greeks and Romans; ancient and modern methods of interpreting myths; the role of myths in ancient literature; readings in English.
Cross Listing: CLAS 251/RELS 251.

RELS 257/COMM 257 Communication, Religion and the Arts Credits 3. 3 Lecture Hours.
Introduction to artistic, religious communication; survey of communication art and media art practices across religious contexts; consideration of communication aesthetics that mediate religious experience.
Cross Listing: COMM 257/RELS 257.

RELS 285 Directed Studies Credits 0 to 3. 0 to 3 Other Hours.
Readings and/or assigned projects for specific needs of students minoring in religious studies; directed independent or individual study in an identified area of religious studies.
Prerequisite: Approval of instructor.

RELS 289 Special Topics in... Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in an identified area of religious studies. May be repeated for credit.

RELS 291 Research Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Liberal Arts.
Prerequisites: Freshman or sophomore classification and approval of instructor.

RELS 304/HUMA 304 Indian and Oriental Religions Credits 3. 3 Lecture Hours.
Beliefs and practices of Hinduism, Jainism, Sikhism, Buddhism, Confucianism, Taoism, and Shinto with particular attention to their philosophical presuppositions.
Cross Listing: HUMA 304/RELS 304.

RELS 312 Contemplation in the Modern World Credits 3. 3 Lecture Hours.
Interdisciplinary approach to examining contemplative practices: origins in philosophy and religious traditions, goals and techniques of contemplation, contemplation in relation to cultural and social problems or needs.

RELS 317/ANTH 317 Introduction to Biblical Archaeology Credits 3. 3 Lecture Hours.
Application of archaeology in biblical research; basic overview of the material cultures that are the setting for the biblical narratives.
Cross Listing: ANTH 317/RELS 317.

RELS 321 Political Islam and Jihad Credits 3. 3 Lecture Hours.
Interaction between Islamic movements and politics in various Middle Eastern countries; the meaning and evolution of jihad; the role of Islam as a tool for political and social mobilization.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: HUMA 321 and INTS 321.

RELS 326/SOCI 326 Sociology of Religion Credits 3. 3 Lecture Hours.
Institution of religion and religious-related behavior; relationship between dynamic and structural religion and contemporary society.
Prerequisite: SOCI 205
Cross Listing: SOCI 326/RELS 326.

RELS 331/PHIL 331 Philosophy of Religion Credits 3. 3 Lecture Hours.
Philosophical problems of western religion such as the existence of God, the problem of evil, types of theism, rational, empirical, and mystical approaches to God.
Cross Listing: PHIL 331/RELS 331.

RELS 340/ANTH 340 Folklore and the Supernatural Credits 3. 3 Lecture Hours.
Traditional expressions of the supernatural such as superstition, belief tale and divination classified as folklore genres and their relationships to the cultures in which they develop; theories drawn from anthropology, folklore and related social sciences.
Prerequisite: Junior or senior classification or approval of instructor.

RELS 347/HIST 347 Rise of Islam, 600-1258 Credits 3. 3 Lecture Hours.
Late-Antiquity; Pre-Islamic Arabia; the rise of Islam and a historical survey of the development of the Islamicate civilizations from c. 600 to the Mongol Conquests c. 1258 with an emphasis on politics, religion, society and culture.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: HIST 347/RELS 347.

RELS 356 Ritual and Expression in Ancient Religions Credits 3. 3 Lecture Hours.
Expressive practices such as rituals, re-enactments, processions and dance in ancient religious traditions.
Prerequisites: Junior or senior classification.

RELS 360/ENGL 365 The Bible as Literature Credits 3. 3 Lecture Hours.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 365/RELS 360.

RELS 365/HIST 365 Religion in Early America Credits 3. 3 Lecture Hours.
Religion in North America from colonial beginnings to eve of Civil War; relations between European Christianity, Native Americans and African Americans; religious pluralism, reform movements, social and political change.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 365/RELS 365.
RELS 366/HIST 366 Religion in Modern America
Credits 3. 3 Lecture Hours.
Religion in America from the Civil War to contemporary period; relationship of religion and racial formation, capitalism, gender, sexuality, immigration; religious pluralism; evangelicalism; role of religious politics and social movements.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 366/RELS 366.

RELS 392/ENGL 392 Studies in Literature, Religion and Culture
Credits 3. 3 Lecture Hours.
Exploration of literature treating significant religious topics in the context of cultural setting; features current faculty research on such topics as Tolkien and the making of myth, C.S. Lewis, texts and cultures of the Middle East and Victorian women writers and religion. May be repeated one time for credit.
Prerequisites: 3 credits of literature at 200-level or above; junior or senior classification.
Cross Listing: ENGL 392/RELS 392.

RELS 403/ANTH 403 Anthropology of Religion
Credits 3. 3 Lecture Hours.
Cross-cultural, theoretical analysis of religion as a cultural phenomenon; exploring the relationships between religion, culture, society and the individual; also taught at Galveston campus.
Prerequisite: Junior or senior classification.
Cross Listing: ANTH 403/RELS 403.

RELS 418 Intellectual History from the Ancient Near East to the Early Middle Ages
Credits 3. 3 Lecture Hours.
Political, social, cultural and religious histories of significant figures, groups, schools of thought and movements in western Afro-Eurasia from the Assyrian Empire to the later Roman Empire; developments in political theory, literature, sociology, arts, architecture, music, philosophy, law, sciences and education.
Prerequisite: Junior or senior classification.
Cross Listing: CLAS 418 and HIST 418.

RELS 419/HIST 419 Intellectual History, 500 to 1600
Credits 3. 3 Lecture Hours.
Political, social, cultural and religious histories of significant figures, groups, schools of thought and movements in western Afro-Eurasia from the rise of Islam to the Renaissance; developments in political theory, literature, sociology, arts, architecture, music, philosophy, law, sciences and education.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 419/RELS 419.

RELS 420 Religion and the Environment
Credits 3. 3 Lecture Hours.
Interaction between religion and the environment; examination of religious traditions and their concepts of the natural world; emphasis on cultural contexts and environmental sustainability.
Prerequisites: RELS 200, RELS 202, RELS 209, GEOS 105, GEOS 205, or GEOG 203.

RELS 425/HIST 425 The Sacred and Profane in History
Credits 3. 3 Lecture Hours.
Case studies of the sacred in varied times and regions; holy persons; holy places; holy objects; language and literature of the sacred; competing concepts of the holy within society; gender and the holy; institutions promoting holy people and places; the impact of social, political, cultural and intellectual developments on the relationship between the sacred and the profane.
Prerequisites: Junior or senior classification.
Cross Listing: HIST 425/RELS 425.

RELS 436/ANTH 436 Ancient Egypt
Credits 3. 3 Lecture Hours.
Archaeology and history of ancient Egypt from earliest times to the end of the New Kingdom period.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: ANTH 436/RELS 436.

RELS 464/PHIL 464 Modern Jewish Thought and Philosophy
Credits 3. 3 Lecture Hours.
An overview of modern Jewish thought and philosophy spanning Jewish European thinkers from the 18th century to the 20th century.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: PHIL 464/RELS 464.

RELS 471/HISP 471 Hispanic Religions
Credits 3. 3 Lecture Hours.
Exploration of the history and practice of Hispanic religion, including spirit possession, evil eye, consumption of sacred substances, healing traditions, ex-votos, relics, prophecy, omens, monsters, astrology, witchcraft, the Inquisition, festivals, pilgrimage, mystics and religious contributions of diverse ethnic groups.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: HISP 471/RELS 471.

RELS 474/HISP 474 Diversity Lessons from Medieval Spain
Credits 3. 3 Lecture Hours.
Crucible of cultures--Christian, Jewish, and Muslim--that was medieval Spain and modern implications of that experience in diversity.
Prerequisites: ENGL 104 and junior or senior classification.
Cross Listing: HISP 474/RELS 474.

RELS 480/COMM 480 Religious Communication
Credits 3. 3 Lecture Hours.
The role of religious communication as manifested in speeches, sermons, debates, campaigns, and social movements throughout history. May be taken two times for credit.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: COMM 480/RELS 480.

RELS 481 Advanced Seminar in Religious Studies
Credits 3. 3 Lecture Hours.
Intensive reading, study and discussion of topics in religious studies; interdisciplinary methods. May be taken four times for credit.
Prerequisites: Junior or senior classification; university studies-religious thought, practices and cultures (US-RTPC) major or religious studies minor; or approval of instructor.

RELS 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Directed internship in a public or private organization to provide students with applied experience; opportunity to observe first hand issues and problems covered in religious studies courses; designed to enhance and clarify the student's career objectives. May be taken for credit up to six hours.
Prerequisites: Approval of instructor.
RELS 485 Directed Studies
Credits 0 to 6. 0 to 6 Other Hours.
Readings and/or assigned projects for specific needs of students minor ing in religious studies; directed independent or individual study in an identified area of religious studies.
Prerequisite: Junior or senior classification; approval of instructor.

RELS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of religious studies. May be repeated for credit.
Prerequisite: Junior or senior classification, or approval of instructor.

RELS 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a faculty member in Liberal Arts. May be taken 3 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

RENR-Renewable Natural Resources (RENR)

RENR 205 Fundamentals of Ecology
Credits 3. 3 Lecture Hours.
Principles of ecology using a holistic approach treating plants, animals and humans as one integrated whole; composition, structure, nutrient cycles and energetics of biotic communities; adaptations to environmental factors; biotic relationships; and problems of environmental quality and resource use.

RENR 215 Fundamentals of Ecology--Laboratory
Credit 1. 3 Lab Hours.
Sampling and estimating plant-animal populations, measuring environmental factors and recognizing and studying morphological, physiological and behavioral adaptations of plants and animals to biotic or abiotic influences.

RENR 345 Park Ecology and Management
Credits 3. 1 Lecture Hour. 4 Lab Hours.
Classroom and hands-on exposure to outdoor recreation resources management in a major national park facing complex challenges; interactive problem-solving to understand natural resources, management strategies and issues related to a park’s broader region; includes one intensive week in Smoky Mountains National Park. May be taken two times for credit.
Prerequisites: Junior or senior classification; or approval of instructor.

RENR 375 Conservation of Natural Resources
Credits 3. 3 Lecture Hours.
Principles and philosophies associated with the development, management and use of natural resources; ecological and social implications inherent in management alternatives involving the natural environment and use of renewable natural resources.

RENR 400 Study Abroad in Natural Resources
Credits 2 to 12. 2 to 12 Lecture Hours.
Provides students with an opportunity to gain first-hand experience in natural resource management in foreign countries; focus on the interaction of public, communal and private land tenure systems with the ecological and human dimensions of rangeland management, wildlife conservation and nature-based tourism. May be taken two times for credit.
Prerequisite: Junior or senior classification.

RENR 405/ESSM 351 Geographic Information Systems for Resource Management
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Geographic Information Systems (GIS) approach to solving spatial problems and managing natural resources, including the acquisition, management, manipulation, analysis, and mapping of spatial and non-spatial databases; identification of natural and relevant features from various data sources; integration of relevant technologies and data; extensive use of GIS software to solve real-world problems. Only one of the following will satisfy the requirements for a degree: ESSM 351/RENR 405, RENR 405/ESSM 351, ESSM 651, BAEN 651 and RENR 651.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: ESSM 351/RENR 405.

RENR 410 Ecosystem Management
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Concepts and practices relevant to the development of landscape/regional level ecosystem management plans including range, forest and other natural resources; an ecosystem management plan will be developed utilizing a strategic management/coordinated resources approach to establish resource goals, ecosystem resource analysis and impact evaluation and implementation compatible with societal and individual concerns.
Prerequisites: RENR 205, senior classification or approval of instructor.

RENR 460/RPTS 460 Nature, Values, and Protected Areas
Credits 3. 3 Lecture Hours.
Writing-intensive discussion of the ways in which protected areas reflect human values about nature; identify stakeholders in and around protected areas, exploring how interests either conflict or coincide; evaluate social, economic, cultural, and ecological trade-offs of different approaches to conservation.
Prerequisite: RPTS 307 or RPTS 316; or 9 hours of credit in natural resource courses.
Cross Listing: RPTS 460/RENR 460.

RENR 470 Environmental Impact Assessment
Credits 3. 3 Lecture Hours.
The evolution of natural resources regulatory policies and how this influences current procedures for environmental/natural resources assessment and management; demonstration of the environmental impact assessment procedures and policy issues associated with environmental impacts.
Prerequisite: Senior classification or approval of instructor.

RENR 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified field of renewable natural resources. May be repeated for credit.
Prerequisite: Approval of instructor.

RLEM-Rangeland Ecology & Mgmt (RLEM)

RLEM 321 Field Studies in Ecological Restoration
Credit 1. 2 Lab Hours.
Field trip course that provides examples, visits and field experiences in ecological restoration; reinforces conceptual basis for ecological restoration principles developed in RLEM 320, alternative strategies for succession management, plant materials selection, seedbed preparation, planting technologies and planning ecological restoration programs.
Prerequisites: ESSM 320 or concurrent enrollment; junior or senior classification.
RPTS - Rec, Park & Tourism Sci (RPTS)

RPTS 201 Foundations of Recreation, Parks and Tourism
Credits 3. 3 Lecture Hours.
(PhED 1336) Foundations of Recreation, Parks and Tourism. Analysis of the elements comprising a community, community assessment techniques and community development processes engaged by stakeholders and residents to improve living conditions; definitions and principles associated with community development.

RPTS 209 Park and Tourism Operations
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Planning, execution and supervision of field maintenance and operations.

RPTS 230 Computer Applications in Recreation, Parks and Tourism
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamentals of computer use and the application of software used in careers related to park and tourism enterprises; computer use in decision making and problem solving.

RPTS 291 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in recreation park and tourism sciences.
Prerequisites: Freshman or sophomore classification and approval of instructor.

RPTS 300 Supervised Field Studies
Credits 3. 3 Other Hours.
Survey and application of principles of recreation and parks; selected aspects of park and recreation management in an operational setting under the supervision of an approved agency; preparation and presentation of a comprehensive analysis of a specific problem; offered on an individual basis. May be repeated for credit.

RPTS 301 Leisure and Outdoor Recreation in American Culture
Credits 3. 3 Lecture Hours.
Introduction to the fundamental concepts of leisure and outdoor recreation and how they influence us as individuals, groups and society; critical factors such as self, family, lifespan, ecology, health, work patterns, communications, diversity, popular culture, and consumption are studied in relationship to past, present and future leisure patterns.

RPTS 302 Application of Tourism Principles
Credits 3. 3 Lecture Hours.
Tourism principles applied at local, regional and international levels; examination of the scale, scope and organization of the industry including marketing destinations and experiences; issues related to the economic, technological and political aspects of tourism.
Prerequisite: Junior or senior classification.

RPTS 304 Administration of Recreation Resource Agencies
Credits 3. 3 Lecture Hours.
Contemporary issues and related administrative practices associated with the provision of recreation services and settings; addresses principles associated with recreation resource agency administration; personnel and customer-related administrative issues in recreation resource agencies; concepts and principles relevant to commercial and non-profit recreation resource agencies.
Prerequisites: RPTS 201.

RPTS 307 Interpretation of Natural and Cultural Resources
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles and methods of effective communication with the public at parks, cultural institutions and tourism destinations; application of guided and media-based techniques to connect audiences with meanings inherent in a resource.

RPTS 308 Foundations of Community and Community Development
Credits 3. 3 Lecture Hours.
Analysis of the elements comprising a community, community assessment techniques and community development processes engaged by stakeholders and residents to improve living conditions; definitions and principles associated with community development.
Prerequisite: Junior or senior classification.

RPTS 311 Planning and Implementation of Events and Programs
Credits 3. 3 Lecture Hours.
Planning, operations, administration and evaluation; includes creation and implementation of programs and special events with budgeting, operational and venue logistics, marketing, fund raising, hospitality training and participant satisfaction.
Prerequisite: Junior or senior classification.

RPTS 316 Recreational Management of Wildlands
Credits 3. 3 Lecture Hours.
Management and recreational use of wild and wilderness areas and multiple use management areas; systems and techniques for dealing with management problems in outdoor recreation.
Prerequisite: Junior or senior classification.

RPTS 321 Event Management and Operations II
Credits 3. 3 Lecture Hours.
Principles and applications for effective planning and management of events; planning, promotion, operational logistics, sponsorship and evaluation.
Prerequisite: RPTS 311.

RPTS 323 Tourism Management
Credits 3. 3 Lecture Hours.
Advanced principles and applications of event management, including practical knowledge relating to contracting, media, fund raising, compliance and oversight, risk management, site logistics, sponsorships and vendor management.
Prerequisites: RPTS 311 and RPTS 320.

RPTS 325 Tourism Management
Credits 3. 3 Lecture Hours.
Management issues and tools related to the travel and tourism industry; history, planning, operations, leading, directing and controlling tourism businesses; complexity and scope of tourism systems; issues related to ethics and sustainability; managing tourism in different environments; roles of technology and information technology; future of tourism.
Prerequisites: RPTS 302; junior or senior classification.

RPTS 324 Event Management Final Assessment
Credits 0. 0 Other Hours.
Demonstration of academic knowledge in management of events; document event coordination experience through completion of volunteer work and a website portfolio.
Prerequisites: Enrollment in Professional Event Manager certificate; grade of C or better in RPTS 311 and RPTS 320; grade of C or better in RPTS 321 or concurrent enrollment.
RPTS 331 Tourism Marketing
Credits 3. 3 Lecture Hours.
Application of basic tourism marketing principles and concepts in government, business, and social-cause contexts; situation analysis and operational evaluation; decision making in terms of product, place, price, and channel of distribution mixes for tourism attractions and services.
Prerequisite: RPTS 302 and junior or senior classification.

RPTS 336 Research and Analysis in Recreation and Tourism
Credits 3. 3 Lecture Hours.
Examination of current tourism and recreation research emphasizing specialized research methodology, adaptive techniques and methods of research useful to the recreation and tourism professional; analysis of the methods of problems identification, formulation and solution.
Prerequisites: Junior or senior classification.

RPTS 340 Recreation, Parks, Tourism and Diverse Populations
Credits 3. 3 Lecture Hours.
Review of major judicial decisions and civil rights laws on provision and distribution of leisure services in society; influence of age, disability, ethnicity, national origin, race, religion and gender on individual’s preferences for particular experiences; implications of individual differences for the provision of services.
Prerequisite: Junior or senior classification.

RPTS 370 Youth Development Organizations and Services
Credits 3. 3 Lecture Hours.
Changing views of adolescence and youth culture in the United States; developmental assets and principles of developing positive youth development supports, opportunities and services; mentoring and staff development for youth serving agencies; goals, program emphases, administrative methods and membership of major youth serving organizations.

RPTS 371 Understanding and Developing Effective Skills for Youth Development
Credits 3. 3 Lecture Hours.
Development of skills needed to effectively work with youth; issues such as youth participation, conflict resolution, youth-adult collaboration, leadership development, youth empowerment and youth voice; connection of theoretical concepts to practice.
Prerequisites: RPTS 370 and junior or senior classification.

RPTS 380 Visitor and Resource Protection I
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental values and operations of the National Park Service; communication, leadership and conservation skills and practice needed for employment with federal park agencies; physical fitness training.
Prerequisite: Junior or senior classification or approval of instructor.

RPTS 381 Visitor and Resource Protection II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fundamental values and operations of the visitor and resource protection branch of the National Park Service; law enforcement, customer service, ethics and team cohesion.
Prerequisites: RPTS 380; junior or senior classification; approval of instructor.

RPTS 382 Visitor and Resource Protection III
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Law Enforcement Operations of the National Park Service; policies, laws and procedures designated by 36 US Code of Federal Regulations; focus and analysis of watershed law enforcement events; critical examination of criminal justice system through advanced leadership; assessment of 21st century policing report.
Prerequisites: RPTS 381; junior or senior classification; approval of instructor.

RPTS 401 Tourism and Recreation Enterprises
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Market and financial feasibility analysis; resource characteristics, location and market aspects of tourism and recreation enterprises; sources of funding for facility development; approaches to marketing recreation, park and tourism services; applying knowledge to case study situations.
Prerequisites: RPTS 304 or RPTS 423 and senior classification.

RPTS 402 Park Planning and Design
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Classification of areas according to primary function, location and clientele served; basic park planning principles involving scale, circulation, function and spatial relationships; methodology for establishing planning goals, objectives and planning strategies.
Prerequisites: Junior or senior classification.

RPTS 403 Financing and Marketing Recreation, Park and Tourism Resources
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Public sources of funding for facility development and of approaches to marketing recreation, park, and tourism services; applying knowledge to case study situations.
Prerequisites: RPTS 304 or RPTS 423; senior classification.

RPTS 404/SCI 404 Sociology of the Community
Credits 3. 3 Lecture Hours.
Organization of American communities examining the bases of community, types of communities and the changes faced by communities.
Prerequisite: SOCI 205; SOCI-404 also taught at Galveston campus.
Cross Listing: SOCI 404/RPTS 404.

RPTS 408 Community Development and Supporting Institutions
Credits 3. 3 Lecture Hours.
Scope, function and mission of domestic and international organizations that support community development efforts.
Prerequisites: RPTS 308 or approval of instructor; junior or senior classification.

RPTS 411 Cruise Tourism
Credits 3. 3 Lecture Hours.
Overview of cruise tourism; management of service sectors; understanding of cultural aspects of places traveled; cruise marketing/decision making; geography of cruising; youth programming; agrotourism; identification of issues related to the economic, technological and political aspects of cruise tourism.
Prerequisite: Junior or senior classification.
RPTS 421 Hotel and Resort Operations
Credits 3. 3 Lecture Hours.
Examination of the crucial elements involved in the successful operation of a hotel or resort and how they interrelate; analysis and application of management principles in the major departments of hotels and resorts to include rooms division, food and beverage, recreation, sales and marketing.
Prerequisite: Junior or senior classification.

RPTS 423 Tourism Management
Credits 3. 3 Lecture Hours.
Management issues and tools related to the travel and tourism industry; history, planning, operations, leading, directing and controlling tourism businesses; complexity and scope of tourism systems; issues related to ethics and sustainability; managing tourism in different environments; roles of technology and information technology; future of tourism.
Prerequisite: RPTS 302.

RPTS 426 Tourism Impacts
Credits 3. 3 Lecture Hours.
Consequences and impacts of various kinds of tourism development for host communities and regions; read and evaluate case studies from Texas, other areas in the United States and internationally; economic, environmental, social, cultural and political impacts associated with tourism proposals, project development, tourist activity, industry expansion and industry decline.
Prerequisite: RPTS 302.

RPTS 444 Service Quality for Hospitality Organizations
Credits 3. 3 Lecture Hours.
Application of SERVQUAL concepts with focus on implementing measures to enhance customer service; in-depth study of planning and administering hospitality service strategies, measurement of service delivery, repair and recovery of service delivery gaps, and management and training of employees; practical applications of research in the field.
Prerequisite: RPTS 302.

RPTS 460/RENR 460 Nature, Values, and Protected Areas
Credits 3. 3 Lecture Hours.
Writing-intensive discussion of the ways in which protected areas reflect human values about nature; identify stakeholders in and around protected areas, exploring how interests either conflict or coincide; evaluate social, economic, cultural, and ecological trade-offs of different approaches to conservation.
Prerequisite: RPTS 307 or RPTS 316; or 9 hours of credit in natural resource courses.
Cross Listing: RPTS 370, RPTS 371 and junior or senior classification.

RPTS 472 Grant Writing and Program Evaluation for Youth Development Organizations
Credits 3. 3 Lecture Hours.
Development of knowledge and skills to successfully write grant proposals and design program evaluation plans for youth development organizations; appropriate funding opportunities and considerations; grant guidelines; budget, timeline, and personnel; program evaluation plan development; evaluating grant proposals.
Prerequisites: RPTS 370 and RPTS 371, or approval of instructor; junior or senior classification.

RPTS 474 Management of Programs and Services for Youth
Credits 3. 3 Lecture Hours.
Organizational behavior, administration and management of public, non-profit and commercial youth programs and agencies; strategic planning, marketing, financial resource development, budgeting and fiscal management; contemporary issues facing youth development field; international perspective on youth agencies.
Prerequisite: RPTS 304, RPTS 323, or RPTS 423; RPTS 370; junior or senior classification.

RPTS 476 Leadership for Outdoor Recreation
Credits 3. 3 Lecture Hours.
Leadership principles related to outdoor recreation; classroom instruction and experiential learning; skills training through field trips; risk management planning, environmental education, group facilitation, and trip planning.
Prerequisite: Junior or senior classification.

RPTS 478 Youth Development Practice
Credits 3. 3 Lecture Hours.
Application of youth development philosophy in community settings; principles and practices of community youth development and existing youth development models; local efforts related to community youth development.
Prerequisite: RPTS 370, RPTS 371 and junior or senior classification.

RPTS 481 Seminar
Credit 1. 1 Lecture Hour.
Development of knowledge and skills necessary for employment in the recreation, park and tourism fields; focus on career preparation and job search strategies, professionalism, networking and opportunities for advanced education.
Prerequisite: Junior or senior classification; RPTS majors only.

RPTS 484 Internship
Credits 0 to 6. 0 to 6 Other Hours.
Practical experience working in a professional recreation, park or tourism setting. Offered on an individual basis. May be repeated for credit.
Prerequisite: RPTS 311, RPTS 340 and RPTS 481.

RPTS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
For individual research by advanced undergraduates upon a broad range of subjects not included in established courses.
Prerequisite: Junior classification or approval of department head.

RPTS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 9 Lab Hours.
Selected topics in an identified field of recreation and parks. May be repeated for credit.

RPTS 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in recreation park and tourism sciences. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.
RUSS - Russian (RUSS)

RUSS 101 Beginning Russian I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(RUSS 1411) Beginning Russian I. Elementary language study with oral, written and reading practice. Attention given to background for conversation. Part of class preparation will be done in language laboratory.
Prerequisite: RUSS 101.

RUSS 102 Beginning Russian II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
(RUSS 2311) Intermediate Russian I. Continuation and review of grammar, selected readings; material to develop conversational and reading ability.
Prerequisite: RUSS 102.

RUSS 201 Intermediate Russian I
Credits 3. 3 Lecture Hours.
(RUSS 2312) Intermediate Russian I. Continuation of RUSS 201. Part of class preparation will be done in language laboratory.
Prerequisite: RUSS 201.

RUSS 202 Intermediate Russian II
Credits 3. 3 Lecture Hours.
Readings taken from standard works.
Prerequisite: RUSS 202.

RUSS 211 Russian Conversation
Credits 3. 3 Lecture Hours.
Development of conversational skills in Russian; building of active vocabulary; exercises with emphasis on correct diction; oral presentations; skits; dialogues; discussion of current events; conducted in Russian.
Prerequisite: RUSS 101 or equivalent.

RUSS 221 Field Studies I
Credits 3. 3 Lecture Hours.
Russian language and culture, taught in the former Soviet Union; supervised travel of cultural interest; participation in courses and activities at a Russian university or institute; exams, written and oral reports.
Prerequisites: RUSS 101 with a grade of B or higher; concurrent enrollment in RUSS 222.

RUSS 222 Field Studies II
Credits 3. 3 Lecture Hours.
Russian language and literature taught in the former Soviet Union in cooperation with a Russian university or institute; exams, written and oral reports.
Prerequisites: RUSS 101 with a grade of B or higher; concurrent enrollment in RUSS 221.

RUSS 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects in Russian; selected for each student individually.
Prerequisite: Approval of instructor and department head.

RUSS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Russian. May be repeated for credit.
Prerequisite: Approval of instructor.

RUSS 301 Advanced Grammar and Composition I
Credits 3. 3 Lecture Hours.
Review of grammar at an advanced level; readings of literary texts for analysis and emulation; development of oral and written skills; required for modern languages majors in Russian; conducted in Russian.
Prerequisite: RUSS 202 or RUSS 222 or registration therein.

RUSS 302 Advanced Grammar and Composition II
Credits 3. 3 Lecture Hours.
Continuation of RUSS 301; literary interpretation of longer works; particular emphasis on the short stories of Chekhov and other major authors; required for modern languages majors in Russian; conducted in Russian.
Prerequisite: RUSS 202 or RUSS 222 or concurrent enrollment.

RUSS 322 Masterpieces of Russian Literature
Credits 3. 3 Lecture Hours.
Selected works of Russian literature, representative of its major authors and most important literary movements; literary analysis and evaluation of each work’s cultural background; conducted in Russian.
Prerequisite: RUSS 202 or RUSS 222 or registration therein. May be retaken with approval of department head.

RUSS 410 Seminar in Russian Studies
Credits 3. 3 Lecture Hours.
Exploration of a significant topic, event, or period in Russian literature and culture; taught in Russian.
Prerequisite: RUSS 202 or RUSS 222.

RUSS 441/EURO 441 The Russian Novel I: Tolstoy and Dostoevsky
Credits 3. 3 Lecture Hours.
Study of the major works of Tolstoy and Dostoevsky; discussion of the literary nature and purpose of novels, especially in the context of Russian culture; taught in English.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: EURO 441/RUSS 441.

RUSS 442/EURO 442 The Russian Novel II: The Twentieth Century
Credits 3. 3 Lecture Hours.
Study of major Russian novels from ca. 1900 to the end of Stalinism; exploration of topics relevant to Russia’s experience in the 20th century; taught in English.
Prerequisite: Junior or senior classification, or approval of instructor.
Cross Listing: EURO 442/RUSS 442.

RUSS 443/EURO 443 Contemporary Russian Prose
Credits 3. 3 Lecture Hours.
Study of Russian and Soviet 20th century prose literature, with emphasis on post-Stalinist and post-glasnost writers; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: EURO 443/RUSS 443.

RUSS 444/EURO 444 Russian Drama
Credits 3. 3 Lecture Hours.
Introduction to the masterpieces of Russian drama from the 19th century to the present; includes such authors as Pushkin, Chekhov, Gorky, Arbuzov, Rozov and Petrushevskaya; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: EURO 444/RUSS 444.
RUSS 446/EURO 446 Russian Artistic Culture I: Beginnings to 1900
Credits 3. 3 Lecture Hours.
Masterpieces of Russian art, including architecture, dance, theater, music, and literature, from its beginnings until ca. 1900; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: EURO 446/ RUSS 446.
RUSS 447/EURO 447 Russian Artistic Culture II: 1890 to Present
Credits 3. 3 Lecture Hours.
Masterpieces of Russian art, including architecture, dance, theater, music, film, and literature, from ca. 1890 to the present; taught in English.
Prerequisite: RUSS 201 or concurrent enrollment, or approval of instructor.
Cross Listing: EURO 447/ RUSS 447.
RUSS 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Individual supervision of readings or assigned projects, selected for each student individually; written and oral reports.
Prerequisite: Approval of instructor and department head.
RUSS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Russian language, literature and civilization.
Prerequisite: Approval of instructor.
RUSS 491 Research
Credits 1 to 3. 1 to 3 Other Hours.
Research conducted under the direction of faculty member in Russian. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of department head.

SCEN - College of Science (SCEN)

SCEN 101 Contemporary Issues in Science - Cosmos, Earth and Humanity
Credits 3. 3 Lecture Hours.
Science for citizens; interdisciplinary survey of contemporary issues in the science of our universe or cosmos, Earth and humanity, including the big bang, evolution, genetics, vaccines and drugs; future outlook on humanity, including artificial intelligence, cryptography and cybersecurity; critically analyze science presented in the news, on television and on social media; ethical implications of research.

SCEN 102 Contemporary Issues in Science - The Environment
Credits 3. 3 Lecture Hours.
Science for citizens; interdisciplinary survey of contemporary issues in and future outlook on the science of our environment, including climate change, energy, plastics, agriculture, and food and water safety; future outlook on the health of our environment; critically analyze science presented in the news, on television and on social media.

SCEN 201 Experiences In Secondary Math and Science Classrooms
Credit 1. 1 Lecture Hour. 1 Lab Hour.
Field based with emphasis on culture of secondary schools through experiences in science, technology, engineering or math classrooms; focuses on characteristics, behaviors and traits of effectively teaching adolescents in diverse middle and high school settings; educational standards, high-stakes testing and research based teaching strategies.
Prerequisite: Major in science or mathematics related field or approval of instructor.

SCEN 289 Special Topics in...
Credits 0 to 3. 0 to 3 Lecture Hours. 0 to 3 Lab Hours.
Selected topics in an identified area of science. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of credit.

SCEN 292 Cooperative Education in Science
Credits 0 to 2. 0 to 2 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study. Supervision of the student will be by the cooperating employer and the instructor. A technical report, approved by the instructor, on a related subject area will be required.
Prerequisite: Approval of the college coordinator of cooperative education.

SCEN 301 College of Science Study Abroad
Credits 0 to 18. 0 to 18 Other Hours.
For student in approved programs abroad. May be repeated for credit.
Prerequisites: Admission to approved program and approval of academic dean.

SCEN 392 Cooperative Education in Science
Credits 2. 20 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study. Supervision of the student will be by the cooperating employer and the instructor. A technical report, approved by the instructor, on a related subject area will be required.
Prerequisite: Approval of the college coordinator of cooperative education.

SCEN 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 8 Lab Hours.
Selected topics in an identified area of science. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor.

SCEN 492 Cooperative Education in Science
Credits 0 to 2. 0 to 2 Other Hours.
Educational work assignment by a student in the field of his or her career interest and course of study. Supervision of the student will be by the cooperating employer and the instructor. A technical report, approved by the instructor, on a related subject area will be required.
Prerequisite: Approval of the college coordinator of cooperative education.

SCMT - Supply Chain Mgmt (SCMT)

SCMT 300 Business Communications I
Credit 1. 1 Lecture Hour.
Proper techniques for writing major-specific business communications; progress report, memorandum, letter, executive summary; verbal communications via phone call and person-to-person communications; critiques of personal and peer writing.
Prerequisites: Junior or senior classification; SCMT majors only.
SCMT 303 Statistical Methods
Credits 3. 3 Lecture Hours.
Collection, tabulation and presentation of numerical data; sampling, estimation of averages and variation, probability and error, hypothesis testing and correlation.
Prerequisite: ACCT 230 or concurrent enrollment; ISTM 210, AGEc 217, or MARA 250, or concurrent enrollment; MGMT 211 or concurrent enrollment; and admission to upper division in Mays Business School or admission to Maritime Administration major (MARA); also taught at Galveston campus.

SCMT 305 Intermediate Business Statistics
Credits 3. 3 Lecture Hours.
Selected topics in statistical analysis; practical applications to functional problems in accounting, finance, marketing and management; applications of existing computer programs minimize computations.
Prerequisite: SCMT 303 or STAT 301, STAT 302, or STAT 303.

SCMT 309 Supply Chain Management Principles
Credits 3. 3 Lecture Hours.
Integrated management of the make, buy and delivery processes in firms; emphasis on issues specific to the procurement, manufacturing, and logistics disciplines; requirements for operating in a global marketplace; includes cultural, functional and strategic aspects of global business.
Prerequisite: ISTM 209; junior classification; University Studies Business Concentration students only.

SCMT 335 Sourcing and Procurement
Credits 3. 3 Lecture Hours.
Processes to identify and manage suppliers for goods and services to support operations; including sourcing, contracting, negotiations, buying procedures, cost and price analysis, vendor relations, auditing and inspection, supplier relations, and applications to information technology systems.
Prerequisite: SCMT 364 with a grade of C or better; SCMT 340 and SCMT 361; or approval of instructor.

SCMT 336 Data Analytics with Optimization
Credits 3. 3 Lecture Hours.
Application of quantitative decision-making techniques to management decision problems; focus on model development, solution and implementation of results; optimization.
Prerequisites: SCMT 364; junior or senior classification; also taught at Galveston campus.

SCMT 340 Global Supply Chain Management
Credits 3. 3 Lecture Hours.
Extend knowledge of basic concepts of transportation and logistics to specialized situations in international business in order to understand (a) the international trade and commercial environment, (b) exporting and importing documentation and procedures and (c) operations involving international shipping and transportation.
Prerequisite: SCMT 364 with a grade of C or better.

SCMT 345 Business Process Design
Credits 3. 3 Lecture Hours.
Design, implementation and improvement of the processes by which a firm sources, makes, and delivers products and services to meet customer requirements; includes six-sigma, process flow charting, computer simulation, and other techniques to document, analyze, design and improve business processes.
Prerequisite: SCMT 364 with a grade of C or better; SCMT 340 and SCMT 361; or approval of instructor.

SCMT 361 Operations Planning and Control
Credits 3. 3 Lecture Hours.
Planning and controlling the conversion of materials, labor, capital, and information into goods and services for both manufacturing and service organizations; emphasis on managerial and technical aspects of planning and controlling operating systems.
Prerequisite: SCMT 364 with a grade of C or better; or approval of instructor.

SCMT 364 Operations Management
Credits 3. 3 Lecture Hours.
Concepts, issues and techniques used to plan, analyze, and control systems of production; operational problems in producing goods and services.
Prerequisite: SCMT 303, or STAT 301, STAT 302, or STAT 303, or concurrent enrollment; ACCT 230 or concurrent enrollment; ISTM 210, AGEc 217, or MARA 250, or concurrent enrollment; MGMT 211 or concurrent enrollment; and admission to upper division in Mays Business School or admission to Maritime Administration major (MARA); also taught at Galveston campus.

SCMT 375 Supply Chain Security
Credits 3. 3 Lecture Hours.
Security of global supply chains; selection of appropriate technologies utilized in securing global supply chains; planning responses to disaster events in relation to the delivery and receipt of goods and services; designing draft security policies for an organization's supply chain.
Prerequisite: SCMT 364.

SCMT 455/ISTM 455 Cybersecurity Management
Credits 3. 3 Lecture Hours.
Explores business, managerial and technological aspects of information and cybersecurity; analysis, design, implementation and management issues surrounding effective information security; includes risk management, business continuity planning, and security policy development.
Prerequisite: ISTM 310 or SCMT 375.
Cross Listing: ISTM 455/SCMT 455.

SCMT 465 Information Technology for Supply Chain Management
Credits 3. 3 Lecture Hours.
Overview of information technology applications for planning and controlling the design, manufacture and distribution of goods and services; managerial and technical aspects of information technology for product design, shop floor, factory, enterprise and supply chain management.
Prerequisite: SCMT 340 with a grade of C or better; SCMT 361; or approval of instructor.

SCMT 468 Enterprise Resource Planning
Credits 3. 3 Lecture Hours.
Application of advanced information technology for integrating business functions through distributed databases; applications for planning, scheduling, purchasing and costing to multiple layers of the organization.
Prerequisite: SCMT 364.

SCMT 484 Supply Chain Management Internship
Credits 1 to 4. 1 to 4 Other Hours.
A directed internship in an organization to provide students with a learning experience supervised by professionals in organizational settings appropriate to the student's professional objectives. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: SCMT major and approval of academic advisor and instructor.
SCMT 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Directed study of selected problems in an area of supply chain management not covered in other courses.
Prerequisites: Admission to upper division in Mays Business School and approval of academic advisor and instructor.

SCMT 489 Special Topics In...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topic in an identified field of supply chain management two times for credit.
Prerequisites: Admission to upper division in Mays Business School and approval of academic advisor and instructor.

SCSC - Soil and Crop Sciences (SCSC)

SCSC 105 World Food and Fiber Crops
Credits 3. 2 Lecture Hours. 2 Lab Hours.
(AGRI 1307 and AGRI 1107, AGRI 1407) World Food and Fiber Crops. Plant relationships, structure and development; environmental factors affecting plants; technological aspects of agricultural practices; food production for an increasing population.

SCSC 201 Great Plains Settlement and Farming
Credits 3. 3 Lecture Hours.
American Indian hunting and farming; transformation by Manifest destiny, Homestead Act, railroads, Indian Wars, U.S. Army, crops and farm families; effects of World Wars, Great Depression, Dust Bowl, irrigation, fertilization, pest controls, precision farming.

SCSC 205 Problem Solving in Plant and Soil Systems
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Problems in management of soils, crops, and natural resources; problem solving skills including collecting, interpreting, using and communicating scientific and nonscientific data.

SCSC 289 Special Topics In...
Credits 0 to 4. 0 to 4 Other Hours.
Selected topics in an identified area of soil and crop sciences. May be repeated for credit.

SCSC 291 Research
Credits 1 to 3. 1 to 3 Lecture Hours.
Research conducted under the direction of faculty member in agronomy. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

SCSC 301 Soil Science
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Evaluation of the nature and properties of soils; explanation of the various soils, their components and roles in the environment using the scientific methods and technology.
Prerequisite: Junior or senior classification, or approval of instructor.

SCSC 302 Recreational Turf
Credits 3. 3 Lecture Hours.
Principles underlying construction and maintenance practices for turf facilities including athletic fields, golf courses, parks and home lawns; aesthetic, safety and economic aspects of turf varieties, soil conditions, plant protectants and maintenance equipment.
Prerequisite: Biology or approval of instructor.

SCSC 302 Professional Development in Turfgrass
Credit 1. 2 Lab Hours.
Includes but not limited to fertilizer, pesticide, irrigation calculations; turfgrass, insect and weed identification and management, soils and rootzone construction; irrigation system operation and auditing; sprayer and spreader operation and calibration; builds upon and allows application of information obtained in SCSC 302; designed to better prepare those intending to compete in the GCSAA and STMA Collegiate Turf Bowl competitions.
Prerequisite: SCSC 302 or registration therein.

SCSC 304 Plant Breeding and Genetics
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Genetic improvement of crops by hybridization and selection; special breeding methods and techniques applicable to naturally self-pollinated, cross-pollinated and asexually reproduced plants.
Prerequisite: SCSC 105 or SCSC 205, or approval of instructor.

SCSC 305 Professional Development in Agronomy
Credit 1. 2 Lab Hours.
Enhancement of human relation skills related to a career in soil and crop sciences; field trip to Mississippi to interact with leadership from a global agricultural company; on-campus experiences to improve effective learning practices, job seeking and retention and setting and achieving near-term and long-term professional goals.
Prerequisites: Junior or senior classification or approval of instructor.

SCSC 307 Crop Biology and Physiology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Emphasis on seed biology, germination, development of cells and tissues, anatomy, and growth and development of crop plants; plant hormones and tropisms, membranes and membrane transport, water absorption and transport through plants, photosynthesis, respiration and carbohydrate metabolism, and flowering; environmental effects on crop adaptation, growth, development, and productivity.
Prerequisites: SCSC 205, junior or senior classification, or approval of instructor.

SCSC 309 Water in Soils and Plants
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fundamentals of plant water use, and water movement and storage in soils; evapotranspiration, plant water requirements and irrigation scheduling; issues impacting irrigation and water quality; techniques for measuring soil and plant water relations.
Prerequisite: Junior or senior classification, or approval of instructor.

SCSC 310 Soil Morphology and Interpretations
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Field study of morphological features of soil profiles and the morphological characterization of important soils of Texas in relation to soil use and management.
Prerequisite: SCSC 301 or registration therein.

SCSC 311 Principles of Crop Production
Credits 3. 3 Lecture Hours.
Origin and development of major U.S. agronomic crops; crop and species adaptation; crop management factors such as cultivar selection, planting, pest control, plant nutrition, irrigation, harvesting, organic farming; conservation agriculture; bioenergy crops; influence of markets, government policies, and global economy on cropping strategies; provide an understanding of the major row and drill (agronomic) crops grown in the United States including barley, corn, cotton, grain sorghum, peanuts, rice, soybean and wheat.
Prerequisites: SCSC 105 or SCSC 205, junior or senior classification, or approval of instructor.

SCSC 312 Professional Development in Turfgrass
Credit 1. 2 Lab Hours.
Enhances knowledge in the areas of turfgrass, insect and weed identification and management, soils and rootzone construction; irrigation system operation and auditing; sprayer and spreader operation and calibration; builds upon and allows application of information obtained in SCSC 312; designed to better prepare those intending to compete in the GCSAA and STMA Collegiate Turf Bowl competitions.
Prerequisite: SCSC 302 or registration therein.
SCSC 315 Hemp Production and Utilization
Credits 3. 3 Lecture Hours.
Advanced topics in principles and practices of producing hemp and its utilization in industrial, nutritional and therapeutic activities.
Prerequisite: Junior or senior classification.

SCSC 330 Social and Ethical Aspects of International Cropping Systems
Credits 3. 3 Lecture Hours. 0 Lab Hours.
Philosophical basis of ethical decisions; includes slavery, war, population growth, migration, farm workers, chemical inputs, genetically modified organisms, soil and water conservation and protection of wild species.
Prerequisite: Junior or senior classification.

SCSC 401/FIVS 401 Forensic Soil Science
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Examination of soils biology, chemistry and physical attributes to solve crimes; soil and geologic characteristics associated with crime scene examination; physical, biological and chemical characteristics and use of trace evidence.
Prerequisite: Grade of C or better in FIVS 482.
Cross Listing: FIVS 401/SCSC 401.

SCSC 402 Crop Stress Management
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Identification, measurement, biology, physiology and management of crop stress; limitations of specific environments to crop productivity; morphological and physiological crop stress response mechanisms.
Prerequisites: SCSC 307, junior or senior classification, or approval of instructor.

SCSC 405 Soil and Water Microbiology
Credits 3. 3 Lecture Hours.
Roles of soil and water microorganisms in the sustainability and productivity of various ecosystems with specific emphasis on plant-microbial interactions, nutrient cycling, degradation of pesticides and other xenobiotics, generation of trace gases, and soil and water quality; hands-on laboratory experience with current techniques in soil and water microbiology.
Prerequisites: Junior or senior classification, or approval of instructor.

SCSC 406 Soil and Water Microbiology Laboratory
Credit 1. 2 Lab Hours.
Hands-on experience with current techniques for examining the types, numbers, activity and roles of soil and water microorganisms with specific application to the carbon, nitrogen and sulfur cycle; plant-microbial interactions; soil and water quality.
Prerequisites: SCSC 405 or concurrent enrollment; junior or senior classification or approval of instructor.

SCSC 410 International Agricultural Systems
Credits 3. 3 Lecture Hours.
Contrast modern agriculture systems with those in developing countries; emphasis on natural resources and technologies interacting with economic and social development on a global scale.
Prerequisite: Junior or senior classification, or approval of instructor.

SCSC 411 Biotechnology for Crop Improvement
Credits 3. 3 Lecture Hours.
Use of biotechnology to improve agricultural, horticultural and forest crops; techniques and methods used and case studies where biotechnology has been used to alter traits such as pathogen resistance, protein or oil consumption, ripening, fertility and wood properties.
Prerequisite: BIOL 111 or equivalent.
Cross Listing: MEPS 411 and GENE 411.

SCSC 415 Hemp Production and Utilization
Credits 3. 3 Lecture Hours.
Advanced topics in principles and practices of producing hemp and its utilization in industrial, nutritional and therapeutic activities.
Prerequisite: Junior or senior classification.

SCSC 420 Brazilian Agriculture and Food Production Systems
Credits 3 to 6. 3 to 6 Lecture Hours.
Comparison and study of Brazilian and U.S. agriculture and culture related to soil, water, and forest conservation and management in Brazil; tour and learn about Amazon River, rain forest, Brasilia, farm, ranch, and floral production systems, agricultural cooperatives and research, sugar and alcohol production, phosphate mining and production; visit points of interest.
Prerequisite: Junior or senior classification or approval of instructor.

SCSC 421 International Agricultural Research Centers - Mexico
Credits 3. 3 Lecture Hours.
International agricultural research; CIMMYT interaction; modern and underdeveloped tropical agricultural systems; introduction to Mexican culture; critical evaluation of complex and international agricultural issues and research programs.
Prerequisites: Junior or senior classification and approval of instructor.

SCSC 422 Soil Fertility and Plant Nutrient Management
Credits 3. 3 Lecture Hours.
Chemical and biological reactions in soils that influence nutrient availability to plants; environmental aspects associated with nutrient availability and fertilization, especially for nitrogen (N) and phosphorus (P).
Prerequisites: SCSC 301, junior or senior classification, or approval of instructor.

SCSC 427 Sports Field Construction
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Development of knowledge, skills, and experiences for the design and construction of a turfgrass-based sports field; case studies and visits to model fields, guest lectures from sports field owners, designers, and construction company managers; hands-on construction of a small-scale sand-based sports field.
Prerequisites: SCSC 309, junior or senior classification, or approval of instructor.

SCSC 428 Advanced Turf Ecology and Physiology
Credits 3. 3 Lecture Hours.
Examination of how environmental stresses, genetics, and cultural management practices influence the growth, development, and physiology of turfgrasses; exploration of how turf communities function within urban landscapes; introduction to environmental, social, and political issues encountered when managing these areas.

SCSC 429 Turf Management Systems
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Development of turf management plans for large turfgrass sites including parks, golf courses and sports facilities; use of case studies to critically analyze turf management programs.
Prerequisite: SCSC 428.

SCSC 430 Turfgrass Maintenance
Credits 3. 3 Lecture Hours.
Effective leadership and management strategies, organizational structures, human resource management, employee training and motivational strategies, effective professional communication approaches with clientele, employees and within a leadership team within a turfgrass facility framework; emphases on ethics, professional development and life-long learning.
Prerequisite: SCSC 429 or approval of instructor.
SCSC 432 Soil Fertility and Plant Nutrient Management Laboratory
Credit 1. 3 Lab Hours.
Methods used in soil testing, fertilizer recommendations, chemical and physical properties of soils, and determination of specific characteristics of a collected and analyzed soil sample.
Prerequisites: SCSC 301; SCSC 422 or registration therein, junior or senior classification, or approval of instructor.

SCSC 441 Advances in Agronomic Sciences
Credits 3. 3 Lecture Hours.
Synthesis, integration and extension of agronomic and related concepts for understanding the functioning and management of agricultural cropping systems.
Prerequisite: Senior classification or approval of instructor.

SCSC 444 Forage Ecology and Management
Credits 3. 3 Lecture Hours.
Investigation of multidisciplinary approaches toward the development of integrated forage, livestock, and wildlife production systems that are economically feasible and environmentally sustainable.
Prerequisite: Junior or senior classification or approval of instructor.

SCSC 446 Weed Management and Ecology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Practical information related to weed management and ecology for various vegetative systems to include turf and agronomic crops; calibration of applicators, herbicide labels, mode of action of herbicides, herbicide-resistant weed management.
Prerequisites: BIOL 111, BIOL 101 or BIOL 113, junior or senior classification.

SCSC 453 Essentials for Weed Systematic Identification and Management in Agronomy
Credits 3. 3 Lecture Hours.
Fundamental understanding and hands-on training on the basics of plant weed identification and management; relevant to agronomy, turf, horticulture and rangeland science and vegetation identification and management.
Prerequisite: Junior or senior classification.

SCSC 455 Environmental Soil and Water Science
Credits 3. 3 Lecture Hours.
Discussion of physical, chemical, and biological properties of soil and water and the impact on productivity and sustainability of various ecosystems; application of the knowledge of properties and soil processes to develop and evaluate strategies for protecting and/or improving soil and water quality.
Prerequisite: SCSC 301 or approval of instructor.

SCSC 458 Watershed, Water and Soil Quality Management
Credits 3. 3 Lecture Hours.
Land use impact on surface and ground water chemistry; legislation impacting water quality; surface and groundwater impairment and restoration.
Prerequisite: CHEM 101 or equivalent or approval of instructor; junior or senior classification.

SCSC 481 Senior Seminar
Credits 2. 2 Lecture Hours.
Capstone course bringing together student experiences, exams, and exercises necessary for completing and assessing curriculum program learning outcomes.
Prerequisite: Senior classification.

SCSC 484 Internship
Credits 0 to 4. 0 to 4 Other Hours.
Practical on-the-job experience in the student's area of specialization.
Prerequisites: Junior or senior classification; approval of instructor; 2.0 or better GPR in major and overall.

SCSC 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
For advanced undergraduates to permit field or laboratory investigation or study of subject matter not included in established courses.
Prerequisite: 10 hours of junior and senior agronomy or approval of instructor.

SCSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of agronomy. May be repeated for credit.
Prerequisite: Approval of department head.

SCSC 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in agronomy. May be repeated 2 times for credit. Registration in multiple sections of this course are possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.

SEFB - Special Ed Field Based (SEFB)

SEFB 420 Education and Employment Issues in Secondary Special Education
Credits 3. 2 Lecture Hours. 3 Other Hours.
Field-based course involving psychological, social, physical and cognitive development of secondary-age students; career assessment; programmatic options within educational and employment settings; transition models from school to adult settings.
Prerequisites: Admission to professional phase of program.

SEFB 425 Student Teaching in Special Education
Credits 6. 24 Other Hours.
Observation and participation in an accredited special education classroom; techniques of teaching special education and appropriate instructional strategies for students with exceptionalities. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Admission to professional phase of program and to student teaching.

SEFB 430 Practicum in Applied Behavior Analysis
Credits 3. 9 Other Hours.
University-supervised experience related to specializations in special education and behavior analysis. May be taken 8 times for credit.
Prerequisites: Junior or senior classification; approval of instructor; approval of department head.

SEFB 499
Credits 15. 15 Lecture Hours.
SENG - Safety Engineering (SENG)

SENG 309/NUEN 309 Radiological Safety
Credits 3. 3 Lecture Hours.
Interactions of nuclear radiations with matter and biological systems; theory and practice of radiation dosimetry as applied to radiation protection; design and application of radiation dosimetry systems for personnel monitoring, area radiation monitoring and accident situation; includes external and internal dosimetry as well as long-term risk analysis.
Prerequisite: NUEN 302.
Cross Listing: NUEN 309/SENG 309.

SENG 310 Industrial Hygiene Engineering
Credits 3. 3 Lecture Hours.
Application of scientific and engineering principles in the selection and design of control systems related to chemical, physical and ergonomic exposures in the process and manufacturing industries; relationships of criteria, analysis and specifications for the assessment and control of occupational related illnesses.

SENG 312 System Safety Engineering
Credits 3. 3 Lecture Hours.
Application of system safety analytical techniques to the design process; emphasis on the management of a system safety or product safety program; relationship with other disciplines such as reliability, maintainability, human factors and product liability applications.
Prerequisite: Junior or senior classification.

SENG 422 Fire Protection Engineering - Facilities Design
Credits 3. 3 Lecture Hours.
Design of facilities from a fire protection engineering viewpoint including fire detection and fire control systems; materials, equipment, exposures, occupancies and processes; both public and industrial occupancies studied to determine fire protection design specifications.
Prerequisite: SENG 322 or approval of instructor.

SENG 430/CHEN 430 Risk Analysis in Safety Engineering
Credits 3. 3 Lecture Hours.
Concepts of risk and risk assessment, which uses all available information to provide a foundation for risk-informed and cost-effective engineering practices; examples and exercises are drawn from a variety of engineering areas.
Prerequisite: Junior or senior classification.
Cross Listing: CHEN 430/SENG 430.

SENG 455/CHEN 455 Process Safety Engineering
Credits 3. 3 Lecture Hours.
Applications of engineering principles to process safety and hazards analysis, mitigation, and prevention, with special emphasis on the chemical process industries; includes source modeling for leakage rates, dispersion, analysis, relief valve sizing, fire and explosion damage analysis, hazards identification, risk analysis, accident investigations.
Prerequisite: Senior classification in any engineering major.
Cross Listing: CHEN 455/SENG 455.

SENG 460/CHEN 460 Quantitative Risk Analysis in Safety Engineering
Credits 3. 3 Lecture Hours.
Fundamental concepts, techniques, and applications of risk analysis and risk-informed decision making for engineering students; practical uses of probabilistic methods are demonstrated in exercises and case studies from diverse engineering areas.
Prerequisite: Senior or graduate classification.
Cross Listing: CHEN 460/SENG 460.

SENG 477 Air Pollution Engineering
Credits 3. 3 Lecture Hours.
Design of air pollution abatement equipment and systems to include cyclones, bag filters and scrubbers; air pollution regulations; permitting; dispersion modeling; National Ambient Air Quality Standards.
Prerequisite: Grade of C or better in BAEN 340, CVEN 311/EVEN 311, or MEEN 344.
Cross Listing: BAEN 477 and MEEN 477.

SENG 485 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Permits students to develop special projects in industrial hygiene engineering, safety engineering or fire protection engineering. Project must be approved by department head.

SENG 489 Special Topics in...
Credits 1 to 4. 1 to 4 Other Hours.
Selected topics in industrial hygiene engineering, safety engineering or fire protection engineering of specific student interest. May be repeated for credit.
Prerequisite: Approval of instructor.

SOCI - Sociology (SOCI)

SOCI 203 U.S.-Mexico Border
Credits 3. 3 Lecture Hours.
Understanding of the U.S.-Mexico border from different theoretical perspectives, including structural violence, identity, power and demography.

SOCI 205 Introduction to Sociology
Credits 3. 3 Lecture Hours.
(SOCI 1301) Introduction to Sociology. Sociological perspectives including concepts and methods; social class and social status, the family, minorities, crime, religion, power, urbanization and population; also taught at Galveston campus.

SOCI 206 Global Social Trends
Credits 3. 3 Lecture Hours.
Long-term trends in world societies from ancient times to the present and to the foreseeable future; emphasis on contemporary international issues and problems, techniques of analysis and future projections.

SOCI 207/WGST 207 Introduction to Gender and Society
Credits 3. 3 Lecture Hours.
Similarities and differences between females and males in a number of cultures throughout the world; sociological analysis of gender in relation to social structure.
Cross Listing: WGST 207/SOCI 207.

SOCI 208 Introduction to Aging and Society
Credits 3. 3 Lecture Hours.
Introduction to a multidisciplinary approach to the social study of aging; separating facts from stereotypes about aging, examining basic sociological, psychological, and physiological factors affecting the aging process, and exploring institutions and careers related to aging.
SOCI 210 Sociology of Technology and Science
Credits 3. 3 Lecture Hours.
Examination of technology and science from a variety of theoretical perspectives; process by which engineered products are influenced by social factors as well as how they in turn, impact society; exploration and critique of classic and contemporary theories of technological development.

SOCI 211 Sociology of Deviance
Credits 3. 3 Lecture Hours.
Perspectives on non-normative behavior; theories of deviance.

SOCI 212 Sociology of Popular Culture
Credits 3. 3 Lecture Hours.
Examination of the classic and contemporary social scientific definitions and theories of culture, and popular versus "high" or elite culture(s), various forms and arenas of popular culture, such as television, film, and music, institutions and popular culture, identity (race, class, gender and sexuality) and popular culture.

SOCI 213/WGST 213 Gender and Health
Credits 3. 3 Lecture Hours.
An examination of social and historical context of health in the U.S., including inequities in health by gender, race, class and gendered issues in health professions.
Cross Listing: WGST 213/SOCI 213.

SOCI 217 Introduction to Race and Ethnicity
Credits 3. 3 Lecture Hours.
Introduction to the sociological examination of race and ethnicity in U.S. society; overview of theories and methods in the study of race and ethnicity; an understanding of how they function as individual and group-level identities, and organizing principles in social institutions.

SOCI 220 Methods of Social Research
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Relationships between sociological theory, research, qualitative evaluation of data; construction and use of analytical procedures and research techniques, and participant observation.

SOCI 229 Qualitative Methods
Credits 3. 3 Lecture Hours.
Methodologies in social research with emphasis on qualitative dimensions of inquiry; topics include in-depth interviewing, observation, unobtrusive measures, analysis of documents, fieldwork issues, ethics, note-taking, preliminary data analysis, and an overview of writing research reports based on qualitative research.

SOCI 230 Classical Sociological Theory
Credits 3. 3 Lecture Hours.
Role of theory in sociological study; the development of classical theoretical perspectives providing the foundation for contemporary theory.

SOCI 240 Tourism, Culture and Place
Credits 3. 3 Lecture Hours.
Analysis of tourist encounters; marketing and displaying culture to tourists; implications of tourism for urban economies and landscapes; interactions between tourists and locals; Galveston campus.

SOCI 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Special problems not covered by other courses. Course depends upon needs and interest of the student and upon the number of credit hours.
Prerequisite: Sophomore classification in sociology.

SOCI 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of sociology. May be repeated for credit.
Prerequisite: Approval of instructor; also taught at Galveston campus.

SOCI 291 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a chosen faculty member in sociology. May be taken for a maximum of three hours total credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

SOCI 304 Criminology
Credits 3. 3 Lecture Hours.
Criminal law and crime rates; explanations of criminal behavior; criminal careers, police, adult courts and prisons.
Prerequisite: Junior or senior classification.

SOCI 308 Community Issues in Aging
Credits 3. 3 Lecture Hours.
Detailed exploration of social forces impacting the elderly and their families at the community level; the impact of demographic, cultural, organizational and social factors on a community's response to an increasingly aging population; and the application of this knowledge through volunteer collaboration with a community nonprofit organization serving the elderly.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 310/WGST 310 Motherhood in Society
Credits 3. 3 Lecture Hours.
Examines expectations and/or practices relating to motherhood, with consideration of their cultural impact; taught from a social science perspective.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: WGST 310/SOCI 310.

SOCI 311 Social Change
Credits 3. 3 Lecture Hours.
Survey of major changes in American and Western society, the forces underlying change and tensions caused by social change.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 312 Population and Society
Credits 3. 3 Lecture Hours.
The causes and implications of major population trends; also taught at Galveston campus.

SOCI 313 Military, War and Society
Credits 3. 3 Lecture Hours.
Major trends and current topics in military organization; the experience and conduct of war; civil-military relations.

SOCI 314 Social Problems
Credits 3. 3 Lecture Hours.
Survey and exploration of causes and consequences of major social problems in American society such as poverty, unemployment, energy, alcohol, other drugs and sexual abuse.

SOCI 315/WGST 315 The Marriage Institution
Credits 3. 3 Lecture Hours.
Courtship, engagement, marriage, family formation, personal adjustment, conflict, financing and child rearing.
Cross Listing: WGST 315/SOCI 315.
SO CI 316/ WGST 316 Sociology of Gender
Credits 3. 3 Lecture Hours.
Sociological explanations of status differences between men and women; cross-cultural comparisons; gender role socialization, cultural stereotypes, discrimination; gender roles and status in the family, economy, religion, science, other social institutions; deviance, victimization and gender; recent social changes.
Cross Listing: WGST 316/ SOCI 316.

SO CI 317/ AFST 317 Racial and Ethnic Relations
Credits 3. 3 Lecture Hours.
Status of racial and ethnic groups such as Native Americans, African Americans, Latino Americans, Asian Americans, European Americans, and other groups in the political, economic, legal and social systems of the United States.
Cross Listing: AFST 317/ SOCI 317.

SO CI 319/ SPMT 319 Sociology of Sport
Credits 3. 3 Lecture Hours.
Social institution of sport and its consequences for American society; social organization from play to professional sport; violence, discrimination, women in sport; socialization implications from participation in sports.
Prerequisite: Junior or senior classification.
Cross Listing: SPMT 319/ SOCI 319.

SO CI 320 Demographic Methods
Credits 3. 3 Lecture Hours.
Procedures and techniques of demographic analysis; examination of demographic data; calculation of rates; construction of life tables; population estimates and projections.
Prerequisite: Junior or senior classification or approval of instructor; also taught at Galveston campus.

SO CI 322 Industrial Sociology
Credits 3. 3 Lecture Hours.
Work relations in jobs; social relations of groups and occupations and the social organization of small work groups, bureaucracies and modern large corporations.

SO CI 323/ AFST 323 Sociology of African Americans
Credits 3. 3 Lecture Hours.
Major elements of the Afro-American subculture in relation to white American society and its major social institutions.
Prerequisite: SOCI 205.
Cross Listing: AFST 323/ SOCI 323.

SO CI 326/ RELS 326 Sociology of Religion
Credits 3. 3 Lecture Hours.
Institution of religion and religious-related behavior; relationship between dynamic and structural religion and contemporary society.
Prerequisite: SOCI 205.
Cross Listing: RELS 326/ SOCI 326.

SO CI 328 Environmental Sociology
Credits 3. 3 Lecture Hours.
A comprehensive overview of environmental sociology, including major sociological theories, concepts and policy issues affecting our understanding of environmental changes; emphasizes social factors that impact environmental quality.
Prerequisite: SOCI 205 or approval of instructor; also taught at Galveston campus.

SO CI 329 Pacific Rim Business Behavior
Credits 3. 3 Lecture Hours.
Theoretical models of Asian cultures and practical protocol/etiquette related to business and work in China, Thailand, South Korea, Japan, Australia, and other Pacific Rim nations; discussions of national character, managerial behavior and values.

SO CI 330 Sociology of Nutrition
Credits 3. 3 Lecture Hours.
Social factors affecting the kind and amount of food consumed around the world; social consequences of nutritional status for family functioning and for international development.

SO CI 332/ WGST 332 Alternative Genders
Credits 3. 3 Lecture Hours.
Examination of theories and case studies involving alternative genders and sexualities, studies in their cultural contexts and including the role of factors such as race, class, ethnicity, age, and physical characteristics.
Prerequisites: 3 credits in SOCI or WGST; junior or senior classification.
Cross Listing: WGST 332/ SOCI 332.

SO CI 335 Sociology of Organizations
Credits 3. 3 Lecture Hours.
How people act in organizations; structures in organizations; the relationship between organizations and their environments.

SO CI 337 International Migration
Credits 3. 3 Lecture Hours.
Survey of theories and trends in international migration.
Prerequisite: Junior or senior classification, or approval of instructor.

SO CI 338 Latino Immigration
Credits 3. 3 Lecture Hours.
Theoretical and empirical examinations of the causes, processes, and impacts of Latin American immigration to the U.S.; Latino/a immigrant experience in the U.S.; effects of immigration on sending and receiving communities.
Prerequisite: Junior or senior classification or approval of the instructor.

SO CI 376/ MGMT 376 Entrepreneurial Perspectives
Credits 3. 3 Lecture Hours.
Enterprise as a career choice and its impact on society and economy; definitions of entrepreneurship; discovery of entrepreneurial opportunities and start-up funding; innovation and entrepreneurship theories for analyzing and predicting success of start-up and established entrepreneurial organizations.
Prerequisite: Admission to upper division in Mays Business School.
Cross Listing: MGMT 376/ SOCI 376.

SO CI 377 Entrepreneurial Thought Leaders Seminar
Credits 3. 3 Lecture Hours.
Origins of entrepreneurial cognition and motivation; entrepreneurial thought leaders share lessons from real world experiences in nonprofit, profit-making enterprise, government, public policy, and social mission domains; reflection on thought leaders experience in innovation and entrepreneurship; build exposure to entrepreneurial thinking, role modeling, mentoring, social capital.

SO CI 402 Sociology of Latin America
Credits 3. 3 Lecture Hours.
Latin American society; integration of viewpoints from the humanities, arts and social sciences.
Prerequisite: Junior or senior classification or approval of instructor.
SOCI 403 Sociology of Latinos
Credits 3. 3 Lecture Hours.
Exploration of social characteristics and acculturation problems of Mexican Americans in the United States; styles of life and cultural variability, social mobility, the struggle for advancement and identity through social movements.

SOCI 404/RPTS 404 Sociology of the Community
Credits 3. 3 Lecture Hours.
Organization of American communities examining the bases of community, types of communities and the changes faced by communities.
Prerequisite: SOCI 205; SOCI 404 also taught at Galveston campus.
Cross Listing: RPTS 404/SOCI 404.

SOCI 408 Death and Dying
Credits 3. 3 Lecture Hours.
Exploration of interdisciplinary social issues surrounding death and dying: the interactions among professionals, families, and dying individuals; the development and functioning of death norms and institutions (e.g., hospitals, funeral homes, hospice, capital punishment); the critical analysis of social/cultural inequalities affecting when and how we die.
Prerequisite: Junior of senior classification or approval of instructor.

SOCI 410/WGST 410 Reproduction, Birth and Power
Credits 3. 3 Lecture Hours.
Examination of topics related to reproductive practices, experiences and ideologies and of the constructed and contested meanings surrounding womanhood, motherhood, sexuality, reproductive freedom and eugenics.
Prerequisites: SOCI 205; junior or senior classification.
Cross Listing: WGST 410/SOCI 410.

SOCI 411 Social Psychology
Credits 3. 3 Lecture Hours.
Effects of social experience and groups on the development of personality, attitudes, values and behavior.
Prerequisite: 3 hours of sociology or psychology.

SOCI 412 Political Sociology
Credits 3. 3 Lecture Hours.
Survey of social bases of power; state formation in advanced industrial societies; origins of welfare state; interrelation of nationalism; culture and class formation.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 413 Social Movements
Credits 3. 3 Lecture Hours.
Survey of social movements; emphasis on social movement participation, emergence and outcomes; analysis of revolutions and movements in the developing world; theory and methods of social movement research.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 415 Sociology of Education
Credits 3. 3 Lecture Hours.
Relationship of social structure and change to education; social background and student performance; teachers and their careers; bureaucracy and change in education.
Prerequisite: SOCI 205.

SOCI 419 Social Class in Contemporary Society
Credits 3. 3 Lecture Hours.
Composition and consequences of social class structure; social class explanations for lifestyle patterns, educational and occupational achievements.
Prerequisite: SOCI 205.

SOCI 420 Advanced Methods of Social Research
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Philosophy and methods of social research, including research design; methods of observation; questionnaires, interviews and other sources of social data; qualitative and quantitative techniques of inference, analysis and research report writing.
Prerequisite: SOCI 220.

SOCI 421/WGST 421 Gender & Crime
Credits 3. 3 Lecture Hours.
Gender & Crime. Gender disparities in contemporary patterns of crime, victimization and incarceration; key concepts, major theories and empirical research studies around gender and crime.
Prerequisite: Grade of C or better in SOCI 207/WGST 207, SOCI 211, SOCI 304, SOCI 316/WGST 316, WGST 200, WGST 207/SOCI 207, or WGST 316/SOCI 316.
Cross Listing: WGST 421/SOCI 421.

SOCI 422 Race, Ethnicity, Crime and Justice
Credits 3. 3 Lecture Hours.
Racial/ethnic disparities in criminal offending and victimization, as well as different experiences with law enforcement, judicial, and correctional agencies.
Prerequisites: SOCI 220 or equivalent.
Cross Listing: AFST 422 and LMAS 422.

SOCI 423 Globalization and Social Change
Credits 3. 3 Lecture Hours.
Examines the effects of globalization on social structure including politics, governments, corporations, work and inequality.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 424/WGST 424 Women and Work in Society
Credits 3. 3 Lecture Hours.
Social context of women's work; work patterns, labor force participation, occupational destinations and occupational mobility; alternatives to the conventional division of labor by sex in society.
Cross Listing: WGST 424/SOCI 424.

SOCI 425 Medical Sociology
Credits 3. 3 Lecture Hours.
Organization, value systems and practice of medicine and the provision of health care in the U.S.; role of physicians, health occupations and patients; marginal and folk medicine.
Prerequisite: SOCI 205.

SOCI 426 Sociology of Work
Credits 3. 3 Lecture Hours.
Overview of classical and contemporary theories of work, changes in labor market structure; contemporary work place organization; occupational stratification by race, class, and gender.
Prerequisite: Junior or senior classification or approval of instructor.

SOCI 430 Contemporary Sociological Theory
Credits 3. 3 Lecture Hours.
Basic ideas of contemporary sociological theory: structuralism, functionalism, conflict, symbolic interaction, exchange and their application to current research.
Prerequisite: SOCI 230.

SOCI 445 Sociology of Law
Credits 3. 3 Lecture Hours.
Introduction to the sociology of law; the relation of law to general social control and to organizational dynamics.
SOCI 450/MGMT 478 Social Entrepreneurship
Credits 3. 3 Lecture Hours.
Applying business principles and practices to solve social, economic and environmental problems; social entrepreneurship concepts and issues in scaling social enterprise ventures including management tools, organization structures, funding sources, impact measurement; experience in opportunity recognition, designing, planning, pitching social mission ventures; build social capital with social enterprise founders.
Cross Listing: MGMT 478.

SOCI 463 Gender in Asia
Credits 3. 3 Lecture Hours.
Gender dynamics in Asia; changes in gender roles; women's movements; women and the economy; women and politics; men's and women's private lives.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: ASIA 463 and WGST 463.

SOCI 476/MGMT 476 Entrepreneurship Practice
Credits 3. 3 Lecture Hours.
Practical skills for creating new businesses; evaluating, planning and operational strategy, including assessing the technology; product and service markets, value creation model; financing strategies; legal, regulatory, socio-economic drivers, risks; leadership to develop management team, advisory board; go-to-market strategy; develop own entrepreneurial opportunities or those of faculty and entrepreneurs.
Cross Listing: MGMT 476/SOCI 476.

SOCI 478 Professional Development in Sociology I
Credit 1. 1 Lecture Hour.
Career fields available to sociology majors, including the nature of the work, professional expectations, and the credentials for entry in the fields.
Prerequisite: Sociology major; junior or senior classification.

SOCI 479 Professional Development in Sociology II
Credits 2. 2 Lecture Hours.
Preparation for careers in sociology-related professionals by in-depth research of prospective career fields, development of oral, written, and media skills, formation of professional networks, and training in professional ethics, cultural diversity, and leadership.
Prerequisite: Sociology major; junior or senior classification.

SOCI 484 Field Practicum
Credits 0 to 4. 0 to 4 Other Hours.
Field Experiences. Participation in an approved agency. Field experience will be supervised by selected agency personnel and appropriate faculty. Experiences and requirements will vary slightly according to placement and student interests.
Prerequisites: Major in sociology; 12 hours of sociology; approval of undergraduate advisor; also taught at Galveston campus.

SOCI 485 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Special problems not covered by other courses. Course depends upon needs and interest of the student and upon the number of credit hours.
Prerequisite: Senior classification in sociology.

SOCI 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of sociology. May be repeated for credit.
Prerequisite: Approval of instructor.

SOCI 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of a chosen faculty member in sociology. May be taken four times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

SOMS-Schl of Military Sciences (SOMS)

SOMS 111 Principles of Academic and Personal Development
Credits 0-1. 0-1 Lecture Hours.
Identification of personal goals and learning skills promoting academic and career success; development of personal leadership strengths; styles, motivation and values; personal development planning for self-improvement.
Prerequisite: Freshman classification or approval of instructor.

SOMS 180 Survey of Performance Based Training Methods
Credit 1. 1 Lecture Hour.
Introduction to performance oriented training methods and techniques; key concepts and generalizations of training and identification of training needs; study of representative theories of workplace training, performance evaluation, and experiential training techniques.
Prerequisite: Freshman classification or approval of instructor.

SOMS 181 Developing and Instructing Others
Credits 0. 0 Lecture Hours.
Introduction to leadership, mentoring and instructing others in the specific context of military-style training; survey of basic military performance counseling skills; introduction to subordinate instruction and evaluation techniques.
Prerequisites: Freshman classification or approval of instructor.

SOMS 280 Fundamentals of Peer Leadership
Credit 1. 1 Lecture Hour.
Introduction to theories of peer leadership when applied to a specific context; fundamentals and techniques of small group communication; performance evaluation; survey of basic supervisory skills.
Prerequisite: Sophomore classification or approval of instructor.

SOMS 281 Fundamentals of Intentional Leadership
Credits 0-1. 0-1 Lecture Hours.
Exposure to the fundamentals of intentional leadership, deliberate practice, planning and leadership assessment; development of initial personal leadership development plans; alignment of personal and organizational values, vision, mission, purpose and goals toward desired outcomes.
Prerequisites: Grade of C or better in SOMS 280 or approval of department head or director.

SOMS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of leadership theory and practice. May be repeated for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor.

SOMS 380 Workshop in Leadership Education
Credits 0-1. 0-1 Lecture Hours.
The study of leadership theory, intra group relationships, assessment tools for skills development, and techniques for achieving group goals.
Prerequisite: Junior classification or approval of instructor.
Texas A&M University

SOMS 381 Workshop in Leadership Education II
Credits 0-1. 0-1 Lecture Hours.
Continuation of SOMS 380. Fundamentals of small group dynamics; interpersonal communication; application of selected leadership theories; interpretation of individual assessments to include personality traits, values, and signature strengths.
Prerequisites: SOMS 380; junior or senior classification.

SOMS 481 Seminar in Executive Leadership
Credits 0-1. 0-1 Other Hours.
The study of contemporary leadership issues, organizational effectiveness, problem solving, and decision making.
Prerequisite: Senior classification or approval of instructor.

SOMS 482 Seminar in Executive Leadership II
Credits 0-1. 0-1 Other Hours.
Continuation of SOMS 481. Discussion of ethical dilemmas in leadership roles; ethical decision-making; personal accountability in organizational settings.
Prerequisite: SOMS 481 or approval of instructor.

SOMS 485 Directed Studies
Credits 1 to 4. 1 to 4 Lecture Hours.
Individual supervision of special readings or assigned projects to promote independent study; program enrichment for capable students; written and oral reports required.
Prerequisite: Approval of instructor.

SOMS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of leadership theory and practice. May be repeated for credit.
Prerequisites: Junior or senior classification; approval of instructor.

SPAN - Spanish (SPAN)

SPAN 101 Beginning Spanish I
Credits 4. 4 Lecture Hours.
(SSPAN 1411) Beginning Spanish I. Elementary language study with oral, written and reading practice; active use of the language in conversation and culture-based projects at the novice high level as defined by the American Council on the Teaching of Foreign Languages; intended for those with no prior knowledge of Spanish.
Prerequisite: Prior knowledge of Spanish requires the Spanish Placement Test before enrolling for the first time in a college Spanish course; also taught at Galveston campus.

SPAN 102 Beginning Spanish II
Credits 4. 4 Lecture Hours.
(SSPAN 1412) Beginning Spanish II. Continuation of SPAN 101. Active use of the language in conversation, writing, reading, and culture-based projects at the intermediate low level as defined by the American Council on the Teaching of Foreign Languages.
Prerequisite: SPAN 101 with a grade of C or better or placement by exam; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course; also taught at Galveston campus.

SPAN 112 Intensive Beginning Spanish
Credits 8. 8 Lecture Hours.
Accelerated study of Spanish with oral, written and reading practice; active use of the language in conversation and culture-based projects at the novice high level as defined by American Council on the Teaching of Foreign Languages; intended for those with no prior knowledge of Spanish; equivalent to SPAN 101 and SPAN 102.
Prerequisite: Prior knowledge of Spanish requires the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 201 Intermediate Spanish I
Credits 3. 3 Lecture Hours.
(SSPAN 2311) Intermediate Spanish I. Active use of the language in conversation, writing, reading and projects at the mid intermediate level as defined by the American Council on the Teaching of Foreign Languages. Only one of the following will satisfy the requirements for a degree: SPAN 201, SPAN 208, SPAN 221.
Prerequisite: SPAN 102 with a grade of C or better or placement by exam; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 202 Intermediate Spanish II
Credits 3. 3 Lecture Hours.
(SSPAN 2312) Intermediate Spanish II. Continuation of SPAN 201. Active use of the language in conversation, writing, reading and projects at the high intermediate level as defined by the American Council on the Teaching of Foreign Languages. Only one of the following will satisfy the requirements for a degree: SPAN 202, SPAN 218, SPAN 222.
Prerequisite: SPAN 201 with a grade of C or better or placement by exam; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 203 Intermediate Spanish for Heritage Speakers
Credits 3. 3 Lecture Hours.
Focus on developing speaking, reading and writing abilities in a cultural context centered on Spanish-speaking communities in the U.S.; intended for those who understand casual spoken Spanish and have some functional communication abilities in the language because of family background or sociocultural experience.
Prerequisites: SPAN 201 with a grade of C or better or placement by exam; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 208 Spanish for Health Professionals I
Credits 3. 3 Lecture Hours.
First half of a two-semester sequence in Spanish, at the mid intermediate level as defined by the American Council on the Teaching of Foreign Language; for those interested in careers in the health professions; presentation and practice of the most important basic communication functions in patient-provider interaction. Only one of the following will satisfy the requirements for a degree: SPAN 201, SPAN 208, SPAN 221.
Prerequisites: SPAN 102 with a grade of C or better or placement by exam; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.
SPAN 218 Spanish for Health Professionals II
Credits 3. 3 Lecture Hours.
Second half of a two-semester course sequence in Spanish at the high intermediate as defined by the American Council on the Teaching of Foreign Languages; for those interested in careers in the health professions; presentation and practice of the most important basic communication functions in patient-provider interaction. Only one of the following will satisfy the requirements for a degree: SPAN 202, SPAN 218, SPAN 222.
Prerequisite: SPAN 201, SPAN 208, placement by exam, or approval of instructor; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 221 Field Studies Abroad I
Credits 1 to 6. 1 to 6 Lecture Hours.
Active use of the language in conversation, writing, reading and projects at the mid intermediate level, as defined by American Council on the Teaching of Foreign Languages, in a Spanish-speaking country; participation in academic and cultural activities of a host university or study abroad institute/center. Only one of the following will satisfy the requirements for a degree: SPAN 201, SPAN 208, SPAN 221.
Prerequisite: SPAN 102 with a grade of B or better, placement by exam, or approval of instructor; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 222 Field Studies Abroad II
Credits 1 to 6. 1 to 6 Lecture Hours.
Active use of the language in conversation, writing, reading and projects at the high intermediate level, as defined by American Council on the Teaching of Foreign Languages, in a Spanish-speaking country; participation in academic and cultural activities of a host university or study abroad institute/center. Only one of the following will satisfy the requirements for a degree: SPAN 202, SPAN 218, SPAN 222.
Prerequisite: SPAN 102 with a grade of B or better, placement by exam, or approval of instructor; students with prior knowledge of Spanish are required to take the Spanish Placement Test before enrolling for the first time in a college Spanish course.

SPAN 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Individual supervision of readings or assigned projects in Spanish, selected for each student individually.
Prerequisite: Approval of instructor and department head.

SPAN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of Spanish. May be repeated for credit.
Prerequisite: Approval of instructor.

SPAN 301 Oral Expression
Credits 3. 3 Lecture Hours.
Development of oral skills in Spanish through pronunciation practice, discussion of current events, skits, interviews, conversations, role play, impromptu debates, rhetoric, public speaking and formal presentations.
Prerequisites: SPAN 202, SPAN 203, SPAN 218, SPAN 222, placement by exam, or approval of instructor; junior or senior classification or approval of instructor.

SPAN 302 Advanced Grammar
Credits 3. 3 Lecture Hours.
Study and practice of Spanish language structures; development of metalinguistic awareness and appropriate usage in socio-pragmatic context. Only one of the following will satisfy the requirements for a degree: SPAN 302 or SPAN 304.
Prerequisites: SPAN 202, SPAN 203, SPAN 218, or SPAN 222; or placement by exam; junior or senior classification or approval of instructor.

SPAN 303 Spanish Composition
Credits 3. 3 Lecture Hours.
Development of writing skills in Spanish; structural analysis of representative texts; drafting, revision and rewriting of short compositions and term papers.
Prerequisites: SPAN 202, SPAN 203, SPAN 218, or SPAN 222; or placement by exam; junior or senior classification or approval of instructor.

SPAN 304 Advanced Grammar for Heritage Speakers
Credits 3. 3 Lecture Hours.
Continuation of SPAN 203; study and practice of Spanish centered on grammatical features of particular concern to heritage speakers in a cultural context focused on Hispanics in the U.S. Only one of the following will satisfy the requirements for a degree: SPAN 302 or SPAN 304.
Prerequisites: SPAN 202, SPAN 203, SPAN 218 or SPAN 222; or placement by exam; junior or senior classification or approval of instructor.

SPAN 306 Business Spanish
Credits 3. 3 Lecture Hours.
Prerequisite: 3 credits of 300-level Spanish courses or approval of instructor.

SPAN 307 Spanish for the Sciences
Credits 3. 3 Lecture Hours.
Development of written and oral scientific communication in Spanish, including listening, speaking, reading and writing, with a focus on general and specialized scientific discourse; field-specific vocabulary and review of structures necessary for academic registers.
Prerequisites: 3 credits of 300-level Spanish courses or approval of instructor.

SPAN 311 Hispanic Culture and Civilization to the 18th Century
Credits 3. 3 Lecture Hours.
Survey of the Hispanic world with emphasis on its history and cultural patterns from pre-Roman times to the 18th century; description and analysis of artistic, historical, literary, political topics. Taught in Spanish.
Prerequisite: SPAN 202, 203, 222 or approval of instructor.

SPAN 312 Hispanic Culture and Civilization: 18th Century to Present
Credits 3. 3 Lecture Hours.
Overview of the Hispanic world, including the United States, from independence in the Americas to present; description and analysis of artistic, historical, literary, political, sociolinguistic topics. Taught in Spanish.
Prerequisite: SPAN 202, SPAN 203, SPAN 222 or approval of instructor.
SPAN 318 Oral Communication for Health Professionals
Credits 3. 3 Lecture Hours.
Development of advanced fluency in oral communication skills in Spanish within the context of the medical professions through discussion of health issues pertaining to the Latino/Hispanic community; field trips, service learning, volunteering, interviews, impromptu speaking and formal presentations.
Prerequisite: SPAN 218, 3 credits of 300-level Spanish, or approval of instructor.

SPAN 320 Introduction to Hispanic Literature
Credits 3. 3 Lecture Hours.
Survey of literature from the Spanish-speaking world; emphasis on the language and techniques of literary analysis as applied to examples of poetry, narrative fiction, theater and essay.
Prerequisite: 3 credits of 300-level Spanish courses or approval of instructor.

SPAN 331 Spanish Literature to 1700
Credits 3. 3 Lecture Hours.
Origins and evolution of Spanish literature from the Medieval to the Golden Age traditions; epic, drama, novel, picaresque and satire as reflected in works by Berceo, Cervantes, Garcilaso de la Vega, Lope de Vega, Calderón de la Barca and others; conducted in Spanish.
Prerequisites: SPAN 202, SPAN 203, SPAN 222 or approval of instructor.

SPAN 332 Spanish Literature from 1700 to 1936
Credits 3. 3 Lecture Hours.
Representative works of Spanish Neoclassicism, Romanticism, realism, naturalism, modernism, and Avant-Garde movements; overview of historical background, cultural and philosophical tendencies; socio-political movements in modern Spain until the Civil War; conducted in Spanish.
Prerequisites: SPAN 202, SPAN 203, SPAN 222 or approval of instructor.

SPAN 341 Spanish-American Literature from 1492 to 1821
Credits 3. 3 Lecture Hours.
Themes, styles and authors from the meeting of Old and New Worlds through the final days of the Colony; overview of cultural and historical background; conducted in Spanish.
Prerequisites: SPAN 202, SPAN 203, SPAN 222 or approval of instructor.

