MSEN - MATERIALS SCIENCE & ENGR (MSEN)

MSEN 201 Fundamentals of Materials Science and Engineering
Credits 3.3 Lecture Hours. Fundamental principles of materials science and engineering and their application toward complex engineering challenges; relationship between materials structure and structural and functional properties of engineered materials; property-performance relationships; principle classes of materials, as illustrated through key materials advances; current directions in the field. Prerequisite: Grade of C or better in MSEN 201, or concurrent enrollment; or approval of instructor.

MSEN 205 Materials in Society
Credits 2.2 Lecture Hours. Introduction to the study and practice of materials science and engineering; current topics in materials research and development, focusing on the impact of advanced materials on engineering fields and society; application of scientific engineering principals to guiding materials engineering process, with examples drawn from real-life case studies. Prerequisite: Grade of C or better in MSEN 201, or concurrent enrollment; or approval of instructor.

MSEN 210 Thermodynamics of Materials
Credits 3.3 Lecture Hours. Basic concepts and fundamental laws of thermodynamics; processes and thermodynamic engines; phase equilibria and phase diagrams of simple substances; chemical reactions of condensed phases; computational software for thermodynamic and phase diagram calculations. Prerequisite: Grade of C or better in MSEN 201, AERO 413, BMEN 343, CHEN 322, CVEN 306, MEEN 222/MSEN 222, MMET 206, MSEN 222/MEEN 222, or NUEN 265, or concurrent enrollment; grade of C or better in MATH 152 or concurrent enrollment.

MSEN 222/MEEN 222 Materials Science
Credits 3.3 Lecture Hours. Mechanical, optical, thermal, magnetic and electrical properties of solids; differences in properties of metals, polymers, ceramics and composite materials in terms of bonding and crystal structure. Prerequisite: Grade of C or better in CHEM 107 or CHEM 119; grade of C or better in PHYS 206. Cross Listing: MEEN 222/MSEN 222.

MSEN 250 Soft Matter
Credits 3.3 Lecture Hours. Structure, properties and function of various classes of soft matter including colloids, polymers, amphiphils, liquid crystals and biomacromolecules; basic concepts of viscoelasticity, glass transition, liquid-liquid and liquid-solid transitions and gelation; forces acting between mesoscopic objects; supramolecular self-assembly in soft condensed matter. Prerequisite: Grade of C or better in CHEM 120; MSEN 201, or concurrent enrollment.

MSEN 260 Structure of Materials
Credits 3.3 Lecture Hours. Materials structure over many orders of scale; structure of non-crystalline materials; symmetry, unit cell and the atomic structure of crystalline materials; liquid crystals; structural defects in ordered solids; microstructures and hierarchical structures. Prerequisite: Grade of C or better in MSEN 201, AERO 413, BMEN 343, CHEN 322, CVEN 306, MEEN 222/MSEN 222, MMET 206, MSEN 222/MEEN 222, or NUEN 265, or concurrent enrollment.

MSEN 261 Size and Surface Effects
Credits 3.3 Lecture Hours. Nanoscale phenomena as they relate to properties of materials in the scale of micro to nanoscale. Emphasis on atomic scale structure and its effect on properties and application of microscopic imaging and measuring techniques. Prerequisite: Grade of C or better in MSEN 201, AERO 413, BMEN 343, CHEN 322, CVEN 306, MEEN 222/MSEN 222, MMET 206, MSEN 222/MEEN 222, or NUEN 265, or concurrent enrollment.

MSEN 281 Materials Science and Engineering Seminar
Credit 1.1 Other Hour. Presentation of technical advances in the field of materials science and engineering; applications toward solving engineering challenges; presentations from visiting industry, academic speakers, and faculty; introduction to current research themes and focal points in industry. Prerequisite: Grade of C or better in MSEN 201, or concurrent enrollment.

MSEN 285 Directed Studies
Credits 1 to 4.1 to 4 Other Hours. Directed study of selected problems in the area of materials science and engineering. May be taken for credit 4 times. Prerequisite: Approval of instructor.

MSEN 289 Special Topics In...
Credits 1 to 3.1 to 3 Lecture Hours. 0 to 3 Lab Hours. Selected topics in an identified area of materials science and engineering. May be repeated for credit. Prerequisite: Approval of instructor.

MSEN 291 Research
Credits 0 to 4.0 to 4 Other Hours. Research conducted under the direction of faculty member in materials science and engineering. May be taken three times for credit. Prerequisite: Freshman or sophomore classification and approval of instructor.

MSEN 301 Unified Materials Lab I
Credits 3.2 Lecture Hours. 3 Lab Hours. Integration of materials synthesis, structural characterization and property evaluation; theory and practice of experimental and simulation techniques; emphasis on relationship between processing parameters and resulting materials structure. Prerequisite: Grade of C or better in MSEN 210 and MSEN 260, or concurrent enrollment.