SPAN 342 Spanish-American Literature from 1821 to 1935
Credits 3. 3 Lecture Hours.
Themes, styles and authors from Independence to Modernity; overview of cultural and historical background; conducted in Spanish.
Prerequisites: SPAN 202, SPAN 203, SPAN 222 or approval of instructor.

SPAN 350 Spanish Phonetics and Phonology
Credits 3. 3 Lecture Hours.
Sound system of Spanish with special reference to pronunciation and contrast with sounds of American English; phonological inventory and phonetic variation in Latin American and Peninsular varieties.
Prerequisite: 3 credits of 300-level Spanish courses or approval of instructor.

SPAN 352 Hispanic Linguistics
Credits 3. 3 Lecture Hours.
Study of Hispanic linguistics, including phonetics and phonology, morphology, syntax, change and variation.
Prerequisite: 3 credits of 300-level Spanish courses or approval of instructor.

SPAN 353 Spanish Literature to 1936
Credits 3. 3 Lecture Hours.
Representation of major works and directors of contemporary Hispanic film; interpretation of culture through film; relationship of literature and film; introduction to vocabulary of film criticism in Spanish.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 354 Hispanic-American Literature from 1945 to 1990
Credits 3. 3 Lecture Hours.
Analysis of contemporary literature by U.S. Latino/a authors; discussion of prevalent themes including immigration, language, race, gender, identity.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 355 Latin American and Peninsular Literature
Credits 3. 3 Lecture Hours.
Survey of literature from the Spanish-speaking world from the origins of photography in the mid-19th century to the present; theoretical, historical and critical readings; analysis of various genres, modes, and formats.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 356 Spanish-American Literature from 1945 to 1970
Credits 3. 3 Lecture Hours.
Examination of major works and directors of contemporary Hispanic film; interpretation of culture through film; relationship of literature and film; introduction to vocabulary of film criticism in Spanish.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 403 Advanced Writing in Spanish
Credits 3. 3 Lecture Hours.
Building on established skills, practice in and reflection on writing in professional, public, academic, and literary genres; evaluation of a variety of models and development of abilities in audience analysis, critical research, review and revision.
Prerequisites: SPAN 303 and 3 additional SPAN credits at the 400-level, or approval of instructor.

SPAN 407 Spanish-English Translation
Credits 3. 3 Lecture Hours.
Foundations of translation methodology, strategies and practice; rendering of literary and non-literary texts; ethics of translation; emphasis on translation into the first language.
Prerequisite: 6 credits of upper division SPAN with a grade of B or better or approval of instructor.

SPAN 409 Photography in the Hispanic World
Credits 3. 3 Lecture Hours.
Study of works produced by major photographers across the Hispanic world, from the origins of photography in the mid-19th century to the present; theoretical, historical and critical readings; analysis of various genres, modes, and formats.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 410 Hispanic Film
Credits 3. 3 Lecture Hours.
Examination of major works and directors of contemporary Hispanic film; interpretation of culture through film; relationship of literature and film; introduction to vocabulary of film criticism in Spanish.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 411 Contemporary Hispanic Society and Culture
Credits 3. 3 Lecture Hours.
Examination of cultural, economic, and political aspects central to 20th and 21st century Hispanic societies.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 412 U.S. Hispanic Writers
Credits 3. 3 Lecture Hours.
Analysis of contemporary literature by U.S. Latino/a authors; discussion of prevalent themes including immigration, language, race, gender, identity.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 413 Hispanic Culture through Art
Credits 3. 3 Lecture Hours.
Examination of the works of a major artist and/or artistic movement as a vehicle for intensive analysis of elements of Hispanic culture.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 414 Mexican Cinema and Culture
Credits 3. 3 Lecture Hours.
Analysis of Mexican films from acclaimed actors, directors and time periods in order to understand the historical, social and political conditions; aesthetic, social, cultural and political analysis surrounding the production of representative films; taught in Spanish.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification, or approval of instructor.
SPAN 417 Advanced Spanish-English Translation
Credits 3. 3 Lecture Hours.
Expansion of translation practice and development of lexical and stylistic competence in specialized fields, including commercial, legal, medical, technical and scientific; mandatory service learning component included.
Prerequisite: SPAN 407 with a grade of B or better or approval of instructor.

SPAN 421 Spanish Language Poetry
Credits 3. 3 Lecture Hours.
Study of lyric poetry in Spanish; analysis of metrics, imagery, language and style across different periods.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 423 Soccer in the Hispanic World
Credits 3. 3 Lecture Hours.
Overall perspective on the sport; analysis of the interaction of soccer, arts and society; comprehensive sociological and aesthetic view of the game in the Spanish-speaking world; soccer as a metaphor for contemporary world; taught in Spanish.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 445 Cervantes
Credits 3. 3 Lecture Hours.
Analysis of Cervantes' life, cultural milieu and works; emphasis on Don Quixote, its significance in Spanish literature and in the development of the modern novel; conducted in Spanish.
Prerequisites: At least 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 450 Contemporary Spanish and Spanish-American Literature
Credits 3. 3 Lecture Hours.
Representative works of authors from both sides of the Atlantic; study of similarities and differences in themes, movements, social and aesthetic concerns among Spanish and Spanish American writers.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 452 Hispanic Sociolinguistics
Credits 3. 3 Lecture Hours.
Regional and social varieties of Spanish; variation in situational contexts (register, style, and modality); theoretical foundations of sociolinguistic variation.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 460 Topics in Hispanic Literature
Credits 3. 3 Lecture Hours.
Exploration of a significant topic, author, movement, genre or period in Hispanic literature. May be taken three times for credit when topics vary.
Prerequisite: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 461 Topics in Hispanic Culture
Credits 3. 3 Lecture Hours.
Exploration of significant socio-cultural issues in Hispanic society and their influence on cultural and artistic production. May be taken three times for credit when topics vary.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 462 Topics in Hispanic Linguistics
Credits 3. 3 Lecture Hours.
Exploration of significant topics in Hispanic linguistics from different theoretical and applied perspectives. May be taken three times when topics vary.
Prerequisites: 6 credits of 300-level Spanish courses; junior or senior classification or approval of instructor.

SPAN 483 Community Impact through Service Learning in Spanish
Credits 0 to 4. 0 to 4 Other Hours.
Directed service-learning experience in a context where Spanish is necessary to deliver services to underserved populations in the U.S. or abroad. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Majors and Hispanic Studies for Community Engagement minors only; approval of undergraduate studies director; junior or senior classification.

SPAN 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in a Spanish-speaking professional environment to provide students with training or applied research experience appropriate to career objectives. Must be taken on a satisfactory/unsatisfactory basis. May be taken three times for credit.
Prerequisites: SPAN majors; junior or senior classification and approval of instructor.

SPAN 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Individual supervision of readings or assigned projects selected for each student individually; written and oral reports.
Prerequisite: Approval of instructor and department head.

SPAN 489 Special Topics in...
Credits 3. 3 Lecture Hours.
Selected topics in an identified area of Spanish. May be repeated for credit.
Prerequisite: 6 credits of 300-level Spanish; junior or senior classification.

SPAN 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Hispanic Studies. May be repeated three times for credit.
Prerequisites: SPAN majors; junior or senior classification and approval of instructor.

SPAN 493 Directed Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in Hispanic Studies. May be repeated three times for credit.
Prerequisites: SPAN majors; junior or senior classification and approval of instructor.
SPED 310 Instructional Strategies for Students with Disabilities
Credits 3. 3 Lecture Hours.
Research-based strategies and techniques in teaching students who are at-risk academically or students with disabilities in a variety of general and special education settings; addresses teaching of academics, teacher strategies for engagement and incorporating the use of technology.
Prerequisite: Admission to professional phase of program.

SPED 311 Assessment of Students with Disabilities
Credits 3. 3 Lecture Hours.
Instruction in formal and informal assessment techniques used with students with disabilities, including progress monitoring; development of Individualized Educational Program plans and the IEP process.
Prerequisite: Admission to professional phase of program.

SPED 312 Effective Reading Instruction for Students with Diverse Abilities
Credits 3. 3 Lecture Hours.
Information and competencies in research-based reading instruction for students who have disabilities, are struggling readers, and are bilingual/multilingual; includes reading assessment, dyslexia and effective instruction in phonemic awareness, phonics, reading fluency, vocabulary and comprehension, Response to Intervention (RTI) strategies, and data driven decision-making.
Prerequisite: Admission to professional phase of program.

SPED 314 Effective Mathematics Strategies for Students with Disabilities
Credits 4. 4 Lecture Hours.
Information and competencies through instruction in effective mathematics instruction for students P-12 with academic learning problems and/or disabilities; effective instruction design and teaching techniques, implementation of research-based methods relevant for active authentic learning; considers state and national standards related to teaching and learning mathematics.
Prerequisites: Admission to professional phase of program.

SPED 414 Methods and Issues in Low-Incidence Disabilities
Credits 3. 3 Lecture Hours.
Overview of learning and behavioral characteristics of individuals with low-incidence disabilities such as intellectual disability, autism, physical disabilities, traumatic brain injury, sensory impairments, and multiple disabilities; research-based practices in assessment and education and designing educational environments that facilitate active participation, self-advocacy and independence.
Prerequisites: Admission to professional phase of program.

SPED 442 Teaching Students with Emotional Disturbances and Behavior Disorders
Credits 3. 3 Lecture Hours.
Research-based techniques and materials used in the instruction of students who have emotional and behavioral disorders across a variety of classroom and other educational environments; includes identification and assessment issues, placements, family involvement, and historical and legal issues.
Prerequisites: Admission to professional phase of program.

SPED 471 Classroom Management and Behavioral Interventions
Credits 3. 3 Lecture Hours.
Effective management of classrooms; includes research-based models of classroom discipline, proactive strategies that prevent misbehavior, interventions that decrease problem behaviors, and management systems appropriate for students with disabilities.
Prerequisites: Admission to professional phase of program.

SPED 491 Research
Credits 0 to 4. 0 to 4 Lecture Hours.
Research conducted under the direction of faculty member in special education. May be repeated 2 times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

SPMT - Sport Management (SPMT)

SPMT 217 Foundations of Sport Management
Credits 3. 3 Lecture Hours.
History, principles, and objectives of the sport management profession; an overview of the structure of the sport industry; introduction to the scope and variety of career opportunities in sport.

SPMT 220 Olympic Studies
Credits 3. 3 Lecture Hours.
History of the Olympic Games and their development over time; analyze, compare and contrast the relationship between the Olympics, cultures and societies; examination of central problems, accomplishments and collaborations revolving around the Olympics from a variety of viewpoints.

SPMT 225 Practical Skills for Sport Professionals
Credits 3. 3 Lecture Hours.
Introduction to the writing, communication and technical skills required to succeed in the sport industry; segmented into units based on different professions within the sport industry such as journalism, marketing, technology, public relations, organizational communication and law.

SPMT 230 Introduction to Leadership in Sport Organizations
Credits 3. 3 Lecture Hours.
Attainment and application of leaderships skills in the sports setting; analysis of sports leaders and their styles; ethics in sport leaders; preparation to work in youth sports institutions; youth community agencies and sport related non-profit agencies.

SPMT 260 Overview of Practices in Sport
Credits 2. 2 Lecture Hours.
History, principles, and objectives of the sport management profession; an overview of the structure of the sport industry; introduction to sport management practices and career opportunities in sport.

SPMT 262 Human Capital Management in Sport
Credits 3. 3 Lecture Hours.
Dynamic issues of individual and organizational change; overview of human resources, relational and conflict management, and leadership principles.
Prerequisite: Grade of C or better in SPMT 260.

SPMT 265 Sport Communication
Credits 4. 4 Lecture Hours.
Application of the writing, communication and technical skills required to succeed in the sport industry; utilizing various communication types including oral, written, digital and listening from a global perspective.
Prerequisites: Grade of C or better in ENGL 103 or ENGL 104; Grade of C or better in SPMT 260, SPMT 262, SPMT 270, SPMT 272, and COMM 203.

SPMT 270 Sport Marketing
Credits 2. 2 Lecture Hours.
Broad and contemporary overview of the sport marketing field; differentiating the field of sport and entertainment marketing with the practices and applications of mainstream marketing.
SPMT 272 Sport Marketing Issues
Credits 3. 3 Lecture Hours.
Recognition of current issues within the sport marketing field while gaining transferable skills necessary for the sport industry.
Prerequisite: Grade of C or better in SPMT 270.

SPMT 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Work on a specified topic with the intent of promoting independent reading, research and study; supplement existing course offerings or subjects not presently covered. May be repeated for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor.

SPMT 289 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Selected topics in an identified area of sport management. May be repeated for credit.

SPMT 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in sport management. May be repeated 4 times for credit.
Prerequisites: Freshman or sophomore classification; approval of instructor.

SPMT 295 Introduction to the Culminating Experience
Credit 1. 1 Lecture Hour.
Orientation, observations and experiences in preparation for the Culminating Experience.
Prerequisites: Grade of C or better in SPMT 260, SPMT 265 and SPMT 270.

SPMT 304 Sport Psychology Management and Practice
Credits 3. 3 Lecture Hours.
The relationship of psychology to sport and exercise; topics include history, application of learning principles, social psychology, personality variables, psychological assessment, youth sport, and diversity issues in sport and exercise.
Prerequisite: Junior classification.

SPMT 316 Sales Strategies in Sport Organizations
Credits 3. 3 Lecture Hours.
Preparation for the sport business workforce via the sales outlet; emphasis on developing skills for success in sport sales.
Prerequisites: Grade of C or better in SPMT 260, SPMT 265, SPMT 270, and SPMT 272.

SPMT 319/SOCI 319 Sociology of Sport
Credits 3. 3 Lecture Hours.
Social institution of sport and its consequences for American society; social organization from play to professional sport; violence, discrimination, women in sport; socialization implications from participation in sports.
Prerequisite: Junior or senior classification.
Cross Listing: SOCI 319/SPMT 319.

SPMT 321 Risk Management in Sport Organizations
Credits 3. 3 Lecture Hours.
Legal principles and rules of law affecting the administration and operation of health, human performance, recreation and sports programs, resources, areas and facilities; risk management and legal concepts applied to contracts, human rights, constitutional issues, supervision of recreation activities and torts.
Prerequisites: Junior or senior classification; or approval of instructor.

SPMT 330 Application of Leadership Skills in Sport Organizations
Credits 3. 3 Lecture Hours.
Development and application of leadership vision to sport organizations; development of leadership skills that create collaborative and management of groups in sports organizations.
Prerequisites: SPMT 230 with a grade of C or better.

SPMT 333 Sport Management
Credits 3. 3 Lecture Hours.
Introduction to techniques for proper management of programs in physical activities and athletics including the basic physical education instructional program, intercollegiate and interscholastic athletics, intramural and club programs, and alternative athletic programs such as health clubs, corporate fitness centers and YMCA/YWCAs.
Prerequisites: Junior or senior classification; admission to professional phase of program.

SPMT 334 Sport Communication
Credits 3. 3 Lecture Hours.
Communications from the interorganizational level to mass media specific within the unique setting of sport industry.
Prerequisites: Junior or senior classification; sport management majors only or approval of instructor.

SPMT 335 Diversity in Sport Organizations
Credits 3. 3 Lecture Hours.
Examine an encompassing perspective of diversity within North American and international sport organizations.
Prerequisite: Junior or senior classification; also taught at Galveston campus.

SPMT 337 International Sport Business
Credits 3. 3 Lecture Hours.
The magnitude of global expansion and development of sport familiarity with major firms and organizations on the global scene, major issues in global sports; emphasis on business opportunities available internationally; underlying thesis focuses on the contrasts from the U.S. sport industry to foreign markets.
Prerequisite: Junior or senior classification; also taught at Galveston campus.

SPMT 340 Sport Governance
Credits 3. 3 Lecture Hours.
Governance and policy development in sport management; managerial activities related to governance, strategic management, ethics in sport, governance and policy development in specific sport contexts.
Prerequisite: Junior or senior classification.

SPMT 360 Organizational Issues in Sport
Credits 3. 3 Lecture Hours.
Gain knowledge and experience in organizational structure, organizational behavior, global issues, human resources, strategic and operational planning, data information systems, evaluation and assessment.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 362 Sport Leadership
Credits 3. 3 Lecture Hours.
Attainment and application of leadership skills in the sport setting; concepts related to negotiations and change management; ethics and legal issues in sport.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.
SPMT 364 Financial Management in Sport
Credits 3. 3 Lecture Hours.
Financial theories and practical application as they impact sport revenues and expenditures; familiarization with current issues and trends in financing sport organizations.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 366 Sport Facility and Event Management
Credits 3. 3 Lecture Hours.
Orientation into the design, operations and functions related to cost-effectively managing recreational facilities and events; address key elements of program management, conflict management, group dynamics and customer service.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 370 Fan Behavior in Sport
Credits 3. 3 Lecture Hours.
Communication with current and potential consumers; importance of identifying and understanding consumers when planning, creating, and performing marketing activities.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 372 Sales Strategies in Sport Organizations
Credits 3. 3 Lecture Hours.
Preparation for the sport business workforce via the sales outlet with emphasis placed on students developing skills necessary for success in sport sales.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 374 Strategic Sport Marketing
Credits 3. 3 Lecture Hours.
Managing customers to maximize long-term company profits focused on managing at the strategic level by targeting, acquiring, retaining and growing customers.
Prerequisites: Grade of C or better in SPMT 260, SPMT 262, SPMT 265, SPMT 270, and SPMT 272.

SPMT 402 Pre-Internship Field Experiences
Credit 1. 2 Lab Hours.
Orientation, observations and experiences in preparation for professional internships.
Prerequisites: Senior classification; approved acceptance to field experience.

SPMT 412 Managing Sport Events
Credits 3. 3 Lecture Hours.
Examination of principles involved in planning and managing sport events.
Prerequisites: Junior or senior classification or approval of instructor.

SPMT 420 Sports Facility Planning
Credits 3. 3 Lecture Hours.
Examination of the principles involved in planning and managing sports and recreational facilities.
Prerequisites: Junior or senior classification; admission to professional phase of program or approval of instructor for non-sport management majors.

SPMT 421 Legal Aspects of Sport
Credits 3. 3 Lecture Hours.
Explores the relationship between sport and law, and the fundamentals of law used by sport managers, including contract law, tort law, Constitutional issues, employment and discrimination law, the effect of state and federal statutes on recreational activities and sport, and current legal issues in sports.
Prerequisites: Junior or senior classification; admission to professional phase of program or approval of instructor for non-sport management majors.

SPMT 422 Financing Sport Operations
Credits 3. 3 Lecture Hours.
Study of financial theories and practical application as they impact sport revenues and expenditures; familiarization with current issues and trends in financing sport organizations.
Prerequisites: Junior or senior classification; admission to professional phase of program.

SPMT 423 Marketing Aspects of Sport
Credits 3. 3 Lecture Hours.
Examination of the application of marketing principles to the general sports industry; introduction to the various aspects of marketing that make up the marketing plan.
Prerequisites: Junior or senior classification; admission to professional phase of program.

SPMT 450 Professional Practice in Sport Management
Credits 3. 3 Lecture Hours.
Information, perspectives and skills to promote the management of sports in the community, school, workplace and sport business settings; boundary-crossing partnerships across sport disciplines; the role of collaborative efforts to improve the needs of the sport community.
Prerequisite: Admission to professional phase of program; senior classification.

SPMT 460 Sport Business Planning
Credits 3. 3 Lecture Hours.
Development of a sport business plan; planning, assessing and delivery of all components of a business plan for a sport organization.
Prerequisites: Grade of C or better in SPMT 360, SPMT 362, SPMT 364, SPMT 366, SPMT 370, SPMT 372, and SPMT 374.

SPMT 462 Leadership Application in Sport
Credits 3. 3 Lecture Hours.
Development and application of leadership vision to sport organizations; development of leadership skills that create collaborative management of groups in sports organizations.
Prerequisites: Grade of C or better in SPMT 360, SPMT 362, SPMT 364, SPMT 366, SPMT 370, SPMT 372, and SPMT 374.

SPMT 470 Application of Marketing Strategies in Sport
Credits 3. 3 Lecture Hours.
Examination of the application of marketing principles to the general sport enterprise; creation of sport marketing plans, evaluation of effective methods and practices relevant to sport marketing.
Prerequisites: Grade of C or better in SPMT 360, SPMT 362, SPMT 364, SPMT 366, SPMT 370, SPMT 372, and SPMT 374.
SPMT 472 Data Analysis and Problem Solving in Sport
Credits 3. 3 Lecture Hours.
Acquire market analysis and problem solving skills; understanding of rigorous marketing research methods; learn techniques to create marketing campaigns.
Prerequisites: Grade of C or better in SPMT 360, SPMT 362, SPMT 364, SPMT 366, SPMT 370, SPMT 372, and SPMT 374.

SPMT 481 Seminar
Credit 1. 1 Lecture Hour.
A variety of topical seminars in communicating contemporary and historical sport management subjects designed to complement the curriculum in sport management. May be taken three times for credit.
Prerequisite: Admission to the professional phase of the sport management program; junior or senior classification; or approval of instructor.

SPMT 482 Professional Writing Seminar
Credit 1. 1 Lecture Hour.
Acquaint students with a primary means of communicating contemporary research in sport management; extensive readings, intensive writings and an oral presentation designed to complement the curriculum in sport management by introducing the application of sport management research to organizational decision making. May be taken two times for credit.
Prerequisite: Admission to professional phase of program or approval of instructor; junior or senior classification.

SPMT 483 Practicum in Sport Management
Credits 0 to 3. 0 to 3 Other Hours.
Participation and study in sport management and administration; acquisition and practice of professional and/or clinical skills in sport management. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Admission to professional phase of program; approval of instructor; junior or senior classification.

SPMT 484 Internship in Sport Management
Credits 0 to 12. 0 to 12 Other Hours.
Supervised internship with sport management organizations; acquisition and practice of professional and/or clinical skills in sport management.
Prerequisites: SPMT 402; completion of all coursework.

SPMT 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Special problems in sport management assigned to individual students or to groups. May be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification; approval of instructor.

SPMT 489 Special Topics in...
Credits 0 to 4. 0 to 4 Lecture Hours.
Selected topics in an identified area of sport management. May be repeated for credit.

SPMT 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in sport management. May be repeated 4 times for credit.
Prerequisites: Junior or senior classification; approval of instructor.

STAT - Statistics (STAT)

STAT 182 Foundations of Statistics
Credit 1. 1 Lecture Hour.
Elementary topics in statistics; data collection; design of experiments; confidence intervals, hypothesis testing; ethics in statistics; the role of statistics in industry, the health profession and the sciences.
Prerequisite: Statistics majors only.

STAT 201 Elementary Statistical Inference
Credits 3. 3 Lecture Hours.
(MATH 1342, 1442) Elementary Statistical Inference. Data collection, tabulation and presentation; elementary description of the tools of statistical inference; probability, sampling and hypothesis testing; applications of statistical techniques to practical problems; cannot be taken after or concurrently with any other course in statistics or SCMT 303. Only one of the following will satisfy the requirements for a degree: STAT 201, STAT 301, STAT 302 or STAT 303.

STAT 211 Principles of Statistics I
Credits 3. 3 Lecture Hours.
Introduction to probability and probability distributions; sampling and descriptive measures; inference and hypothesis testing; linear regression, analysis of variance.
Prerequisite: MATH 148, MATH 152, or MATH 172; also taught at Galveston campus.

STAT 212 Principles of Statistics II
Credits 3. 3 Lecture Hours.
Design of experiments, model building, multiple regression, nonparametric techniques and contingency tables.
Prerequisite: STAT 211.

STAT 301 Introduction to Biometry
Credits 3. 3 Lecture Hours.
Intended for students in animal sciences. Introduces fundamental concepts of biometry including measures of location and variation, probability, tests of significance, regression, correlation and analysis of variance which are used in advanced courses and are being widely applied to animal-oriented industry. Only one of the following will satisfy the requirements for a degree: STAT 201, STAT 301, STAT 302 or STAT 303.
Prerequisite: MATH 168 or MATH 166 or equivalent; junior or senior classification.

STAT 302 Statistical Methods
Credits 3. 3 Lecture Hours.
Intended for undergraduates in the biological sciences. Introduction to concepts of random sampling and statistical inference; estimation and testing hypotheses of means and variances; analysis of variance; regression analysis; chi-square tests. Only one of the following will satisfy the requirements for a degree: STAT 201, STAT 301, STAT 302 or STAT 303.
Prerequisite: MATH 168 or MATH 166 or equivalent; junior or senior classification.
STAT 303 Statistical Methods
Credits 3.3 Lecture Hours.
Intended for undergraduates in the social sciences. Introduction to concepts of random sampling and statistical inference, estimation and testing hypotheses of means and variances, analysis of variance, regression analysis, chi-square tests. Only one of the following will satisfy the requirements for a degree: STAT 201, STAT 301, STAT 302 or STAT 303.
Prerequisite: MATH 168 or MATH 166 or equivalent; junior or senior classification; also taught at Galveston campus.

STAT 307 Sample Survey Techniques
Credits 3.3 Lecture Hours.
Concepts of population and sample; the organization of a sample survey; questionnaire design. Basic survey designs and computation of estimates and variances.
Prerequisite: STAT 301 or STAT 302 or STAT 303 or SCMT 303.

STAT 312 Statistics for Biology
Credits 3.3 Lecture Hours.
Statistical methods for biological applications including the topics multiple linear regression, experimental design, analysis of variance, categorical data analysis, nonparametric methods, general linear models, density estimation, nonlinear and logistic regression and inference for percentiles.
Prerequisites: MATH 147 or equivalent; STAT 201 or MATH 148, or equivalents.

STAT 335/CSCE 320 Principles of Data Science
Credits 3.3 Lecture Hours.
Theoretical foundations, algorithms and methods of deriving valuable insights from data; includes foundations in managing and analyzing data at scale, e.g., big data; data mining techniques and algorithms; exploratory data analysis; statistical methods and models; data visualization.
Prerequisites: STAT 211 or ECEN 303; STAT 212 or CSCE 222/ECEN 222. Cross Listing: CSCE 320/STAT 335.

STAT 404 Statistical Computing
Credits 3.3 Lecture Hours.
Statistical programming in R and Python; random number generation; design of simulation studies; interactive and dynamic statistical graphics; parallel computing in statistics; statistical and machine learning algorithms.
Prerequisites: STAT 212; junior or senior classification or approval of instructor.

STAT 406 Design and Analysis of Experiments
Credits 3.3 Lecture Hours.
Design fundamentals; completely randomized designs; blocking; factorial, nested, nested-factorial designs; incomplete designs; fractional factorial designs; confounding; general mixed factorials; split plot; analysis of covariance; confounding; general mixed factorials; split plot; analysis of covariance; crossover designs; power analysis, sample size determination.
Prerequisite: STAT 212; STAT 408.

STAT 407 Principles of Sample Surveys
Credits 3.3 Lecture Hours.
Principles of sample surveys and survey design; techniques for variance reduction; simple, stratified and multi-stage sampling; ratio and regression estimates; post-stratification; equal and unequal probability sampling.
Prerequisite: STAT 212.

STAT 408 Introduction to Linear Models
Credits 3.3 Lecture Hours.
Introduction to the formulation of linear models and the estimation of the parameters of such models, with primary emphasis on least squares. Application to multiple regression and curve fitting.
Prerequisites: STAT 212; MATH 304 or MATH 323.

STAT 414 Mathematical Statistics I
Credits 3.3 Lecture Hours.
Mathematical theory of statistics; probability, random variables and their distributions, transformations of random variables, expectations and variance, generating functions, sampling distributions and basic limit theorems.
Prerequisite: MATH 221, MATH 251 or MATH 253.

STAT 415 Mathematical Statistics II
Credits 3.3 Lecture Hours.
Continuation of the mathematical theory of statistics, including principles for statistical inference, formulation of statistical models, reduction of data, point estimation, confidence intervals, hypothesis testing and Bayesian inference.
Prerequisite: STAT 414 or MATH 411.

STAT 421/CSCE 421 Machine Learning
Credits 3.3 Lecture Hours.
Theoretical foundations of machine learning, pattern recognition and generating predictive models and classifiers from data; includes methods for supervised and unsupervised learning (decision trees, linear discriminants, neural networks, Gaussian models, non-parametric models, clustering, dimensionality reduction, deep learning), optimization procedures and statistical inference.
Prerequisites: Grade of C or better in MATH 304 and STAT 211; grade of C or better in CSCE 221 or STAT 404. Cross Listing: CSCE 421/STAT 421.

STAT 426 Methods in Time Series Analysis
Credits 3.3 Lecture Hours.
Autocorrelation and spectral characteristics of univariate, autoregressive and moving average models; identification, estimation and forecasting.
Prerequisites: STAT 408; STAT 414 or approval of instructor.

STAT 436 Multivariate Analysis and Statistical Learning
Credits 3.3 Lecture Hours.
Matrix algebra; random vectors; multivariate distributions; copulas; multivariate generalizations of classical testing; principle component analysis; discriminant analysis; clustering; multidimensional scaling; factor analysis; canonical analysis.
Prerequisites: MATH 304 or MATH 323; STAT 212; STAT 415 or equivalent.

STAT 438 Bayesian Statistics
Credits 3.3 Lecture Hours.
Analysis of scalar and vector-valued parameters; Bayesian linear models; Monte Carlo computational methods; prior elicitation; hypothesis testing and model selection; hierarchical models; selected advanced models; use of statistical packages such as WinBUGS, R or MATLAB.
Prerequisites: MATH 221; STAT 408 or equivalent.

STAT 445 Applied Biostatistics and Data Analysis
Credits 3.3 Lecture Hours.
Applications of regression methods in biostatistics; correlated data analysis; survival analysis; missing data techniques; use of the R programming language.
Prerequisites: STAT 212; STAT 408 or approval of instructor.
STAT 446 Statistical Bioinformatics
Credits 3. 3 Lecture Hours.
Analysis of high-dimensional genomic and proteomic data using R; sequence analysis; genome-wide association studies; proteomics; array-based technologies; classification techniques.
Prerequisites: STAT 212; STAT 408 or approval of instructor.

STAT 459 Categorical Data Analysis
Credits 3. 3 Lecture Hours.
Techniques for the analysis of categorical data; contingency table analysis; logistic regression; Poisson regression; loglinear models; analysis of ordinal data; use of computer software such as SAS or R.
Prerequisite: STAT 212; STAT 408 or equivalent.

STAT 482 Statistics Capstone
Credits 3. 3 Lecture Hours.
Integration of statistical models, design, sampling, graphics and computing for the analysis of real problems; planning, drafting, revising and editing reports; ethics; principles of collaboration and communication.
Prerequisites: STAT 404; STAT 406; STAT 408 and senior classification.

STAT 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in an organization to provide on-the-job training and applied research experience with professionals in settings appropriate to statistics and student professional interest.
Prerequisites: Major in statistics; 12 completed hours of statistics; 2.5 cumulative GPA; 2.5 GPA in statistics courses; approval of statistics undergraduate advisor.

STAT 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems in statistics not covered by another course in the curriculum. Work may be in either theory or methodology.
Prerequisite: Approval of instructor.

STAT 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of statistics. May be repeated for credit.
Prerequisite: Junior or senior classification or approval of department head.

STAT 491 Research
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Research conducted under the direction of faculty members in statistics. May be taken four times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisite: Junior or senior classification or approval of instructor.

TCMG - Technology Management (TCMG)

TCMG 272 Technology and End-User Support
Credits 3. 3 Lecture Hours.
Upgrading, setup, configuration, troubleshooting of computer systems; development of skills to work with end-users; technology needs assessment; escalation and defusing strategies; service learning and community engagement.
Prerequisite: Sophomore classification.

TCMG 274 Foundations of Networking in Education
Credits 3. 3 Lecture Hours. 1 Lab Hour.
Development of knowledge towards application of telecommunications facilities in networking; technical alternatives for delivery of subject matter for educators and trainers.
Prerequisites: TCMG 272 or concurrent enrollment, or approval of instructor.

TCMG 285 Directed Studies
Credits 0 to 12. 0 to 12 Lecture Hours.
Directed readings or research problems in industrial technology.

TCMG 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of industrial technology. May be repeated for credit.

TCMG 291 Research
Credits 0 to 4. 0 to 4 Lecture Hours.
Research conducted under the direction of faculty member in technology management. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

TCMG 303 Unix System Administration Practices
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Development and system administration of the Unix operating system; technical alternatives for proactive and reactive maintenance of system health.
Prerequisites: TCMG 272 and TCMG 274 with a grade of C or better; junior or senior classification or approval of instructor.

TCMG 308 Cybersecurity and Digital Ethics
Credits 3. 3 Lecture Hours.
Introduction to cybersecurity; analysis of threats and risks from the environment; development of appropriate strategies to mitigate impact; ethics of extraordinary administrative access; ethics of digital forensics and implications to society.
Prerequisites: TCMG 272 and TCMG 274 with a grade of C or better; junior or senior classification or approval of instructor.

TCMG 316 Database Systems Administration and Application
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Database administration and application use techniques; database structures, modeling, configuration, development, security, topologies and access; focus on system administration of Unix-based database systems.
Prerequisite: TCMG 303 with a grade of C or better.

TCMG 402 Instructional Technology and Design
Credits 3. 3 Lecture Hours.
Design principles; development of instruction; contemporary issues and trends; foundations in learning research; requirements for instruction, task and needs analysis, learning situations and instructional models; hardware and software innovations; assessing instructional outcomes; factors affecting utilization.
Prerequisites: EHRD 371 with a grade of C or better; junior or senior classification or approval of instructor.

TCMG 412 Contemporary Issues in Technology Management
Credits 3. 3 Lecture Hours.
Specific innovation or practices nascent to the professional information technology industry; discovery of practical applications and analytics of new innovation.
Prerequisites: TCMG 272 and TCMG 274 with a grade of C or better; junior or senior classification.
TCMG 476 Technical Network Capstone
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Development of knowledge and skills towards the application of technical network management in public education and corporate training settings; focus on practices, techniques and tools for managers of technical networks.
Prerequisites: TCMG 303 or TCMG 304 with a grade of C or better; junior or senior classification.

TCMG 484 Professional Internship
Credits 6. 6 Other Hours.
Directed internship in an organization to provide students with a learning experience supervised by professionals in organizational settings appropriate to the student’s professional objectives; must be in good standing with the University. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: EHRD 481 and EHRD 490 with a grade of C or better; approval of instructor.

TCMG 485 Directed Studies
Credits 0 to 12. 0 to 12 Other Hours.
Directed readings or research problems in industrial technology.
Prerequisites: Junior or senior classification; approval of directed studies application.

TCMG 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of industrial technology. May be repeated for credit.
Prerequisite: Approval of instructor.

TCMG 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in technology management.
Prerequisites: Junior or senior classification; approval of instructor.

TEED - Teacher Education (TEED)

TEED 302 Teaching/Learning Processes: Psychological Perspectives on Education
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Psychological perspectives on instruction; examines learning processes, learner motivation, home and cultural influences, learning strategies; design and delivery of instruction; controversies regarding learning and instruction.
Prerequisites: Junior classification; admission to teacher education.

TEED 425 Supervised Clinical Teaching
Credits 12. 36 Other Hours.
Supervised Student Teaching. Culmination of teacher education program; integrate and apply knowledge and skills learned from program of study while observing and participating in accredited schools with university supervision. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Admission and retention in teacher education program; successful completion of all coursework.

TEFB - Teacher Ed Field Based (TEFB)

TEFB 273 Introduction to Culture, Community, Society and Schools
Credits 3. 2 Lecture Hours. 3 Other Hours.
Field-based course that introduces the culture of schooling and classrooms for analysis within the lens of language, gender, racial, socio-economic, ethnic and academic diversity; the family as a partner in education and educational equality discussed.

TEFB 322 Teaching and Schooling in Modern Society
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Development, structure, management and finance of secondary schools; historical, philosophical, ethical and moral dimensions of teaching; role of school in a democratic society; teaching as a profession.
Prerequisite: Junior or senior classification.

TEFB 324 Teaching Skills II
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Study and development of teaching skills necessary for applying instructional strategies; teaching general strategies, assessing student learning, and analyzing and synthesizing multiple source data; emphasis given to adolescent development and cultures and to teacher and child cultures.
Prerequisites: Successful completion or concurrent enrollment in TEFB 322; junior or senior classification.

TEFB 371 Dynamics and Management in Multicultural/Inclusionary Learning Environments
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Field-based course focusing on communication, methodology and management perspectives that lead to democratic classrooms; organizational structures that focus on transformative, inclusionary learning; interventions for students with disabilities; analysis of systemic conditions placing children from diverse backgrounds and representing diverse abilities in positions of ‘risk’ for incomplete success in school.
Prerequisites: Junior classification; admission to teacher education; concurrent enrollment in EDCI 454.

TEFB 401 Language Arts in the Middle and Senior School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Methodology of teaching language arts-related content with specific reference to language, literature, journalism, drama and speech interactions among these areas; development of oral competence; coordination with other subjects. Phase IV, Practicum I.
Prerequisites: Completion of Phases I, II and III of the secondary program; admission to teacher education; enrollment in language arts-related teaching field.

TEFB 404 Social Studies in the Middle and Senior High School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Features of social studies instruction in grades 6-12; approaches, methods and instructional materials. Phase IV, Practicum I.
Prerequisites: Completion of Phases I, II and III of the secondary program; admission to teacher education; enrollment in history and/or social science teaching field.

TEFB 406 Science in the Middle and Secondary School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Methods course for the prospective secondary teacher in the physical and biological sciences; implementation of contemporary curricula. Phase IV, Practicum I.
Prerequisites: Completion of Phases I, II and III of the secondary program; admission to teacher education; enrollment in science-related teaching field.

TEFB 407 Mathematics in the Middle and Senior School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Design and teach selected topics from middle and secondary school mathematics. Content, materials and methodology. Phase IV, Practicum I.
Prerequisites: Completion of Phases I, II and III secondary program; admission to teacher education; enrollment in mathematics teaching field.
THAR 407 Performing Literature.
Credits 3. 3 Lecture Hours.
Analysis and performance of poetry, prose and drama; emphasis on translating analytical decisions into performance; solo performance, readers theatre, chamber theatre, and technology in/as performance.

THAR 408 Stage Management and Arts Administration
Credits 3. 3 Lecture Hours.
Principles and practical application of techniques for designing theatre, music and other types of live performance; practical aspects of designing and producing live performances: plays, music events, devised performances, performance art; topics include lighting, sets and space, clothing and costume design, sound; may include specialized techniques such as masks, props, makeup. May be repeated for credit.

Prerequisites: Admission and retention in teacher education program; concurrent enrollment in RDNG 467, TEFB 410 and TEFB 413.

THAR 412 Mathematics in the Elementary School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Designed to help elementary teachers understand basic concepts of science and scientific methods; content relates to natural phenomena involving physical, chemical and biological processes; elementary students appreciation and interest in science.

Prerequisites: MATH 365 and MATH 366; admission to teacher education; concurrent enrollment in RDNG 467, TEFB 410 and TEFB 413.

THAR 413 Science in the Elementary School
Credits 3. 2 Lecture Hours. 6 Lab Hours.
Recent trends, issues and procedures related to curriculum development and instruction in the social studies and humanities; integration of content, planning, design of appropriate teaching/learning experiences and evaluation; preparation of prototype materials.

Prerequisites: Admission to teacher education; concurrent enrollment in RDNG 467, TEFB 412 and TEFB 413.

THAR 414 Acting I: Fundamentals
Credits 3. 2 Lecture Hours. 4 Lab Hours.
(DRAM 1351) Acting I: Fundamentals. A Stanislavsky-based approach to the fundamentals of acting, which may include sensory exercises, relaxation, concentration, imagination, improvisation, character analysis and scene work.
THAR 420 Directing Live Performance
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Theatre forms and styles; director's function and responsibility in producing plays; script analysis; directing laboratory scenes.
Prerequisites: Junior or senior classification.

THAR 435 New Technology for Performance Design
Credits 3. 3 Lecture Hours.
Fundamentals of design software including sound editing, video editing, and rendering for theatre; multi-media installation.
Prerequisites: Junior or senior classification.

THAR 445 Design as Performance
Credits 3. 3 Lecture Hours.
Design as performance using research methods and the production of new work; disciplines of design, performance, installation and performance as research.
Prerequisites: Junior or senior classification.

THAR 482 Topics in American Theatre and Performance
Credits 3. 3 Lecture Hours.
Exploration of significant issues in American theatre and performance; emphasis on the aesthetic, social, and cultural issues affecting theatre and performance. May be taken two times for credit.
Prerequisites: Junior or senior classification.

UGST - Undergraduate Studies (UGST)

UGST 001
Credits 0.

UGST 181 First Year Seminar
Credits 0 to 3. 0 to 3 Lecture Hours.
Seminar on various contemporary topics; introduction to high quality college instruction and research; focus on writing, speaking, discussion and research; open to all majors; restricted to first-time-in-college students and limited in size to provide small class experience; also taught at Qatar campus. May be taken two times for credit.

UGST 182 Topics in Undergraduate Studies
Credits 0 to 3. 0 to 3 Lecture Hours.
Selected interdisciplinary topics related to specific programs as identified by the office of undergraduate studies; for students in approved first year programs. May be taken two times for credit.
Prerequisite: Freshman classification or approval of instructor; also taught at Qatar campus.

UGST 211 UScholar Personal Statement
Credits 0-1. 0-1 Lecture Hours.
Oral and written reflection on values, goals, and opportunities; preparation of personal statement appropriate for nationally competitive scholarship application. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: University Scholar classification.

UGST 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study on selected topics in undergraduate studies. May be taken six times for credit.

UGST 311 UScholar Exploration Series
Credits 0-1. 0-1 Lecture Hours.
Selection from a variety of discussion topics designed to foster student-faculty interaction, intellectual and cultural enrichment, inter-and cross-disciplinary connections, and the development of interest and knowledge of issues outside of a student's degree area. May be taken six times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification or approval of instructor; admitted to University Scholar program.

UGST 405 Thesis Writing
Credits 0-1. 0-1 Lecture Hours.
Accessing information, searching scholarly literature, and oral or poster presentation of scholarly work and formal research thesis. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification; admitted to Undergraduate Research Scholars.

UGST 484 Internship
Credits 0 to 3. 0 to 3 Other Hours.
Directed internship in a community, public or private organization to provide students with on-the-job training and/or applied research experience appropriate to career objectives. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

UGST 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study on selected topics in undergraduate studies. May be taken six times for credit.

UGST 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of a faculty member in undergraduate studies. May be taken three times for credit.
Prerequisites: Junior or senior classification and approval of instructor.

UGST 492 Cooperative Education in Public Policy
Credits 0 to 3. 0 to 3 Lecture Hours.
Educational work assignment in public policy setting related to student's career interest and course of study; supervision of the student will be by the cooperating employer and the instructor; reports, approved by course instructor, will be required. May be taken two times for credit.
Prerequisites: Junior or senior classification and participation in Public Policy Internship Program.

UGST 497 Capstone
Credits 0 to 6. 0 to 6 Lecture Hours.
Demonstrating mastery of discipline as applied to an original problem through an independent, mentored project; public presentation of work. May be taken two times for credit. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Junior or senior classification; admitted to Undergraduate Service Scholars program.
URPN - Urban & Reg Planning (URPN)

URPN 201 The Evolving City
Credits 3. 3 Lecture Hours.
Introduction to the history of contemporary urban and regional planning and how the evolving forms of cities and regions pose opportunities and/or challenges for planners; understanding key social, economic, political and technological forces that shape city form and function and its ramifications for urban and regional planning.

URPN 202 Building Better Cities
Credits 3. 3 Lecture Hours.
Determinants of land use patterns; classification of uses; idealized conceptual alternatives; location and size criteria; mapping; comprehensive planning process, relationship to circulation planning.

URPN 203 Smart Cities - Bit, Bots and Beyond
Credits 3. 3 Lecture Hours.
Historic perspectives of technological innovation and urbanization; smart-city solutions to tackle the world's challenges in transportation, climate change, aging population, governance, economic growth, and social inclusion; challenges and promises of disruptive technologies; future proof policies and strategies.

URPN 210 Urban Analytical Methods I
Credits 3. 3 Lecture Hours.
Study of various analytical techniques used in urban and regional decision making; quantitative approaches to analyze and manipulate data; utilization of statistical packages for data, analysis and communication to enhance urban planning modeling.
Prerequisite: URPN majors only or approval of instructor.

URPN 220 Digital Communication I
Credits 3. 3 Lecture Hours.
Applications of computer graphics, rendering, and visualization software in urban design, landscape architecture, and environmental analysis; introduction to basic concepts and principles of graphic composition; rendering, visualization, and linkages to landscape-referenced data.
Prerequisite: Landscape Architecture and Urban Planning majors only or approval of instructor.

URPN 240 More Than Monuments: Preservation as Social Justice
Credits 3. 3 Lecture Hours.
Exploration of the ways designers', planners', and preservationists' expertise, combined with historical inquiry and citizen engagement, have fostered social and restorative justice.

URPN 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in landscape architecture and urban planning. May be taken 2 times for credit.
Prerequisites: Freshman or sophomore classification.

URPN 302 Planning Law
Credits 3. 3 Lecture Hours.
Familiarization with the fundamental principles of planning law and legislation; legal foundation for the urban planning process; alternative methods of plan implementation; emphasis on legal issues as they impact land use planning and development at the municipal level of government; participation in mock advocacy trials and public hearings.
Prerequisites: URPN 301; URPN majors only.

URPN 310 Urban Analytical Methods II
Credits 3. 3 Lecture Hours.
Focuses on research conducted by planners, sociologists, anthropologists, political scientists and a variety of applied social scientists; examines variety of procedures employed when conducting research in urban areas; furthers understanding and knowledge of statistical methods employed in social research and elements of geographical analysis.
Prerequisite: Upper division College of Architecture; URPN 210 or approval of instructor, URPN majors only.

URPN 320 Digital Communication II
Credits 3. 3 Lecture Hours.
Advanced applications of computer graphics, rendering, and visualization software in urban design, landscape architecture, and environmental analysis; introduction to basic concepts and principles of graphic composition, rendering, visualization, and linkages to landscape-referenced data.
Prerequisites: URPN 220; department majors only.

URPN 325 Introduction to GIS in Urban and Regional Planning
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Provides an understanding of GIS fundamentals; basic concepts, principles and functions; essential skills for applying GIS in various fields such as urban planning, landscape architecture, land development, environmental studies, transportation and hazard management; based on learning through class projects.
Prerequisite: Upper division College of Architecture; department majors only or approval of instructor.

URPN 326 Advanced GIS in Urban and Regional Planning
Credits 3. 3 Lecture Hours.
Advanced instruction in applications of spatial tools for urban planning, landscape architecture, land development, hazard management, and related problems; GIS applications through review of literature and practice; data quality, uncertainty, the integration of GPS, remote sensing and information technology within the context of urban and regional planning.
Prerequisite: URPN 325 or approval of instructor, department majors only.

URPN 330 Land Development I
Credits 3. 3 Lecture Hours.
Interface between the physical and financial dimensions in design and development to achieve building and project economies; creating a physical product and a financial venture that are responsive to social and environmental concerns and to market economy and finance.
Prerequisite: Department majors only or approval of instructor.

URPN 331 Public and Private Infrastructure Funding
Credits 3. 3 Lecture Hours.
An introduction to issues of financing public and public-private development project; exploring the difference between raising revenue, including the trade offs associated with establishing a sustainable tax base, and raising capital through capital markets; illustration of the range of decisions with financing public and public-private partnerships.
Prerequisite: Upper division College of Architecture; URPN majors only.

URPN 340 Housing and Community
Credits 3. 3 Lecture Hours.
Housing, its development, planning, marketing, designing, financing and production; social and design history and contemporary issues of American housing development, urban renewal, neighborhood structure and community facilities.
Prerequisite: Department majors and minors only or approval of instructor.
URPN 360 Issues in Environmental Quality
Credits 3. 3 Lecture Hours.
Issues in environmental quality; focus on stormwater and ecosystem qualities influenced by land development; design and planning principles and techniques (e.g. low impact development) for sustainable stormwater management in urban and suburban watersheds.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 361 Urban Issues
Credits 3. 3 Lecture Hours.
Issues pertaining to the evolution and development of cities and urban regions; examines the socio-economic, cultural and physical development of urban areas; addresses contemporary problems such as racial tension, unemployment and poverty, housing, pollution and environmental sustainability, traffic and congestion, land use, crime, public health, and other quality of life issues.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 369 Transportation and Urban Form
Credits 3. 3 Lecture Hours.
Examination of the interrelated nature of transportation, land use and urban design; familiarization with the role of transportation in contemporary society; understanding the interrelationships between transportation and urban form at both the regional and community levels.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 370 Health Systems Planning
Credits 3. 3 Lecture Hours.
Introduction to planning in the health care system at both institutional and community levels.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 371 Environmental Health Planning and Policy
Credits 3. 3 Lecture Hours.
Philosophical and historical relationships of human-environment-disease; environmental health domains and associated planning and policy organizations and initiative for monitoring, intervention, and prevention; interdisciplinary approaches for risk analysis of environmental health.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 401 Policy Implementation
Credits 3. 3 Lecture Hours.
Techniques of implementing major urban development programs and plans; capital improvements programming and budgeting; overview of regulatory measures including zoning and subdivision regulations; public involvement process; and fiscal planning.
Prerequisite: URPN majors only.

URPN 409 Urban Design Studio
Credits 5. 2 Lecture Hours. 9 Lab Hours.
Design studio focused on urban design as a human-centered participatory practice; consideration of a project derived through community engagement; interdisciplinary service learning combining methodologies of architecture, landscape architecture and urban design.
Prerequisites: Junior or senior classification; admission to upper level in BED or URPN-BS; URPN 220, URPN 320, URPN 325, URPN 483, concurrent enrollment in URPN 419.

URPN 420 Principles of Urban Design
Credits 3. 3 Lecture Hours.
Theories and fundamental components of urban design including historical trends, case studies, land use arrangement, transportation options, open space networks, urban form, aesthetics and planning policies; application of the history and theory behind differing urban designs to practical projects.
Prerequisites: LAND 101, URPN 201, URPN 202, and URPN 210.

URPN 440 Urban and Regional Economic Development
Credits 3. 3 Lecture Hours.
Examines economic development processes in urban and regional planning; issues explored include theoretical, the economic development planning process, ethics, location factors, intergovernmental relations, budgeting, and private sector revenue generation.
Prerequisite: URPN majors only or approval of instructor.

URPN 450 Emergency Management Principles and Practices
Credits 3. 3 Lecture Hours.
Introduction to the fundamental principles of emergency management.
Prerequisite: Upper division College of Architecture or approval of instructor.

URPN 451 Hazard and Vulnerability Analysis for Planners
Credits 3. 3 Lecture Hours.
Tools and techniques used by city planners and emergency managers to determine their jurisdictions’ hazard risk and social vulnerability to disaster impacts.
Prerequisite: Junior or senior classification, URPN 450 or approval of instructor.

URPN 460 Sustainable Communities
Credits 3. 3 Lecture Hours.
Focuses on sustainable community with applications in public policy/design including societal organization, disciplinary bound design and policy, and empowered approaches to design, social ecology and public policy; reading and review of relevant literature on sustainability, complemented with exercises to illustrate underlying principles.
Prerequisite: Department majors and minors only or approval of instructor.

URPN 467 Land and Property Aspects of Sustainable Development
Credits 3. 3 Lecture Hours.
Sustainability perspectives about values, rights, property and what constitutes an optimum human environment; sustainability principles and case studies emphasizing on-the-ground, incentive-based land development that balances economic growth with environmental quality.
Prerequisites: Upper division College of Architecture.

URPN 469 Urban Infrastructure
Credits 3. 3 Lecture Hours.
Foundation of planning and managing infrastructure and public services; utilization of life-cycle method of infrastructure planning and delivery, research theory and tools to perform basic infrastructure planning.
Prerequisite: URPN majors only or approval of instructor.

URPN 470 Health Systems Planning and Policy
Credits 3. 3 Lecture Hours.
Analyzes health needs at community, regional and national levels; organization and supply of health services at community, regional and national levels; medical technology and its impact on health needs and system organization; medical care financing and its effects on health need and system organization; health planning for natural and human-made disasters; and service-learning for applying planning theories and methods.
Prerequisite: Junior or senior classification or approval of instructor.

URPN 471 Planning Healthier Communities
Credits 3. 3 Lecture Hours.
Planning for the creation of healthier cities/communities; emphasis on the impact of global paradigmatic shifts regarding community health, stakeholder participation, coalition building, leadership, visioning the planning process, and the need for more systemic and process orientation in community building.
Prerequisite: Junior or senior classification or approval of instructor.
URPN 481 Seminar
Credits 3. 3 Lecture Hours.
Seminar discussion of current topics in urban planning.
Prerequisite: Senior classification.

URPN 483 Studio in Urban and Regional Science
Credits 1 to 6. 1 to 6 Lecture Hours.
Studio introduces the confluence of ecological, environmental, economic, social, cultural, and political forces impacting the planning, design, and development of complex urban environments; site planning, design process, sustainability.
Prerequisite: URPN majors only or approval of instructor.

URPN 484 Internship
Credits 3. 3 Other Hours.
Practical experience in an office of design allied professionals; 12 week internship with a minimum of 480 hours; continuous employment; departmental pre-approval through the department internship coordinator required. May not be repeated for credit.
Prerequisites: URPN majors only or approval of internship coordinator.

URPN 485 Directed Studies
Credits 1 to 5. 1 to 5 Other Hours.
Individual instruction in selected aspects of urban planning not adequately covered in other courses. May be taken 3 times for credit.
Prerequisite: Upper level classification.

URPN 489 Special Topics in... Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified field of urban studies. May be repeated for credit.

URPN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in landscape architecture and urban planning. May be taken 2 times for credit.
Prerequisite: Junior or senior classification.

URPN 493 Urban and Regional Studies Capstone Course
Credits 5. 5 Lecture Hours.
Syntheses and application of skills and knowledge gained through coursework applied to the development of creative solutions to real-world projects.
Prerequisites: URPN 310, URPN 331, URPN 410, URPN 469; LAND 494; senior classification; URPN majors only.

URPN 494 Internship
Credits 6. 6 Other Hours.
Practical experience in public, private, non-profit and for profit organizations of design allied professionals; 18 week internship with a minimum of 720 hours; continuous employment; departmental pre-approval through the department internship coordinator required. May not be repeated for credit.
Prerequisites: Upper level classification and approval of internship coordinator.

VIBS 101/NRSC 101 Neuroscience Overview
Credit 1. 1 Lecture Hour.
An introductory survey of neuroscience for freshmen undergraduate students on the basic neuroscience core ideas and neurological disorders.

VIBS 201/NRSC 201 History of Neuroscience
Credit 1. 1 Lecture Hour.
Wide spectrum of neuroscience discovery beginning at the turn of the 20th Century; emphasis on key discoveries and their rationale, experimental design, experimental methods, major findings and interpretation of results.
Prerequisites: Sophomore classification.
Cross Listing: NRSC 201/VIBS 201.

VIBS 204 Fundamentals of Food Toxicology and Safety
Credits 3. 3 Lecture Hours.
Toxicity and safety of various foods and food additives, ingredients and contaminants; occurrence, control and prevention of food transmitted diseases.
Prerequisite: Sophomore classification and CHEM 101.

VIBS 210 Twenty-first Century Global One Health
Credit 1. 1 Lecture Hour.
In depth presentation of concepts of surveillance, epidemiology and resistance, tropical medicine and One Health, climate change and One Health, conservation medicine and One Health and protection science policy and One Health.
Prerequisites: BIMS 101; BIMS 110, VIBS 111, or equivalent; freshman or sophomore classification.

VIBS 211 Twenty-first Century Biological Threats
Credit 1. 1 Lecture Hour.
In depth presentation of different forms of bioterrorism, agroterrorism, sociological perspectives, surveillance, dual use research, advanced vaccine development, global health security and career opportunities.
Prerequisites: BIMS 101; BIMS 110, VIBS 111, or equivalent; freshman or sophomore classification.

VIBS 222 Great Poisonings of the World
Credits 3. 3 Lecture Hours.
Exploration of the effect of intentional and accidental man-made and natural poisonings on humans and the environment and their impact on public policy.
Prerequisite: Freshman or sophomore classification.

VIBS 243 Introductory Mammalian Histology
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Biological aspects of the human body by integrating histology and anatomy and physiology; emphasis on the transition of cell and tissue organization to organ systems that comprise mammalian organisms; builds upon concepts introduced in lower-level biology and builds a foundation to succeed in upper-level histology, anatomy and physiology.

VIBS 277/NRSC 277 Introduction to Neuroscience
Credits 3. 3 Lecture Hours.
Neuroscience from the molecular to system levels; fundamental principles and knowledge of neuroscience; current research information on neuroscience.
Prerequisites: Freshman or sophomore classification and approval of instructor.
Cross Listing: NRSC 277/VIBS 277.
VIBS 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed studies in specific problem areas of veterinary anatomy and public health.
Prerequisites: Freshman or sophomore classification and approval of department head.

VIBS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of veterinary anatomy or topics not covered in other courses. May be repeated for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

VIBS 305 Biomedical Anatomy
Credits 4. 2 Lecture Hours. 4 Lab Hours.
Comprehensive mammalian gross anatomy, using the dog as the model species; laboratory dissection, anatomical nomenclature with human correlates and the application of anatomy to clinical situations.
Prerequisites: BIOL 112; junior or senior classification; BIMS major with a minimum overall 2.5 Texas A&M GPA.

VIBS 310 Biomedical Writing
Credit 1. 1 Lecture Hour.
Mechanisms by which knowledge is shared among researchers, clinicians and other science professionals, then disseminated to the general public; an assortment of written assignments to develop writing skills specific for communicating scientific concepts to a variety of audiences. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification.

VIBS 311 Biomedical Explorations through Narrative
Credit 1. 1 Lecture Hour.
Familiarization with the writing style required for biomedical and health science; instruction in writing styles and appropriate techniques to increase and strengthen writing abilities. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification.

VIBS 343 Histology
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Normal tissues of vertebrates including histogenesis of some; histogenesis and organography of mammalian tissues.
Prerequisites: BIOL 112; CHEM 228; junior or senior classification; BIMS major with a minimum overall 2.5 Texas A&M GPA.

VIBS 401 Developmental Neurotoxicology
Credits 2. 2 Lecture Hours.
Effects of exposure to toxic substances on the developing nervous system; content to include mechanisms of toxicity of substances potentially devastating to the developing nervous system including lead, mercury and other heavy metals, alcohol, nicotine (smoking), pesticides, flame retardants, and others.
Prerequisite: Junior or senior classification.

VIBS 404 Food Toxicology and Safety
Credits 3. 3 Lecture Hours.
Toxicity and safety of various foods and food additives, ingredients, and contaminants; occurrence, control and prevention of food transmitted diseases.
Prerequisite: Junior or senior classification.

VIBS 407/NRSC 407 Core Ideas in Neuroscience
Credits 2. 2 Lecture Hours.
General overview of selected core ideas across the full spectrum of neuroscience.
Prerequisite: Junior or senior classification; background in science courses recommended.

VIBS 408 Neuroscience and Religion
Credits 3. 3 Lecture Hours.
Emphasis on the biology of the human mind in the context of religious implications.
Prerequisites: Junior or senior classification; concurrent enrollment in NRSC 407/VIBS 407 or VIBS 407/NRSC 407.

VIBS 411 Tumor Cell Biology and Carcinogenesis
Credits 3. 3 Lecture Hours.
Principles of tumor biology; role of gene-environment interactions; molecular mechanisms regulating cancer initiation and progression; therapeutic treatment of cancer.
Prerequisites: BIMS 320/GENE 320 or equivalent; junior or senior classification.

VIBS 413 Introduction to Epidemiology
Credits 3. 3 Lecture Hours.
Study and measurement of disease and health in populations; examples from literature and current events; emphasizes concepts and appreciation for epidemiologic approaches and applications in life.
Prerequisite: Junior or senior classification.

VIBS 420 Computer Applications in Public Health Research
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the use of computers for public health research applications, including word processing, spreadsheets, data base management and telecommunications.
Prerequisites: Senior classification or approval of instructor; BIMS major with a minimum overall 2.5 Texas A&M GPA.

VIBS 422 Endocrine Toxicology
Credits 4. 4 Lecture Hours.
Impacts of endocrine toxicology on endocrine system; prevalence, environmental and occupational use and disposal of environmental endocrine disrupting chemicals (EDCs); structure, toxicokinetics and mechanism of action of EDCs; effects of EDCs on the development and function, disorders and diseases of the endocrine and reproductive organs.
Prerequisites: Senior classification; approval of instructor.

VIBS 424/VTPP 424 Biomedical Neuroendocrinology and Endocrine Disorders
Credits 3. 3 Lecture Hours.
Neuroendocrine (hypothalamus-pituitary) control of puberty, menstruation, ovulation, pregnancy, labor, lactation, female reproductive cycles, male reproductive functions, thyroid and parathyroid, adrenal and kidney, diabetes, obesity, sleep, memory, learning and aging and their endocrine disorders; overview on biosynthesis, transport and signaling of peptide and neuropeptide hormones, steroids and prostaglandins.
Prerequisites: Honors, junior or senior classification, or approval of instructor.
Cross Listing: VTPP 424/VIBS 424.
VIBS 426/ENTO 426 Methods in Vector-Borne Disease Ecology
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Methodological understanding of how vector-borne diseases are studied in the field and laboratory; hands-on exploration of the ecology disease systems in a one health framework; concepts of design, execution and presentation of research projects; outdoor field work and bio-safety level 2 laboratory.
Prerequisites: Junior or senior classification and approval of instructor.
Cross Listing: ENTO 426/VIBS 426.

VIBS 443 Biology of Mammalian Cells and Tissues
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Molecular phenomena placed in context with tissues, organs and organ systems; cell and tissue structures visualized by light microscopy and electron micrographs for functional relationships; clinical correlations reveal relevance of histology in specific disease states; conceptual thinking exercises facilitate problem solving skills.
Prerequisites: Junior or senior classification in life sciences and interest in health related careers.
VIBS 447 Neurophysiology of Music
Credits 2. 2 Lecture Hours.
Exploration of the heritability and genetics of musical talent, the physiology and physics of hearing, and the neurophysiology of processing sound using primarily German and Austrian compositions. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisite: Junior or senior classification.
VIBS 450/NRSC 450 Mammalian Functional Neuroanatomy
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Functional morphology of the domestic animal and human brain using gross specimens, microscopic sections, interactive computer-, DVD- and video-assisted instructional programs supplemented with clinical case studies.
Prerequisites: Junior or senior classification; BIMS, biology, biochemistry, or psychology majors, or neuroscience minors with overall 3.5 Texas A&M GPA; or approval of instructor.
Cross Listing: NRSC 450/VIBS 450.

VIBS 456 Science in Cinema and Society
Credits 3. 3 Lecture Hours.
Examination of the role science depicted in popular culture plays in shaping basic science literacy.
Prerequisites: VIBS 310; majors only; junior or senior classification; approval of instructor.

VIBS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of a selected problem in veterinary anatomy (with emphasis on neuroscience, cell biology, reproduction, developmental biology, marine mammal anatomy) approved by instructor or selected problems in veterinary public health (with emphasis on food safety, toxicology, epidemiology, informatics, zoonoses).
Prerequisites: Junior or senior classification and approval of instructor.

VIBS 489 Special Topics in...
Credits 1 to 4. 0 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of veterinary anatomy (with emphasis on neuroscience, cell biology, genetics, reproduction, developmental biology, marine mammal anatomy) or selected topics in veterinary public health, epidemiology, zoonoses, food hygiene, food toxicology and mycotoxicology. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of instructor; BIMS major with a minimum overall 2.5 Texas A&M GPA.

VIST - Visual Studies (VIST)

VIST 105 Principles of Design I
Credits 3. 1 Lecture Hour. 7 Lab Hours.
Principles and theory of design and visual communication; elements and organizational structure of the visual language; sign, symbol and meaning; visual perception; problem solving and the creative process; introduction to color theory; emphasis on two-dimensional design.
Prerequisite: Lower division in Visualization.

VIST 106 Principles of Design II
Credits 3. 1 Lecture Hour. 7 Lab Hours.
Fundamentals of spatial design; theory of form; transformations, additive/subtractive techniques as process; 3D composition; traditional modeling and construction techniques; formal visual analysis and critique.
Prerequisite: Grade of C or better in VIST 105.

VIST 131 First Year Seminar
Credit 1. 1 Other Hour.
Seminar on contemporary topics related to Visualization; introduction to college instruction and experiences; focus on writing, exploration, discussion and research.
Prerequisite: Lower division in Visualization.

VIST 170 Introduction to Visualization Computing Environments
Credit 1. 2 Lab Hours.
Procedures, practices and environments useful for visual problem solving using programmatic languages; setup and use of the computing environment; useful system tools and commands; basic programming concepts and constructs.
Prerequisite: Lower division in Visualization.

VIST 201 Writing for Design
Credit 1. 2 Lab Hours.
Writing as a discipline for the development, conceptualization, critique and presentation of visual works; emphasis on portfolio and narrative development.
Prerequisite: Major in visualization.

VIST 205 Principles of Design III
Credits 3. 1 Lecture Hour. 7 Lab Hours.
Introduction to the creative processes, workflows and methodologies used in the field of visualization including interactive design, game design and development and animation.
Prerequisites: Upper division in Visualization.

VIST 206 Visual Studies Studio I
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Theory and practice of visual communication methodologies and processes used in interactive media, game design and development, or animation; visual storytelling.
Prerequisite: Grade of C or better in VIST 205.

VIST 235 Theory and Practice in Visualization
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Professional material development, media theory and trends, copyright law and common business practices; professional practice in pursuit of career paths for creative fields in Visualization.
Prerequisite: Grade of C or better in VIST 205.
VIST 270 Computing for Visualization I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Theory and practice of visual computer based problem solving; system tools; scripting; software design principles and practice; basics of interactive programming and interface design; development concepts and principles useful in digital art and visualization production.
Prerequisite: MATH 151 and upper division in Visualization.

VIST 271 Computing for Visualization II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Continuation of Computing for Visualization I; concepts of object oriented programming; emphasis on principles and techniques useful for three dimensional visualization and real time graphic display.
Prerequisite: MATH 152; grade of C or better in VIST 270.

VIST 275 Introduction to Visualization
Credits 3. 3 Lecture Hours.
Introduction to visualization concepts, techniques and applications; introduction to significant visualization topics including cultural context, visual perception, the digital image, visual language, geometric modeling, animation, image creation, image compositing; application areas, ethical issues in visualization and the future of visualization.
Prerequisites: Grade of C or better in MATH 150 or MATH 151; non Visualization majors only.

VIST 282 2D Visualization Techniques
Credit 1. 2 Lab Hours.
Introduction to software used in the visual arts including 2D raster and vector images for motion graphics, animation, illustration and design. Specific course content will vary based upon curriculum requirements. May be taken for credit up to two hours.
Prerequisite: Major in visualization or minor in art.

VIST 283 3D Visualization Techniques
Credit 1. 2 Lab Hours.
Introduction to software used in the visual arts including 3D modeling, gaming and animation; applicable to 3D printing and rendering. Specific course content will vary based upon curriculum requirements. May be taken for credit up to two hours.
Prerequisite: Major in visualization.

VIST 284 Visualization Techniques
Credit 1. 2 Lab Hours.
Introduction to software used in the visual arts for technical manipulation of content, including film editing, gaming, Augment Reality (AR)/Virtual Reality (VR), or Audio. Specific course content will vary based upon curriculum requirements. May be repeated two times for credit.
Prerequisite: Major in visualization, minor in art, or minor in game design and development.

VIST 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of visualization. May be repeated for credit.
Prerequisite: Approval of instructor.

VIST 305 Visual Studies Studio II
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Theory and practice of visual communication employing digital and conventional media; development of artistic concepts, proposal development and related implementation techniques; introduction to digital painting, 3D modeling, animatics and post production.
Prerequisites: Grade of C or better in VIST 206.

VIST 310 Photography for Visualization
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Advanced aesthetic and thematic control of the digital image; exposure refinement; advanced lighting techniques and digital compositing; digital work-flow; image conversion and control; color management; digital forensics; printing technology, processes and presentation.
Prerequisites: Upper division in Visualization.

VIST 339 Research Techniques in Visualization
Credits 3. 3 Lecture Hours.
Research techniques used in visualization and creative fields; qualitative and quantitative methods, formulating research questions; determining appropriate methods, research planning and designing, data collection, testing and assessment; data analysis and interpretation.
Prerequisites: Grade of C or better in VIST 206 and VIST 235.

VIST 354 Principles of Multimedia Design
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Application and design of web and mobile platforms to create interactive products; planning, design, and development of intuitive user interfaces; focus on user-centered design, interaction principles, and standards-based technologies.
Prerequisite: Grade of C or better in VIST 271 or ARTS 303.

VIST 357 Interaction Design
Credits 3. 3 Lecture Hours.
Concepts, theories and methods in interaction design and interaction; dimensions of interaction design; data gathering methods and evaluation; task analysis; aesthetics and the sensory experience; prototyping, and workflow.
Prerequisite: Upper division in Visualization.

VIST 370 Interactive Virtual Environments
Credits 3. 3 Lecture Hours.
Languages and techniques useful for the creation of real time virtual environments; definition of formal scene description structures; modeling and transformation techniques; simulation techniques; behaviors and message passing; user interaction and animation; multiuser environments; creating virtual interfaces; scripting techniques.
Prerequisite: Grade of C or better in VIST 271.

VIST 372 Creating Digital Environments
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Terminology, principles and practices in the creation of 3D models; mathematical principles of geometrical modeling theory and application of modeling techniques; boolean operations; parametric modeling; modeling; particle systems; L-Systems; nurbs and/or grammar based techniques; lighting setup and control.
Prerequisite: Grade of C or better in VIST 271.

VIST 374 Multimedia Design and Development
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Concepts and techniques for integrating multimedia with user control and interactivity; production of computer presentations and interactive mobile devices; computer animation, graphics, production and use of digital images; scripting techniques; projects for stand-alone computers and mobile devices.
Prerequisite: Junior or senior classification or approval of instructor and undergraduate program coordinator.
VIST 375 Foundations of Visualization
Credits 3. 3 Lecture Hours.
Visualization concepts, techniques and applications; major topic areas include cultural context, application areas, visual perception, the digital image, visual language, coordinate systems, geometric representation, modeling animation, image synthesis, image composing, ethics and the future of visualization.
Prerequisites: Grade of C or better in VIST 271.

VIST 405 Visual Studies Studio III
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Theory and practice in the art and science of the visual image; scientific and mathematical principles as process; information theory and sensorial design; interactivity and user integration; integration of real and virtual environments including lighting design and material definition.
Prerequisites: Grade of C or better in VIST 305, and CARC 301 or VIST 494.

VIST 406 Visual Studies Studio IV
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Theory and practice in the development of the digital image; non-traditional modeling methods; camera control and animation techniques; special effects; creative lighting methods; non-photorealistic rendering; integration of traditional and digital media in the creation of visual works.
Prerequisites: Grade of C or better in VIST 305, and CARC 301 or VIST 494.

VIST 409 Capstone Studio
Credits 3. 1 Lecture Hour. 5 Lab Hours.
Completion of the proposed capstone project; integration of core methodologies, concept development, drawing and design, art history, aesthetics, research, methodology and processes, scripting and programming and digital communication; required peer reviewed publication or other appropriate venue.
Prerequisites: VIST 405 and VIST 439.

VIST 432 Applied Perception
Credits 3. 3 Lecture Hours.
Topics in perceptual science useful for Visualization; cognitive, neural and evolutionary processes that undergird perceptual systems; perceptual factors that influence design decision.
Prerequisite: Upper division in Visualization.

VIST 439 Capstone Proposal Development
Credit 1. 2 Lab Hours.
Individual proposal development for capstone studio; demonstration of ideation and concept development, drawing and design, art history, aesthetics, research, methodology and processes, scripting or programming and digital communication.
Prerequisites: VIST 399 and VIST 375.

VIST 441 Scientific and Technological Developments in Visual Arts
Credits 3. 3 Lecture Hours.
Advanced level course focusing on the relationship between art, science and technology; visual arts before the digital revolution; the development of computer graphic arts.
Prerequisite: Upper division in Visualization.

VIST 442 Digital Characters: Art, Technology, Uses and Meaning
Credits 3. 3 Lecture Hours.
Examination of the art and technology employed in the creation of digital characters; exploration of the reasons for, and impact of, their use in popular media and science; digital character creation techniques; estimating performance requirements; visual examples and written work used to illustrate topics and application areas.
Prerequisite: Grade of C or better in ARTS 349.

VIST 465 Video and Time Based Media
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Exploration of perception, vision and self-expression for communication through time based media; investigation of expression, vision, and visual language as a process; practice of visual communication strategies.
Prerequisites: Grade of C or better in ARTS 349.

VIST 470 Digital Rendering
Credits 3. 3 Lecture Hours.
Creation of photorealistic images; rendering techniques and control; perceptual and physical principles related to creating realistic images; lighting and environmental effects; properties of materials; rendering models and techniques for adding visual detail; shading languages.
Prerequisite: Grade of C or better in VIST 271.

VIST 472 Digital Compositing
Credits 3. 3 Lecture Hours.
Theory and practice of virtual reality; interactive 3D virtual environments; input/output devices, 3D interaction techniques, augmented reality, role corrections, matte techniques, keying, rotoscoping, camera and object tracking, stereo compositing and process workflow.
Prerequisite: Grade of C or better in VIST 271.

VIST 474 Designing for the Web
Credits 3. 2 Lecture Hours. 4 Lab Hours.
Principles of web page and site creation; elements of visual design; typography for the web; web technologies; controlling the page real estate through cascading style sheets (CSS); imaging for the web; creation and use of color and graphics; web standards; building complete web sites.
Prerequisite: Upper division in Visualization or minor in Art.

VIST 476/CSCE 447 Data Visualization
Credits 3. 3 Lecture Hours.
Visual representation and design of data and information; 3D visualization, infographics, data narratives, principles of visual data encoding and interaction techniques.
Prerequisite: Grade of C or better in VIST 271, or CSCE 221, or CSCE 441.
Cross Listing: CSCE 447/VIST 476.

VIST 477/CSCE 446 Virtual Reality
Credits 3. 3 Lecture Hours.
Theory and practice of virtual reality; interactive 3D virtual environments; input/output devices, 3D interaction techniques, augmented reality, role of realism in VR, navigation techniques, design guidelines and evaluation methods.
Prerequisite: Grade of C or better in VIST 271, CSCE 221, or CSCE 441.
Cross Listing: CSCE 446/VIST 477.

VIST 484 Summer Internship
Credits 3. 3 Lecture Hours.
Practical experience in a visualization related company; 10-week internship with a minimum of 400 hours continuous employment; departmental pre-approval through the departmental internship coordinator required; post evaluation conducted following the internship. May not be repeated for credit.
Prerequisites: Upper division in Visualization and approval of visualization intern coordinator.

VIST 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Special problems in visual studies. May be repeated for up to 9 credit hours.
Prerequisite: Approval of instructor and undergraduate program coordinator.
VIST 486 Introduction to Game Design
Credits 3. 3 Lecture Hours.
Computer game design; emphasis on interactive storytelling, game play and interface design; history of computer games, review of selected games; analysis of rules of play and simple game prototype development.
Prerequisite: Grade of C or better in VIST 375, or minor in Game Design and Development.
VIST 487/CSCE 443 Game Development
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Aesthetic and technical aspects of computer game development, including game mechanics, story development, content creation and game programming; includes game design, interface design, 3D modeling and animation, graphics algorithms, shader programming and artificial intelligence; group project includes the design and development of a game from start to finish.
Prerequisite: VIST 486 or CSCE 441 or approval of instructor; junior or senior classification.
Cross Listing: CSCE 443/VIST 487.
VIST 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified field of visual studies. May be repeated for up to 9 credit hours.
Prerequisite: Approval of instructor and undergraduate program coordinator.
VIST 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty members in visualization; emphasis on visual studies. May be repeated 2 times for credit.
Prerequisites: Upper division in Visualization; approval of instructor and undergraduate program coordinator.
VIST 494 Internship
Credits 6. 6 Other Hours.
Practical experience in a visualization related company; equivalent of 600 hours over at least 15 weeks; departmental pre-approval through the departmental internship coordinator required; post evaluation conducted following the internship. May not be repeated for credit.
Prerequisites: Upper division in Visualization and approval of Visualization intern coordinator.

VLCS-Vet Large Animal Clin Sc (VLCS)

VLCS 422 Equine Disease and Epidemiology
Credits 3. 3 Lecture Hours.
Principles and methods of epidemiology applied to equine health and prevention and control of selected equine infectious diseases.
Prerequisite: Enrollment in equine certificate and junior or senior classification, or approval of instructor.
VLCS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of selected problems in biomedical sciences approved by instructor. May be repeated for credit.
Prerequisites: Senior classification in biomedical science and approval of department head.

VSCS-Vet Small Animal Clin Sc (VSCS)

VSCS 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of a selected problem in biomedical sciences approved by instructor. May be repeated for credit.
Prerequisites: Junior or senior classification and approval of department head and instructor.

VTPB - Veterinary Pathobiology (VTPB)

VTPB 212 Genetics in the News
Credits 3. 3 Lecture Hours.
Use of contemporary news articles from the popular press to delve into the science of genetics and genomics and their methodologies to gain a deeper understanding of how data is analyzed and interpreted leading to news headlines.
Prerequisites: Sophomore classification or approval of instructor; high school or college course in biology recommended.
VTPB 221 Great Diseases of the World
Credits 3. 3 Lecture Hours.
Great infectious and parasitic diseases; introduction to the major diseases affecting humans and other mammals including plague, tuberculosis, AIDS and malaria.
Prerequisite: Freshman or sophomore classification.
VTPB 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed individual study of selected problems in microbiology, parasitology, immunology, genetics or pathology as approved by instructor.
Prerequisites: Approval of department head; freshman or sophomore classification.
VTPB 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of veterinary pathobiology. May be repeated for credit.
Prerequisite: Freshman classification.
VTPB 301/WFSC 327 Wildlife Diseases
Credits 3. 3 Lecture Hours.
Basic mechanisms of diseases as they occur in wildlife populations; interplay of habitat requirements, individual physiological requirements and disease producing mechanisms of varied wildlife species.
Prerequisite: Junior classification or approval of department head.
Cross Listing: WFSC 327/VTPB 301.
VTPB 303 Medical Communication in the International Community
Credits 3. 3 Lecture Hours.
To develop an awareness that there is a culture associated with the practice of veterinary and human medicine in other countries.
Prerequisite: Junior or senior classification.
VTPB 334 Poultry Diseases
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Poultry sanitation and diseases. Prevention and control of environmental, nutritional, parasitic and contagious diseases.
Prerequisites: BIOL 107 or BIOL 111; junior or senior classification.
VTPB 405 Biomedical Microbiology
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Fundamentals of bacteriology, mycology, virology, infectious diseases, immunology and identification of pathogenic microorganisms.
Prerequisite: Junior classification in a biological science.

VTPB 407 Advanced Veterinary Microbiology Laboratory
Credits 1 to 3. 1 to 4 Lab Hours.
Modular course (one credit per module) that covers immunological and molecular techniques used with bacteria, parasites and viruses in animals for diagnostic and identification purposes.
Prerequisites: VTPB 405, VTPB 409 and VTPB 438 or concurrent enrollment; junior or senior classification.

VTPB 408 Clinical Microbiology
Credits 3. 3 Lecture Hours.
Conceptual basis for understanding pathogenic microorganisms and the mechanisms by which they cause disease in the human body; operates in an integrated manner with the spectrum of microorganisms including viruses, bacteria, fungi and parasites, describing the factors common to all infectious diseases; molecular biology, pathology and immunology explain the mechanisms for spread, immune response and recovery.
Prerequisites: VTPB 405, VTPB 456 and VTPB 409 or BIOL 454.

VTPB 409 Introduction to Immunology
Credits 3. 3 Lecture Hours.
Diverse concepts relative to immunologic mechanisms inherent to domestic and laboratory animals.
Prerequisite: Advanced classification.

VTPB 410 Cell Mechanisms of Disease
Credits 3. 3 Lecture Hours.
Mechanisms, morphologic manifestations and clinical signs of disease processes at the cellular level.
Prerequisites: CHEM 227 and CHEM 228, or equivalent; junior or senior classification; biomedical sciences major, biomedical engineering major or related field.

VTPB 411 One Health and Tropical Ecology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Traditional lectures, guest lectures, field excursions, field laboratories, discussions, readings, student oral presentations and case studies; form and function of healthy ecosystems, various forms of ecosystem perturbation and how perturbations influence ecosystem, animal, and human health.

VTPB 415 Immunogenetics and Comparative Immunology
Credits 3. 3 Lecture Hours.
Genetic mechanisms used to diversify immune receptors; immunoglobulins, T cell receptors, major histocompatibility complex, natural killer cell receptors, toll-like receptors and many others; selected comparative and veterinary examples of different immune recognition systems; evolution of the immune system.
Prerequisites: Junior or senior classification, GENE 320/BIMS 320 and VTPB 409 or approval of instructor.

VTPB 421 Infectious Diseases of Humans and Animals
Credits 3. 3 Lecture Hours.
Pathogenesis of selected bacterial pathogens of humans and animals; bacterial virulence factors, host immune responses; current concepts of extracellular, facultative intracellular and obligate intracellular bacterial diseases.
Prerequisites: Junior or senior classification.

VTPB 489 Special Topics in...
Credits 0 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of microbiology, immunology, parasitology, genetics or pathology as approved by instructor.
Prerequisites: Approval of department head; junior or senior classification.

VTPP 223 Design of Experiments for Physiology Research
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Team or group formulation and refinement of novel hypotheses and design of controlled in vitro experiments; emphasis on production of publishable research in physiology.
Prerequisite: VTPP 123 or approval of instructor.
VTPP 224 In Vitro Experimentation in Physiology Research
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Team or group collection, analysis and interpretation of data from in vitro experiments; emphasis on production of publishable research in physiology.
Prerequisite: VTPP 223 or approval of instructor.

VTPP 234 Design of Models for Physiology Research
Credits 3. 3 Lecture Hours.
Team or group design of novel models of physiological systems to predict homeostatic behavior arising from the interaction of subsystems; emphasis on production and formal presentation of basic research in physiology.
Prerequisite: VTPP 123 or approval of instructor.

VTPP 235 Analysis and Validation of Models for Physiology Research
Credits 3. 3 Lecture Hours.
Team or group analysis and validation of models of physiological systems to explain disease states and design potential clinical interventions; emphasis on production of publishable applied research in physiology.
Prerequisite: VTPP 234 or approval of instructor.

VTPP 281 Seminar
Credits 4. 4 Other Hours.
Exposure to scientists from a variety of biomedical disciplines through attendance at seminars followed by review and discussion of current scientific work in physiology and related subjects, and subsequent student seminar presentations.
Prerequisites: Freshman or sophomore classification; approval of instructor.

VTPP 285 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Course for freshman and sophomore students who desire additional laboratory work in physiology to supplement required courses.
Prerequisites: Freshman or sophomore classification; approval of department head.

VTPP 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of veterinary physiology and pharmacology. May be repeated for credit.

VTPP 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Laboratory and/or field research supervised by a faculty member. Must be taken on a satisfactory/unsatisfactory basis.
Prerequisites: Freshman or sophomore classification; approval of instructor.

VTPP 323 Physiology of Domestic Animals
Credits 3. 3 Lecture Hours.
Physiology essential to the understanding of life processes; for animal science, wildlife, agriculture and related fields.
Prerequisite: BIOL 111 or equivalent; junior or senior classification.

VTPP 401/BMEN 400 History of Human and Veterinary Medicine in Europe
Credits 4. 4 Lecture Hours.
Addresses the major developments in human and veterinary medicine in Europe from the Middle Ages to the present; explores key events and figures in medical history and analyzes issues of current biomedical concern in a historical context; for example, animal rights, ethics of humane experimentation, euthanasia.
Prerequisites: Admitted to major degree sequence in biomedical engineering; VTPP 434.
Cross Listing: BMEN 400/VTPP 401.

VTPP 420 Applied Pharmacology
Credits 2. 2 Lecture Hours.
Modern themes about therapeutic drugs in animals and people including drug discovery and development, clinical use of drugs and drug regulation.
Prerequisites: Grade of C or better in BICH 410, VTPP 423, or VTPP 434, or approval of instructor.

VTPP 423 Biomedical Physiology I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Human physiological principles, review of cellular physiology, and development of an understanding of the nervous system and muscle, cardiovascular, and renal physiology; clinical applications related to organ systems.
Prerequisites: VIBS 305; junior or senior classification.

VTPP 424/VIBS 424 Biomedical Neuroendocrinology and Endocrine Disorders
Credits 3. 3 Lecture Hours.
Neuroendocrine (hypothalamus-pituitary) control of puberty, menstruation, ovulation, pregnancy, labor, lactation, female reproductive cycles, male reproductive functions, thyroid and parathyroid, adrenal and kidney, diabetes, obesity, sleep, memory, learning and aging and their endocrine disorders; overview on biosynthesis, transport and signaling of peptide and neuropeptide hormones, steroids and prostaglandins.
Prerequisites: Honors, junior or senior classification, or approval of instructor.
Cross Listing: VIBS 424/VTPP 424.

VTPP 425 Pharmacology
Credits 3. 3 Lecture Hours.
Introduction to pharmacokinetics and pharmacodynamics; survey of major pharmaceutical classes; uses, mechanisms of action and adverse reactions of selected agents.
Prerequisites: VTPP 423 or approval of instructor; junior or senior classification.

VTPP 427 Biomedical Physiology II
Credits 3. 3 Lecture Hours.
Continuation of VTPP 423. Fluid balance and acid-base balance; development of an understanding of respiratory, gastrointestinal, endocrine and reproductive physiology using human and other mammalian models; clinical applications related to organ systems.
Prerequisites: VTPP 423; junior or senior classification.

VTPP 429 Introduction to Toxicology
Credits 3. 3 Lecture Hours.
Principles of toxicology with emphasis on environmental issues and human and animal health issues; study of the regulatory processes concerning toxic chemicals.
Prerequisite: Junior or senior classification.
VTTP 434 Physiology for Bioengineers I
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Engineering analysis of living systems; quantitative aspects of physiology and engineering applications to clinical medicine; body fluid balance, solute transport, endocrinology, reproduction physiology, neurophysiology, and skeletal and smooth muscle physiology.
Prerequisite: Biomedical engineering (BMEN) major or approval of instructor.

VTTP 435 Physiology for Bioengineers II
Credits 4. 3 Lecture Hours. 2 Lab Hours.
Engineering analysis of living systems; quantitative aspects of physiology and engineering applications to clinical medicine; vascular physiology, cardiac physiology, bone physiology, regenerative medicine, renal physiology, pathophysiology.
Prerequisite: VTTP 434 or approval of instructor.

VTTP 438 Analysis of Genomic Signals
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Overview of current high throughput technology for data acquisition and analysis of genomic signals (e.g. mRNA or proteins); emphasis on the microarray technology, methods for analyzing microarray data, and approaches to model the underlying phenomena from the systems biology perspective.
Prerequisites: Junior or senior classification; BIMS 320/GENE 320 or GENE 320/BIMS 320 and BIOL 111, BIOL 112 or BIOL 213 or equivalent; STAT 302 or equivalent.

VTTP 444 Practicum in Biomedical Research
Credits 3. 3 Other Hours.
Team or group development of sustainable collaborations that include biomedical research, high-impact educational practices and community service; focus on connecting research experience to future career goals.
Prerequisites: VTTP 423 and VTTP 427 or VTTP 434 and VTTP 435; junior or senior classification.

VTTP 452 Fetal and Embryo Physiology
Credits 3. 3 Lecture Hours.
Introduction to the physiologic processes driving embryonic development and pregnancy; focus on embryo implantation, establishment of the placenta, development of the fetal circulatory systems and the molecular processes governing embryo differentiation and development; special emphasis on the major organ systems affected by pediatric disease and on the actions of teratogens.
Prerequisite: BICH 410 or equivalent, or approval of instructor.

VTTP 481 Seminar
Credits 4. 4 Other Hours.
Exposure to scientists from a variety of biomedical disciplines through attendance at seminars followed by review and discussion of current scientific work in physiology and related subjects, and subsequent student seminar presentations.
Prerequisites: Junior or senior classification; and approval of instructor.

VTTP 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Course for junior and senior students who desire additional laboratory work in physiology to supplement required courses.
Prerequisites: Junior or senior classification and approval of department head.

VTTP 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of physiology, pharmacology, endocrinology or toxicology. May be repeated for credit.
Prerequisite: Junior or senior classification.

VTTP 491 Research
Credits 0 to 4. 0 to 4 Other Hours.
Laboratory and/or field research supervised by a faculty member.
Prerequisites: Junior or senior classification; approval of instructor.

WFSC-Wildlife & Fisheries Sci (WFSC)

WFSC 101 Introduction to Wildlife and Fisheries
Credits 3. 3 Lecture Hours.
Introduction to a variety of topics in the wildlife and fisheries discipline to prepare to be successful both in the field and in further studies; case studies will guide through current issues and laboratory concepts will provide hands on experience in methods and skills important in the field of wildlife and fisheries.
Prerequisite: Open only to students with less than 36 hours at Texas A&M University.

WFSC 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of faculty member in wildlife and fisheries sciences. May be repeated 3 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

WFSC 300/ENTO 300 Field Studies
Credits 3. 3 Other Hours.
Integration of principles of animal and plant ecology with environmental factors to characterize wildlife populations; intensive analysis of specific areas will emphasize either the development of a wildlife management plan or a general vertebrate natural history survey.
Prerequisite: Prior approval of instructor and concurrent enrollment in WFSC 450/ENTO 450 and WFSC 451/ENTO 451.
Cross Listing: ENTO 300/WFSC 300.

WFSC 301 Wildlife and the Changing Environment
Credits 3. 3 Lecture Hours.
Using an ecosystem approach, analyzes changes in the North American environment; effects of these changes on wildlife populations; and reviews areas of major, current concern.
Prerequisites: Junior or senior classification; restricted to non-majors.

WFSC 302 Natural History of the Vertebrates
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to life histories of fishes, amphibians, reptiles, birds and mammals; lecture covers vertebrate groups on a worldwide scale and emphasizes a comparative approach to the study of adaptation to the environment; lecture topics include behavior, reproduction, feeding specializations, evolutionary history, locomotion, hibernation, migration, endangered species, zoogeography and importance to man; laboratory emphasizes the recognition of Texas vertebrates. Designed for both science and non-science majors.
Prerequisites: BIOL 111 and BIOL 112 or BIOL 101 and BIOL 107 or equivalent.

WFSC 303 Fish and Wildlife Laws and Administration
Credits 3. 3 Lecture Hours.
Review and analysis of state and federal laws and international treaties and conventions affecting fish and wildlife; their application and administration; organizational structure of state, federal and international agencies; their objectives, policies and practices.
Prerequisites: Grade of C or better in WFSC 101; grade of C or better in RENR 205 or BIOL 357; junior classification or approval of instructor.
WFSC 304 Wildlife and Fisheries Conservation
Credits 3. 3 Lecture Hours.
Ecological principles used to conserve and manage wildlife and fisheries resources at the individual, population and community levels; topics include conservation biology, species interactions, animal-habitat relationships, population dynamics and harvesting, habitat management and restoration and human dimensions of fish and wildlife conservation.
Prerequisites: RENR 205 and junior or senior classification or approval of instructor.

WFSC 311 Ichthyology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to the study of fishes, their biology, classification, evolution, distribution, ecology and economic importance.
Prerequisite: WFSC 302 or BIOL 318.

WFSC 314 Down River: Biology of Gulf Coastal Fishes
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Understanding the biological complexity of Gulf coast river systems while gaining hands-on experience in field and museum ichthyological techniques; sampling of the Guadalupe and San Antonio rivers; participation in lectures, museum preparation and archiving specimens at the Biodiversity Research and Teaching Collections (BRTC).
Prerequisites: WFSC 311 with a grade of B or better and approval of instructor.

WFSC 315 Herpetology
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Evolutionary ecology of reptiles and amphibians and conservation biology of the major groups; labs concentrate on the global diversity of herps and the herpetofauna of Texas; foundation for students in wildlife science and biology.
Prerequisites: WFSC 302 or approval of instructor; WFSC 302 or BIOL 318.

WFSC 316 Field Herpetology
Credit 1. 3 Lab Hours.
Field work involving collection and preservation of herpetological specimens; natural history, ecological relations. Available for students enrolled in WFSC 315 who would like to have field trips.
Prerequisite: WFSC 315 or registration therein.

WFSC 327/VTPB 301 Wildlife Diseases
Credits 3. 3 Lecture Hours.
Basic mechanisms of diseases as they occur in wildlife populations; interplay of habitat requirements, individual physiological requirements and disease producing mechanisms of varied wildlife species.
Prerequisite: Junior classification or approval of department head.
Cross Listing: VTPB 301/WFSC 327.

WFSC 335 Natural History of the Invertebrates
Credits 4. 3 Lecture Hours. 3 Lab Hours.
A phylogenetic survey of the invertebrate phyla including their taxonomy, morphology, life histories, ecology, ethology and zoogeography. Field trips may be required for which departmental fees may be assessed to cover costs.

WFSC 401 General Mammalogy
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Mammalian biology; evolution, classification, biogeography, reproduction, physiology, ecology, and behavior; focuses on basic concepts necessary for a foundation in both wildlife science and biology.
Prerequisites: WFSC 302 or BIOL 318; junior classification.

WFSC 402 General Ornithology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Introduction to study of birds, their structure, classification, geographic distribution, ecological relations and economic status; foundation of wildlife science, also for museum work.
Prerequisites: WFSC 302 or BIOL 318; junior classification.

WFSC 403 Animal Ecology
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Concepts of animal ecology which emerge at various levels of organization; the ecosystem, the community, the population and the individual; laboratories emphasis on the quantitative analysis of field data and the simulation of population dynamics.
Prerequisites: Grade of C or better in RENR 205 or approval of instructor; junior classification.

WFSC 404 Aquatic Ecosystems
Credits 3. 3 Lecture Hours.
Inland and coastal zone aquatic ecosystems, lower foodweb structure, functioning and influence on living resources; lakes, rivers, estuaries, open bay systems, factors impacting ecosystem health and fisheries; harmful algal blooms, reduced water inflows, eutrophication and hypoxia formation as they affect foodwebs, recruitment of commercially and recreationally important fisheries.
Prerequisite: Junior or senior classification or approval of instructor.

WFSC 405 Urban Wildlife and Fisheries
Credits 3. 3 Lecture Hours.
Urban wildlife and fisheries trains students to establish and maintain diverse, self-sustaining urban wildlife and fish populations at levels in harmony with ecological, social, and economic values of the human community and to develop optimal levels of public appreciation and use of urban wildlife and fish resources and associated habitats.
Prerequisites: RENR 205; junior or senior classification.

WFSC 406 Wildlife Habitat Management
Credits 3. 3 Lecture Hours.
Designed to acquaint the student with major land use practices on lands that produce wildlife, how these influence wildlife production and alterations or manipulations of habitat used to achieve specific wildlife management goals.
Prerequisites: Grade of C or better in RENR 205 and WFSC 302 or approval of instructor; junior classification.

WFSC 407 Field Wildlife Habitat Management
Credit 1. 2 Lab Hours.
Field and laboratory studies of specific wildlife habitat management practices with special emphasis on those used in Texas; attendance required at four weekend field trips to study wildlife habitat operations.
Prerequisite: Concurrent registration in WFSC 406 required.

WFSC 408 Techniques of Wildlife Management
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Techniques available to directly and indirectly manipulate wild animal populations to achieve balance between socioeconomic and aesthetic values.
Prerequisites: Senior classification or approval of instructor.

WFSC 409 NATURE in the Classroom: Needed Activities To Understand Resource Ecology
Credit 1. 3 Lab Hours.
Integration of natural resources through conservation ecology programs, utilization of research techniques adaptable for classroom use; field trips to community facilities, gaming strategies and computer simulations.
Prerequisites: WFSC 420 or RENR 205 or concurrent enrollment; junior or senior classification.
WFSC 410 Principles of Fisheries Management
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Basic knowledge from ichthyology, biology of fishes and limnology related to applied aspects of freshwater and marine fishery science. Management techniques applicable to streams, ponds, reservoirs, estuaries and the oceans.
Prerequisites: BIOL 357, or grade of C or better in WFSC 311, WFSC 403, or WFSC 404, or approval of instructor.

WFSC 413 Problem Solving in Wildlife and Fisheries
Credits 4. 2 Lecture Hours. 4 Lab Hours.
Project-based to combine experiences and knowledge from other wildlife and fisheries sciences courses; critical thinking about issues and relevant questions in wildlife and fisheries sciences field; emphasis on completion of course project and answering research or management question.
Prerequisites: Grade of C or better in WFSC 317 and WFSC 304; STAT 301, STAT 302, or STAT 303; senior classification.

WFSC 414 Ecology of Lakes and Rivers
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Biological, physical, chemical and geological characteristics of fresh waters; human impacts, which include influence of industrial, domestic, conservation and restoration activities.
Prerequisites: CHEM 101 and CHEM 222; PHYS 201; junior or senior classification.

WFSC 415/MARB 415 Coastal Marine Biology and Geology of Alaska
Credits 3. 3 Lecture Hours.
Field course conducted in south-central Alaska for two weeks; work at the remote Alice Cove Research Station located in Prince William Sound; conduct research on marine mammals behavior and ecology; exploration of the geology and glaciology.
Prerequisite: BIOL 112.
Cross Listing: MARB 415/WFSC 415.

WFSC 417 Biology of Fishes
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Fishes' physiological and morphological adaptations for life in aquatic systems; physiological and behavioral responses of fish to environmental variation. Laboratory emphasizes design, conduct and analysis of virtual experiments featuring 'EcoFish,' a simulation model of fish autecology.
Prerequisites: WFSC 302 or WFSC 311; WFSC 414; or approval of instructor.

WFSC 418 Ecology of the Coastal Zone
Credits 3. 3 Lecture Hours.
Introduction to the ecosystems that comprise the coastal zone with an emphasis on the role of freshwater inflows; open bay systems are the focus of lectures, but fringing habitats are also discussed; human components of the coastal zone are also discussed including industrial, commercial domestic, conservation and restoration issues.
Prerequisite: Junior or senior classification.

WFSC 419 Wildlife Restoration
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Study of the fundamentals of the restoration of animal populations and the resources they require; factors that control the distribution and abundances of animals in relation to restoration; and how restoration plans for wildlife are developed.
Prerequisite: RENR 205 or equivalent; junior or senior classification or approval of instructor; WFSC 406 and WFSC 407 and ESSM 320 preferred.

WFSC 420 Ecology and Society
Credits 3. 3 Lecture Hours.
Study and compare human and natural ecosystems using diversity, interrelations, cycles, and energy as the conceptional organization; central themes are sustainability, stewardship and science.
Prerequisite: Junior or senior classification.

WFSC 422 Ethology
Credits 3. 3 Lecture Hours.
Survey of the control, ontogeny, function and natural selection of behavior in a variety of vertebrate and invertebrate species; interaction between the organism and its environment with regard to the mechanisms and adaptive significance of behavior; evolution of anti-predator, feeding, reproductive and cooperative traits.
Prerequisite: BIOL 112 or equivalent.

WFSC 425 Marine Fisheries
Credits 3. 3 Lecture Hours.
Survey of fisheries for marine vertebrates and invertebrates primarily in the Gulf of Mexico and South Atlantic with special emphasis being directed to their biology, economics and management.

WFSC 427 Disease Management in Fisheries and Aquaculture
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Fish and invertebrates of economic importance; factors influencing the maintenance of health for each species group; problems and solutions unique to each phase of aquaculture from breeding to growout; application of routine diagnosis and other management tools.
Prerequisite: Junior classification.

WFSC 428 Wetland Ecosystem Management
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Ecosystem approach to the ecology and management of wetlands; emphasis on factors controlling wetland structure and function, characteristics of different wetland types, and applied issues of wetland restoration, creation and delineation.
Prerequisite: Junior or senior classification.

WFSC 433 Molecular Ecology in Wildlife and Fisheries
Credits 3. 3 Lecture Hours.
Fundamentals of molecular ecology applied to conservation and management of wildlife and fisheries; presentation and discussion of scientific papers on wildlife and fisheries molecular ecology; topics in conservation, management and aquaculture.
Prerequisites: BIOL 112 or equivalent; junior or senior classification.

WFSC 444 Aquaculture I: Principles and Practices
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Scientific perspectives concerning major principles associated with fish production under controlled conditions; production techniques associated with prominent species produced via aquaculture throughout the world with emphasis on those cultured in the United States.
Prerequisite: Junior or senior classification or approval of instructor.

WFSC 447 Aquaculture II: Aquatic Animal Nutrition, Feeding and Disease Management
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Review of scientific perspectives on major aspects of nutrition, diet formulation and feeding of aquatic species in aquaculture; major disease-causing organisms encountered in aquaculture and means of disease prevention and control.
Prerequisite: Junior or senior classification or approval of instructor.
WFSC 448 Fish Ecophysiology
Credits 3. 3 Lecture Hours.
Ecological domains and demands placed on physiological performance; physiological mechanisms and control in fishes, interaction of physiological mechanisms with environment, emphasis in adaptive value of physiological traits; analysis of physiology and adaptation with models; process and functional modeling.
Prerequisite: Junior or senior classification or approval of instructor.

WFSC 449 Professional Aspects of Aquatic Ecology
Credits 3. 3 Lecture Hours.
Discipline of aquatic sciences through oral presentation and written documentation; job market expectations, resume preparation, job application, and preparation for and giving an interview.
Prerequisite: Junior or senior classification or approval of instructor.

WFSC 450/ENTO 450 Caribbean Conservation
Credits 2. 6 Lab Hours.
Provide experience in and appreciation for diverse tropical habitats and the problems associated with conserving these habitats; design and conduct individual research projects on topics of their choice with approval from the instructors on project design and feasibility.
Prerequisites: Concurrent enrollment in ENTO 300/WFSC 300 and ENTO 451/WFSC 451; junior or senior classification.
Cross Listing: ENTO 450/WFSC 450.

WFSC 451/ENTO 451 Caribbean Research Seminar
Credit 1. 1 Other Hour.
Document research activities; keep a journal of activities and research methods during study abroad trips.
Prerequisites: Concurrent enrollment in ENTO 300/WFSC 300 and ENTO 451/WFSC 451; junior or senior classification.
Cross Listing: ENTO 450/WFSC 451.

WFSC 454 Amazon Field School
Credits 4. 4 Lecture Hours.
Investigation of social and ecological complexities of biodiversity conservation in tropical ecosystems; biological and social science approaches to evaluate causes, consequences and solutions to biodiversity loss through ecology, culture and governance.
Prerequisites: Junior or senior classification with a minimum GPA of 2.0 and approval of instructor.

WFSC 457 Wildlife Ecotoxicology
Credits 3. 3 Lecture Hours.
Approaches used to identify, evaluate and manage ecological risks of chemicals on aquatic and terrestrial environments; emphasis on methods useful to assess effects of contaminants on ecosystems; testing techniques, site assessment and monitoring procedures, regulatory requirements and field and laboratory techniques.
Prerequisite: Grade of C or better in RENR 205, or CHEM 101, or approval of instructor.

WFSC 462/BIOL 462 Amazon River Tropical Biology
Credits 3. 3 Lecture Hours.
History, ecology, evolutionary-biology, geography and culture of the Amazon River and Rio Negro; exploration of the world's most bio-diverse river during a 10-day expedition from Manaus, Brazil; survey biota, record observations about the ecosystem, select research topics, development of presentations.
Prerequisites: BIOL 107, BIOL 112, BIOL 113, BIOL 357 or RENR 205; or approval of instructor.
Cross Listing: BIOL 462/WFSC 462.

WFSC 481 Seminar
Credit 1. 1 Lecture Hour.
Oral discussion of selected topics from technical literature on recent advances in the field.
Prerequisites: Senior classification in wildlife and fisheries sciences; 6 hours of 300- or 400-level wildlife and fisheries sciences courses. May be repeated for credit.

WFSC 484 Internship
Credits 0 to 9. 0 to 9 Other Hours.
Practical experience working in a professional wildlife or fisheries facility.
Prerequisite: Approval of department head.

WFSC 485 Directed Studies
Credits 1 to 3. 1 to 3 Other Hours.
Individual study and research on selected problem approved by instructor and academic advisor.
Prerequisites: Junior or senior classification; approval of department head.

WFSC 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of wildlife and fisheries sciences. May be repeated for credit.
Prerequisite: Approval of department head.

WFSC 491 Research
Credits 0 to 6. 0 to 6 Other Hours.
Laboratory and/or field research supervised by a faculty member in wildlife and fisheries sciences. Registration in multiple sections of this course are possible within a given semester provided the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification; approval of instructor.

WGST - Women's & Gender Studies (WGST)

WGST 200 Introduction to Women's and Gender Studies
Credits 3. 3 Lecture Hours.
Historical and cross-cultural perspectives on women’s roles in culture, the workplace, the family and other socio-political institutions; the social construction of gender; sexuality and racism; social control mechanisms and ideologies.

WGST 207/SOCI 207 Introduction to Gender and Society
Credits 3. 3 Lecture Hours.
Similarities and differences between females and males in a number of cultures throughout the world; sociological analysis of gender in relation to social structure.
Cross Listing: SOCI 207/WGST 207.

WGST 210/PSYC 210 Psychological Aspects of Human Sexuality
Credits 3. 3 Lecture Hours.
Interface between human sexuality, reproductive development and gender roles across the lifespan; theoretical and research literature promotes understanding of hormonal influences, learning processes, cultural differences, sexual response and love and attraction.
Prerequisite: PSYC 107.
WGST 213/SOCI 213 Gender and Health
Credits 3. 3 Lecture Hours.
An examination of social and historical context of health in the U.S., including inequities in health by gender, race, class and gendered issues in health professions.
Cross Listing: SOCI 213/WGST 213.
WGST 285 Directed Studies
Credits 0 to 3. 0 to 3 Other Hours.
Readings and/or research for specific needs of students majoring or minoring in women's and gender studies.
Prerequisites: WGST 200 and approval of instructor.
WGST 289 Special Topics in...
Credits 1 to 4. 4 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of women's/gender studies. May be repeated for credit.
Prerequisite: Approval of director.
WGST 300/PSYC 300 Psychology of Women
Credits 3. 3 Lecture Hours.
Theoretical and research literature relevant to psychological assumptions about the female personality; challenges to and verification of these assumptions by recent experimental studies.
Prerequisite: PSYC 107.
Cross Listing: PSYC 300/WGST 300.
WGST 303 Psychology of Women of Color
Credits 3. 3 Lecture Hours.
Interdisciplinary theories to study the unique yet intersectional experiences of women from different racial groups, ethnicities, nationalities and cultural backgrounds; scholarly research from the diversity science field; contemporary topics that have developed in a global context; examination of complex issues, which affect women of color across the lifespan.
Prerequisite: Grade of C or better in AFST 201 or PSYC 107 or WGST 200, or approval of instructor.
Cross Listing: AFST 303 and PSYC 303.
WGST 307 Gender and Education
Credits 3. 3 Lecture Hours.
Overview of gender and education; role of feminism and feminist theory; intersections of gender, race, class, ethnicity, and sexuality.
Prerequisite: Junior or senior classification.
WGST 310/SOCI 310 Motherhood in Society
Credits 3. 3 Lecture Hours.
Examines expectations and/or practices relating to motherhood, with consideration of their cultural impact; taught from a social science perspective.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: SOCI 310/WGST 310.
WGST 315/SOCI 315 The Marriage Institution
Credits 3. 3 Lecture Hours.
Courtship, engagement, marriage, family formation, personal adjustment, conflict, financing and child rearing.
Prerequisite: Junior or senior classification.
Cross Listing: SOCI 315/WGST 315.
WGST 316/SOCI 316 Sociology of Gender
Credits 3. 3 Lecture Hours.
Sociological explanations of status differences between men and women; cross-cultural comparisons; gender role socialization, cultural stereotypes, discrimination; gender roles and status in the family, economy, religion, science, other social institutions; deviance, victimization and gender; recent social changes.
Cross Listing: SOCI 316/WGST 316.
WGST 317/POLS 317 Women in Politics
Credits 3. 3 Lecture Hours.
Role of women in the political system; treatment of women in political theory; effect of law on women's status; women as political leaders; current policy issues of concern to women.
Prerequisite: POLS 206.
Cross Listing: POLS 317/WGST 317.
WGST 318/ECON 318 The Economics of Gender and Race
Credits 3. 3 Lecture Hours.
Theories and evidence on gender and race differences in labor market outcomes; labor supply and the role of family formation; the effect of human capital and discrimination on earnings; analysis of government policies; international comparisons.
Prerequisites: ECON 323 with a grade of C or better; junior or senior classification.
Cross Listing: ECON 318/WGST 318.
WGST 320 Feminist Inquiry and Research Methods
Credits 3. 3 Lecture Hours.
Interdisciplinary exploration of feminist research methods and inquiry in the humanities, social sciences and sciences; ethical approaches to research; questions of epistemology; feminist research design.
Prerequisites: WGST 200.
WGST 330 Women in Ancient Greece and Rome
Credits 3. 3 Lecture Hours.
Survey of women in classical Greece and Rome; emphasis on female occupations and family relationships, legal and political status, traditional values, notorious women, how women were viewed and how they viewed themselves.
Prerequisite: Junior or senior classification.
Cross Listing: CLAS 330 and HIST 330.
WGST 332/SOCI 332 Alternative Genders
Credits 3. 3 Lecture Hours.
Examination of theories and case studies involving alternative genders and sexualities, studies in their cultural contexts and including the role of factors such as race, class, ethnicity, age, and physical characteristics.
Prerequisites: 3 credits in SOCI or WGST; junior or senior classification.
Cross Listing: SOCI 332/WGST 332.
WGST 333/ENGL 333 Lesbian, Gay, Bisexual, Transgender and Queer Literatures
Credits 3. 3 Lecture Hours.
Representations of sexuality and gender from classical times to the present, studied in their historical and cultural contexts.
Prerequisites: Junior or senior classification.
Cross Listing: ENGL 333/WGST 333.
WGST 342 The Rhetoric of Gender and Health
Credits 3.3 Lecture Hours.
Study of field of rhetoric of health and medicine with specific attention to the study of gender, including issues in reproduction, expertise and illness; range of methods and methodological approaches within the field.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 342 and COMM 342.

WGST 343/FILM 343 Sex, Gender and Cinema
Credits 3.3 Lecture Hours.
Exploration of a significant topic at the intersection of women's/ gender studies and film, such as cinema and sexuality studies, cinema and women, and cinema and masculinity; may include discussion of production, film content, and/or reception.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: FILM 343/WGST 343.

WGST 367/POLS 367 Women in Government in Comparative Perspective
Credits 3.3 Lecture Hours.
Examination of women's representation in government based on comparison across multiple nation-states; focus on legislative and executive branches of democratic governments.
Prerequisites: POLS 206; junior or senior classification or approval of department head.
Cross Listing: POLS 367/WGST 367.

WGST 374/ENGL 374 Women Writers
Credits 3.3 Lecture Hours.
History of literature by women in English; emphasis on continuity of ideas and on literary contributions; study of a variety of genres with particular attention to the significance of gender in the racial, social, sexual and cultural contexts of women writing in English.
Prerequisite: Junior or senior classification; ENGL-374 also taught at Galveston campus.
Cross Listing: ENGL 374/WGST 374.

WGST 394 Gender and Genre
Credits 3.3 Lecture Hours.
Exploration and analysis of the ways in which a single literary and/or film genre resonates with gendered perspectives and sexual subjectivity.
Prerequisites: Junior or senior classification; WGST 200 or FILM 251/ENGL 251 or ENGL 251/FILM 251.

WGST 401 Feminist Theory
Credits 3.3 Lecture Hours.
Inquiry-based examination of feminist theory from various periods and disciplinary perspectives, with application to societal debates and controversies.
Prerequisites: WGST 200 or approval of instructor; junior or senior classification.

WGST 403 Language and Gender
Credits 3.3 Lecture Hours.
Language and gender from a sociolinguistic perspective; gender in the words and structures of language; gender representation and gendered language use in the media, and a variety of sociocultural contexts; language use in intimate relationships; computer-mediated discourse; language, sexuality, and sexual orientation.
Prerequisite: Junior or senior classification.
Cross Listing: ENGL 403 and LING 403.

WGST 404/ANTH 404 Women and Culture
Credits 3.3 Lecture Hours.
Examines women's lives in evolutionary and cross-cultural perspective; women's roles in subsistence, politics, religion and economics in traditional cultures; women's roles in international development; the cultural and social construction of women's biology cross-culturally including circumcision, menstruation, pregnancy, childbirth and motherhood.
Prerequisite: Junior or senior classification; approval of instructor.
Cross Listing: ANTH 404/WGST 404.

WGST 407/COMM 407 Gender, Race and Media
Credits 3.3 Lecture Hours.
The contributions of women and ethnic groups to the evolution of the media; the portrayal of women and ethnic groups in the mass media; issues resulting from the recognition of women and ethnic groups as media audiences.
Prerequisite: Junior or senior classification or approval of instructor.

WGST 409/PHIL 409 Studies in Gender and Philosophy
Credits 3.3 Lecture Hours.
Analysis, from a gender-studies perspective, of a single figure or concept in the history of philosophy. May be repeated 1 time for credit with a different focus.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: PHIL 409/WGST 409.

WGST 410/SOCI 410 Reproduction, Birth and Power
Credits 3.3 Lecture Hours.
Examination of topics related to reproductive practices, experiences and ideologies and of the constructed and contested meanings surrounding womanhood, motherhood, sexuality, reproductive freedom and eugenics.
Prerequisites: SOCI 205; junior or senior classification.
Cross Listing: SOCI 410/WGST 410.

WGST 411/COMM 411 Representations of Motherhood
Credits 3.3 Lecture Hours.
Examination of understandings of motherhood from a humanities perspective and over a variety of cultures and time periods, as reflected in written, media and/or oral texts.
Prerequisites: Junior or senior classification or approval of instructor.
Cross Listing: COMM 411/WGST 411.

WGST 420/COMM 420 Gender and Communication
Credits 3.3 Lecture Hours.
Survey of the role of gender in communication processes; focus on communication differences between men and women in contexts such as the family, school and work organizations; discussion of media influence in gender stereotypes.
Cross Listing: COMM 420/WGST 420.

WGST 421/SOCI 421 Gender & Crime
Credits 3.3 Lecture Hours.
Gender & Crime. Gender disparities in contemporary patterns of crime, victimization and incarceration; key concepts, major theories and empirical research studies around gender and crime.
Prerequisite: Grade of C or better in SOCI 207/WGST 207, SOCI 211, SOCI 304, SOCI 316/WGST 316, WGST 200, WGST 207/SOCI 207, or WGST 316/SOCI 316.
Cross Listing: SOCI 421/WGST 421.
WGST 422/FREN 422 Studies in Gender and French Literature
Credits 3. 3 Lecture Hours.
The role of gender in the production, dissemination, reception and interpretation of literary texts in the French tradition, including continental France as well as the Francophone literatures of West Africa, Canada, and elsewhere; taught in English.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: FREN 422/WGST 422.

WGST 424/SOCI 424 Women and Work in Society
Credits 3. 3 Lecture Hours.
Social context of women's work; work patterns, labor force participation, occupational destinations and occupational mobility; alternatives to the conventional division of labor by sex in society.
Cross Listing: SOCI 424/WGST 424.

WGST 428/COMM 428 Women's Rhetoric
Credits 3. 3 Lecture Hours.
Examination of the historical imbrication of masculinity and rhetoric in relation to women's participation in political life, reception of women's rhetoric in the public sphere, and remembrance and representation of women as rhetorical agents throughout history; consideration of women's rhetoric in various cultural arenas.
Prerequisite: Junior or senior classification.
Cross Listing: COMM 428/WGST 428.

WGST 430/MGMT 430 Employment Discrimination Law
Credits 3. 3 Lecture Hours.
Legal issues surrounding employment discrimination, including disparate treatment and impact; intent; affirmative action; sexual harassment; pregnancy, sex, race, religious, salary, disability, age, and ethnic discrimination; policy issues and perspectives to aid human resource specialists and managers.
Prerequisite: Senior classification.
Cross Listing: MGMT 430/WGST 430.

WGST 445 Queer Theory
Credits 3. 3 Lecture Hours.
Examines origins of theories of gender and sexual diversity and their intersections with feminist theories; considers foundational and contemporary texts that address queer theory.
Prerequisites: 6 hours in Women's and Gender Studies; senior classification or approval of instructor.

WGST 452/ITAL 452 Women and Gender in Italy
Credits 3. 3 Lecture Hours.
The historical and cultural dynamics forging the notion of woman and gender in Italian society and cultural production; discussion of cultural works, media and theoretical texts concerning subjectivity and language, body and culture; taught in English.
Prerequisite: ITAL 201 or concurrent enrollment or approval of instructor.
Cross Listing: ITAL 452/WGST 452.

WGST 461/HIST 461 History of American Women
Credits 3. 3 Lecture Hours.
Cultural, political, legal and religious factors that helped shape the role and character of women in American society from colonial times to the present; historical role of women in the development of the nation.
Cross Listing: HIST 461/WGST 461.

WGST 462/POLS 462 Women and the Law
Credits 3. 3 Lecture Hours.
The legal status of American women from the adoption of the Constitution to the present: constitutional developments; the 19th Amendment and the proposed Equal Rights Amendment; employment; family law; reproductive rights; education; sexual equality in context of other claims to equality; law and social norms.
Prerequisite: POLS 206 or approval of department head.
Cross Listing: POLS 462/WGST 462.

WGST 463 Gender in Asia
Credits 3. 3 Lecture Hours.
Gender dynamics in Asia; changes in gender roles; women's movements; women and the economy; women and politics; men's and women's private lives.
Prerequisite: Junior or senior classification or approval of instructor.
Cross Listing: ASIA 463 and SOCI 463.

WGST 473/HIST 473 Women's History in the Modern U.S.
Credits 3. 3 Lecture Hours.
History of women in the U.S. from the late nineteenth century to the present; role of intersectionality in defining the experience of modern womanhood; women as activists, workers, consumers, mothers, and feminists; experiences, lives and influence of women of color; examination of contemporary social, political and economic histories.
Prerequisite: Junior or senior classification or approval of instructor; HIST-473 also taught at Galveston campus.
Cross Listing: HIST 473/WGST 473.

WGST 474/ENGL 474 Studies in Women Writers
Credits 3. 3 Lecture Hours.
A different topic each term examining women's writing through historical period, genre, cross-cultural study and/or feminist literary theory. May be repeated for credit.
Prerequisites: 3 credits of literature at the 300-level; junior or senior classification.
Cross Listing: ENGL 474/WGST 474.

WGST 476/HIST 476 Sex and Sexuality in History
Credits 3. 3 Lecture Hours.
Changing ideas about sex and sexuality over time; includes their interaction with ideas about gender, race, class, religion, science, technology, medicine, politics and popular culture; historical and cultural processes creating modern concerns about sex and sexuality.
Prerequisite: Junior or senior classification.
Cross Listing: HIST 476/WGST 476.

WGST 477/HIST 477 Women and Gender in Modern European History
Credits 3. 3 Lecture Hours.
Women in Europe from the 18th century to the present: women's contributions to their societies; realities of their daily lives and their responses; perceptions of women; role of institutions in defining women's roles; significance for women of industrialization, revolution, warfare, scientific discoveries; interaction of class, race and gender.
Cross Listing: HIST 477/WGST 477.

WGST 481 Senior Seminar
Credits 3. 3 Lecture Hours.
Inquiry-based investigation of an issue, problem, or question, using gender or feminism as the organizing principle for analysis; methods and materials of scholarship in the field; includes opportunities for student research.
Prerequisite: WGST 200 and junior or senior classification; or approval of instructor.
WGST 484 Internship in Women's and Gender Studies
Credits 0 to 4. 0 to 4 Other Hours.
Directed internship in a public or private organization to provide students with on-the-job training and applied research experience; opportunity to observe first hand issues and problems covered in women's and gender studies courses; designed to enhance and clarify the student's career objectives.
Prerequisites: WGST 200, junior or senior classification, and approval of instructor.

WGST 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours.
Readings and/or research for specific needs of students majoring or minoring in women's and gender studies.
Prerequisites: WGST 200 and approval of instructor.

WGST 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of women's and gender studies. May be repeated for credit.

WGST 491 Research
Credits 0 to 3. 0 to 3 Other Hours.
Research conducted under the direction of faculty member in women's and gender studies. May be taken four times for credit.
Prerequisites: WGST 200, junior or senior classification, and approval of instructor.

ZOOL - Zoology (ZOOD)
ZOOL 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of zoology. May be repeated for credit.
Prerequisite: Approval of instructor.

ZOOL 291 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Freshman or sophomore classification and approval of instructor.

ZOOL 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of zoology. May be repeated once for credit.

ZOOL 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Active research of basic nature under the supervision of a Department of Biology faculty member.
Prerequisites: Junior or senior classification and approval of instructor.
Abanov, Artem G, Associate Professor
Physics & Astronomy
PHD, Texas A&M University, 1998

Abbey, James D, Associate Professor
Information & Operations Mgmt
PHD, The Pennsylvania State University, 2013

Abbot Jr, Elton D, Associate Professor of the Practice
Architecture
PHD, Texas A&M University, 1983

Abdalla, Ahmed A, Associate Professor
Texas A&M University at Qatar
PHD, North Carolina State University, 2001

Abdel Salam, Noha M, Clinical Assistant Professor
Public Health Sciences
DDS, Loma Linda University, 2008

Abdel-Wahab, Ahmed I, Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2003

Abdelaal, Ahmed, Instructional Assistant Professor
Eng Tech & Ind Distribution
DEN, University of Toledo, 2017

Abedi Mashhadimighani, Sara, Assistant Professor
Petroleum Engineering
PHD, University of Southern California, 2012

Abraham, Celeste M, Clinical Associate Professor
Periodontics
DDS, Howard University, 1988

Abu Baker, Asim, Clinical Professor
College of Pharmacy
PHARMD, Albany College of Pharmacy, 2003

Abu-Rub, Haithem A, Professor
Texas A&M University at Qatar
PHD, Gdansk University of Technology, Poland, 1995

Acero-Schertzer Carmen, Instructional Assistant Professor
Foundational Sciences
PHD, University of Miami, 1996

Acosta, Sandra T, Associate Professor
Educational Psychology
PHD, Texas A&M University, 2010

Adams, Amanda, Lecturer
Biology
PHD, University of Western Ontario, 2013

Adams, George C, Senior Lecturer
International Studies
MED, Temple University, 1996

Adams, Harold Lynn, Professor Of The Practice
Architecture
BAR, Texas Agricultural and Mechanical College (now TAMU), 2014

Adams, Leslie G, Senior Professor
Veterinary Pathobiology
PHD, Texas A&M University, 1968
DVM, Texas A&M University, 1964

Adams, Marvin L, Professor
Nuclear Engineering
PHD, University of Michigan - Ann Arbor, 1986

Adams, Terry B, Adjunct Assistant Professor
Orthodontics
DDS, DDS, 1973 U Missouri, 1973

Adcock, Flynn, Assistant Lecturer
Agricultural Economics
MS, Texas A&M University, 1998

Adelman, Zachary N, Professor
Entomology
PHD, Colorado State University Fort Collins, 2000

Adjei, Isaac, Assistant Professor
Biomedical Engineering
PHD, Case Western Reserve University, 2014

Agarwal, Girish S, Professor
Biological & Agricultural Eng
PHD, University of Rochester, 1969

Agnolet, Glenn, Professor
Physics & Astronomy
PHD, Cornell University, 1983

Agnor, Dottiedee, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1992

Agrawal, Anupam, Associate Professor
Information & Operations Mgmt
PHD, INSEAD France, 2008

Ahdieh, Robert, Professor
School of Law
JD, Yale Law School, 1997

Ahmed, Anwer S, Professor
Accounting
PHD, University of Rochester, 1992

Ahmed, Karim E, Assistant Professor
Nuclear Engineering
PHD, Purdue University, 2015

Ahmed, Sarker T, Instructional Assistant Professor
Computer Science & Engineering
PHD, Texas A&M University, 2016

Ahn, Changbum R, Associate Professor
Construction Science
PHD, University of Illinois at Urbana-Champaign, 2012
Aitani, Koichiro, Associate Professor
Architecture
PHD, Kyushu University, 2015
MAR, Virginia Polytechnic Institute and State University, 1997

Aitkenhead, Jacqueline A, Associate Professor
Soil & Crop Sciences
PHD, University of New Hampshire, 2000

Akbulut, Mustafa, Associate Professor
Chemical Engineering
PHD, University of California, Santa Barbara, 2007

Akbulut, Mustafa, Associate Professor
Materials Science & Engr
PHD, University of California, Santa Barbara, 2007

Akimov, Alexey, Assistant Professor
Physics & Astronomy
PHD, Moscow Institute of Technology, 2003

Akkutlu, Ibrahim Y, Professor
Petroleum Engineering
PHD, University of Southern California, 2002

Akleman, Derya G, Instructional Associate Professor
Statistics
PHD, Texas A&M University, 1996

Akleman, Ergun, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1992

Akleman, Ergun, Professor
Visualization
PHD, Georgia Institute of Technology, 1992

Al-Hashimi, Mohammed, Research Associate Professor
Texas A&M University at Qatar
PHD, Queen Mary Westfield College, University of London, 2007

Al-Mohannadi, Dhabia, Assistant Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2019

Al-Mohannadi, Nassar, Professor of the Practice
Texas A&M University at Qatar
PHD, Colorado School of Mines, 2004

Al-Rawashdeh, Ma’moun, Assistant Professor
Texas A&M University at Qatar
PHD, Technical University of Eindhoven, Netherlands, 2013

Alexander, Joyce M, Professor
Educational Psychology
PHD, University of Georgia, 1992

Alexander, Lisa T, Professor
School of Law
JD, Columbia University, 2002

Alexander, Michael B, Lab Instructor
Biology
PHD, Texas A&M University, 2014

Alexander, Steve K, Lecturer
Marine and Coastal Environmental Science
PHD, Louisiana State University, 1976

Alexander-Packard, Gerianne, Professor
Psychological & Brain Sciences
PHD, McGill University, 1991

Alfred, Mary V, Professor
Educ Admn & Human Resource Dev
PHD, University of Texas, 1995

Alfriend III, Kyle T, University Distinguished Professor
Aerospace Engineering
PHD, Virginia Polytechnic Institute and State University, 1967

Alge, Daniel L, Associate Professor
Biomedical Engineering
PHD, Purdue University, 2010

Alge, Daniel L, Assistant Professor
Materials Science & Engr
PHD, Purdue University, 2010

Algenio, Emilie R, Assistant Professor
TAMU Libraries
MLS, Simmons College, 2000

Ali, Ahmed K, Assistant Professor
Architecture
PHD, Virginia Polytechnic Institute, 2012

Alkon, Cynthia J, Professor
School of Law
JD, University of California, 1990

Allaire, Douglas L, Associate Professor
Mechanical Engineering
PHD, Massachusetts Institute of Technology, 2009

Allen, Angela J, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2005

Allen, David, Senior Lecturer
Ocean Engineering
PHD, Texas A&M University, 1980

Allen, George H, Assistant Professor
Geography
PHD, University of North Carolina at Chapel Hill, 2017

Allen, Natalie L, Senior Lecturer
Accounting
MS, Texas A&M University, 1988

Allen, Roland E, Professor
Physics & Astronomy
PHD, University of Texas at Austin, 1969

Allred, Clinton, Associate Professor
Nutrition
PHD, University of Illinois at Urbana Champaign, 2002
Alnuweiri, Hussein, Professor
Texas A&M University at Qatar
PHD, University of Southern California, 1989

Alonso Ruiz, Patricia, Assistant Professor
Mathematics
PHD, University of Siegen, 2013

Alonso, Ricardo, Associate Professor
Texas A&M University at Qatar
PHD, The University of Texas at Austin, 2008

Alonzo, Armando C, Associate Professor
History
PHD, Indiana University, 1994

Alonzo, Joy P, Clinical Assistant Professor
College of Pharmacy
PHARMD, Howard University, 2010

Alonzo, Juan J, Associate Professor
English
PHD, University of Texas, 2003

Altemose, Alicia, Lecturer
Chemistry
PHD, Penn State University, 2020

Alton, Stephen R, Professor
School of Law
JD, The University of Texas School of Law, 1981

Alvarado, Jorge L, Professor
Eng Tech & Ind Distribution
PHD, University of Illinois, 2004

Alvarado, Jorge L, Professor
Mechanical Engineering
PHD, University of Illinois, 2004

Alvarado, Leonel, Associate Professor of the Practice
College of Engineering
MED, University of Texas-Pan American, 2009

Alvarado-Bremer, Jaime, Professor
Marine Biology
PHD, University of Toronto, 1994

Alvard, Michael S, Associate Professor
Anthropology
PHD, University of New Mexico, 1993

Alvarez, Andrea, Instructional Assistant Professor
Health & Kinesiology
MFA, Case Western Reserve University, 2016

Alvarez, Martha H, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Instituto de Ciencias de la Salud (CES), Medellin, Colombia, 1997

Alvareggio, Giuseppe, Assistant Professor
Texas A&M University at Qatar
PHD, Imperial College London, United Kingdom, 2015

Alyafei, Nayef M, Assistant Professor
College of Pharmacy
PHD, Okayama University, Japan, 2007

Alyismail, Hamed, Assistant Professor
College of Pharmacy
PHD, Okayama University, Japan, 2007

Amani, Mahmood, Associate Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 1997

Amato, Nancy M, Professor
Computer Science & Engineering
PHD, University of Illinois, 1995

Amini, Noushin, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2011

Amon, Rainer, Professor
Marine and Coastal Environmental Science
PHD, University of Texas at Austin, 1995

Amos, Nicole, Lecturer
Finance
MER, Texas A&M University, 2005

Amrein, Hubert O, Professor
Molecular & Cellular Medicine
PHD, University of Zurich, 1989

An, Yonghong, Associate Professor
Economics
PHD, John Hopkins University, 2011

Anand, Nagamangala, Professor
Mechanical Engineering
PHD, Purdue University, 1983

Anders, Katherine C, Assistant Professor
TAMU Libraries
PHD, University of Nevada, 2014

Anderson, Brian A, Associate Professor
Psychological & Brain Sciences
PHD, John Hopkins University, 2014

Anderson, Bryan, Lecturer
Eng Tech & Ind Distribution
MSW, Columbia University School of Social Work, 2013

Anderson, David, Visiting Professor
Agricultural Economics
PHD, Texas A&M University, 1994

Anderson, Terry H, Professor
History
PHD, Indiana University, 1978

Andersson, Leif B, Professor
Vet Integrative Biosciences
PHD, Swedish University of Agricultural Sciences, Uppsala, 1984

Andreasen, Mayet Maria, Lecturer
Visualization
MFA, School of Animation and Visual Effects, 2006
Andrienko, Daniil Aleksandrovich, Assistant Professor
Aerospace Engineering
PHD, Wright State University, 2014

Angelus, Alexandar, Assistant Professor
Information & Operations Mgmt
PHD, Stanford University, 1997

Anieto, Ugochukwu Obiakonobi, Instructional Assistant Professor
College of Science
PHD, University of North Texas, 2014

Anis, Ayal, Associate Professor
Marine and Coastal Environmental Science
PHD, Oregon State University, 1993

Annapareddy, Narasimha, Professor
Electrical & Computer Eng
PHD, University of Illinois at Urbana-Champaign, 1990

Anshelevich, Michael V, Professor
Mathematics
PHD, University of California, Berkeley, 2000

Antao, Dion S, Assistant Professor
Mechanical Engineering
PHD, Drexel University, 2013

Antony Babu, Sanjay, Assistant Professor
Plant Pathology & Microbiology
PHD, Newcastle University, 2018

Apostolopoulos, Yiorgos, Associate Professor
Health & Kinesiology
PHD, University of Connecticut, 1994

Appiah, Bernard, Assistant Professor
Environmental & Occptnl Hlth
DrPH, Texas A&M Health Science Center School of Public Health, 2013

Appleton, Robert A, Associate Professor of the Practice
Civil Engineering
BS, Texas A&M University, 1984

Aprahamian, Hrayer, Assistant Professor
Industrial & Systems Eng
PHD, Virginia Tech, 2018

Aramayo, Rodolfo A, Associate Professor
Biology
PHD, University of Georgia, 1992

Archer, Holli R, Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2013

Arenas, Angela M, Assistant Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2007
DVM, La Salle University, Colombia, 2002

Arfaoui, Turkia, Lecturer
International Studies
MED, Texas A&M University, 2012

Aristidou, Michael, Instructional Assistant Professor
Foundational Sciences
PHD, Louisiana State University, 2005

Arizpe, Norma L, Senior Lecturer
Hispanic Studies
MA, University of Michigan Ann Arbor, 1977

Arizpe, Victor, Professor
Hispanic Studies
PHD, University of Michigan Ann Arbor, 1982

Armitage Chan, Anna R, Professor
Marine Biology
PHD, University of California, Los Angeles, 2003

Armstrong, Carisa L, Clinical Associate Professor
Health & Kinesiology
MFA, Case Western Reserve University, 2002

Arnold, Carolyn E, Associate Professor
Vet Large Animal Clinical Sc
DVM, Michigan State University, 1998

Arnold, Michael A, Professor
Horticultural Sciences
PHD, North Carolina State University, 1990

Arnold, Stacey, Clinical Assistant Professor
College of Medicine
EDD, Texas A&M University, 2007

Arnosky, Caroline, Lecturer
Accounting
BBA, Texas A&M University, 2015

Aronson, Carl, Instructional Assistant Professor
Foundational Sciences
PHD, University of Michigan - Ann Arbor, 1999

Arosh, Joe A, Professor
Vet Integrative Biosciences
PHD, Universite Laval, 2004

Arosh, Sakhila B, Associate Professor
Vet Integrative Biosciences
PHD, University of Madras, 2002

Arreola-Risa, Antonio, Associate Professor
Information & Operations Mgmt
PHD, Stanford University, 1989

Arroyave, Raymundo, Professor
Materials Science & Engr
PHD, Massachusetts Inst of Technology, 2004

Arroyave, Raymundo, Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 2004

Arthur Jr, Winfred E, Professor
Psychological & Brain Sciences
PHD, The University of Akron, 1988
Arzan Zarin, Aref, Assistant Professor
Biology
PHD, The University of Dublin, 2013

Asadi, Amir, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Manitoba, 2013

Asadi, Amir, Assistant Professor
Materials Science & Engr
PHD, University of Manitoba, 2013

Asadi, Amir, Assistant Professor
Mechanical Engineering
PHD, University of Manitoba, 2013

Aschenbeck, Stacy H, Instructional Assistant Professor
Communication
MA, Texas State University, 1999

Ashcraft, Sandra M, Assistant Lecturer
Educational Psychology
MS, Texas A&M University, 1999

Ashley III, Frank B, Senior Professor
Public Service & Administration
EDD, The University of Alabama, 1986

Ashley, Candice R, Lecturer
Teaching, Learning & Culture
PHD, Capella University, 2014

Askins, Daniel, Assistant Professor of the Practice
Maritime Transportation
CERT, U. S. Coast Guard, 2017

Assad, Chahriar, Senior Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1994

Athrey, Giridhar N, Assistant Professor
Poultry Science
PHD, University of Louisiana at Lafayette, 2009

Athreya, Sheela, Associate Professor
Anthropology
PHD, Washington University in St. Louis, 2003

Atif, Morad R, Professor of the Practice
College of Engineering
PHD, Texas A&M University, 1992

Atli, Kadri Can, Research Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2011

Atoba, Olabisi, Instructional Assistant Professor
Psychological & Brain Sciences
PHD, Texas A&M University, 2017

Atoba, Olabisi, Instructional Assistant Professor
Psychological & Brain Sciences
PHD, Texas A&M University, 2017

Attia, John, Lab Instructor
Biology
MS, Texas A&M University, 2019

Aubeny, Charles P, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 1992

Aucoin, Bruce, Senior Lecturer
Eng Tech & Ind Distribution
DEN, Texas A&M University, 1982

Augsburger, Robert A, Clinical Associate Professor
Endodontics
DDS, University of California-San Francisco, 1973

Aurispa, Benjamin, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2006

Austin, Amy L, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 1994

Autenrieth, Robin L, Professor
Civil Engineering
PHD, Clarkson University, 1986

Authement, Renae S, Clinical Assistant Professor
College of Nursing
DNP, Loyola University, 2015

Avazmohammadi, Reza, Assistant Professor
Biomedical Engineering
PHD, University of Pennsylvania, Philadelphia, PA, 2014

Awika, Joseph M, Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2003

Ayari, Salah, Instructional Associate Professor
International Studies
PHD, University of Minnesota, 1998

Ayres, Nicola M, Senior Lecturer
Biochemistry & Biophysics
PHD, University of Nebraska - Lincoln, 1987

Ayres, Pamela S, Professor
School of Law
JD, Baylor University, 1988

Baber, Jessica, Lecturer
Animal Science
PHD, Texas A&M University, 2019

Bach, Damon R, Lecturer
History
PHD, Texas A&M University, 2013

Baek, Eunkyeng, Assistant Professor
Educational Psychology
PHD, University of South Florida, 2015
Baetge, Claire C, Clinical Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2014

Baetge, Courtney L, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2003

Bagavathiannan, Muthukumar V, Associate Professor
Soil & Crop Sciences
PHD, University of Manitoba, Canada, 2010

Bailey Michael, Lecturer
George Bush School of Govern
PHD, Colorado Technical University, 2016

Bailey, Christopher A, Professor
Poultry Science
PHD, Texas A&M University, 1982

Bailey, Everett M, Professor
Vet Physiology & Pharmacology
PHD, Iowa State University, 1968
DVM, Texas A&M University, 1964

Bailey, Krista J, Clinical Associate Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 2011

Baker, Robert K, Lecturer
Maritime Business Administration
MBA, University of Houston, 1983

Balas, Mark, Professor
Mechanical Engineering
PHD, University of Denver, 1974

Balawi, Shadi Omar, Instructional Associate Professor
Mechanical Engineering
PHD, University of Cincinnati, 2007

Balbuena, Perla B, Professor
Chemical Engineering
PHD, University of Texas, 1996

Balbuena, Perla B, Professor
Materials Science & Engr
PHD, University of Texas, 1996

Baldauf, Jack G, Professor
Oceanography
PHD, University of California, Berkeley, 1985

Bales, Stephen E, Professor
TAMU Libraries
PHD, University of Tennessee, Knoxville, 2008

Balester, Valerie M, Professor
English
PHD, The University of Texas - Austin, 1998

Baletka, Dawn M, Instructional Assistant Professor
Health & Kinesiology
PHD, Sam Houston State University, 2006

Ball III, James R, Assistant Professor
Performance Studies
PHD, New York University, 2012

Ball, Daniel, Associate Professor of the Practice
College of Engineering
MS, Auburn University, 1994

Ballard, Danny J, Adjunct Professor
Health & Kinesiology
PHD, Oklahoma State University, 1982

Ballestro, John J, Associate Professor
TAMU Libraries
MLS, University of Illinois-Urbana-Champaign, 2003

Ballouli, Khalid W, Adjunct Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2011

Balog Jr, Robert S, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2006

Balog Jr, Robert S, Associate Professor
Texas A&M University at Qatar
PHD, University of Illinois, 2006

Baltazar, Juan Carlos, Associate Professor
Architecture
PHD, Texas A&M University, 2006

Baltensperger, David D, Professor
Soil & Crop Sciences
PHD, New Mexico State University, 1981

Banerjee, Amarnath P, Professor
Industrial & Systems Eng
PHD, University of Illinois at Chicago, 1999

Banerjee, Debjyoti, Professor
Mechanical Engineering
PHD, University of California, Los Angeles, 1999

Banerjee, Debjyoti, Professor
Petroleum Engineering
PHD, University of California, Los Angeles, 1999

Banerjee, Sarbajit, Professor
Chemistry
PHD, State University of New York at Stony Brook, 2004

Banerjee, Sarbajit, Professor
Materials Science & Engr
PHD, State University of New York at Stony Brook, 2004

Bangstein, Bjorn, Associate Professor of the Practice
College of Engineering
MS, University of Oslo, 1994

Bankaitis, Vytas A, University Distinguished Professor
Molecular & Cellular Medicine
PHD, University of North Carolina, 1984
Banks, Margaret K, University Distinguished Professor
Civil Engineering
PHD, Duke University, 1989

Bankston, Sarah K, Assistant Professor
TAMU Libraries
MFA, North Carolina State University, 2007

Bapst, David W, Instructional Assistant Professor
Geology & Geophysics
PHD, University of Chicago, 2013

Barboza, Peregrine, Professor
Ecology and Conservation Biology
PHD, University of New England, 1991

Barboza, Peregrine, Professor
Rangeland, Wildlife and Fisheries Management
PHD, University of New England, 1991

Bare, Daniel R, Assistant Professor
College of Liberal Arts
PHD, Texas A&M University, 2018

Barge, James K, Professor
Communication
PHD, University of Kansas, 1985

Barling, Kerry, Lecturer
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2000
DVM, Texas A&M University, 1987

Barnes, Karen, Lecturer
College of Nursing
MSN, Western Governors University, 2018

Barnes, Katherine Hirose, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Oregon State University College of Veterinary Medicine, 2011

Barnes, Wayne R, Professor
School of Law
JD, Texas Tech University School of Law, 1995

Barnett, Brandon W, Adjunct Professor
School of Law
JD, Texas Tech University School of Law, 2005

Barondeau, David P, Associate Professor
Chemistry
PHD, Texas A&M University, 1996

Barr, Andrew C, Associate Professor
Economics
PHD, University of Virginia, 2015

Barrett, Jeannie, Senior Lecturer
Accounting
MBA, Sam Houston State University, 2002

Barrett, Julie, Lecturer
Teaching, Learning & Culture
EDD, Sam Houston State University, 2013

Barrick, Murray R, Distinguished Professor
Management
PHD, University of Akron, 1988

Barroso, Luciana R, Associate Professor
Civil Engineering
PHD, Stanford University, 1999

Barrufet, Maria A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1987

Barry, Adam, Professor
Health & Kinesiology
PHD, Texas A&M University, 2007

Bartel, Michael, Assistant Professor
International Affairs
PHD, Cornell University, 2017

Bartlett, Leeanna, Instructional Assistant Professor
Public Health Sciences
MED, East Texas State University, 1980

Bashir, Hassan, Associate Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2008

Baskin, Dean R, Associate Professor
Mathematics
PHD, Stanford University, 2010

Bassichis, William H, Professor
Physics & Astronomy
PHD, Case Western Reserve University, 1963

Bastian, Peter A, Professor of the Practice
Petroleum Engineering
MS, Texas A&M University, 1983

Batista, Paul J, Associate Professor
Health & Kinesiology
JD, Baylor University, 1976

Batteas, James D, Professor
Chemistry
PHD, University of California, Berkeley, 1995

Batteas, James D, Professor
Materials Science & Engr
PHD, University of California, Berkeley, 1995

Battle III, Guy A, Professor
Mathematics
PHD, Duke University, 1977

Baudier, Florent P, Assistant Professor
Mathematics
PHD, Universite De Besancon, 2010
Baumgartner, Lisa M, Associate Professor
Educ Admn & Human Resource Dev
PHD, The University of Georgia, 2000

Bayless, Kayla J, Associate Professor
Molecular & Cellular Medicine
PHD, Texas A&M University, 1999

Baylor, Amber A, Associate Professor
School of Law
LLM, Georgetown University Law Center, 2015
JD, New York University Law School, 2006

Bazan, Daniela Z, Clinical Assistant Professor
College of Pharmacy
PHARMD, University of Texas at Austin, 2011

Bazer, Fuller W, Distinguished Professor
Animal Science
PHD, North Carolina State University, 1969

Bazzi, Hassan, Professor
Materials Science & Engr
PHD, McGill University, 2003

Bazzi, Hassan S, Professor
Texas A&M University at Qatar
PHD, McGill University, 2003

Beard, Regina, Clinical Associate Professor
College of Nursing
EDD, Auburn University, 2004

Beathard, Karen, Senior Lecturer
Nutrition
MS, Texas Woman's University, Denton, 1990

Beaver, Bonnie V, Professor
Vet Small Animal Clinical Sc
DVM, University of Minnesota, 1968

Becker, Aaron C, Clinical Associate Professor
Information & Operations Mgmt
PHD, University of Oklahoma, 2009

Becker, Katrin, Professor
Physics & Astronomy
PHD, University of Bonn, 1994

Becker, Kristin, Lecturer
College of Nursing
MSN, University of Texas Health Science Center at El Paso, 2019

Becker, Mauro R, Research Professor
Geology & Geophysics
PHD, University of Texas - Austin, 1996

Bedford, Diane C, Clinical Associate Professor
Health & Kinesiology
MFA, The Florida State University, 2010
Benden, Mark E, Associate Professor
Industrial & Systems Eng
PHD, Texas A&M University, 2006

Bender, Steven D, Clinical Associate Professor
Oral & Maxillofacial Surgery
DDS, Baylor College of Dentistry, 1986

Benedit, Michael J, Professor
Biology
PHD, Stanford University, 1982

Bengali, Ashfaq A, Professor
Texas A&M University at Qatar
PHD, University of Minnesota, 1992

Benham, James M, Visiting Lecturer
Construction Science
MS, Texas A&M University, 2014

Benjamin, Chandler C, Research Assistant Professor
Mechanical Engineering
PHD, University of Wisconsin - Madison, 2017

Bennett Jr, George K, Senior Professor
Industrial & Systems Eng
PHD, Texas Tech University, 1970

Bennett, Brad S, Clinical Assistant Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 2007

Bennett, Gregg R, Professor
Health & Kinesiology
PHD, Auburn University, 1997

Benson, M D, Associate Professor
Biomedical Sciences
PHD, University of Michigan, 2000

Benson, Monica A, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2005

Bento, Pedro M, Assistant Professor
Economics
PHD, University of Toronto, 2013

Benton, Elain, Lecturer
Public Health Sciences
BS, Texas Women's University, 1978

Benzeraga, Amine A, Professor
Aerospace Engineering

Benzeraga, Amine A, Professor
Materials Science & Engr

Beremand, Phillip D, Lab Instructor
Biology
PHD, Indiana University- Bloomington, 1979

Bergbreiter, David E, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1974

Bergeron, Christine S, Clinical Professor
Health & Kinesiology
PHD, University of Wolverhampton, 2018
MFA, Florida State University, 1998

Berghman, Luc R, Professor
Poultry Science
PHD, University of Leuven, Belgium, 1987

Bergman, Mindy E, Professor
Psychological & Brain Sciences
PHD, University of Illinois at Urbana-Champaign, 2001

Berghthorsson, Ulfar, Associate Professor
Vet Integrative Biosciences
PHD, University of Rochester, 1998

Berkolaiko, Gregory, Professor
Mathematics
PHD, University of Bristol, 1997

Bermudez Ospina, Jose L, Professor
Philosophy & Humanities
PhD, Cambridge University, 1992

Bernal, Julio S, Professor
Entomology
PHD, University of California, Riverside, 1995

Bernard, Jessica A, Assistant Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2012

Bernardo, Joseph, Research Associate Professor
Biology
PHD, Duke University, 1991

Berry, Leonard L, Distinguished Professor
Marketing
PHD, Arizona State University, 1968

Berthot, Patricia A, Instructional Associate Professor
Health & Kinesiology
MED, Stephen F. Austin State University, 1990

Bethel, Ryan D, Senior Lecturer
Chemistry
PHD, Texas A&M University, 2014

Bettati, Riccardo, Professor
Computer Science & Engineering
PHD, University of Illinois, 1994

Betz, Timm L, Associate Professor
Political Science
PHD, University of Michigan, 2015

Beyerlein, Michael M, Professor
Educ Admn & Human Resource Dev
PHD, Colorado State University, 1986
Bhatia, Mukul R, Executive Professor
Geology & Geophysics
PHD, The Australian National University, 1982

Bhattacharya, Anirban, Associate Professor
Statistics
PHD, Duke University, 2012

Bhattacharya, Nandini, Professor
English
PHD, University of Rochester, 1992

Bhattacharya, Raktim, Associate Professor
Aerospace Engineering
PHD, University of Minnesota, 2003

Bhattacharyya, S P, Professor
Electrical & Computer Eng
PHD, Rice University, 1971

Bickham, Troy, Professor
History
PHD, University of Oxford, 2001

Bieber, Susanne C, Assistant Professor
Visualization
PHD, Freie Universitat Berlin, 2012

Bieman, Leonard, Professor
Management
JD, University of Pennsylvania Law School, 1978

Bilof, Katherine, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, University of Missouri, Columbia, 2012

Birdwell, Randall P, Senior Lecturer
Construction Science
BEN, Texas A&M University, 1978

Birely, Anna C, Associate Professor
Civil Engineering
PHD, University of Washington, 2012

Birgisson, Bjorn, Professor
Civil Engineering
PHD, University of Minnesota, 1996

Bishop, Michael P, Professor
Geography
PHD, Indiana State University, 1987

Bissell Jr, Wesley T, Associate Professor
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2007
DVM, Texas A&M University, 1997

Biswas, Saikat, Instructional Assistant Professor
College of Science
PHD, Florida State University, 2011

Biswas, Saurabh, Associate Professor of the Practice
Biomedical Engineering
PHD, Texas A&M University, 2011

Bitouni, Anetta, Clinical Assistant Professor
Public Health Sciences
DDS, Kapodistrian University of Athens, 2004

Blackmon, Heath L, Assistant Professor
Biology
PHD, University of Texas at Arlington, 2015

Blackwell, James, Lecturer
George Bush School of Govern
PHD, Tufts University, 1984

Blackwell, Ronnie, Adjunct Professor
School of Law
DJ, Texas Wesleyan University School of Law, 2014

Blake, Jamilia J, Professor
Educational Psychology
PHD, University of Georgia, 2007

Blanton, Carlos K, Professor
History
PHD, Rice University, 1999

Blanton, Hart C, Professor
Communication
PHD, Princeton University, 1994

Blasingame, Thomas A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1989

Blasor, Tara N, Senior Lecturer
Accounting
BBA, Texas A&M University, 2007

Blizzard, Gary Edward, Senior Lecturer
Chemical Engineering
MBA, The University of Texas at Austin, 2000

Bloink, Robert, Adjunct Professor
School of Law
LLM, University of Florida College of Law, 1997
JD, Wayne State University Law School, 1995

Bloomfield, Susan A, Professor
Health & Kinesiology
PHD, Ohio State University, 1992

Blue-Mclendon, Alice, Clinical Associate Professor
Vet Physiology & Pharmacology
DVM, Texas A&M University, 1989

Bluemel, Janet F, Professor
Chemistry
PHD, Technical University of Munich, Germany, 1989

Boadu, Frederick O, Professor
Agricultural Economics
PHD, University of Kentucky, 1981

Boas, Harold P, Professor
Mathematics
PHD, Massachusetts Institute of Technology, 1980
Bobkova, Irina, Assistant Professor
Mathematics
PHD, Northwestern University, 2014

Bodson, Bruce R, Lecturer
Marine and Coastal Environmental Science
JD, South Texas College of Law, 1993

Boehm, Rodney J, Associate Professor of the Practice
College of Engineering
MS, Texas A&M University, 1979

Boivie, Steven R, Professor
Management
PHD, University of Texas at Austin, 2006

Bokelmann, Annamarie D, Instructional Assistant Professor
Environmental & Occptnl Hlth
MS, Texas A&M University, 1999

Bolanos, Carlos A, Associate Professor
Psychological & Brain Sciences
PHD, Northeastern University, 2000

Bolds Julius, Instructor
Naval Science
CERT, Naval Education and Training Command Center, 2014

Boldt, Gary L, Senior Lecturer
Construction Science
BS, Texas A&M University, 1983

Bolger Jr, Patrick A, Instructional Assistant Professor
Psychological & Brain Sciences
PHD, University of Arizona, 2005

Bolin, Jane, Professor
College of Nursing
PHD, Pennsylvania State University, 2002

Booth, Geoffrey J, Associate Professor
Land Arch & Urban Planning
MA, University of Queensland, 1987

Bormann, Sarah E, Associate Professor
Molecular & Cellular Medicine
PHD, University of Illinois - Urbana-Champaign, 1998

Bondurant, John H, Clinical Assistant Professor
TAMU Libraries
MLS, University of Kentucky, 2005

Bonito, Andrea, Professor
Mathematics
PHD, Ecole Polytechnique Federale de Lausanne, France, 2006

Bonner, Christopher, Assistant Professor
International Studies
PHD, New York University, 2015

Bonner, Rickie, Clinical Assistant Professor
College of Nursing
DNP, Regis University, 2012

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Borovoy Hofman, Nilly, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Universidad Tecnologica de Mexico, 2006

Bond, Jon R, Professor
Political Science
PHD, University of Illinois at Urbana - Champaign, 1978
Bosshard, John C, Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2012

Boswell, Wendy R, Professor
Management
PHD, Cornell University, 2000

Boucher, Anthony M, Clinical Associate Professor
Health & Kinesiology
PHD, Texas Women’s University, 2008

Boudreau, Christen E, Assistant Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2010
PHD, Baylor College of Medicine, 2001

Boudreaux, Lowell A, Instructional Associate Professor
Maritime Business Administration
MML, Texas A&M University at Galveston, 2017

Bouhali, Othmane, Research Professor
Texas A&M University at Qatar
PHD, Universite Libre de Bruxelles, Faculte des Sciences, 1999

Boulahouache Chaouki, Instructional Associate Professor
Foundational Sciences
PHD, Syracuse University, 2002

Bounds, Brittany, Instructional Assistant Professor
Texas A&M University at Qatar
MA, California State University Northridge, 2009

Bouton, Cynthia A, Professor
History
PHD, SUNY Binghamton, 1985

Boutros, Joseph J, Professor
Texas A&M University at Qatar
PHD, Telecom Paris Tech (ENST), 1996

Bouton, Thomas, Professor
Ecology and Conservation Biology
PHD, Brigham Young University, 1979

Bouman, Christa, Associate Professor
Finance
PHD, University of Michigan, 2005

Bowen, Daniel H, Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Arkansas, 2013

Bowersox, Rodney D, Professor
Aerospace Engineering
PHD, Virginia Tech, 1992

Bowman, Ann O, Professor
Public Service & Administration
PHD, University of Florida, 1979

Bowman, John D, Instructional Associate Professor
College of Pharmacy
MHA, Auburn University, 1976

Bowman, Kenneth P, Professor
Atmospheric Sciences
PHD, Princeton University, 1984

Boyd, Barry L, Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1991

Boyd, James G, Associate Professor
Aerospace Engineering
PHD, Texas A&M University, 1994

Bracci, Joseph M, Professor
Civil Engineering
PHD, University at Buffalo - SUNY, 1992

Bracher, Nathan J, Professor
International Studies
PHD, University of Texas at Austin, 1984

Brackin, Michael S, Instructional Assistant Professor
Civil Engineering
PHD, Texas A&M University, 2017

Bradbury, James D, Adjunct Professor
School of Law
JD, University of Idaho School of Law, 1991

Brady, Emily, Professor
Philosophy & Humanities
PHD, University of Glasgow, 1992

Braga Neto, Ulisses, Professor
Electrical & Computer Eng
PHD, John Hopkins University, 2002

Bragg, Belinda L, Lecturer
Political Science
PHD, Texas A&M University, 2006

Braman, Gavin S, Lecturer
Visualization
BED, Texas A&M University, 2009

Braman, Sandra, Professor
Communication
PHD, University of Minnesota - Twin Cities, 1988

Brannan, Michael P, Associate Professor
Mathematics
PHD, Queen’s University, 2012

Brannstrom, Christian, Professor
Geography
PHD, University of Wisconsin - Madison, 1998

Breaux, Wade J, Instructional Assistant Professor
Health & Kinesiology
MS, Texas A&M University, 2002

Breithaupt, Charles, Visiting Professor
Health & Kinesiology
EDD, University of Texas at Austin, 1996
Brekken, Kirstin L, Instructional Professor
Health & Kinesiology
MS, Texas A&M University, 1982

Bremick, Mark A, Instructional Assistant Professor
College of Pharmacy
BS, The Ohio State University, 1994

Brenner, David A, Lecturer
International Studies
PHD, University of Texas, 1993

Brett, Jeremy W, Associate Professor
TAMU Libraries
MA, University of Maryland, 1999

Briaud, Jean-Louis, University Distinguished Professor
Civil Engineering
PHD, University of Ottawa, Canada, 1979

Bridges, Cheryl H, Adjunct Professor
Marketing
BS, Texas Women's University, 1968

Briers, Gary E, Professor
Ag Leadership, Edu & Comm
PHD, Iowa State University, 1978

Bright Jr, Leonard A, Associate Professor
Public Service & Administration
PHD, Portland State University, 2003

Bright, James, Professor of the Practice
College of Engineering
MA, Naval War College, 2008

Brightsmith, Donald J, Associate Professor
Veterinary Pathobiology
PHD, Duke University, 1999

Brill, Alan, Adjunct Professor
School of Law
MBA, New York University, 1968

Briansko, Steven P, Professor
Vet Large Animal Clinical Sc
PHD, Cornell University, 1995
DVM, University of Florida, 1985

Briske, David, Professor
Ecology and Conservation Biology
PHD, Colorado State University, 1978

Brison, Natasha T, Assistant Professor
Health & Kinesiology
PHD, University of Georgia, 2015
JD, University of Georgia School of Law, 1998

Brock II, Ralph A, Adjunct Assistant Professor
Orthodontics
DDS, Meharry Medical College, 2000

Brody, Samuel D, Professor
Marine and Coastal Environmental Science
PHD, University of North Carolina, 2002

Brooker, Rebecca J, Associate Professor
Psychological & Brain Sciences
PHD, Pennsylvania State University, 2011

Brooks, Charles E, Associate Professor
History
PHD, University of Buffalo, 1988

Brooks, Randy, Associate Professor of the Practice
College of Engineering
MED, Purdue University, 2017

Brooks, Sarah D, Professor
Atmospheric Sciences
PHD, University of Colorado, 2002

Brooks, Stuart R, Lecturer
Liberal Studies
MA, University of Houston Clear Lake, 2009

Brossart, Dan F, Professor
Educational Psychology
PHD, University of Missouri - Columbia, 1996

Brothers, Edward N, Professor
Texas A&M University at Qatar
PHD, Pennsylvania State University, 1997

Brothers, Nicole M, Clinical Assistant Professor
Texas A&M University at Qatar
MLS, University of Pittsburgh, 2011

Broussard, Albert S, Professor
History
PHD, Duke University, 1977

Brown Philip, Associate Professor
Foundational Sciences
PHD, Texas A&M University, 2000

Brown, Adam T, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas A&M University, 2013

Brown, Alexander L, Professor
Economics
PHD, California Institute of Technology, 2008

Brown, Jerry M, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
JD, South Texas College of Law, 1993

Brown, Lawrence S, Instructional Associate Professor
Chemistry
PHD, Princeton University, 1986

Brown, Maureen D, Adjunct Professor
Dental Hygiene
BS, Baylor College of Dentistry, 2003

Brown, Robert D, Professor
Land Arch & Urban Planning
PHD, University of Guelph, 1985
MLA, University of Guelph, 1982
Brown, Steven Dunning, Professor
College of Medicine
PHD, University of Texas Medical Branch, 1983

Brown, William A, Professor
Public Service & Administration
PHD, Claremont Graduate University, 2000

Bruce, Richard C, Clinical Assistant Professor
College of Nursing
MS, University of Phoenix, 2012

Brumbelow, James K, Associate Professor
Civil Engineering
PHD, Georgia Institute of Technology, 2001

Brunauer, Regina, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Medical University Innsbruck, Austria, 2011

Brundage, Adrienne L, Instructional Assistant Professor
Entomology
PHD, Texas A&M University, 2012

Brunstedt, Jonathan, Assistant Professor
History
PHD, University of Oxford, 2011

Bryan, Laura K, Clinical Assistant Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2018
DVM, University of Georgia, 2011

Bryant Jr, Vaughn M, Regents Professor
Anthropology
PHD, The University of Texas - Austin, 1969

Bryant, John A, Associate Professor
Construction Science
PHD, Texas A&M University, 1995

Bryk, Mary E, Associate Professor
Biochemistry & Biophysics
PHD, Albany Medical College, 1994

Buchanan, John J, Professor
Health & Kinesiology
PHD, Florida Atlantic University, 1996

Buchanan, Walter W, Professor
Eng Tech & Ind Distribution
PHD, Indiana University, 1993
JD, Indiana University, 1973

Buckley Jr, John J, Professor of the Practice
Health Policy & Management
MBA, George Washington University, 1969

Buckner, Sean M, Clinical Associate Professor
TAMU Libraries
MS, University of Michigan, 2012

Budke, Christine M, Professor
Vet Integrative Biosciences
PHD, Philosophisch-Naturwissenschaftliche Fakultat der Universitat Basel, 2004
DVM, Purdue University, 2001

Budzise-Weaver, Tina M, Associate Professor
TAMU Libraries
MLS, University of North Texas, 2012

Buenger, Sarah D, Lecturer
Agricultural Economics
MS, College for Financial Planning, 2015

Buenger, Victoria L, Clinical Professor
Management
PHD, Texas A&M University, 1990

Bukkapatnam, Satish T, Professor
Biomedical Engineering
PHD, Pennsylvania State University, 1997

Bukkapatnam, Satish T, Professor
Industrial & Systems Eng
PHD, Pennsylvania State University, 1997

Bullard, Jeffrey, Professor
Civil Engineering
PHD, University of California - Berkeley, 1993

Bullard, Jeffrey, Professor
Materials Science & Engr
PHD, University of California - Berkeley, 1993

Bullock, Justin B, Associate Professor
Public Service & Administration
PHD, The University of Georgia, 2014

Burch, Dan, Clinical Assistant Professor
Pediatric Dentistry
DDS, University of Tennessee Health Science Center Memphis, 2013

Burch, Robert W, Professor
Philosophy & Humanities
PHD, Rice University, 1969

Burdette, Kerin L, Clinical Assistant Professor
Public Health Sciences
DDS, University of Missouri - Kansas City, 1995

Burdine, James N, Professor
Hlth Promotion & Comm Hlth Sci
DrPH, The University of North Carolina at Chapel Hill, 1979

Burford, Nancy G, Associate Professor
TAMU Libraries
MLS, University of North Texas, 1999

Burge, Mark E, Professor
School of Law
JD, The University of Texas School of Law, 1997

Burgess, Kevin, Professor
Chemistry
PHD, The University of Cambridge, 1983
Burghardt, Robert C, Professor
Vet Integrative Biosciences
PHD, Wayne State University, 1976

Burgner, Gerald, Lecturer
Horticultural Sciences
PHD, Texas A&M University, 2019
MLA, Louisiana State University, 1994

Burkart, Patrick C, Professor
Communication
PHD, University of Oregon, 2001

Burke, Mack D, Professor
Educational Psychology
PHD, University of Oregon, 2001

Burke, Shanna H, Professor
Educational Psychology
PHD, University of Oregon, 1998

Burke, Shannon, Clinical Assistant Professor
TAMU Libraries
PHD, Texas Women's University, 2004

Burlbaw, Lynn M, Professor
Teaching, Learning & Culture
PHD, University of Texas, 1989

Burns, Rebecca J, Clinical Assistant Professor
College of Nursing
DNP, Loyola University New Orleans, 2015

Burress, Cynthia B, Instructional Associate Professor
School of Law
JD, Seattle University School of Law, 2003

Burris, Mark W, Professor
Civil Engineering
PHD, University of South Florida, 2001

Burt, John Z, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2009

Burte, Heather, Research Assistant Professor
Psychological & Brain Sciences
PHD, University of California-Santa Barbara, 2014

Burton, Thomas, Lecturer
Communication
BS, University of Florida, 1982

Busch, Paul S, Professor
Marketing
PHD, The Pennsylvania State University, 1974

Buschang, Peter H, Professor
Orthodontics
PHD, University of Texas Austin, 1980

Bustamante, Juan J, Instructional Associate Professor
College of Pharmacy
PHD, University of Texas, San Antonio, 2003

Butenko, Sergiy I, Professor
Industrial & Systems Eng
PHD, University of Florida, 2003

Butler, Scott N, Lecturer
Eng Tech & Ind Distribution
MS, Sam Houston State University, 1986

Butler-Purry, Karen L, Professor
Electrical & Computer Eng
PHD, Howard University, 1994

Butterfield, Vernee, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2018

Byrne, David H, Professor
Horticultural Sciences
PHD, Cornell University, 1980

Byrnes, William H, Executive Professor
School of Law
LLM, Universiteit van Amsterdam, 1995
JD, Loyola University School of Law, 1992

Byrnes, Glenda E, Clinical Professor
Educational Psychology
PHD, Texas A&M University, 2007

Caffey, Stephen M, Instructional Associate Professor
Architecture
PHD, The University of Texas at Austin, 2008

Cagin, Tahir, Professor
Materials Science & Engr
PHD, Clemson University, 1988

Cahill, Anthony T, Associate Professor
Civil Engineering
PHD, Johns Hopkins University, 1998

Cai, Jing, Associate Professor
Vet Integrative Biosciences
PHD, University of Hong Kong, 2006

Cairns, David M, Professor
Geography
PHD, University of Iowa, 1995

Calabrese, Salvatore, Assistant Professor
Biological & Agricultural Eng
PHD, Princeton University, 2019

Calboli, Irene, Professor
School of Law
LLM, London School of Economics and Political Science, 1999
PHD, University of Pavia School of Law, 1997

Calderbank, Arthur R, Visiting Professor
College of Engineering
PHD, California Institute of Technology, 1980

Call, Matthew L, Assistant Professor
Management
PHD, University of South Carolina, 2016
Callaghan, Timothy H, Assistant Professor
Health Policy & Management
PHD, University of Minnesota, Twin Cities, 2016

Calvesbert, Tyrene, Visiting Lecturer
Land Arch & Urban Planning
MUP, Graduate School of Architecture, Planning and Preservation, 2019

Campagnol Abuabara, Gabriela, Instructional Associate Professor
Architecture
PHD, University of Sao Paulo - USP, 2008

Campana, Lilia, Instructional Assistant Professor
Visualization
PHD, Texas A&M University, 2014

Campbell, August J, Instructional Associate Professor
Health & Kinesiology
PHD, Texas State University, 2005

Campbell, Heidi A, Professor
Communication
PHD, The University of Edinburgh, 2002

Campbell, Kelli R, Instructional Assistant Professor
Health & Kinesiology
BBA, Texas A&M University, 2000

Campbell, Lisa, Professor
Oceanography
PHD, State University of New York at Stony Brook, 1985

Campbell, Mary E, Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 2004

Cannella Jr, Albert A, Professor
Management
PHD, Columbia University, 1991

Cantey V, Samuel B, Adjunct Professor
School of Law
JD, University of Tulsa College of Law, 2002

Cantrell Jr, Pierce E, Senior Associate Professor
Electrical & Computer Eng
PHD, Georgia Institute of Technology, 1981

Cantrell, Emily S, Clinical Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2008

Cantrell-Bruce, Tosha, Lecturer
George Bush School of Govern
PHD, University of Illinois at Springfield, 2008

Cantu, Justin, Lecturer
Mathematics
PHD, Texas A&M University, 2019

Capar, Ismail, Associate Professor
Eng Tech & Ind Distribution
PHD, Mississippi State University, 2007

Capareda, Sergio C, Professor
Biological & Agricultural Eng
PHD, Texas A&M University, 1990

Capraro, Mary M, Professor
Teaching, Learning & Culture
PHD, University of Southern Mississippi, 2000

Capraro, Robert M, Professor
Teaching, Learning & Culture
PHD, University of Southern Mississippi, 2000

Cardoso De Cardoso, Leonardo, Assistant Professor
Performance Studies
PHD, University of Texas at Austin, 2013
MMU, University of Texas at Austin, 2010

Carey, John B, Professor
Poultry Science
PHD, Kansas State University, 1982

Carletti, Sabrina, Instructional Assistant Professor
Visualization
PHD, Princeton University, 2019

Carley, Robert F, Associate Professor
International Studies
PHD, Texas A&M University, 2012

Carlson, David H, Professor
TAMU Libraries
PHD, University of Michigan, 1979

Carlson, Deborah N, Associate Professor
Anthropology
PHD, University of Texas at Austin, 2004

Carlson, Kimberly A, Senior Lecturer
Construction Science
MAR, Texas A&M University, 2002

Carl-Miles, Claire I, Lecturer
English
PHD, Texas A&M University, 2008

Carrillo, Genny, Associate Professor
Environmental & Occptnl Hlth
PHD, Tulane University, School of Public Health, 1993

Carrillo, Roberto, Adjunct Assistant Professor
Orthodontics
DDS, Universidad Autonoma de Nuevo Leon, 2002

Carrino, Gerard E, Instructional Professor
Health Policy & Management
PHD, Columbia University Mailman School of Public Health, 2005

Carol, Raymond J, Distinguished Professor
Statistics
PHD, Purdue University, 1974

Carson, Katherine H, Instructional Assistant Professor
Soil & Crop Sciences
PHD, University of Arkansas, 1999
Carstens, Gordon E, Professor
Animal Science
PHD, Colorado State University, 1998

Carter Sowell, Adrienne R, Associate Professor
Psychological & Brain Sciences
PHD, Purdue University, 2010

Carter, Jeanne, Lecturer
Teaching, Learning & Culture
MS, University of North Texas, 2011

Carter, Tamara A, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 2005

Casado Perez, Vanessa, Associate Professor
School of Law
DJS, New York University, 2014
LLM, University of Chicago Law School, 2009

Case, Raymundo P, Professor of the Practice
Materials Science & Engr
PHD, University of Manchester Institute of Science and Technology, 2002

Casellas Connors, John Patrick, Assistant Professor
Geography
PHD, Arizona State University, 2015

Casola, Claudio, Associate Professor
Ecology and Conservation Biology
PHD, University of Pisa, Italy, 2006

Castaneda-Lopez, Homero, Associate Professor
Materials Science & Engr
PHD, Penn State University, 2001

Castell-Perez, M E, Professor
Biological & Agricultural Eng
PHD, Michigan State University, 1990

Castillo, Alejandro, Associate Professor
Animal Science
PHD, Texas A&M University, 1998

Castillo, Jasen J, Associate Professor
International Affairs
PHD, University of Chicago, 2003

Castillo, Linda G, Professor
Educational Psychology
PHD, University of Utah, 1999

Castillo, Marco, Professor
Economics
PHD, University of Wisconsin - Madison, 2001

Castro Olivo, Sara M, Associate Professor
Educational Psychology
PHD, University of Oregon, 2007

Castro, Juan F, Clinical Assistant Professor
College of Pharmacy
MD, Texas A&M University, 1988

Cath, Adam E, Clinical Associate Professor
Texas A&M University at Qatar
MLS, Victoria University of Wellington, 1997

Caton, Jerald A, Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1980

Cavdar, Bahar, Assistant Professor
Eng Tech & Ind Distribution
DEN, Georgia Institute of Technology, 2014

Caverlee, James B, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 2007

Cecchini, Fabiana, Instructional Associate Professor
International Studies
PHD, University of Pennsylvania, 2007

Cervantes, Ekaterina, Lecturer
International Studies
MA, Indiana University, 2017

Chaffin, Morgan K, Professor
Vet Large Animal Clinical Sc
DVM, Iowa State University, 2001

Cerrato, Maddalena A, Instructional Assistant Professor
International Studies
PHD, Italian Institute for Human Sciences, 2013