MSEN 302 Unified Materials Lab II
Credits 3.2 Lecture Hours. 3 Lab Hours. Integration of materials synthesis, structural characterization and property evaluation; theory and practice of experimental and simulation techniques; emphasis on relationship between materials structure and resulting materials physical properties. Prerequisite: Grade of C or better in MSEN 301 and MSEN 380; grade of C or better in MSEN 320, or concurrent enrollment.

MSEN 305 Kinetics of Materials
Credits 3.3 Lecture Hours. Application of physical principles that drive evolution of materials as they approach thermodynamic equilibrium states; includes Gibbs free energy, driving forces, point defects, diffusion in solids, interface and grain boundary motion, nucleation, growth, transformation diagrams, precipitation, phase separation, ordering and solidification. Prerequisite: Grade of C or better in MSEN 210.

MSEN 320 Deformation and Failure Mechanisms in Engineering Materials
Credits 3.3 Lecture Hours. Survey of deformation and failure mechanisms in different materials, including metals, ceramics, polymers and composites; effect of atomistic structure, defects and microstructure on deformation and failure; deformation and failure mechanism maps and effects of temperature and deformation rate. Prerequisite: Grade of C or better in MSEN 260.
MSEN 325 Properties of Functional Materials
Credits 3. 3 Lecture Hours. Origins of functional materials properties from their electronic and molecular structure; electron theory in solids; electronic transport and dielectric behavior; optical and magnetic properties; current applications of functional materials. Prerequisite: Grade of C or better in MSEN 260.

MSEN 330 Numerical Methods for Materials Scientists and Engineers
Credits 3. 3 Lecture Hours. Computing platforms addressing scientific/engineering problems related to materials science and engineering; analyze data; implement mathematical models of materials behavior; numerical methods to solve materials-related problems. Prerequisite: Grade of C or better in MATH 307, MSEN 305, and MSEN 320.

MSEN 360 Materials Characterization
Credits 3. 2 Lecture Hours. 3 Lab Hours. Principles and techniques used in characterization of different materials, including metals, ceramics, polymers, composites and semiconductor systems; microstructural, chemical/compositional and surface analysis methods; interpretation and analysis of the characterization results. Prerequisite: Grade of C or better in MSEN 250 and MSEN 260.

MSEN 380 Communicating Materials Science and Engineering
Credit 1. 1 Lecture Hour. Effective communication of technical topics in materials science and engineering to technical and non-technical audiences; emphasis on written reports. Prerequisite: Grade of C or better in MSEN 301, or concurrent enrollment.

MSEN 399 High Impact Professional Development
Credits 0. 0 Other Hours. Student participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point. Prerequisite: Grade of C or better in MSEN 205 and MSEN 281; junior or senior classification.

MSEN 400 Design and Analysis of Materials Experiments
Credits 3. 2 Lecture Hours. 3 Lab Hours. Systematic design of experimental investigations; team approach to identification of topics and development of experiment designs including establishing the need, associated requirements and objective; conduction of experiments; characterization of materials; analysis and interpretation of results; documentation of the procedures, analysis, results and conclusions; presentation of written and oral reports. Prerequisite: Grade of C or better in MSEN 301.

MSEN 401 Materials Design I
Credits 3. 2 Lecture Hours. 3 Lab Hours. Design process; need definition, functional analysis, performance requirements, evaluation criteria, conceptual design evaluation; introduction to systems engineering; parametric and risk analysis, failure analysis, material selection and manufacturability; cost and life cycle issues, project management; industry-relevant design projects. Prerequisite: Grade of C or better in MSEN 281, MSEN 205 and MSEN 400.

MSEN 402 Materials Design II
Credits 3. 2 Lecture Hours. 3 Lab Hours. Development of innovative solutions to industry-relevant design challenges; structured framework and methodology for design activities; innovation, computational materials science, synthesis and processing and analysis and characterization of material components; project definition, management, customer interaction and effective team participation; presentations and design reviews. Prerequisite: Grade of C or better in MSEN 401.

MSEN 410 Materials Processing
Credits 3. 3 Lecture Hours. Synthesis, properties and processing of technologically important materials, metals, ceramics and polymers; thermodynamics and kinetics of different materials processing methods, casting, deformation processing, heat treatments, powder processing and sintering, coating, thin films processing, etc. Prerequisite: Grade of C or better in MSEN 250, MSEN 305, and MSEN 320; junior or senior classification.

MSEN 415 Defects in Solids
Credits 3. 3 Lecture Hours. Overview of point, line and surface defects in solids; relates defect properties to diffusion, deformation, phase transformations; focuses on atomic defects in crystals, with additional examples from liquid crystals, superconductors and ferromagnets; incorporates atomistic modeling to examine defect structure. Prerequisite: Grade of C or better in MSEN 260; junior or senior classification; or approval of instructor.