Chamitoff, Gregory E, Professor of the Practice
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 1992
Chandler, Ronald S, Lecturer
Management
MS, Texas A&M University, 2001
Chang, Jiang, Professor
Institute of Biosciences & Tec
PHD, Texas A&M University, 1999
Chang, Kuang-An, Professor
Civil Engineering
PHD, Cornell University, 1999
Chang, Kuang-An, Professor
Ocean Engineering
PHD, Cornell University, 1999
Chang, Ping, Professor
Oceanography
PHD, Princeton University, 1988
Chang, Yanling, Assistant Professor
Eng Tech & Ind Distribution
PHD, Georgia Institute of Technology, 2015
Chapkin, Robert, University Distinguished Professor
Nutrition
PHD, University of California, Davis, 1986
Chapman, Piers, Research Professor
Oceanography
PHD, University of Wales, UK, 1983
Chappell, Thomas M, Assistant Professor
Plant Pathology & Microbiology
PHD, Duke University, 2010
Charles, Laurie A, Clinical Assistant Professor
College of Nursing
CERT, Office of the Attorney General of Texas, 2016
Charlot, Jean-Baptiste, Lecturer
International Studies
MA, Texas A&M University, 2015
Charoenphol, Phapanin, Research Assistant Professor
Mechanical Engineering
DEN, University of Michigan, 2012
Chaspari, Theodora, Assistant Professor
Computer Science & Engineering
PHD, University of Southern California, 2017
Chawla, Nitya, Assistant Professor
Management
PHD, University of Arizona, 2020
Cheff, Stephen Q, Clinical Assistant Professor
Endodontics
DDS, University of Michigan-Ann Arbor, 1972
Cheibub, Jose A, Professor
Political Science
PHD, University of Chicago, 1994
Chellam, Shankararaman, Professor
Civil Engineering
PHD, Rice University, 1995
Chen, Goong, Professor
Mathematics
PHD, University of Wisconsin - Madison, 1977
Chen, Hamn C, Professor
Civil Engineering
PHD, University of Iowa, 1982
Chen, Hamn C, Professor
Ocean Engineering
PHD, University of Iowa, 1982
Chen, Jianer, Professor
Computer Science & Engineering
PHD, Columbia University, 1987
Chen, Lei-Shih, Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2007
Chen, Willa W, Professor
Statistics
PHD, New York University, 2000
Chen, Yong, Associate Professor
Finance
PHD, Boston College, 2007
Cheng, Yi-Shing L, Professor
Diagnostic Sciences
PHD, Baylor University, 1999
DDS, KAOHSIUNG MEDICAL COLLEGE, 1990
Cheng, Zheng Dong, Professor
Chemical Engineering
PHD, Princeton University, 1999
Cheng, Zheng Dong, Professor
Materials Science & Engr
PHD, Princeton University, 1999
Cheng, Zheng Dong, Professor
Texas A&M University at Qatar
PHD, Princeton University, 1999
Chester, Frederick M, Professor
Geology & Geophysics
PHD, Texas A&M University, 1988
Chester, Judith S, Professor
Geology & Geophysics
PHD, Texas A&M University, 1992
Chew, Boon, Professor
Nutrition
PHD, Purdue University, 1978
Chin, Siu A, Professor
Physics & Astronomy
PHD, Massachusetts Institute of Technology, 1975
Chinn, Timothy D, Professor of the Practice
Civil Engineering
BS, Texas A&M University, 1980

Chirayath, Sunil S, Associate Professor
Nuclear Engineering
PHD, University of Madras, 2005

Chiu, Weihsueh A, Professor
Vet Integrative Biosciences
PHD, Princeton University, 1998

Cho, Jae H, Assistant Professor
Biochemistry & Biophysics
PHD, State University of New York at Stony Brook, 2006

Cho, Jun Y, Clinical Associate Professor
Periodontics
DDS, Seoul National University, Korea, 1961

Choe, Yoonsuck, Professor
Computer Science & Engineering
PHD, University of Texas, 2001

Choi, Kunhee, Associate Professor
Construction Science
PHD, University of California at Berkeley, 2008

Choi, Seong G, Associate Professor
Electrical & Computer Eng
PHD, University of Illinois, 1994

Choudhury, Mahua, Associate Professor
College of Pharmacy
PHARMD, University of Missouri Columbia, 2008

Chroust, David Z, Associate Professor
TAMU Libraries
PHD, Texas A&M University, 2009

Chu, Kung-Hui, Professor
Civil Engineering
PHD, University of California, Berkeley, 1998

Chubaryan, Tatyana, Clinical Associate Professor
TAMU Libraries
PHD, Moscow State University, 1994

Chung, Jin-Sug, Associate Professor Of The Practice
Ocean Engineering
PHD, University of Michigan, 1991

Ciccolella, Federica, Professor
International Studies
PHD, Columbia University, 2004

Cisneros-Zevallos, Luis A, Professor
Horticultural Sciences
PHD, University of California, Davis, 1998

Cizmas, Leslie H, Instructional Assistant Professor
Environmental & Occptnl Hlth
PHD, Texas A&M University, 2003

Cizmas, Paul G, Professor
Aerospace Engineering
PHD, Duke University, 1995

Claridge, David E, Professor
Mechanical Engineering
PHD, Stanford University, 1976

Clark Jr, Norman L, Instructional Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2015

Clark, Heather, Research Assistant Professor
Hlth Promotion & Comm Hlth Sci
DrPH, Texas A&M University, 2014

Clark, Robert M, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2010

Clark, William, Professor
Political Science
PHD, Rutgers University, 1994

Clark, William B, Professor
English
PHD, Louisiana State University and A&M College, 1973

Clayton, Mark J, Professor
Architecture
PHD, Stanford University, 1998
MAR, University of California at Los Angeles, 1987

Clement, Brad M, Professor
Geology & Geophysics
PHD, Columbia University, 1985

Clement, Tracy M, Assistant Professor
Vet Physiology & Pharmacology
PHD, Washington State University, 2009

Clendenin, Angela G, Instructional Assistant Professor
Epidemiology & Biostatistics
PHD, Texas A&M University, 2017

Cline, Daren B, Professor
Statistics
PHD, Colorado State University, 1983

Cline, Kayla M, Clinical Assistant Professor
Accounting
PHD, Texas A&M University, 2017

Clough, Michael P, Professor
Teaching, Learning & Culture
PHD, The University of Iowa, 1994

Clubb Jr, Fred J, Professor
Biomedical Engineering
PHD, University of Alabama - Birmingham, 1983
DVM, Auburn University, 1971
Clubb Jr, Fred J, Clinical Professor
Veterinary Pathobiology
PHD, University of Alabama - Birmingham, 1983
DVM, Auburn University, 1971

Coady, William J, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1992

Coates, Craig J, Instructional Professor
Entomology
PHD, Australian National University, 1997

Cobbs, Elizabeth A, Professor
History
PHD, Stanford University, 1988

Cochran, Alan M, Lecturer
Chemical Engineering
PHD, University of Texas at Arlington, 2015

Coffelt, Vanessa Lea, Lecturer
Mathematics
MS, Kansas State University, 2005

Cohen, Daniel, Professor
Accounting
PHD, Northwestern University, 2004

Cohen, Glenn T, Adjunct Assistant Professor
Orthodontics
DMD, University of Florida, 2007

Cohen, Noah D, Professor
Vet Large Animal Clinical Sc
PHD, Johns Hopkins University, 1988
DVM, University of Pennsylvania, 1983

Cohn, Samuel R, Professor
Sociology
PHD, University of Michigan Ann Arbor, 1981

Cohn, William B, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 2000

Coleman Jr, Charles H, Instructional Assistant Professor
Marine and Coastal Environmental Science
MS, University of Houston at Clear Lake, 1986

Coleman, George, Adjunct Professor
School of Law
BLW, Southern Methodist University, 1963

Coleman, Gerard T, Associate Professor of the Practice
Marine Engineering Technology
MS, The George Washington University, 1996

Coleman, Michelle C, Assistant Professor
Vet Large Animal Clinical Sc
DVM, University of Georgia, 2007

Collins, Daniel P, Senior Lecturer
Chemistry
PHD, University of South Carolina, 2012

Collins, Haley C, Lecturer
Animal Science
MS, Sam Houston State University, 2015

Collins, Michael S, Professor
English
PHD, Columbia University, 1999

Collins, Monte K, Adjunct Assistant Professor
Orthodontics
DDS, Baylor College of Dentistry, 1984

Collopy, William F, Lecturer
History
PHD, Texas A&M University, 2011
MLA, University of St. Thomas, 2006

Colwell, Gregory B, Professor
Hlth Promotion & Comm Hlth sci
PHD, Indiana University - Bloomington, 1992

Comech, Andrew, Associate Professor
Mathematics
PHD, Columbia University, 1997

Compton, Mallory, Assistant Professor
Public Service &Administration
PHD, Texas A&M University, 2016

Conkey, Andrew, Instructional Associate Professor
College of Engineering
PHD, Texas A&M University, 2007

Conlee, Don T, Instructional Professor
Atmospheric Sciences
PHD, Texas A&M University, 1994

Conrad, Charles R, Professor
Communication
PHD, Kansas University, 1972

Conrad, Craig E, Senior Lecturer
Eng Tech & Ind Distribution
BS, Northern Illinois University, 1975

Contreras, Celestina L, Clinical Professor
School of Law
JD, The University of Texas at Austin, 1989

Conway, Daniel W, Professor
Philosophy & Humanities
PHD, University of California, San Diego, 1985

Conway, Kevin, Associate Professor
Ecology and Conservation Biology
PHD, San Louis University, 2010

Conway, Steven M, Senior Lecturer
Maritime Business Administration
MA, Yale School of Management, 1982

Cook, Audrey K, Professor
Vet Small Animal Clinical Sc
DVM, University of Edinburgh, 1989
Faculty

Cook, David W, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2005

Cook, Scott J, Associate Professor
Political Science
PHD, University of Pittsburgh, 2014

Cook, Walter E, Clinical Associate Professor
Veterinary Pathobiology
PHD, University of Wyoming, 1999
DVM, University of California - Davis, 1994

Cooke, Leighton B, Professor
International Studies
PHD, University of California, Berkeley, 1983

Cooke, Olga M, Associate Professor
International Studies
PHD, University of London, 1982

Cooke, Reinaldo F, Associate Professor
Animal Science
PHD, University of Florida, 2008

Coombs, William T, Professor
Communication
PHD, Purdue University, 1990

Coonrod, James W, Assistant Professor of the Practice
Maritime Transportation
BS, Texas A&M University, 1967

Cooper Jr, John T, Associate Professor of the Practice
Land Arch & Urban Planning
PHD, University of North Carolina - Chapel Hill, 2004

Cooper, Rich P, Senior Lecturer
English
PHD, Louisiana State University, 2011

Cooper-Smith, Jonathan, Professor
History
PHD, University of Oxford, 1985

Cope, Dale A, Associate Professor of the Practice
Mechanical Engineering
PHD, Wichita State University, 2002

Cordes, Laurrie, Assistant Lecturer
Ocean Engineering
MS, Texas A&M University, 1993

Corleto, Carlos Roberto, Professor of the Practice
Mechanical Engineering
PHD, Texas A&M University, 1990

Cornell, Karen K, Professor
Vet Small Animal Clinical Sc
PHD, Purdue University, 1998
DVM, Purdue University, 1988

Cortes, Kalena E, Associate Professor
Public Service & Administration
PHD, University of California at Berkeley, 2002

Cote, Gerard L, Professor
Biomedical Engineering
PHD, University of Connecticut, 1990

Cote, Murray J, Associate Professor
Health Policy & Management
PHD, Texas A&M University, 1996

Cotter, Jane C, Assistant Professor
Dental Hygiene
MS, Caruth School of Dental Hygiene, 2009

Coulson, Robert N, Professor
Entomology
PHD, University of Georgia, 1969

Courtright, Stephen H, Associate Professor
Management
PHD, University of Iowa, 2012

Cowell Jr, Robert S, Visiting Assistant Professor
Land Arch & Urban Planning
MS, University of Tennessee, 1994

Craig, Cheryl J, Professor
Teaching, Learning & Culture
PHD, University of Alberta, Canada, 1992

Craig, Heidi, Assistant Professor
English
PHD, University of Toronto, 2017

Craig, Mark A, Adjunct Assistant Professor
Oral & Maxillofacial Surgery
MD, Texas A&M University Baylor College of Dentistry, 1993
DDS, Texas A&M Baylor College of Dentistry, 1990

Crane, Stephen L, Clinical Associate Professor
Public Health Sciences
DDS, Baylor College of Dentistry, 1973

Creasy, Rebecca, Lecturer
Food Science and Technology
PHD, University of Florida, 2013

Creasy, Terry S, Associate Professor
Materials Science & Engr
PHD, University of Delaware, 1997

Creevy, Kate E, Associate Professor
Vet Small Animal Clinical Sc
DVM, University of Tennessee, 1998

Crick, Nathan A, Professor
Communication
PHD, University of Pittsburgh, 2005

Criscone, Charles D, Professor
Biology
PHD, Oregon State University, 2005

Criscone, John C, Professor
Biomedical Engineering
PHD, The John Hopkins University School of Medicine, 2005
Crisciitto, Michael F, Professor
Veterinary Pathobiology
PHD, University of Miami, 2003

Crisman, Kevin J, Professor
Anthropology
PHD, University of Pennsylvania, 1989

Crisman-Cox, Casey, Assistant Professor
Political Science
PHD, University of Rochester, 2016

Crompton, John L, Distinguished Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 1977

Crosby, Garth, Associate Professor
Eng Tech & Ind Distribution
DEN, Florida International University, 2007

Crosby, Kevin M, Professor
Horticultural Sciences
PHD, Texas A&M University, 1999

Cross, H Russell, Professor
Animal Science
PHD, Texas A&M University, 1972

Crouch, Elizabeth A, Lecturer
College of Veterinary Medicine
PHD, Texas A&M University, 1996

Crouse, Stephen F, Professor
Health & Kinesiology
PHD, The University of New Mexico, 1984

Crump, Thomas B, Adjunct Assistant Professor
Periodontics
DDS, Texas A&M University Baylor College of Dentistry, 1997

Cruz-Reyes, Jorge A, Professor
Biochemistry & Biophysics
PHD, London School of Hygiene & Tropical Medicine, 1992

Cruzado Garcia, Aitor, Lecturer
Aerospace Engineering
PHD, Mondragón University, 2013

Culp III, Charles H, Professor
Architecture
PHD, Iowa State University, 1976

Cummings, Shelby M, Lecturer
Statistics
MPH, Texas A&M University, 2017

Cunha, Jose, Professor of the Practice
Petroleum Engineering
PHD, The University of Tulsa, 1995

Cunningham, George B, Professor
Health & Kinesiology
PHD, The Ohio State University, 2002

Curley Jr, Kevin O, Instructional Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2012

Currie-Gregg, Nancy J, Professor of the Practice
Industrial & Systems Eng
PHD, University of Houston, 1997

Curry, Guy L, Senior Professor
Industrial & Systems Eng
PHD, University of Arkansas, 1971

Curry, Richard K, Associate Professor
Hispanic Studies
PHD, Arizona State University, 1982

Curtsinger, Wanda F, Lecturer
Information & Operations Mgmt
PHD, Morehead State U., 2007

D'Aveta, Laura, Assistant Professor
TAMU Libraries
PHD, Pennsylvania State University, 2016

Da Silva, Dilma M, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 1997

Dabney, Alan R, Associate Professor
Statistics
PHD, University of Washington, 2006

Dague, Laura A, Associate Professor
Public Service & Administration
PHD, University of Wisconsin, 2012

Dai, Yuan, Associate Professor
Plant Pathology & Microbiology
PHD, Duke University, 2006

Daigle, Courtney L, Assistant Professor
Animal Science
PHD, Michigan State University, East Lansing, MI, 2013

Daigneault, Melissa S, Visiting Lecturer
Construction Science
JD, Wake Forest University School of Law, 2003

Daly, Sara, Lecturer
George Bush School of Govern
MA, The George Washington University, 1997

Damnjanovic, Ivan, Associate Professor
Civil Engineering
PHD, University of Texas, 2006

Daniel, Stephen H, Professor
Philosophy & Humanities
PHD, Saint Louis University, 1977

Daniels, Lacy, Senior Professor
College of Pharmacy
PHD, University of Wisconsin - Madison, 1978
Dannenbaum III, Joseph H, Instructional Associate Professor
Health & Kinesiology
MS, Oklahoma State University, 2005

Darbha, Swaroop V, Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1994

Darbinyan, Arman, Visiting Assistant Professor
Mathematics
PHD, Vanderbilt University, 2018

Darcey Louise, senior lecturer
Information & Operations Mgmt
PHD, Texas A&M University, 1974

Darenbourg, Donald J, Distinguished Professor
Chemistry
PHD, University of Illinois at Urbana-Campaign, 1968

Darenbourg, Marcetta, Distinguished Professor
Chemistry
PHD, University of Illinois at Urbana-Campaign, 1967

Daripa, Prabir, Professor
Mathematics
PHD, Brown University, 1985

Darnell, Gayden S, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1997

Dashwood, Roderick H, Professor
Institute of Biosciences & Tec
PHD, University of Portsmouth, 1986

Datta, Aniruddha, Professor
Electrical & Computer Eng
PHD, University of Southern California, 1991

Datta, Sumana, Professor
Biochemistry & Biophysics
PHD, University of California - San Diego, 1987

Dattagupta, Akhil, University Distinguished Professor
Petroleum Engineering
PHD, University of Texas, 1992

Daugherity, Walter C, Senior Lecturer
Computer Science & Engineering
PHD, Harvard University, 1977

Davidson, Jacqueline R, Clinical Professor
Vet Small Animal Clinical Sc
DVM, University of Minnesota, 1986

Davies, Peter J, Professor
Institute of Biosciences & Tec
PHD, University of Miami, 1975

Davis, Amanda R, Lecturer
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2017

Davis, Brian W, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2013

Davis, Carol A, Associate Professor
Liberal Studies
PHD, University of Southern California, 2007

Davis, Danny W, Associate Professor of the Practice
Public Service & Administration
PHD, Texas A&M University, 2003

Davis, Deidra, Instructional Assistant Professor
Land Arch & Urban Planning
PHD, Southern Illinois University, 2017

Davis, Katherine M, Assistant Professor
Electrical & Computer Eng
PHD, University of Illinois at Urbana-Champaign, 2011

Davis, Randall W, Professor
Marine Biology
PHD, University of California at San Diego, 1980

Davis, Tim D, Professor
Horticultural Sciences
PHD, Oregon State University, 1983

Davis, Timothy A, Professor
Computer Science & Engineering
PHD, University of Illinois - Urbana Champaign, 1989

Davis, Trina J, Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2005

Davison, Chayla H, Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Denver, 2013

Davison, Richard R, Professor
Visualization
MFA, Washington University St. Louis, 1979

Davlasheridze, Meri, Assistant Professor
Marine and Coastal Environmental Science
PHD, Pennsylvania State University, 2013

Dawson Mathur, Vani A, Assistant Professor
Psychological & Brain Sciences
PHD, Northwestern University, 2012

Dawson, Lindsay A, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Tulane University, 2014

De Carvalho Cardoso, Rodolfo, Assistant Professor
Animal Science
PHD, Texas A&M University, 2014
DVM, Sao Paulo State University, 2005

De Lima Amaral, Ernesto F, Associate Professor
Sociology
PHD, University of Texas at Austin, 2007
De Lima Vaz Xavier, Davi, Visiting Assistant Professor
Architecture
BAR, University of Brazil, 2018

De Miranda, Michael A, Professor
Teaching, Learning & Culture
PHD, University of California, 1996

De Ruiter, Darryl J, Professor
Anthropology
PHD, University of the Witwatersrand, South Africa, 2001

DeMars, Kyle, Associate Professor
Aerospace Engineering
PHD, University of Texas at Austin, 2010

Dechow, Paul C, Regents Professor
Biomedical Sciences
PHD, University of Chicago, 1980

Deck, Jennifer P, Clinical Assistant Professor
Pediatric Dentistry
DDS, Texas A&M University Baylor College of Dentistry, 2009

Decker, Willa A, Clinical Assistant Professor
College of Nursing
MA, University of Houston - Clear Lake, 1989

Dellapenna, Timothy M, Associate Professor
Marine and Coastal Environmental Science
PHD, The College of William & Mary, 1999

Delmore, Kira, Assistant Professor
Biology
PHD, University of British Columbia, 2015

Demkowicz, Michal J, Associate Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2005

Demkowicz, Michal J, Associate Professor
Mechanical Engineering
PHD, Massachusetts Institute of Technology, 2005

Demlow, Alan R, Professor
Mathematics
PHD, Cornell University, 2002

Deng, Youjun, Associate Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2001

Dennie, Christian S, Adjunct Professor
School of Law
JD, University of Oklahoma, 2004

Depoy, Darren L, Professor
Physics & Astronomy
PHD, University of Hawaii at Manoa, 1987

Derr, James N, Professor
Veterinary Pathobiology
PHD, Texas A&M University, 1990

Derry, Paul, Associate Professor
Institute of Biosciences & Tec
PHD, Rice University, 2016

Dessler, Andrew E, Professor
Atmospheric Sciences
PHD, Harvard University, 1994

Deutz, Nicolaas, Professor
Health & Kinesiology
MD, University of Amsterdam, 1988

Deva, Eswara-Reddy B, Associate Professor
TAMU Libraries
PHD, Karnataka University, 1984

Devarenne, Timothy P, Associate Professor
Biochemistry & Biophysics
PHD, University of Kentucky, 2000

Deveau, Michael A, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Kansas State University, 2005

Devers, Cynthia E, Professor
Management
PHD, Michigan State University, 2003

Devore, Ronald A, Distinguished Professor
Mathematics
PHD, Ohio State University, 1967

Dewitt, Thomas, Associate Professor
Ecology and Conservation Biology
PHD, State University of New York - Binghamton, 1996

Dewitte, Paula S, Associate Professor of the Practice
Computer Science & Engineering
JD, St. Mary’s University School of Law, 2008
PHD, Texas A&M University, 1989

Dewji, Shaheen Azim, Assistant Professor
Nuclear Engineering
PHD, Georgia Institute of Technology, 2014

Dexter, Rayna M, Instructional Assistant Professor
Performance Studies
MFA, Kent State University, 2009

Diaz Artiles, Ana, Assistant Professor
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 2015

Diaz Beltran, Ana Carolina, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, The Pennsylvania State University, 2019

Diaz Rodriguez, Ivan, Instructional Assistant Professor
College of Engineering
PHD, Texas A&M University, 2017

Diaz, Michelle C, Clinical Associate Professor
Accounting
PHD, Texas A&M University, 2005
Dicaglio, Joshua M, Assistant Professor
English
PHD, Pennsylvania State University, 2016

Dicaglio, Sara, Assistant Professor
English
PHD, Pennsylvania State University, 2016
MFA, University of Michigan, 2008

Dickey, Margot B, Adjunct Assistant Professor
Educational Psychology
PHD, Texas A&M University, 2015

Dickson, Donald R, Professor
English
PHD, University of Illinois, Urbana-Champaign, 1981

Diec, Sandy, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas Tech University, 2015

Diekwisch, Thomas G, Professor
Periodontics
DMD, Philipps-University of Marburg, West Germany, 1986

Diesel, Alison B, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Kansas State University, 2005

Dietrich, Katheryn A, Instructional Professor
Sociology
PHD, Texas A&M University, 1994

Dikec, Altay, Clinical Assistant Professor
Marketing
PHD, Konkuk University - Miller Graduate School of Business, 2012

Dimarco, Steven F, Professor
Oceanography
PHD, University of Texas at Dallas, 1991

Dindot, Scott V, Associate Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2003

Ding, Yu, Professor
Industrial & Systems Eng
PHD, University of Michigan, 2001

Dirani, Khalil M, Associate Professor
Educ Admn & Human Resource Dev
PHD, University of Illinois-Urbana Champaign, 2007

Dixit, Manish K, Assistant Professor
Construction Science
PHD, Texas A&M University, 2013

Dixon, Laurie Q, Associate Professor
Teaching, Learning & Culture
PHD, Harvard University Graduate School of Education, 2004

Dixon, Marlene A, Professor
Health & Kinesiology
PHD, Ohio State University, 2002

Dixon, Stuart M, Instructional Associate Professor
Health & Kinesiology
MED, Concordia University Texas, 2009

Diyashev, Iskander, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1998

Dodd, Johnathon R, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1979

Doleac, Jennifer, Associate Professor
Economics
PHD, Stanford University, 2012

Dominguez, Brandon J, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2005

Domsky, Darren K, Associate Professor
Liberal Studies
PHD, York University, 2006

Donaldson, David, Lecturer
Communication
JD, The University of Texas School of Law, 1976

Donelan, Michael B, Lecturer
Maritime Business Administration
MBA, Tulane University, 1981

Dongaonkar, Ranjeet M, Assistant Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2008

Dongarra, Jack J, Visiting Professor
Computer Science & Engineering
PHD, University of New Mexico, 1980

Donkor, David A, Associate Professor
Performance Studies
PHD, Northwestern University, 2008

Donnell, Cydney C, Executive Professor
Finance
MBA, Southern Methodist University, 1982

Donnell, James, Professor of the Practice
College of Engineering
BS, Texas A&M University, 1982

Donovan, Arthur D, Professor of the Practice
Geology & Geophysics
PHD, Colorado School of Mines, 1985

Donzis, Diego A, Associate Professor
Aerospace Engineering
PHD, Georgia Institute of Technology, 2007

Dooley, Kim E, Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1995
Dooley, Larry M, Associate Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1989

Dormire, Sharon L, Professor
College of Nursing
PHD, University of Florida, 1992

Dorsey, Leroy G, Professor
Communication
PHD, Indiana University, 1993

Dostal, Christopher M, Assistant Professor
Anthropology
PHD, Texas A&M University, 2017

Dougherty Jr, Edward R, University Distinguished Professor
Electrical & Computer Eng
PHD, Rutgers State University of New Jersey, 1974

Dowdy, Diane M, Instructional Assistant Professor
Hlth Promotion & Comm Hlth Sci
PHD, Texas A&M University, 1990

Downey, Rachelle M, Visiting Lecturer
Hlth Promotion & Comm Hlth Sci
MED, University of Texas of Arlington, 2013

Downing, Nancy, Associate Professor
College of Nursing
PHD, The University of Iowa, 2010

Dox, Donnalee, Professor
Performance Studies
PHD, University of Minnesota, Twin Cities, 1995

Drake, Stacy, Associate Professor
College of Nursing
PHD, Texas Woman’s University, 2014

Drew, Katherine A, Adjunct Professor
School of Law
JD, Southern Methodist University, 1977

Dronen, Norman, Professor
Ecology and Conservation Biology
PHD, New Mexico State University, 1974

Dror, Olga, Professor
History
PHD, Cornell University, 2003

Droste, Lesa, Clinical Assistant Professor
College of Nursing
MSN, The University of Texas At Austin, 2009

Dryden, Joseph, Adjunct Professor
School of Law
EDD, University of North Texas, 2010
JD, California Western School of Law, 1990

Duan, Benchun, Professor
Geology & Geophysics
PHD, University of California, Riverside, 2006

Dubriwny, Tasha N, Associate Professor
Communication
PHD, University of Georgia, 2005

Dudley, Drew, Visiting Lecturer
Construction Science
MEN, Texas A&M University, 2012

Duff, Michael James, Visiting Professor
College of Engineering
PHD, University of London, Imperial College, 1972

Duffield, Nicholas G, Professor
Computer Science & Engineering
PHD, Queen Mary College, Univ. of London, 1987

Duffy III, Thomas J, Adjunct Professor
School of Law
JD, Syracuse University, 1973

Dulin, Jennifer N, Assistant Professor
Biology
PHD, University of Texas Health Science Center, 2012

Dunaway, Johanna L, Associate Professor
Communication
PHD, Rice University, 2006

Dunbar, Bonnie Jeanne, Professor
Aerospace Engineering
PHD, University of Houston, 1983

Dunbar, Kim R, Distinguished Professor
Chemistry
PHD, Purdue University, 1984

Dunlap, Kathrin A, Instructional Associate Professor
Animal Science
PHD, Texas A&M University, 2006

Dunn, Allison L, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2018

Dunsford, Deborah W, Senior Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1993

Duong, Tri, Associate Professor
Poultry Science
PHD, North Carolina State University, 2008

Duplessis, Anton R, Clinical Associate Professor
TAMU Libraries
MA, Texas A&M University, 2003

Duran Vincent, Orencio, Assistant Professor
Ocean Engineering
PHD, University of Stuttgart, 2007
Duran, Robert, Associate Professor
Sociology
PHD, University of Colorado Boulder, 2006

Durko, Angela M, Instructional Associate Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 2014

Dutta, Bhaskar, Professor
Physics & Astronomy
PHD, Oklahoma State University, 1995

Dvorak, Bruce D, Associate Professor
Land Arch & Urban Planning
MLA, University of Illinois at Urbana-Champaign, 1994

Dwivedi, Priyanka, Assistant Professor
Management
PHD, The Pennsylvania State University, 2017

Dworkin, Ira M, Associate Professor
English
PHD, City University of New York, 2003

Dwyer, William G, Lecturer
George Bush School of Govern
JD, Rutgers Law School, 2004

Dye, Richard T, Clinical Professor
Finance
PHD, Texas A&M University, 1993

Dyer, Megan K, Lecturer
Political Science
PHD, Texas A&M University, 2017

Dykema, Kenneth J, Professor
Mathematics
PHD, University of California, Berkeley, 1993

Eades, Erma S, Professor
Vet Large Animal Clinical Sc
PHD, University of Georgia, 1988
DVM, Louisiana State University, 1982

Earhart, Amy E, Associate Professor
English
PHD, Texas A&M University, 1999

Earle, Thomas, Assistant Professor
Liberal Studies
PHD, Rice University, 2017

Early, Timothy, Associate Professor of the Practice
Land Arch & Urban Planning
MS, Texas A&M University, 1991

Easterwood, Leslie A, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1995

Easwaran, Kenneth K, Associate Professor
Philosophy & Humanities
PHD, University of California Berkeley, 2008

Ebbole, Daniel J, Professor
Plant Pathology & Microbiology
PHD, Purdue University, 1988

Echols, Katherine E, Instructional Associate Professor
Liberal Studies
PHD, University of Houston, 2015

Eckel, Catherine C, University Distinguished Professor
Economics
PHD, University of Virginia, 1983

Eckhause, Melissa, Adjunct Professor
School of Law
JD, University of Detroit, 1998

Eckman, Stacy L, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2001

Eckstein, Gabriel E, Professor
School of Law
JD, American University Washington College of Law, 1995

Economou, Ioannis, Professor
Texas A&M University at Qatar
PHD, Johns Hopkins University, 1993

Edens, John F, Professor
Psychological & Brain Sciences
PHD, Texas A&M University, 1996

Edens, Pamela S, Senior Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 1997

Edwardson, Jeffrey C, Senior Lecturer
Economics
PHD, Texas A&M University, 2000

Efendiev, Yalchin R, Professor
Mathematics
PHD, California Institute of Technology, 1999

Ege, Matthew S, Associate Professor
Accounting
PHD, The University of Texas of Austin, 2013

Egenolf, Susan B, Associate Professor
English
PHD, Texas A&M University, 1995

Ehler, Patricia L, Clinical Assistant Professor
College of Nursing
MS, University of Phoenix, 2004

Ehsani, Mehrdad, Professor
Electrical & Computer Eng
PHD, University of Wisconsin - Madison, 1981

Eide, Marian, Professor
English
PHD, University of Pennsylvania, 1994
Eilers, Howard F, Associate Professor
Visualization
MFA, Ohio University, 1964

Eitan, Shoshana, Associate Professor
Psychological & Brain Sciences
PHD, Weizmann Institute of Science, 1997

Eksin, Ceyhun, Assistant Professor
Industrial & Systems Eng
PHD, University of Pennsylvania, 2015

El Borgi, Sami, Professor
Texas A&M University at Qatar
PHD, Cornell University, 1993

El-Halwagi, Mahmoud M, Professor
Chemical Engineering
PHD, University of California, Los Angeles, 1990

Elabd, Yossef A, Professor
Chemical Engineering
PHD, Johns Hopkins University, 2001

Elabd, Yossef A, Professor
Materials Science & Engr
PHD, Johns Hopkins University, 2001

Elbashir, Nimir O, Professor
Texas A&M University at Qatar
PHD, Auburn University, 2004

Elbashir, Nimir O, Professor
Texas A&M University at Qatar
PHD, Auburn University, 2004

Elbert, Chanda D, Associate Professor
Ag Leadership, Educ & Comm
PHD, The Pennsylvania State University, 2000

Elgindi, Ali, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, University of Chicago, 2011

Elliot, John F, Clinical Associate Professor
Health & Kinesiology
PHD, University of Virginia, 1997

Elliot, John F, Professor
Ag Leadership, Educ & Comm
PHD, Ohio State University, 1988

Elliott, Kay E, Adjunct Professor
School of Law
JD, University of Oklahoma, 1964

Elliott, Timothy R, University Distinguished Professor
Educational Psychology
PHD, University of Missouri - Columbia, 1987

Ellis, Debra R, Senior Lecturer
Construction Science
JD, Baylor University, 1993

Ellis, Gary D, Professor
Recreation, Park & Tourism Sc
PHD, North Texas State University, 1983

Ellis, Michael L, Clinical Associate Professor
Oral & Maxillofacial Surgery
DDS, Baylor College of Dentistry, 1985

Ellis, Robert B, Instructional Assistant Professor
Health & Kinesiology
BA, Oklahoma State University, 1964

Ellis, Thomas H, Instructional Assistant Professor
Philosophy & Humanities
MA, Texas A&M University, 2009

Elmageed, Zakaria A, Assistant Professor
College of Pharmacy
PHD, Helwan University, 2004

Elms, Rene D, Associate Professor of the Practice
College of Engineering
PHD, Texas A&M University, 2009

Elsheikh, Aymen E, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, Indiana University-Bloomington, 2012

Elwany, Alaa Mohamed, Assistant Professor
Materials Science & Engr
PHD, Georgia Institute of Technology, 2009

Elwany, Alaa Mohamed H, Assistant Professor
Industrial & Systems Eng
PHD, Georgia Institute of Technology, 2009

Elza, Susan, Visiting Professor
Health & Kinesiology
EDD, Lamar University, Beaumont, 2014

Emre, Side, Associate Professor
History
PHD, University of Chicago, 2009

Engelen, Marielle P, Professor
Health & Kinesiology
PHD, Maastricht University, Netherlands, 2000

England, Peter S, Instructional Associate Professor
Civil Engineering
PHD, Texas Tech University, 2011

Engler, Cady R, Senior Professor
Biological & Agricultural Eng
PHD, University of Waterloo, 1980

Enjeti, Prasad N, Professor
Electrical & Computer Eng
PHD, Concordia University, Montreal, 1984

Entesari, Kamran, Professor
Electrical & Computer Eng
PHD, University of Michigan, 2006
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree, Institution, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epifanio, Craig C</td>
<td>Associate Professor</td>
<td>Atmospheric Sciences</td>
<td>PHD, University of Washington, 1999</td>
</tr>
<tr>
<td>Epps, Sharon V</td>
<td>Lab Instructor</td>
<td>Biology</td>
<td>MS, Texas A&M University, 2013</td>
</tr>
<tr>
<td>Epstein, Janice L</td>
<td>Instructional Associate Professor</td>
<td>Mathematics</td>
<td>PHD, Texas A&M University, 1992</td>
</tr>
<tr>
<td>Erbeli, Florina</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, University of Ljubljana, 2015</td>
</tr>
<tr>
<td>Erdelyi, Tamás</td>
<td>Professor</td>
<td>Mathematics</td>
<td>PHD, University of Southern Carolina, 1989</td>
</tr>
<tr>
<td>Erdemir, Ali</td>
<td>Professor</td>
<td>Mechanical Engineering</td>
<td>PHD, Georgia Institute of Technology, 1986</td>
</tr>
<tr>
<td>Erickson, James W</td>
<td>Associate Professor</td>
<td>Biology</td>
<td>PHD, University of Wisconsin - Madison, 1989</td>
</tr>
<tr>
<td>Eriksson, Marian</td>
<td>Associate Professor</td>
<td>Ecology and Conservation Biology</td>
<td>PHD, University of Minnesota, 1989</td>
</tr>
<tr>
<td>Espina, Eduardo D</td>
<td>Professor</td>
<td>Hispanic Studies</td>
<td>PHD, Washington University in St. Louis, 1987</td>
</tr>
<tr>
<td>Esquivel, Jose G</td>
<td>Associate Professor</td>
<td>Architecture</td>
<td>MAR, Ohio State University, 1998</td>
</tr>
<tr>
<td>Esteve-Gasent, Maria D</td>
<td>Assistant Professor</td>
<td>Veterinary Pathobiology</td>
<td>PHD, Universidad de Valencia, Spain, 2003</td>
</tr>
<tr>
<td>Etchells, Matthew</td>
<td>Lecturer</td>
<td>Teaching, Learning & Culture</td>
<td>PHD, Texas A&M University, 2018</td>
</tr>
<tr>
<td>Etherton, Teresa</td>
<td>Lecturer</td>
<td>College of Nursing</td>
<td>BSN, Grand Canyon University, 2014</td>
</tr>
<tr>
<td>Erraguntla, Madhav</td>
<td>Associate Professor of the Practice</td>
<td>Industrial & Systems Eng</td>
<td>PHD, Texas A&M University, 1996</td>
</tr>
<tr>
<td>Ettekal, Andrea V</td>
<td>Assistant Professor</td>
<td>Recreation, Park & Tourism Sc</td>
<td>PHD, Arizona State University, 2014</td>
</tr>
<tr>
<td>Ettekal, Idean</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD, Arizona State University, 2016</td>
</tr>
<tr>
<td>Ettekal, Andrea V</td>
<td>Assistant Professor</td>
<td>Pediatric Dentistry</td>
<td>DDS, University of Iowa, 1996</td>
</tr>
<tr>
<td>Eubanks, Micky D</td>
<td>Professor</td>
<td>Entomology</td>
<td>PHD, University of Maryland, College Park, 1997</td>
</tr>
<tr>
<td>Eusebi, Ricardo</td>
<td>Professor</td>
<td>Physics & Astronomy</td>
<td>PHD, University of Rochester, 2006</td>
</tr>
<tr>
<td>Evans, Dwayne E</td>
<td>Clinical Assistant Professor</td>
<td>Public Health Sciences</td>
<td>DDS, Texas A&M University Baylor College of Dentistry, 1990</td>
</tr>
<tr>
<td>Evans, Jennifer</td>
<td>Clinical Assistant Professor</td>
<td>Health & Kinesiology</td>
<td>PHD, University of Alabama, 2019</td>
</tr>
<tr>
<td>Everett, Mark E</td>
<td>Professor</td>
<td>Geology & Geophysics</td>
<td>PHD, University of Toronto, 1991</td>
</tr>
<tr>
<td>Everett-Houser, Joan M</td>
<td>Instructional Assistant Professor</td>
<td>College of Pharmacy</td>
<td>PHARMD, University of the Pacific, 1983</td>
</tr>
<tr>
<td>Escamilla Jr, Edelmiro E</td>
<td>Instructional Associate Professor</td>
<td>Construction Science</td>
<td>PHD, Texas A&M University, 2011</td>
</tr>
<tr>
<td>Escobar-Lemmon, Maria</td>
<td>Professor</td>
<td>Political Science</td>
<td>MAR, Texas A&M University, 2002</td>
</tr>
<tr>
<td>Eslami, Jihjillan</td>
<td>Lecturer</td>
<td>TAMU Libraries</td>
<td>PhD, The University of Arizona, 2000</td>
</tr>
<tr>
<td>Eslami, Zohreh R</td>
<td>Professor</td>
<td>Texas A&M University at Qatar</td>
<td>MLS, San Jose State University, 2016</td>
</tr>
<tr>
<td>Eslami, Zohreh R</td>
<td>Professor</td>
<td>Texas A&M University at Qatar</td>
<td>PHD, University of Illinois at Urbana-Champaign, 1992</td>
</tr>
</tbody>
</table>
Ewing, Ryan C, Professor
Geology & Geophysics
PHD, The University of Texas - Austin, 2009

Eytan, Ron I, Assistant Professor
Marine Biology
PHD, Louisiana State University, 2010

Ezell-Mainzer, Margaret, Distinguished Professor
English
PHD, Cambridge University, 1981

Ezzo, Paul J, Adjunct Assistant Professor
Periodontics
PHD, Texas A&M University Baylor College of Dentistry, 2000
DDS, Baylor College of Dentistry, 1983

Fadlelmula, Mohamed, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, Middle East Technical University, 2012

Faghihi, Vahid, Lecturer
College of Engineering
PHD, Texas A&M University, 2014

Fahrenwald, Carl, Clinical Assistant Professor
Educ Admn & Human Resource Dev
EDD, University of South Dakota, 1999

Fahrenwald, Nancy Lynn, Professor
College of Nursing
PHD, University of Nebraska Medical Center, 2002

Fairchild, Amy L, Professor
Health Policy & Management
PHD, Columbia University, 1997

Fajt, Virginia R, Clinical Professor
Vet Physiology & Pharmacology
PHD, Iowa State University, 2000
DVM, Auburn University, 1995

Fallah Abed, Pooria, Clinical Assistant Professor
Periodontics
DDS, School of Dentistry Qazvin, 2009

Falvo, Kathryn, Instructional Assistant Professor
Liberal Studies
PHD, Pennsylvania State University, 2018

Falzarano, Jeffrey M, Professor
Ocean Engineering
PHD, University of Michigan, Ann Arbor, 1990

Fang, Gwo-Ping, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1996

Fang, Lei, Associate Professor
Chemistry
PHD, Northwestern University, 2010

Farooqi, Mohammed Junaid, Instructional Assistant Professor
College of Science
PHD, University of Texas San Antonio, 2018

Farris, Joseph Basam, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2016

Farmer, Karen C, Lecturer
Accounting
MS, Texas A&M University, 2009

Farnell, Morgan B, Associate Professor
Poultry Science
PHD, Texas A&M University, 2003

Farnell, Yuhua Z, Instructional Assistant Professor
Poultry Science
PHD, Texas A&M University, 2002

Falvo, Kathryn, Instructional Assistant Professor
Liberal Studies
PHD, Pennsylvania State University, 2018

Falzarano, Jeffrey M, Professor
Ocean Engineering
PHD, University of Michigan, Ann Arbor, 1990

Fang, Gwo-Ping, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1996

Fang, Lei, Associate Professor
Chemistry
PHD, Northwestern University, 2010

Fang, Lei, Assistant Professor
Materials Science & Engr
PHD, Northwestern University, 2010
Felts, Jonathan R, Associate Professor
Mechanical Engineering
DEN, University of Illinois Urbana Champaign, 2013

Feng, Jian Q, Regents Professor
Biomedical Sciences
PHD, University of Connecticut, 1991

Ferdinand, Alva O, Associate Professor
Health Policy & Management
PHD, University of Alabama Birmingham, 2013

Fernandez-Solis, Jose L, Instructional Associate Professor
Construction Science
PHD, Georgia Institute of Technology, 2006

Fernando, Sandun D, Professor
Biological & Agricultural Eng
PHD, University of Nebraska, 2003

Fernsler Terrence, Lecturer
George Bush School of Govern
PHD, James Madison University, 2017

Ferris, Thomas K, Associate Professor
Industrial & Systems Eng
PHD, University of Michigan - Ann Arbor, 2010

Fertitta, Kelli, Instructional Assistant Professor
Maritime Business Administration
JD, South Texas College of Law, 2013

Ficht, Allison R, Professor
Molecular & Cellular Medicine
PHD, Vanderbilt University, 1980

Fickel, Larry W, Senior Lecturer
Construction Science
BS, Texas A&M University, 1981

Field, Christopher C, Lecturer
College of Business
MA, Abilene Christian University, 2013

Field, Kimberly, Professor of the Practice
Bush School of Govt. - Deans
MA, U.S. Army War College, 2008

Field, Kimberly, Professor of the Practice
International Affairs
MA, U.S. Army War College, 2008

Fields, Sherecce A, Associate Professor
Psychological & Brain Sciences
PHD, University of South Florida, 2008

Fields, Steven D, Adjunct Professor
School of Law
JD, University of Oklahoma School of Law, 1986

Fields, Susan S, Visiting Assistant Professor
Teaching, Learning & Culture
EDD, Boston University, 2017

Fierke, Carol A, Professor
Chemistry
PHD, Brandeis University, 1984

Figlus, Jens, Associate Professor
Ocean Engineering
PHD, University of Delaware, 2010

Filippi, Anthony M, Associate Professor
Geography
PHD, University of South Carolina, 2003

Finch, Krista S, Instructional Assistant Professor
Visualization
MFA, Maryland Institute College of Art, 2000

Finch, Sherman S, Assistant Professor
Visualization
MFA, Maryland Institute College of Art, 1998

Fink, Rainer J, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 1995

Fink, Rainer J, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1995

Finkelstein, Alexander, Professor
Physics & Astronomy
PHD, Laudau Institute for Theoretical Physics, 1972

Finlayson, Scott A, Associate Professor
Soil & Crop Sciences
PHD, University of Calgary, 1994

Fischer, Rebecca Susann Bryson, Assistant Professor
Epidemiology & Biostatistics
PHD, The University of Texas School of Public Health, 2014

Fisher, Erica, Visiting Lecturer
Construction Science
MS, Texas A&M University, 2006

Fitzgerald, Lee, Professor
Ecology and Conservation Biology
PHD, University of New Mexico, 1993

Fitzgerald, Tristan, Assistant Professor
Finance
PHD, University of California, Berkeley, 2018

Fitzsimmons, Jessica N, Associate Professor
Oceanography
PHD, Massachusetts Institute of Technology, 2013

Flagg, James C, Associate Professor
Accounting
PHD, Texas A&M University, 1988

Fleming, Kenneth J, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2016
Fletcher, Samantha, Lecturer
Biology
PHD, Texas A&M University, 2019

Flint, Gerald David, Clinical Professor
Management
PHD, Texas A&M University, 1997

Fluckey, James D, Professor
Health & Kinesiology
PHD, The Pennsylvania State University, 1995

Fogarty, Melissa S, Clinical Associate Professor
Educational Psychology
PHD, Texas A&M University, 2012

Folden III, Charles M, Associate Professor
Chemistry
PHD, University of California, Berkeley, 2004

Foote, Lorien L, Professor
History
PHD, University of Oklahoma - Norman, 1999

Foran, Alexandra, Lecturer
Mathematics
PHD, Texas A&M University, 2018

Ford, Albert L, Professor
Physics & Astronomy
PHD, University of Texas at Austin, 1972

Ford, David N, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 1995

Ford, John R, Associate Professor
Nuclear Engineering
PHD, University of Tennessee, 1992

Forrest, David W, Professor
Animal Science
PHD, University of Wyoming, 1979

Fortenberry, Brent R, Assistant Professor
Architecture
PHD, Boston University, 2013

Fortney, Suraya, Professor
School of Law
DJS, Columbia University School of Law, 1997
LLM, Columbia University School of Law, 1992
JD, Antioch School of Law, 1977

Fortunato, David, Associate Professor
Political Science
PHD, Rice University, 2012

Fossett, Mark A, Professor
Sociology
PHD, The University of Texas - Austin, 1983

Foster, Courtney E, Lecturer
Accounting
BBA, Texas A&M University, 2008

Foster, Holly A, Professor
Sociology
PHD, University of Toronto, 2001

Foster, Margaret J, Professor
TAMU Libraries
MPH, The University of Texas Health Science Center, 2009

Foucart, Simon, Professor
Mathematics
PHD, University of Cambridge, 2005

Fowler, Rhonda M, Clinical Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 2013

Fox, Eric, Clinical Assistant Professor
Dental Hygiene
MS, Texas A&M University Baylor College of Dentistry, 2005

Francis Jr, James, Lecturer
English
PHD, Middle Tennessee State University, 2010

Frank-Cannon, Tamy C, Clinical Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2005
DVM, Texas A&M University, 1996

Frauenfeld, Oliver W, Associate Professor
Geography
PHD, University of Virginia, 2003

Frech, Devek K, Adjunct Assistant Professor
Orthodontics
DDS, Baylor College of Dentistry, 1986

Freed, Alan D, Professor
Biomedical Engineering
DEN, University of Wisconsin - Madison, 1985

Freed, Alan D, Professor
Mechanical Engineering
DEN, University of Wisconsin - Madison, 1985

Fridley, Jennifer, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Mississippi State University, 2014

Fries, Rainer J, Professor
Physics & Astronomy
PHD, University of Regensburg, Germany, 2001

Fry, Edward S, Distinguished Professor
Physics & Astronomy
PHD, University of Michigan, 1969

Frymire, Read, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1983

Fuentes, Ana Marcela, Assistant Professor
English
PHD, Georgia State University, 2016
MFA, Iowa Writers Workshop, 2009
Fuhrmann, Matthew C, Professor
Political Science
PHD, University of Georgia, 2008

Fujiwara, Masami, Associate Professor
Ecology and Conservation Biology
PHD, Massachusetts Inst of Technology, 2002

Fullerton, Tracy L, Associate Professor of the Practice
College of Engineering
PHD, Texas A&M University, 2011

Fulling, Stephen A, Professor
Mathematics
PHD, Princeton University, 1972

Fulton, Sarah A, Associate Professor
Political Science
PHD, University of California, Davis, 2006

Fulton, Stephanie, Instructional Professor
TAMU Libraries
MS, University of North Texas, 1993

Fulvio, Pasquale, Research Assistant Professor
Nuclear Engineering
PHD, Kent State University, 2009

Gabriel, Eleanor L, Adjunct Professor
School of Law
JD, University of Houston Law Center, 1997

Gabriel, Frank P, University Distinguished Professor
Chemistry
PHD, Technische Universitat Munchen, Germany, 1999

Gabriel, Jennifer L, Adjunct Professor
School of Law
JD, Texas Tech School of Law, 1980

Gadd, Dana, Professor
Vet Integrative Biosciences
PHD, Baylor College of Medicine, 1991

Gaharwar, Akhilesh K, Associate Professor
Biomedical Engineering
PHD, Purdue University, 2011

Galbraith, Kevin, Lecturer
American Studies
PhD, University of Wisconsin, 2015

Gall, Philip, Associate Professor
Neuroscience
PhD, University of California, San Diego, 2002

Gallant, Philip, Associate Professor
Psychology
PhD, University of Western Ontario, 1998

Gammaitoni, Giorgio, Lecturer
Political Science
PhD, University of Wisconsin, 2015

Gammon, Angelique, Instructional Assistant Professor
Communication
BA, Texas A&M University, 1982

Gan, Jianbang, Professor
Ecology and Conservation Biology
PHD, Iowa State University, 1990

Gan, Li, Professor
Economics
PHD, University of California, Berkeley, 1998

Ganz, Jennifer, Professor
Educational Psychology
PhD, University of Kansas, 2002

Gao, Huajian, Visiting Professor
College of Engineering
PHD, Harvard University, 1988
Gao, Huilin, Associate Professor
Civil Engineering
PhD, Princeton University, 2005

Gao, Li, Visiting Assistant Professor
Mathematics
PhD, University of Illinois-Urbana-Champaign, 2018

Garay, Juan A, Professor
Computer Science & Engineering
PhD, The Pennsylvania State University, 1989

Garcia Sanchez, Guillermo J, Associate Professor
School of Law
JD, Harvard Law School, 2017
LLM, Tufts University, 2011

Garcia, Alejandra, Clinical Assistant Professor
Dental Hygiene
BS, Baylor College of Dentistry, 1997

Garcia, Alfredo A, Professor
Industrial & Systems Eng
PhD, University of Michigan, 1997

Garcia, Deni S, Adjunct Professor
School of Law
JD, Texas Wesleyan University, 2000

Garcia, Leslie L, Instructional Assistant Professor
Animal Science
PhD, Texas A&M University, 2015

Garcia, Luis R, Professor
Biology
DDS, Texas A&M University Baylor College of Dentistry, 1999

Garcia, Luis R, Professor
Biology
PhD, University of Texas at Austin, 1996

Garcia, Robert, Instructional Assistant Professor
Health Promotion & Comm Hlth Sci
PhD, University of Southern California, 2017

Garcia, Robert K, Associate Professor
Philosophy & Humanities
PhD, University of Notre Dame, 2009

Garcia, Tanya, Associate Professor
Statistics
PhD, Texas A&M University, 2011

Gardner, Wilford D, Senior Professor
Oceanography
PhD, Massachusetts Inst of Technology, 1978

Garey, William D, Executive Professor
Finance
MBA, University of Houston - Clear Lake, 1980

Gariazzo, Mariana S, Instructional Assistant Professor
Performance Studies
PhD, University of Texas, 2005

Garney, Whitney R, Assistant Professor
Health & Kinesiology
PhD, Texas A&M University, 2015

Garritano, Carmela, Associate Professor
International Studies
PhD, Michigan State University, 2001

Gary, Jodie C, Assistant Professor
College of Nursing
PhD, University of Texas at Tyler, 2012

Garza, Brent A, Assistant Professor
Accounting
PhD, University of Illinois-Urbana-Champaign, 2017

Garza, Veronica, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2009

Garza, Victor, Clinical Assistant Professor
College of Medicine
MD, Baylor College of Medicine, 2004

Garza-Horne, Julie A, Instructional Assistant Professor
Liberal Studies
MA, University of Houston Clear Lake, 2010

Gaspar, Julian, Clinical Professor
Finance
PhD, Georgetown University, 1981

Gastel, Barbara J, Professor
Vet Integrative Biosciences
MD, Johns Hopkins University, 1978

Gatlin, Delbert, Professor
Ecology and Conservation Biology
PhD, Mississippi State University, 1983

Gatson, Sarah N, Associate Professor
Sociology
PhD, Northwestern University, 1999

Gause III, Francis G, Professor
International Affairs
PhD, Harvard University, 1987

Gautam, Natarajan, Professor
Industrial & Systems Eng
PhD, University of North Carolina at Chapel Hill, 1997

Gaynanova, Irina, Assistant Professor
Statistics
PhD, Cornell University, 2015

Gehringer, Kerri B, Professor
Animal Science
PhD, Texas A&M University, 1994

Geismar, Harry N, Professor
Information & Operations Mgmt
PhD, University of Texas at Dallas, 2003
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree</th>
<th>Institution</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geismar, Karen</td>
<td>Senior Lecturer</td>
<td>Nutrition</td>
<td>PHD</td>
<td>Texas Woman's University, Denton</td>
<td>1998</td>
</tr>
<tr>
<td>Geller, Mark S</td>
<td>Adjunct Assistant Professor</td>
<td>Orthodontics</td>
<td>DDS</td>
<td>Baylor College of Dentistry</td>
<td>1973</td>
</tr>
<tr>
<td>Genecov, Jeffrey S</td>
<td>Adjunct Assistant Professor</td>
<td>Orthodontics</td>
<td>DDS</td>
<td>Baylor College of Dentistry</td>
<td>1985</td>
</tr>
<tr>
<td>Gentry, Terry J</td>
<td>Professor</td>
<td>Soil & Crop Sciences</td>
<td>PHD</td>
<td>University of Arizona</td>
<td>2003</td>
</tr>
<tr>
<td>George, James P</td>
<td>Professor</td>
<td>School of Law</td>
<td>JD</td>
<td>The University of Tulsa</td>
<td>1978</td>
</tr>
<tr>
<td>George, Jordana</td>
<td>Clinical Assistant Professor</td>
<td>Information & Operations Mgmt</td>
<td>PHD</td>
<td>Baylor University</td>
<td>2019</td>
</tr>
<tr>
<td>George, Theodore D</td>
<td>Professor</td>
<td>Philosophy & Humanities</td>
<td>PHD</td>
<td>Villanova University</td>
<td>2000</td>
</tr>
<tr>
<td>Georghiades, Costas N</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PHD</td>
<td>Washington University in St. Louis</td>
<td>1985</td>
</tr>
<tr>
<td>Gerakis, Alexandros</td>
<td>Assistant Professor</td>
<td>Aerospace Engineering</td>
<td>PHD</td>
<td>University College London</td>
<td>2014</td>
</tr>
<tr>
<td>German, Elizabeth M</td>
<td>Associate Professor</td>
<td>TAMU Libraries</td>
<td>MLS</td>
<td>University of Illinois</td>
<td>2009</td>
</tr>
<tr>
<td>Geva, Joseph P</td>
<td>Professor</td>
<td>Industrial & Systems Eng</td>
<td>PHD</td>
<td>Pennsylvania State University</td>
<td>1999</td>
</tr>
<tr>
<td>Geva, Anat M</td>
<td>Professor</td>
<td>Architecture</td>
<td>PHD</td>
<td>Texas A&M University</td>
<td>1995</td>
</tr>
<tr>
<td>Geva, Nehemia</td>
<td>Associate Professor</td>
<td>Political Science</td>
<td>PHD</td>
<td>Ohio State University</td>
<td>1977</td>
</tr>
<tr>
<td>Gharibeh, Nasir G</td>
<td>Associate Professor</td>
<td>Civil Engineering</td>
<td>PHD</td>
<td>University of Illinois</td>
<td>1997</td>
</tr>
<tr>
<td>Ghayeb, Ali</td>
<td>Professor</td>
<td>Texas A&M University at Qatar</td>
<td>PHD</td>
<td>University of Arizona</td>
<td>2000</td>
</tr>
<tr>
<td>Giardino, John R</td>
<td>Professor</td>
<td>Geology & Geophysics</td>
<td>PHD</td>
<td>University of Nebraska, Lincoln</td>
<td>1979</td>
</tr>
<tr>
<td>Gibbs, Brian C</td>
<td>Visiting Lecturer</td>
<td>Architecture</td>
<td>MAR</td>
<td>Texas A&M University</td>
<td>2006</td>
</tr>
<tr>
<td>Gibbs, Holly C</td>
<td>Lecturer</td>
<td>Biomedical Engineering</td>
<td>PHD</td>
<td>Texas A&M University</td>
<td>2015</td>
</tr>
<tr>
<td>Gibson, Jeremy</td>
<td>Clinical Associate Professor</td>
<td>College of Medicine</td>
<td>MD</td>
<td>University of Texas Medical Branch at Galveston</td>
<td>1998</td>
</tr>
<tr>
<td>Gibson, Tobias</td>
<td>Lecturer</td>
<td>George Bush School of Govern</td>
<td>PHD</td>
<td>Washington University in St. Louis</td>
<td>2006</td>
</tr>
<tr>
<td>Giger, Maryellen</td>
<td>Visiting Professor</td>
<td>College of Engineering</td>
<td>PHD</td>
<td>University of Chicago</td>
<td>1985</td>
</tr>
<tr>
<td>Gildin, Eduardo</td>
<td>Associate Professor</td>
<td>Petroleum Engineering</td>
<td>PHD</td>
<td>University of Texas</td>
<td>2006</td>
</tr>
<tr>
<td>Giles, Erin</td>
<td>Assistant Professor</td>
<td>Nutrition</td>
<td>PHD</td>
<td>McMaster University</td>
<td>2015</td>
</tr>
<tr>
<td>Gill, Clare A</td>
<td>Professor</td>
<td>Animal Science</td>
<td>PHD</td>
<td>University of Adelaide, Australia</td>
<td>2000</td>
</tr>
<tr>
<td>Gill, Jason J</td>
<td>Associate Professor</td>
<td>Animal Science</td>
<td>PHD</td>
<td>University of Guelph</td>
<td>2006</td>
</tr>
<tr>
<td>Gilmour, Lindsey J</td>
<td>Clinical Associate Professor</td>
<td>Vet Large Animal Clinical Sc</td>
<td>DVM</td>
<td>Texas A&M University</td>
<td>2009</td>
</tr>
<tr>
<td>Gilreath, Tamika D</td>
<td>Associate Professor</td>
<td>Health & Kinesiology</td>
<td>PHD</td>
<td>The Pennsylvania State University</td>
<td>2007</td>
</tr>
<tr>
<td>Gilson, Carly B</td>
<td>Assistant Professor</td>
<td>Educational Psychology</td>
<td>PHD</td>
<td>Vanderbilt University</td>
<td>2017</td>
</tr>
<tr>
<td>Girimaji, Sharath S</td>
<td>Professor</td>
<td>Aerospace Engineering</td>
<td>PHD</td>
<td>Cornell University</td>
<td>1990</td>
</tr>
<tr>
<td>Girimaji, Sharath S</td>
<td>Professor</td>
<td>Mechanical Engineering</td>
<td>PHD</td>
<td>Cornell University</td>
<td>1990</td>
</tr>
<tr>
<td>Girimaji, Sharath S</td>
<td>Professor</td>
<td>Ocean Engineering</td>
<td>PHD</td>
<td>Cornell University</td>
<td>1990</td>
</tr>
<tr>
<td>Giusti, Cecilia Hundskopf</td>
<td>Associate Professor</td>
<td>Land Arch & Urban Planning</td>
<td>PHD</td>
<td>The University of Texas - Austin</td>
<td>2001</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Department</td>
<td>Institution</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Gladysz, John A</td>
<td>Distinguished Professor</td>
<td>Chemistry</td>
<td>Stanford University</td>
<td>1974</td>
<td></td>
</tr>
<tr>
<td>Glasner, Margaret E</td>
<td>Associate Professor</td>
<td>Biochemistry & Biophysics</td>
<td>Massachusetts Institute of Technology</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Glass, Amy J</td>
<td>Associate Professor</td>
<td>Economics</td>
<td>University of Pennsylvania</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>Glass, Kati P</td>
<td>Clinical Assistant Professor</td>
<td>Vet Large Animal Clinical Sc</td>
<td>Texas A&M University</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Glenn, Gayle</td>
<td>Clinical Assistant Professor</td>
<td>Orthodontics</td>
<td>Baylor College of Dentistry</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>Glickman, Gerald N</td>
<td>Professor</td>
<td>Endodontics</td>
<td>Ohio State University Columbus, OH</td>
<td>1978</td>
<td></td>
</tr>
<tr>
<td>Glover, Charles J</td>
<td>Senior Professor</td>
<td>Chemical Engineering</td>
<td>Rice University</td>
<td>1975</td>
<td></td>
</tr>
<tr>
<td>Glowacki, Kevin T</td>
<td>Associate Professor</td>
<td>Architecture</td>
<td>Bryn Mawr College</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Goddard, Tara B</td>
<td>Assistant Professor</td>
<td>Land Arch & Urban Planning</td>
<td>Portland State University</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>Godwin, Allen D</td>
<td>Associate Professor of the Practice</td>
<td>College of Engineering</td>
<td>Texas A&M University</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Goebel, Frank E</td>
<td>Professor</td>
<td>Anthropology</td>
<td>University of Alaska Fairbanks</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>Gohil, Vishal M</td>
<td>Associate Professor</td>
<td>Biochemistry & Biophysics</td>
<td>Wayne State University</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Goidel, Robert K</td>
<td>Professor</td>
<td>Communication</td>
<td>University of Kentucky</td>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>Golbabai, Justin</td>
<td>Associate Professor of the Practice</td>
<td>Land Arch & Urban Planning</td>
<td>American Institute of Certified Planners</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Gold Bouchot, Gerardo</td>
<td>Professor</td>
<td>Oceanography</td>
<td>CINVESTAV Merida</td>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>Goldberg, Daniel W</td>
<td>Assistant Professor</td>
<td>Computer Science & Engineering</td>
<td>University of Southern California</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Goldberg, Daniel W</td>
<td>Associate Professor</td>
<td>Geography</td>
<td>University of Southern California</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Golding, Michael C</td>
<td>Associate Professor</td>
<td>Vet Physiology & Pharmacology</td>
<td>Texas A&M University</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Goldman, Michael R</td>
<td>Adjunct Professor</td>
<td>School of Law</td>
<td>South Texas College of Law</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Goldsmith, Patrick A</td>
<td>Professor</td>
<td>Sociology</td>
<td>University of Arizona</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Golla, Michael R</td>
<td>Senior Lecturer</td>
<td>Eng Tech & Ind Distribution</td>
<td>Texas A&M University</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Golsan, Ines D</td>
<td>Senior Lecturer</td>
<td>International Studies</td>
<td>University of North Carolina at Chapel Hill</td>
<td>1977</td>
<td></td>
</tr>
<tr>
<td>Golsan, Richard J</td>
<td>Distinguished Professor</td>
<td>Veterinary Pathobiology</td>
<td>University of North Carolina at Chapel Hill</td>
<td>1981</td>
<td></td>
</tr>
<tr>
<td>Gomer, Richard H</td>
<td>Professor</td>
<td>Biology</td>
<td>California Institute of Technology</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>Gomes Verocai, Guilherme</td>
<td>Clinical Assistant Professor</td>
<td>Veterinary Pathobiology</td>
<td>University of Calgary</td>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>Gomez, Daniel</td>
<td>Instructional Associate Professor</td>
<td>Health & Kinesiology</td>
<td>Texas A&M University</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Gomez, Lorinda B</td>
<td>Instructional Professor</td>
<td>Health & Kinesiology</td>
<td>Texas A&M University</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Gomillion, David L</td>
<td>Clinical Assistant Professor</td>
<td>Information & Operations Mgmt</td>
<td>Florida State University</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Gonezen, Sevan</td>
<td>Assistant Professor</td>
<td>Biomedical Engineering</td>
<td>Rensselaer Polytechnic Institute</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Gonezen, Sevan</td>
<td>Assistant Professor</td>
<td>Mechanical Engineering</td>
<td>Rensselaer Polytechnic Institute</td>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>Gonzales, Molly McCarty</td>
<td>Instructional Assistant Professor</td>
<td>Vet Integrative Biosciences</td>
<td>Pepperdine University</td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>
Gonzalez, Carlos F, Professor
Plant Pathology & Microbiology
PHD, University of Nebraska - Lincoln, 1978

Gooch, Bruce S, Associate Professor
Computer Science & Engineering
PHD, University of Utah, 2003

Goodey, Joanna R, Instructional Associate Professor
Chemistry
PHD, University of Houston, 2001

Goodman, Jeanne M, Clinical Associate Professor
TAMU Libraries
MLS, Simmons College, 2012

Goodson, Patricia, Professor
Health & Kinesiology
PHD, University of Texas, 1996

Goodwin, Susan P, Associate Professor
TAMU Libraries
MLS, University of Alberta, 1995

Gopalakrishnan, Ganesa, Senior Lecturer
Chemistry
PHD, University of Madras, India, 1977

Gopalakrishnan, Lekha, Adjunct Professor
School of Law
JD, University of Texas - Austin, 2000
PHD, Northwestern University, 1995

Gopalswamy, Swaminathan, Professor of the Practice
Mechanical Engineering
PHD, University of California, 1991

Gopinath, Gokul, Research Assistant Professor
Periodontics
PHD, Manipal University, India, 2010

Gordon, Randy D, Executive Professor
School of Law
PHD, University of Edinburgh, 2009
LLM, Columbia Law School, 1992
JD, Washburn University School of Law, 1991

Gordon, Sonya G, Professor
Vet Small Animal Clinical Sc
DVM, University of Guelph, 1994

Gorman, Dennis M, Professor
Epidemiology & Biostatistics
PHD, University of Essex, 1988

Goswami, Souvik, Visiting Assistant Professor
Mathematics
PHD, University of Alberta, 2015

Gottlieb, Jessica A, Associate Professor
International Affairs
PHD, Stanford University, 2013

Goulart, Ana E, Associate Professor
Eng Tech & Ind Distribution
PHD, Georgia Institute of Technology, 2005

Grace, Jacquelyn, Assistant Professor
Ecology and Conservation Biology
PHD, Wake Forest University, 2014

Gracia Pete, Senior Lecturer
Foundational Sciences
MS, University of Houston - Clear Lake, 1991

Graf, Kelly E, Associate Professor
Anthropology
PHD, University of Nevada, Reno, 2008

Graham Jr, Cole B, Executive Professor
Public Service & Administration
PHD, University of South Carolina, 1971

Grant, William, Professor
Ecology and Conservation Biology
PHD, Colorado State University, 1974

Grasley, Zachary C, Professor
Civil Engineering
PHD, University of Illinois Urbana Champaign, 2006

Grasley, Zachary C, Professor
Materials Science & Engr
PHD, University of Illinois Urbana Champaign, 2006

Gratz, Paul V, Associate Professor
Computer Science & Engineering
PHD, University of Texas, 2008

Gratz, Paul V, Associate Professor
Electrical & Computer Eng
PHD, University of Texas, 2008

Grau, James W, Professor
Psychological & Brain Sciences
PHD, University of Pennsylvania, 1985

Graul, Michael H, Associate Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 1995

Graves, Gregory H, Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 2006

Graves, Stephanie J, Associate Professor
TAMU Libraries
MLS, University of Illinois, 2004

Gray, Phillip W, Assistant Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 2006

Grayson, Stephen E, Clinical Assistant Professor
College of Pharmacy
PHARMD, University of Texas, 2002
Green, Eleanor M, Professor
Vet Large Animal Clinical Sc
DVM, Auburn University, 1973

Green, Jeremiah, Associate Professor
Accounting
DBA, University of North Carolina - Chapel Hill, 2010

Green, John S, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 1996

Green, Lisa L, Adjunct Assistant Professor
Health & Kinesiology
PHD, Texas Women’s University, 2001

Green, Micah, Professor
Chemical Engineering
PHD, Massachusetts Institute of Technology, 2007

Green, Micah, Associate Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2007

Green, Michael Z, Professor
School of Law
JD, Loyola University - Chicago, 1992

Green, Sheila W, Instructional Assistant Professor
TAMU Libraries
MLS, University of North Texas, 2007

Greenbaum, Ira F, Professor
Biology
PHD, Texas Tech University, 1978

Greenwood, Lori, Clinical Professor
Health & Kinesiology
PHD, Oregon State University, 1995

Greer, Robert A, Associate Professor
Public Service & Administration
PHD, University of Kentucky, 2013

Gregory, Carl A, Associate Professor
Molecular & Cellular Medicine
PHD, University of Manchester, 1999

Gregory, Carl A, Assistant Professor
Biomedical Engineering
PHD, University of Manchester, 1999

Grifflin IV, John F, Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2004

Grifflin, Cleet E, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1990

Griffin, Dicky D, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Oklahoma State University, 1975

Griffin, Robert J, Associate Professor
English
PHD, Yale University, 1985

Griffing, Lawrence R, Associate Professor
Biology
PHD, Stanford University, 1981

Griffith, David Andrew, Professor
Marketing
PHD, Kent State University, 1997

Griffith, Jennifer M, Instructional Professor
Health Policy & Management
DrPH, University of North Carolina Chapel Hill, 2004

Griffith, Karee, Lecturer
Teaching, Learning & Culture
PHD, University of Mary Hardin-Baylor, 1993

Grigorchuk, Rostislav, Distinguished Professor
Mathematics
PHD, Moscow State University of Lomomosov, 1986

Grisham, Ray F, Senior Lecturer
Construction Science
JD, University of Texas at Austin, 1972

Gronberg, Timothy J, Professor
Economics
PHD, Northwestern University, 1978

Gropppe, Jay C, Associate Professor
Biomedical Sciences
PHD, University of California at Santa Barbara, 1991

Grossman, Ethan L, Professor
Geology & Geophysics
PHD, University of Southern California, 1982

Grossman, Steven D, Associate Professor
Accounting
PHD, Tufts University, 1972

Groves, Ronald, Adjunct Assistant Professor
Orthodontics
DDS, TX A&M Uni College of Dentistry, 1989

Gruben, Darla A, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas Health Science Center, 1999

Grunlan, Jaime C, Professor
Materials Science & Engr
PHD, University of Minnesota, 2001

Grunlan, Jaime C, Professor
Mechanical Engineering
PHD, University of Minnesota, 2001
Grunlan, Melissa A, Professor
Biomedical Engineering
PHD, University of South Carolina, 2004

Grunlan, Melissa A, Professor
Materials Science & Engr
PHD, University of South Carolina, 2004

Gu, Guofei, Professor
Computer Science & Engineering
PHD, Georgia Institute of Technology, 2008

Guajardo, Jonathan, Lecturer
Communication
MA, University of the Incarnate Word, 2014

Guerillot, Dominique R, Professor
Texas A&M University at Qatar
PHD, Universite De Provence, 1982

Guerra Nakamura, Fabiola, Senior Lecturer
Computer Science & Engineering
PHD, Federal University of Minas Gerais, 2010

Guerra Santos, Hernan, Senior Lecturer
Construction Science
MS, Texas A&M University, 2003

Guinn III, James R, Instructional Assistant Professor
Health & Kinesiology
EDD, Abilene Christian University, 2017

Guiora, Amos, Adjunct Professor
School of Law
JD, Case Western Reserve Law School, 1985

Guiseppi Elie, Anthony, Professor
Biomedical Engineering
PHD, Massachusetts Institute of Technology, 1983
DVM, University of the West Indies, Mona, Jamaica, 1979

Gunaseelan, Simi, Instructional Associate Professor
College of Pharmacy
PHD, North-Eastern Hill University, 2002

Guneralp, Burak, Assistant Professor
Geography
PHD, University of Illinois at Urbana-Champaign, 2006

Guneralp, Inci, Associate Professor
Geography
PHD, University of Illinois at Urbana-Champaign, 2007

Gunnels, Emily E, Lecturer
Health & Kinesiology
MS, Texas A&M University, 2005

Guo, Bing, Assistant Professor
Materials Science & Engr
PHD, Tsinghua University, China, 1998

Guo, Bing, Associate Professor
Texas A&M University at Qatar
PHD, Tsinghua University, China, 1998

Guo, Hao, Visiting Assistant Professor
Mathematics
PHD, The University of Adelaide, 2018

Guo, Huiyi, Assistant Professor
Economics
PHD, University of Iowa, 2018

Guo, Shaodong, Associate Professor
Nutrition
PHD, Peking University, Beijing China, 1995

Gursky, Sharon, Professor
Anthropology
PHD, State University of New York at Stony Brook, 1997

Guyton, Sally C, Senior Lecturer
Finance
MBA, University of Texas, 1982

Guzelian, Christopher, Adjunct Professor
School of Law
JD, Stanford University, 2003

Haberl, Jeff, Professor
Architecture
PHD, University of Colorado, 1986

Hachen, James, Professor of the Practice
College of Engineering
BSME, Rensselaer Polytechnic Institute, 1974

Haefeli, Evan P, Associate Professor
History
PHD, Princeton University, 2000

Haglund, John S, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 2003

Hagstrom Schmidt, Nicole, Lecturer
English
PHD, Texas A&M University, 2019
Hague, Steven S, Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2000

Hailey, Camille E, Clinical Assistant Professor
Management
JD, South Texas College of Law, 1993

Hajimirza, Shima, Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2013

Hajjat, Jumanah, Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 2018

Hakim, Omar, Professor of the Practice
Sociology
MS, The University of Texas at Austin, 2004

Hala, David, Assistant Professor
Marine Biology
PHD, Brunel University, 2007

Hale, Charles, Senior Lecturer
Eng Tech & Ind Distribution
BBA, Ohio University, 1987

Hale, Trevor Schuyler, Clinical Professor
Information & Operations Mgmt
DEN, Texas A&M University, 1997

Haliburton, James T, Lecturer
Architecture
PHD, Texas A&M University, 2016
MAR, Texas A&M University, 2014

Halket, Jonathan Robert Levin, Assistant Professor
Finance
PHD, New York University, 2009

Hall Jr, Charles R, Professor
Horticultural Sciences
PHD, Mississippi State University, 1988

Hall, Jessica R, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2009

Hall, Malikah A, Instructional Assistant Professor
School of Law
JD, North Carolina Central University School of Law, 2015

Hall, Michael B, Professor
Chemistry
PHD, University of Wisconsin - Madison, 1971

Hallermann, Detlef, Clinical Professor
Finance
PHD, Colorado School of Mines, 1999

Halling, Thomas D, Associate Professor
TAMU Libraries
MLS, University of North Texas, 2008

Ham, Youngjib, Assistant Professor
Construction Science
PHD, University of Illinois at Urbana-Champaign, 2015
MAR, Seoul National University, Korea, 2011

Hambleton, James E, Adjunct Professor
School of Law
JD, George Washington University, 1978

Hamer, Gabriel L, Associate Professor
Entomology
PHD, Michigan State University, 2008

Hamer, Sarah A, Associate Professor
Vet Integrative Biosciences
DVM, Michigan State University, 2011
PHD, Michigan State University, 2010

Hamie, Christine S, Instructional Associate Professor
International Affairs
PHD, University of York, 2007

Hamilton, Daniel Kirk, Professor
Architecture
PHD, Arizona State University, 2017

Hamilton, Peter S, Associate Professor of the Practice
College of Engineering
DEN, The University of Texas at Austin, 1984

Hammady Brho, Mazen, Assistant Professor
Maritime Business Administration
PHD, University of North Texas, 2018

Hammer, Janet E, Clinical Professor
Teaching, Learning & Culture
PHD, University of Texas, 2003

Hammond, Tracy A, Professor
Computer Science & Engineering
PHD, Massachusetts Inst of Technology, 2007

Hamouda, Ayman K, Assistant Professor
College of Pharmacy
PHD, Texas Tech University Health Science Center, 2007

Han, Arum, Professor
Biomedical Engineering
PHD, Georgia Institute of Technology, 2005

Han, Arum, Professor
Electrical & Computer Eng
PHD, Georgia Institute of Technology, 2005

Han, Daikwon, Associate Professor
Epidemiology & Biostatistics
PHD, University of Buffalo, 2003

Han, Gang, Associate Professor
Epidemiology & Biostatistics
PHD, The Ohio State University, 2008

Han, Guichun, Clinical Assistant Professor
Vet Physiology & Pharmacology
PHD, Dalian Medical University, China, 2002
Han, Je C, Distinguished Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1977

Hancock, Jay P, Assistant Lecturer
Ag Leadership, Educ & Comm
MS, Texas A&M University, 1984

Hand, Michael R, Professor
Philosophy & Humanities
PHD, Florida State University, 1985

Handy, Michael, Senior Lecturer
Eng Tech & Ind Distribution
BS, The University of Oklahoma, 2001

Haney, Adam D, Instructional Assistant Professor
Liberal Studies
MA, Texas A&M University-Commerce, 2014

Hanik, Bruce W, Instructional Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2011

Hanik, Kathleen, Visiting Lecturer
Health & Kinesiology
MFA, Florida State University, 2008

Hanik, Michael G, Instructional Assistant Professor
Health & Kinesiology
MS, Northwestern State University of Louisiana, 1996

Hanin, Boris L, Assistant Professor
Mathematics
PHD, Northwestern University, 2014

Hankins, Rebecca L, Professor
TAMU Libraries
MLS, Louisiana State University, 2000

Hannaford, Dinah R, Associate Professor
International Studies
PHD, Emory University, 2014

Hardin, Paul E, Distinguished Professor
Biology
PHD, Indiana University, 1987

Hardin, Robert G, Assistant Professor
Biological & Agricultural Eng
PHD, Texas A&M University, 2009

Harding, Michael, Lecturer
Accounting
BBA, Texas A&M University, 2019

Hardy, Jaime, Clinical Assistant Professor
College of Nursing
CERT, Angelo State University, 2018

Hardy, Joanne, Clinical Professor
Vet Large Animal Clinical Sc
PHD, The Ohio State University, 1996
DVM, University of Montreal, 1982

Hare, Martha L, Clinical Assistant Professor
College of Nursing
DNP, Texas Tech University Health Science Center, 2010

Haridas, Balakrishna, Professor of the Practice
Biomedical Engineering
PHD, University of Cincinnati, 2001

Hark Jr, John F, Lecturer
Maritime Business Administration
BS, Texas A&M University, 1989

Harlin, Julie F, Associate Professor
Ag Leadership, Educ & Comm
PHD, Oklahoma State University, 1999

Harmel, Robert, Professor
Political Science
PHD, Northwestern University, 1977

Harness, Nathaniel J, Instructional Associate Professor
Agricultural Economics
PHD, Texas Tech University, 2007

Harper, Alicia, Visiting Assistant Professor
Mathematics
PHD, Brown University, 2018

Harrel, Stephen K, Adjunct Professor
Periodontics
DDS, Baylor University College of Dentistry, 1972

Harris IV, T, Executive Professor
Finance
BBA, Texas A&M University, 1980

Harris, Harlan R, Associate Professor
Electrical & Computer Eng
PHD, Texas Tech University, 2003

Harris, Harlan R, Associate Professor
Materials Science & Engr
PHD, Texas Tech University, 2003

Harris, James E, Professor of the Practice
Chemical Engineering
PHD, University of Texas, Austin, 1981

Harris, Jason M, Instructional Associate Professor
English
MFA, Bowling Green State University, 2014
PHD, University of Washington, 2001

Harris, Joseph A, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Baylor College of Dentistry, 1972

Harris, Samuel, Visiting Assistant Professor
Mathematics
PHD, University of Waterloo, 2019

Harris, Stefanie, Associate Professor
International Studies
PHD, Emory University, 1999
Harrison, Stephen D, Adjunct Professor
School of Law
JD, The University of Texas at Austin, 1982

Hart, Jeffrey D, Professor
Statistics
PHD, Southern Methodist University, 1981

Hartberg, Yasha M, Lecturer
Vet Integrative Biosciences
PHD, Binghamton University, 2016

Hartl, Darren, Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2009

Hartl, Darren J, Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2009

Hartnack, Amanda K, Assistant Professor
Vet Large Animal Clinical Sc
DVM, Colorado State University, 2010

Hartnett, Eric J, Associate Professor
TAMU Libraries
MLS, University of North Carolina, 2005

Harvey, Idethia S, Associate Professor
Health & Kinesiology
DrPH, University of Pittsburgh, 2005

Harwell, William R, Assistant Professor of the Practice
Recreation, Park & Tourism Sc
CERT, Duke University, Durham, NC, 1996

Hasan, M M Faruque, Associate Professor
Chemical Engineering
PHD, National University of Singapore, 2010

Hascakir, Berna, Associate Professor
Petroleum Engineering
PHD, Middle East Technical University, 2008

Hasnain, Zohaib, Research Assistant Professor
Mechanical Engineering
PHD, University of Maryland, 2014

Hassan, Ibrahim, Professor
Texas A&M University at Qatar
PHD, Manitoba University, 1995

Hassan, Yassin A, Professor
Mechanical Engineering
PHD, University of Illinois, 1980

Hassan, Yassin A, Professor
Nuclear Engineering
PHD, University of Illinois, 1980

Hatala, Jeffrey J, Instructional Associate Professor
Health Policy & Management
PHD, University of South Carolina School of Public Health, 2013

Hatfield, April L, Associate Professor
History
PHD, Johns Hopkins University, 1997

Hatfield, Lloyd K, Senior Lecturer
Statistics
MBA, University of North Texas, 1980

Havens, Jessica M, Lecturer
Communication
MA, Colgate University, 2012

Hawkins Jr, Harvey E, Professor
Civil Engineering
PHD, Texas A&M University, 1993

Hawkins, Andrew G, Visiting Lecturer
Architecture
MAR, University of Oregon, 1999

Hawkins, Angela K, Lecturer
Biology
PHD, Texas A&M University, 2018

Hawthorne, Melanie C, Professor
International Studies
PHD, University of Michigan Ann Arbor, 1987

Hay, Heather N, Clinical Assistant Professor
College of Pharmacy
PHARMD, The University of Texas at Austin, 2008

Hays, Dirk B, Professor
Soil & Crop Sciences
PHD, University of Calgary, 1997

Haywood Onyemeh, LaQuanda Thelma, Lecturer
TAMU Libraries
MLS, The University of North Carolina Greensboro, 2018

He, Ping, Professor
Biochemistry & Biophysics
PHD, Kansas State University, 2003

He, Welling, Associate Professor
Architecture
PHD, Georgia Institute of Technology, 2005

Head, Michael J, Lecturer
Accounting
BS, University of Missouri - Columbia, 1980

Heaps, Cristine L, Associate Professor
Vet Physiology & Pharmacology
PHD, University of Missouri - Columbia, 1999

Heath, Amy K, Adjunct Assistant Professor
Educational Psychology
PHD, Texas A&M University, 2012

Heatley, Jennifer J, Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1995
Heatly, Kyra, Lecturer
Communication
MA, Texas Tech University, 2019

Heffer Jr, Robert W, Clinical Professor
Psychological & Brain Sciences
PHD, Louisiana State University and A&M College, 1988

Hegde, Rashmi, Adjunct Assistant Professor
Periodontics
DDS, Bangalore University, India, 1999

Heidarzadeh, Anoosheh, Visiting Assistant Professor
Electrical & Computer Eng
PHD, Carleton University, 2012

Heidtke, Jonathan, Professor of the Practice
Health & Kinesiology
BS, Texas A&M University, 1981

Heilman, James L, Professor
Soil & Crop Sciences
PHD, Kansas State University, 1977

Heim, Gregory R, Professor
Information & Operations Mgmt
PHD, University of Minnesota, Twin Cities, 2000

Heinz, Justin A, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Purdue University, 2012

Heinz, Kevin M, Senior Professor
Entomology
PHD, University of California, Riverside, 1989

Heird, James C, Executive Professor
Animal Science
PHD, Texas Tech University, 1978

Helge, Terri L, Professor
School of Law
JD, South Texas College of Law, 2001

Helms, Anjel Marie, Assistant Professor
Entomology
PHD, The Pennsylvania State University, 2015

Hemmer, Philip R, Professor
Electrical & Computer Eng
PHD, Massachusetts Inst of Technology, 1984

Hemmer, Philip R, Professor
Materials Science & Engr
PHD, Massachusetts Inst of Technology, 1984

Hemmig, Christopher, Instructional Assistant Professor
International Studies
PHD, The Ohio State University, 2015

Henderson II, Bryan N, Adjunct Assistant Professor
Oral & Maxillofacial Surgery
DDS, Baylor College of Dentistry, 1987

Henderson, Michelle, Senior Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 2010

Henning, William H, Executive Professor
School of Law
LLM, University of Illinois Champaign-Urbana, 1982
JD, University of Tennessee-Knoxville, 1976

Henrichs, Darren, Instructional Assistant Professor
Oceanography
PHD, Texas A&M University, 2012

Hensley, Douglas A, Senior Professor
Mathematics
PHD, University of Minnesota, 1974

Henson, Bryce, Visiting Assistant Professor
Communication
PHD, University of Illinois, 2016

Henson, Clifford C, Adjunct Professor
School of Law
JD, University of Illinois, 2011

Henthorne, Mary B, Instructional Associate Professor
Health & Kinesiology
CERT, Yogafit Training System, 2018

Hepfer, Bradford F, Assistant Professor
Accounting
DBA, The University of Iowa, 2016

Hepfer, Katie L, Clinical Associate Professor
College of Nursing
DNP, The University of Iowa, 2016

Herbert, Bruce E, Professor
TAMU Libraries
PHD, University of California, Riverside, 1992

Hercot, Philippe, Executive Professor
Finance
MBA, Harvard Graduate School of Business Administration, 1993

Herman, Benjamin, Associate Professor
Teaching, Learning & Culture
PHD, Iowa State University, 2010

Herman, Cheryl L, Clinical Associate Professor
Vet Integrative Biosciences
DVM, University of Saskatchewan, 1987

Herman, James D, Clinical Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 1995
DVM, Texas A&M University, 1989

Herman, Jennifer K, Associate Professor
Biochemistry & Biophysics
PHD, Indiana University, 2005
Hernandez Magallanes, Irma Del Consue, Instructional Assistant Professor
Statistics
PHD, University California Berkeley, 2010

Hernandez, Alexander A, Instructional Assistant Professor
Sociology
PHD, Boston College, 2014

Hernandez, Jose J, Assistant Professor
College of Pharmacy
PHD, University of Maryland, 2007

Hernandez, Paul, Associate Professor
Teaching, Learning & Culture
PHD, University of Connecticut, 2011

Hernandez, Sonia, Associate Professor
History
PHD, University of Houston, 2006

Herrera, Luz E, Professor
School of Law
JD, Harvard Law School, 1999

Herring, Andy D, Professor
Animal Science
PHD, Texas A&M University, 1994

Heseltine, Johanna C, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, University of Saskatchewan, 1998

Hester, Yvette C, Instructional Associate Professor
Mathematics
PHD, Texas A&M University, 2000

Hetland, Robert D, Professor
Oceanography
PHD, Florida State University, 1999

Hibbitts, Toby, Lecturer
Ecology and Conservation Biology
PHD, University of the Witwatersrand, 2006

Hicks, Joshua A, Professor
Psychological & Brain Sciences
PHD, University of Missouri - Columbia, 2009

Hidalgo, Kristin T, Adjunct Professor
School of Law
JD, Thomas Cooley Law School, 2004

Highfield, Wesley E, Associate Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 2008

Highsmith, Anne L, Clinical Associate Professor
TAMU Libraries
MLS, University of Arizona, 1979

Hilaly, Ahmad K, Professor of the Practice
Chemical Engineering
PHD, Colorado State University, 1992

Hilderbrand, Mary E, Associate Professor of the Practice
Public Service & Administration
PHD, Harvard University, 1992

Hill, Alfred D, Professor
Petroleum Engineering
PHD, University of Texas, 1978

Hill, Rodney C, Professor
Architecture
MAR, University of California - Berkeley, 1969

Hill-Jackson, Valerie L, Clinical Professor
Teaching, Learning & Culture
PHD, St. Joseph's University, 2003

Hillhouse, Andrew E, Research Assistant Professor
Veterinary Pathobiology
PHD, University of Missouri-Columbia, 2010

Hillman, Sara K, Assistant Professor
Texas A&M University at Qatar
PHD, Michigan State University, East Lansing, MI, 2011

Hilty, Christian B, Professor
Chemistry
PHD, Swiss Federal Institute of Technology Zurich, 2004

Hiney, Jill K, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1996

Hingtgen, Luke, Visiting Lecturer
Texas A&M University at Qatar
CERT, DePaul University, 2017

Hinojosa, Felipe, Associate Professor
History
PHD, University of Houston, 2009

Hinrichs, Katrin, Professor
Vet Physiology & Pharmacology
PHD, University of Pennsylvania, 1988
DVM, University of California, Davis, 1978

Hinze, Erin S, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Texas A&M University Baylor College of Dentistry, 2008

Hipwell, M Cynthia, Professor
Materials Science & Engr
PHD, University of California-Berkeley, 1996

Hipwell, M Cynthia, Professor
Mechanical Engineering
PHD, University of California-Berkeley, 1996

Ho, Jeannette A, Associate Professor
TAMU Libraries
MLS, University of Illinois Urbana, 1999

Hochman, Mona E, Lecturer
Marine Biology
MS, University of Maryland, 2000
Hodge, Courtney, Visiting Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2015

Hodges, Amy M, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, University of Arkansas, 2012

Hodges, Louis, Instructional Associate Professor
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 1971

Hoekstra, Mark L, Professor
Economics
PHD, University of Florida, 2006

Hoffman, Anton G, Clinical Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1992
DVM, Texas A&M University, 1986

Hoffman, Matt F, Clinical Assistant Professor
College of Nursing
DNP, The University of Iowa, 2016

Hoffmann, Heather, Instructional Assistant Professor
Molecular & Cellular Medicine
MD, University of Louisville School of Medicine, 1990

Hogan, Harry A, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 1984

Hogan, Harry A, Professor
Mechanical Engineering
PHD, Texas A&M University, 1984

Hogler, Joe Louis, Lecturer
George Bush School of Govern
PHD, University of Kent, 2011

Holder, Eugene P, Instructional Associate Professor
College of Pharmacy
PHARMD, The University of Texas at Austin, 1994

Holladay, Sherry J, Professor
Communication
PHD, Purdue University, 1992

Holland, Hubert B, Professor
School of Law
JD, American University Washington College of Law, 1998

Hollenbach, Florian M, Assistant Professor
Political Science
PHD, Duke University, 2015

Holley, Susan P, Clinical Associate Professor
Educ Admn & Human Resource Dev
EDD, Baylor University, 1991

Holliday III, Ray W, Assistant Professor of the Practice
Architecture
MLA, Texas A&M University, 2000
MAR, Texas A&M University, 1992

Holliday, Shelley D, Associate Professor of the Practice
Architecture
MEN, Texas A&M University, 2001

Holmes, Irina, Assistant Professor
Mathematics
PHD, Louisiana State University, 2014

Holste, James C, Senior Professor
Chemical Engineering
PHD, Iowa State University, 1973

Holt, Jeremy W, Assistant Professor
Physics & Astronomy
PHD, Stony Brook University, 2008

Holtzapple, Mark T, Professor
Chemical Engineering
PHD, University of Pennsylvania, 1981

Holyfield, Lavern P, Clinical Professor
Public Health Sciences
DDS, Baylor College of Dentistry, 1977

Honeycutt, Amanda J, Lecturer
Visualization
BS, Texas A&M University, 2011

Honeyman, Allen L, Associate Professor
Biomedical Sciences
PHD, University of Kansas, 1988

Hong, Yan, Associate Professor
Hlth Promotion & Comm Hlth Sc
PHD, Johns Hopkins University, Bloomberg School of Public Health, 2007

Hook, Axel M, Professor
Institute of Biosciences & Tec
PHD, University of Uppsala, Sweden, 1974

Hopkins, Allison L, Assistant Professor
Anthropology
PHD, University of Florida, 2009

Hoppenfeld, Jared M, Associate Professor
TAMU Libraries
MA, University of South Florida, 2006

Hoppes, Sharman M, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Oklahoma State University, 1993

Horbaczewski, Ian D, Associate Professor Of The Practice
College of Engineering
MEN, Texas A&M University, 2009

Horrillo, Juan J, Associate Professor
Ocean Engineering
PHD, University of Alaska at Fairbanks, 2006

Horsemann, Michael A, Clinical Associate Professor
College of Pharmacy
PHARMD, Medical University of South Carolina, 1983
Horz, Carlo, Assistant Professor
Political Science
PHD, New York University, 2017

Hou, I-Hong, Associate Professor
Electrical & Computer Eng
PHD, University of Illinois Urbana Champaign, 2011

Houngninou, David Kebo, Instructional Assistant Professor
Computer Science & Engineering
PHD, Southern Methodist University, 2017

House, Felice L, Associate Professor
Visualization
MFA, University of Texas at Austin, 2011

Houston, Jonathan, Senior Lecturer
Construction Science
BEN, Texas A&M University, 2007

Howard, Daniel L, Professor
Sociology
PHD, Vanderbilt University, 1992

Howard, Michael D, Associate Professor
Management
PHD, University of Washington, 2012

Howard, Nathan, Assistant Professor
Philosophy & Humanities
PHD, University of Southern California, 2019

Howard, Peter B, Professor
Mathematics
PHD, Indiana University, 1998

Howe, Julie A, Associate Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 2004

Howe, Roger, Professor
Teaching, Learning & Culture
PHD, University of California, Berkeley, 1969

Howell, James, Instructional Assistant Professor
International Studies
PHD, University of Arizona, 2017

Howell, Jessica M, Associate Professor
English
PHD, University of California, Davis, 2008

Howell, Michael, Associate Professor of the Practice
International Affairs
MA, U.S. Naval War College, 2009

Hoyos, Sebastian, Associate Professor
Electrical & Computer Eng
PHD, University of Delaware, 2004

Hsieh, Sheng-Jen, Professor
Mechanical Engineering
PHD, Texas Tech University, 1995

Hsu, Frances, Visiting Assistant Professor
Architecture
DAR, ETH Zurich (Swiss Federal Institute of Technology, 2004
MAR, Harvard University Graduate School of Design, 1985

Hu, Jiang, Professor
Computer Science & Engineering
PHD, University of Minnesota, 2001

Hu, Jiang, Professor
Electrical & Computer Eng
PHD, University of Minnesota, 2001

Hu, Lin Ying, Professor of the Practice
Geology & Geophysics
PHD, Mines Paris Tech, 1988

Hu, Xia, Associate Professor
Computer Science & Engineering
PHD, Arizona State University, 2015

Huang, Chang S, Associate Professor
Land Arch & Urban Planning
PHD, University of Pennsylvania, 1995

Huang, Garng M, Professor
Electrical & Computer Eng
PHD, Washington University in St. Louis, 1980

Huang, Hang, Visiting Assistant Professor
Mathematics
PHD, University of Wisconsin, 2019

Huang, Jianhua, Professor
Statistics
PHD, University of California, Berkeley, 1997

Huang, Reyko, Associate Professor
International Affairs
PHD, Columbia University, 2012

Huang, Ru, Assistant Professor
Computer Science & Engineering
PHD, University of Utah, 2014

Huang, Shaoming, Assistant Professor
Computer Science & Engineering
PHD, Hong Kong University of Science and Technology, 2012

Huang, Tingwen, Professor
Computer Science & Engineering
MA, Texas A&M University at Qatar
PHD, Texas A&M University, 2002

Huang, Yongheng, Associate Professor
Biological & Agricultural Eng
PHD, University of Nebraska - Lincoln, 2002

Huang, Yun, Associate Professor
Institute of Biosciences & Tec
PHD, Georgia State University, 2009
Hubbard Jr, James, Professor
Mechanical Engineering
PHD, Massachusetts Institute of Technology, 1982

Hubbard Jr, James E, Visiting Professor
College of Engineering
PHD, Massachusetts Institute of Technology, 1982

Hubbard, David E, Associate Professor
TAMU Libraries
MS, Northwest Missouri State University, 2012

Hubbard, David E, Visiting Professor
College of Engineering
PHD, Massachusetts Institute of Technology, 1982

Hudson, Angela P, Professor
History
PHD, Yale University, 2007

Hudson, David R, Instructional Professor
History
PHD, Texas A&M University, 1998

Hudson, Karen, Visiting Lecturer
Health & Kinesiology
MS, Texas A&M University, 1997

Hudson, Shane L, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 2007

Hudson, Valerie M, University Distinguished Professor
International Affairs
PHD, The Ohio State University, 1983

Hueste, Marybeth D, Professor
Civil Engineering
PHD, University of Michigan, 1997

Hufton, Amie J, Instructional Associate Professor
Liberal Studies
MMR, Texas A&M University, 2010

Hughbanks, Timothy R, Professor
Chemistry
PHD, Cornell University, 1983

Hull, Rachel G, Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 2003

Humphrey, Daniel, Associate Professor
College of Liberal Arts
PHD, University of Rochester, 2006

Hung, Nguyen P, Associate Professor
Eng Tech & Ind Distribution
PHD, University of California, Berkeley, 1987

Hung, Nguyen P, Associate Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1987

Hur, Byul, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Florida, 2011

Hur, Pilwon, Assistant Professor
Mechanical Engineering
DEN, University of Illinois at Urbana-Champaign, 2010

Hurdle, Julian G, Associate Professor
Institute of Biosciences & Tech
PHD, University of Leeds, 2005

Hurlebaus, Stefan, Professor
Civil Engineering
PHD, University of Stuttgart, Germany, 2002

Hurst, Kenneth R, Assistant Professor of the Practice
Land Arch & Urban Planning
PHD, Texas A&M University, 2016
MLA, University of Oklahoma, 1988

Hurtado Clavijo, Luis, Associate Professor
Ecology and Conservation Biology
PHD, Rutgers, 2002

Hurtado, John E, Professor
Aerospace Engineering
PHD, Texas A&M University, 1995

Hutchins, Shaun D, Lecturer
Teaching, Learning & Culture
PHD, Colorado State University, 2015

Hutchinson, Richard N, Instructional Assistant Professor
Civil Engineering
PHD, Texas A&M University, 2015

Hutchinson, Robert W, Clinical Associate Professor
College of Pharmacy
PHARMD, College of Pharmacy University of Arkansas for Medical Sciences, 1999

Hutchinson, Robin L, Clinical Associate Professor
TAMU Libraries
MA, Texas A&M University, 1993

Hutton, Michael W, Clinical Assistant Professor
College of Nursing
MSN, University of Texas Health Science Center at San Antonio, 1990

Hwang, Wonmuk, Associate Professor
Biomedical Engineering
PHD, Boston University, 2001

Hwang, Wonmuk, Associate Professor
Materials Science & Engr
PHD, Boston University, 2001

Hyodo, Ayumi, Research Assistant Professor
Ecology and Conservation Biology
PHD, The University of Western Ontario, 2010

Iakovou, Elefterios, Professor
Eng Tech & Ind Distribution
PHD, Cornell University, 1992

Ibrahim, Amir M, Professor
Soil & Crop Sciences
PHD, Colorado State University, 1998
Igumenova, Tatyana I, Associate Professor
Biochemistry & Biophysics
PHD, Columbia University, 2003

Ijaz, Muhammad, Associate Professor of the Practice
College of Engineering
PHD, Texas A&M University, 2007

Iliffe, Thomas M, Professor
Marine Biology
PHD, University of Texas Medical Branch at Galveston, 1977

Imhoff, Andrea G, Instructional Assistant Professor
Performance Studies
MA, University of Illinois at Urbana Champaign, 1992

Ing, Nancy H, Professor
Animal Science
PHD, University of Florida, 1988

Ingram, Julie A, Associate Professor of the Practice
College of Engineering
MS, University of Houston, 2000

Ioerger, Thomas R, Professor
Computer Science & Engineering
PHD, University of Illinois, 1996

Irby, Beverley J, Professor
Educ Admn & Human Resource Dev
PHD, University of Mississippi, 1983

Ireland, Robert D, Distinguished Professor
Management
PHD, Texas Tech University, 1977

Ireland-Stoddard, Kati L, Instructional Associate Professor
Plant Pathology & Microbiology
PHD, University of North Texas, 2012

Isbell, Teresa, Clinical Assistant Professor
College of Medicine
PHD, The University of North Texas, 2014

Isdale, Charles E, Senior Lecturer
Chemical Engineering
MBA, Southern Illinois University at Edwardsville, 1977

Ishdorj, Ariun, Associate Professor
Agricultural Economics
PHD, Iowa State University, 2008

Ito, Miwa, Lecturer
Communication
MS, North Dakota State University, 2014

Ivanov, Ivan V, Clinical Professor
Vet Physiology & Pharmacology
PHD, University of South Florida, 1999

Ives, Anthony Lister, Instructional Assistant Professor
Political Science
PHD, University of Texas at Austin, 2018

Ives, Maura C, Professor
English
PHD, University of Virginia, 1990

Ivy, Delaney R, Clinical Assistant Professor
College of Pharmacy
PHARMD, The University of Texas at Austin, 2010

Jackson, Carolyn S, Instructional Assistant Professor
TAMU Libraries
MLS, Emporia State University, 2016

Jackson, Cheryl, Lecturer
Psychological & Brain Sciences
PHD, Kansas State University, 2007

Jackson, Shona N, Associate Professor
English
PHD, Stanford University, 2005

Jacob, Helder, Adjunct Assistant Professor
Orthodontics
PHD, São Paulo State University, Brazil, 2011
DDS, São Paulo State University, Brazil, 1994

Jacobs, Timothy J, Professor
Mechanical Engineering
PHD, University of Michigan, 2005

Jafari, Roozbeh, Professor
Biomedical Engineering
PHD, University of California, 2006

Jaima, Amir R, Assistant Professor
Philosophy & Humanities
PHD, SUNY Stony Brook University, 2014

Jain, Abhishek, Assistant Professor
Biomedical Engineering
PHD, Boston University, 2012

Jain, Priya, Assistant Professor
Architecture
MAR, The University of Arizona, 2007

Jalali, Sid P, Clinical Assistant Professor
Endodontics
PHD, Kerman University of Medical Sciences/Iran, 2008

Jamal, Tazim B, Professor
Recreation, Park & Tourism Sc
PHD, University of Calgary, 1997

James, Marlon C, Assistant Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2008

Jameson, Antony, Professor
Aerospace Engineering
PHD, University of Cambridge, 1963

Jameson, Antony, Professor
Ocean Engineering
PHD, University of Cambridge, 1963
Jamieson III, Thomas V, Executive Professor
Information & Operations Mgmt
PHD, Texas A&M University, 1978

Janda, Jaime L, Lecturer
TAMU Libraries
MLS, Simmons College, 2013

Jansen, Dennis W, Professor
Economics
PHD, University of North Carolina at Chapel Hill, 1983

Jantsch, Peter Alan, Visiting Assistant Professor
Mathematics
PHD, University of Tennessee, 2017

Jarrahbashi, Dorrin, Assistant Professor
Mechanical Engineering
PHD, University of California Irvine, 2014

Jasperson, Jon L, Clinical Professor
Information & Operations Mgmt
PHD, Florida State University, 1999

Jayaraman, Arul, Professor
Biomedical Engineering
PHD, University of California, Irvine, 1998

Jayaraman, Arul, Professor
Chemical Engineering
PHD, University of California, Irvine, 1998

Jeffery, Nicholas D, Professor
Vet Small Animal Clinical Sc
PHD, The University of Cambridge, 1997

Jenks, Morgan M, Lecturer
Visualization
MFA, Texas A&M University, 2014

Jeong, Hae-Kwon, Professor
Chemical Engineering
PHD, University of Minnesota, 2004

Jeong, Hae-Kwon, Associate Professor
Materials Science & Engr
PHD, University of Minnesota, 2004

Jeong, Hyungseok David, Professor
Construction Science
PHD, Purdue University, 2005

Jepson, Wendy E, Professor
Geography
PHD, University of California - Los Angeles, 2003

Jessen, Staci, Lecturer
Biomedical Engineering
PHD, Texas A&M University, 2016

JJessup, Russell W, Associate Professor
Soil & Crop Sciences
PHD, Texas A&M University, 2005

Jeter, Elizabeth A, Lecturer
Veterinary Pathobiology
DVM, Texas A&M University, 1982

Jewell, Joseph Q, Associate Professor
Sociology
PHD, UCLA, 1998

Ji, Jim X, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2003

Ji, Jun-Yuan, Associate Professor
Molecular & Cellular Medicine
PHD, University of Washington, 2003

Jiang, Anxiao, Professor
Computer Science & Engineering
PHD, California Institute of Technology, 2004

Jimenez, Daniel A, Professor
Computer Science & Engineering
PHD, University of Texas at Austin, 2002

Jin, Un Ho, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, Dong-A University, Busan, Korea, 2004

Jinadatha, Chetan, Clinical Associate Professor
College of Medicine
MD, J.J.M. Medical College, 2001

Jing, Yan, Research Assistant Professor
Orthodontics
PHD, Sichuan University, 2014

Jo, Hyeran, Associate Professor
Political Science
PHD, University of Michigan, 2008

Jo, Yoon Joo, Assistant Professor
Economics
PHD, Columbia University, 2019

Jochen, John E, Senior Lecturer
Petroleum Engineering
MS, Texas A&M University, 1993

Jochen, Valerie Ann, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1994

Jochens, Ann E, Professor Of The Practice
Oceanography
PHD, Texas A&M University, 1997
JD, University of Oregon, 1977

Johansen Aase, Emily J, Associate Professor
English
PHD, McMaster University, 2008
Johnson III, John W, Lecturer
Eng Tech & Ind Distribution
MBA, Texas A&M University, 2001

Johnson, Andrew L, Professor
Industrial & Systems Eng
PHD, Georgia Institute of Technology, 2006

Johnson, Carrie A, Clinical Assistant Professor
College of Nursing
DNP, The University of Texas Health Science Center at Houston, 2009

Johnson, Donald, Lecturer
Health & Kinesiology
BS, Texas A&M University, 1955

Johnson, Gregory A, Professor
Vet Integrative Biosciences
PHD, University of Wyoming, 1997

Johnson, James S, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2008

Johnson, Larry, Professor
Vet Integrative Biosciences
PHD, Colorado State University, 1978

Johnson, Mark C, Clinical Professor
Veterinary Pathobiology
DVM, Texas A&M University, 1988

Johnson, Mark H, Associate Professor of the Practice
Eng Tech & Ind Distribution
MS, Central Michigan University, 1991

Johnson, Maya E, Lecturer
Mathematics
PHD, Texas A&M University, 2015

Johnson, Michael D, Professor
Eng Tech & Ind Distribution
PHD, Massachusetts Institute of Technology, 2004

Johnson, Natalie M, Assistant Professor
Environmental & Occptnl Hlth
PHD, Texas A&M University, 2010

Johnson, Richard G, Lecturer
College of Business
MS, Texas A&M University, 2005

Johnson, Shane A, Professor
Finance
PHD, Louisiana State University, 1991

Johnson, Valen E, University Distinguished Professor
Statistics
PHD, University Of Chicago, 1989

Johnson, Violet, Professor
History
PHD, Boston College, 1992

Johnson, William B, Distinguished Professor
Mathematics
PHD, Iowa State University, 1969

Johnston, Bradley, Associate Professor
Nutrition
PHD, University of Alberta, 2009

Johnston, J S, Professor
Entomology
PHD, University of Arizona, 1972

Jola Sanchez, Andres Fernando, Assistant Professor
Information & Operations Mgmt
DBA, Indiana University, 2018

Jolley, Cameron, Adjunct Assistant Professor
Orthodontics
DMD, Nova Southeastern University, 2006

Jolly, Ashley G, Lecturer
Teaching, Learning & Culture
MED, Sam Houston State University, 2007

Jones III, Eli, Professor
Marketing
PHD, Texas A&M University, 1997

Jones, Daniel L, Regents Professor
Public Health Sciences
DDS, Baylor College of Dentistry, 1989
PHD, Baylor University, 1978

Jones, David Edward, Assistant Professor
Statistics
PHD, Harvard, 2016

Jones, Glenn A, Professor
Marine and Coastal Environmental Science
PHD, Columbia University, 1983

Jones, Kathleen, Clinical Associate Professor
College of Medicine
MD, Texas A&M University, 1994

Jones, Walter, Professor of the Practice
Mechanical Engineering
PHD, Clemson University, 1982

Jones-Mckyer, Ellisa L, Professor
Hlth Promotion & Comm Hlth Sci
PHD, Indiana University, 2005

Joseph, Merlyn L, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas Tech University Health Science Center, 2012

Joshi, R M, Professor
Teaching, Learning & Culture
PHD, University of South Carolina, 1976

Josvoll, Kristin K, Instructional Assistant Professor
Liberal Studies
MA, Johns Hopkins University, 2015
Jourdan, Dawn E, Professor
Land Arch & Urban Planning
PHD, Florida State University, 2004
JD, University of Kansas, 2000

Jun, Mikyoung, Professor
Statistics
PHD, University of Chicago, 2005

Jung, Junehyuk, Assistant Professor
Mathematics
PHD, Princeton University, 2013

Junkins, John L, Distinguished Professor
Aerospace Engineering
PHD, University of California, Los Angeles, 1969

Juntune, Joyce E, Instructional Professor
Educational Psychology
PHD, Texas A&M University, 1997

Juras, Rytis, Research Assistant Professor
Vet Integrative Biosciences
PHD, Lithuanian Veterinary Academy, 2005
DVM, Lithuanian Veterinary Academy, 2000

Jurgens, Laura, Assistant Professor
Marine Biology
PHD, University of California Davis, 2015

Kabani, Faizan A, Assistant Professor
Dental Hygiene
PHD, University of North Texas Health Science Center, 2017

Kalafatis, Stavros, Professor of the Practice
Electrical & Computer Eng
MS, University of Arizona, 1991

Kallendorf, Craig W, Professor
English
PHD, University of North Carolina at Chapel Hill, 1982

Kallendorf, Hilaire A, Professor
Hispanic Studies
PHD, Princeton University, 2000

Kameoka, Jun, Professor
Electrical & Computer Eng
PHD, Cornell University, 2002

Kameoka, Jun, Professor
Materials Science & Engr
PHD, Cornell University, 2002

Kan, Christina S, Assistant Professor
Marketing
PHD, University of Colorado-Boulder, 2015

Kane, Matthew H, Associate Professor
Marine Engineering Technology
PHD, Georgia Institute of Technology, 2007

Kang Cong, Associate Professor
Foundational Sciences
PHD, University of Texas, 1999

Kang, Heonyong, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2014

Kang, Ho-Yeong, Associate Professor
Construction Science
PHD, Texas A&M University, 2001

Kao, Katy C, Associate Professor
Chemical Engineering
PHD, University of California, Los Angeles, 2005

Kapler, Geoffrey, Professor
Molecular & Cellular Medicine
PHD, Harvard University, 1989
Kapoor, Rishika, Adjunct Assistant Professor
Periodontics
DDS, Texas A&M University, 2014

Karaman, Ibrahim, Professor
Aerospace Engineering
PHD, University of Illinois - Urbana-Champaign, 2000

Karaman, Ibrahim, Professor
Materials Science & Engr
PHD, University of Illinois - Urbana-Champaign, 2000

Karaman, Ibrahim, Professor
Mechanical Engineering
PHD, University of Illinois - Urbana-Champaign, 2000

Karasipahi, Sena, Instructional Assistant Professor
International Studies
PHD, Universiteit Leiden, 2006

Karim, Muhammad N, Professor
Chemical Engineering
PHD, University of Manchester, 1977

Karkoub, Mansour, Professor
Texas A&M University at Qatar
PHD, University of Minnesota, 1994

Karmakar, Moumita, Instructional Assistant Professor
Statistics
PHD, University of Maryland at Baltimore, 2015

Karmaniolou, Stavroula, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2015

Karpac, Jason S, Assistant Professor
Molecular & Cellular Medicine
PHD, The University of Oklahoma Health Sciences Center, 2007

Karpetas, Adonios N, Associate Professor
Aerospace Engineering
PHD, Yale University, 1998

Karsilayan, Aydin I, Associate Professor
Electrical & Computer Eng
PHD, Portland State University, 2000

Kartapanis, Antonis, Assistant Professor
Accounting
PHD, The University of Texas at Austin, 2019

Kash, Bita A, Professor
Health Policy & Management
PHD, Texas A&M Health Science Center - School of Rural Public Health, 2007

Kaspar, Wendi A, Professor
TAMU Libraries
MS, Texas A&M University, 2010

Kaspar-Coker, Lori J, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2005

Katehi-Tseregounis, Linda, Professor
Electrical & Computer Eng
PHD, University of California, 1984

Katehi-Tseregounis, Linda, Professor
Materials Science & Engr
PHD, University of California, 1984

Kates-Hammond, Cindy, Lecturer
Liberal Studies
EDD, University of South Dakota, 2000
MMU, University of South Dakota, 1995

Katju, Vaishali, Professor
Vet Integrative Biosciences
PHD, Indiana University, 2004

Kattari, Kimberly A, Associate Professor
Performance Studies
PHD, University of Texas at Austin, 2011
MMU, University of Texas at Austin, 2005

Katz, Claire E, Professor
Philosophy & Humanities
PHD, University of Memphis, 1999

Katzfuss, Matthias S, Associate Professor
Statistics
PHD, The Ohio State University, 2011

Kaz Frick, Emma, Adjunct Assistant Professor
Dental Hygiene
BA, Arizona State University, 2015

Keating, Peter B, Associate Professor
Civil Engineering
PHD, Lehigh University, 1987

Keblis, Matthew F, Associate Professor
Eng Tech & Ind Distribution
PHD, University of Michigan, 1995

Keffer, Robert, Adjunct Professor
School of Law
JD, Texas Tech University School of Law, 1981

Keller, Brandis K, Lecturer
Biomedical Engineering
PHD, Politecnico di Milano, 2013
Kellogg, Katherine A, Assistant Lecturer
Educational Psychology
MED, Texas A&M University, 2016

Kellstedt, Paul M, Professor
Political Science
PHD, University of Minnesota, Twin Cities, 1996

Kelly, Larry J, Clinical Professor
Teaching, Learning & Culture
PHD, The University of Texas - Austin, 2002

Kemp, Walter M, Professor
Biology
PHD, The Tulane University of Louisiana, 1969

Kendall, Shari E, Associate Professor
English
PHD, Georgetown University, 1999

Kenderes, Elizabeth, Instructional Assistant Professor
Geology & Geophysics
PHD, University of Missouri, 2018

Kenerley, Charles M, Professor
Plant Pathology & Microbiology
PHD, North Carolina State University, 1983

Kenimer, Ann L, Professor
Biological & Agricultural Eng
PHD, University of Illinois at Urbana-Champaign, 1990

Kennedy, Deanna M, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2015

Kennicut, Robert Charles, Professor
Physics & Astronomy
PHD, University of Washington, 1978

Kent, Thomas, Professor
Institute of Biosciences & Tec
MD, University of Kansas Medical Center, 1979

Kerins, Carolyn A, Associate Professor
Pediatric Dentistry
PHD, Baylor College of Dentistry, 2004
DDS, Baylor College of Dentistry, 2002

Kerne, Andrew, Professor
Computer Science & Engineering
PHD, New York University, 2001

Kerr, David G, Professor
Mathematics
PHD, University of Toronto, 2001

Kerr, Deborah L, Professor of the Practice
Public Service & Administration
PHD, The University of Texas at Austin, 1982

Kerth, Christopher R, Associate Professor
Animal Science
PHD, Texas Tech University, 1999

Kerwin, Sharon C, Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1988

Kesterke, Matthew J, Instructional Assistant Professor
Biomedical Sciences
PHD, University of Pittsburgh, 2016

Ketzenberg, Michael E, Professor
Information & Operations Mgmt
PHD, University of North Carolina at Chapel Hill, 2000

Keyser, John C, Professor
Computer Science & Engineering
PHD, University of North Carolina at Chapel Hill, 2000

Kezunovic, Mladen, Professor
Electrical & Computer Eng
PHD, University of Kansas, 1980

Khan, Irfan Ahmad, Instructional Assistant Professor
Marine Engineering Technology
PHD, Carnegie Mellon University, 2018

Khan, Mansoor A, Professor
College of Pharmacy
PHD, St. John's University, 1992

Khatri, Sunil P, Professor
Electrical & Computer Eng
PHD, University of California, Berkeley, 1999

Khmelenko, Vladimir, Research Professor
Physics & Astronomy
PHD, Institute of Chemical Physics, 1984

Khosravianghadikolaei, Homa, Research Assistant Professor
Chemical Engineering
PHD, University of Illinois at Chicago, 2013

Kianfar, Kiavash, Associate Professor
Industrial & Systems Eng
PHD, North Carolina State University, 2007

Kibriya, Shahriar, Visiting Lecturer
Agricultural Economics
PHD, Texas A&M University, 2011

Kicklighter, Caleb L, Lecturer
Visualization
MFA, Texas A&M University, 2018

Killough, John E, Professor
Petroleum Engineering
PHD, Rice University, 1986

Kilmarx, Beth, Instructional Associate Professor
TAMU Libraries
MLS, SUNY - Albany, 1992

Kilmer, Kendra R, Instructional Assistant Professor
Mathematics
MS, Texas A&M University, 2003
Kim, Nicholas G, Lecturer
Agricultural Economics
MBA, University of Texas at Tyler, 2011

Kim, Kiltz, Lecturer
George Bush School of Govern
PHD, Portland State University, 2008

Kim, Dongin, Assistant Professor
College of Pharmacy
PHD, University of Utah, 2009

Kim, Eun J, Associate Professor
Computer Science & Engineering
PHD, Pennsylvania State University, 2003

Kim, Haejune, Assistant Professor
Mechanical Engineering
PHD, University of Wisconsin - Milwaukee, 2014

Kim, Hoi-Eun, Associate Professor
History
PHD, Harvard University, 2006

Kim, Hwagyun, Associate Professor
Finance
PHD, University of Chicago, 2003

Kim, Hyoungsub, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2017
MAR, University of Pennsylvania, 2012

Kim, Ji Koung, Assistant Professor
Management
PHD, Arizona State University, 2019

Kim, Jihoon, Associate Professor
Petroleum Engineering
PHD, Stanford University, 2010

Kim, Joung Dong, Instructional Assistant Professor
Mathematics
PHD, State University of New York at Stony Brook, 2012

Kim, Moohyun, Professor
Ocean Engineering
PHD, Massachusetts Institute of Technology, 1988

Kim, Sun J, Research Assistant Professor
Vet Integrative Biosciences
PHD, Sogang University, 2006

Kim, Won-Jong, Associate Professor
Mechanical Engineering
PHD, Massachusetts Inst of Technology, 1997

Kim, Yong-Joe, Associate Professor
Mechanical Engineering
PHD, Purdue University, 2003

Kim, Yong-Rak, Professor
Civil Engineering
PHD, Texas A&M University, 2003

Kim, Youjung, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2019

Kimball, Rustin A, Associate Professor
TAMU Libraries
MLS, University of North Texas, 2003

Kimber, Mark, Assistant Professor
Mechanical Engineering
PHD, Purdue University, 2008

Kimber, Mark L, Assistant Professor
Nuclear Engineering
PHD, Purdue University, 2008

Kincheloe, Faron, Visiting Professor
Statistics
MS, Baylor University, 2011

King, Andrew R, Lecturer
Horticultural Sciences
PHD, Texas A&M University, 2015

King, George, Lecturer
Marine Engineering Technology
BS, Texas A&M University, 1975

King, Maria D, Assistant Professor
Biological & Agricultural Eng
PHD, Institute for Biototechnology, Berlin, Germany, 1986

King, Michael J, Professor
Petroleum Engineering
PHD, Syracuse University, 1980

King, Scottow A, Adjunct Professor
School of Law
JD, New York University Law School, 1982

King, Silvia R, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Catholic University of Minas Gerais-Brazil, 1981

King, Tracy, Clinical Associate Professor
Dental Hygiene
MS, TX A&M College of Dentistry, 2002

Kingman, Douglas M, Instructional Associate Professor
Biological & Agricultural Eng
PHD, Purdue University, 2002

Kira, Vikram K, Professor
Aerospace Engineering
PHD, Brown University, 1975

Kirkendall, Andrew J, Professor
History
PHD, University of North Carolina at Chapel Hill, 1996

Kirkland, Karen V, Professor
Nuclear Engineering
PHD, The University of Tokyo, 1999
Kiser, James S, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2009

Kish, Laszlo B, Professor
Electrical & Computer Eng
PHD, Uppsala University, Sweden, 1994

Kitajima, Hiroko, Associate Professor
Geology & Geophysics
PHD, Texas A&M University, 2010

Kitchens, Joel D, Associate Professor
TAMU Libraries
PHD, Texas A&M University, 2016

Kitcher, Evans D, Lecturer
College of Engineering
PHD, Texas A&M University, 2016

Klappenecker, Andreas, Professor
Computer Science & Engineering
PHD, Universitat Karlsruhe, 1998

Klein Douglas, Professor
Foundational Sciences
PHD, University of Texas, 1969

Klein, Andrew G, Professor
Geography
PHD, Cornell University, 1997

Klein, Barbara J, Instructional Assistant Professor
Visualization
MFA, Texas A&M University, 2019

Klein, Nancy L, Associate Professor
Architecture
PHD, Bryn Mawr College, 1991

Klein, Patricia E, Professor
Horticultural Sciences
PHD, Texas A&M University, 1989

Kleinfeld, Denis, Adjunct Professor
School of Law
JD, Loyola University, 1970

Klemm, William R, Senior Professor
Vet Integrative Biosciences
PHD, University of Notre Dame, 1963
DVM, Auburn University, 1958

Klopack, Benjamin, Assistant Professor
Economics
PHD, Stanford University, 2019

Klotz, Anthony, Associate Professor
Management
PHD, University of Oklahoma, 2013

Knap, Anthony H, Professor
Oceanography
PHD, University of South Hampton, 1978

Knappett, Peter S, Assistant Professor
Geology & Geophysics
PHD, University of Tennessee at Knoxville, 2010

Kneese, Dana A, Clinical Assistant Professor
Vet Integrative Biosciences
DVM, Texas A&M University, 2013
PHD, Texas A&M University, 2009

Kneese, Eric, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 2012

Kniffin, Daniel A, Instructional Professor
Health & Kinesiology
MED, The University of Texas - Austin, 1987

Knight, Robert, Associate Professor
Rangeland, Wildlife and Fisheries Management
PHD, Texas A&M University, 1980

Knoop, Jacqueline D, Lecturer
Accounting
MS, Texas A&M University, 1997

Knox, Benjamin C, Assistant Professor of the Practice
Visualization
BED, Texas A&M University, 1993

Ko, Che-Ming, University Distinguished Professor
Physics & Astronomy
PHD, State University of New York at Stony Brook, 1973

Ko, Gladys Y, Associate Professor
Vet Integrative Biosciences
PHD, Kent State University, 1996

Ko, Michael L, Research Assistant Professor
Vet Integrative Biosciences
PHD, Kent State University, 1997

Koch, Michael T, Associate Professor
Political Science
PHD, University of California, Davis, 2002

Kocharovskaya, Olga A, Distinguished Professor
Physics & Astronomy
PHD, Institute of Applied Physics, Russian Academy of Sciences, 1986

Kocharovsky, Vitaly V, Professor
Physics & Astronomy
PHD, Institute of Applied Physics, Russian Academy of Sciences, 1986

Koecher, Michael J, Adjunct Professor
School of Law
JD, University of Wisconsin Law School, 2000

Kogut, Ashlynn W, Assistant Professor
TAMU Libraries
MLS, University of Texas, 2007

Kogut, Mark H, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Baylor College of Dentistry, 1977
Koh, Poh Wee, Assistant Professor
Teaching, Learning & Culture
PHD, University of Toronto, 2016

Koiwa, Hisashi, Professor
Horticultural Sciences
PHD, Kyoto University, 1996

Kolari, James, Professor
Finance
PHD, Arizona State University, 1980

Kolasinski, Adam C, Associate Professor
Finance
PHD, MIT, 2006

Kolasinski, Ana Lucia, Lecturer
Accounting
MS, Texas A&M University, 2017

Koliou, Maria, Assistant Professor
Civil Engineering
PHD, University of Buffalo - The State University of New York, 2014

Kolluru, Pavan, Assistant Professor
Materials Science & Engr
PHD, University of Illinois - Urbana-Champaign, 2014

Kolodziej, Elizabeth Y, Instructional Assistant Professor
Statistics
PHD, Texas A&M University, 2010

Kolomiets, Mikhailo V, Professor
Plant Pathology & Microbiology
PHD, Iowa State University, 1998

Konrad, Christoph F, Associate Professor
International Studies
PHD, University of North Carolina at Chapel Hill, 1985

Koola, Paul M, Professor of the Practice
Ocean Engineering
PHD, Indian Institute of Technology, Madras, 1991

Koopman, Joel E, Associate Professor
Management
PHD, Michigan State University, 2014

Koppa, Rodger J, Senior Associate Professor
Industrial & Systems Eng
PHD, Texas A&M University, 1979

Korn, Milton O, Professor of the Practice
Marine Engineering Technology
CERT, State of New Jersey Board of Professional Engineers and Land Surveyors, 2019

Kornegay, Joe N, Professor
Vet Integrative Biosciences
PHD, University of Georgia, 1982

Korosec, Jason A, Adjunct Professor
School of Law
JD, Case Western Reserve University School of Law, 1997

Korty, Robert L, Associate Professor
Atmospheric Sciences
PHD, Massachusetts Institute of Technology, 2005

Kothmann, Merwyn, Senior Professor
Rangeland, Wildlife and Fisheries Management
PHD, Texas A&M University, 1968

Koufteros, Beth, Senior Lecturer
Management
CERT, HR Certification Institute, 2014

Koufteros, Beth A, Lecturer
College of Engineering
CERT, HR Certification Institute, 2014

Koufteros, Xenophon, Professor
Information & Operations Mgmt
PHD, University of Toledo, 1995

Koustov, Dmitri V, Lecturer
Visualization
BFA, Ivanovo Art institute, 1987

Kovacevich, John W, Lecturer
Marine and Coastal Environmental Science
MS, University of Houston - Clear Lake, 2015

Kovach, Kimberlee K, Adjunct Professor
School of Law
JD, Capital University Law School, 1979

Kovar, Scott J, Senior Lecturer
Entomology
MS, CUNY John Jay College of Criminal Justice, 2007

Kraemer, Duane C, Senior Professor
Vet Physiology & Pharmacology
DVM, Agricultural & Mechanical College, 1966
PHD, Agricultural & Mechanical College, 1966

Krajicek, John C, Executive Professor
College of Business
MA, University of North Texas, 1993

Kramer, Phillip R, Professor
Biomedical Sciences
PHD, Texas A&M University, 1996

Krasteva, Silvana S, Associate Professor
Economics
PHD, Duke University, 2009

Kravaris, Costas, Professor
Chemical Engineering
PHD, California Institute of Technology, 1984

Kravitz, Richard HIRAM, Adjunct Professor
School of Law
CERT, New York University-College of Arts and Science, 1976

Kreider, Richard, Professor
Health & Kinesiology
PHD, University of Southern Mississippi, 1987
Krenek, Nancy, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PHD, The University of Texas Medical Branch, 2014

Kress, Lisa M, Lecturer
Liberal Studies
MFA, University of Houston, 2001

Kreuter, Urs, Professor
Ecology and Conservation Biology
PHD, Utah State University, 1992

Krisciunas, Kevin L, Instructional Associate Professor
Physics & Astronomy
PHD, University of Washington, 2000

Krolikowski, Wieslaw Z, Professor
Texas A&M University at Qatar
PHD, Institute of Physics, Polish Academy of Sciences, 1988

Kronenberg, Andreas K, Professor
Geology & Geophysics
PHD, Brown University, 1983

Kroloszynski Jr, Ronald J, Adjunct Professor
School of Law
JD, Duke University, 1991

Ku, Charlotte, Professor
School of Law
PHD, Fletcher School of Law & Diplomacy, 1984

Kuan, Jeffrey, Assistant Professor
Mathematics
PHD, Harvard University, 2015

Kuchment, Peter, University Distinguished Professor
Mathematics
PHD, Kharkov State University, Russia, 1973

Kulatilaka, Waruna D, Associate Professor
Aerospace Engineering
DEN, Purdue University, 2006

Kulatilaka, Waruna D, Associate Professor
Mechanical Engineering
DEN, Purdue University, 2006

Kum, Hye Chung, Professor
Health Policy & Management
PHD, University of North Carolina - Chapel Hill, 2004

Kum, Hye Chung, Associate Professor
Computer Science & Engineering
PHD, University of North Carolina - Chapel Hill, 2004

Kum, Hye Chung, Associate Professor
Industrial & Systems Eng
PHD, University of North Carolina - Chapel Hill, 2004

Kumar, Narendra, Associate Professor
College of Pharmacy
PHD, Indian Institute of Technology, Kharagpur, 2001

Kumar, Panganamala R, University Distinguished Professor
Electrical & Computer Eng
PHD, Washington University in St. Louis, 1977

Kumar, Panganamala R, Professor
Industrial & Systems Eng
PHD, Washington University in St. Louis, 1977

Kunkel, Gary R, Associate Professor
Biochemistry & Biophysics
PHD, University of California - Los Angeles, 1977

Kuo, Li-Jen, Associate Professor
Teaching, Learning & Culture
PHD, University of Illinois at Urbana - Champaign, 2006

Kuo, Yue, Professor
Chemical Engineering
PHD, Columbia University, 1980

Kuo, Yue, Associate Professor
Materials Science & Engr
PHD, Columbia University, 1980

Kuppersmith, Nicole, Visiting Lecturer
Health & Kinesiology
CERT, Zumba Instructor Network, 2019

Kurouski, Dzmitry L, Assistant Professor
Biochemistry & Biophysics
PHD, Suny at Albany, 2013

Kurwitz, Richard C, Senior Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2009

Kurz, Terri, Clinical Assistant Professor
College of Medicine
PHD, Texas A&M University, 2001

Kuttolamadom, Mathew A, Associate Professor
Eng Tech & Ind Distribution
PHD, Clemson University, 2012

Kuttolamadom, Mathew A, Assistant Professor
Materials Science & Engr
PHD, Clemson University, 2012

Kwok, Andrew, Assistant Professor
Teaching, Learning & Culture
PHD, University of Michigan, 2016

Kwok, Michelle, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, University of Michigan, 2016

Kwok, Qi-Man, Professor
Educational Psychology
PHD, Arizona State University, 2005

Kwon, Joseph, Assistant Professor
Chemical Engineering
PHD, University of California, Los Angeles, 2015
Kyle, Gerard, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Pennsylvania State University, 2001

Kyle, Gerard T, Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 2001

Kyle, Kelly T, Lecturer
Recreation, Park & Tourism Sc
MS, Pennsylvania State University, 2000

La Pastina, Antonio C, Associate Professor
Communication
PHD, The University of Texas - Austin, 1999

Laane, Jaan, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1967

Labonte, Jessica, Assistant Professor
Marine Biology
PHD, University of British Columbia, 2013

Lacey, Ronald E, Professor
Biological & Agricultural Eng
PHD, University of Kentucky, 1992

Lacher, Thomas, Professor
Ecology and Conservation Biology
PHD, University of Pittsburgh, 1980

Lacy, Thomas E, Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 1998

Laddusaw, Sierra D, Assistant Professor
TAMU Libraries
MLS, Texas Woman’s University, Denton, 2015

Lafayette, Carol J, Professor
Visualization
MFA, SUNY, University at Buffalo, 1991

Lafon, Charles W, Professor
Geography
PHD, University of Tennessee, Knoxville, 2000

Laganowsky, Arthur D, Associate Professor
Chemistry
PHD, University of California, 2011

Lagoudas, Dimitris C, University Distinguished Professor
Aerospace Engineering
PHD, Lehigh University, 1986

Lagoudas, Dimitris C, Professor
Materials Science & Engr
PHD, Lehigh University, 1986

Lagoudas, Magdalini Z, Instructional Associate Professor
College of Engineering
MS, Lehigh University, 1986

Lahey, Joanna N, Associate Professor
Public Service & Administration
PHD, Massachusetts Inst of Technology, 2005

Laine, Glen A, Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 1980

Lake, Justin, Associate Professor
International Studies
PHD, Harvard University, 2008

Laakimsetti, Chaitanya, Associate Professor
Sociology
PHD, University of Wisconsin, 2010

Lamb, Graham C, Professor
Animal Science
PHD, Kansas State University, 1998

Lamb, William M, Professor
Geology & Geophysics
PHD, University of Wisconsin - Madison, 1987

Lamphere, Jenna A, Assistant Professor
Liberal Studies
PHD, University of Tennessee Knoxville, 2016

Lampo, Sandra S, Clinical Associate Professor
Marketing
PHD, Texas A&M University, 2001

Lan, Shoufeng, Assistant Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2017

Landman, Whitney E, Clinical Assistant Professor
College of Nursing
MSN, Western Governor’s University, 2016

Landsberg, Joseph M, Professor
Mathematics
PHD, Duke University, 1990

Lang, Bambi, Lecturer
College of Nursing
MSN, University of Texas Health Science Center at San Antonio, 1996

Langari, Gholamreza, Professor
Aerospace Engineering
PHD, University of California, Berkeley, 1991

Langford, Candice L, Research Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2006

Laporte, Catharina M, Instructional Associate Professor
Anthropology
PHD, Texas A&M University, 2013

Laprea Bigott, Marcelo, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1979
Lara Ruiz, Jorge Horacio J, Senior Lecturer
College of Engineering
PHD, Texas A&M University, 2005

Lara-Alecio, Rafael, Regents Professor
Educational Psychology
PHD, University of Utah, 1991

Larkin, Ryan E, Senior Lecturer
Accounting
MAC, University of Utah, 2002

Larson, Brian N, Associate Professor
School of Law
PHD, University of Minnesota, 2015
JD, Mitchell Hamline School of Law, 2000

Larson, David R, Professor
Mathematics
PHD, University of California - Berkeley, 1976

Larson, Ruth E, Associate Professor
International Studies
PHD, Yale University, 1991

Lassila, Dennis R, Professor
Accounting
PHD, University of Minnesota, 1981

Latortue, Marie C, Clinical Assistant Professor
Public Health Sciences
DDS, State University of Haiti, 2007

Laub, James D, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, Prairie View A&M University, 2007

Le Graverend, Jean-Briac B, Assistant Professor
Aerospace Engineering
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Le Graverend, Jean-Briac B, Associate Professor
Materials Science & Engr
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Law, Wendy N, Associate Professor
School of Law
JD, Texas Wesleyan University School of Law, 2003

Lawhon, Sara D, Associate Professor
Veterinary Pathobiology
PHD, North Carolina State University, 2003
DVM, Texas A&M University, 1997

Lawing, Anna, Associate Professor
Ecology and Conservation Biology
PHD, Indiana University, 2012

Lawler, John, Professor
Health & Kinesiology
PHD, University of Florida, 1991

Lawley, Mark A, Professor
Biomedical Engineering
PHD, University of Illinois at Urbana-Champaign, 1995

Lawley, Mark A, Professor
Industrial & Systems Eng
PHD, University of Illinois at Urbana-Champaign, 1995

Law-Sukam, Alain, Associate Professor
Hispanic Studies
PHD, University of Illinois at Urbana-Champaign, 2005

Lawrence, Frederick B, Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1999

Laya Pereira, Juan Carlos, Assistant Professor
Geology & Geophysics
PHD, Durham University, United Kingdom, 2012

Layne, Christopher, University Distinguished Professor
International Affairs
PHD, University of California, Berkeley, 1981

Layton, Astrid C, Assistant Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2014

Layton, James S, Clinical Assistant Professor
Pediatric Dentistry
DDS, Baylor College of Dentistry, 1977

Lazarov, Raytcho D, Professor
Mathematics
PHD, University of Moscow, Russia, 1972

Le Graverend, Jean-Briac B, Assistant Professor
Aerospace Engineering
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Le Graverend, Jean-Briac B, Associate Professor
Materials Science & Engr
PHD, Ecole Nationale de Mécanique et d’Aérotechnique, France, 2013

Le Mire, Sarah Y, Associate Professor
TAMU Libraries
MLS, University of Michigan, 2012

Leatham, David J, Professor
Agricultural Economics
PHD, Perdue University, 1983

Leatherwood, Jessica L, Assistant Professor
Animal Science
PHD, Texas A&M University, 2013

Leboeuf, Brigitte L, Lecturer
Biology
PHD, Texas A&M University, 2009

Lechuga III, Vicente M, Associate Professor
Educ Admn & Human Resource Dev
PHD, University of Southern California, 2005

Ledford, Christopher E, Instructional Assistant Professor
Liberal Studies

Lee, ChaBum, Assistant Professor
Mechanical Engineering
PHD, Gwangju Institute of Science and Technology, 2012
Lee, Chanam, Professor
Land Arch & Urban Planning
PHD, University of Washington, 2004

Lee, Christopher P, Lecturer
Biology
BS, Texas A&M University, 1993

Lee, David M, University Distinguished Professor
Physics & Astronomy
PHD, Yale University, 1959

Lee, Dong-Joon, Assistant Professor
TAMU Libraries
PHD, Florida State University, 2015

Lee, Edward, Lecturer
Chemistry
PHD, University of Virginia, Charlottesville, 2011

Lee, Hyun Woo, Assistant Professor
Health & Kinesiology
PHD, Florida State University, 2014

Lee, Hyunyoung, Senior Lecturer
Computer Science & Engineering
PHD, Texas A&M University, 2001

Lee, Kiju, Associate Professor
Eng Tech & Ind Distribution
PHD, Johns Hopkins University, 2009

Lee, Kiju, Associate Professor
Mechanical Engineering
PHD, Johns Hopkins University, 2009

Lee, Ryang H, Assistant Professor
Molecular & Cellular Medicine
PHD, Pusan National University, South Korea, 2003

Lee, Ryun Jung, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2018

Lee, Sang Rae, Senior Lecturer
Mathematics
PHD, University of Oklahoma, 2012

Lee, William J, Professor
Petroleum Engineering
PHD, Georgia Institute of Technology, 1963

Lehde, Britni, Lecturer
College of Nursing
MSN, Texas Tech University Health Science Center, 2015

Lei, Jun, Assistant Professor
International Studies
PHD, University of California, San Diego, 2015

Lei, Yuming, Assistant Professor
Health & Kinesiology
PHD, University of Wisconsin - Milwaukee, 2015

Leiderman, Daniil M, Instructional Assistant Professor
Visualization
PHD, Princeton University, 2016

Lele, Pushkar P, Assistant Professor
Chemical Engineering
PHD, University of Delaware, Newark, 2010

Lemke, Michael K, Clinical Assistant Professor
Health & Kinesiology
PHD, Wichita State University, 2013

Lemus Sevilla, Sergio, Visiting Assistant Professor
Anthropology
PHD, University of Illinois at Urbana-Champaign, 2016

Lench, Heather C, Professor
Psychological & Brain Sciences
PHD, University of California Irvine, 2007

Lenihan, John H, Associate Professor
History
PHD, University of Maryland, 1976

Leon, Victor J, Professor
Eng Tech & Ind Distribution
PHD, Lehigh University, 1991

Leon, Victor J, Professor
Industrial & Systems Eng
PHD, Lehigh University, 1991

Leonard, Matthew J, Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1987

Lester, Richard H, Clinical Professor
Management
PHD, Texas A&M University, 2003

Letko Olbelina, Instructional Assistant Professor
Foundational Sciences
PHD, University of Illinois at Urbana-Champaign, 2015

Leunes, Arnold D, Senior Professor
Psychological & Brain Sciences
PHD, North Texas State College, 1969

Levine, Gwendolyn J, Clinical Associate Professor
Veterinary Pathobiology
DVM, Texas A&M University, 2006

Levine, Jonathan M, Professor
Vet Small Animal Clinical Sc
DVM, Cornell University, 2001

Lewis Jr, Donald H, Executive Professor
Management
MBA, Texas A&M International University, 1992

Lewis, Dominique H, Lecturer
Political Science
PHD, Michigan State University, 2017
Lewis, Eric, Assistant Professor
Public Service & Administration
PHD, University of Michigan, 2015

Lewis, Heather S, Lecturer
Mechanical Engineering
MEN, North Carolina State University, 2000

Lewis, Michael P, Associate Professor
Construction Science
PHD, North Carolina State University, 2009

Leyk, Teresa S, Senior Lecturer
Computer Science & Engineering
PHD, Australian National University, 1998

Li, Dongying, Assistant Professor
Land Arch & Urban Planning
PHD, University of Illinois - Champaign, 2016

Li, Jianrong, Professor
Vet Integrative Biosciences
PHD, University of Hawaii at Manoa, 1997

Li, Peng, Adjunct Professor
Electrical & Computer Eng
PHD, Carnegie Mellon University, 2003

Li, Qinglei, Associate Professor
Vet Integrative Biosciences
PHD, Harbin Medical University, 2001

Li, Quan, Professor
Political Science
PHD, Florida State University, 1998

Li, Toby, Assistant Professor
Management
PHD, Rice University, 2019

Li, Wei, Associate Professor
Land Arch & Urban Planning
PHD, University of California, Irvine, 2011

Li, Yeping, Professor
Teaching, Learning & Culture
PHD, University of Pittsburgh, 1999

Li, Ying, Clinical Associate Professor
Information & Operations Mgmt
PHD, University of Michigan, 2005

Li, Ying, Professor
Mechanical Engineering
PHD, University of Michigan, 2005

Liang, Hong, Professor
Materials Science & Engr
PHD, Stevens Institute of Technology, 1992

Liang, Hong, Professor
Mechanical Engineering
PHD, Stevens Institute of Technology, 1992

Liang, Hui, Professor
Diagnostic Sciences
PHD, Beijing Medical University, 1992
DDS, Beijing Medical University, 1988

Liang, Hwa Chi, Instructional Assistant Professor
Statistics
PHD, University of New Mexico, 2003

Liang, Jenn T, Professor
Petroleum Engineering
PHD, The University of Texas at Austin, 1988

Lidbury, Jonathan A, Assistant Professor
Vet Small Animal Clinical Sc
BVetM, University of Glasgow, 2002

Liescheski, Joshua S, Clinical Assistant Professor
Public Health Sciences
DDS, The University of Texas Health Science Center at San Antonio, 2010

Lieuwen, Peter E, Professor
Performance Studies
PHD, University of California at Santa Barbara, 1984

Liew, Jeffrey C, Professor
Educational Psychology
PHD, Arizona State University, 2005

Light, Jessica, Associate Professor
Ecology and Conservation Biology
PHD, Louisiana State University, 2005

Lightfoot, John, Professor
Health & Kinesiology
PHD, University of Tennessee, 1986

Lightfoot, Robert H, Lecturer
Computer Science & Engineering
MS, Southern Methodist University, 1995

Lim, Phaik S, Senior Lecturer
Political Science
PHD, University of Houston, 2003

Lim, Soon Mi, Instructional Assistant Professor
Chemistry
PHD, Texas A&M University, 2006

Limafilho, Paulo C, Professor
Mathematics
PHD, State University of New York at Stony Brook, 1989

Limbach, Christopher M, Assistant Professor
Aerospace Engineering
PHD, Princeton University, 2015
Lin, Ju Ying, Clinical Assistant Professor
Periodontics
DDS, National Yang-Ming University, 2005

Lin, Ko-Yu W, Clinical Assistant Professor
Pediatric Dentistry
DDS, Kaohsiung Medical College, Taiwan, 1985

Lin, Paotai, Assistant Professor
Electrical & Computer Eng
PHD, Northwestern University, 2009

Lin, Paotai, Assistant Professor
Materials Science & Engr
PHD, Northwestern University, 2009

Lin, Szu-Hsuan, Instructional Assistant Professor
Health Policy & Management
PHD, Texas A&M Health Science Center, School of Public Health, 2015

Lindahl, Paul A, Professor
Chemistry
PHD, Massachusetts Institute of Technology, 1985

Linderholm, Anna E, Associate Professor
Anthropology
PHD, Stockholm University - Sweden, 2008

Lindo, Jason M, Professor
Economics
PHD, University of California - Davis, 2009

Lineberger, R D, Professor
Horticultural Sciences
PHD, Cornell University, 1978

Linke, Patrick, Professor
Texas A&M University at Qatar
PHD, University of Manchester Institute of Science and Technology, 2001

Linn, Brian M, Professor
History
PHD, Ohio State University, 1985

Linne, Paige K, Lecturer
Animal Science
MS, Texas A&M University, 2017

Linneman, Judith A, Instructional Professor
Sociology
PHD, Iowa State University, 1985

Linz, Leah E, Instructional Assistant Professor
Health & Kinesiology
CERT, Schwinn Fitness, 2013

Lipsmeyer, Christine S, Professor
Political Science
PHD, Vanderbilt University, 1999

Lisonbee, Laurie J, Instructional Assistant Professor
Visualization
MFA, California State University, Fullerton, 1998

Little, Adam L, Assistant Professor of the Practice
Vet Small Animal Clinical Sc
DVM, University of Guelph, 2013

Little, Charles D, Lecturer
George Bush School of Govern
PHD, University of North Texas, 1985

Little, Dallas N, Professor
Civil Engineering
PHD, Texas A&M University, 1979

Liu, Chun-Hung, Assistant Professor
Mathematics
PHD, Georgia Institute of Technology, 2014

Liu, Fei, Associate Professor
Molecular & Cellular Medicine
PHD, Fourth Military Medical University, China, 2002

Liu, Hui, Associate Professor
Marine Biology
PHD, University of Alaska Fairbanks, 2006

Liu, Jiling, Clinical Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2016

Liu, Jyh C, Professor
Computer Science & Engineering
PHD, University of Michigan - Ann Arbor, 1989

Liu, Mingyao, Senior Professor
Institute of Biosciences & Tec
PHD, University of Maryland, 1992

Liu, Shuling, Instructional Assistant Professor
Statistics
PHD, Emory University, 2015

Liu, Tie, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2006

Liu, Wencai, Visiting Assistant Professor
Mathematics
PHD, Fudan University, 2015

Liu, Wenshe, Professor
Chemistry
PHD, University of California, Davis, 2005

Liu, Xiaodong, Associate Professor
Finance
PHD, University of Florida, 2012

Liu, Xiaohong, Professor
Atmospheric Sciences
PHD, Nanjing University, P. R. China, 1992

Liu, Xiaohua, Associate Professor
Biomedical Sciences
PHD, Tsinghua University, China, 2002
Liu, Yan, Assistant Professor
Finance
PHD, Duke University, 2014

Liu, Yan, Associate Professor
Marketing
PHD, Purdue University, 2010

Liu, Zhao, Associate Professor
TAMU Libraries
MLS, University of Illinois, 2002

Locke, Unity B, Assistant Professor
Veterinary Pathobiology
DVM, University of Cambridge, 2008

Lockett, Landry L, Senior Lecturer
Ag Leadership, Educ & Comm
EDD, Texas A&M University, 2007

Locklear, Alyssa D, Instructional Professor
Health & Kinesiology
CERT, Yogafit Training System, 2012

Lockless, Steve W, Associate Professor
Biology
PHD, University of Texas at Dallas, 2002

Logan, Linda L, Professor
Veterinary Pathobiology
PHD, University of California-Davis, 1987
DVM, Texas A&M University, 1976

Logan, Shaun M, Instructional Assistant Professor
Biomedical Sciences
PHD, University of North Texas Health Science Center, 2009

Logan, Timothy S, Assistant Professor
Atmospheric Sciences
PHD, University of North Dakota, 2014

Loguinov, Dmitri, Professor
Computer Science & Engineering
PHD, City University of New York, 2002

Loisel, Julie, Assistant Professor
Geography
PHD, Lehigh University, 2012

London, Mara R, Instructional Associate Professor
Civil Engineering
PHD, University of Texas at Austin, 2009

Long, Charles R, Professor
Vet Physiology & Pharmacology
PHD, University of Massachusetts - Amherst, 1996

Longnecker, Michael T, Professor
Statistics
PHD, Florida State University, 1976

Loopstra, Carol, Associate Professor
Ecology and Conservation Biology
PHD, North Carolina State University, 1992

Lopez, Joseph, Associate Professor of the Practice
Communication
PHD, The University of Texas at Austin, 2010

Lopez, Marcelo F., Assistant Professor
Architecture
MS, Columbia University, New York, 2013

Lopez, Oscar, Professor of the Practice
College of Engineering
MS, University of California - Berkeley, 1988

Lord, Dominique, Professor
Civil Engineering
PHD, University of Toronto, 2000

Lorenz, Saundra, Senior Lecturer
Nutrition
MS, Texas A&M University, 2002

Loria Lepiz, Mauricio A, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Universidad Nacional de Costa Rica, 2000

Loring, Andrew J, Senior Lecturer
Marketing
MS, University of Maine, 2012

Louchouarn, Patrick, Professor
Marine and Coastal Environmental Science
PHD, Universite du Quebec a Montreal, 1997

Louder, Martha L, Professor
Accounting
PHD, Arizona State University, 1990

Love, Charles C, Professor
Vet Large Animal Clinical Sc
DVM, University of Missouri-Columbia, 1984

Lowe, David B, Assistant Professor
TAMU Libraries
MLS, University of Michigan, 1996

Lowery Jr, Lee L, Senior Professor
Civil Engineering
PHD, Texas A&M University, 1967

Lu, Dai, Associate Professor
College of Pharmacy
PHD, University of Connecticut, 2005

Lu, Mi, Professor
Electrical & Computer Eng
PHD, Rice University, 1987

Lu, Yongbo, Associate Professor
Biomedical Sciences
PHD, University of Missouri-Kansas City, 2007

Lu, Zhipeng, Senior Lecturer
Architecture
PHD, Texas A&M University, 2009
Luan, Xianghong, Professor
Periodontics
MD, Harbin Medical University, 1983

Lucas, Gary M, Professor
School of Law
JD, Tulane University, 2004

Luce, Andrea M, Clinical Associate Professor
College of Pharmacy
PHARMD, University of Houston College of Pharmacy, 2007

Luco Echeverria, Fernando A, Assistant Professor
Economics
PHD, Northwestern University, 2014

Lueck, Jennifer A, Assistant Professor
Communication
PHD, University of Minnesota, 2016

Luhmann, Jonas, Visiting Assistant Professor
Mathematics
PHD, ETH Zurich, 2016

Luiselli, Alessandra, Professor
Hispanic Studies
PHD, University of New Mexico, 1990

Luke, Jeffrey D, Clinical Assistant Professor
College of Pharmacy
PHARMD, Purdue University, 2014

Lum, Jason K, Lecturer
George Bush School of Govern
JD, University of California, Berkeley, 2000

Luna, Amy V, Lecturer
Maritime Transportation
BS, Texas A&M University, 2007

Lunney, Joseph G, Professor
School of Law
PHD, TULANE UNIVERSITY, 2006
JD, Stanford University, 1990

Luo, Wen, Associate Professor
Educational Psychology
PHD, Texas A&M University, 2007

Lupiani, Blanca M, Professor
Veterinary Pathobiology
PHD, University of Maryland-College Park, 1994

Lupoli, Shawn V, Instructional Assistant Professor
Computer Science & Engineering
MS, Towson University, 2004

Lusher, John D, Associate Professor Of The Practice
Electrical & Computer Eng
PHD, Texas A&M University, 2018

Lutkenhaus, Jodie, Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2007

Lutkenhaus, Jodie L, Associate Professor
Chemical Engineering
PHD, Massachusetts Institute of Technology, 2007

Lutz, Joann A, Professor
Liberal Studies
PHD, University of North Texas, 1993

Lutz, Shawn M, Visiting Assistant Professor
Architecture
MAR, Harvard University Graduate School of Design, 2011

Luxemburg Leon, Associate Professor
Foundational Sciences
PHD, Texas A&M University, 1987

Lyczak, Kristin C, Clinical Assistant Professor
Vet Integrative Biosciences
DVM, Colorado State University, 2003

Lyle, Stacey, Associate Professor Of The Practice
Civil Engineering
PHD, University of Georgia, 2003

Lyle, Stacey D, Associate Professor Of The Practice
Geography
PHD, University of Georgia, 2003

Lynch, Darrell W, Lecturer
Anthropology
PHD, University of Tennessee, 2014

Lynch, Rachel M, Research Assistant Professor
Molecular & Cellular Medicine
PHD, University of Tennessee, 2010

Lynch, Richard G, Visiting Assistant Professor
Mathematics
PHD, University of Missouri, 2016

Lyons, Jacob I, Lab Instructor
Biology
MS, Texas State University, 2010

Lyons, Luke C, Lecturer
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2018

Lytton, Robert L, Professor
Civil Engineering
PHD, University of Texas - Austin, 1967

Lyuksyutov, Igor F, Professor
Physics & Astronomy

MACHEK, JAMES E, Professor Of The Practice
Biomedical Engineering
BS, Gannon University, 1979

MATICCH, PHILIP, Instructional Assistant Professor
Marine Biology
PHD, Florida International University, 2014
Ma, Chao, Assistant Professor
Eng Tech & Ind Distribution
PHD, University of California, 2015

Ma, Chao, Assistant Professor
Materials Science & Engr
PHD, University of California, 2015

Ma, Chao, Assistant Professor
Mechanical Engineering
PHD, University of California, 2015

Ma, Jing, Assistant Professor
Statistics
PHD, University of Michigan, 2015

Ma, Ping, Assistant Professor
Hlth Promotion & Comm Hlth Sci
PHD, Tulane University School of Public Health and Tropical Medicine, 2013

Ma, Xingmao, Associate Professor
Civil Engineering
PHD, Missouri University of Science and Technology, 2004

Mabbott, Samuel, Assistant Professor
Biomedical Engineering
PHD, University of Manchester, Manchester Interdisciplinary Biocentre, 2012

MacNamara, Annmarie E, Assistant Professor
Psychological & Brain Sciences
PHD, Stony Brook University, 2013

MacNamara, Lawrence T, Assistant Professor
History
PHD, Columbia University, 2015

MacWillie III, Donald MacGlashan, Lecturer
International Affairs
MS, US Army War College, 2002

Mackenzie, Duncan S, Associate Professor
Biology
PHD, University of California, Berkeley, 1980

Mackin, Robert S, Instructional Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 1998

Macri, Lucas M, Professor
Physics & Astronomy
PHD, Harvard University, 2001

Maddock, Jason E, Professor
Environmental & Occupnl Hlth
PHD, University of Rhode Island, 1999

Madrahimov, Sherzod T, Assistant Professor
Texas A&M University at Qatar
PHD, University of Illinois, 2012

Madsen, Christi K, Professor
Electrical & Computer Eng
PHD, Rutgers State University of New Jersey, 1996

Madsen, Jean A, Professor
Educ Admn & Human Resource Dev
PHD, The University of Kansas, 1986

Maffei, Gerald L, Visiting Professor
Architecture
MAR, University of California at Berkley, 1969

Magill, Clint W, Professor
Plant Pathology & Microbiology
PHD, Cornell University, 1969

Magnuson, William J, Associate Professor
School of Law
JD, Harvard Law School, 2009

Magyar, Melissa, Lecturer
Psychological & Brain Sciences
PHD, Texas A&M University, 2014

Mahajan, Arvind, Regents Professor
Finance
PHD, Georgia State University, 1980

Mahajan, Vanita, Senior Lecturer
Management
MBA, Texas A&M University, 1986

Mahapatra, Rabin, Professor
Computer Science & Engineering
PHD, Indian Institute of Technology, Kharagpur, 1992

Mahapatra, Rupak K, Professor
Physics & Astronomy
PHD, University of Minnesota, 2000

Mahoney, John, Lecturer
Eng Tech & Ind Distribution
BS, University of Phoenix, 2004

Mai, Bin, Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Texas Dallas, 2006

Maier, Matthias Sebastian, Assistant Professor
Mathematics
PHD, Ruprecht-Karls Universitat Heidelberg, Germany, 2015

Maitland IV, Duncan J, Professor
Biomedical Engineering
PHD, Northwestern University, 1995

Maitland, Kristen D, Associate Professor
Biomedical Engineering
PHD, University of Texas, 2006

Majeti, Ravikumar N, Professor
College of Pharmacy
PHD, Indian Institute of Technology, Roorkee, 2000
Majji, Manoranjan, Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2009

Malak Jr, Richard J, Associate Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2008

Malave, Ceasar, Professor
Industrial & Systems Eng
PHD, University of South Florida, 1987

Malave, Ceasar, Professor
Texas A&M University at Qatar
PHD, University of South Florida, 1987

Mallick, Bani K, University Distinguished Professor
Statistics
PHD, University of Connecticut, 1994

Mallin, Charles M, Adjunct Professor
School of Law
JD, Southwestern School of Law, 1973

Mallonee, Lisa F, Professor
Dental Hygiene
MPH, University of North Carolina at Chapel Hill, 2000

Malloy, Evan M, Adjunct Professor
School of Law
JD, Texas Tech University School of Law, 2006

Mandell, Laura C, Professor
English
PHD, Cornell University, 1992

Mander, John B, Professor
Civil Engineering
PHD, University of Canterbury, 1984

Maness, Robert S, Associate Professor of the Practice
Economics
PHD, Texas A&M University, 1992

Manisseri Kalathil, Dileep, Assistant Professor
Electrical & Computer Eng
PHD, University of California at Berkeley, 2014

Mankin, Joseph M, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, University of Tennessee-Knoxville, 2007

Mankin, Kelley M, Assistant Professor
Vet Small Animal Clinical Sc
DVM, University of Missouri-Columbia, 2006

Mann, George J, Professor
Architecture
DVM, Columbia University, 1961

Mannan, Mahboobul, Professor
Chemical Engineering
PHD, University of Oklahoma, 1986

Manson, Michael D, Professor
Biology
PHD, Stanford University, 1976

Mansoor, Bilal, Assistant Professor
Materials Science & Engr
PHD, University of Michigan, 2010

Mansoor, Bilal, Associate Professor
Texas A&M University at Qatar
PHD, University of Michigan, 2010

Manuel, David J, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 1994

Marcantonio, Franco, Professor
Geology & Geophysics
PHD, Columbia University, 1994

Marcantonio, Janet G, Executive Professor
College of Business
PHD, New York University, 1999

Marchbanks III, Miner P, Lecturer
Public Service & Administration
PHD, Texas A&M University, 2005

Marchesini, Manuela, Associate Professor
International Studies
PHD, Stanford University, 2000

Maren, Stephen A, University Distinguished Professor
Psychological & Brain Sciences
PHD, University of Southern California, 1993

Marianno, Craig M, Assistant Professor
Nuclear Engineering
PHD, Oregon State University, 2000

Marin Thornton, Gabriela, Instructional Associate Professor
International Affairs
PHD, University of Miami, 2006

Marini, Francesca, Associate Professor
TAMU Libraries
DLS, University of California, Los Angeles, 2005

Marini, Marc Alan, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1987

Mark, Christine L, Instructional Associate Professor
Educ Admn & Human Resource Dev
PHD, The University of Southern Mississippi, 2014

Mark, Samuel E, Professor
Liberal Studies
PHD, Texas A&M University, 2000

Marklund, Leroy, Clinical Assistant Professor
College of Nursing
DNP, University of Alabama, 2015
Markovic, Milan, Professor
School of Law
JD, Georgetown University, 2006

Marlow, William H, Senior Professor
Nuclear Engineering
PHD, University of Texas, 1973

Marouf, Fatma E, Professor
School of Law
JD, Harvard Law School, 2002

Marr, Karina W, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Texas A&M University Baylor College of Dentistry, 2005

Marraro, Anthony R, Senior Lecturer
Construction Science
MS, Texas A&M University, 1997

Marras, William S, Visiting Professor
College of Engineering
PHD, Wayne State University, 1982

Marshall, Christopher, Professor
Marine Biology
PHD, University of Florida, 1997

Marshall, Heather, Lecturer
College of Nursing
DNP, Capella University, 2018

Marshall, Jennifer L, Assistant Professor
Physics & Astronomy
PHD, Ohio State University, 2006

Martin, Amy E, Professor
Civil Engineering
PHD, University of California, Berkeley, 1997

Martin, June C, Instructional Associate Professor
Land Arch & Urban Planning
MS, University of Georgia, 2002
MPA, University of Georgia, 1991

Martin, Michael T, Senior Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1968

Martin, Steven E, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2008

Martindale, Lanny R, Professor
Finance
JD, South Texas College of Law, 1995

Martinez III, Mardoqueo J, Clinical Assistant Professor
College of Pharmacy
PHARMD, Creighton University School of Pharmacy and Health Professions, 2015

Marvin, Edward, Adjunct Professor
School of Law
JD, St. Mary's University School of Law, 2006

Masad, Eyad A, Professor
Texas A&M University at Qatar
PHD, Washington State University, 1998

Mashuga, Chad V, Assistant Professor
Chemical Engineering
PHD, Michigan Technological University, 1999

Masri, Mohamad R, Professor
Mathematics
PHD, University of Texas at Austin, 2005

Mastrogiovanni, Melissa, Assistant Lecturer
Ag Leadership, Educ & Comm
MA, Ball State University Muncie Indiana, 2005

Matarrita Cascante, David, Associate Professor
Rangeland, Wildlife and Fisheries Management
PHD, Pennsylvania State University, 2008

Matarrita Cascante, David, Associate Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 2008

Mateos, Mariana, Associate Professor
Ecology and Conservation Biology
PHD, Rutgers, 2002

Mathieu, Olivier E, Research Associate Professor
Mechanical Engineering
PHD, University of Orleans, 2006

Matthews, Debra, Assistant Professor
College of Nursing
PHD, Washington State University, 2014

Matthews, Pamela R, Professor
English
PHD, Duke University, 1988

Matthews, Sharon D, Clinical Associate Professor
Teaching, Learning & Culture
PHD, New Mexico State University, 2007

Matusevich, Laura F, Professor
Mathematics
PHD, University of California, Berkeley, 2002

Mauldin, Betsy L, Clinical Assistant Professor
College of Nursing
MSN, Angelo State University, 2018

Mawk, Elmo J, Instructional Assistant Professor
Chemistry
PHD, Texas A&M University, 1999

Maxwell, Steven A, Associate Professor
Molecular & Cellular Medicine
PHD, The University of Texas Health Science Center at Houston, 1985

May, Larry W, Instructional Assistant Professor
College of Science
PHD, Texas A&M University, 2015
May, Reuben A, Professor
Sociology
PHD, University of Chicago, 1996

Mayer, Richard John, Adjunct Professor
Industrial & Systems Eng
PHD, Texas A&M University, 1998

Mays, Glennon B, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1976

McAdams II, Daniel A, Professor
Mechanical Engineering
PHD, University of Texas - Austin, 1999

McAnally, Mary L, Professor
Accounting
PHD, Stanford University, 2011

McBride, Matthew D, Adjunct Assistant Professor
Orthodontics
MS, Baylor College of Dentistry, 2012

McCark, Bruce A, Distinguished Professor
Agricultural Economics
PHD, The Pennsylvania State University, 1973

McCartney, Stephanie A, Senior Lecturer
Chemistry
PHD, George Washington University, 2009

McCloud Daisey, Lecturer
Liberal Studies
MA, Houston Baptist University, 2002

McCool, Katherine Elizabeth, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, The Ohio State University, 2012

McCoul, Melissa D, Lecturer
English
PHD, University of Notre Dame, 2017

McCoy, John Robert, Adjunct Professor
School of Law
JD, University of Houston, 1981

McCreedy, Dylan, Assistant Professor
Biology
PHD, Washington University, St. Louis, 2013

McCubbins, Andrew, Assistant Professor
Ag Leadership, Educ & Comm
PHD, Iowa State University, 2016

McDaniel, Stephen W, Professor
Marketing
PHD, University of Arkansas, 1979

McDeavitt, Sean M, Associate Professor
Materials Science & Engr
PHD, Purdue University, 1992

McDeavitt, Sean M, Professor
Nuclear Engineering
PHD, Purdue University, 1992

McDonald, Anthony D, Assistant Professor
Industrial & Systems Eng
PHD, University of Wisconsin - Madison, 2014

McDonald, Brenda K, Assistant Lecturer
Educ Admn & Human Resource Dev
MED, Sam Houston State University, 2008

McDonald, Thomas J, Professor
Environmental & Occptnl Hilth
PHD, Texas A&M University, 1988

McDonald, Wendy, Assistant Lecturer
Educ Admn & Human Resource Dev
MSW, University of Texas at Arlington, 1998

McDougall, Mary P, Associate Professor
Biomedical Engineering
PHD, Texas A&M University, 2004

McEachern, George R, Visiting Professor
Horticultural Sciences
PHD, Texas A&M University, 1973

McElroy, Audrey, Professor
Poultry Science
PHD, Texas A&M University, 1998

McElroy, Ted, Executive Professor
Accounting
MS, Texas A&M University, 1980

McFarland, Kenneth, Clinical Assistant Professor
Management
PHD, Pepperdine University, 2018

McGeachin, Robert B, Associate Professor
TAMU Libraries
PHD, Texas A&M University, 1980

McGee, Russell O, Lecturer
Biological & Agricultural Eng
MEN, Texas A&M University, 1997

McGinn, Larry, Senior Lecturer
Construction Science
MS, Texas A&M University, 2003

McGowan, Anne B, Instructional Professor
Construction Science
MS, Texas A&M University, 1976

McGowan, Annie L, Associate Professor
Accounting
PHD, University of North Texas, 1994

McGrath, Paul A, Assistant Lecturer
Ag Leadership, Educ & Comm
MA, Marist College, 2012
McGuire, Sean T, Associate Professor
Accounting
PHD, University of Georgia, 2008

McGuire, Susan S, Clinical Assistant Professor
Pediatric Dentistry
DDS, Louisiana State University Health Sciences Center at New Orleans, 1986

McInnes, Kevin J, Professor
Soil & Crop Sciences
PHD, Kansas State University, 1985

McInnis, Verity G, Senior Lecturer
History
PHD, Texas A&M University, 2012

McIntosh, William A, Professor
Sociology
PHD, Iowa State University, 1975

McIntyre, David H, Lecturer
Public Service & Administration
PHD, University of Maryland - College Park, 1999

McIntyre, Peter M, Professor
Physics & Astronomy
PHD, University of Chicago, 1973

McKay, Garrett, Assistant Professor
Civil Engineering
PHD, University of Colorado Boulder, 2017

McKee, Susan J, Clinical Assistant Professor
College of Nursing
MSN, University of Texas at Tyler, 2012

McKeown, Debra, Associate Professor
Teaching, Learning & Culture
PHD, Vanderbilt University, 2012

McKim, Billy R, Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2010

McKinley Jr, William J, Senior Lecturer
Horticultural Sciences
MAG, Texas A&M University, 1983

McKinney, Matthew R, Lecturer
English
PHD, University of Nevada- Reno, 2017

McKinley, Thomas D, Professor
Biology
PHD, University of Georgia, 1983

McLaughlin, James Kevin, Professor Of The Practice
International Affairs
MA, Webster University, 1987

McLaughlin, Timothy D, Associate Professor
Visualization
MS, Texas A&M University, 1994

McManus, Uel J, Professor
Biology
PHD, University of Tennessee, 1964

McLaughan Moudouni, Darcy K, Assistant Professor
Health Policy & Management
PHD, Texas A&M University Health Science Center, 2010

McNamara, Ann M, Associate Professor
Visualization
PHD, University of Bristol, UK, 2000

McNamara, Sarah J, Assistant Professor
History
PHD, University of North Carolina at Chapel Hill, 2016

McNaughten, Dennis Lee, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1993

McNeice, Sean T, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2015

McNeill, Elisa H, Clinical Professor
Health & Kinesiology
PHD, Texas A&M University, 2010

McQueen, Vanicha Ruth Favors, Assistant Professor Of The Practice
Marine Engineering Technology
CERT, The United States Coast Guard National Maritime Center, 2013

McShane II, Michael J, Professor
Biomedical Engineering
PHD, Texas A&M University, 1999

McShane II, Michael J, Professor
Materials Science & Engr
PHD, Texas A&M University, 1999

McVay, Duane A, Professor
Petroleum Engineering
PHD, Texas A&M University, 1994

McVay, Matilda W, Instructional Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 1996

McWhirter, David B, Professor
English
PHD, University of Virginia, 1984

McWhorter, Alton G, Clinical Professor
Pediatric Dentistry
DDS, University of Tennessee Medical Units, 1979

Meagher, Mary W, Professor
Psychological & Brain Sciences
PHD, University of North Carolina at Chapel Hill, 1989

Means Coleman, Robin Renee, Professor
Communication
PHD, Bowling Green State University, 1996
Medina Cetina, Zenon, Associate Professor
Civil Engineering
PHD, John Hopkins University, 2007

Medina Cetina, Zenon, Associate Professor
Petroleum Engineering
PHD, John Hopkins University, 2007

Medina Palma, Paolina Del Car, Assistant Professor
Finance
PHD, Northwestern University, 2017

Medina, Raul F, Professor
Entomology
PHD, University of Maryland, College Park, 2005

Medlin, Zackary, Assistant Professor
TAMU Libraries
MLS, Rutgers University, 2018

Medlock, John R, Adjunct Professor
School of Law
JD, Texas Wesleyan University, 2007

Meek, Thomas D, Professor
Biochemistry & Biophysics
PHD, Pennsylvania State University, 1981

Meer, Jonathan, Professor
Economics
PHD, Stanford University, 2009

Mehta, Ranjana K, Associate Professor
Industrial & Systems Eng
PHD, Virginia Tech, 2011

Meigs, Randyl, Adjunct Professor
School of Law
DJ, The University of Texas School of Law, 1985

Meitzen, Michael C, Lecturer
Finance
MER, Texas A&M University, 2001

Melchor, Nyria, Adjunct Professor
School of Law
JD, Harvard University, 1992

Melconian, Daniel G, Professor
Physics & Astronomy
PHD, Simon Fraser University, 2006

Melgoza, Pauline, Associate Professor
TAMU Libraries
MLS, University of North Texas, 2000

Mendoza, Itza, Assistant Professor
Environmental & Occpntl Hlth
PHD, Texas A&M University, 2007

Menet, Jerome, Assistant Professor
Biology
PHD, Louis Pasteur University, 2003

Menetz, George, Adjunct Professor
School of Law
JD, Loyola University, 1996

Menzel, Christopher P, Professor
Philosophy & Humanities
PHD, University of Notre Dame, 1984

Menzies III, Max D, Lecturer
Agricultural Economics
PHD, Texas A&M University, 2017

Mercieca, Jennifer R, Associate Professor
Communication
PHD, University of Illinois at Urbana - Champaign, 2003

Mercier, Richard S, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 1985

Merlin, Christine, Associate Professor
Biology
PHD, University Pierre and Marie Curie, 2006

Merrell Jr, William J, Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 1971

Mestrovic, Stjepan G, Professor
Sociology
PHD, Syracuse University, 1982

Metters, Richard D, Professor
Information & Operations Mgmt
PHD, University of North Carolina - Chapel Hill, 1993

Meyer, Michelle Annette, Associate Professor
Land Arch & Urban Planning
PHD, Colorado State University, 2013

Michalski, Krzysztof A, Associate Professor
Electrical & Computer Eng
PHD, University of Kentucky, 1981

Michaudel, Quentin, Assistant Professor
Chemistry
PHD, The Scripps Research Institute, 2015

Michaudel, Quentin, Assistant Professor
Materials Science & Engr
PHD, The Scripps Research Institute, 2015

Mier, Nelda, Instructional Associate Professor
Hlth Promotion & Comm Hlth Sci
PHD, University of New Mexico, 2002

Miglietta, Maria P, Associate Professor
Marine Biology
PHD, Duke University, 2005

Miles, Bryant W, Senior Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 1998
Faculty

Miles, Richard B, Professor
Aerospace Engineering
PHD, Stanford University, 1972

Mileski, Joan P, Professor
Maritime Business Administration
PHD, University of Texas at Dallas, 2000

Miller, Brent V, Professor
Geology & Geophysics
PHD, Dalhousie University, Canada, 1997

Miller, Cain, Lecturer
College of Liberal Arts
MA, Southern Methodist University, 2019