MSEN 418 Composites Processing and Performance
Credits 3. 3 Lecture Hours. Fundamental science and design of composites; processing and design interaction about multiphase composites; processing science, experimental characterization, laminate analysis; design structure and processing. Prerequisite: Grade of C or better in MSEN 320 or MSEN 360.

MSEN 420 Polymer Science
Credits 3. 3 Lecture Hours. Types of polymerization; molecular characteristics of polymer chains; single chain statistics and rubber elasticity; phase transitions, glass transition, viscoelasticity and time-temperature superposition; polymer structure at the molecular, microscopic and macroscopic level; polymer thermosets, thermoplastics, elastomers, fibers, and advanced nanoparticle-filled composites. Prerequisite: Grade of C or better in PHYS 206 and CHEM 120; junior or senior classification; or approval of instructor.

MSEN 426 Polymer Laboratories
Credits 3. 2 Lecture Hours. 3 Lab Hours. Laboratory to prepare those interested in polymer research with necessary experimental and analytical skills to conduct and analyze experimental work. Prerequisite: Grade of C or better in MSEN 250, junior or senior classification; or approval of instructor.

MSEN 430 Nanomaterials Science
Credits 3. 3 Lecture Hours. Nanotechnology and nanomaterials; types, fabrication, characterization methods and applications; current roles in technology and future impact of such systems on industry targeting. Prerequisite: Grade of C or better in MSEN 260; junior or senior classification; or approval of instructor.
MSEN 440 Materials Electrochemistry and Corrosion
Credits 3. 3 Lecture Hours. Survey of thermodynamic and kinetic fundamentals of electrochemistry; multiscale materials corrosion mechanisms; details of interfacial aqueous electrochemical mechanisms and the environmental effects when materials are exposed to different conditions. Prerequisite: Grade of C or better in MSEN 201, AERO 413, BMEN 344, CHEN 322, CVEN 306, MEEN 222/MSEN 222, MMET 207, MSEN 222/MEEN 222, or NUEN 265; or approval of instructor.

MSEN 444 Corrosion and Electrochemistry Lab
Credits 3. 2 Lecture Hours. 3 Lab Hours. Laboratory practice and principles for corrosion and electrochemistry methods; design, carry out and analyze a series of labs illustrating the most important techniques in the field; builds to an open-ended corrosion engineering problem resulting in preparation of a technical report for a hypothetical client. Prerequisite: Grade of C or better in MSEN 440, or approval of instructor.

MSEN 446 Corrosion Prevention and Control Methods
Credits 3. 3 Lecture Hours. Cathodic protection and coatings; functional engineering approach to controlling and preventing aqueous corrosion; impressed current, galvanic anodes, organic, inorganic and hybrid coatings; case studies in oil and gas, energy, automotive and different industries. Prerequisites: Grade of C or better in MSEN 440, or approval of instructor.

MSEN 448 Fundamentals of Ceramics
Credits 3. 3 Lecture Hours. Structure-property relationships of ceramics and ceramic composites; atomic bonding in ceramics; crystalline and glassy structures; phase equilibria and ceramic reactions; mechanical, electrical, thermal, dielectric, magnetic and optical properties; ceramic processing; different properties of ceramics will be related to their underlying structure. Prerequisite: Grade of C or better in MSEN 260; junior or senior classification; or approval of instructor.

MSEN 470 Computational Materials Science and Engineering
Credits 3. 3 Lecture Hours. Modern methods of computational modeling and simulation of materials properties and phenomena, including synthesis, characterization and processing of materials, structures and devices; quantum, classical and statistical mechanical methods, including semi-empirical atomic and molecular-scale simulations and other modeling techniques using macroscopic input. Prerequisite: Grade of C or better in MATH 307, MSEN 305, and MSEN 320.

MSEN 472 Atomistic Simulation of Materials
Credits 3. 3 Lecture Hours. Modern methods of computational modeling and simulation of materials properties and phenomena at the atomistic scale; quantum, classical and statistical mechanical methods, including semi-empirical atomic and molecular-scale simulations, and other modeling techniques using macroscopic input. Prerequisite: Grade of C or better in MSEN 470, or approval of instructor.

MSEN 484 Internship
Credits 0 to 4. 0 to 4 Other Hours. Practical experience working in a professional materials science and engineering setting offered on an individual basis. Must be taken on a satisfactory/unsatisfactory basis. Prerequisites: Junior or senior classification and approval of instructor.

MSEN 485 Directed Studies
Credits 0 to 4. 0 to 4 Other Hours. Directed study of selected problems in the area of materials science and engineering. May be taken four times for credit. Prerequisite: Grade of C or better in MSEN 301.

MSEN 489 Special Topics In...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours. Selected topics in an identified area of materials science and engineering. May be repeated for credit. Prerequisite: Approval of instructor.

MSEN 491 Research
Credits 0 to 4. 0 to 4 Other Hours. Research conducted under the direction of a faculty member in materials science and engineering. May be taken four times for credit. Prerequisites: Grade of C or better in MSEN 301.