Miller, Glen A, Instructional Associate Professor
Philosophy & Humanities
PHD, University of North Texas, 2015

Miller, Gretchen R, Associate Professor
Civil Engineering
PHD, University of California, Berkeley, 2009

Miller, Jeremy R, Lecturer
Communication
PHD, Texas A&M University, 2012

Miller, Michael J, Associate Professor
College of Pharmacy
DrPH, University of Pittsburgh, 2004

Miller, Rhonda K, Professor
Animal Science
PHD, Colorado State University, 1983

Miller, Scott L, Professor
Electrical & Computer Eng
PHD, University of California, San Diego, 1988

Miller, Stephen J, Professor
Hispanic Studies
PHD, The University of Chicago, 1976

Miller, Warren, Professor of the Practice
Nuclear Engineering
PHD, Northwestern University, 1973

Mills, Regina, Assistant Professor
English
PHD, University of Texas, Austin, 2018

Milman, Robert, Clinical Assistant Professor
College of Medicine
MD, Texas A&M University, 1986

Milstien, Susan, Clinical Assistant Professor
Health & Kinesiology
PHD, Widener University, 2006

Miner, Kathi N, Associate Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2004

Ming, Shuang, Visiting Assistant Professor
Mathematics
PHD, University of California Davis, 2019

Mioduszewski, Saskia, Professor
Physics & Astronomy
PHD, University of Tennessee, 1999

Mir, Nordin, Professor
Texas A&M University at Qatar
PHD, University of Rouen, France, 1998

Mirabolfathi, Nader, Research Associate Professor
Physics & Astronomy
PHD, University of Paris XI, 2002

Miranda, Malathi S, Clinical Assistant Professor
Public Health Sciences
DDS, Mangalore University, India, 1995

Miranda, Valerian, Associate Professor
Architecture
PHD, Texas A&M University, 1988
MAR, Texas A&M University, 1984

Mirza, Saadat, Professor of the Practice
College of Engineering
PHD, University of South Hampton, 1983

Misemer, Sarah M, Professor
Hispanic Studies
PHD, University of Kansas, 2001

Misra, Siddharth, Associate Professor
Petroleum Engineering
PHD, University of Texas at Austin, 2015

Mitchell, Alexandra, Lecturer
TAMU Libraries
MS, University of North Carolina at Chapel Hill, 2014

Mitchell, Angela, Assistant Professor
Biology
PHD, University of North Carolina at Chapel Hill, 2013

Mitchell, Stacey A, Clinical Associate Professor
College of Nursing
DNP, University of Tennessee Health Science Center, 2006

Mitchell, Thomas W, Professor
School of Law
LLM, University of Wisconsin - Madison, 1999
JD, Howard University School of Law, 1993

Mittal, Chiraag, Assistant Professor
Marketing
PHD, University of Minnesota, 2016

Miyamoto, Tetsuya, Research Assistant Professor
Molecular & Cellular Medicine
PHD, Nagoya University, 2004
Mize, Britt A, Associate Professor
English
PHD, The University of North Carolina at Chapel Hill, 2003

Mjelde, James W, Professor
Agricultural Economics
PHD, University of Illinois at Urbana - Champaign, 1985

Moberly, Heather K, Professor
TAMU Libraries
MLS, Clarion University of Pennsylvania, 1994

Mobley, Benedict, Associate Professor
Aerospace Engineering
PHD, University of Maryland, 2010

Mochinushi, Yumiko, Instructional Assistant Professor
Psychological & Brain Sciences
MS, Florida Institute of Technology, 2014

Moczygemba, Margarita M, Research Associate Professor
Institute of Biosciences & Tec
PHD, State University of New York at Stony Brook, 1997

Mody, Rustom, Senior Lecturer
Eng Tech & Ind Distribution
MBA, University of Houston, 1986

Moffitt, Cassandra, Clinical Assistant Professor
College of Nursing
MSN, University of Texas-Tyler, 2017

Mohanty, Binayak P, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1992

Mohiuddin, Mohammad W, Research Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2008

Mohler, Robert R, Senior Lecturer
Marine and Coastal Environmental Science
PHD, Texas A&M University, 1994

Mohseni, Mahdi, Assistant Professor
Finance
PHD, Boston College, 2015

Mohtat, Rabi H, Professor
Biological & Agricultural Eng
PHD, Michigan State University, 1994

Molhusen, Brian E, Executive Professor
Marketing
BBA, Texas A&M University, 1978

Momcilovic, Petar, Associate Professor
Industrial & Systems Eng
PHD, Columbia University, 2003

Montague, Marcia L, Visiting Assistant Professor
Educational Psychology
PHD, Texas A&M University, 2009

Montalvo-Liendo, Nora, Associate Professor
College of Nursing
PHD, The University of Texas Health Science Center at Houston, 2009

Moore Andrew, Lecturer
Marine Engineering Technology
BS, Texas A&M University at Galveston, 2014

Moore, Christopher M, Lecturer
Agricultural Economics
CERT, Texas A&M University, 2016

Moore, Georgianne, Professor
Ecology and Conservation Biology
PHD, Oregon State University, 2004

Moore, Janie M, Assistant Professor
Biological & Agricultural Eng
PHD, Purdue University, 2015

Moore, John Michael, Instructional Assistant Professor
Computer Science & Engineering
PHD, Texas A&M University, 2007

Moore, Kevin M, Executive Professor
Finance
MS, Johns Hopkins University, 2013

Moore, Lori L, Associate Professor
Ag Leadership, Educ & Comm
PHD, University of Florida, 2003

Moore, Melinda S, Professor
Health & Kinesiology
PHD, Ball State University, 1997

Moore, Morgan E, Lecturer
Accounting
MAC, University of Texas at Austin, 2008

Moore, Wendy A, Associate Professor
Sociology
PHD, University of Minnesota, 2005

Mora-Zacarias, Miguel, Professor
Ecology and Conservation Biology
PHD, University of California, Davis, 1990

Moreira, Rosana G, Professor
Biological & Agricultural Eng
PHD, Michigan State University, 1989

Moreira-Tamayo, Oscar, Professor of the Practice
Electrical & Computer Eng
PHD, Texas A&M University, 1996

Moreiras, Alberto, Professor
Hispanic Studies
PHD, University of Georgia, 1987

Morel, Jim E, Professor
Nuclear Engineering
PHD, The University of New Mexico, 1979
Moreno Centeno, Erick, Associate Professor
Industrial & Systems Eng
PHD, University of California, Berkeley, 2010

Moreno, Michael R, Assistant Professor
Biomedical Engineering
PHD, Texas A&M University, 2009

Moreno, Michael R, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 2009

Morey, Anne M, Associate Professor
English
PHD, University of Texas- Austin, 1998

Morey, Leslie C, Professor
Psychological & Brain Sciences
PHD, University of Florida, 1981

Moridis, George J, Professor
Petroleum Engineering
PHD, Texas A&M University, 1987

Morita, Nobuo, Professor
Petroleum Engineering
PHD, The University of Texas at Austin, 1974

Mormann, Felix, Professor
School of Law
JD, University of Passau, 2010
LLM, University of California Berkeley School of Law, 2008

Morris, Jeffrey M, Associate Professor
Performance Studies
PHD, University of North Texas, 2007

Morris, Theresa M, Professor
Sociology
PHD, Texas A&M University, 2000

Morrissey, Michael A, Professor
Health Policy & Management
PHD, University of Washington, Seattle, 1979

Morrison, Angela D, Associate Professor
School of Law
JD, University of Nevada Las Vegas, 2005

Morrison, Jenny K, Lecturer
George Bush School of Govern
PHD, New York University, 2008

Morrison, Mike, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Oregon State University, 1982

Morriss, Andrew P, Professor
School of Law
PHD, Massachusetts Institute of Technology, 1994
JD, University of Texas at Austin, 1984

Mortari, Daniele, Professor
Aerospace Engineering
PHD, University La Sapienza of Rome, 1980

Mortazavi, Jack B, Assistant Professor
Computer Science & Engineering
PHD, University of California - Los Angeles, 2014

Mosbo Ballestro, Julie A, Clinical Associate Professor
TAMU Libraries
MA, The University of Wisconsin, 2005

Moscarello, Justin M, Assistant Professor
Psychological & Brain Sciences
PHD, University of California, Santa Barbara, 2010

Moser Melanie, Instructional Professor
Foundational Sciences
PHD, University of Houston, 1977

Mostafavidarani, Ali, Associate Professor
Civil Engineering
PHD, Purdue University, 2013

Mouneimne, Roula, Research Professor
Vet Integrative Biosciences
PHD, Lyon I University, 1984

Moyes, Rita J, Instructional Associate Professor
Biology
PHD, Texas A&M University, 1992

Moyna, Maria I, Professor
Hispanic Studies
PHD, University of Florida, 2000

Mu, Ren, Associate Professor
International Affairs
PHD, Michigan State University, 2004

Muckleroy, Martha L, Instructional Professor
Health & Kinesiology
MED, Texas A&M University, 1994

Muellerhinze, Maxine L, Clinical Assistant Professor
College of Nursing
PHD, The University of Texas - Austin, 1988

Mufich, Martin W, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas at Austin, 2015

Muir, Ian W, Clinical Assistant Professor
TAMU Libraries
MLS, Texas Women's University, 2014

Mulcahy, Angela M, Clinical Associate Professor
College of Nursing
PHD, University of Texas -Tyler, 2018

Mulenga, Albert, Professor
Veterinary Pathobiology
PHD, Hokkaido University, 1999

Muliana, Hanifah, Professor
Mechanical Engineering
PHD, Georgia Institute of Technology, 2004
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mullen, Christine A</td>
<td>Senior Lecturer</td>
<td>Chemistry</td>
<td>PHD, University of California, San Diego, 2000</td>
</tr>
<tr>
<td>Mullet, John E</td>
<td>Professor</td>
<td>Biochemistry & Biophysics</td>
<td>PHD, University of Illinois - Urbana-Champaign, 1981</td>
</tr>
<tr>
<td>Mulvaney, Timothy M</td>
<td>Professor</td>
<td>School of Law</td>
<td>JD, Villanova University School of Law, 2004</td>
</tr>
<tr>
<td>Muneoka, Ken</td>
<td>Professor</td>
<td>Vet Physiology & Pharmacology</td>
<td>PHD, University of California - Irvine, 1983</td>
</tr>
<tr>
<td>Munns, Thomas G</td>
<td>Senior Lecturer</td>
<td>Eng Tech & Ind Distribution</td>
<td>CERT, St Edwards University, 2009</td>
</tr>
<tr>
<td>Munro, Robert</td>
<td>Adjunct Professor</td>
<td>School of Law</td>
<td>PHD, University of Florida, 1981</td>
</tr>
<tr>
<td>Munson, David N</td>
<td>Lecturer</td>
<td>Communication</td>
<td>PHD, Texas A&M University, 2018</td>
</tr>
<tr>
<td>Munster, Clyde L</td>
<td>Senior Professor</td>
<td>Biological & Agricultural Eng</td>
<td>PHD, North Carolina State University, 1992</td>
</tr>
<tr>
<td>Murano, Elsa</td>
<td>Professor</td>
<td>Food Science and Technology</td>
<td>PHD, Virginia Tech, 1990</td>
</tr>
<tr>
<td>Murchison, David</td>
<td>Adjunct Professor</td>
<td>Orthodontics</td>
<td>DDS, Baylor College of Dentistry, 1980</td>
</tr>
<tr>
<td>Murphrey, Theresa P</td>
<td>Professor</td>
<td>Ag Leadership, Educ & Comm</td>
<td>PHD, Texas A&M University, 1997</td>
</tr>
<tr>
<td>Murphy, John F</td>
<td>Instructional Associate Professor</td>
<td>School of Law</td>
<td>JD, The University of Texas School of Law, 1993</td>
</tr>
<tr>
<td>Murphy, Robin R</td>
<td>Professor</td>
<td>Computer Science & Engineering</td>
<td>PHD, Georgia Institute of Technology, 1992</td>
</tr>
<tr>
<td>Murphy, Timothy H</td>
<td>Professor</td>
<td>Ag Leadership, Educ & Comm</td>
<td>PHD, Texas A&M University, 1995</td>
</tr>
<tr>
<td>Murphy, William J</td>
<td>Professor</td>
<td>Vet Integrative Biosciences</td>
<td>PHD, The University of Tulsa, 1997</td>
</tr>
<tr>
<td>Murray, Seth C</td>
<td>Professor</td>
<td>Soil & Crop Sciences</td>
<td>PHD, Cornell University, 2008</td>
</tr>
<tr>
<td>Musoba, Glenda D</td>
<td>Associate Professor</td>
<td>Educ Admn & Human Resource Dev</td>
<td>PHD, Indiana University, 2004</td>
</tr>
<tr>
<td>Musser, Jeffrey M</td>
<td>Clinical Professor</td>
<td>Veterinary Pathobiology</td>
<td>PHD, North Carolina State University, 2000</td>
</tr>
<tr>
<td>Mykoniatis, Nikolaos</td>
<td>Instructional Associate Professor</td>
<td>Maritime Business Administration</td>
<td>PHD, The Pennsylvania State University, 2013</td>
</tr>
<tr>
<td>Myser, Scott A</td>
<td>Adjunct Assistant Professor</td>
<td>Orthodontics</td>
<td>DDS, Texas A&M University Baylor College of Dentistry, 2008</td>
</tr>
<tr>
<td>Nabity, Mary B</td>
<td>Associate Professor</td>
<td>Veterinary Pathobiology</td>
<td>PHD, Texas A&M University, 2010</td>
</tr>
<tr>
<td>Nagarathnam, Bharani</td>
<td>Instructional Assistant Professor</td>
<td>Eng Tech & Ind Distribution</td>
<td>PHD, Texas A&M University, 2016</td>
</tr>
<tr>
<td>Nagaya, Naomi</td>
<td>Research Assistant Professor</td>
<td>Psychological & Brain Sciences</td>
<td>PHD, University of Southern California, 1993</td>
</tr>
<tr>
<td>Nair Radhika</td>
<td>Instructional Assistant Professor</td>
<td>Foundational Sciences</td>
<td>PHD, University of Nevada, 2009</td>
</tr>
<tr>
<td>Nair, Dimple</td>
<td>Senior Lecturer</td>
<td>English</td>
<td>MA, University of Mysore (India), 1997</td>
</tr>
<tr>
<td>Nair, Madhu K</td>
<td>Professor</td>
<td>Diagnostic Sciences</td>
<td>DMD, University of Pittsburgh, 2000</td>
</tr>
<tr>
<td>Nakamura, Brian</td>
<td>Assistant Professor of the Practice</td>
<td>Public Service & Administration</td>
<td>PHD, University of Southern California, 2002</td>
</tr>
</tbody>
</table>
Nakamura, Eduardo F, Visiting Associate Professor
Computer Science & Engineering
PhD, Federal University of Minas Gerais, 2007

Nan, Beiyan, Assistant Professor
Biology
PhD, Peking University, 2007

Napper, Larry C, Professor of the Practice
International Affairs
MS, University of Virginia, 1974

Naraghi, Mohammad, Associate Professor
Aerospace Engineering
PhD, University of Illinois at Urbana Champaign, 2009

Naraghi, Mohammad, Assistant Professor
Materials Science & Engr
PhD, University of Illinois at Urbana Champaign, 2009

Narayanan, Krishna R, Professor
Computer Science & Engineering
PhD, Georgia Institute of Technology, 1998

Narayanan, Krishna R, Professor
Electrical & Computer Eng
PhD, Georgia Institute of Technology, 1998

Narcowich, Francis J, Professor
Mathematics
PhD, Princeton University, 1972

Navaz, Lynda Marie, Clinical Assistant Professor
College of Nursing
MSN, United States University, 2014

Nascentes Alves, Ibere, Professor of the Practice
Petroleum Engineering
PhD, University of Tulsa, 1991

Nasr-El-Din, Hisham A, Professor
Petroleum Engineering
PhD, University of Saskatchewan, 1984

Nasrabad, Hadi, Associate Professor
Petroleum Engineering
PhD, Imperial College London, United Kingdom, 2006

Nastasi, Michael, Professor
Nuclear Engineering
PhD, Cornell University, 1986

Natarajarithinam, Malini, Associate Professor
Eng Tech & Ind Distribution
PhD, University of Alabama, 2007

Natsios, Andrew S, Executive Professor
International Affairs
PhD, Harvard University, 1979

Naugle, Donald G, Professor
Materials Science & Engr
PhD, Texas A&M University, 1965

Naugle, Donald G, Professor
Physics & Astronomy
PhD, Texas A&M University, 1965

Navas De Solis, Cristobal, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PhD, Universidad Autonoma de Barcelona, 2013
DVM, Universidad A. Barcelona, 2012
BVMS, Universidad Cardenal Herrera, 2001
DVM, Universidad Cardenal Herrera CEU, 2001

Ndeffo Mbah, Martial Loth, Assistant Professor
Vet Integrative Biosciences
PhD, University of Cambridge, UK, 2010

Ndubisi, Forster O, Professor
Land Arch & Urban Planning
PhD, University of Waterloo, 1987

Neal, Colleen R, Clinical Assistant Professor
College of Nursing
MNU, The University of Oklahoma Health Science Center, 2011

Nederman, Cary J, Professor
Political Science
PhD, York University, 1983

Needleman, Alan, University Distinguished Professor
Materials Science & Engr
PhD, Harvard University, 1971

Needleman, Alan, Professor
Mechanical Engineering
PhD, Harvard University, 1971

Neighbors, Ryan C, Lecturer
English
MFA, Hollins University, 2014

Nekrashevych, Volodymyr, Professor
Mathematics
PhD, Taras Shevchenko National University, Russia, 1998

Nelick, Timothy F, Assistant Professor of the Practice
Maritime Transportation
CERT, U. S. Coast Guard, 2019

Nelson, Chad, Instructional Assistant Professor
Recreation, Park & Tourism Sc
PhD, Texas A&M University, 2019

Nelson, Garrett S, Adjunct Assistant Professor
Oral & Maxillofacial Surgery
DDS, University Of California-Los Angeles, 1999

Nepal, Bimal P, Professor
Eng Tech & Ind Distribution
PhD, Wayne State University, 2005

Neshyba, Monica V, Clinical Assistant Professor
Teaching, Learning & Culture
PhD, University of Texas - Austin, 2012
Nessler, Craig L, Professor
Horticultural Sciences
PHD, Indiana University, 1976

Netherland, Beth M, Instructional Associate Professor
Health & Kinesiology
MS, Miami University, 2000

Nevels, Robert D, Professor
Electrical & Computer Eng
PHD, University of Mississippi, 1979

Neville, Bruce D, Instructional Professor
TAMU Libraries
MLS, Florida State University, 1992

Newell, Kirsten, Assistant Professor
Educational Psychology
PHD, University of Minnesota - Twin Cities, 2018

Newell-Fugate, Anne E, Assistant Professor
Vet Physiology & Pharmacology
PHD, University of Illinois-Urbana Champaign, 2012
DVM, North Carolina State University, 2004

Newman, Galen D, Associate Professor
Land Arch & Urban Planning
PHD, Clemson University, 2010
MLA, Auburn University, 2006

Newman, Julie, Professor
Geology & Geophysics
PHD, University of Rochester, 1993

Newman, Neal F, Professor
School of Law
JD, Howard University, 1998

Newton, Howard J, Senior Professor
Statistics
PHD, SUNY Buffalo, 1975

Nguyen, Duy T, Research Assistant Professor
Nuclear Engineering
DEN, Ritsumeikan University, 2010

Nha, Hyon Cheol, Professor
Texas A&M University at Qatar
PHD, Seoul National University, 2002

Ni, Yang, Assistant Professor
Statistics
PHD, Rice University, 2015

Nichols, Anne B, Associate Professor of the Practice
Architecture
PHD, University of Illinois, 2000

Nichols, John M, Associate Professor
Construction Science
PHD, University of Newcastle, Australia, 2002

Nicksic, Hildi M, Clinical Assistant Professor
Health & Kinesiology
PHD, The University of Texas, 2015

Nie, Xiaofeng, Associate Professor
Eng Tech & Ind Distribution
PHD, University at Buffalo (SUNY), 2008

Niedzwecki, John M, Professor
Civil Engineering
PHD, The Catholic University of America, 1977

Nielsen-Gammon, John W, Professor
Atmospheric Sciences
PHD, Massachusetts Institute of Technology, 1990

Nikolov, Zivko L, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1986

Nippe, Michael, Associate Professor
Chemistry
PHD, University of Wisconsin - Madison, 2011

Noack, Kyle W, Assistant Lecturer
Agricultural Economics
CERT, Texas Department of Insurance, 2018

Nodurft, Dawson, Instructional Assistant Professor
Physics & Astronomy
PHD, Texas A&M University, 2019

Noh, Youngh, Instructional Assistant Professor
Land Arch & Urban Planning
PHD, Texas A&M University, 2015

Noormets, Asko, Professor
Ecology and Conservation Biology
PHD, Michigan Technological University, 2001

Norman, Keri N, Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2010
Norris, William J, Associate Professor
International Affairs
PHD, Massachusetts Institute of Technology, 2010

North, Jerry R, Research Professor
Atmospheric Sciences
PHD, University of Wisconsin, 1966

North, Simon W, Professor
Chemistry
PHD, University of California, Berkeley, 1995

Norton, Jerry D, Lab Instructor
Biology
PHD, The University of Texas at Austin, 1994

Norton, John M, Senior Lecturer
Information & Operations Mgmt
BBA, Baylor University, 1981

Noshadravan, Arash, Assistant Professor
Civil Engineering
PHD, University of Southern California, 2011

Nounou, Hazem N, Professor
Texas A&M University at Qatar
PHD, Ohio State University, 2000

Nounou, Mohamed N, Professor
Texas A&M University at Qatar
PHD, Ohio State University, 2000

Noureldin, Amal Ahmed K, Clinical Associate Professor
Public Health Sciences
DDS, Cairo University, 1993

Nowka, Kevin J., Professor Of The Practice
Electrical & Computer Eng
PHD, Stanford University, 1995

Nowotarski, Christopher J, Associate Professor
Atmospheric Sciences
PHD, Pennsylvania State University, 2013

Nyakiti, Luke O, Assistant Professor
Marine Engineering Technology
PHD, Texas Tech University, 2008

Nyman, Elizabeth A, Assistant Professor
Liberal Studies
PHD, Florida State University, 2010

O’Farrell, Mary A, Associate Professor
English
PHD, University of California, Berkeley, 1991

O’Neill, Zheng, Associate Professor
Mechanical Engineering
PHD, Oklahoma State University, 2004

O’Reilly, Kathleen M, Professor
Geography
PHD, University of Iowa, 2002

O’Sullivan, Kevin M, Assistant Professor
TAMU Libraries
MLS, University of Texas, 2009

OBriant, Deborah L, Clinical Assistant Professor
College of Nursing
CERT, Texas A&M University-Corpus Christi, 2019

OPENGART, ROSE, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, University of Georgia, 2003

Obeidat, Suleiman M, Instructional Assistant Professor
Eng Tech & Ind Distribution
PHD, University of Oklahoma, 2008

Ober, Raimund, Research Professor
Molecular & Cellular Medicine
PHD, Cambridge University, 1987

Oberhelman, Steven M, Professor
International Studies
PHD, University of Minnesota, 1981

Obrien, Michael J, Professor
Architecture
MAR, Virginia Tech, 1982

Ofili, Theresa U, Instructional Assistant Professor
College of Pharmacy
PHARMD, University of Houston, 2004

Ogden, Benjamin G, Assistant Professor
Political Science
PHD, Boston University, 2016

Ogilvie, Andrea M, Instructional Assistant Professor
College of Engineering
PHD, Virginia Tech, 2017

Ogletree, Quinita D, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2012
Ohsfeldt, Robert L, Professor
Health Policy & Management
PHD, University of Houston, 1983

Okamoto, Sakiko, Associate Professor
Soil & Crop Sciences
PHD, Tubingen University, 2003

Oliva Chavez, Adela, Assistant Professor
Entomology
PHD, University of Minnesota, 2014

Oliva, Rogelio, Professor
Information & Operations Mgmt
PHD, MIT, 1996

Olivera, Francisco, Associate Professor
Civil Engineering
PHD, University of Texas, 1996

Olson, James M, Professor of the Practice
International Affairs
JD, The University of Iowa, 1969

Olson, Joanne K, Professor
Teaching, Learning & Culture
PHD, University of Southern California, 1999

Olson, Nicholas John, Assistant Professor
Marketing
PHD, University of Minnesota, 2018

Olvera, Hugo, Lecturer
College of Science
MS, The University of Texas Pan American, 2014

Ompendoguelet, Lizette O, Associate Professor
Educational Psychology
PHD, University of Missouri - Columbia, 2009

Omran, Mohamed T, Clinical Assistant Professor
Veterinary Pathobiology
PHD, Texas A&M University, 1995

Onica, Constantin, Instructional Assistant Professor
Mathematics
PHD, Texas A&M University, 2005

Opperman, Lynne A, Regents Professor
Biomedical Sciences
PHD, University of the Witwatersrand, South Africa, 1985

Oran, Elaine, Professor
Aerospace Engineering
PHD, Yale University, 1972

Orchard, Patrick J, Lecturer
Mathematics
MS, Texas A&M University, 2015

Orr, Joseph M, Assistant Professor
Psychological & Brain Sciences
PHD, University of Michigan, 2011

Orsi, Alejandro H, Professor
Oceanography
PHD, Texas A&M University, 1993

Ortega-Aguilar, Dionisio B, Instructional Associate Professor
Hispanic Studies
PHD, Stanford University, 1986

Ory, Marcia G, Professor
Environmental & Occpntl Hlth
PHD, Purdue University, 1976

Osborne, Laura, Lecturer
Psychological & Brain Sciences
MS, Texas A&M University, 2015

Osburn, Wesley N, Associate Professor
Animal Science
PHD, University of Nebraska–Lincoln, 1996

Osinde Jr, Eliphas A, Adjunct Assistant Professor
Diagnostic Sciences
DDS, Texas A&M University Baylor College of Dentistry, 2015

Osorio Leyton, Javier, Visiting Lecturer
Ecology and Conservation Biology
PHD, Virginia Polytechnic Institute and State University, 2012

Ostadalimakhmalbaf, Mohammadreza, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2018

Ostrovskaya, Natela G, Senior Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2005

Oswald, John D, Professor
Entomology
PHD, Cornell University, 1991

Outlaw, Joe, Visiting Professor
Agricultural Economics
PHD, Texas A&M University, 1992

Ouyang, Hongjiao, Associate Professor
Endodontics
DMD, University of Pittsburgh, 2008

Ozerov, Oleg V, Professor
Chemistry
PHD, University of Kentucky, 2000
Ozmetin, Ali E, Senior Lecturer
College of Engineering
PHD, Texas A&M University, 2009

Ozmetin, Ali E, Research Assistant Professor
Materials Science & Engr
PHD, Texas A&M University, 2009

Paal, Stephanie G, Assistant Professor
Civil Engineering
PHD, Georgia Institute of Technology, 2013

Pace William, Executive Professor
Management
PHD, Capella University, 2017

Pace, Kathleen A, Clinical Assistant Professor
Pediatric Dentistry
DDS, State University of New York, Buffalo School of Dentistry, 1977

Packard, Mark G, Professor
Psychological & Brain Sciences
PHD, McGill University, 1991

Padron, Yolanda, Professor
Educational Psychology
EDD, University of Houston, 1985

Page, Leanne B, Assistant Lecturer
Educational Psychology
MED, Texas A&M University, 2007

Page, Robin L, Assistant Professor
College of Nursing
PHD, University of Texas at Austin, 2006

Pagilla, Prabhakar R, Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1996

Paajan, Armin, Senior Lecturer
Eng Tech & Ind Distribution
MS, HEC Paris, 2007

Pakhotina, Nataliya V, Senior Lecturer
Economics
PHD, University of Florida, 2010

Palakurthi, Srinath, Professor
College of Pharmacy
PHARMD, Indian Institute of Chemical Technology, 2000

Palazzolo, Alan B, Professor
Mechanical Engineering
PHD, University of Virginia, 1981

Palermo, Samuel M, Professor
Electrical & Computer Eng
PHD, Stanford University, 2007

Palma, Marco, Professor
Agricultural Economics
PHD, University of Florida, 2005

Palmer, Clare A, Professor
Philosophy & Humanities
PHD, University of Oxford, 1993

Palmer, Richard C, Senior Lecturer
Construction Science
BS, Texas A&M University, 1988

Pals, Heili, Associate Professor
Sociology
PHD, Stanford University, 2006

Panahi, Ladan M, Clinical Assistant Professor
College of Pharmacy
PHARMD, University of Houston College of Pharmacy, 2008

Panchang, Vijaykumar G, Regents Professor
Ocean Engineering
PHD, University of Maine, 1985

Pandya, Mirali, Clinical Assistant Professor
Periodontics
PHD, Texas A&M University College of Dentistry, 2019

Panetta, Richard L, Professor
Atmospheric Sciences
PHD, University of Wisconsin, 1978

Pangemanan Adelaide, Instructional Assistant Professor
Foundational Sciences
MS, State University of New York at Stony Brook, 2002

Panin, Vladislav M, Professor
Biochemistry & Biophysics
PHD, Moscow State University, 1990

Panina, Daria, Clinical Associate Professor
Management
PHD, Rutgers University, 2002

Pantuso, Terri B, Lecturer
English
PHD, University of Texas, San Antonio, 2009

Paolino, Michael, Instructional Assistant Professor
Molecular & Cellular Medicine
MD, Baylor College of Medicine, 2014

Paouris, Grigoris, Professor
Mathematics
PHD, University of Crete, 2004

Papanikolas, Matthew A, Professor
Mathematics
PHD, Brown University, 1998
Papovich, Casey J, Professor
Physics & Astronomy
PHD, Johns Hopkins University, 2002

Pappas, Gregory F, Professor
Philosophy & Humanities
PHD, University of Texas at Austin, 1990

Pappu, Madhav, Clinical Associate Professor
Information & Operations Mgmt
PHD, University of Tennessee, 1999

Paranjape, Vaidehi Vinay, Clinical Assistant Professor
Vet Small Animal Clinical Sc
BVSc, MAHARASHTRA ANIMAL & FISHERY SCIENCES UNIVERSITY, 2009

Paredes Tobar, Lenin Marcelo, Assistant Professor
Ocean Engineering
PHD, University of Sao Paulo, Sao Paulo, Brazil, 2012

Paredes-Sabja, Daniel, Assistant Professor
Biology
PHD, Oregon State University, 2009

Parihar, Arun, Assistant Lecturer
Ocean Engineering
MEN, University of Houston, 2008

Parish, Janet T, Clinical Professor
Marketing
PHD, University of Alabama, 2002

Parish, Nancy B, Instructional Assistant Professor
Communication
PHD, University of Florida, 2013

Park, Hangue, Assistant Professor
Electrical & Computer Eng
PHD, Georgia Institute of Technology, 2017

Park, John, Professor
Agricultural Economics
PHD, Texas A&M University, 1996

Park, Kyeong, Professor
Marine and Coastal Environmental Science
PHD, College of William and Mary, 1993

Park, Sung I, Assistant Professor
Electrical & Computer Eng
PHD, Stanford University, 2014

Park, William D, Professor
Biochemistry & Biophysics
PHD, University of Florida, 1977

Park, Yong Jong, Adjunct Assistant Professor
Orthodontics
DDS, Seoul Natl Uni Seoul Korea, 2000

Parker, Dawn R, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 1997
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterson, Adam P</td>
<td>Clinical Associate Professor</td>
<td>Vet Small Animal Clinical Sc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVM, Mississippi State University, 2001</td>
</tr>
<tr>
<td>Patterson, Carly A</td>
<td>Clinical Assistant Professor</td>
<td>Vet Physiology & Pharmacology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVM, University of Illinois, 2011</td>
</tr>
<tr>
<td>Patterson, Megan</td>
<td>Assistant Professor</td>
<td>Health & Kinesiology</td>
</tr>
<tr>
<td>Stiefel</td>
<td></td>
<td>PHD, Texas A&M University, 2016</td>
</tr>
<tr>
<td>Pattison, Kalani K</td>
<td>Lecturer</td>
<td>English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Baylor University, 2016</td>
</tr>
<tr>
<td>Paudyal, Sushil</td>
<td>Instructional Assistant Professor</td>
<td>Animal Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Colorado State University, 2018</td>
</tr>
<tr>
<td>Pauli, Carol B</td>
<td>Instructional Associate Professor</td>
<td>School of Law</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JD, Yeshiva University, 2007</td>
</tr>
<tr>
<td>Pavelka Jr, Miro A</td>
<td>Adjunct Professor</td>
<td>Oral & Maxillofacial Surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDS, Baylor College of Dentistry, 1977</td>
</tr>
<tr>
<td>Payne, Michael B</td>
<td>Clinical Assistant Professor</td>
<td>Diagnostic Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDS, Baylor College of Dentistry, 1981</td>
</tr>
<tr>
<td>Payne, Stephanie C</td>
<td>Professor</td>
<td>Psychological & Brain Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, George Mason University, 2000</td>
</tr>
<tr>
<td>Peacock, Walter Gillis</td>
<td>Professor</td>
<td>Land Arch & Urban Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Georgia, 1986</td>
</tr>
<tr>
<td>Peak, Charles W</td>
<td>Instructional Assistant Professor</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Texas A&M University, 2018</td>
</tr>
<tr>
<td>Pearl, Frederic B</td>
<td>Associate Professor</td>
<td>Liberal Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Texas A&M University, 2001</td>
</tr>
<tr>
<td>Pearlstein, Gregory J</td>
<td>Associate Professor</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, UNIVERSITY OF MASSACHUSETTS AT AMHERST, 1999</td>
</tr>
<tr>
<td>Pearlstein, Rosanna</td>
<td>Lecturer</td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Massachusetts Amherst, 1998</td>
</tr>
<tr>
<td>Pearson, Chad J</td>
<td>Instructional Associate Professor</td>
<td>TAMU Libraries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, The University of Texas, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFA, Columbia College, 2002</td>
</tr>
<tr>
<td>Peddicord, Kenneth L</td>
<td>Professor</td>
<td>Nuclear Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Illinois, 1972</td>
</tr>
<tr>
<td>Pedersen, Frank A</td>
<td>Assistant Professor of the Practice</td>
<td>Marine Engineering Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS, Arendal Maritime College, 1986</td>
</tr>
<tr>
<td>Pedersen, Susan J</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Texas at Austin, 2000</td>
</tr>
<tr>
<td>Pei, Zhijian</td>
<td>Professor</td>
<td>Industrial & Systems Eng</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Illinois, 1995</td>
</tr>
<tr>
<td>Pellois, Jean-Philippe</td>
<td>Professor</td>
<td>Biochemistry & Biophysics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Houston, 2002</td>
</tr>
<tr>
<td>Pennington, James D</td>
<td>Instructional Associate Professor</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of Michigan, 1998</td>
</tr>
<tr>
<td>Penrose, Mary M</td>
<td>Professor</td>
<td>School of Law</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JD, Pepperdine University School of Law, 1993</td>
</tr>
<tr>
<td>Pentecost III, Aubrey R</td>
<td>Professor of the Practice Architecture</td>
<td>DrPH, University of Texas, School of Public Health, 1982</td>
</tr>
<tr>
<td>Pentzer, Emily</td>
<td>Associate Professor</td>
<td>Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Northwestern University, 2010</td>
</tr>
<tr>
<td>Pentzer, Emily</td>
<td>Associate Professor</td>
<td>Materials Science & Engr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Northwestern University, 2010</td>
</tr>
<tr>
<td>Pepper, Alan E</td>
<td>Professor</td>
<td>Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, University of California, Davis, 1990</td>
</tr>
<tr>
<td>Pepper, Catherine A</td>
<td>Associate Professor</td>
<td>TAMU Libraries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPH, University of Texas Health Science Center at Houston, 2006</td>
</tr>
<tr>
<td>Peres, S Camille</td>
<td>Assistant Professor</td>
<td>Environmental & Occptnl Hlth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Rice University, 2005</td>
</tr>
<tr>
<td>Peres, S Camille</td>
<td>Assistant Professor</td>
<td>Industrial & Systems Eng</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Rice University, 2005</td>
</tr>
<tr>
<td>Perez Patron, Maria J</td>
<td>Research Assistant Professor</td>
<td>Epidemiology & Biostatistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHD, Johns Hopkins University, Bloomberg School of Public Health, 2012</td>
</tr>
<tr>
<td>Perez Smith, Adriana</td>
<td>Instructional Assistant Professor</td>
<td>Hispanic Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LLM, Southern Methodist University, 2005</td>
</tr>
<tr>
<td>Perez, Cayla</td>
<td>Clinical Assistant Professor</td>
<td>College of Nursing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSN, Texas A&M University-Corpus Christi, 2017</td>
</tr>
</tbody>
</table>
Perez, Nicholas D, Assistant Professor
Geology & Geophysics
PHD, University of Texas at Austin, 2015

Perez, Rene, Instructor
Naval Science
BS, University of Texas at Austin, 2014

Perez, Sebastian E, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas A&M Health Science Center College of Pharmacy, 2010

Perez, Stephanie A, Lecturer
Biochemistry & Biophysics
PHD, Texas A&M University, 2012

Perkin, Joshuah, Assistant Professor
Ecology and Conservation Biology
PHD, Kansas State University, 2012

Perlin, Marc, Professor
Ocean Engineering
PHD, University of Florida Gainesville, 1989

Perrott, Lisa J, Associate Professor
Educational Psychology
PHD, University of Virginia, 2001

Perry, Brittany N, Instructional Associate Professor
Maritime Transportation
CERT, United States Coast Guard, 2019

Peterson, Eric L, Professor
Mechanical Engineering
PHD, Stanford University, 1998

Peterson, Lene H, Instructional Assistant Professor
Marine Biology
PHD, Memorial University of New Foundland, 2010

Peterson, Donald, Professor
Biomedical Engineering
PHD, University of Connecticut, 1999

Peterson, Erik J, Assistant Professor
Political Science
PHD, Stanford University, 2017

Peterson, John R, Clinical Assistant Professor
Finance
PHD, Texas A&M University, 2002

Peterson, Noah G, Lecturer
English
PHD, Texas A&M University, 2017

Peterson, Steven L, Professor
College of Pharmacy
PHD, University of California - Davis, 1980

Petrick, James F, Professor
Recreation, Park & Tourism Sc
PHD, Clemson University, 1999

Petrie, Ragan, Professor
Economics
PHD, University of Wisconsin - Madison, 2002

Petritk, Colleen, Research Assistant Professor
Oceanography
PHD, Massachusetts Institute of Technology, 2011

Petrova, Guergana R, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Pettersson, Martin B, Professor
Philosophy & Humanities
PHD, KTH Royal Institute of Technology, 2003

Pettigrew, Roderic, Professor
College of Medicine
PHD, Massachusetts Institute of Technology, 1977

Peycke, Laura E, Clinical Professor
Vet Small Animal Clinical Sc
DVM, Louisiana State University, 1998

Pham, Le Huyen T, Professor
School of Law
JD, Harvard Law School, 1996

Pharr IV, George M, Professor
Materials Science & Engr
PHD, Stanford University, 1979

Pharr, George, Assistant Professor
Materials Science & Engr
PHD, Harvard University, 2014

Pharr, George, Assistant Professor
Mechanical Engineering
PHD, Harvard University, 2014

Phillips, David M, Adjunct Assistant Professor
Oral & Maxillofacial Surgery
DDS, The University of Texas Health Science Center at Houston, 1977

Phillips, Susan T, Professor
School of Law
JD, The Catholic University of America, 1990

Phillips, Timothy D, University Distinguished Professor
Vet Integrative Biosciences
PHD, University of Southern Mississippi, 1975

Phinney, Theresa M, Senior Lecturer
Information & Operations Mgmt
MCS, Texas A&M University, 1984
Pho, Victoria B, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas Southern University, 2008

Pickens, Adam W, Instructional Associate Professor
Environmental & Occptnl Hlth
PHD, Texas Tech University, 2008

Pickens, Adam W, Assistant Professor
Industrial & Systems Eng
PHD, Texas Tech University, 2008

Pieratt, William, Clinical Assistant Professor
College of Medicine
DO, University of North Texas Health Science Center, 1992

Pierce, Tanya J, Professor
School of Law
JD, The University of Texas School of Law, 1996

Pierson III, Leland S, Professor
Plant Pathology & Microbiology
PHD, Washington State University, 1986

Pierson, Elizabeth A, Professor
Horticultural Sciences
PHD, Washington State University, 1988

Pietrantonio, Patricia, Professor
Entomology
PHD, University of California, Riverside, 1995

Pillai, Suresh D, Professor
Poultry Science
PHD, University of Arizona, 1989

Pilling, Darrell, Research Assistant Professor
Biology
PHD, University of Birmingham, 1995

Pilsch, Andrew T, Associate Professor
English
PHD, The Pennsylvania State University, 2011

Pina Jr, Manuel, Instructional Associate Professor
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1978

Pine, Michelle D, Clinical Associate Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2002
DVM, University of Missouri-Columbia, 1991

Pintacuda, Jesse Catherine, Lecturer
Liberal Studies
CERT, NA, 2019

Piscitelli, Felicia A, Associate Professor
TAMU Libraries
MLS, University of Arizona, 1990

Pishko, Elizabeth J, Lecturer
Biochemistry & Biophysics
PHD, University of Texas, 1993

Pisier, Gilles, Distinguished Professor
Mathematics
PHD, University of Paris, 1977

Pistikopoulos, Efstratios, Professor
Chemical Engineering
PHD, Carnegie Mellon University, 1988

Pittman, Alison F, Clinical Assistant Professor
College of Nursing
PHD, University of Texas at Tyler, 2017

Pittman, Andrew T, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 1991

Pittman, Leslie W, Associate Professor of the Practice
Civil Engineering
MS, Colorado State University, 1978

Plankey Videla, Nancy B, Associate Professor
Sociology
PHD, University of Wisconsin - Madison, 1998

Plemons, Jacqueline M, Clinical Professor
Periodontics
DDS, Baylor University College of Dentistry, 1986

Plunk, Michael, Adjunct Assistant Professor
Orthodontics
DDS, Baylor College of Dentistry, 1974

Plunk, Michael D, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Baylor College of Dentistry, 1974

Poenitzsch, Nicole L, Adjunct Assistant Professor
Edu Admin & Human Resource Dev
EDD, Texas A&M University, 2013

Poertner, Mathias, Assistant Professor
International Affairs
PHD, University of California, Berkeley, 2018

Pohler, Ky Garrett, Assistant Professor
Animal Science
PHD, University of Missouri, 2015

Poirot, Kristan A, Associate Professor
Communication
PHD, University of Georgia, 2004

Pokrovsky, Valery, Distinguished Professor
Physics & Astronomy
PHD, Tomsk State University, 1957

Polak, Stephen S, Adjunct Professor
School of Law
MS, Thomas Jefferson School of Law, 2011

Pollock, Jordan L, Adjunct Professor
School of Law
JD, University of Texas School of Law, 2012
Polson, James R, Adjunct Assistant Professor
Orthodontics
DDS, The University of Texas Health Science Center at San Antonio, 1986

Poltoratski, Alexei G, Professor
Mathematics
PHD, California Institute of Technology, 1995

Poludnenko, Oleksiy Y, Associate Professor
Aerospace Engineering
PHD, University of Rochester, 2004

Polycarpou, Andreas A, Professor
Mechanical Engineering
PHD, Suny University at Buffalo, 1994

Polymenis, Michael S, Professor
Biochemistry & Biophysics
PHD, Tufts University, 1994

Pond, Amy, Assistant Professor
Political Science
PHD, University of Michigan, 2015

Ponjuan, Luis, Associate Professor
Educ Admn & Human Resource Dev
PHD, University of Michigan, 2005

Ponnamperuma, Krishan, Senior Lecturer
Chemistry
PHD, University of Cambridge, UK, 1992

Ponsford, Bennett C, Clinical Associate Professor
TAMU Libraries
MA, University of Texas, 1996

Pooley, Alexandra, Instructional Associate Professor
Health & Kinesiology
CERT, Texas A&M University, 2019

Pope, Christopher N, Distinguished Professor
Physics & Astronomy
PHD, University of Cambridge, 1980

Pope, Michael, Professor
Geology & Geophysics
PHD, Virginia Tech, 1995

Popescu, Sorin, Professor
Ecology and Conservation Biology
PHD, Virginia Tech, 2002

Popov, Bojan D, Professor
Mathematics
PHD, University of Southern Carolina, 1999

Porter, Brian F, Clinical Professor
Veterinary Pathobiology
DVM, Texas A&M University, 1992

Porter, Jay R, Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1993

Porter, Logan, Instructional Assistant Professor
Eng Tech & Ind Distribution
DEN, Lamar University, 2014

Porter, Weston W, Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1997

Portney, Kent E, Professor
Public Service & Administration
PHD, Florida State University, 1979

Posey, Richard D, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1982

Poteet, Brian A, Clinical Associate Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1991

Potier, Paul A, Professor of the Practice
Marine Engineering Technology
PHD, Prairie View A&M University, 2012

Potter, Henry, Assistant Professor
Oceanography
PHD, University of Miami, 2014

Potvin, Sarah E, Associate Professor
TAMU Libraries
MLS, University of Texas, 2009

Pourahmadi, Mohsen, Professor
Statistics
PHD, Michigan State University, 1980

Powers, David C, Assistant Professor
Chemistry
PHD, Harvard University, 2012

Powers, Tamara M, Senior Lecturer
Chemistry
PHD, Harvard University, 2013

Prasad, Shikha, Assistant Professor
Nuclear Engineering
PHD, University of Michigan, Ann Arbor, 2012

Prechel, Harland N, Professor
Sociology
PHD, University of Kansas, 1986

Presswood, Phillip H, Instructional Assistant Professor
Liberal Studies
MA, University of Houston-Clear Lake, 2011

Preston, Tammie M, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 2014

Price, Angie H, Associate Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1999
Price, Edwin C, Professor
Agricultural Economics
PHD, University of Kentucky, 1973

Pride, William M, Professor
Marketing
PHD, Louisiana State University and A&M College, 1972

Procaccia, Eviatar B, Associate Professor
Mathematics
PHD, Weizmann Institute of Science, 2013

Prout, Erik, Instructional Associate Professor
Geography
PHD, Louisiana State University, 2001

Ptomey, Sara, Lecturer
Teaching, Learning & Culture
EDD, Sam Houston State University, 2006

Puckett, Gordie D, Adjunct Professor
School of Law
JD, University of Texas School of Law, 1999

Pulak, Cemalettin M, Professor
Anthropology
PHD, Texas A&M University, 1996

Puller, Steven L, Professor
Economics
PHD, University of California, Berkeley, 2001

Pullium, Cheryl L, Clinical Assistant Professor
College of Nursing
DNP, The University of Alabama, 2018

Pun, Sai Mang, Visiting Assistant Professor
Mathematics
PHD, The Chinese University of Hong Kong, 2019

Puppala, Anand, Professor
Civil Engineering
PHD, Louisiana State University, 1993

Qaraqe, Khalid A, Professor
Texas A&M University at Qatar
PHD, Texas A&M University, 1997

Qian, Xiaofeng, Assistant Professor
Materials Science & Engr
PHD, Massachusetts Institute of Technology, 2008

Qian, Xiaoning, Associate Professor
Electrical & Computer Eng
PHD, Yale University, 2005

Qian, Yongchang, Research Associate Professor
Vet Integrative Biosciences
PHD, Shanghai Institutes for Biological Sciences, 1990

Qin, Chunlin, Professor
Biomedical Sciences
PHD, Okayama University, 1998
DMD, Harbin Medical University, 1983

Qin, Hongmin, Associate Professor
Biology
PHD, Institute of Microbiology, Chinese Academy of Sciences, 1999

Qiu Lin, Instructional Assistant Professor
Foundational Sciences
PHD, University of Alabama, 2006

Qu, Heng, Assistant Professor
Public Service & Administration
PHD, Indiana University Purdue University Indianapolis, 2016

Quackenbush Ammons, Anne E, Lecturer
Performance Studies
MA, University of Houston, 2010

Quadrifoglio, Luca, Associate Professor
Civil Engineering
PHD, University of Southern California, 2005

Quailes, Natasha, Lecturer
Food Science and Technology
MS, Chapman University, 2014

Quek, Francis K, Professor
Computer Science & Engineering
PHD, University of Michigan, 1990

Quick, Christopher M, Associate Professor
Biomedical Engineering
PHD, Rutgers University, 1999

Quick, Christopher M, Professor
Vet Physiology & Pharmacology
PHD, Rutgers University, 1999

Quigg, Antonietta S, Professor
Marine Biology
PHD, Monash University, 2000

Quinn, Michael D, Associate Professor of the Practice
Computer Science & Engineering
MS, University of Southern California at Los Angeles, 1978

Quinn, Shaun C, Assistant Professor Of The Practice
Maritime Transportation
CERT, United States Coast Guard, 2019

Quintana, Maria E, Associate Professor
Hispanic Studies
PHD, University of California, Berkeley, 1998

Quiram, Barbara J, Professor
Health Policy & Management
PHD, Texas A&M University, 1995
MPA, Texas A&M University, 1991

Rackley, Robin A, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2004
Radcliff, Tiffany A, Professor
Health Policy & Management
PHD, School of Public Health University of Minnesota, 2000

Radovic, Miladin, Professor
Materials Science & Engr
PHD, Drexel University, 2001

Radovic, Miladin, Associate Professor
Mechanical Engineering
PHD, Drexel University, 2001

Radzik, Linda C, Professor
Philosophy & Humanities
PHD, The University of Arizona, 1997

Raftery, Jonathan P, Lecturer
Chemical Engineering
PHD, Texas A&M University, 2017

Raghavan, Shreya, Assistant Professor
Biomedical Engineering
PHD, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, 2014

Ragsdale, Daniel J, Professor of the Practice
Computer Science & Engineering
PHD, Texas A&M University, 2001

Ragucci, Sylvie B, Senior Lecturer
International Studies
PHD, The Pennsylvania State University, 1999

Ragusa, Jean C, Professor
Nuclear Engineering
PHD, Institut National Polytechnique de Grenoble, France, 2002

Rahimian, Mina M, Senior Lecturer
Electrical & Computer Eng
PHD, Texas A&M University, 2011

Rahm Jr, Robert S, Instructional Assistant Professor
Mathematics
PHD, Washington University in St. Louis, 2017

Rahman, Mohammad A, Associate Professor
Texas A&M University at Qatar
PHD, University of Alberta, 2010

Rahman, Shahina, Instructional Assistant Professor
Statistics
PHD, Texas A&M University, 2015

Rahman, Ziyaur, Associate Professor
College of Pharmacy
PHD, Hamdard University, 2005

Rahn, Rhonda N, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2014

Raibourn, Delmer D, Adjunct Professor
School of Law
JD, University of Oklahoma School of Law, 1998

Raisor, Cynthia, Lecturer
Bush School of Govt. - Deans
MA, Texas A&M University, 1986

Rajagopal, Kumbakonam, Professor
Biomedical Engineering
PHD, University of Minnesota, 1978

Rajagopal, Kumbakonam, Distinguished Professor
Mechanical Engineering
PHD, University of Minnesota, 1978

Rajan, Nithya, Associate Professor
Soil & Crop Sciences
PHD, Texas Tech University, 2007

Rajendran, Jeyavijayan, Assistant Professor
Electrical & Computer Eng
PHD, New York University, 2015

Rajendran, Praveen, Research Associate Professor
Institute of Biosciences & Tec
PHD, Birla Institute of Technology and Science, 2006

Ramadan, Hadeel M, Instructional Assistant Professor
Visualization
MFA, Virginia Tech, 2014

Ramadoss, Jayanth, Associate Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 2008

Ramanathan, Suresh, Professor
Marketing
PHD, New York University, 2002

Ramasubramanian, Srividya, Professor
Communication
PHD, Pennsylvania State University, 2004

Rambo, Lynne H, Professor
School of Law
JD, The University of Georgia, 1987

Rambo-Hernandez, Karen, Associate Professor
Teaching, Learning & Culture
PHD, University of Connecticut, 2011

Ramirez, Diana, Associate Professor
TAMU Libraries
MLS, University of Texas, 1990

Ramirez, Gilbert, Professor
Health Policy & Management
DrPH, University of Texas Health Science Center at Houston, 1986

Ramos Garcimartin, Hector, Lecturer
Educational Psychology
PHD, Texas A&M University, 2015

Ramos, Kenneth, Professor
College of Medicine
MD, University of Louisville Health Sciences Center, 2011
PHD, The University of Texas at Austin, 1983
Ramos, Suzanna J, Lecturer
Educational Psychology
PHD, Texas A&M University, 2015

Ramsey, Heather L, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 2004

Ramsey, W S, Professor
Animal Science
PHD, New Mexico State University, 1996

Rangan, Sudarsan, Clinical Associate Professor
Information & Operations Mgmt
PHD, University of Alabama, 2008

Rangel Posada, Juliana, Associate Professor
Entomology
PHD, Cornell University, 2010

Rankin, Kathleen V, Professor
Public Health Sciences
DDS, Baylor College of Dentistry, 1977

Rantschler James, Instructional Assistant Professor
Foundational Sciences
PHD, University of Alabama, 2003

Rao, Asha, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 2002

Rapp, Anita D, Assistant Professor
Atmospheric Sciences
PHD, Colorado State University, 2004

Rapp, Ralf F, Professor
Physics & Astronomy
PHD, Rheinische Friedrich-Wilhelma University, Bonn, 1996

Rasmussen, Bryan P, Professor
Mechanical Engineering
PHD, University of Illinois, 2005

Rathinam, Sivakumar, Associate Professor
Mechanical Engineering
PHD, University of California, Berkeley, 2007

Rauchwerger, Lawrence, Professor
Computer Science & Engineering
PHD, University of Illinois, 1995

Raudsepp, Terje, Professor
Vet Integrative Biosciences
PHD, Swedish University of Agricultural Sciences, 1999

Rauschel, Frank M, Distinguished Professor
Chemistry
PHD, University of Wisconsin - Madison, 1976

Raven, Sara P, Assistant Professor
Teaching, Learning & Culture
PHD, University of Georgia, 2013

Ray, Korok, Associate Professor
Accounting
PHD, Standard Graduate School of Business, 2004

Raymond, Anne L, Professor
Geology & Geophysics
PHD, University of Chicago, 1983

Raymond, Dwayne F, Instructional Assistant Professor
Philosophy & Humanities
PHD, University of Western Ontario, 2006

Read-Fuller, Andrew M, Clinical Assistant Professor
Oral & Maxillofacial Surgery
MD, UT Southwestern Medical School, 2014
DDS, UCLA, 2011

Rech, Raquel R, Clinical Associate Professor
Veterinary Pathobiology
PHD, Federal University of Santa Maria (UFSM), 2007
DVM, Santa Catarina State University, 1999

Rector, Amy S, Visiting Assistant Professor
Teaching, Learning & Culture
EDD, University of Cincinnati, 2017

Reddy, Anil K, Adjunct Assistant Professor
Pediatric Dentistry
DDS, Columbia University, 1994

Reddy, Indra K, Professor
College of Pharmacy
PHD, University of Florida, 1989

Reddy, Junuthula, Professor
Materials Science & Engr
PHD, University of Alabama at Huntsville, 1974

Reddy, Junuthula N, University Distinguished Professor
Aerospace Engineering
PHD, University of Alabama at Huntsville, 1974

Reddy, Junuthula N, Distinguished Professor
Mechanical Engineering
PHD, University of Alabama at Huntsville, 1974

Reddy, Likith V, Clinical Professor
Oral & Maxillofacial Surgery
MD, University of Texas Southwestern Medical Center, 2000
DDS, Case Western Reserve University, 1995

Reddy, Sanjay M, Professor
Veterinary Pathobiology
PHD, University of Maryland, College Park, 1994
DVM, Andhra Pradesh Agricultural University, India, 1986

Reddy, Vanita D, Associate Professor
English
PHD, University of California, Davis, 2009

Redman, Karen S, Executive Professor
Accounting
BBA, Texas A&M University, 1980
Redwine, Tobin D, Instructional Assistant Professor
Ag Leadership, Educ & Comm
PhD, Texas A&M University, 2014

Reece, Julia S, Assistant Professor
Geology & Geophysics
PhD, University of Texas, 2011

Reece, Robert S, Associate Professor
Geology & Geophysics
PhD, The University of Texas - Austin, 2012

Reed, David W, Professor
Horticultural Sciences
PhD, Cornell University, 1979

Reed, Helen L, Professor
Aerospace Engineering
PhD, Virginia Tech, 1981

Reed, Kayla, Adjunct Assistant Professor
Dental Hygiene
MED, Texas A&M University, 2019

Reese, Roger R, Professor
History
PhD, The University of Texas, 1990

Regan, Annette Karena, Assistant Professor
Epidemiology & Biostatistics
PhD, University of Western Australia, 2016

Regan, Deborah, Clinical Associate Professor
Periodontics
DDS, University of Dublin Trinity College, 1982

Regan, Martin P, Associate Professor
Performance Studies
PhD, University of Hawai‘i at Manoa, 2006

Reger, Roxanne L, Research Assistant Professor
Molecular & Cellular Medicine
MS, Tulane University, 1986

Reid, Russell W, Instructional Associate Professor
Land Arch & Urban Planning
MAR, Texas A&M University, 2001

Reihani, Kamran, Instructional Assistant Professor
Mathematics
PhD, Tarbiat Modares University, 2005

Reilly, Peter R, Associate Professor
School of Law
JD, Harvard Law School, 1993

Reiner, David J, Associate Professor
Institute of Biosciences & Tec
PhD, University of Washington, 1996

Reinhart, Gregory D, Professor
Biochemistry & Biophysics
PhD, University of Wisconsin - Madison, 1979

Ren, Dingding, Lecturer
Land Arch & Urban Planning
MLA, Texas A&M University, 2018

Rene, Antonio A, Associate Professor
Environmental & Occptnl Hlth
PhD, University of Texas School of Public Health, 1990

Rentzepis, Peter M, Professor
Electrical & Computer Eng
PhD, University of Cambridge, 1963

Resch, Robert P, Associate Professor
History
PhD, University of California Davis, 1985

Retnanto, Albertus, Professor of the Practice
Texas A&M University at Qatar
PhD, Texas A&M University, 1998

Retteen, Aaron J, Instructional Assistant Professor
School of Law
JD, Florida State University College of Law, 2015

Reuben, Jayne S, Instructional Associate Professor
Biomedical Sciences
PHARMD, Florida A&M University, 2001

Rey, Danny, Senior Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1990

Reynolds, Larry J, University Distinguished Professor
English
PhD, Duke University, 1974

Reynolds, Mollie M, Senior Lecturer
Biochemistry & Biophysics
PhD, Texas A&M University, 2010

Rholes, William S, Professor
Psychological & Brain Sciences
PhD, Princeton University, 1978

Riccio, Cynthia A, Professor
Educational Psychology
PhD, University of Georgia, 1993

Rice, Dale, Instructional Associate Professor
Communication
BA, Syracuse University, 1973

Rice, Mitchell F, Professor
Political Science
PhD, Claremont Graduate School, 1976

Rice, Sarah C, Associate Professor
Accounting
PhD, The Ohio State University, 2007
Rich, Elisabeth, Associate Professor
International Studies
PHD, University of Michigan Ann Arbor, 1985

Rich, Lisa A, Instructional Associate Professor
School of Law
JD, American University, 1998

Richard, Jacques C, Senior Lecturer
Aerospace Engineering
PHD, Rensselaer University, 1989

Richard, Jacques C, Senior Lecturer
College of Engineering
PHD, Rensselaer University, 1989

Richards, Amanda, Lecturer
Vet Small Animal Clinical Sc
DVM, Colorado State University, 2016

Richardson, Mary J, Senior Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1980

Ridley, Charles R, Professor
Educational Psychology
PHD, University of Minnesota, 1978

Riechman, Steven E, Associate Professor
Health & Kinesiology
PHD, University of Pittsburgh, 2000

Riegg, Stephen B, Assistant Professor
History
PHD, The University of North Carolina at Chapel Hill, 2016

Riera-Lizarazu, Oscar, Associate Professor
Horticultural Sciences
PHD, University of Minnesota, 1996

Rife, Kimberly G, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2016

Riggs, Eric A, Professor
Geology & Geophysics
PHD, University of California-Riverside, 2000

Riggs, Penny K, Associate Professor
Animal Science
PHD, Texas A&M University, 1996

Righetti, Raffaella, Associate Professor
Electrical & Computer Eng
PHD, University of Houston, 2005

Rijken, Monique G, Research Associate Professor
Vet Integrative Biosciences
PHD, Leiden University, 1997

Riley, Bruce B, Professor
Biology
PHD, University of Wisconsin - Madison, 1990

Riley, David G, Professor
Animal Science
PHD, Texas A&M University, 2000

Rising, Hope Hui, Assistant Professor
Land Arch & Urban Planning
PHD, University of Oregon, 2015
MLA, University of Michigan, 2000

Riskowski, Gerald L, Professor
Biological & Agricultural Eng
PHD, Iowa State University, 1986

Rister, M E, Professor
Agricultural Economics
PHD, Michigan State University, 1981

Ritchey, Philip C, Instructional Assistant Professor
Computer Science & Engineering
PHD, Purdue University, 2015

Ritter, Nicola L, Instructional Assistant Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 2014

Rivera, Gonzalo M, Associate Professor
Veterinary Pathobiology
PHD, Cornell University, 2002
DVM, National University of Rio Cuarto, Argentina, 1988

Rivera, Hector H, Associate Professor
Educational Psychology
PHD, University of California-Santa Cruz, 2001

Rivera, Sheila M, Professor of the Practice
College of Engineering
BS, Texas A&M University, 1983

Roades, Shawn, Instructor
Naval Science
BS, Auburn University, 2014

Roark, Erin B, Associate Professor
Geography
PHD, University of California, Berkeley, 2005

Robbins, Andrew B, Visiting Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2018

Roberts, Andrea R, Assistant Professor
Land Arch & Urban Planning
PHD, University of Texas - Austin, 2016

Roberts, Cynthia G, Clinical Assistant Professor
College of Nursing
MNU, University of Texas - Tyler, 2014

Robertson, John D, Professor
Political Science
PHD, University of Illinois at Urbana - Champaign, 1979

Robertson, Raymond, Professor
International Affairs
PHD, University of Texas at Austin, 1997
Robichau, Robbie, Assistant Professor
Public Service & Administration
PHD, Arizona State University, 2013

Robinson, Elizabeth K, Instructional Professor
English
PHD, Texas A&M University, 1995

Robinson, John R, Professor
Accounting
PHD, University of Michigan, 1981
JD, University of Michigan, 1979

Robinson, Sally A, Professor
English
PHD, University of Washington, 1989

Roblyer, Dwight A, Senior Lecturer
Political Science
PHD, Texas A&M University, 2009

Roblyer, Kathleen A, Clinical Assistant Professor
College of Nursing
DNP, The University of Alabama at Birmingham, 2015

Rodgers, William S, Clinical Professor
Construction Science
JD, Texas Tech University, 1978

Rodiek, Susan D, Associate Professor
Architecture
PHD, Cardiff University, 2004

Rodrigues De Paula Lima, Heitor, Professor of the Practice
Petroleum Engineering
PHD, Texas A&M University, 1998

Rodrigues Hoffmann, Aline, Associate Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2011

Rodriguez, Ignacio J, Distinguished Professor
Ocean Engineering
PHD, Colorado State University, 1967

Roelke, Daniel, Professor
Marine Biology
PHD, Texas A&M University, 1997

Rogachev, Grigory V, Professor
Physics & Astronomy
PHD, National Research Centre, 1999

Rogers Jr, Alton G, Associate Professor of the Practice
Civil Engineering
BS, Texas A&M University, 1976

Rogers, George O, Professor
Land Arch & Urban Planning
PHD, University of Pittsburgh, 1983

Rogers, James R, Associate Professor
Political Science
PHD, The University of Iowa, 1994

Rogers, Julia S, Senior Lecturer
Architecture
PHD, Texas A&M University, 1996

Rogers, Kenita S, Professor
Vet Small Animal Clinical Sc
DVM, Louisiana State University, 1982

Rogers, William, Professor
Ecology and Conservation Biology
PHD, Kansas State University, 1998

Rogers, William J, Lecturer
Chemical Engineering
PHD, Ohio State University, 1976

Rogovskyy, Artem S, Assistant Professor
Veterinary Pathobiology
PHD, Washington State University, 2014
DVM, National Agricultural University, 2001

Rojas, Joseph M, Professor
Computer Science & Engineering
PHD, University of California, Berkeley, 1995

Rojas, Joseph M, Professor
Mathematics
PHD, University of California, Berkeley, 1995

Rold, Michael F, Lecturer
Communication
PHD, Louisiana State University, 2014

Rollins, John W, Lecturer
George Bush School of Govern
JD, American University, 2001

Romano, Juan E, Professor
Vet Large Animal Clinical Sc
PHD, Texas A&M University, 2004
DVM, Universidad del Uruguay, 1985

Rooker, Jay R, Professor
Marine Biology
PHD, The University of Texas - Austin, 1997

Rooney, William L, Professor
Soil & Crop Sciences
PHD, University of Minnesota, 1992

Roque-Sol, Marco A, Lecturer
Mathematics
PHD, Texas A&M University, 2006

Ros, Amanda L, Clinical Associate Professor
TAMU Libraries
MLS, Florida State University, 2006

Rosen, Chelsey L, Clinical Assistant Professor
College of Nursing
MSN, University of Texas at Tyler, 2018

Rosenthal, Adam R, Assistant Professor
International Studies
PHD, Emory University, 2014
Rosenthal, Gil G, Professor
Biology
PHD, University of Texas at Austin, 2000

Ross Jr, Joseph H, Professor
Materials Science & Engr
PHD, University of Illinois at Urbana-Champaign, 1986

Ross Jr, Joseph H, Professor
Physics & Astronomy
PHD, University of Illinois at Urbana-Champaign, 1986

Ross, Andrew L, Professor
International Affairs
PHD, Cornell University, 1984

Ross, Shawna M, Assistant Professor
English
PHD, The Pennsylvania State University, 2011

Ross-Wootton, Ashley D, Assistant Professor
Marine and Coastal Environmental Science
PHD, Texas A&M University, 2010

Rossi, Marco, Assistant Professor
Finance
PHD, Pennsylvania State University, 2010

Rossman, Jeffrey A, Clinical Professor
Periodontics
DDS, University of Minnesota - Twin Cities, 1972

Rosson, Claude, Senior Professor
Agricultural Economics
PHD, Texas A&M University, 1982

Rosyn, Michael P, Professor
Chemistry
PHD, Rice University, 1972

Roth, Augusta D, Associate Professor
Maritime Transportation
DBA, Walden University, 2018

Rouleau, Brian J, Associate Professor
History
PHD, University of Pennsylvania, 2010

Roumell, Elizabeth A, Assistant Professor
 Educ Admn & Human Resource Dev
PHD, University of Wyoming, 2009

Roussel, Allen J, Professor
Vet Large Animal Clinical Sc
DVM, Louisiana State University, 1977

Rowe, Sara M, Lecturer
Communication
MA, Texas A&M University, 2012

Rowell, Eric C, Professor
Mathematics
PHD, University of California, San Diego, 2003

Rowlett, Kristen M, Instructional Associate Professor
School of Law
JD, Louisiana State University Law Center, 2013

Roy Sarkar, Tapasree, Research Assistant Professor
Biology
PHD, Purdue University, 2008

Rozier, James T, Lecturer
English
PHD, University of Mississippi, 2015

Rudd, Leeanne M, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Indiana State University, 2012

Ruest, Louisbruno, Associate Professor
Biomedical Sciences
PHD, McGill University, Montreal, Canada, 2002

Ruimi, Annie, Associate Professor
Texas A&M University at Qatar
PHD, University of California at Santa Barbara, 2005

Rundell, William, Professor
Mathematics
PHD, Glasgow University, 1974

Ruoff, Lynn M, Clinical Professor
Vet Integrative Biosciences
DVM, Colorado State University, 1975

Rupley, William H, Professor
Teaching, Learning & Culture
PHD, University of Illinois at Urbana-Champaign, 1975

Russell Jr, Billy D, Distinguished Professor
Electrical & Computer Eng
PHD, University of Oklahoma, 1975

Russell, David H, Professor
Chemistry
PHD, University of Nebraska - Lincoln, 1978

Russell, Karen E, Professor
Veterinary Pathobiology
PHD, North Carolina State University, 1997
DVM, Virginia Tech, 1990

Russell, Lauren A, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Atlantic Veterinary College, 2014

Russell, Richard, Lecturer
George Bush School of Govern
PHD, University of Virginia, 1997

Rusyn, Ivan I, Professor
Vet Integrative Biosciences
PHD, University of North Carolina at Chapel Hill, 2000
Rutter, Christine R, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Mississippi State University, 2003

Ruyle, Leslie E, Lecturer
International Affairs
PHD, University of Georgia, 2012

Ryan, James G, Professor
Liberal Studies
PHD, University of Notre Dame, 1981

Ryan, Kathryn J, Instructional Associate Professor
Biology
PHD, Baylor College of Medicine, 1998

Rybkowski, Zofia K, Associate Professor
Construction Science
PHD, University of California - Berkeley, 2009
MAR, Harvard University, 1991

Rye, Chavela M, Senior Lecturer
Biochemistry & Biophysics
PHD, MIT, 2014

Rye, Hays S, Associate Professor
Biochemistry & Biophysics
PHD, University of California-Berkeley, 1995

Ryoo, Boong Y, Associate Professor
Construction Science
PHD, University of Wisconsin - Madison, 1995

SIMMS, MICHELLE L, Lecturer
College of Liberal Arts
MFA, Regent University, 2015
PHD, Texas A&M University, 2011

Sabat, Isaac E, Assistant Professor
Psychological & Brain Sciences
PHD, George Mason University, 2016

Saber, Mohamed, Lecturer
Chemistry
PHD, Texas A&M University, 2013

Sabey, Tyler, Assistant Professor
Management
PHD, University of Georgia, 2020

Sacchettini, James C, Professor
Biochemistry & Biophysics
PHD, Washington University in St. Louis, 1987

Sachs, Matthew S, Professor
Biology
PHD, Massachusetts Institute of Technology, 1986

Sad, Reza, Associate Professor
Texas A&M University at Qatar
PHD, University of Utah, 2002

Safe, Stephen H, Distinguished Professor
Vet Physiology & Pharmacology
PHD, University of Oxford, 1966

Safonov, Alexei N, Professor
Physics & Astronomy
PHD, University of Florida, 2001

Sagapuram, Dina K, Assistant Professor
Industrial & Systems Eng
PHD, Purdue University, 2013

Sagapuram, Dinakar, Assistant Professor
Materials Science & Engr
PHD, Purdue University, 2013

Sakamoto, Arthur, Professor
Sociology
PHD, University of Wisconsin - Madison, 1988

Sakhaei Far, Maryam S, Assistant Professor
Civil Engineering
PHD, North Carolina State University, 2011

Salaga, Steven, Clinical Assistant Professor
Health & Kinesiology
PHD, University of Michigan, 2012

Salama, Ghada H, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Cairo University, 2001

Salin, Victoria S, Professor
Agricultural Economics
PHD, Purdue University, 1996

Sampson, Sarah N, Clinical Assistant Professor
Vet Large Animal Clinical Sc
PHD, Washington State University, 2008
DVM, Washington State University, 1999

Samuel, Nephy G, Clinical Assistant Professor
College of Pharmacy
PHARMD, Texas A&M Irma Lerma Rangel College of Pharmacy, 2014

San Pedro, Joanna Maria N, Lecturer
Chemistry
PHD, Johns Hopkins University, 2014

Sanandres, Luis A, Professor
Mechanical Engineering
PHD, Texas A&M University, 1985

Sanchez Castillo, Marcelo Javier, Professor
Civil Engineering
PHD, Universidad Politecnica de Catalunya (UPC), Barcelona, Spain, 2004

Sanchez-Sinencio, Edgar, University Distinguished Professor
Electrical & Computer Eng
PHD, University of Illinois, 1973

Sanders, James O, Professor
Animal Science
PHD, Texas A&M University, 1977

Sanders, Joan T, Senior Lecturer
Accounting
MS, Texas A&M University, 1990
Sandlin, Judy R, Clinical Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1993

Sandlin, Michael E, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 1992

Sang, Huiyan, Professor
Statistics
PHD, Duke University, 2008

Sanger, Neil, Lecturer
Atmospheric Sciences
PHD, Naval Postgraduate School, CA, 2014

Sansom, Garrett T, Research Assistant Professor
Environmental & Occptnl Hlth
DrPH, Texas A&M University, 2016

Sansom, Roger B, Associate Professor
Philosophy & Humanities
PHD, University of North Carolina at Chapel Hill, 2002

Santana, Emilce, Visiting Assistant Professor
Sociology
PHD, Princeton University, 2019

Santander, Patricio J, Senior Lecturer
Chemistry
PHD, Texas A&M University, 1987

Santos, Adolfo, Professor
Political Science
PHD, University of Houston, 1998

Santos, Rose Anna, Adjunct Assistant Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 2013

Santschi, Peter H, Professor
Marine and Coastal Environmental Science
PHD, Universitat Bern, 1975

Saravanan, Ramalingam, Professor
Atmospheric Sciences
PHD, Princeton University, 1990

Sare, Laura A, Professor
TAMU Libraries
MLS, University of Illinois, 2003

Saric, William S, Distinguished Professor
Aerospace Engineering
PHD, Illinois Institute of Technology, 1968

Sarin, Vivek, Associate Professor
Computer Science & Engineering
PHD, University of Illinois, 1997

Saripalli, Srikanth, Professor
Mechanical Engineering
PHD, University of Southern California, 2007

Sarker, Nripendra, Senior Lecturer
Eng Tech & Ind Distribution
DEN, Texas A&M University, 1993

Sasangohar, Farzan, Assistant Professor
Industrial & Systems Eng
PHD, University of Toronto, 2015

Saslow, Wayne M, Professor
Physics & Astronomy
PHD, University of California - Irvine, 1968

Satterfield, Michael C, Associate Professor
Animal Science
PHD, Texas A&M University, 2008

Saunders, Ashley B, Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2001

Saunders, William B, Associate Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 2005
DVM, Texas A&M University, 2001

Savari, Serap A, Associate Professor
Electrical & Computer Eng
PHD, Massachusetts Inst of Technology, 1996

Savell, Jeffrey W, University Distinguished Professor
Animal Science
PHD, Texas A&M University, 1978

Scallan, Elizabeth M, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Ross University School of Veterinary Medicine, 2007

Scarfuto, Jessica C, Lecturer
Civil Engineering
MS, Texas A&M University, 2014

Schade, Gunnar W, Associate Professor
Atmospheric Sciences
PHD, Johannes Gutenberg Universitat, Germany, 1997

Schaefer, Amber J, Instructional Assistant Professor
Chemistry
PHD, Rice University, 2007

Schaefer, Scott D, Professor
Computer Science & Engineering
PHD, Rice University, 2006

Schakel, David J, Instructional Assistant Professor
Health & Kinesiology
MA, Ball State University, 1978

Schartl, Manfred, Visiting Professor
Biology
PHD, University of Gießen, 1980

Schechter, David S, Professor
Petroleum Engineering
PHD, University of Bristol, 1989
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Degree Details</th>
<th>University/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schielack Jr, Vincent</td>
<td>Associate Professor</td>
<td>Mathematics</td>
<td>PHD, University of Texas at Austin, 1982</td>
<td></td>
</tr>
<tr>
<td>Schlegel, Rebecca J</td>
<td>Professor</td>
<td>Psychological & Brain Sciences</td>
<td>PHD, University of Missouri - Columbia, 2009</td>
<td></td>
</tr>
<tr>
<td>Schloss, Rebecca H</td>
<td>Associate Professor</td>
<td>History</td>
<td>PHD, Duke University, 2003</td>
<td></td>
</tr>
<tr>
<td>Schluens, Amber D</td>
<td>Lecturer</td>
<td>Teaching, Learning & Culture</td>
<td>MED, Sam Houston State University, Huntsville, TX, 2006</td>
<td></td>
</tr>
<tr>
<td>Schlumprecht, Thomas B</td>
<td>Professor</td>
<td>Mathematics</td>
<td>PHD, Ludwig Maximilians Universitat, Germany, 1988</td>
<td></td>
</tr>
<tr>
<td>Schmeichel, Brandon J</td>
<td>Professor</td>
<td>Psychological & Brain Sciences</td>
<td>PHD, Florida State University, 2005</td>
<td></td>
</tr>
<tr>
<td>Schmid, Kelly D</td>
<td>Assistant Lecturer</td>
<td>Educational Psychology</td>
<td>MED, Texas A&M University, 1995</td>
<td></td>
</tr>
<tr>
<td>Schmiediche, Henrik</td>
<td>Instructional Professor</td>
<td>Statistics</td>
<td>PHD, Texas A&M University, 1993</td>
<td></td>
</tr>
<tr>
<td>Schmit, Cason D</td>
<td>Assistant Professor</td>
<td>Health Policy & Management</td>
<td>JD, Arizona State University, 2012</td>
<td></td>
</tr>
<tr>
<td>Schmitz, David G</td>
<td>Visiting Associate Professor</td>
<td>Vet Large Animal Clinical Sc</td>
<td>DVM, Kansas State University, 1976</td>
<td></td>
</tr>
<tr>
<td>Schneiderman, Emet D</td>
<td>Professor</td>
<td>Biomedical Sciences</td>
<td>PHD, University of Michigan - Ann Arbor, 1985</td>
<td></td>
</tr>
<tr>
<td>Schoberi, Taher M</td>
<td>Senior Professor</td>
<td>Mechanical Engineering</td>
<td>PHD, Technische Universität Darmstadt, Germany, 1979</td>
<td></td>
</tr>
<tr>
<td>Scholthof, Herman B</td>
<td>Professor</td>
<td>Plant Pathology & Microbiology</td>
<td>PHD, University of Kentucky, 1990</td>
<td></td>
</tr>
<tr>
<td>Scholthof, Karenbeth G</td>
<td>Professor</td>
<td>Plant Pathology & Microbiology</td>
<td>PHD, University of Kentucky, 1989</td>
<td></td>
</tr>
<tr>
<td>Schrader, Todd W</td>
<td>Lecturer</td>
<td>Mathematics</td>
<td>MS, Texas A&M University, 2016</td>
<td></td>
</tr>
<tr>
<td>Schroeder, Friedhelm</td>
<td>Senior Professor</td>
<td>Vet Physiology & Pharmacology</td>
<td>PHD, Michigan State University, 1974</td>
<td></td>
</tr>
<tr>
<td>Schuessler, Hans A</td>
<td>Professor</td>
<td>Physics & Astronomy</td>
<td>PHD, Universität Heidelberg, 1964</td>
<td></td>
</tr>
<tr>
<td>Schuessler, John M</td>
<td>Associate Professor</td>
<td>International Affairs</td>
<td>PHD, The University of Chicago, 2007</td>
<td></td>
</tr>
<tr>
<td>Schuessler, Zohreh</td>
<td>Lecturer</td>
<td>College of Nursing</td>
<td>PHD, Texas Woman's University, 2018</td>
<td></td>
</tr>
<tr>
<td>Schuett, Michael</td>
<td>Professor</td>
<td>Rangeland, Wildlife and Fisheries Management</td>
<td>PHD, University of Illinois at Urbana - Champaign, 1991</td>
<td></td>
</tr>
<tr>
<td>Schuett, Michael A</td>
<td>Instructional Professor</td>
<td>Recreation, Park & Tourism Sc</td>
<td>PHD, University of Illinois at Urbana - Champaign, 1991</td>
<td></td>
</tr>
<tr>
<td>Schuld, Dawna L</td>
<td>Assistant Professor</td>
<td>Visualization</td>
<td>PHD, The University of Chicago, 2009</td>
<td></td>
</tr>
<tr>
<td>Schuller, Michael J</td>
<td>Instructional Associate Professor</td>
<td>Texas A&M University at Qatar</td>
<td>DEN, Texas A&M University, 1985</td>
<td></td>
</tr>
<tr>
<td>Schulze, Anja</td>
<td>Professor</td>
<td>Marine Biology</td>
<td>PHD, University of Victoria, Canada, 2001</td>
<td></td>
</tr>
<tr>
<td>Schumacher, Courtney</td>
<td>Professor</td>
<td>Atmospheric Sciences</td>
<td>PHD, University of Washington, 2003</td>
<td></td>
</tr>
<tr>
<td>Schumacher, Jay S</td>
<td>Lecturer</td>
<td>Psychological & Brain Sciences</td>
<td>PHD, Texas A&M University, 1999</td>
<td></td>
</tr>
<tr>
<td>Schwab, Arthur R</td>
<td>Professor</td>
<td>Soil & Crop Sciences</td>
<td>PHD, Colorado State University, 1981</td>
<td></td>
</tr>
<tr>
<td>Schwartz, Daniel L</td>
<td>Associate Professor</td>
<td>History</td>
<td>PHD, Princeton University, 2009</td>
<td></td>
</tr>
<tr>
<td>Schwartz, Mark</td>
<td>Executive Professor</td>
<td>Management</td>
<td>JD, Baylor University School of Law, 1983</td>
<td></td>
</tr>
<tr>
<td>Schwehr, Kathleen</td>
<td>Lecturer</td>
<td>Foundational Sciences</td>
<td>PHD, Texas A&M University, 2004</td>
<td></td>
</tr>
<tr>
<td>Schweikert, Emile A</td>
<td>Professor</td>
<td>Chemistry</td>
<td>PHD, Université de Paris, France, 1964</td>
<td></td>
</tr>
</tbody>
</table>
Schweitzer, Jordan L, Clinical Associate Professor
Endodontics
DDS, Baylor College of Dentistry, 1986

Schweimer, Lee C, Adjunct Professor
School of Law
JD, Texas Tech University School of Law, 1972

Scott, Bentley Nelson, Visiting Associate Professor
Land Arch & Urban Planning
MS, Texas A&M University, 2015

Scott, David, Professor
Recreation, Park & Tourism Sc
PHD, Pennsylvania State University, 1990

Scott, Erin M, Assistant Professor
Vet Small Animal Clinical Sc
DVM, University of Pennsylvania, 2015

Scott, Harvey M, Professor
Veterinary Pathobiology
PHD, University of Guelph, 1998
DVM, University of Saskatchewan, 1988

Scott, Susan G, Lecturer
Recreation, Park & Tourism Sc
MS, Pennsylvania State University, 1987

Scott, Timothy P, Professor
Biology
PHD, Texas A&M University, 1996

Scully, Marlan O, University Distinguished Professor
Aerospace Engineering
PHD, Yale University, 1966

Scully, Marlan O, Professor
Mechanical Engineering
PHD, Yale University, 1966

Scully, Marlan O, Distinguished Professor
Physics & Astronomy
PHD, Yale University, 1966

Sczepanski, Jonathan T, Assistant Professor
Chemistry
PHD, The Johns Hopkins University, 2010

Seaback, Wanda F, Clinical Assistant Professor
College of Nursing
MNU, Texas Women’s University, 2005

Seabury, Christopher M, Associate Professor
Veterinary Pathobiology
PHD, Texas A&M University, 2004

Searcy, Stephen W, Senior Professor
Biological & Agricultural Eng
PHD, Oklahoma State University, 1980

Sears, Nicholas, Instructional Assistant Professor
College of Engineering
PHD, Texas A&M University, 2017

Seaworth Angela, Lecturer
George Bush School of Govern
PHD, Indiana University, 2016

Seeger, Christina, Assistant Professor
TAMU Libraries
MLS, Emporia State University, 2006

Seers, Thomas D, Assistant Professor
Texas A&M University at Qatar
PHD, University of Manchester, 2016

Seets, David, Professor of the Practice
Mechanical Engineering
PHD, University of Texas, 1997

Seguin, Rebecca, Associate Professor
Nutrition
PHD, Tufts University, 2008

Seipp, Adam R, Professor
History
PHD, University of North Carolina at Chapel Hill, 2005

Seipp, Leslie S, Senior Lecturer
Marketing
MBA, Rice University, 2008

Sekaran, Aarthi, Research Assistant Professor
Ocean Engineering
PHD, Texas A&M University, 2012

Sekhposyan, Tatevik, Associate Professor
Economics
PHD, University of North Carolina Chapel Hill, 2010

Sell, Jane A, Professor
Sociology
PHD, Washington State University, 1979

Selva Valero, Daniel, Assistant Professor
Aerospace Engineering
PHD, Massachusetts Institute of Technology, 2012

Seminario, Jorge M, Professor
Chemical Engineering
PHD, Southern Illinois University Carbondale, 1987

Seminario, Jorge M, Professor
Materials Science & Engr
PHD, Southern Illinois University Carbondale, 1987

Sen, Arun, Professor
Information & Operations Mgmt
PHD, Pennsylvania State University, 1979

Sen, Ravi, Associate Professor
Information & Operations Mgmt
PHD, University of Illinois at Urbana - Champaign, 2003

Senarath Dharmasena, Kalu A, Instructional Associate Professor
Agricultural Economics
PHD, Texas A&M University, 2010
Sengupta, Sinjini, Instructional Assistant Professor
Mathematics
PHD, Florida State University, 2006

Seo, Anna H, Adjunct Assistant Professor
Pediatric Dentistry
DDS, University of Michigan - Ann Arbor, 1991

Seo, Heewon, Research Assistant Professor
Vet Integrative Biosciences
PHD, Yonsei University, 2012

Seo, Jinsil, Associate Professor
Visualization
PHD, Simon Fraser University, 2011
MFA, School of Visual Arts, 2004

Septiningsih, Endang M, Associate Professor
Soil & Crop Sciences
PHD, Cornell University, 2002

Serpedin, Erchin, Professor
Electrical & Computer Eng
PHD, University of Virginia, 1999

Shahrampour, Shahin, Assistant Professor
Industrial & Systems Eng
PHD, University of Pennsylvania, 2015

Shahrashoob, Zahra, Lecturer
Chemical Engineering
PHD, University of Oklahoma, 2018

Shakkottai, Srinivas G, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2007

Shamberger, Kathryn E, Assistant Professor
Oceanography
PHD, University of Washington, 2011

Shamberger, Patrick J, Assistant Professor
Materials Science & Engr
PHD, University of Washington, 2010

Shao, Lin, Professor
Plant Pathology & Microbiology
PHD, Kansas State University, 2003

Shandley, Robert R, Professor
International Studies
PHD, University of Minnesota, Twin Cities, 1996

Shankar, Venkatesh, Professor
Marketing
PHD, Northwestern University, 1995

Shan, Libo, Professor
Materials Science & Engr
PHD, University of Houston, 2001

Shao, Lin, Professor
Nuclear Engineering
PHD, University of Houston, 2001

Sharkey, Joseph R, Professor
Health Promotion & Comm Hlth Sci
PHD, University of North Carolina - Chapel Hill, 2002

Sharma, Amalesh, Assistant Professor
Marketing
PHD, Georgia State University, 2017

Sharma, Virender K, Professor
Environmental & Occpntnl Hlth
PHD, University of Miami, 1989

Sharon, Guni, Assistant Professor
Computer Science & Engineering
PHD, Ben-Gurion University, 2015

Sharp, Nathan Y, Professor
Accounting
PHD, University of Texas, 2007
Sharpe, Bradley, Lecturer
Finance
JD, Baylor University School of Law, 1997

Shatalov, Oksana, Instructional Professor
Mathematics
PHD, Technion - Israel Institute of Technology, 2001

Shaub, Michael K, Clinical Professor
Accounting
PHD, Texas Tech University, 1989

Shaw, Brian D, Professor
Plant Pathology & Microbiology
PHD, Cornell University, 2000

Shaw, Shana O, Associate Professor of the Practice
College of Engineering
MS, Purdue University, 2000

Shaw, Timothy A, Lecturer
George Bush School of Govern
JD, Ohio Northern University School of Law, 1983

Shaw, William D, Professor
Agricultural Economics
PHD, University of Colorado, 1985

Shcherbakova, Anastasia V, Assistant Professor
Agricultural Economics
PHD, The University of Chicago, 2010

Sheldon, Matthew T, Assistant Professor
Chemistry
PHD, University of California, Berkeley, 2010

Sheldon, Matthew T, Assistant Professor
Materials Science & Engr
PHD, University of California, Berkeley, 2010

Shiff, Dylan A, Associate Professor
Computer Science & Engineering
PHD, University of Southern California, 2008

Shen, Yang, Assistant Professor
Electrical & Computer Eng
PHD, Boston University, 2008

Sherman, Ledric D, Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2013

Shetty, Ashok K, Professor
Molecular & Cellular Medicine
PHD, All India Institute of Medical Sciences, 1990

Shetty, Bala, Professor
Information & Operations Mgmt
PHD, Southern Methodist University, 1985

Shi, Liheng, Research Assistant Professor
Vet Integrative Biosciences
PHD, Osaka University, 2001

Shi, Shuhui, Visiting Assistant Professor
Mathematics
PHD, University of Rochester, 2018

Shi, Wei Dong, Senior Lecturer
International Studies
MA, Beijing Normal University, 1999

Shi, Weiping, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1992

Shim, Won-Bo, Professor
Plant Pathology & Microbiology
PHD, Purdue University, 2000

Shipley, Meagan M, Clinical Associate Professor
Health & Kinesiology
PHD, Indiana University, 2014

Shipley, Meagan M, Clinical Associate Professor
Health & Kinesiology
PHD, Indiana University, 2014

Shipman III, Frank M, Professor
Computer Science & Engineering
PHD, University of Colorado, 1993

Shippen, Dorothy E, University Distinguished Professor
Biochemistry & Biophysics
PHD, University of Alabama at Birmingham, 1987

Shiu, Anne J, Associate Professor
Mathematics
PHD, University of California at Berkeley, 2010

Short, Aric K, Professor
School of Law
JD, University of Texas Law School, 1996

Shryock, Kristi J, Associate Professor
Aerospace Engineering
PHD, Texas A&M University, 2011

Shukla, Keshawa P, Professor of the Practice
College of Engineering
PHD, Banaras Hindu University, 1979

Shumbera, Kristen L, Lecturer
Teaching, Learning & Culture
MS, University of Florida, 2007

Sievert, Ronald J, Associate Professor
International Affairs
JD, The University of Texas - Austin, 1977

Silva-Martinez, Jose E, Professor
Electrical & Computer Eng
PHD, Katholieke Universiteit Leuven, 1992
Silvy, Nova, Professor
Rangeland, Wildlife and Fisheries Management
PHD, Southern Illinois University, 1975

Simmons, Kervin, Visiting Lecturer
Health & Kinesiology
MS, Texas A&M University, 2018

Simmons, Krystal T, Clinical Professor
Educational Psychology
PHD, Texas A&M University, 2009

Simms, Lance Eric, Senior Lecturer
Construction Science
MS, Texas A&M University, 2000

Simon, Ashley, Lecturer
College of Nursing
MNU, Texas A&M Health Science Center, 2016

Simon, Bradley T, Assistant Professor
Vet Small Animal Clinical Sc
DVM, Ross University, 2007

Simpson, Claudine L, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2005

Simpson, Hannah, Assistant Professor
Political Science
PHD, New York University, 2017
JD, Harvard Law School, 2009

Simpson, Nancy J, Clinical Professor
College of Business
PHD, Texas A&M University, 1992

Singer, John N, Associate Professor
Health & Kinesiology
PHD, Ohio State University, 2002

Singh, Chanan, Professor
Electrical & Computer Eng
PHD, University of Saskatchewan, 1972

Singh, Irtisha, Assistant Professor
Molecular & Cellular Medicine
PHD, Weill Cornell Graduate School of Medical Sciences, 2017

Singh, Vijay P, University Distinguished Professor
Biological & Agricultural Eng
PHD, Colorado State University, 1974

Singleton, Daniel A, Professor
Chemistry
PHD, University of Minnesota, 1986

Singleton, Julie A, Clinical Assistant Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2011

Sinha, Kumares C, Visiting Professor
College of Engineering
PHD, University of Connecticut, 1968

Sinha, Samiran, Professor
Statistics
PHD, University of Florida, 2004

Sirovic, Ana, Associate Professor
Marine Biology
PHD, University of California San Diego, 2006

Sisman, Ozlem, Lecturer
Liberal Studies
PHD, Bilkent University, Turkey, 2013

Sitcheran, Raquel M, Associate Professor
Molecular & Cellular Medicine
PHD, University of California, San Francisco, 2000

Skaggs, Chris L, Professor
Animal Science
PHD, Iowa State University, 1992

Skeie, David R, Assistant Professor
Finance
PHD, Princeton, 2004

Skelton, Robert E, Professor
Aerospace Engineering
PHD, University of California, 1976

Skelton, Robert E, Professor
Ocean Engineering
PHD, University of California, 1976

Skow, Loren C, Senior Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1976

Slagel, Kristin N, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 2002

Slattery Jr, George P, Professor
Teaching, Learning & Culture
PHD, Louisiana State University, 1989

Slattery, Jeff W, Instructional Associate Professor
School of Law
JD, University of California Hastings College of Law, 1999

Slattoon, Katie J, Instructional Assistant Professor
Liberal Studies
MED, University of Montevallo, 2003

Silva, Catherine A, Associate Professor of the Practice
Petroleum Engineering
BS, Texas A&M University, 1980

Silva, Glenn M, Associate Professor of the Practice
Petroleum Engineering
BS, Texas A&M University, 1981

Slotman, Michel A, Associate Professor
Entomology
PHD, Yale University, 2003
Faculty

Slowey, Niall C, Professor
Oceanography
PHD, Massachusetts Institute of Technology, 1991

Small, Kenneth, Lecturer
Mathematics
MS, Texas A&M University, 2019

Smallman, Rachel E, Associate Professor
Psychological & Brain Sciences
PHD, University of Illinois-Urbana Champaign, 2010

Smeins, Fred, Visiting Professor
Ecology and Conservation Biology
PHD, University of Saskatchewan, 1967

Smith, Ashly Peyton, Assistant Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 2013

Smith, Bryan N, Assistant Lecturer
School of Law
JD, Texas Wesleyan University School of Law, 2009

Smith, C W, Professor
Soil & Crop Sciences
PHD, University of Tennessee, 1974

Smith, Donald R, Senior Associate Professor
Industrial & Systems Eng
PHD, University of Arkansas, 1973

Smith, Gary C, Visiting Professor
Animal Science
PHD, Texas A&M University, 1968

Smith, James, Lecturer
George Bush School of Govern
PHD, The University of Alabama, 1993

Smith, James L, Professor
Biology
PHD, University of Florida, 2002

Smith, Jason M, Instructional Assistant Professor
Political Science
PHD, Texas A&M University, 2009

Smith, Jonathan, Professor
Geography
PHD, Syracuse University, 1991

Smith, Karen S, Clinical Associate Professor
Educ Admin & Human Resource Dev
EDD, Sam Houston State University, 2000

Smith, Lauren, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 2013

Smith, Leann, Assistant Professor
Educational Psychology
PHD, University of Texas at Austin, 2017

Smith, Matthew L, Associate Professor
Environmental & Occpntl Hlth
PHD, Texas A&M University, 2008

Smith, Patricia K, Professor
Biological & Agricultural Eng
PHD, North Carolina State University, 2000

Smith, Rachel J, Assistant Professor
Psychological & Brain Sciences
PHD, University of Pennsylvania, 2008

Smith, Roger R, Professor
Mathematics
PHD, University of Oxford, 1976

Smith, Sonny, Lecturer
George Bush School of Govern
PHD, Virginia Tech, 2009

Smith, Stephen B, Regents Professor
Animal Science
PHD, University of California, Davis, 1980

Smith, Steven M, Professor
Psychological & Brain Sciences
PHD, University of Wisconsin - Madison, 1979

Smith, William E, Assistant Lecturer
Recreation, Park & Tourism Sc
PHD, Texas A&M University, 2012

Smotherman, Michael S, Professor
Biology
PHD, University of California, Los Angeles, 1998

Snider, Erin A, Assistant Professor
International Affairs
PHD, University of Cambridge, Trinity College, 2011

Snyder, Douglas K, Professor
Psychological & Brain Sciences
PHD, University of North Carolina at Chapel Hill, 1978

Snyder, Franklin G, Professor
School of Law
JD, University of Missouri - Columbia, 1983

Sobol, Neil L, Professor
School of Law
JD, Southern Methodist University, 1988

Socolofsky, Scott A, Professor
Civil Engineering
PHD, Massachusetts Inst of Technology, 2001

Sohn McCormick, Anita, Adjunct Associate Professor
Educational Psychology
PHD, Texas A&M University, 2000

Sokolov, Alexei V, Professor
Physics & Astronomy
PHD, Stanford University, 2001
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>University and Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son, Dong H, Professor</td>
<td>Chemistry</td>
<td></td>
<td>University of Texas at Austin, 2002</td>
<td></td>
</tr>
<tr>
<td>Song, Dezhen, Professor</td>
<td>Computer Science & Engineering</td>
<td></td>
<td>University of California, Berkeley, 2004</td>
<td></td>
</tr>
<tr>
<td>Song, Fang, Assistant Professor</td>
<td>Computer Science & Engineering</td>
<td></td>
<td>Penn State, 2013</td>
<td></td>
</tr>
<tr>
<td>Song, Hojun, Associate Professor</td>
<td>Entomology</td>
<td></td>
<td>The Ohio State University Columbus, OH, 2006</td>
<td></td>
</tr>
<tr>
<td>Song, Xiaofei, Lecturer</td>
<td>Communication</td>
<td></td>
<td>Washington State University, 2019</td>
<td></td>
</tr>
<tr>
<td>Song, Xingyong, Associate Professor</td>
<td>Eng Tech & Ind Distribution</td>
<td></td>
<td>University of Minnesota, Twin Cities, 2011</td>
<td></td>
</tr>
<tr>
<td>Song, Xingyong, Assistant Professor</td>
<td>Mechanical Engineering</td>
<td></td>
<td>University of Minnesota, Twin Cities, 2011</td>
<td></td>
</tr>
<tr>
<td>Song, Youn K, Research Assistant Professor</td>
<td>Ocean Engineering</td>
<td></td>
<td>Texas A&M University, 2013</td>
<td></td>
</tr>
<tr>
<td>Sorenson, Matthew, Professor</td>
<td>College of Nursing</td>
<td></td>
<td>Loyola University Chicago, 2002</td>
<td></td>
</tr>
<tr>
<td>Sorescu, Alina, Professor</td>
<td>Marketing</td>
<td></td>
<td>University of Houston, 2002</td>
<td></td>
</tr>
<tr>
<td>Sorescu, Sorin M, Professor</td>
<td>Finance</td>
<td></td>
<td>University of Florida, 1996</td>
<td></td>
</tr>
<tr>
<td>Sorg, Joseph A, Professor</td>
<td>Biology</td>
<td></td>
<td>University of Chicago, 2006</td>
<td></td>
</tr>
<tr>
<td>Sottile, Frank J, Professor</td>
<td>Mathematics</td>
<td></td>
<td>University of Chicago, 1994</td>
<td></td>
</tr>
<tr>
<td>Soukiasian, Yeran M, Senior Lecturer</td>
<td>Texas A&M University at Qatar</td>
<td></td>
<td>American University of Beirut, 2007</td>
<td></td>
</tr>
<tr>
<td>Sowell, Jesse Horton, Assistant Professor</td>
<td>International Affairs</td>
<td></td>
<td>Massachusetts Institute of Technology, 2015</td>
<td></td>
</tr>
<tr>
<td>Spalink, Angenette Marie, Assistant Professor</td>
<td>Performance Studies</td>
<td></td>
<td>Bowling Green State University, 2014</td>
<td></td>
</tr>
<tr>
<td>Spalink, Daniel, Assistant Professor</td>
<td>Ecology and Conservation Biology</td>
<td></td>
<td>University of Wisconsin-Madison, 2015</td>
<td></td>
</tr>
<tr>
<td>Sparks, David W, Professor</td>
<td>Geology & Geophysics</td>
<td></td>
<td>Brown University, 1992</td>
<td></td>
</tr>
<tr>
<td>Spath, Jeffrey B, Professor</td>
<td>Petroleum Engineering</td>
<td></td>
<td>Mining University of Leoben, Austria, 1996</td>
<td></td>
</tr>
<tr>
<td>Spaulding, Kathy A, Visiting Professor</td>
<td>College of Veterinary Medicine</td>
<td></td>
<td>College of Veterinary Medicine</td>
<td></td>
</tr>
<tr>
<td>Speed, Fred, Senior Lecturer</td>
<td>Eng Tech & Ind Distribution</td>
<td></td>
<td>University of Alabama - Huntsville, 1992</td>
<td></td>
</tr>
<tr>
<td>Spence, Elizabeth, Senior Lecturer</td>
<td>Eng Tech & Ind Distribution</td>
<td></td>
<td>Gonzaga University, 2010</td>
<td></td>
</tr>
<tr>
<td>Spence, Joseph W, Adjunct Professor</td>
<td>School of Law</td>
<td></td>
<td>Baylor Law School, 1983</td>
<td></td>
</tr>
<tr>
<td>Spengler, John O, Professor</td>
<td>Health Promotion & Comm Health Sci</td>
<td></td>
<td>Indiana University, 1999</td>
<td></td>
</tr>
<tr>
<td>Spiegelman, Clifford H, Distinguished Professor</td>
<td>Statistics</td>
<td></td>
<td>Northwestern University, 1976</td>
<td></td>
</tr>
<tr>
<td>Spittle, Leah, Adjunct Assistant Professor</td>
<td>Dental Hygiene</td>
<td></td>
<td>Texas A&M University, 2016</td>
<td></td>
</tr>
<tr>
<td>Springfield III, Henry C, Professor of the Practice</td>
<td>Agricultural Economics</td>
<td></td>
<td>Texas A&M University, 2008</td>
<td></td>
</tr>
<tr>
<td>Sprintson, Alexander, Professor</td>
<td>Electrical & Computer Eng</td>
<td></td>
<td>Israel Institute of Technology, 2003</td>
<td></td>
</tr>
<tr>
<td>Spurlock II, Joe C, Senior Professor</td>
<td>School of Law</td>
<td></td>
<td>University of Texas School of Law, 1962</td>
<td></td>
</tr>
<tr>
<td>Sreenivasan, Akshaya, Clinical Assistant Professor</td>
<td>Marketing</td>
<td></td>
<td>Pennsylvania State University, 2016</td>
<td></td>
</tr>
<tr>
<td>Sreenivasan, Katepalli R, Visiting Professor</td>
<td>College of Engineering</td>
<td></td>
<td>Indian Institute of Science, 1975</td>
<td></td>
</tr>
</tbody>
</table>
Sridhar, Shrihari, Professor
Marketing
PHD, University of Missouri-Columbia, 2009

Srinivasa, Arun R, Professor
Mechanical Engineering
PHD, University of California, Berkeley, 1991

Srinivasan, Raghavan, Professor
Ecology and Conservation Biology
PHD, Purdue University, 1992

Sriskandarajah, Chelliah, Professor
Information & Operations Mgmt
PHD, L'Institut National Polytechnique de Grenoble, 1986

Srivastava, Ankit, Assistant Professor
Materials Science & Engr
PHD, University of North Texas, 2013

Srivastava, Anupam, Senior Lecturer
Eng Tech & Ind Distribution
MBA, INSEAD, 1998

St Clair, Katherine, Lecturer
Marine Biology
MS, Texas A&M University, 2014

St. Clair, Allison, Senior Lecturer
Biology
PHD, Texas A&M University, 2017

Staack, David A, Associate Professor
Mechanical Engineering
PHD, Drexel University, 2008

Stabile, Susan M, Associate Professor
English
PHD, University of Delaware, 1997

Stackhouse, Elizabeth Wood, Lecturer
Educational Psychology
PHD, Texas A&M University, 2018

Stallone, John N, Professor
Vet Physiology & Pharmacology
PHD, University of Arizona, 1984

Stanley, Christine A, Professor
Edu Admn & Human Resource Dev
PHD, Texas A&M University, 1990

Stark, Gregory L, Assistant Professor of the Practice
Biological & Agricultural Eng
MPH, University of Nebraska - Lincoln, 1986

Starman, Terri W, Professor
Horticultural Sciences
PHD, Texas A&M University, 1986

Starrett, Courtney, Associate Professor
Visualization
MFA, Tyler School of Art, Temple University, 2005

Stasi, Selina M, Instructional Assistant Professor
Hlth Promotion & Comm Hlth Sci
PHD, Texas A&M University, 2018

Stasny, Mary A, Senior Lecturer
Accounting
PHD, Texas A&M University, 2010

Stauffer, Jon M, Assistant Professor
Information & Operations Mgmt
PHD, Indiana University, Kelley School of Business, 2016

Steichen, Jamie L, Lecturer
Marine Biology
PHD, Texas A&M University, 2012

Steiner, Joerg M, Professor
Soil & Crop Sciences
PHD, University of Wisconsin - Madison, 1983

Stephan, Clifford C, Research Associate Professor
Institute of Biosciences & Tec
PHD, Vanderbilt University, 1988

Stephens Jr, Claude R, Adjunct Assistant Professor
Orthodontics
DDS, Texas A&M University, 1981

Stephens Jr, Marvin G, Adjunct Assistant Professor
Orthodontics
DDS, Baylor College of Dentistry, 1971

Stephens, Jane A, Associate Professor
TAMU Libraries
MED, Texas A&M University, 2005

Stephenson, Michael, Professor
Communication
PHD, University of Kentucky, 1999

Stewart, Kateri, Visiting Lecturer
Architecture
BAR, University of Notre Dame, 2007

Stewart, Randolph H, Clinical Professor
Vet Physiology & Pharmacology
PHD, Texas A&M University, 1997

Stewart, Zachary D, Assistant Professor
Architecture
PHD, Columbia University, 2015

Stickney, Mark J, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1997

Stiles, Misty, Lecturer
Teaching, Learning & Culture
MED, Texas State University, 2003
Stiller, Peter F, Professor
Mathematics
PHD, Princeton University, 1977

Stillisano, Jacqueline G, Lecturer
Teaching, Learning & Culture
EDD, Ball State University, 2004

Stoinescu, Livia, Instructional Associate Professor
Visualization
PHD, Queen's University, 2010

Stoessel, Achim, Associate Professor
Oceanography
PHD, Universitat Hamburg, 1990

Stokes, Charity, Assistant Professor
TAMU Libraries
MLS, University of North Texas, 1997

Stoleru, Radu, Professor
Computer Science & Engineering
PHD, University of Virginia, 2007

Stough, Laura M, Professor
Educational Psychology
PHD, University of Texas, 1993

Stover, Patrick, Professor
Biochemistry & Biophysics
PHD, Virginia Commonwealth University, 1990

Straight, Paul D, Associate Professor
Biochemistry & Biophysics
PHD, University of Colorado, 2000

Stranges, Anthony N, Associate Professor
History
PHD, University of Wisconsin - Madison, 1977

Straube, Emil J, Professor
Mathematics
PHD, Swiss Federal Institute of Technology Zurich, 1983

Straw, Chase, Assistant Professor
Soil & Crop Sciences
PHD, University of Georgia, 2017

Strawser, Jerry R, Professor
Accounting
PHD, Texas A&M University, 1985

Strawser, Robert H, Professor
Accounting
DBA, University of Maryland, 1969

Street Jr, Richard L, Professor
Communication
PHD, The University of Texas at Austin, 1980

Street, Nancy A, Instructional Professor
Communication
MA, University of Texas, 1980

Strganac, Thomas W, Professor
Aerospace Engineering
PHD, Virginia Tech, 1987

Strickland, Jack, Adjunct Professor
School of Law
JD, The University of Texas School of Law, 1971

Strigari, Louis E, Associate Professor
Physics & Astronomy
PHD, Ohio State University, 2005

Stringfellow, Joan E, Instructional Associate Professor
School of Law
MLS, University of North Texas, 2002

Strong Jr, Robert L, Associate Professor
Ag Leadership, Educ & Comm
PHD, University of Florida, 2010

Strong, Jennifer R, Associate Professor
Ag Leadership, Educ & Comm
PHD, Oklahoma State University, 2007

Strong, Jennifer R, Associate Professor
Recreation, Park & Tourism Sc
PHD, University of Florida, 2000

Strong, Jennifer R, Associate Professor
Aerospace Engineering
PHD, University of Texas - Austin, 1986

Struminger, Rhonda, Assistant Professor of the Practice
Ecology and Conservation Biology
PHD, Texas A&M University, 2013

Stuber, Sarah, Assistant Professor
Accounting
PHD, Michigan State University, 2019

Stucki, Kenzie, Lecturer
College of Nursing
MSN, Western Governors University, 2018

Su, Hung-Jue, Professor
Materials Science & Engr
PHD, University of Michigan - Ann Arbor, 1988

Su, Hung-Jue, Professor
Mechanical Engineering
PHD, University of Michigan - Ann Arbor, 1988

Subashchandrabose, Sargununathan, Assistant Professor
Veterinary Pathobiology
PHD, Michigan State University, 2011
BVSc, Madras Veterinary College Tamil Nadu Veterinary and Animal Sciences University, 2005

Subbarao, Suhasini T, Professor
Statistics
PHD, University of Bristol, 2001
Subramanian, Rahul, Lecturer
Ocean Engineering
PHD, University of Michigan, 2012

Suchodolski, Jan, Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 2005

Sudderth, Bonnie, Adjunct Professor
School of Law
JD, The University of Texas School of Law, 1985

Sudduth, Albert S, Adjunct Professor
School of Law
JD, Catholic University of America, 1989

Sueda, Shinjiro, Assistant Professor
Computer Science & Engineering
PHD, University of British Columbia, 2010

Suen Ching-Yun, Professor
Foundational Sciences
PHD, University of Houston, 1983

Suermann, Patrick C, Associate Professor
Construction Science
PHD, University of Florida, 2009

Suess Raeisinafchi, Courtney, Assistant Professor
Recreation, Park & Tourism Sc
PHD, University of Nevada, Las Vegas, 2014

Suh, Chii-Der, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 1997

Suh, Sang Jin, Associate Professor
Biomedical Sciences
PHD, University of Wisconsin, Madison, WI., 1994

Sukhishvili, Svetlana A, Professor
Materials Science & Engr
PHD, Lomonosov Moscow State University, 1989

Sullenger, Paula A, Associate Professor
TAMU Libraries
MLS, University of North Carolina at Chapel Hill, 1992

Sullins, Donna, Instructional Assistant Professor
Recreation, Park & Tourism Sc
EDD, University of Georgia, 2016

Sullivan Jr, Harry W, Executive Professor
School of Law
JD, Louisiana State Law School, 1976

Sullivan, Ronald D, Lecturer
Public Service & Administration
JD, University of Kansas, 2014

Sullivan, Seth C, Lecturer
College of Engineering
MBA, University of Texas San Antonio, 2011

Sullivan, Thomas D, Assistant Professor
TAMU Libraries
MLS, Queens College, 2010

Sumpter, Randall S, Associate Professor
Communication
PHD, University of Texas, 1996

Sun, Deqiang, Assistant Professor
Institute of Biosciences & Tec
PHD, Texas A&M University, 2009

Sun, Qing, Assistant Professor
Chemical Engineering
PHD, University of Delaware, 2010

Sun, Yuefeng, Professor
Geology & Geophysics
PHD, Columbia University, 1994

Sun, Yuefeng, Professor
Petroleum Engineering
PHD, Columbia University, 1994

Sun, Yuxiang, Associate Professor
Nutrition
PHD, University of Manitoba, 2000

Suntzeff, Nicholas B, University Distinguished Professor
Physics & Astronomy
PHD, University of California - Santa Cruz, 1980

Sutherland, Susan D, Lecturer
Visualization
MA, UNIVERSITY OF WISCONSIN - MADISON, 1994

Suva, Larry J, Professor
Vet Physiology & Pharmacology
PHD, The University of Melbourne, 1992

Suzuki, Kazuko, Associate Professor
Sociology
PHD, Princeton University, 2003

Svoboda, Kathy K, Regents Professor
Biomedical Sciences
PHD, University of Nebraska Medical Center, 1982

Sweany, Noelle W, Clinical Professor
Educational Psychology
PHD, University of Texas at Austin, 1999

Sweet, Kristi, Associate Professor
Philosophy & Humanities
PHD, Loyola University, Chicago, 2006

Sweetman, John A, Professor
Ocean Engineering
PHD, Stanford University, 2001

Swim Jr, Keith D, Clinical Associate Professor
Management
JD, Texas Tech University, 1980
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sword, Gregory A</td>
<td>Professor</td>
<td>Entomology</td>
<td>University of Texas at Austin, 1998</td>
</tr>
<tr>
<td>Sylvan, Jason B</td>
<td>Associate Professor</td>
<td>Oceanography</td>
<td>Rutgers University, 2008</td>
</tr>
<tr>
<td>Sze, Sing</td>
<td>Associate Professor</td>
<td>Biochemistry & Biophysics</td>
<td>University of Southern California, 2000</td>
</tr>
<tr>
<td>Sze, Sing H</td>
<td>Associate Professor</td>
<td>Computer Science & Engineering</td>
<td>University of Southern California, 2000</td>
</tr>
<tr>
<td>Szucs, Leigh</td>
<td>Visiting Assistant Professor</td>
<td>Health & Kinesiology</td>
<td>Texas A&M University, 2017</td>
</tr>
<tr>
<td>Szunyogh, Istvan</td>
<td>Professor</td>
<td>Atmospheric Sciences</td>
<td>Hungarian Academy of Sciences, 1994</td>
</tr>
<tr>
<td>Szura, Jordan</td>
<td>Visiting Lecturer</td>
<td>Health & Kinesiology</td>
<td>Texas A&M University, 2019</td>
</tr>
<tr>
<td>Tabaar, Mohammad A</td>
<td>Associate Professor</td>
<td>International Affairs</td>
<td>Georgetown University, 2012</td>
</tr>
<tr>
<td>Tabacaru, Simona G</td>
<td>Associate Professor</td>
<td>TAMU Libraries</td>
<td>University of North Texas, 2009</td>
</tr>
<tr>
<td>Tabor, Daniel</td>
<td>Assistant Professor</td>
<td>Chemistry</td>
<td>University of Wisconsin - Madison, 2016</td>
</tr>
<tr>
<td>Tadlock, Larry P</td>
<td>Clinical Associate Professor</td>
<td>Orthodontics</td>
<td>Baylor College of Dentistry, 1984</td>
</tr>
<tr>
<td>Tafreshi, Reza</td>
<td>Professor</td>
<td>Texas A&M University at Qatar</td>
<td>University of British Columbia, Canada, 2005</td>
</tr>
<tr>
<td>Tag, Andrew G</td>
<td>Instructional Assistant Professor</td>
<td>Biology</td>
<td>Texas A&M University, 2003</td>
</tr>
<tr>
<td>Tahmasbi Arashlow, Mehrnaz</td>
<td>Clinical Assistant Professor</td>
<td>Diagnostic Sciences</td>
<td>University of Colorado, 2016</td>
</tr>
<tr>
<td>Tai, Li-Jung</td>
<td>Associate Professor</td>
<td>Mechanical Engineering</td>
<td>Kerman University, 2011</td>
</tr>
<tr>
<td>Tai-Seale, Thomas S</td>
<td>Instructional Associate Professor</td>
<td>Health Promotion & Comm Mlth Sc</td>
<td>Ann Arbor, 2011</td>
</tr>
<tr>
<td>Tajali Pour, Paria</td>
<td>Instructional Assistant Professor</td>
<td>TAMU Libraries</td>
<td>University of North Texas, 2018</td>
</tr>
<tr>
<td>Talbot, Brent</td>
<td>Lecturer</td>
<td>George Bush School of Govern</td>
<td>University of Denver, 2003</td>
</tr>
<tr>
<td>Talcott, Stephen</td>
<td>Professor</td>
<td>Food Science and Technology</td>
<td>University of Arkansas, 2000</td>
</tr>
<tr>
<td>Talcott, Susanne</td>
<td>Associate Professor</td>
<td>Food Science and Technology</td>
<td>University of Florida, 2004</td>
</tr>
<tr>
<td>Taliaferro, Steven D</td>
<td>Associate Professor</td>
<td>Mathematics</td>
<td>Stanford University, 1976</td>
</tr>
<tr>
<td>Talreja, Ramesh R</td>
<td>Professor</td>
<td>Aerospace Engineering</td>
<td>The Technical University of Denmark, 1974</td>
</tr>
<tr>
<td>Talreja, Ramesh R</td>
<td>Professor</td>
<td>Materials Science & Engr</td>
<td>The Technical University of Denmark, 1974</td>
</tr>
<tr>
<td>Tamamis, Phanourios</td>
<td>Assistant Professor</td>
<td>Chemical Engineering</td>
<td>University of Cyprus, 2010</td>
</tr>
<tr>
<td>Tamborindeguy, Cecilia</td>
<td>Associate Professor</td>
<td>Entomology</td>
<td>Institut National Polytechnique de Toulouse, 2004</td>
</tr>
<tr>
<td>Tang, Lu</td>
<td>Associate Professor</td>
<td>Communication</td>
<td>University of Southern California, 2007</td>
</tr>
<tr>
<td>Tano Retamales, Mauricio</td>
<td>Visiting Assistant Professor</td>
<td>Nuclear Engineering</td>
<td>IMEP-2 Doctoral School of Grenoble INP, 2018</td>
</tr>
<tr>
<td>Tanur, Monique</td>
<td>Adjunct Assistant Professor</td>
<td>Pediatric Dentistry</td>
<td>Universidad Tecnologica de Mexico, 1989</td>
</tr>
<tr>
<td>Tao, Feng</td>
<td>Associate Professor</td>
<td>Biomedical Sciences</td>
<td>Fudan University, 2000</td>
</tr>
<tr>
<td>Tarar, Ahmer S</td>
<td>Associate Professor</td>
<td>Political Science</td>
<td>University of Rochester, 2003</td>
</tr>
<tr>
<td>Tarone, Aaron M</td>
<td>Professor</td>
<td>Entomology</td>
<td>Michigan State University, 2007</td>
</tr>
<tr>
<td>Tarvin, David T</td>
<td>Senior Lecturer</td>
<td>Communication</td>
<td>Louisiana State University, 2013</td>
</tr>
</tbody>
</table>
Tassinary, Louis G, Professor
Visualization
JD, Boston College, 2003
PHD, Dartmouth College, 1984

Tate, James Michael, Assistant Professor
Architecture
MAR, Yale University, 2007

Tayce, Jordan D, Instructional Associate Professor
Vet Integrative Biosciences
DVM, Texas A&M University, 2008

Taylor IV, Thad, Adjunct Assistant Professor
Oral & Maxillofacial Surgery
DDS, Howard University, 1994

Taylor, Bart, Lecturer
Teaching, Learning & Culture
MED, Lamar University, 2011

Taylor, Kenneth A, Assistant Professor of the Practice
Public Service & Administration
PHD, Our Lady of the Lake University, 2017

Taylor, Lathrop, Instructional Assistant Professor
Biology
PHD, Texas A&M University, 1985

Taylor, Lori L, Professor
Public Service & Administration
PHD, University of Rochester, 1990

Taylor, Michelle M, Professor
Political Science
PHD, Rice University, 1990

Taylor, Nicholas J, Assistant Professor
Epidemiology & Biostatistics
PHD, University of North Carolina, 2014

Taylor, Reginald W, Associate Professor
Orthodontics
DMD, Harvard School of Dental Medicine, 1992

Taylor, Robert J, Research Professor
Vet Integrative Biosciences
PHD, Texas A&M University, 1987

Taylor, Thomas M, Professor
Animal Science
PHD, University of Tennessee, Knoxville, 2006

Tchakerian, Vatche P, Professor
Geography
PHD, UCLA, 1989

Teare Joseph, Lecturer
Maritime Transportation
BS, Texas A&M University, 1967

Tebeaux, William J, Executive Professor
Finance
MBA, University of Houston, 1971

Tedeschi, Luis O, Professor
Animal Science
PHD, Cornell University, 2001

Teel, Pete D, Professor
Entomology
PHD, Oklahoma State University, 1978

Teizer, Winfried, Associate Professor
Materials Science & Engr
PHD, University of Massachusetts - Amherst, 1998

Teizer, Winfried, Professor
Physics & Astronomy
PHD, University of Massachusetts - Amherst, 1998

Telafici, Michael A, Instructional Associate Professor
Texas A&M University at Qatar
PHD, Norwich University, 2009

Teller, Lori Massin, Clinical Associate Professor
Vet Small Animal Clinical Sc
DVM, Texas A&M University, 1990

Templin, Mai Phuong L, Instructional Assistant Professor
Health & Kinesiology
MAR, University of Houston, 1992

Ten Have, Gabriella A, Research Assistant Professor
Health & Kinesiology
PHD, Maastricht University, 2017

Teodoro, Manuel P, Professor
Political Science
PHD, University of Michigan-Ann Arbor, 2007

Tevis, Noah A, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2007

Thakar, Heather B, Assistant Professor
Anthropology
PHD, University of California Santa Barbara, 2014

Thangavel Samikkannu, Associate Professor
College of Pharmacy
PHD, University of Madras, 1997

Thelen, Lucinda, Instructional Assistant Professor
Health & Kinesiology
MED, Texas A&M University, 2010

Thomas, Andre, Associate Professor of The Practice
Visualization
MFA, Laguna College of Art & Design, 2017

Thomas, Deborah J, Professor
Oceanography
PHD, University of North Carolina at Chapel Hill, 2002

Thomas, Edwin L, Visiting Professor
Materials Science & Engr
PHD, Cornell, 2018
Thomas, Francis E, Instructional Professor
Health & Kinesiology
PHD, Texas A&M University, 1980

Thomas, Rebecca S, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 1998

Thomas, Safiya, Lecturer
College of Nursing
MSN, Old Dominion University, 2011

Thomas, Terry L, Professor
Biology
PHD, The University of Georgia, 1975

Thomas, Christopher G, Assistant Professor
Educational Psychology
PHD, Florida State University, 2016

Thomasson, John A, Professor
Biological & Agricultural Eng
PHD, University of Kentucky, 1997

Thompson, Courtney M, Assistant Professor
Geography
PHD, University of Idaho, 2017

Thompson, James A, Professor
Vet Large Animal Clinical Sc
DVM, University of Guelph, 1982

Thompson, Julie L, Assistant Professor
Educational Psychology
PHD, University of North Carolina at Charlotte, 2014

Thompson, Steve, Senior Lecturer
Eng Tech & Ind Distribution
PHD, University of Dundee, 1976

Thompson, Wesley J, Professor
Biology
PHD, University of California-Berkeley, 1975

Thoms, Alston V, Professor
Anthropology
PHD, Washington State University, 1989

Thomson, Michael J, Professor
Soil & Crop Sciences
PHD, Cornell University, 2002

Thornton, Daniel C, Professor
Oceanography
PHD, Queen Mary Westfield College, University of London, 1996

Thornton, John H, Executive Professor
Health & Kinesiology
PHD, Texas A&M University, 1997

Thornton, Michael A, Clinical Assistant Professor
Health & Kinesiology
EDD, Texas A&M University, 2007

Thornton, Patricia H, Professor
Sociology
PHD, Stanford University, 1993

Threadgill, David, University Distinguished Professor
Molecular & Cellular Medicine
PHD, Texas A&M University, 1989

Threadgill, David, University Distinguished Professor
Biochemistry & Biophysics
PHD, Texas A&M University, 1989

Threadgill, Deborah, Research Assistant Professor
Molecular & Cellular Medicine
PHD, Texas A&M University, 1990

Thurston, Idia, Associate Professor
Psychological & Brain Sciences
PHD, University of South Florida, 2010

Thyng, Kristen M, Research Assistant Professor
Oceanography
PHD, University of Washington, 2012

Tian, Chao, Associate Professor
Electrical & Computer Eng
PHD, Cornell University, 2005

Tian, Guoqiang, Professor
Economics
PHD, University of Minnesota, Twin Cities, 1987

Tian, Limei, Assistant Professor
Biomedical Engineering
PHD, Washington University in St. Louis, 2014

Tian, Yanan, Associate Professor
Vet Physiology & Pharmacology
PHD, Rutgers University, 1993

Tichenor, Nathan R, Research Assistant Professor
Aerospace Engineering
PHD, Texas A&M University, 2010

Tiffany-Castiglion, E, Professor
Vet Integrative Biosciences
PHD, University of Texas Medical Branch at Galveston, 1979

Tihanyi, Laszlo, Professor
Management
PHD, Indiana University - Bloomington, 1996

Timothe, Peggy, Assistant Professor
Public Health Sciences

Tipton, Nadene J, Adjunct Assistant Professor
Orthodontics
DDS, Texas A&M University Baylor College of Dentistry, 1992

Tirunelveli, Srividhya, Professor
School of Law
DJS, George Washington University School of Law, 2008
LLM, King’s College, University of London, 1995
Tisone, Christine, Clinical Assistant Professor
Health & Kinesiology
PHD, Indiana University, 2004

Titi, Edriss S, Professor
Mathematics
PHD, Indiana University, Bloomington, 1986

Toback, David, Professor
Physics & Astronomy
PHD, University of Chicago, 1997

Todd, Dorothy R, Lecturer
English
PHD, University of Georgia, 2017

Tolbert, Mary K, Clinical Associate Professor
Vet Small Animal Clinical Sc
PHD, North Carolina State University, 2013
DVM, University of Georgia, 2006

Toliyat, Hamid A, Professor
Electrical & Computer Eng
PHD, University of Wisconsin - Madison, 1991

Tolson, Homer, Senior Professor
Educ Admn & Human Resource Dev
PHD, Purdue University, 1968

Tomaszewski, Lesley E, Instructional Associate Professor
Health Policy & Management
PHD, Texas A&M University, 2003

Tomaszewski, Michael A, Visiting Professor
Animal Science
PHD, North Carolina State University, 1972

Tomberlin, Jeffery K, Professor
Entomology
PHD, University of Georgia, 2001

Tomchesson, Michael A, Instructional Associate Professor
Health & Kinesiology
MS, Texas A&M University, 1994

Tong, Fuhui, Professor
Educational Psychology
PHD, Texas A&M University, 2006

Torabi, Katayoun, Instructional Assistant Professor
English
PHD, Texas A&M University, 2018

Torres, Jacob, Senior Lecturer
Civil Engineering
PHD, Rice University, 2016

Torres, Mario S, Professor
Educ Admn & Human Resource Dev
PHD, Pennsylvania State University, 2003

Torres, Shaun D, Clinical Assistant Professor
Texas A&M University at Qatar
MLS, George Washington University, 2012

Townsend Grace, Instructional Associate Professor
Foundational Sciences
MS, University of Houston at Clear Lake, 1983

Trabelsi, Saber, Assistant Professor
Texas A&M University at Qatar
PHD, University Paris 7 (Paris, France), 2010

Traber, Daniel S, Professor
Liberal Studies
PHD, University of Houston, 2000

Trache, Andreea, Associate Professor
Biomedical Engineering
PHD, Institute of Atomic Physics, Romania, 1996

Tribble, Robert E, Senior Professor
Physics & Astronomy
PHD, Princeton University, 1973

Triplett, Robert G, Clinical Professor
Oral & Maxillofacial Surgery
DDS, Loyola University, 1963

Tripode, Jessica, Lecturer
Mathematics
MS, Texas A&M University, 2019

Tripp, Andrew Reed, Assistant Professor
Architecture
PHD, University of Pennsylvania, 2017

Tropina, Albina, Research Professor
Aerospace Engineering
PHD, Kyiv Aviation University, 2012
PHD, V.N. Karazin Kharkiv National University, 2000

Troy, Alesia C, Clinical Professor
Marketing
PHD, Texas A&M University, 1997

Tsai, Robert Y, Associate Professor
Institute of Biosciences & Tec
PHD, John Hopkins University School of Medicine, 1996

Tse, Senyo Y, Professor
Accounting
PHD, University of California - Berkeley, 1983

Tsenn, Joanna N, Instructional Assistant Professor
Mechanical Engineering
PHD, Texas A&M University, 2016

Tseregounis, Spyros, Professor of the Practice
Mechanical Engineering
PHD, University of California, Los Angeles, 1984

Tsvetkov, Pavel V, Associate Professor
Nuclear Engineering
PHD, Texas A&M University, 2002

Tsvetkova, Galina V, Lecturer
Nuclear Engineering
PHD, Texas A&M University, 2003
Tu, Qing, Assistant Professor
Materials Science & Engr
PHD, Duke University, 2017

Tucker-Drob, Robin D, Associate Professor
Mathematics
PHD, California Institute of Technology, 2013

Tuhkanen, Mikko J, Professor
English
PHD, University at Buffalo, 2005

Tunnell, John C, Adjunct Assistant Professor
Periodontics
DDS, Baylor College of Dentistry, 2016

Tuo, Rui, Assistant Professor
Industrial & Systems Eng
PHD, Chinese Academy of Sciences, 2013

Turnbow, Sonia L, Clinical Assistant Professor
College of Nursing
MNU, The University of Texas at El Paso, 1995

Turner, Kenneth E, Lab Instructor
Veterinary Pathobiology
DVM, University of Pennsylvania, 1992

Tyagi, Aakash, Professor of the Practice
Computer Science & Engineering
PHD, University of Louisiana, 1993

Tyler Jr, John E, Senior Lecturer
Electrical & Computer Eng
MS, University of Central Texas, 1979

Tzortzakis, Stylianos, Professor
Texas A&M University at Qatar
PHD, Ecole Polytechnique, France, 2001

Ugaz, Ana G, Associate Professor
TAMU Libraries
MLS, Dominican University, 1999

Ugaz, Victor M, Professor
Biomedical Engineering
PHD, Northwestern University, 1999

Umorin, Mikhail P, Instructional Assistant Professor
Biomedical Sciences
PHD, Baylor University, 2006

Unterman, Katherine R, Associate Professor
History
PHD, Yale University, 2011

Ura, Joseph, Associate Professor
Texas A&M University at Qatar
PHD, University of North Carolina Chapel Hill, 2006

Ura, Joseph D, Professor
Political Science
PHD, University of North Carolina Chapel Hill, 2006

Ureta, Manuelita, Associate Professor
Economics
PHD, UCLA, 1987

Utterback, Virginia A, Associate Professor
College of Nursing
PHD, Texas Tech University, 2010

Vaaler, Alyson S, Assistant Professor
TAMU Libraries
MLS, University of Wisconsin, 2013

Vadali, Sharada, Senior Lecturer
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1996

Vadali, Srinivas R, Professor
Aerospace Engineering
PHD, Virginia Tech, 1983

Vaddiraju, Sreram, Associate Professor
Chemical Engineering
PHD, University of Louisville, 2006

Vaddiraju, Sreram, Associate Professor
Materials Science & Engr
PHD, University of Louisville, 2006

Vaghetto, Rodolfo, Research Assistant Professor
Nuclear Engineering
PHD, Texas A&M University, 2013

Vahdat Zad, Vahid, Visiting Lecturer
Architecture
PHD, Texas A&M University, 2014

Vaid, Jyotsna, Professor
Psychological & Brain Sciences
PHD, McGill University, 1982

Valant, John R, Adjunct Assistant Professor
Orthodontics
DDS, Loyola University, Chicago, 1979

Valasek, John L, Professor
Aerospace Engineering
PHD, University of Kansas, 1995

Valdez Flores, Ciriaco, Professor of the Practice
Industrial & Systems Eng
PHD, Texas A&M University, 1987

Vales, Maria Isabel, Associate Professor
Horticultural Sciences
PHD, University of Vigo, Spain, 1996

Vallone, Jessica M, Clinical Assistant Professor
Vet Large Animal Clinical Sc
DVM, Mississippi State University, 2012

Vallone, Lucien V, Clinical Assistant Professor
Vet Small Animal Clinical Sc
DVM, Mississippi State University, 2011
Van De Logt, Martinus J, Associate Professor
Texas A&M University at Qatar
PHD, Oklahoma State University, 2002

Van Hengstum, Peter J, Associate Professor
Marine and Coastal Environmental Science
PHD, Dalhousie University, Canada, 2011

Van Zandt, Shannon S, Professor
Land Arch & Urban Planning
PHD, University of North Carolina at Chapel Hill, 2004

Van, Suzanne M, Clinical Assistant Professor
College of Nursing
MNU, University of Texas at El Paso, 2014

Vanalstyne, John A, Executive Professor
College of Business
MS, Department of the Army, 1976

Vanduinkerken, Wyoma R, Professor
TAMU Libraries
MLS, University of Illinois, 2000

Vanegas, Jorge A, Professor
Architecture
PHD, Stanford University, 1988

Varadarajan, Poondi, Distinguished Professor
Marketing
PHD, University of Massachusetts Amherst, 1979

Vargas, Sylvia, Clinical Assistant Professor
College of Nursing
MNU, Texas A&M University Corpus Christi, 2013

Varghese, Adel, Instructional Associate Professor
Economics
PHD, University of Pennsylvania, 1996

Vargo, Edward L, Professor
Entomology
PHD, University of Georgia, Athens, 1986

Varner, Dickson D, Professor
Vet Large Animal Clinical Sc
DVM, University of Missouri, 1978

Varner, Gary E, Professor
Philosophy & Humanities
PHD, University of Wisconsin - madison, 1988

Vasilakis, Apostolos, Instructional Associate Professor
English
PHD, Emory University, 2004

Vassar, William, Adjunct Professor
School of Law
JD, University of Oklahoma School of Law, 2002

Vaught, David J, Professor
History
PHD, University of California, Davis, 1997

Vazquez, Jose A, Senior Lecturer
Industrial & Systems Eng
MA, University of Iowa, 1986

Vechan, Ryan J, Assistant Professor of the Practice
Maritime Transportation
JD, University of Houston, 2014

Vechot, Luc N, Associate Professor
Texas A&M University at Qatar
PHD, Ecole Nationale Superieure des Mines de Saint Etienne, France, 2007

Vedenov, Dmitry, Associate Professor
Agricultural Economics
PHD, Ohio State University, 2001

Vedlitz, Arnold, Professor
Public Service & Administration
PHD, University of Houston, 1975

Vela, Carmen G, Clinical Assistant Professor
College of Nursing
DNP, American Sentinel University, 2018

Veldman, Joseph, Assistant Professor
Ecology and Conservation Biology
PHD, University of Florida, 2010

Veldman, Robin, Assistant Professor
College of Liberal Arts
PHD, University of Florida, 2018

Velez, Rodrigo A, Associate Professor
Economics
PHD, University of Rochester, 2009

Vemulapalli, Ramesh, Professor
Veterinary Pathobiology
PHD, University of Maryland, 1996
BVSc, Andhra Pradesh Agricultural University, India, 1986

Vemulapalli, Tracy H, Clinical Associate Professor
Veterinary Pathobiology
DVM, Virginia-Maryland Regional College of Veterinary Medicine, 1998

Venkatraj, Vijayanagaram S, Clinical Associate Professor
Vet Integrative Biosciences
PHD, New York University, 1992

Ventura, Emanuele, Visiting Assistant Professor
Mathematics
PHD, Aalto University, 2017

Verduzco Jr, Rene A, Clinical Assistant Professor
College of Pharmacy
PHARMD, The University of Texas Health Science Center at Houston, 2011

Verhoef, Aart, Assistant Professor
Soil & Crop Sciences
PHD, Ludwig-Maximilians-Universität München, 2007

Versaw, Wayne K, Professor
Biology
PHD, University of Wisconsin - Madison, 1995
Vess, Matthew K, Associate Professor
Psychological & Brain Sciences
PHD, University of Missouri, 2010

Vestal, Evan D, Senior Lecturer
Eng Tech & Ind Distribution
MBA, Sam Houston State University, 1998

Vidakovic, Branišlav, Professor
Statistics
PHD, Purdue University, 1992

Vieira-De-Castro, Luis, Professor
Anthropology
PHD, Texas A&M University, 2001

Vilaros, Teresa M, Professor
Hispanic Studies
PHD, University of Georgia, 1989

Villalobos, Jose R, Associate Professor
Hispanic Studies
PHD, University of California Irvine, 1998

Villareal, Samuel S, Senior Lecturer
Electrical & Computer Eng
PHD, Texas A&M University, 1999

Vina, Stephen R, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2001

Vinayak, Fnu, Assistant Professor
Mechanical Engineering
PHD, Purdue University, 2016

Viruru, Radhika, Clinical Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 1998

Viser, Victor J, Instructional Associate Professor
Liberal Studies
PHD, Temple University, 1995

Vishnubhat, Saurabh, Associate Professor
School of Law
JD, University of New Hampshire School of Law, 2010
LLM, University of New Hampshire School of Law, 2010

Voelker, Gary, Professor
Ecology and Conservation Biology
PHD, University of Washington, 1998

Voges Gariepy, Andra-Kay, Clinical Professor
Vet Large Animal Clinical Sc
DVM, Texas A&M University, 1991

Volcic, Jurij, Visiting Assistant Professor
Mathematics
PHD, University of Auckland, 2018

Von Conten, William, Adjunct Professor
Petroleum Engineering
BS, Texas A&M University, 1988

Von Vacano, Diego A, Professor
Political Science
PHD, Princeton University, 2003

Voneiff, George W, Professor of the Practice
Petroleum Engineering
MS, Texas A&M University, 1992

Vorobets, Mariya, Instructional Assistant Professor
Mathematics
PHD, Lviv National University, 2004

Vorobets, Yaroslav, Associate Professor
Mathematics
PHD, Moscow Lomonosov State University, 1998

Vu, Mary T, Clinical Assistant Professor
Dental Hygiene
MS, Texas A&M University Baylor College of Dentistry, 2013

Waas, Jack R, Senior Lecturer
Chemistry
PHD, University of Michigan, 1997

Waer, Richard, Associate Professor of the Practice
Nuclear Engineering
BS, The University of Arizona, 1989

Wagner, Lisa, Lecturer
College of Nursing
MPH, University of Texas Health Science Center at Houston, 2018

Waite, Lucy J, Instructional Associate Professor
Health & Kinesiology
CERT, Athletics and Fitness Associations of America, 2019

Walewski, John A, Associate Professor of the Practice
Civil Engineering
PHD, University of Texas, 2005

Walichowski, Miranda F, Clinical Associate Professor
Educational Psychology
PHD, Texas A&M University, 2009

Walker, Duncan M, Professor
Computer Science & Engineering
PHD, Carnegie Mellon University, 1986

Wallace, David Shane, Lecturer
Liberal Studies
PHD, Louisiana State University, 2011
Wallace, James P, Lecturer
Eng Tech & Ind Distribution
MS, Texas A&M University, 1993

Wallace, William D, Adjunct Professor
School of Law
JD, Texas Wesleyan University School of Law, 2009

Wallis, Cara J, Associate Professor
Communication
PHD, University of Southern California, 2008

Walsh, Alexandra, Assistant Professor
Biomedical Engineering
PHD, Vanderbilt University, 2015

Walsh, Jonelle L, Assistant Professor
Physics & Astronomy
PHD, University of California, Irvine, 2011

Walsh, Michael, Associate Professor of the Practice
Mechanical Engineering
MFA, University of Southern California, 2001

Waltemyer, David S, Clinical Associate Professor
Health & Kinesiology
PHD, Texas A&M University, 2006

Walther, David R, Assistant Lecturer
Ag Leadership, Educ & Comm
MS, Texas Tech University, 2011

Waltz, Micah J, Lecturer
Vet Integrative Biosciences
MS, West Virginia University, 2014

Walzem, Rosemary L, Professor
Poultry Science
PHD, University of California, Davis, 1987

Wang, Dechun, Professor
Accounting
PHD, University of Missouri - Columbia, 2004

Wang, Fen, Professor
Institute of Biosciences & Tec
PHD, Clarkson University, 1994

Wang, Fengming, Clinical Assistant Professor
Endodontics
PHD, West China College of Stomatology, 2006

Wang, Jia, Professor
Educ Admn & Human Resource Dev
PHD, University of Georgia, 2004

Wang, Jun, Assistant Professor
Recreation, Park & Tourism Sc
PHD, Colorado State University, 2013

Wang, Jyhwen, Professor
Eng Tech & Ind Distribution
PHD, Northwestern University, 1991

Wang, Lifan, Professor
Physics & Astronomy
PHD, University of Science and Technology of China, 1993

Wang, Ping, Associate Professor
Maritime Business Administration
PHD, The Ohio State University, 2007

Wang, Qian, Associate Professor
Biomedical Sciences
PHD, Chinese Academy of Sciences, 1998

Wang, Shiren, Associate Professor
Industrial & Systems Eng
PHD, Florida State University, 2006

Wang, Suojin, Professor
Statistics
PHD, University of Texas at Austin, 1988

Wang, Tiandong, Assistant Professor
Statistics
PHD, Cornell University, 2019

Wang, Xiaofang, Associate Professor
Biomedical Sciences
DDS, Fourth Military Medical University, China, 2003

Wang, Xiubin B, Professor
Civil Engineering
PHD, University of California, Irvine, 2001

Wang, Xuan, Instructional Assistant Professor
College of Science
PHD, Texas A&M University, 2016

Wang, Ya, Associate Professor
Mechanical Engineering
PHD, Virginia Tech, 2012

Wang, Yen J, Instructional Assistant Professor
Industrial & Systems Eng
DEN, Northwestern University, 1991

Ward Ober, Elizabeth S, Research Professor
Molecular & Cellular Medicine
PHD, University of Cambridge, 1985
Ward, Joseph D, Professor
Mathematics
PHD, Indiana University, 1973

Ward, Ronald G, Senior Lecturer
Computer Science & Engineering
PHD, Texas A&M University, 1973

Ward, Sherry D, Instructional Assistant Professor
Texas A&M University at Qatar
MS, The School for International Training, 1998

Warden, Robert R, Professor
Architecture
MAR, Texas A&M University, 1986

Ware, Michael L, Adjunct Professor
School of Law
JD, University of Houston Law Center, 1983

Waren, Warren P, Instructional Associate Professor
Sociology
PHD, Texas A&M University, 2008

Weare Jr, William H, Assistant Professor
TAMU Libraries
MLS, University of Iowa, 2004

Webb, Debra, Lecturer
Agricultural Economics
MS, Texas A&M University, 1986

Waters, Michael R, University Distinguished Professor
Anthropology
PHD, The University of Arizona, 1980

Waterworth, Leonard D, Executive Professor
Maritime Business Administration
MS, US Army War College, 2000

Watkins, Jeffrey P, Professor
Vet Large Animal Clinical Sc
DVM, Kansas State University, 1980

Watson, Karan L, Senior Professor
Electrical & Computer Eng
PHD, Texas Tech University, 1982

Watson, Nancy T, Clinical Professor
Educ Admn & Human Resource Dev
PHD, Texas A&M University, 1998

Watson, Wesley, Lecturer
Ecology and Conservation Biology
PHD, Texas A&M University, 1999

Watts, Ashlee E, Associate Professor
Vet Large Animal Clinical Sc
DVM, Colorado State University, 2003

Watts, John, Associate Professor
TAMU Libraries
MLS, Indiana University, 2009

Watzak, Bree C, Clinical Associate Professor
College of Pharmacy
PHD, University of Houston College of Pharmacy, 2008

Waxman, Hersholt C, Professor
Teaching, Learning & Culture
PHD, University of Illinois at Chicago, 1982

Weary, Katherine T, Assistant Professor of the Practice
International Affairs
MA, The George Washington University, 2005

Weaver, Andy, Lecturer
Accounting
MS, Texas A&M University, 1987

Weaver, Constance D, Professor
Accounting
PHD, Arizona State University, 1997
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Department</th>
<th>University</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webb, Don A</td>
<td>Senior Lecturer</td>
<td>Eng Tech & Ind Distribution</td>
<td>MBA, Harvard Business School, 1979</td>
<td></td>
</tr>
<tr>
<td>Webb, Robert C</td>
<td>Professor</td>
<td>Physics & Astronomy</td>
<td>PHD, Princeton University, 1972</td>
<td></td>
</tr>
<tr>
<td>Weber, Nathaniel R</td>
<td>Lecturer</td>
<td>History</td>
<td>PHD, Texas A&M University, 2016</td>
<td></td>
</tr>
<tr>
<td>Webster, Robert Blair</td>
<td>Professor Of The Practice</td>
<td>College of Engineering</td>
<td>PHD, Purdue University, 1988</td>
<td></td>
</tr>
<tr>
<td>Weeks, Bradley R</td>
<td>Professor</td>
<td>Veterinary Pathobiology</td>
<td>PHD, Kansas State University, 1988</td>
<td>DVM, Oklahoma State University, 1983</td>
</tr>
<tr>
<td>Wegener, Robert P</td>
<td>Assistant Lecturer</td>
<td>Ag Leadership, Educ & Comm</td>
<td>MS, Oklahoma State University, 1975</td>
<td></td>
</tr>
<tr>
<td>Wehrly, Thomas E</td>
<td>Senior Professor</td>
<td>Statistics</td>
<td>PHD, University of Wisconsin - Madison, 1976</td>
<td></td>
</tr>
<tr>
<td>Weichold, Mark H</td>
<td>Professor</td>
<td>Electrical & Computer Eng</td>
<td>PHD, Texas A&M University, 1983</td>
<td></td>
</tr>
<tr>
<td>Weijermars, Rudy</td>
<td>Professor</td>
<td>Petroleum Engineering</td>
<td>PHD, University of Uppsala, 1987</td>
<td></td>
</tr>
<tr>
<td>Weimer, Michael B</td>
<td>Professor</td>
<td>Physics & Astronomy</td>
<td>PHD, California Institute of Technology, 1986</td>
<td></td>
</tr>
<tr>
<td>Welch, George R</td>
<td>Professor</td>
<td>Physics & Astronomy</td>
<td>PHD, Massachusetts Institute of Technology, 1989</td>
<td></td>
</tr>
<tr>
<td>Welch, Jennifer L</td>
<td>Professor</td>
<td>Computer Science & Engineering</td>
<td>PHD, Massachusetts Institute of Technology, 1988</td>
<td></td>
</tr>
<tr>
<td>Wellman, Paul J</td>
<td>Professor</td>
<td>Psychological & Brain Sciences</td>
<td>PHD, Iowa State University, 1980</td>
<td></td>
</tr>
<tr>
<td>Wells, Gregg B</td>
<td>Associate Professor</td>
<td>Molecular & Cellular Medicine</td>
<td>MD, The University of Chicago, 1989</td>
<td></td>
</tr>
<tr>
<td>Wells, Robert J</td>
<td>Associate Professor</td>
<td>Marine Biology</td>
<td>PHD, Louisiana State University, 2007</td>
<td></td>
</tr>
<tr>
<td>Wells-Beede, Elizabeth R</td>
<td>Clinical Assistant Professor</td>
<td>College of Nursing</td>
<td>PHD, Capella University, 2018</td>
<td></td>
</tr>
<tr>
<td>Welsh Jr, Thomas H</td>
<td>Professor</td>
<td>Animal Science</td>
<td>PHD, North Carolina State University, 1980</td>
<td></td>
</tr>
<tr>
<td>Welsh, Christabel Jane</td>
<td>Professor</td>
<td>Vet Integrative Biosciences</td>
<td>PHD, London University, 1981</td>
<td></td>
</tr>
<tr>
<td>Welsh, Mark</td>
<td>Professor</td>
<td>Bush School of Govt. - Deans</td>
<td>MA, Webster University, 1987</td>
<td></td>
</tr>
<tr>
<td>Welsh, Nancy A</td>
<td>Professor</td>
<td>School of Law</td>
<td>JD, Harvard University, 1982</td>
<td></td>
</tr>
<tr>
<td>Wen, Sy-Bor</td>
<td>Associate Professor</td>
<td>Mechanical Engineering</td>
<td>PHD, University of California, Berkeley, 2006</td>
<td></td>
</tr>
<tr>
<td>Wenzel, Theresa M</td>
<td>Instructional Professor</td>
<td>Health & Kinesiology</td>
<td>MED, Baylor University, 1992</td>
<td></td>
</tr>
<tr>
<td>Werner, Cynthia A</td>
<td>Professor</td>
<td>Anthropology</td>
<td>PHD, Indiana University, 1997</td>
<td></td>
</tr>
<tr>
<td>Wesner Bradley, Clinical Assistant Professor</td>
<td>Management</td>
<td>PHD, Texas A&M University, 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wesner, Kylene J</td>
<td>Instructional Assistant Professor</td>
<td>Communication</td>
<td>PHD, Texas A&M University, 2014</td>
<td></td>
</tr>
<tr>
<td>Wesselowski, Sonya R</td>
<td>Assistant Professor</td>
<td>Vet Small Animal Clinical Sc</td>
<td>DVM, Kansas State University, 2008</td>
<td></td>
</tr>
<tr>
<td>Wesson, Liesl S</td>
<td>Senior Lecturer</td>
<td>Management</td>
<td>MS, Texas A&M University, 1992</td>
<td></td>
</tr>
<tr>
<td>West, Jason</td>
<td>Associate Professor</td>
<td>Ecology and Conservation Biology</td>
<td>PHD, University of Georgia, 2002</td>
<td></td>
</tr>
<tr>
<td>West, William F</td>
<td>Professor</td>
<td>Public Service & Administration</td>
<td>PHD, Rice University, 1981</td>
<td></td>
</tr>
<tr>
<td>Westhusin, Mark E</td>
<td>Professor</td>
<td>Vet Physiology & Pharmacology</td>
<td>PHD, Texas A&M University, 1986</td>
<td></td>
</tr>
<tr>
<td>Weston, Anthony</td>
<td>Instructional Professor</td>
<td>Texas A&M University at Qatar</td>
<td>PHD, Kent State University, 1993</td>
<td></td>
</tr>
</tbody>
</table>
Weston, Cynthia G, Assistant Professor
College of Nursing
DNP, University of Texas Health Science Center San Antonio, 2014

Weston, Jaye S, Clinical Assistant Professor
College of Pharmacy
MS, University of Houston, 1983

Wherley, Benjamin G, Associate Professor
Soil & Crop Sciences
PHD, North Carolina State University, 2008

Whitcomb, Della K, Senior Lecturer
Information & Operations Mgmt
MS, Texas A&M University, 1998

Whitcomb, John D, Professor
Aerospace Engineering
PHD, Virginia Tech, 1988

White, Edward B, Professor
Aerospace Engineering
PHD, Arizona State University, 2000

White, Edward C, Executive Professor
Finance
MBA, University of Hawaii, 1972

White, James D, Senior Lecturer
Chemical Engineering
BA, Texas A&M University, 1978

White, Laura G, Instructional Assistant Professor
Liberal Studies
MS, University of Bradford, UK, 2011

White, Lowell M, Instructional Associate Professor
English
PHD, Texas A&M University, 2010

White, Sarah H, Assistant Professor
Animal Science
PHD, University of Florida, 2014

White-Corey, Shelley J, Clinical Assistant Professor
College of Nursing
MNUR, The University of Texas Health Science Center at Houston, 2011

Whitacre, Matthew M, Senior Lecturer
Eng Tech & Ind Distribution
MEN, Texas A&M University, 1984

Whiteside, Erin, Clinical Assistant Professor
Educational Psychology
PHD, University of Georgia, 2019

Whitfield, Jennifer G, Instructional Associate Professor
Mathematics
MS, Texas A&M University, 2000

Whitfield-Cargile, Canaan M, Assistant Professor
Vet Large Animal Clinical Sc
DVM, University of Georgia, 2006

Whitman, John M, Visiting Lecturer
Construction Science
BS, Texas A&M University, 1989

Whitten, Gary D, Clinical Professor
Information & Operations Mgmt
PHD, Louisiana Tech University, 2004

Whitten, Guy D, Professor
Political Science
PHD, University of Rochester, 1994

Wickersham, Tryon A, Associate Professor
Animal Science
PHD, Kansas State University, 2006

Wickliff, Tanya V, Professor of the Practice
College of Engineering
PHD, Texas A&M University, 2005

Wicksten, Mary K, Professor
Biology
PHD, University of Southern California, 1977

Wiederwohl, Christina L, Instructional Associate Professor
Oceanography
PHD, Texas A&M University, 2012

Wiegert, Jeffrey, Instructional Assistant Professor
Animal Science
PHD, North Carolina State University, 2019

Wiener, Dominique Judith, Clinical Assistant Professor
Veterinary Pathobiology
PHD, University of Bern, Switzerland, 2011
DVM, University of Bern, 2010

Wigfall, Lisa T, Assistant Professor
Health & Kinesiology
PHD, University of South Carolina, 2009

Wiggins, Steven N, Professor
Economics
PHD, Massachusetts Institute of Technology, 1979

Wijekumar, Kausalai, Professor
Teaching, Learning & Culture
PHD, The Pennsylvania State University, 2000

Wilborn, David F, Associate Professor
Performance Studies
PHD, University of Texas, 1994

Wilcox, Bradford, Professor
Ecology and Conservation Biology
PHD, Texas A&M University, 1986

Wildey, William L, Adjunct Assistant Professor
Endodontics
DDS, Georgetown University, 1976
Wilhelm, Jennifer, Assistant Professor
TAMU Libraries
MLS, University of North Texas, 2015

Wilhite, Benjamin A, Associate Professor
Chemical Engineering
PHD, University of Notre Dame, 2003

Wilkerson, Justin, Assistant Professor
Materials Science & Engr
PHD, Johns Hopkins University, 2014

Wilkerson, Justin W, Assistant Professor
Mechanical Engineering
PHD, Johns Hopkins University, 2014

Wilkins, Gwendolyn M, Lecturer
Teaching, Learning & Culture
MED, Texas A&M University, 2014

Wilkinson, Heather H, Professor
Plant Pathology & Microbiology
PHD, Binghamton University, 1996

Willey, Harley M, Lecturer
Eng Tech & Ind Distribution
BS, Texas A&M University, 1978

Williams, Craig E, Adjunct Associate Professor
Oral & Maxillofacial Surgery
DDS, Baylor College of Dentistry, 1972

Williams, Dominique, Visiting Lecturer
Health & Kinesiology
PHD, Texas A&M University, 2019

Williams, Gary W, Professor
Agricultural Economics
PHD, Purdue University, 1981

Williams, John, Assistant Professor
Teaching, Learning & Culture
PHD, The University of North Carolina at Charlotte, 2019

Williams, Kamala V, Lecturer
Teaching, Learning & Culture
PHD, Texas A&M University, 2010

Williams, Richard, Professor
Electrical & Computer Eng
PHD, University of California at Berkeley, 1978

Williams, Richard, Professor
Materials Science & Engr
PHD, University of California at Berkeley, 1978

Williams, Sara S, Lecturer
Liberal Studies
CERT, National Association of Underwater Instructors, 2004

Williamson, Robert, Adjunct Assistant Professor
Pediatric Dentistry
DDS, The University of Texas Health Science Center at San Antonio, 2005

Williamson, Vickie M, Instructional Professor
Chemistry
PHD, University of Oklahoma, 1992

Willingham, Kristen L, Instructional Assistant Professor
Health & Kinesiology
MS, Texas A&M University, 2014

Wilson, Christin M, Lecturer
Chemical Engineering
PHD, The Ohio State University, 2012

Wilson, Kelly L, Professor
Health & Kinesiology
PHD, Texas A&M University, 2004

Wilson-Robles, Heather M, Professor
Vet Small Animal Clinical Sc
DVM, University of Tennessee, 2003

Winemiller, Kirk, Professor
Ecology and Conservation Biology
PHD, University of Texas, 1987

Winemiller, Leslie K, Instructional Assistant Professor
Biology
PHD, University of Texas at Austin, 1989

Wingenbach, Gary J, Professor
Ag Leadership, Educ & Comm
PHD, Iowa State University, 1995

Winking, Jeffrey W, Associate Professor
Anthropology
PHD, The University of New Mexico, 2005

Winkley, Shel, Lecturer
Atmospheric Sciences
BS, Texas A&M University, 2007

Winslow, Jane Futrell, Assistant Professor
Land Arch & Urban Planning
PHD, The University of Texas, 2015
MLA, Kansas State University, 2010

Winslow, William Palmer, Professor Of The Practice
Land Arch & Urban Planning
MLA, University of Michigan, 1982

Winter, Leslie J, Instructional Assistant Professor
TAMU Libraries
MLS, Indiana University, 2017

Wiseman, Melissa, Instructional Professor
Maritime Business Administration
PHD, Texas Tech University, 1999

Witherden, Freddie, Assistant Professor
Ocean Engineering
PHD, Imperial College London, UK, 2015
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
<th>Department</th>
<th>Institution(s)</th>
<th>Date(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withers, Michael C</td>
<td>Associate Professor</td>
<td>Management</td>
<td>Arizona State University</td>
<td>2011</td>
</tr>
<tr>
<td>Witherspoon, Sarah J</td>
<td>Professor</td>
<td>Mathematics</td>
<td>University of Chicago</td>
<td>1994</td>
</tr>
<tr>
<td>Wolf, Charles M</td>
<td>Professor of the Practice</td>
<td>Civil Engineering</td>
<td>Texas A&M University</td>
<td>2001</td>
</tr>
<tr>
<td>Wolf, Joan B</td>
<td>Associate Professor</td>
<td>Women's Studies</td>
<td>University of Chicago</td>
<td>1997</td>
</tr>
<tr>
<td>Wolfe, Anna W</td>
<td>Associate Professor</td>
<td>Communication</td>
<td>Ohio University</td>
<td>2013</td>
</tr>
<tr>
<td>Wolfe, Christopher J</td>
<td>Professor</td>
<td>Accounting</td>
<td>Kent State University</td>
<td>1984</td>
</tr>
<tr>
<td>Wolfe, Joda</td>
<td>Instructional Assistant Professor</td>
<td>Health & Kinesiology</td>
<td>Ohio University</td>
<td>2012</td>
</tr>
<tr>
<td>Wolinsky, Lawrence E</td>
<td>Professor</td>
<td>Periodontics</td>
<td>Tufts University</td>
<td>1980</td>
</tr>
<tr>
<td>Wolken, Lawrence C</td>
<td>Senior Professor</td>
<td>Finance</td>
<td>Texas A&M University</td>
<td>1972</td>
</tr>
<tr>
<td>Wollock, Jennifer G</td>
<td>Professor</td>
<td>English</td>
<td>Harvard University</td>
<td>1981</td>
</tr>
<tr>
<td>Woltering, Steven</td>
<td>Associate Professor</td>
<td>Educational Psychology</td>
<td>University of Toronto</td>
<td>2012</td>
</tr>
<tr>
<td>Womack, James E</td>
<td>Senior Professor</td>
<td>Veterinary Pathobiology</td>
<td>Oregon State University</td>
<td>1968</td>
</tr>
<tr>
<td>Wong, Ka Wai</td>
<td>Associate Professor</td>
<td>Statistics</td>
<td>University California, Davis</td>
<td>2014</td>
</tr>
<tr>
<td>Wong, Lolo</td>
<td>Clinical Assistant Professor</td>
<td>Pediatric Dentistry</td>
<td>Creighton University</td>
<td>1990</td>
</tr>
<tr>
<td>Wong, Zi Jing</td>
<td>Assistant Professor</td>
<td>Aerospace Engineering</td>
<td>University of California, Berkeley</td>
<td>2015</td>
</tr>
<tr>
<td>Wooley, Karen L</td>
<td>University Distinguished Professor</td>
<td>Chemistry</td>
<td>Cornell University</td>
<td>1993</td>
</tr>
<tr>
<td>Woodard, Denise</td>
<td>Instructional Assistant Professor</td>
<td>Health & Kinesiology</td>
<td>University of Central Missouri</td>
<td>2000</td>
</tr>
<tr>
<td>Woodcock, David R</td>
<td>Adjunct Professor</td>
<td>School of Law</td>
<td>The University of Texas School of Law</td>
<td>2000</td>
</tr>
<tr>
<td>Woodfin, Samuel</td>
<td>Lecturer</td>
<td>Visualization</td>
<td>Laguna College of Art and Design</td>
<td>2018</td>
</tr>
<tr>
<td>Woodman, Christopher R</td>
<td>Associate Professor</td>
<td>Health & Kinesiology</td>
<td>University of Arizona</td>
<td>1995</td>
</tr>
<tr>
<td>Woodruff, Sierra C</td>
<td>Assistant Professor</td>
<td>Land Arch & Urban Planning</td>
<td>University of North Carolina at Chapel Hill</td>
<td>2017</td>
</tr>
<tr>
<td>Woods, Timothy S</td>
<td>Instructional Professor</td>
<td>Sociology</td>
<td>Texas A&M University</td>
<td>2000</td>
</tr>
<tr>
<td>Woodward, Richard T</td>
<td>Professor</td>
<td>Agricultural Economics</td>
<td>University of Wisconsin</td>
<td>1997</td>
</tr>
<tr>
<td>Woodward, Robert S</td>
<td>Clinical Associate Professor</td>
<td>Educational Psychology</td>
<td>Texas A&M University</td>
<td>2004</td>
</tr>
<tr>
<td>Wooley, Karen L</td>
<td>University Distinguished Professor</td>
<td>Chemistry</td>
<td>Cornell University</td>
<td>1993</td>
</tr>
<tr>
<td>Wooley, Karen L</td>
<td>Professor</td>
<td>Materials Science & Engr</td>
<td>Cornell University</td>
<td>1993</td>
</tr>
<tr>
<td>Woosley, James R</td>
<td>Instructional Professor</td>
<td>Health & Kinesiology</td>
<td>Western Illinois University</td>
<td>1975</td>
</tr>
</tbody>
</table>
Wooten, Leon, Lab Instructor
Biology
PHD, Texas A&M University, 1998

Workman, Michael D, Associate Professor
Educ Admn & Human Resource Dev
PHD, Georgia State University, 2000

Worthy, Darrell A, Associate Professor
Psychological & Brain Sciences
PHD, University of Texas, 2010

Wortman, Martin A, Senior Professor
Industrial & Systems Eng
PHD, Virginia Tech, 1988

Wright Jr, John M, Professor
Diagnostic Sciences
DDS, West Virginia University, 1973

Wright, David L, Professor
Health & Kinesiology
PHD, Pennsylvania State University, 1989

Wright, George C, Professor
History
PHD, Duke University, 1977

Wright, Lesley M, Associate Professor
Mechanical Engineering
PHD, Texas A&M University, 2006

Wright, Lori E, Professor
Anthropology
PHD, University of Chicago, 1994

Wright, Rachel N, Lab Instructor
Biology
PHD, Texas A&M University, 2011

Wright, Scott, Instructional Assistant Professor
Health & Kinesiology
MA, The University of Texas - Pan American, 1997

Wright, Steven M, Professor
Biomedical Engineering
PHD, University of Illinois, 1984

Wright, Steven M, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1984

Wu, Chaodong, Professor
Nutrition
PHD, Beijing Medical University, 1998

Wu, Guoyao, University Distinguished Professor
Animal Science
PHD, University of Alberta, Canada, 1989

Wu, Hung-Jen, Associate Professor
Chemical Engineering
PHD, Texas A&M University, 2006

Wu, Jianchao, Visiting Assistant Professor
Mathematics
PHD, Vanderbilt University, 2019

Wu, Kan, Assistant Professor
Petroleum Engineering
PHD, The University of Texas at Austin, 2014

Wu, Wei, Assistant Professor
Finance
PHD, University of Chicago, 2015
PHD, Duke University, 2009

Wu, Wenhai, Associate Professor
Materials Science & Engr
PHD, University of Chicago, 1992

Wu, Wenhai, Associate Professor
Physics & Astronomy
PHD, University of Chicago, 1992

Wu, Ximing, Professor
Agricultural Economics
PHD, University of California, Berkeley, 2003

Wu, Xinyuan, Professor
Ecology and Conservation Biology
PHD, University of Tennessee, Knoxville, 1991

Wunneburger, Douglas F, Instructional Professor
Land Arch & Urban Planning
PHD, Texas A&M University, 1992

Wurbs, Ralph A, Senior Professor
Civil Engineering
PHD, Colorado State University, 1978

Wustefeld Janssens, Brandan G, Assistant Professor
Vet Small Animal Clinical Sc
BVM, University of Pretoria, South Africa, 2007

Wyatt, Leigh A, Executive Professor
Dental Hygiene
MS, Baylor College of Dentistry, 2014

Xiang, Ping, Professor
Health & Kinesiology
PHD, Louisiana State University, 1996

Xiao, Yi, Associate Professor
TAMU Libraries
MLS, Emporia State University, 1993

Xie, Le, Professor
Electrical & Computer Eng
PHD, Carnegie Mellon University, 2009

Xie, Linglin, Associate Professor
Nutrition
PHD, Kansas State University, 2008

Xie, Yu Xuan, Assistant Professor
Materials Science & Engr
PHD, University of Sydney, 2013
Xie, Zhigang, Research Assistant Professor
Molecular & Cellular Medicine
PHD, University of Alabama - Birmingham, 2001

Xie, Zhizhang, Associate Professor
Mathematics
PHD, The Ohio State University, 2011

Xiong, Zixiang, Professor
Electrical & Computer Eng
PHD, University of Illinois, 1996

Xu, Guangbo, Visiting Assistant Professor
Mathematics
PHD, Princeton University, 2013

Xu, Shenglong, Research Assistant Professor
Physics & Astronomy
PHD, Univ of California, San Diego, 2017

Xu, Shiqing, Research Associate Professor
Chemistry
PHD, Fudan University, 2009

Xu, Xiaohui, Associate Professor
Epidemiology & Biostatistics
PHD, University of Pittsburgh, 2007

Xu, Yangyang, Assistant Professor
Atmospheric Sciences
PHD, University of California, San Diego, 2014

Xu, Yi, Associate Professor
Institute of Biosciences & Tec
PHD, The University of Texas Health Science Center at Houston, 1998

Yadav, Kamlesh, Instructional Assistant Professor
Molecular & Cellular Medicine
PHD, New York University, 2011

Yadav, Manjit S, Professor
Marketing
PHD, Virginia Tech, 1990

Yakovlev, Vladislav V, Professor
Biomedical Engineering
PHD, Moscow State University, 1990

Yalcin, Bugrahan, Associate Professor
Teaching, Learning & Culture
PHD, Pennsylvania State University, 2005

Yamauchi, Takashi, Associate Professor
Psychological & Brain Sciences
PHD, Columbia University, 1997

Yan, Huafei, Professor
Mathematics
PHD, Massachusetts Institute of Technology, 1997

Yan, Wei, Professor
Architecture
MAR, University of California - Berkeley, 2004

Yan, Xin, Assistant Professor
Chemistry
PHD, Purdue, 2015

Yancey, Thomas E, Professor
Geology & Geophysics
PHD, University of California, Berkeley, 1971

Yang, Ping, Professor
Atmospheric Sciences
PHD, University of Utah, 1995

Yang, Tian, Assistant Professor
Mathematics
PHD, Rutgers University at New Brunswick, 2013

Yang, Xiaomin, Senior Lecturer
Eng Tech & Ind Distribution
PHD, Purdue University, 2002

Yang, Zheng Y, Professor
TAMU Libraries
MLS, University of Washington, 1990

Yarnold, Matthew T, Assistant Professor
Civil Engineering
PHD, Drexel University, 2013

Yasskin, Philip B, Associate Professor
Mathematics
PHD, University of Maryland, 1979

Yazhari, Yasamin, Adjunct Assistant Professor
Pediatric Dentistry
DDS, The University of Texas Health Science Center at Houston, 2011

Ybarra, Debora, Clinical Assistant Professor
College of Nursing
MSN, University of Texas Health Science Center- Houston, 2013

Yeh, Alvin T, Associate Professor
Biomedical Engineering
PHD, University of California, Berkeley, 2000

Yennello, Sherry J, Professor
Chemistry
PHD, Indiana University, 1990

Yeoman, Michelle S, Lecturer
Vet Integrative Biosciences
MS, Texas A&M University, 2013

Yi Eunjeong, Professor
Foundational Sciences
PHD, University of Houston, 2003

Ying, Qi, Associate Professor
Civil Engineering
PHD, University of California, Davis, 2004

Yoon, Byung-Jun, Associate Professor
Electrical & Computer Eng
PHD, California Institute of Technology, 2007
Yoon, Myeongsun, Associate Professor
Educational Psychology
PHD, Arizona State University, 2007

Yorzinski, Jessica, Assistant Professor
Ecology and Conservation Biology
PHD, University of California Davis, 2012

Young, Devin, Lecturer
George Bush School of Govern
LLM, TJAG Legal Center and School, 2005
JD, George Mason University, 2001

Young, Jamaal, Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2011

Young, James L, Adjunct Professor
School of Law
JD, University of Houston, 1985

Young, Jemimah, Associate Professor
Teaching, Learning & Culture
PHD, Texas A&M University, 2013

Young, Matthew P, Professor
Mathematics
PHD, Rutgers University, 2004

Young, Michael, Professor
Bush School of Govt. - Deans
DJ, Harvard Law School, 1976

Young, Robin F, Professor
Molecular & Cellular Medicine
PHD, Vanderbilt University, 1988

Young, Ryland F, University Distinguished Professor
Biochemistry & Biophysics
PHD, University of Texas at Dallas, 1975

Yu, Alan Zhuhuai, Professor of the Practice
Geology & Geophysics
PHD, University of South Carolina, 1992

Yu, Choongho, Associate Professor
Materials Science & Engr
PHD, University of Texas - Austin, 2004

Yu, Choongho, Associate Professor
Mechanical Engineering
PHD, University of Texas - Austin, 2004

Yu, Guoliang, University Distinguished Professor
Mathematics
PHD, State University Of New York At Stony Brook, 1991

Yu, Ling, Research Associate Professor
Vet Physiology & Pharmacology
PHD, Nanjing Agricultural University, 2001

Yu, Peter K, Professor
School of Law
JD, Yeshiva University, 1999

Yu, Siyu, Lecturer
Land Arch & Urban Planning
PHD, Texas A&M University, 2019

Yuan, Shuhua, Professor
Plant Pathology & Microbiology
PHD, University of Tennessee, 2007

Yum, Ki H, Senior Lecturer
Computer Science & Engineering
PHD, The Pennsylvania State University, 2002

Yust, Christopher G, Assistant Professor
Accounting
PHD, The University of Texas of Austin, 2015

Yvon-Lewis, Shari A, Professor
Oceanography
PHD, University of Miami, 1994

Zadeh, Jamshyd M, Adjunct Professor
School of Law
JD, Southern Methodist University Dedman School of Law, 1988

Zagaris, Bruce, Adjunct Professor
School of Law
LLM, George Washington University, 1973
JD, George Washington University, 1972

Zahabi, Maryam, Assistant Professor
Industrial & Systems Eng
PHD, North Carolina State University, 2017

Zambrano-Roman, Byron Alfonso, Research Assistant Professor
Mechanical Engineering
PHD, Michigan State University, 2017

Zanwar, Preeti C, Instructional Assistant Professor
Epidemiology & Biostatistics
PHD, University of Texas, 2012

Zapata, Gabriela C, Associate Professor
Hispanic Studies
PHD, The Pennsylvania State University, 2002

Zardkooohi, Asghar, Professor
Management
PHD, Virginia Polytechnic Institute and State University, 1977

Zarei, Mahsa, Research Assistant Professor
Vet Physiology & Pharmacology
PHD, University of Mysore (India), 2014

Zartman, Justin A, Adjunct Professor
School of Law
JD, Texas Wesleyan University, 2008

Zeleinco, Igor, Associate Professor
Mathematics
PHD, Technion - Israel Institute of Technology, 2002
Zeng, Lanying, Associate Professor
Biochemistry & Biophysics
PHD, University of Illinois at Urbana-Champaign, 2007

Zeng, Li, Assistant Professor
Industrial & Systems Eng
PHD, University of Wisconsin, Madison, 2009

Zent, Rodney L, Assistant Lecturer
Ag Leadership, Educ & Comm
PHD, Texas A&M University, 1981

Zhan, Hongbin, Professor
Geology & Geophysics
PHD, University of Nevada, Reno, 1996

Zhan, Wei, Professor
Eng Tech & Ind Distribution
PHD, Washington University in St. Louis, 1991

Zhang, Dan D, Professor
Educational Psychology
PHD, University of New Orleans, 1998

Zhang, Dekai, Associate Professor
Institute of Biosciences & Tec
PHD, University of Hong Kong, 1995

Zhang, Hongbin, Professor
Soil & Crop Sciences
PHD, University of California, Davis, 1990

Zhang, Hua, Instructional Assistant Professor
Biomedical Sciences
PHD, University of Missouri-Kansas City, 2010
MD, Qingdao Medical College, Qingdao, China, 1994

Zhang, Junjie, Associate Professor
Biochemistry & Biophysics
PHD, Baylor College of Medicine, 2009

Zhang, Ke, Associate Professor
Institute of Biosciences & Tec
PHD, Kansas State University, 2008

Zhang, Ke, Associate Professor
Nutrition
PHD, Kansas State University, 2008

Zhang, Renyi, University Distinguished Professor
Atmospheric Sciences
PHD, Massachusetts Institute of Technology, 1994

Zhang, Xi, Professor
Electrical & Computer Eng
PHD, University of Michigan, 2002

Zhang, Xiangyang, Associate Professor
Statistics
PHD, University of Illinois at Urbana - Champaign, 2013

Zhang, Xiuren, Professor
Biochemistry & Biophysics
PHD, Cornell University, 2003

Zhang, Xudong, Professor
Biomedical Engineering
PHD, University of Michigan Ann Arbor, 1997

Zhang, Xudong, Professor
Industrial & Systems Eng
PHD, University of Michigan Ann Arbor, 1997

Zhang, Xudong, Professor
Mechanical Engineering
PHD, University of Michigan Ann Arbor, 1997

Zhang, Yige, Assistant Professor
Oceanography
PHD, Yale University, 2015

Zhang, Yu, Associate Professor
Agricultural Economics
PHD, Texas A&M University, 2010

Zhang, Yunlong, Professor
Civil Engineering
PHD, Virginia Tech, 1996

Zhang, Yuzhe, Associate Professor
Economics
PHD, University of Minnesota, 2006

Zhang, Zhe, Assistant Professor
Geography
PHD, Aalto University, 2016

Zhao, Hongwei, Professor
Epidemiology & Biostatistics
PHD, Harvard University School of Public Health, 1997

Zheltikov, Alexey M, Professor
Physics & Astronomy
PHD, M.V. Lomonosov Moscow State University, 1990

Zheng, Qi, Professor
Epidemiology & Biostatistics
PHD, Texas A&M University, 1993

Zhong, Lixian, Assistant Professor
College of Pharmacy
PHD, Duke University, 2011

Zhou, Hongcai J, Professor
Chemistry
PHD, Texas A&M University, 2000

Zhou, Hongcai J, Professor
Materials Science & Engr
PHD, Texas A&M University, 2000

Zhou, Jianxin, Professor
Mathematics
PHD, Pennsylvania State University, 1986

Zhou, Lan, Associate Professor
Statistics
PHD, University of California, Berkeley, 1997
Zhou, Quan, Assistant Professor
Statistics
PHD, Baylor College of Medicine, 2017

Zhou, Yubin, Associate Professor
Institute of Biosciences & Tech
PHD, Georgia State University, 2008

Zhu Salzman, Keyan, Professor
Entomology
PHD, Purdue University, 1994

Zhu, Ding, Professor
Petroleum Engineering
PHD, University of Texas, 1992

Zhu, Guan, Professor
Veterinary Pathobiology
PHD, University of Georgia, 1993

Zhu, Lin, Assistant Professor
College of Pharmacy
PHD, University of Tennessee Health Science Center, 2010

Zhu, Xuemei, Associate Professor
Architecture
PHD, Texas A&M University, 2008

Zilany, Muhammad Shamsul Arefeen, Instructional Assistant Professor
Texas A&M University at Qatar
PHD, McMaster University, 2007

Zimmer, Mary R, Clinical Associate Professor
Marketing
PHD, University of Texas, 1985

Zimmer, Wendi, Visiting Assistant Professor
Health & Kinesiology
PHD, Texas A&M University, 2019

Zimmermann, Mark J, Adjunct Professor
School of Law
JD, University of Virginia, 1975

Zoghi, Behbood B, Professor
Eng Tech & Ind Distribution
PHD, Texas A&M University, 1993

Zollinger, Dan, Professor
Civil Engineering
PHD, University of Illinois at Urbana-Champaign, 1989

Zoran, Debra L, Professor
Vet Small Animal Clinical Sc
PHD, Texas A&M University, 1997
DVM, Kansas State University, 1984

Zoran, Mark J, Professor
Biology
PHD, Iowa State University, 1987

Zou, Jun, Professor
Electrical & Computer Eng
PHD, University of Illinois, 2002

Zou, Lei, Assistant Professor
Geography
PHD, Louisiana State University, 2017

Zou, Na, Instructional Assistant Professor
Industrial & Systems Eng
PHD, Arizona State University, 2015

Zubairy, Muhammad S, University Distinguished Professor
Physics & Astronomy
PHD, University of Rochester, 1979

Zubairy, Sarah, Associate Professor
Economics
PHD, Duke University, 2010

Zuniga, Kelly J, Lecturer
George Bush School of Govern
EDD, University of Houston, 2005

da Silva, Frederico, Clinical Assistant Professor
Periodontics
DDS, Federal University of Santa Catarina, 2006

scialdone, Michael, Clinical Associate Professor
Information & Operations Mgmt
PHD, Syracuse University, 2014
Family Educational Rights and Privacy Act

Texas A&M University informs students annually of the Family Educational Rights and Privacy Act. This Act, with which the University intends to comply fully, is intended to protect the privacy of education records, to establish the rights of students to inspect and review their education records and to provide guidelines for the correction of inaccurate or misleading data through informal and formal hearings. Students also have the right to file complaints with the Family Policy Compliance Office of the Department of Education in Washington, D.C. concerning alleged failures by the University to comply with the Act.

The Family Educational Rights and Privacy Act (FERPA) is a federal law that provides minimum standards for the management of student education records for universities receiving funds made available under any federal program administered by the U.S. Commissioner of Education. The Act provides, among other things, that an institution will maintain the confidentiality of student education records, and students will have the right to inspect their own education records.

This Policy is designed to meet FERPA provisions. Texas A&M University is committed to the good faith implementation of this Policy. Questions may be emailed to ferpa@tamu.edu.

If a student, the parent of a student, or any other individual has a complaint that an official of the University is violating FERPA, and the complaint cannot be satisfactorily resolved within the University, that complaint that an official of the University is violating FERPA, and the complaint cannot be satisfactorily resolved within the University, that complaint to the Family Policy Compliance Office of the Department of Education in Washington, D.C. concerning alleged failures by the University to comply with the Act.

There is a right to inspect and review, with certain limited exceptions, the right to receive explanations and interpretations of the records and to obtain copies of the records when such are needed to allow the student to effectively exercise his/her right of inspection and review. Conduct files maintained by the Student Conduct Office will be administered under its rules.

The right to inspect and review, with certain limited exceptions, the student’s educational records, including the right to receive explanations and interpretations of the records and to obtain copies of the records when such are needed to allow the student to effectively exercise his/her right of inspection and review. Conduct files maintained by the Student Conduct Office will be administered under its rules.

1. The right to inspect and review, with certain limited exceptions, the student’s educational records, including the right to receive explanations and interpretations of the records and to obtain copies of the records when such are needed to allow the student to effectively exercise his/her right of inspection and review. Conduct files maintained by the Student Conduct Office will be administered under its rules.

2. Consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that FERPA authorizes disclosure without consent.

One exception which permits disclosure without consent is disclosure to school officials with legitimate educational interests. A school official is a person or entity: (a) employed by the university or the university system in an administrative, supervisory, academic or research, or support staff position; (b) serving on a university governing body or duly authorized panel or committee; or (c) employed by or under contract to the university to perform a special task, function, or service for the university.

A school official has a legitimate educational interest if the information requested is necessary for that official to (a) perform appropriate tasks that are specified in his/her position description or in the performance of regularly assigned duties by a lawful supervisor; (b)
fulfill the terms of a contractual agreement; (c) perform a task related to a student’s education; (d) perform a task related to the discipline of a student; or (e) provide a service or benefit relating to the student or student's family, such as health care, counseling, financial aid, job placement, or former student-related activities.

Disclosure to a school official having a legitimate educational interest does not constitute university authorization to transmit, share, or disclose any or all information received to third parties unless such disclosure is permitted or required by law.

3. the right to correct a student's education records when the records are inaccurate, misleading or otherwise in violation of FERPA;

4. the right to report violations of FERPA to the Department of Education;

5. the right to be informed about FERPA rights.

All the rights and protections given students under FERPA belong to the student. However, information in student records may be provided to parents/legal guardians without the written consent of the student if the eligible student is a financial dependent of his or her parents/legal guardians as defined under Section 152 of the Internal Revenue Code of 1954.

Records Not Available for Information and Review

Students shall have access to all education records concerning them maintained by the University with the exception of the following:

1. A personal record kept by a university faculty or staff member which meets the following tests:
 a. It is in the personal possession of the individual who made it.
 b. Information contained in it has never been revealed or made available to any other person except the maker's temporary substitute.

2. An employment record which is used in relation to a student's employment by the University, except where an individual in attendance at the University is employed as a result of his or her status as a student.

3. Records relating to a student which are created or maintained by a physician, psychiatrist, psychologist or other recognized professional or para-professional acting in his or her professional or para-professional capacity or assisting in that capacity which are used in connection with the provision of treatment to a student and are not disclosed to anyone other than the individuals providing the treatment.

4. Financial records and statements of a student's parents.

5. Confidential letters and statements of recommendation which were placed in the education records of a student prior to January 1, 1975.

6. Confidential letters and statements of recommendation which were placed in the education records of a student on or after January 1, 1975, if the student has waived his or her right to inspect and review the letters or statements.

7. Records concerning admissions to an academic component of the University which the student has never attended.

Any questions concerning FERPA should be directed to the Office of the Registrar.

Hazing Law Summary (Education Code)

Education Code § 51.936 requirement to publish a summary of Education Code Ch. 37, subchapter F. Hazing in the University Catalog

The following is a summary of Chapter 37, subchapter F. (§§ 37.151-157) of the Texas Education Code, which prohibits hazing in Texas public or private high schools. Texas Education Code §51.936 applies Ch. 37's prohibition on hazing to institutions of higher education. This summary of Chapter 37 is provided as required by § 51.936(d).

Summary

Hazing is a criminal violation under Texas law. A person may be found guilty of criminal conduct for haz ing, encouraging hazing, permitting hazing, or having knowledge of the planning of hazing incidents and failure to report in writing his/her knowledge to the Dean of Students.

Both failing to report hazing and hazing that does not result in serious bodily injury are Class B misdemeanors. Hazing that results in serious bodily injury is a Class A misdemeanor. Hazing resulting in a death is a state jail felony. An organization found guilty of hazing may be fined $5,000 to $10,000 or, for incidents causing personal injury or property damage, an amount double the loss or expenses incurred because of the hazing incident. It is not a defense to prosecution that the person hazed consented to the hazing activity.

Any person reporting a specific hazing incident to the Dean of Students or other appropriate institutional official is immune from civil and criminal liability unless the report is in bad faith or malicious.

The state law does not limit or affect an educational institution's right to enforce its own penalties against hazing.

The Education Code defines hazing as "any intentional, knowing, or reckless act occurring on or off the campus of an educational institution, by one person or acting with others, directed against a student for the purpose of pledging, being initiated into, affiliating with, holding office in, or maintaining membership in an organization." The statute contains a list of conduct which constitutes hazing.

In order to report suspected incidents of hazing, contact the Office of the Dean of Student Life or the police department at your respective campus.

Offices of the Dean of Student Life

Student Services Building, 2nd Floor
471 Houston Street
College Station, TX 77843-1257
(979) 845-3111

Student Affairs
Suite 101, Seibel Student Services Center
Galveston, TX 77554
(409) 740-4736
https://cm.maxient.com/reportingform.php?TAMUGalveston

Office of Student Affairs
Education City
Doha, Qatar
+974.4423.0047
dsa@qatar.tamu.edu
International Agreements

To promote the internationalization of the University and create significant global opportunities for our students and faculty, Texas A&M has active, formal agreements with foreign institutions as well as Reciprocal Educational Exchange Programs (REEP). For information regarding international partnerships, visit the Global Partnership Services (http://globalsupport.tamu.edu/) website, call Public Partnership & Outreach at 979.862.6700, or email globalsupport@tamu.edu. For updated information on global engagement or to search a real-time database for active agreements, please visit globalsupport.tamu.edu (http://globalsupport.tamu.edu/).

All current (as of March 5, 2020) agreements with foreign institutions are as follows:

Argentina
- Universidad del Salvador ¹ (2014)

Australia
- CQ University (2019)
- Curtin University of Technology (2016)
- Queensland University of Technology ¹ (2001)
- University of Adelaide ¹ (2010)
- University of New South Wales ¹ (2014)
 - Australian Defense Academy
- University of Adelaide (2002)
- University of New South Wales (2014)
- University of Queensland ¹ (2001)
- University of Sydney ¹ (2019)
- University of Western Australia (2001)

Austria
- Karl-Franzens-Universität Graz (2017)
- MCI Management Center Innsbruck ¹
- Wirtschaftsuniversität Wien ¹ (2001)
- Vienna University of Economics and Business

Azerbaijan
- Azerbaijan State Agricultural University (2018)

Bangladesh
- North South University (2018)

Belgium
- Université Libre Internationale (Bruxelles) (2016)
- Université de Mons (2014)
- Université de Liége ¹ (2016)
- Université de Liége ¹ (2017)

Brazil
- Fundação Getulio Vargas ¹ (2015)
- Universidade de São Paulo (2017)
- Universidade Federal do Rio de Janeiro (UFRJ) ¹ (2011)
- Universidade federal do Ceará (2001)

Canada
- University of Calgary (2019)

Chile
- Universidad Técnica Federico Santa (2003)

China
- Beihai Haicheng No 1 Experimental Primary School (2019)
- Beihang University (2014)
- Beijing Jiaotong University ¹ (2009)
- Capital University of Economics and Business ¹ (2015)
- Chinese Academy of Sciences (2016)
- Fujian Agriculture & Forestry University (2012)
- Hong Kong University of Science and Technology ¹ (2003)
- Nanchang University (2016)
- Ocean University of China (2007)
- Peking University ¹ (1998)
- Renmin University of China (2015)
- Shandong University (2019)
- Shanghai Institute for International Studies ¹ (2010)
- Shanghai Jiao Tong University ¹ (2002)
- Southwest University (2015)
- Southwestern University of Finance and Economics ¹ (2011)
- Tianjin University (2007)
- Tsinghua University ¹ (2004)
University of Michigan, Shanghai Jiao Tong University, Joint Institute\(^1\) (2018)

University of Nottingham Ningbo\(^1\) (2014)

Wuhan University (2014)

Xiamen University School of Public Health (2016)

Qingdao National Laboratory for Marine Science and Technology Atmospheric Research (2017)

Colombia

Columbian Coffee Growers Federation (2019)

Universidad de los Andes (1995)

Universidad Del Magdalena (2011)

Universidad Industrial de Santander (1987)

Cyprus

University of Cyprus (2014)

Czech Republic

Prague University of Economics\(^1\) (2016)

Denmark

Copenhagen Business School\(^1\) (2002)

Danmarks Tekniske Universitet\(^1\) (DTU) (2016)

Ecuador

Universidad San Francisco de Quito\(^1\) (2004)

University of Cuenca (2015)

Dirección General de Intereses Maritimos (2001)

Egypt

Arab Academy for Science, Technology and Maritime Transport (2016)

Beni-Suef University (2016)

Finland

Aalto University\(^1\) (2016)

Hanken Svenska Handelshögskolan\(^1\) (2015)

France

AGRO3 Federation Des École Supérieures d’ingénieurs en Agriculture (FESIA)\(^1\) (1998)

Aix-Marseille Université (2019)

École de Management De Lyon (EMLYON) Business School\(^1\) (2003)

École Nationale Vétérinaire de Toulouse (2017)

EDHEC Business School\(^1\) (1998)

ESSEC Business School\(^1\) (2019)

Université de Caen\(^1\) (2004)

Universite de Strasbourg\(^1\) (2010)

Germany

Eberhard Karls Universität Tübingen\(^1\) (2002)

European Business School Universität\(^1\) (2008)

German Consortium with Freie, Humboldt, Potsdam Universities\(^1\) (2011)

German Aerospace Center (2018)

Helmut Schmidt Universität\(^1\) (2012)

Munich Business School (2012)

Technische Universität Clausthal\(^1\) (2002)

Universität Hohenheim\(^1\) (2011)

WHU Otto Beisheim School of Management - Koblenz\(^1\) (1986)

Greece

Aristotle University of Thessaloniki (2011)

Ethniko Metsovio Polytechnio (NTUA) (2015)

Institute of Nanoscience and Nanotechnology of the National Centre for Scientific Research (2019)

India

Bangalore University, Jnanabharathi Campus (2016)

Christ University (2016)

Cochin University of Science and Technology (2015)

Indian Institute of Management Kozhikode\(^1\) (2016)

Indian Institute of Petroleum and Energy (2018)

Indian Institute of Technology Gandhinagar (2017)

Indian Institute of Technology Kharagpur (2015)

Indian Institute of Technology Madras\(^1\) (2018)

Jindal School of International Affairs\(^1\) (2012)

Jindal Global University (2016)

MS Ramaiah University of Applied Sciences (2019)

National Law School of India (2017)

O.P. Jindal Global University (2016)

Pandit Deendayal Petroleum University (2010)

RICS School of Built Environment Amity University (2016)
SDM Institute for Management Development¹ (2008)
Seshadripuram Academy for Global Excellence (2019)
University of Agricultural Sciences – Dharwad (2003)

Ireland
University College Dublin, National University of Ireland¹ (2012)
University of Limerick¹ (2016)

Israel
University of Haifa (2015)

Italy
Istituto e Museo di Storia della Scienza Galileo Museum (2012)
Università Bocconi¹ (2014)
Università degli Studi ‘Ca’ Foscari’ di Venezia¹ (2015)
Università degli Studi di Bologna ‘Alma Mater Studiorum’¹ (2016)
Università degli Studi di Milano – Bicocca (2016)
Università degli Studi di Roma ‘La Sapienza’¹ (2010)
Università degli Studi di Roma Tre (2018)
Università degli Studi di Torino (2014)
Università degli Studi di Trieste (2014)

Japan
Kwansei Gakuin University¹ (2011)
Kyushu University (2015)
Osaka University¹ (2001)
Saitama University (2015)
Waseda University (2015)

Jordan
German Jordanian University (2015)
Jordan University of Science and Technology (2018)

Kazakhstan
L.N. Gumilyov Eurasian National University (2015)

Republic of Korea
Chungnam National University¹ (2015)
Inha University (2015)
Korea Advanced Institute of Science and Technology (2013)
Seoul National University¹ (1997)
Soonchunhyang University¹ (1999)

Lebanon
American University of Beirut (2018)

Malaysia
Universiti Teknologi Petronas (2019)

Mexico
Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) (2015)
Instituto Tecnológico Y de Estudios Superiores De Monterrey¹ (2002)
National Council of Science and Technology (1996)
Universidad Autónoma de Nuevo León (2016)
Universidad de Guadalajara (2004)
Universidad Juarez Autónoma de Tabasco¹ (2016)
Universidad Nacional Autónoma de México (2006)
Universidad Panamericana (2019)

Mongolia
Mongolian Prosecutors Office (2016)

Netherlands, The
Erasmus Universiteit Rotterdam¹ (2012)
Tilburg University¹ (2012)
Universiteit Maastricht¹ (1998)
Vrije Universiteit Amsterdam (2018)

New Zealand
Victoria University of Wellington¹ (2008)

Norway
BI Norwegian School of Management¹ (2001)
Norwegian University of Science and Technology (2002)

Panama
International Maritime University in Panama (2002)

Peru
Centro de Ornitologia y Biodiversidad (2013)
Universidad Peruana Cayetano Heredia (2007)

Poland
Wrocław University of Science and Technology (2016)

Qatar
Hamad Bin Khalifa University (2017)
Qatar University (2005)

Rwanda
In compliance with federal law, the following information is maintained and available for Texas A&M University and its separate campuses through the Clery Annual Reports webpage on the Texas A&M University Office of Risk, Ethics, and Compliance website. The Texas A&M University Annual Security Reports and Annual Fire Safety Reports are available and include information on campus safety and security policies and statistics. Examples of policies include: reporting crimes and emergencies, descriptions of campus law enforcement, health and safety notifications, crime awareness and prevention, security of campus facilities and residence halls, alcohol and drug policies, policies and programs to prevent sexual assault and other crimes, related disciplinary procedures, and fire safety systems and policies for on-campus student housing facilities.

The Annual Security Reports and Annual Fire Safety Reports can be found at: https://urc.tamu.edu/clery-act/clery-annual-reports/ (http://urc.tamu.edu/clery-act/clery-annual-reports/).

For a paper copy of the reports, please contact the respective campus as indicated in the following: https://urc.tamu.edu/media/519551/notification_security_fire_reports.pdf (http://urc.tamu.edu/media/519551/notification_security_fire_reports.pdf).

Notification for Students Pursuing an Occupational License

Please be advised that Texas A&M offers many programs that lead to an occupational license as defined under Texas Occupations Code 58.001. Licensing authorities may have guidelines concerning prior criminal convictions that would make an individual ineligible for issuance of a given license. Applicants are encouraged to review all eligibility requirements related to degrees resulting in a license. Note the following:
• An individual who has been convicted of an offense may be ineligible for issuance of an occupational license.
• Licensing authorities must establish and make available guidelines explaining why a particular offense is considered a basis for ineligibility for a particular license and other criterion that may affect the decision to grant or withhold a license.
• Local or county licensing authorities may establish additional guidelines related to criminal history. Applicants should contact their local or county licensing authority for more information.
• An individual has the right to request a criminal history evaluation letter regarding their eligibility for a license issued under Texas Occupations Code 53.102.
• Questions related to eligibility requirements should be directed to the individual licensing authorities.

Oak Ridge Associated Universities (ORAU)

Oak Ridge Associated Universities

Since 1950, students and faculty of Texas A&M University and its branch campuses have benefited from membership in Oak Ridge Associated Universities (ORAU). ORAU provides innovative scientific and technical solutions to advance national priorities in science, education, security, and health. Through specialized teams of experts, unique laboratory capabilities, and a consortium of more than 100 PhD-granting universities, ORAU works with federal, state, local, and commercial organizations to advance national priorities and serve the public interest.

ORAU operates the Oak Ridge Institute for Science and Education (ORISE), a Department of Energy (DOE) asset that is dedicated to enabling critical scientific research and health initiatives of the department and its laboratory system by providing world class expertise in science, technology, engineering, and math (STEM) workforce development; scientific and technical reviews; and the evaluation of radiation exposure and environmental contamination. For more than 30 years, ORISE has provided technical assistance to the DOE Human Subjects Protection Program, and most recently, played an integral role in the successful Association for the Accreditation of Human Research Protection Programs (AAHRPP) accreditation. ORISE administers a broad range of internships, fellowships, and research experiences available primarily to those pursuing STEM disciplines. Programs are offered at DOE national laboratories and other federal agencies with research facilities located across the country as well as some locations outside the United States.

ORAU actively works with its member universities to connect their expertise with government and private sector organizations and to create meaningful partnerships for innovation in scientific research and education. ORAU’s research footprint includes working with their university consortium members through the ORAU-Directed Research and Development (ODRD) program and administering short-term research experiences at national laboratories and other federal research facilities across the country. The ODRD program provides a path for funding innovative research-based approaches/solutions that fall within the intersection of ORAU’s core capabilities and its member universities research interests.

For more information about ORAU and its programs, visit www.orau.org (http://www.orau.org/) or contact:

Jack Baldauf

Senior Associate Vice President for Research
ORAU Councilor for Texas A&M University
(979) 845-8585

Rules and Regulations for Determining Residence Status

Determination of Residency for Tuition Purposes

In accordance with Texas Higher Education Coordinating Board Rules and pursuant to Texas Education Code, a student’s status as a resident, nonresident, or international (foreign) student for tuition purposes will be determined in the Office of Admissions prior to enrollment. Students must be prepared to pay tuition and other required fees by specified due dates.

Students with a status of permanent resident of the United States are not automatically eligible as a Texas state resident for tuition purposes.

Students who have knowledge of an error in their residency status for tuition purposes are responsible for notifying the Office of the Registrar and may be required to submit the Core Residency Questions form, which is available for download on the Office of the Registrar (http://registrar.tamu.edu) website in order to amend their status.

Questions should be directed to the Residency Officer at (979) 845-1085 or email residency@tamu.edu. Complete rules and regulations are available on the Texas Higher Education Coordinating Board website.

Scholastic Honor Societies

Alpha Epsilon Delta — Premedical/Predental
Alpha Eta Mu Beta — Bioengineering
Alpha Kappa Delta — Sociology
Alpha Nu Sigma — Nuclear Science
Alpha Pi Mu — Industrial Engineering
Alpha Zeta — Agriculture
Chi Epsilon — Civil Engineering
Eta Kappa Nu — Electrical Engineering
Eta Sigma Gamma — Health Education
Fulbright Students’ Association — International
Golden Key International Honor Society — Leadership
Kappa Delta Pi — Education
Lambda Sigma — Sophomores
Lambda Pi Eta — Communication
National Society of Collegiate Scholars — Freshmen and Sophomores
Omega Chi Epsilon — Chemical Engineering
Phi Eta Sigma — Freshmen

Phi Eta Sigma — Freshmen
Texas Common Course Numbering System

The Texas Common Course Numbering System (TCCNS) has been designed for the purpose of aiding students in the transfer of general academic courses between colleges and universities throughout Texas. Common courses are freshman and sophomore academic credit courses that have been identified as common by institutions that are members of the common course numbering system. The system ensures that if the student takes the courses the receiving institution designates as common, then the courses will be accepted in transfer and the credit will be treated as if the courses had actually been taken on the receiving institution's campus.

The table below lists the courses Texas A&M has identified as common and their TCCNS equivalents. Before using this table students should be sure that the institution they attend employs the TCCNS.

This table is revised quarterly in January, March, June, and September. The most recent version may be obtained from the Office of Admissions or you may visit the Transfer Course Equivalency website (https://compassxe-ssb.tamu.edu/HCA/ssb/transferCourseEquivalency/#!/).

Texas A&M and Texas Common Course Equivalents

<table>
<thead>
<tr>
<th>Texas A&M Course</th>
<th>TCCNS Equivalent Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 229 Introductory Accounting</td>
<td>ACCT 2301</td>
</tr>
<tr>
<td>ACCT 229 Introductory Accounting</td>
<td>ACCT 2401</td>
</tr>
<tr>
<td>ACCT 230 Introductory Accounting</td>
<td>ACCT 2302</td>
</tr>
<tr>
<td>ACCT 230 Introductory Accounting</td>
<td>ACCT 2402</td>
</tr>
<tr>
<td>AGEC 105 Introduction to Agricultural Economics</td>
<td>AGRI 2317</td>
</tr>
<tr>
<td>AGLS 101 Modern Agricultural Systems and Renewable Natural Resources</td>
<td>AGRI 1131</td>
</tr>
<tr>
<td>AGSM 201 Agricultural Energy and Power Systems</td>
<td>AGRI 2301</td>
</tr>
<tr>
<td>ANSC 107 General Animal Science</td>
<td>AGRI 1319</td>
</tr>
<tr>
<td>ANSC 107 and ANSC 108 General Animal Science and General Animal Science Laboratory</td>
<td>AGRI 1419</td>
</tr>
<tr>
<td>ANSC 108 General Animal Science Laboratory</td>
<td>AGRI 1119</td>
</tr>
<tr>
<td>ANSC 215 Introduction to Livestock Evaluation</td>
<td>AGRI 2321</td>
</tr>
<tr>
<td>ANTH 201 Introduction to Anthropology</td>
<td>ANTH 2346</td>
</tr>
<tr>
<td>ANTH 201 Introduction to Anthropology</td>
<td>HUMA 2323</td>
</tr>
<tr>
<td>ANTH 202 Introduction to Archaeology</td>
<td>ANTH 2302</td>
</tr>
<tr>
<td>ANTH 210 Social and Cultural Anthropology</td>
<td>ANTH 2351</td>
</tr>
<tr>
<td>ANTH 225 Introduction to Biological Anthropology</td>
<td>ANTH 2301</td>
</tr>
<tr>
<td>ANTH 225 and ANTH 226 Introduction to Biological Anthropology and Introduction to Biological Anthropology Laboratory</td>
<td>ANTH 2401</td>
</tr>
<tr>
<td>ANTH 226 Introduction to Biological Anthropology Laboratory</td>
<td>ANTH 2101</td>
</tr>
<tr>
<td>ARAB 101 Beginning Arabic I</td>
<td>ARAB 1411</td>
</tr>
<tr>
<td>ARAB 102 Beginning Arabic II</td>
<td>ARAB 1412</td>
</tr>
<tr>
<td>ARAB 104 Intensive Beginning Arabic</td>
<td>ARAB 1411 and ARAB 1412</td>
</tr>
<tr>
<td>ARAB 201 Intermediate Arabic I</td>
<td>ARAB 2311</td>
</tr>
<tr>
<td>ARAB 202 Intermediate Arabic II</td>
<td>ARAB 2312</td>
</tr>
<tr>
<td>ARAB 204 Intensive Intermediate Arabic</td>
<td>ARAB 2311 and ARAB 2312</td>
</tr>
<tr>
<td>ARCH 249 Survey of World Architecture History I</td>
<td>ARCH 1301</td>
</tr>
<tr>
<td>ARCH 250 Survey of World Architecture History II</td>
<td>ARCH 1302</td>
</tr>
<tr>
<td>ARTS 103 Design I</td>
<td>ARTS 1311</td>
</tr>
<tr>
<td>ARTS 111 Drawing I</td>
<td>ARTS 1316</td>
</tr>
<tr>
<td>ARTS 149 Art History Survey I</td>
<td>ARTS 1303</td>
</tr>
<tr>
<td>ARTS 150 Art History Survey II</td>
<td>ARTS 1304</td>
</tr>
<tr>
<td>ARTS 210 Introduction to Digital Photography</td>
<td>ARTS 2356</td>
</tr>
<tr>
<td>ARTS 212 Life Drawing</td>
<td>ARTS 2323</td>
</tr>
<tr>
<td>ASTR 101 Basic Astronomy</td>
<td>ASTR 1303</td>
</tr>
<tr>
<td>ASTR 102 Observational Astronomy</td>
<td>ASTR 1103 or PHYS 1103</td>
</tr>
<tr>
<td>ASTR 111 Overview of Modern Astronomy</td>
<td>ASTR 1303 and ASTR 1103</td>
</tr>
<tr>
<td>ASTR 111 Overview of Modern Astronomy</td>
<td>PHYS 1303 and PHYS 1103</td>
</tr>
<tr>
<td>ASTR 111 Overview of Modern Astronomy</td>
<td>ASTR 1403</td>
</tr>
<tr>
<td>ASTR 111 Overview of Modern Astronomy</td>
<td>PHYS 1403</td>
</tr>
<tr>
<td>BIOL 101 Botany</td>
<td>BIOL 1311 and BIOL 1111</td>
</tr>
<tr>
<td>BIOL 101 Botany</td>
<td>BIOL 1411</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BIOL 107 Zoology</td>
<td>BIOL 1313 and BIOL 1113</td>
</tr>
<tr>
<td>BIOL 107 Zoology</td>
<td>BIOL 1413</td>
</tr>
<tr>
<td>BIOL 111 Introductory Biology I</td>
<td>BIOL 1306 and BIOL 1106</td>
</tr>
<tr>
<td>BIOL 111 Introductory Biology I</td>
<td>BIOL 1406</td>
</tr>
<tr>
<td>BIOL 112 Introductory Biology II</td>
<td>BIOL 1307 and BIOL 1107</td>
</tr>
<tr>
<td>BIOL 112 Introductory Biology II</td>
<td>BIOL 1407</td>
</tr>
<tr>
<td>BIOL 113 Essentials in Biology</td>
<td>BIOL 1308</td>
</tr>
<tr>
<td>BIOL 113 Essentials in Biology</td>
<td>BIOL 1408</td>
</tr>
<tr>
<td>BIOL 206 Introductory Microbiology</td>
<td>BIOL 2320 and BIOL 2120</td>
</tr>
<tr>
<td>BIOL 206 Introductory Microbiology</td>
<td>BIOL 2321 and BIOL 2121</td>
</tr>
<tr>
<td>BIOL 206 Introductory Microbiology</td>
<td>BIOL 2420</td>
</tr>
<tr>
<td>BIOL 206 Introductory Microbiology</td>
<td>BIOL 2421</td>
</tr>
<tr>
<td>CHEM 106 Molecular Science for Citizens</td>
<td>CHEM 1305</td>
</tr>
<tr>
<td>CHEM 106 and CHEM 116 Molecular Science for Citizens and Molecular Science for Citizens Laboratory</td>
<td>CHEM 1405</td>
</tr>
<tr>
<td>CHEM 107 General Chemistry for Engineering Students</td>
<td>CHEM 1309</td>
</tr>
<tr>
<td>CHEM 107 and CHEM 117 General Chemistry for Engineering Students and General Chemistry for Engineering Students Laboratory</td>
<td>CHEM 1409</td>
</tr>
<tr>
<td>CHEM 116 Molecular Science for Citizens Laboratory</td>
<td>CHEM 1105</td>
</tr>
<tr>
<td>CHEM 117 General Chemistry for Engineering Students Laboratory</td>
<td>CHEM 1109</td>
</tr>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
<td>CHEM 1311 and CHEM 1111</td>
</tr>
<tr>
<td>CHEM 119 Fundamentals of Chemistry I</td>
<td>CHEM 1411</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry I</td>
<td>CHEM 1312 and CHEM 1112</td>
</tr>
<tr>
<td>CHEM 120 Fundamentals of Chemistry I</td>
<td>CHEM 1412</td>
</tr>
<tr>
<td>CHEM 227 Organic Chemistry I</td>
<td>CHEM 2323</td>
</tr>
<tr>
<td>CHEM 227 and CHEM 237 Organic Chemistry I and Organic Chemistry Laboratory</td>
<td>CHEM 2423</td>
</tr>
<tr>
<td>CHEM 228 Organic Chemistry II</td>
<td>CHEM 2325</td>
</tr>
<tr>
<td>CHEM 228 and CHEM 238 Organic Chemistry II and Organic Chemistry Laboratory</td>
<td>CHEM 2425</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry Laboratory</td>
<td>CHEM 2123</td>
</tr>
<tr>
<td>CHEM 237 Organic Chemistry Laboratory</td>
<td>CHEM 2125</td>
</tr>
<tr>
<td>CHIN 101 Beginning Chinese I</td>
<td>CHIN 1411</td>
</tr>
<tr>
<td>CHIN 102 Beginning Chinese II</td>
<td>CHIN 1412</td>
</tr>
<tr>
<td>CHIN 201 Intermediate Chinese I</td>
<td>CHIN 2311</td>
</tr>
<tr>
<td>CHIN 202 Intermediate Chinese II</td>
<td>CHIN 2312</td>
</tr>
<tr>
<td>CLAS 121 Beginning Latin I</td>
<td>LATI 1411</td>
</tr>
<tr>
<td>CLAS 122 Beginning Latin II</td>
<td>LATI 1412</td>
</tr>
<tr>
<td>CLAS 221 Intermediate Latin I</td>
<td>LATI 2311</td>
</tr>
<tr>
<td>CLAS 222 Intermediate Latin II</td>
<td>LATI 2312</td>
</tr>
<tr>
<td>COMM 101 Introduction to Communication</td>
<td>SPCH 1311</td>
</tr>
<tr>
<td>COMM 203 Public Speaking</td>
<td>SPCH 1315</td>
</tr>
<tr>
<td>COMM 210 Group Communication and Discussion</td>
<td>SPCH 2333</td>
</tr>
<tr>
<td>COMM 243 Argumentation and Debate</td>
<td>SPCH 2335</td>
</tr>
<tr>
<td>COSC 253 Construction Materials and Methods I</td>
<td>ARCH 2312</td>
</tr>
<tr>
<td>COSC 206 Structured Programming in C</td>
<td>COSC 1420</td>
</tr>
<tr>
<td>DCED 202 Dance Appreciation</td>
<td>AGRI 1311</td>
</tr>
<tr>
<td>DCED 260 Ballet I</td>
<td>DANC 1241</td>
</tr>
<tr>
<td>ECON 202 Principles of Economics</td>
<td>ECON 2302</td>
</tr>
<tr>
<td>ECON 203 Principles of Economics</td>
<td>ECON 2301</td>
</tr>
<tr>
<td>EDCI 353 Early Childhood through Adolescent Education</td>
<td>TECA 1311</td>
</tr>
<tr>
<td>ENDS 101 Design Process</td>
<td>ARCH 1311</td>
</tr>
<tr>
<td>ENDS 115 Design Communication Foundations</td>
<td>ARCH 1307</td>
</tr>
<tr>
<td>ENDS 116 Design Communication Foundations II</td>
<td>ARCH 1308</td>
</tr>
<tr>
<td>ENGL 103 Introduction to Rhetoric and Composition</td>
<td>ENGL 1301</td>
</tr>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>ENGL 1302</td>
</tr>
<tr>
<td>ENGL 210 Technical and Business Writing</td>
<td>ENGL 2311</td>
</tr>
<tr>
<td>ENGL 221/MODL 221 World Literature</td>
<td>ENGL 2332</td>
</tr>
<tr>
<td>ENGL 222/MODL 222 World Literature</td>
<td>ENGL 2333</td>
</tr>
<tr>
<td>ENGL 227 American Literature: The Beginnings to Civil War</td>
<td>ENGL 2327</td>
</tr>
<tr>
<td>ENGL 228 American Literature: Civil War to Present</td>
<td>ENGL 2328</td>
</tr>
<tr>
<td>ENGL 231 Survey of English Literature I</td>
<td>ENGL 2322</td>
</tr>
<tr>
<td>ENGL 232 Survey of English Literature II</td>
<td>ENGL 2323</td>
</tr>
<tr>
<td>ENGL 235 Elements of Creative Writing</td>
<td>ENGL 2307</td>
</tr>
<tr>
<td>ENGR 111 Foundations of Engineering I</td>
<td>ENGR 1201</td>
</tr>
<tr>
<td>FINC 201 Personal Finance</td>
<td>BUSI 1307</td>
</tr>
<tr>
<td>FREN 101 Beginning French I</td>
<td>FREN 1411</td>
</tr>
<tr>
<td>FREN 102 Beginning French II</td>
<td>FREN 1412</td>
</tr>
<tr>
<td>FREN 201 Intermediate French I</td>
<td>FREN 2311</td>
</tr>
<tr>
<td>FREN 202 Intermediate French II</td>
<td>FREN 2312</td>
</tr>
<tr>
<td>GEOR 201 Introduction to Human Geography</td>
<td>GEOG 1302</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>GEOG 202</td>
<td>Geography of the Global Village</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>Planet Earth</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>Principles of Geology</td>
</tr>
<tr>
<td>GEOL 101</td>
<td>and GEOL 102 Principles of Geology</td>
</tr>
<tr>
<td>GEOL 102</td>
<td>and Geology Laboratory</td>
</tr>
<tr>
<td>GEOG 1301</td>
<td>Geography of the Global</td>
</tr>
<tr>
<td>GEOG 1303</td>
<td>Geography of the Global</td>
</tr>
<tr>
<td>GEOG 1304</td>
<td>and GEOL 1104</td>
</tr>
<tr>
<td>GEOL 1303</td>
<td>and GEOL 1403</td>
</tr>
<tr>
<td>GERM 101</td>
<td>Beginning German I</td>
</tr>
<tr>
<td>GERM 102</td>
<td>Beginning German II</td>
</tr>
<tr>
<td>GERM 104</td>
<td>Intensive Beginning German</td>
</tr>
<tr>
<td>GERM 201</td>
<td>Intermediate German I</td>
</tr>
<tr>
<td>GERM 202</td>
<td>Intermediate German II</td>
</tr>
<tr>
<td>GERM 204</td>
<td>Intensive Intermediate German</td>
</tr>
<tr>
<td>HIST 101</td>
<td>Western Civilization to 1660</td>
</tr>
<tr>
<td>HIST 102</td>
<td>Western Civilization Since 1660</td>
</tr>
<tr>
<td>HIST 103</td>
<td>World History to 1500</td>
</tr>
<tr>
<td>HIST 104</td>
<td>World History Since 1500</td>
</tr>
<tr>
<td>HIST 105</td>
<td>History of the United States</td>
</tr>
<tr>
<td>HIST 106</td>
<td>History of the United States</td>
</tr>
<tr>
<td>HIST 226</td>
<td>History of Texas</td>
</tr>
<tr>
<td>HLTH 216</td>
<td>First Aid</td>
</tr>
<tr>
<td>HLTH 231</td>
<td>Healthy Lifestyles</td>
</tr>
<tr>
<td>HORT 201</td>
<td>Horticultural Science and Practices</td>
</tr>
<tr>
<td>HORT 201</td>
<td>and</td>
</tr>
<tr>
<td>HORT 202</td>
<td>and</td>
</tr>
<tr>
<td>HORT 202</td>
<td>Horticultural Science and Practices</td>
</tr>
<tr>
<td>HORT 201</td>
<td>and</td>
</tr>
<tr>
<td>HORT 201</td>
<td>and</td>
</tr>
<tr>
<td>HORT 202</td>
<td>Horticultural Science and Practices</td>
</tr>
<tr>
<td>HORT 202</td>
<td>Horticultural Science and Practices</td>
</tr>
<tr>
<td>ITAL 101</td>
<td>Beginning Italian I</td>
</tr>
<tr>
<td>ITAL 102</td>
<td>Beginning Italian II</td>
</tr>
<tr>
<td>ITAL 201</td>
<td>Intermediate Italian I</td>
</tr>
<tr>
<td>ITAL 202</td>
<td>Intermediate Italian II</td>
</tr>
<tr>
<td>JAPN 101</td>
<td>Beginning Japanese I</td>
</tr>
<tr>
<td>JAPN 102</td>
<td>Beginning Japanese II</td>
</tr>
<tr>
<td>JOUR 102</td>
<td>American Mass Media</td>
</tr>
<tr>
<td>JOUR 203</td>
<td>Media Writing I</td>
</tr>
<tr>
<td>KINE 199</td>
<td>Required Physical Activity</td>
</tr>
<tr>
<td>KINE 213</td>
<td>Foundations of Kinesiology</td>
</tr>
<tr>
<td>KINE 214</td>
<td>HLTH 214 Health and Physical Activity</td>
</tr>
<tr>
<td>KINE 215</td>
<td>Fundamentals of Coaching</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Algebra</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Algebra</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Mathematics for Business and Social</td>
</tr>
<tr>
<td>MATH 142</td>
<td>Business Calculus</td>
</tr>
<tr>
<td>MATH 150</td>
<td>Functions, Trigonometry and Linear</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics I</td>
</tr>
<tr>
<td>MATH 152</td>
<td>Engineering Mathematics II</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>MATH 253</td>
<td>Engineering Mathematics III</td>
</tr>
<tr>
<td>MGMT 105</td>
<td>Introduction to Business</td>
</tr>
<tr>
<td>MGMT 212</td>
<td>Business Law</td>
</tr>
<tr>
<td>MMET 105</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>MMET 275</td>
<td>Mechanics for Technologists</td>
</tr>
<tr>
<td>MUSC 102</td>
<td>Fundamentals of Music</td>
</tr>
<tr>
<td>MUSC 201</td>
<td>Music and the Human Experience</td>
</tr>
<tr>
<td>MUSC 204</td>
<td>Music Theory I</td>
</tr>
<tr>
<td>MUSC 205</td>
<td>Music Theory II</td>
</tr>
<tr>
<td>MUSC 255</td>
<td>Keyboard Instruction</td>
</tr>
<tr>
<td>MUSC 255</td>
<td>Keyboard Instruction</td>
</tr>
<tr>
<td>MUSC 255</td>
<td>Keyboard Instruction</td>
</tr>
<tr>
<td>NFSC 201</td>
<td>Food Science</td>
</tr>
<tr>
<td>NFSC 202</td>
<td>Fundamentals of Human Nutrition</td>
</tr>
<tr>
<td>OCGN 251</td>
<td>Oceanography</td>
</tr>
<tr>
<td>OCGN 251</td>
<td>and</td>
</tr>
<tr>
<td>OCGN 252</td>
<td>Oceanography and Oceanography Laboratory</td>
</tr>
<tr>
<td>OCGN 252</td>
<td>Oceanography Laboratory</td>
</tr>
<tr>
<td>PHIL 111</td>
<td>Contemporary Moral Issues</td>
</tr>
<tr>
<td>PHIL 240</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td>PHIL 251</td>
<td>Introduction to Philosophy</td>
</tr>
<tr>
<td>Course Code</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>College Physics</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>PHYS 202</td>
<td>College Physics</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>Newtonian Mechanics for Engineering and</td>
</tr>
<tr>
<td></td>
<td>Science</td>
</tr>
<tr>
<td>PHYS 206</td>
<td>and PHYS 226 Newtonian Mechanics for</td>
</tr>
<tr>
<td></td>
<td>Engineering and Science and Physics of</td>
</tr>
<tr>
<td></td>
<td>Motion Laboratory for the Sciences</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>Electricity and Magnetism for Engineering</td>
</tr>
<tr>
<td></td>
<td>and Science</td>
</tr>
<tr>
<td>PHYS 207</td>
<td>and PHYS 227 Electricity and Magnetism</td>
</tr>
<tr>
<td></td>
<td>Laboratory for the Sciences</td>
</tr>
<tr>
<td>PHYS 226</td>
<td>Physics of Motion Laboratory for the</td>
</tr>
<tr>
<td></td>
<td>Sciences</td>
</tr>
<tr>
<td>PHYS 227</td>
<td>Electricity and Magnetism Laboratory for</td>
</tr>
<tr>
<td></td>
<td>the Sciences</td>
</tr>
<tr>
<td>POLS 206</td>
<td>American National Government</td>
</tr>
<tr>
<td>POLS 207</td>
<td>State and Local Government</td>
</tr>
<tr>
<td>PORT 101</td>
<td>Beginning Portuguese I</td>
</tr>
<tr>
<td>PORT 102</td>
<td>Beginning Portuguese II</td>
</tr>
<tr>
<td>PORT 201</td>
<td>Intermediate Portuguese I</td>
</tr>
<tr>
<td>PORT 202</td>
<td>Intermediate Portuguese II</td>
</tr>
<tr>
<td>PSYC 107</td>
<td>Introduction to Psychology</td>
</tr>
<tr>
<td>PSYC 225</td>
<td>Lifespan Development</td>
</tr>
<tr>
<td>PSYC 245</td>
<td>Introduction to Psychological Science</td>
</tr>
<tr>
<td>RPTS 201</td>
<td>Foundations of Recreation, Parks and</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
</tr>
<tr>
<td>RUSS 101</td>
<td>Beginning Russian I</td>
</tr>
<tr>
<td>RUSS 102</td>
<td>Beginning Russian II</td>
</tr>
<tr>
<td>RUSS 201</td>
<td>Intermediate Russian I</td>
</tr>
<tr>
<td>RUSS 202</td>
<td>Intermediate Russian II</td>
</tr>
<tr>
<td>SCSC 105</td>
<td>World Food and Fiber Crops</td>
</tr>
<tr>
<td>SCSC 105</td>
<td>World Food and Fiber Crops</td>
</tr>
<tr>
<td>SOCI 205</td>
<td>Introduction to Sociology</td>
</tr>
<tr>
<td>SPAN 101</td>
<td>Beginning Spanish I</td>
</tr>
<tr>
<td>SPAN 102</td>
<td>Beginning Spanish II</td>
</tr>
<tr>
<td>SPAN 201</td>
<td>Intermediate Spanish I</td>
</tr>
<tr>
<td>SPAN 202</td>
<td>Intermediate Spanish II</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Elementary Statistical Inference</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Must include a lab.
AAGM - Agricultural Systems Mgmt (AGSM) .. 886
AGSC - Agricultural Science (AGSC) ... 886
AGSM - Agriculture Systems Mgmt (AGSM) .. 887
ALEC - Ag Leadership, Ed & Comm (ALEC) ... 889
ALED - Ag Leadership & Dev (ALED) ... 890
Analysis, Design and Management of Energy Conversion Systems - Minor 468
Animal Science ... 153
Animal Science - BS, Production/Industry Option 155
Animal Science - BS, Science Option ... 157
ANSC - Animal Science (ANSC) ... 891
ANTH - Anthropology (ANTH) ... 896
Anthropology ... 549
Anthropology - BA .. 550
Anthropology - BA, Archaeology Track .. 552
Anthropology - BS .. 553
Anthropology - Minor ... 555
Appendices ... 1299
Applied Behavioral Health - Certificate .. 644
Applied Learning in Science, Technology, Engineering and Mathematics (STEM) Minor ... 353
Applied Mathematical Sciences - BS, Actuarial Science Emphasis 718
Applied Mathematical Sciences - BS, Biological Science Emphasis 720
Applied Mathematical Sciences - BS, Computational Science Emphasis 721
Applied Mathematical Sciences - BS, Cryptography Emphasis 722
Applied Mathematical Sciences - BS, Economics Emphasis 724
Applied Mathematical Sciences - BS, Math Emphasis 725
Applied Mathematical Sciences - BS, Statistics Emphasis 727
Applied Mathematical Sciences - BS/MS, 3+2 Program 728
ARAB - Arabic (ARAB) .. 900
Arabic Studies - Minor ... 619
ARCH - Architecture (ARCH) ... 901
Architectural Engineering - BS, Mechanical Systems for Buildings Track 364
Architectural Engineering - BS, Structural Systems for Buildings Track 366
Architectural Fabrication and Product Design - Minor 241
Architectural Heritage Conservation - Minor ... 242
Architecture .. 237
AREN - Architectural Engr (AREN) .. 905
Art - Minor ... 260
Art and Architecture History - Minor ... 242
ARTS - Art (ARTS) .. 906
ASCC - Academic Success Center (ASCC) .. 908
ASIA - Asian Studies (ASIA) ... 908
Asian Studies - Minor .. 620
ASTR - Astronomy (ASTR) ... 909
Astrophysics - Minor ... 745
<table>
<thead>
<tr>
<th>Department / Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Education and Human Development</td>
<td>308</td>
</tr>
<tr>
<td>College of Engineering</td>
<td>357</td>
</tr>
<tr>
<td>College of Geosciences</td>
<td>481</td>
</tr>
<tr>
<td>College of Liberal Arts</td>
<td>532</td>
</tr>
<tr>
<td>College of Nursing</td>
<td>664</td>
</tr>
<tr>
<td>College of Science</td>
<td>679</td>
</tr>
<tr>
<td>College of Veterinary Medicine and Biomedical Sciences</td>
<td>756</td>
</tr>
<tr>
<td>COMM - Communication (COMM)</td>
<td>937</td>
</tr>
<tr>
<td>Commercial Banking - Certificate</td>
<td>282</td>
</tr>
<tr>
<td>Communication</td>
<td>556</td>
</tr>
<tr>
<td>Communication - BA</td>
<td>558</td>
</tr>
<tr>
<td>Communication - BS</td>
<td>560</td>
</tr>
<tr>
<td>Communication - Minor</td>
<td>566</td>
</tr>
<tr>
<td>Communication and Global Media - Certificate</td>
<td>567</td>
</tr>
<tr>
<td>Communication, Diversity and Social Justice - Certificate</td>
<td>567</td>
</tr>
<tr>
<td>Communication Leadership and Conflict Management - Certificate</td>
<td>568</td>
</tr>
<tr>
<td>Community Health - BS</td>
<td>326</td>
</tr>
<tr>
<td>Community Recreation and Park Administration - Certificate</td>
<td>223</td>
</tr>
<tr>
<td>Comparative Cultural Studies International - Minor</td>
<td>544</td>
</tr>
<tr>
<td>Comparative Cultural Studies U.S. - Minor</td>
<td>546</td>
</tr>
<tr>
<td>Computer Engineering - BS, Computer Science Track</td>
<td>419</td>
</tr>
<tr>
<td>Computer Engineering - BS, Electrical Engineering Track</td>
<td>428</td>
</tr>
<tr>
<td>Computer Science - BS</td>
<td>421</td>
</tr>
<tr>
<td>Computer Science - Minor</td>
<td>424</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>417</td>
</tr>
<tr>
<td>Computing - BA</td>
<td>423</td>
</tr>
<tr>
<td>Construction Science</td>
<td>244</td>
</tr>
<tr>
<td>Construction Science - BS</td>
<td>246</td>
</tr>
<tr>
<td>Control of Mechanical Systems - Minor</td>
<td>468</td>
</tr>
<tr>
<td>Corporate Finance - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Corrosion Science and Engineering - Certificate</td>
<td>461</td>
</tr>
<tr>
<td>COSC - Construction Science (COSC)</td>
<td>942</td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>871</td>
</tr>
<tr>
<td>Creative Studies - Minor</td>
<td>321</td>
</tr>
<tr>
<td>CSCE - Computer Sci & Engr (CSCE)</td>
<td>946</td>
</tr>
<tr>
<td>Cultural Discourse Requirements</td>
<td>46</td>
</tr>
<tr>
<td>CVEN - Civil Engineering (CVEN)</td>
<td>950</td>
</tr>
<tr>
<td>Cybersecurity - Minor</td>
<td>374</td>
</tr>
<tr>
<td>CYBR - Cybersecurity (CYBR)</td>
<td>954</td>
</tr>
<tr>
<td>Data Center Operations Engineering - Certificate</td>
<td>454</td>
</tr>
<tr>
<td>DCED - Dance Education (DCED)</td>
<td>955</td>
</tr>
<tr>
<td>DDHS - Dental Hygiene (DDHS)</td>
<td>956</td>
</tr>
<tr>
<td>Degree and Program Information</td>
<td>31</td>
</tr>
<tr>
<td>Dental Hygiene - BS</td>
<td>306</td>
</tr>
<tr>
<td>Design and Simulation of Mechanical Systems - Minor</td>
<td>468</td>
</tr>
<tr>
<td>DIVE - Diving Tech and Methods (DIVE)</td>
<td>958</td>
</tr>
<tr>
<td>Diversity - Certificate</td>
<td>237</td>
</tr>
<tr>
<td>Diversity - Certificate</td>
<td>549</td>
</tr>
<tr>
<td>Diving Technology and Methods - Minor</td>
<td>813</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Department / Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Sciences - Minor</td>
<td>491</td>
</tr>
<tr>
<td>ECEN - Electrical & Comp Engr (ECEN)</td>
<td>959</td>
</tr>
<tr>
<td>ECHE- Early Childh Ed Fld Based (ECHE)</td>
<td>964</td>
</tr>
<tr>
<td>ECMT - Econometrics (ECMT)</td>
<td>964</td>
</tr>
<tr>
<td>Ecological Restoration - BS</td>
<td>169</td>
</tr>
<tr>
<td>Ecology and Conservation Biology</td>
<td>168</td>
</tr>
<tr>
<td>ECON - Economics (ECON)</td>
<td>965</td>
</tr>
<tr>
<td>Economics</td>
<td>569</td>
</tr>
<tr>
<td>Economics - BA</td>
<td>571</td>
</tr>
<tr>
<td>Economics - BA/MIA, 3+2 Program</td>
<td>572</td>
</tr>
<tr>
<td>Economics - BA/MPSA, 3+2 Program</td>
<td>574</td>
</tr>
<tr>
<td>Economics - BS</td>
<td>575</td>
</tr>
<tr>
<td>Economics - BS/MIA, 3+2 Program</td>
<td>576</td>
</tr>
<tr>
<td>Economics - BS/MPSA, 3+2 Program</td>
<td>578</td>
</tr>
<tr>
<td>Economics - BS/MS, 3+2 Program</td>
<td>579</td>
</tr>
<tr>
<td>Economics - Minor</td>
<td>580</td>
</tr>
<tr>
<td>EDCI - Educ Curriculum & Dev (EDCI)</td>
<td>967</td>
</tr>
<tr>
<td>EDTC - Educational Technology (EDTC)</td>
<td>968</td>
</tr>
<tr>
<td>Educational Administration and Human Resource Development</td>
<td>310</td>
</tr>
<tr>
<td>Educational Psychology</td>
<td>314</td>
</tr>
<tr>
<td>EHRD - Ed Human Res Develop (EHRD)</td>
<td>968</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>425</td>
</tr>
<tr>
<td>Electrical and Computer Engineering Program</td>
<td>863</td>
</tr>
<tr>
<td>Electrical Engineering - BS</td>
<td>430</td>
</tr>
<tr>
<td>Electrical Engineering - BS</td>
<td>863</td>
</tr>
<tr>
<td>Electrical Engineering - Minor</td>
<td>431</td>
</tr>
<tr>
<td>Electronic Systems Engineering Technology - BS</td>
<td>435</td>
</tr>
<tr>
<td>Embedded Systems Integration - Minor</td>
<td>446</td>
</tr>
<tr>
<td>ENDG - Engr Design Graphics (ENDG)</td>
<td>969</td>
</tr>
<tr>
<td>ENDS - Environmental Design (ENDS)</td>
<td>969</td>
</tr>
<tr>
<td>Energy Accounting - Certificate</td>
<td>278</td>
</tr>
</tbody>
</table>
Energy Engineering - Certificate .. 479
Engineering Concept, Creation, and Commercialization - Certificate ... 377
Engineering Concepts - Minor ... 376
Engineering Project Management - Minor 376
Engineering Systems Management - Certificate 455
Engineering Technology and Industrial Distribution 431
Engineering Therapeutics Manufacturing - Certificate 393
ENGL - English (ENGL) .. 970
English .. 581
English - BA .. 584
English - BA, Middle School Teaching .. 586
English - BA/MA, 3+2 Program .. 587
English - Minor .. 589
ENGR - Engineering (ENGR) .. 976
Enology - Certificate .. 192
ENST-Environmental Studies (ENST) ... 979
ENTC - Engineering Technology (ENTC) 979
ENTO - Entomology (ENTO) .. 980
Entomology .. 174
Entomology - BS ... 175
Entomology - Minor ... 180
Entrepreneurship - Minor .. 121
Environmental Design Architectural Studies - BED 240
Environmental Engineering - BS .. 415
Environmental Geoscience - BS .. 483
Environmental Geoscience - BS/MOST, 3+2 Program 487
Environmental Geosciences - Minor .. 492
Environmental Soil Science - Minor .. 231
Environmental Studies - BS .. 199
Environmental Studies - BS ... 488
EPFB - Educ Psyc Field Based (EPFB) .. 982
EPSY - Educational Psychology (EPSY) 982
Equine Science - Certificate .. 158
ESET - Electronic Sys Eng Tech (ESET) ... 983
ESSM Ecosystem Science & Mgmt (ESSM) 985
EURO - European Studies (EURO) .. 989
European Union Business - Certificate .. 268
EVEN - Environmental Engr (EVEN) ... 990
Extension Education - Minor ... 152
Family Educational Rights and Privacy Act 1299
FILM - Film Studies (FILM) .. 991
Film Studies - Minor ... 546
Finance .. 279
Finance - BBA .. 281
Financial Assistance and Scholarships .. 106
Financial Planning - Minor .. 144
FINC - Finance (FINC) ... 993
FIVS - Forensic & Inv Science (FIVS) ... 996
Food Diversity - Certificate .. 187
Food Science and Technology ... 181
Food Science and Technology - BS, Food Industry Option 182
Food Science and Technology - BS, Food Science Option 184
Food Systems Industry Management - BS 186
Forensic and Investigative Sciences - BS, Pre-Law Emphasis 177
Forensic and Investigative Sciences - BS, Science Emphasis 178
Forestry - BS .. 170
Forestry - Minor ... 173
Foundational Sciences .. 807
FREN - French (FREN) ... 998
French - Minor .. 621
FRSC - Forest Science (FRSC) .. 999
FSTC - Food Science & Tech (FSTC) ... 999
G
GALV - TAMUG Study Abroad (GALV) 999
Game Design and Development - Minor .. 261
Game Design and Development - Minor 424
GENE - Genetics (GENE) ... 999
General Information ... 24
General Information ... 780
General Information ... 844
Genetics - BS .. 161
Genetics - Minor ... 163
GEOG - Geography (GEOG) ... 1001
Geographic Information Science and Technology - BS, Computation, Design and Analysis Track ... 498
Geographic Information Science and Technology - BS, Earth Systems and Analysis Track ... 499
Geographic Information Science and Technology - BS, Human Systems and Society Track ... 502
Geographic Information Science and Technology - Minor 508
Geography ... 497
Geography - BS .. 504
<table>
<thead>
<tr>
<th>Department/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geography - Minor</td>
<td>508</td>
</tr>
<tr>
<td>GEOL - Geology (GEOL)</td>
<td>1005</td>
</tr>
<tr>
<td>Geology - BA</td>
<td>510</td>
</tr>
<tr>
<td>Geology - BA/MOST, 3+2 Program</td>
<td>511</td>
</tr>
<tr>
<td>Geology - BS</td>
<td>513</td>
</tr>
<tr>
<td>Geology - BS/MOST, 3+2 Program</td>
<td>514</td>
</tr>
<tr>
<td>Geology - BS/MS, 3+2 Program</td>
<td>516</td>
</tr>
<tr>
<td>Geology - Minor</td>
<td>519</td>
</tr>
<tr>
<td>Geology and Geophysics</td>
<td>509</td>
</tr>
<tr>
<td>GEOP - Geophysics (GEOP)</td>
<td>1008</td>
</tr>
<tr>
<td>Geophysics - BS</td>
<td>517</td>
</tr>
<tr>
<td>Geophysics - BS/MS, 3+2 Program</td>
<td>518</td>
</tr>
<tr>
<td>Geophysics - Minor</td>
<td>520</td>
</tr>
<tr>
<td>GEOS - Geosciences (GEOS)</td>
<td>1008</td>
</tr>
<tr>
<td>GERM - German (GERM)</td>
<td>1010</td>
</tr>
<tr>
<td>German - Minor</td>
<td>622</td>
</tr>
<tr>
<td>Global Art Design and Construction - Minor</td>
<td>243</td>
</tr>
<tr>
<td>Global Culture and Society - Minor</td>
<td>237</td>
</tr>
<tr>
<td>Global Culture and Society - Minor</td>
<td>547</td>
</tr>
<tr>
<td>Global Health - Minor</td>
<td>677</td>
</tr>
<tr>
<td>Grading System</td>
<td>80</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Department/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazing Law Summary (Education Code)</td>
<td>1300</td>
</tr>
<tr>
<td>HBRW - Hebrew (HBRW)</td>
<td>1012</td>
</tr>
<tr>
<td>Health - BS, Allied Health Track</td>
<td>327</td>
</tr>
<tr>
<td>Health - BS, School Health Track</td>
<td>328</td>
</tr>
<tr>
<td>Health - Minor</td>
<td>345</td>
</tr>
<tr>
<td>Health and Kinesiology</td>
<td>321</td>
</tr>
<tr>
<td>Health Communication - Certificate</td>
<td>568</td>
</tr>
<tr>
<td>Healthy Development - Certificate</td>
<td>644</td>
</tr>
<tr>
<td>HEFB - Health Ed Field Based (HEFB)</td>
<td>1012</td>
</tr>
<tr>
<td>HHUM - Health Humanities (HHUM)</td>
<td>1012</td>
</tr>
<tr>
<td>HISP - Hispanic Studies (HISP)</td>
<td>1013</td>
</tr>
<tr>
<td>Hispanic Studies</td>
<td>590</td>
</tr>
<tr>
<td>Hispanic Studies for Community Engagement - Minor</td>
<td>593</td>
</tr>
<tr>
<td>HIST - History (HIST)</td>
<td>1014</td>
</tr>
<tr>
<td>History</td>
<td>594</td>
</tr>
<tr>
<td>History - BA</td>
<td>596</td>
</tr>
<tr>
<td>History - Minor</td>
<td>597</td>
</tr>
<tr>
<td>History and Development</td>
<td>24</td>
</tr>
<tr>
<td>HLTH - Health (HLTH)</td>
<td>1022</td>
</tr>
<tr>
<td>Holistic Leadership in Engineering - Certificate</td>
<td>377</td>
</tr>
<tr>
<td>Honors and Undergraduate Research</td>
<td>115</td>
</tr>
<tr>
<td>HORT - Horticultural Sciences (HORT)</td>
<td>1024</td>
</tr>
<tr>
<td>Horticultural Sciences</td>
<td>187</td>
</tr>
<tr>
<td>Horticulture - BA</td>
<td>188</td>
</tr>
<tr>
<td>Horticulture - BS</td>
<td>190</td>
</tr>
<tr>
<td>Horticulture - Minor</td>
<td>191</td>
</tr>
<tr>
<td>Hospitality Management - Certificate</td>
<td>223</td>
</tr>
<tr>
<td>Housing</td>
<td>83</td>
</tr>
<tr>
<td>HUMA - Humanities (HUMA)</td>
<td>1027</td>
</tr>
<tr>
<td>Human Resource Development - BS</td>
<td>311</td>
</tr>
<tr>
<td>Human Resource Development - Minor</td>
<td>314</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Department/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBUS - International Business (IBUS)</td>
<td>1027</td>
</tr>
<tr>
<td>IDIS - Industrial Distribution (IDIS)</td>
<td>1028</td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>447</td>
</tr>
<tr>
<td>Industrial Distribution - BS</td>
<td>437</td>
</tr>
<tr>
<td>Industrial Engineering - BS</td>
<td>449</td>
</tr>
<tr>
<td>Industrial Engineering - BS/MPH, 3+2 Program</td>
<td>450</td>
</tr>
<tr>
<td>Industrial Engineering - BS/MS, 3+2 Program</td>
<td>452</td>
</tr>
<tr>
<td>Industrial Engineering - Minor</td>
<td>454</td>
</tr>
<tr>
<td>Information and Operations Management</td>
<td>284</td>
</tr>
<tr>
<td>INST-Interdisciplinary Studies (INST)</td>
<td>1030</td>
</tr>
<tr>
<td>Interdepartmental Degree Programs</td>
<td>131</td>
</tr>
<tr>
<td>Interdisciplinary Engineering - BS</td>
<td>369</td>
</tr>
<tr>
<td>Interdisciplinary Engineering - BS/JD, 3+3 Program</td>
<td>371</td>
</tr>
<tr>
<td>Interdisciplinary Engineering - BS/MPH, 3+2 Program</td>
<td>373</td>
</tr>
<tr>
<td>Interdisciplinary Programs</td>
<td>121</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, Bilingual Education EC-6</td>
<td>317</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, English Language Arts/Social Studies, Middle Grades Certification</td>
<td>349</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, Math/Science, Middle Grades Certification</td>
<td>350</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, PreK-6, Generalist Certification</td>
<td>351</td>
</tr>
<tr>
<td>Interdisciplinary Studies - BS, Special Education EC-12</td>
<td>318</td>
</tr>
<tr>
<td>Interdisciplinary Studies - Certificate</td>
<td>321</td>
</tr>
<tr>
<td>Internal Audit - Certificate</td>
<td>279</td>
</tr>
<tr>
<td>International Agreements</td>
<td>1301</td>
</tr>
<tr>
<td>International Agricultural Development - Minor</td>
<td>152</td>
</tr>
<tr>
<td>International and Cultural Diversity Requirements</td>
<td>47</td>
</tr>
<tr>
<td>International Business Studies - Certificate</td>
<td>269</td>
</tr>
<tr>
<td>International Certificate in Cultural Competency and Communications in Spanish</td>
<td>762</td>
</tr>
<tr>
<td>International Engineering - Certificate</td>
<td>377</td>
</tr>
</tbody>
</table>
International Opportunities for Students .. 113
International Studies .. 598
International Studies - BA, Global Cultural Studies 602
International Studies - BA, International Commerce 604
International Studies - BA, International Communication and Media ... 606
International Studies - BA, International Environmental Studies 607
International Studies - BA, International Geographic Information Systems ... 609
International Studies - BA, International Politics and Diplomacy 611
International Studies - BA/MIA, 3+2 Program 613
International Trade and Agriculture - Certificate 144
INTS - International Studies (INTS) .. 1030
Investment Banking - Certificate .. 283
Investment Banking and Private Equity - Certificate 283
ISEN - Indus & Systems Engr (ISEN) 1032
ISTM - Mgmt Info Systems (ISTM) ... 1034
ITAL - Italian (ITAL) ... 1037
Italian - Minor .. 622
ITDE - Interdisciplinary Engr (ITDE) .. 1038

J
Japanese - Minor ... 622
JAPN - Japanese (JAPN) ... 1038
Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act (Clery Act) .. 1304
JOUR - Journalism (JOUR) .. 1039
Journalism - Minor .. 566

K
KINE - Kinesiology (KINE) ... 1041
Kinesiology - BS, All-Level Physical Education Teacher Certification Track ... 329
Kinesiology - BS, Dance Science Track 331
Kinesiology - BS, Exercise and Sport Science Track.................. 332
Kinesiology - BS, Exercise Science Track, Applied Exercise Physiology Concentration .. 334
Kinesiology - BS, Exercise Science Track, Basic Exercise Physiology Concentration .. 335
Kinesiology - BS, Exercise Science Track, Motor Behavior Concentration ... 336
Kinesiology - BS/MS, 3+2 Program ... 337
KNFB - Kinesiology Field Based (KNFB) 1045

L
LAND - Landscape Architecture (LAND) 1045
Landscape Architecture - BLA .. 250
Landscape Architecture and Urban Planning 248
Latin American Business - Certificate 270
Latino/a and Mexican-American Studies - Minor 270
LBAR - College of Liberal Arts (LBAR) 547
LDEV - Land Development (LDEV) 1047
Leadership - Minor .. 123
Leadership - Minor .. 152
Leadership in the Design and Construction Professions - Minor 248
Leadership Study and Development - Certificate 774
Liberal Studies .. 808
LING - Linguistics (LING) ... 1048
LMAS - Latino/Mex Amer Studies (LMAS) 1048

M
Management ... 288
Management - BBA, Consulting/General Management Track 290
Management - BBA, Entrepreneurial Leadership Track 291
Management - BBA, Human Resource Management Track 293
Management - BBA, Pre-Law Track 294
Management Information Systems - BBA 285
Manufacturing and Mechanical Engineering Technology - BS 439
MARA - Maritime Administration (MARA) 1049
MARB - Marine Biology (MARB) ... 1051
MARE - Marine Engr Technology (MARE) 1054
Marine and Coastal Environmental Science 814
Marine Biology ... 823
Marine Biology - BS ... 824
Marine Biology - BS, License Option 825
Marine Biology - Minor ... 828
Marine Engineering Technology .. 828
Marine Engineering Technology - BS 829
Marine Engineering Technology - BS, License Option 830
Marine Fisheries - BS ... 827
Marine Sciences - BS ... 818
Marine Sciences - BS, License Option 820
Marine Transportation - BS .. 837
Maritime Business Administration .. 832
Maritime Business Administration - BS 832
Maritime Business Administration - BS/MBB, 3+2 Program 834
Maritime Business Administration - Minor 836
Maritime Studies - BA ... 810
Maritime Studies - Minor ... 814
Maritime Transportation .. 837
Marketing ... 296
Marketing - BBA, Advertising Strategy Track .. 297
Marketing - BBA, Analytics and Consulting Track 298
Marketing - BBA, Healthcare Marketing Track 300
Marketing - BBA, Professional Selling and Sales Management Track 301
Marketing - BBA, Strategic Retailing Track .. 302
MARR - Marine Engr Technology (MARR) .. 1057
MARS - Marine Science (MARS) .. 1057
MART - Marine Transportation (MART) .. 1060
MASC - Integrated Math & Sci (MASC) ... 1063
MASE - Maritime Systems Engr (MASE) .. 1064
MAST - Maritime Studies (MAST) ... 1064
Materials Science and Engineering ... 455
Materials Science and Engineering - BS ... 459
Materials Science and Engineering - Minor ... 460
MATH - Mathematics (MATH) ... 1066
Mathematics ... 714
Mathematics - BA ... 730
Mathematics - BA/MS, 3+2 Program ... 732
Mathematics - BS .. 733
Mathematics - BS/MS, 3+2 Program .. 735
Mathematics - Minor ... 737
Mays Business School .. 262
Meat Science - Certificate ... 158
Mechanical Engineering ... 462
Mechanical Engineering - BS ... 466
Mechanical Engineering - BS ... 866
Mechanical Engineering Program .. 865
MEEN - Mechanical Engineering (MEEN) .. 1071
MEFB - Mid Grds Ed Field Based (MEFB) ... 1075
MEPS-Molecular & Env Plant Sci (MEPS) ... 1075
Meteorology - BS .. 493
Meteorology - BS/MOST, 3+2 Program .. 495
Meteorology - Minor ... 496
METR - Meteorology (METR) ... 1076
MGMT - Management (MGMT) ... 1076
MICR - Microbiology (MICR) ... 1079
Microbiology - BS ... 690
Military Science ... 775
Military Studies - Minor .. 773
MKTG - Marketing (MKTG) ... 1079
MLSC - Military Science (MLSC) ... 1081
MMET - Mfg & Mech Engr Tech (MMET) ... 1082
Modern Languages - BA, French .. 615
Modern Languages - BA, German ... 616
Modern Languages - BA, Russian .. 618
MODL - Modern Languages (MODL) .. 1084
Molecular and Cell Biology - BS .. 692
MSEN - Materials Science & Engr (MSEN) .. 1085
Multidisciplinary Engineering Technology - BS, Electro Marine Engineering Technology Track ... 440
Multidisciplinary Engineering Technology - BS, Mechatronics Track 442
Multidisciplinary Engineering Technology - BS, STEM Education Track 444
MUSC - Music (MUSC) .. 1087
Museum Studies - Minor ... 555
MUST - Museum Studies (MUST) ... 1089
MXET - Multidiscip Engr Tech (MXET) .. 1089
NAUT - Nautical Science (NAUT) .. 1090
Naval Science ... 776
Neuroscience ... 123
Neuroscience - BS, Behavioral and Cognitive Neuroscience Track 639
Neuroscience - BS, Molecular and Cellular Neuroscience Track 693
Neuroscience - BS, Translational and Preclinical Neuroscience Track 760
Neuroscience - Certificate .. 124
Neuroscience - Minor .. 123
NFSC - Nutrition and Food Science (NFSC) ... 1090
Nonprofit and Social Innovation - Certificate 271
Notification for Students Pursuing an Occupational License 1304
NRSC - Neuroscience (NRSC) ... 1093
Nuclear Engineering .. 469
Nuclear Engineering - BS ... 470
Nuclear Engineering - Minor .. 472
NUEN - Nuclear Engineering (NUEN) .. 1095
NURS - Nursing (NURS) ... 1097
Nursing - BSN, RN to BSN Track ... 668
Nursing - BSN, Second Degree BSN Track ... 669
Nursing - BSN, Traditional BSN .. 670
Nutrition .. 192
Nutrition - BS, Didactic Program in Dietetics Track 193
Nutrition - BS, General Nutrition Track ... 194
Nutrition - BS, Molecular and Experimental Track 196
NVSC - Naval Science (NVSC) .. 1100
O
Oak Ridge Associated Universities (ORAU) ... 1305
Occupational Health and Safety - Minor ... 678
Ocean Engineering ... 472
Ocean Engineering - BS ... 474
Oceanography ... 520
Oceanography - BS, Marine Ecosystem Science and Health Track 521
Oceanography - BS, Ocean Climate Track 522
Oceanography - BS, Ocean Observing Science and Technology Track .. 523
Oceanography - BS/MOST, Marine Ecosystem Science and Health Track 3+2 Program ... 524
Oceanography - BS/MOST, Ocean Climate Track 3+2 Program 526
Oceanography - BS/MOST, Ocean Observing Science and Technology Track 3+2 Program ... 527
Oceanography - Minor ... 528
OCEN - Ocean Engineering (OCEN) ... 1101
OCNG - Oceanography (OCNG) ... 1104
OCRE Ocean & Coastal Resources (OCRE) 1105
Orientation ... 83

P
Park and Natural Resource Management - Minor 221
Parks and Conservation - Certificate .. 224
PERF - Performance Studies (PERF) 1105
Performance Studies ... 623
Performance Studies - BA ... 624
Performance Studies - Minor .. 626
PETE - Petroleum Engineering (PETE) 1107
Petroleum Engineering .. 475
Petroleum Engineering - BS .. 477
Petroleum Engineering - BS .. 867
Petroleum Engineering - Minor ... 479
Petroleum Engineering Program ... 867
Petroleum Ventures - Certificate .. 479
PHIL - Philosophy (PHIL) ... 1110
Philosophy - BA ... 627
Philosophy - Minor .. 629
Philosophy and Humanities ... 626
Philosophy Pre-Law - Certificate ... 629
PHLT - Public Health (PHLT) ... 1113
PHYS - Physics (PHYS) .. 1115
Physics - BA ... 740
Physics - BS ... 741
Physics - BS, Astrophysics Track .. 742
Physics - BS, Business Track .. 743
Physics - BS, Computational Science Track 744
Physics - Minor .. 746
Physics and Astronomy .. 737
Plant and Environmental Soil Science - BS, Crops Emphasis 227
Plant and Environmental Soil Science - BS, Soil and Water Emphasis .. 228
Plant Breeding - Minor ... 231
Plant Pathology and Microbiology ... 197
PLPA - Plant Pathology (PLPA) ... 1118
Political Science ... 630
Political Science - BA .. 632
Political Science - BA/MPSA, 3+2 Program 633
Political Science - BS ... 634
Political Science - BS/MPSA, 3+2 Program 636
Political Science - Minor .. 844
POLS - Political Science (POLS) ... 1118
Polymer Specialty - Certificate ... 378
PORT - Portuguese (PORT) ... 1123
POSC - Poultry Science (POSC) ... 1123
Poultry Science ... 203
Poultry Science - BS, Industry Emphasis 203
Poultry Science - BS, Technical Emphasis 204
Poultry Science - Minor .. 205
Pre-Medicine - Minor ... 696
Professional Event Manager - Certificate 224
Proficiency in Arabic - Certificate .. 623
PSYC - Psychology (PSYC) ... 1125
Psychological and Brain Sciences .. 637
Psychology - BA ... 640
Psychology - BS ... 642
Psychology - Minor .. 644
Psychology of Diversity - Certificate 645
Public Health - BS ... 673
Public Health - BS/MPH, 3+2 Program 676
Public Health Entomology - Certificate 181
Public Health Studies - Minor .. 678

Q
Quality Engineering for Regulated Medical Technologies - Certificate .. 389
Quantitative Economic Methods - Certificate 581

R
Radiological Health Engineering - Minor 472
Rangeland Ecology and Management - BS, Ranch Management Option 206
Rangeland Ecology and Management - BS, Rangeland Resources Option 208
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEFB</td>
<td>Special Ed Field Based (SEFB)</td>
<td>215</td>
</tr>
<tr>
<td>RDNG</td>
<td>Reading (RDNG)</td>
<td>206</td>
</tr>
<tr>
<td>Recreation</td>
<td>Recreation, Park and Tourism Sciences</td>
<td>216</td>
</tr>
<tr>
<td>Recreation</td>
<td>Recreation, Park and Tourism Sciences - BS with Certificate</td>
<td>217</td>
</tr>
<tr>
<td>Recreation</td>
<td>Recreation, Park and Tourism Sciences - Minor</td>
<td>222</td>
</tr>
<tr>
<td>Religious</td>
<td>Religious Studies - Minor</td>
<td>78</td>
</tr>
<tr>
<td>RELS</td>
<td>Religious Studies (RELS)</td>
<td>1129</td>
</tr>
<tr>
<td>RENR</td>
<td>Renewable Natural Resources - BS</td>
<td>219</td>
</tr>
<tr>
<td>RLEM</td>
<td>RLENG-Rangeland Ecology & Mgmt (RLEM)</td>
<td>1132</td>
</tr>
<tr>
<td>RPTS</td>
<td>Rec, Park & Tourism Sci (RPTS)</td>
<td>1133</td>
</tr>
<tr>
<td>RUSU</td>
<td>Russian (RUSS)</td>
<td>1136</td>
</tr>
<tr>
<td>Russian</td>
<td>Russian - Minor</td>
<td>623</td>
</tr>
<tr>
<td>Safety</td>
<td>Safety Engineering - Certificate</td>
<td>379</td>
</tr>
<tr>
<td>SCEN</td>
<td>College of Science (SCEN)</td>
<td>1137</td>
</tr>
<tr>
<td>Scholastic</td>
<td>Scholastic Honor Societies</td>
<td>1305</td>
</tr>
<tr>
<td>School</td>
<td>School of Military Science</td>
<td>773</td>
</tr>
<tr>
<td>School</td>
<td>School of Public Health</td>
<td>672</td>
</tr>
<tr>
<td>SCSC</td>
<td>Supply Chain Mgmt (SCMT)</td>
<td>1137</td>
</tr>
<tr>
<td>SCSC</td>
<td>Soil and Crop Sciences (SCSC)</td>
<td>1139</td>
</tr>
<tr>
<td>Secondary</td>
<td>Secondary Graduate Certification Program</td>
<td>352</td>
</tr>
<tr>
<td>SEFB</td>
<td>Special Ed Field Based (SEFB)</td>
<td>1141</td>
</tr>
<tr>
<td>SENG</td>
<td>Safety Engineering (SENG)</td>
<td>1142</td>
</tr>
<tr>
<td>Services</td>
<td>Services for Students</td>
<td>85</td>
</tr>
<tr>
<td>Small</td>
<td>Small Animal Clinical Sciences</td>
<td>762</td>
</tr>
<tr>
<td>SOCI</td>
<td>Sociology (SOCI)</td>
<td>1142</td>
</tr>
<tr>
<td>Social</td>
<td>Social Media - Certificate</td>
<td>568</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology</td>
<td>645</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology - BA</td>
<td>647</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology - BA/MPSA, 3+2 Program</td>
<td>649</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology - BS</td>
<td>650</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology - BS/MPSA, 3+2 Program</td>
<td>652</td>
</tr>
<tr>
<td>Sociology</td>
<td>Sociology - Minor</td>
<td>654</td>
</tr>
<tr>
<td>Soil</td>
<td>Soil and Crop Sciences</td>
<td>226</td>
</tr>
<tr>
<td>SChl</td>
<td>SChl of Military Sciences</td>
<td>1146</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish (SPAN)</td>
<td>1147</td>
</tr>
<tr>
<td>Spanish</td>
<td>Spanish - BA</td>
<td>591</td>
</tr>
<tr>
<td>Spanish</td>
<td>Spanish - Minor</td>
<td>594</td>
</tr>
<tr>
<td>Spatial</td>
<td>Spatial Sciences - BS</td>
<td>171</td>
</tr>
<tr>
<td>Spatial</td>
<td>Spatial Sciences - Minor</td>
<td>173</td>
</tr>
<tr>
<td>SPED</td>
<td>Special Education (SPED)</td>
<td>1150</td>
</tr>
<tr>
<td>SPMT</td>
<td>Sport Management - BS</td>
<td>339</td>
</tr>
<tr>
<td>Sport</td>
<td>Sport Management - BS, Internship Track</td>
<td>340</td>
</tr>
<tr>
<td>Sport</td>
<td>Sport Management - BS, Non-internship Track</td>
<td>342</td>
</tr>
<tr>
<td>Sport</td>
<td>Sport Management - Minor</td>
<td>345</td>
</tr>
<tr>
<td>SPSC</td>
<td>Spatial Sciences (SPSC)</td>
<td>1154</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics (STAT)</td>
<td>1154</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics</td>
<td>746</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics - BS</td>
<td>748</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics - BS/MS, 3+2 Program</td>
<td>749</td>
</tr>
<tr>
<td>Statistics</td>
<td>Statistics - Minor</td>
<td>750</td>
</tr>
<tr>
<td>Strategic</td>
<td>Strategic Communication - Certificate</td>
<td>569</td>
</tr>
<tr>
<td>Student</td>
<td>Student Learning Outcomes</td>
<td>30</td>
</tr>
<tr>
<td>Success</td>
<td>Student Success</td>
<td>85</td>
</tr>
<tr>
<td>Supply</td>
<td>Supply Chain Management - BBA</td>
<td>287</td>
</tr>
<tr>
<td>Supporting</td>
<td>Supporting Academic Programs</td>
<td>869</td>
</tr>
<tr>
<td>Sustainable</td>
<td>Sustainable Architecture and Planning - Minor</td>
<td>243</td>
</tr>
<tr>
<td>TCMG</td>
<td>Technology Management (TCMG)</td>
<td>1156</td>
</tr>
<tr>
<td>Teaching</td>
<td>Teaching, Learning and Culture</td>
<td>346</td>
</tr>
<tr>
<td>Technology</td>
<td>Technology Management - BS</td>
<td>312</td>
</tr>
<tr>
<td>Technology</td>
<td>Technology Management - Minor</td>
<td>314</td>
</tr>
<tr>
<td>TEED</td>
<td>Teacher Education (TEED)</td>
<td>1157</td>
</tr>
<tr>
<td>TEFB</td>
<td>Teacher Ed Field Based (TEFB)</td>
<td>1157</td>
</tr>
<tr>
<td>Telecm</td>
<td>Telecommunication Media Studies - BA</td>
<td>561</td>
</tr>
<tr>
<td>Telecm</td>
<td>Telecommunication Media Studies - BS</td>
<td>563</td>
</tr>
<tr>
<td>Texas</td>
<td>Texas A&M University at Galveston</td>
<td>778</td>
</tr>
<tr>
<td>Texas</td>
<td>Texas A&M University at Qatar</td>
<td>840</td>
</tr>
<tr>
<td>Texas</td>
<td>Texas Common Course Numbering System</td>
<td>1306</td>
</tr>
<tr>
<td>Theatre</td>
<td>Theatre Arts (THAR)</td>
<td>1158</td>
</tr>
<tr>
<td>Tourism</td>
<td>Tourism Management - Certificate</td>
<td>225</td>
</tr>
<tr>
<td>Tourism</td>
<td>Tourism Management - Minor</td>
<td>222</td>
</tr>
<tr>
<td>Trading</td>
<td>Trading, Risk and Investments - Certificate</td>
<td>283</td>
</tr>
<tr>
<td>Transition</td>
<td>Transition Academic Programs</td>
<td>119</td>
</tr>
<tr>
<td>Tuition</td>
<td>Tuition, Fees and Other Financial Information</td>
<td>98</td>
</tr>
<tr>
<td>Turfgrass</td>
<td>Turfgrass Science - BS</td>
<td>229</td>
</tr>
<tr>
<td>UGST</td>
<td>Undergraduate Studies (UGST)</td>
<td>1159</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>Undergraduate Catalog</td>
<td>12</td>
</tr>
</tbody>
</table>
Y
Youth Development - Certificate .. 225
Youth Development - Minor ... 222

Z
ZOOL - Zoology (ZOOL) .. 1177
Zoology - BS ... 694