NUEN - NUCLEAR ENGINEERING (NUEN)

NUEN 101 Principles of Nuclear Engineering
Credit 1. 1 Lecture Hour.
Introduction to nuclear engineering including global and national energy requirements, radioactivity, radiation protection, and fission and fusion reactor concepts.

NUEN 102 Nuclear Engineering Practice
Credits 0. 0 Other Hours.
Participation in an approved high-impact learning practice; reflection on professional outcomes from engineering body of knowledge; documentation and self-assessment of learning experience at mid-curriculum point.
Prerequisite: NUEN 101.

NUEN 201 Introduction to Nuclear Engineering I
Credits 3. 3 Lecture Hours.
Atomic and nuclear physics discoveries that have led to the development of nuclear engineering, atomic models, relativity, x-rays, types of nuclear reactors; problem solving techniques.
Prerequisites: MATH 251 or registration therein; PHYS 208.

NUEN 265 Materials Science for Nuclear Energy Applications
Credits 3. 3 Lecture Hours.
Materials science fundamentals with an emphasis on nuclear applications; topics will include bonding, crystal structures, crystalline defects, mechanical properties and radiation effects in metal, ceramic and polymer materials.
Prerequisites: CHEM 102, or CHEM 104 and CHEM 114, or CHEM 107; PHYS 218.

NUEN 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours.
Selected topics in an identified area of nuclear engineering. May be repeated for credit.
Prerequisite: Approval of department head.

NUEN 301 Nuclear Reactor Theory
Credits 3. 3 Lecture Hours.
An introduction to neutron diffusion theory, neutron moderation, conditions for criticality of nuclear reactors.
Prerequisites: NUEN 302.

NUEN 302 Introduction to Nuclear Engineering II
Credits 3. 3 Lecture Hours.
Basic radioactivity, nuclear and neutron physics as applied to nuclear engineering.
Prerequisites: NUEN 201; MATH 308 or registration therein.

NUEN 303 Radiation Detection and Isotope Technology Laboratory
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Interaction of radiation with matter; behavior of various nuclear radiation detectors studied both theoretically and experimentally in laboratory; properties of radionuclides useful to industry considered and evaluated from engineering point of view; writing intensive course.
Prerequisite: Grade of C or better in NUEN 309/SENG 309.

NUEN 304 Nuclear Reactor Analysis
Credits 3. 3 Lecture Hours.
The group diffusion method, multi-region reactors, heterogeneous reactors, reactor kinetics, changes in reactivity.
Prerequisite: NUEN 301; MATH 309.

NUEN 309/SENG 309 Radiological Safety
Credits 3. 3 Lecture Hours.
Interactions of nuclear radiations with matter and biological systems; theory and practice of radiation dosimetry as applied to radiation protection; design and application of radiation dosimetry systems for personnel monitoring, area radiation monitoring and accident situation; includes external and internal dosimetry as well as long-term risk analysis.
Prerequisite: NUEN 302.

NUEN 315 Thermodynamics in Nuclear Systems
Credits 3. 3 Lecture Hours.
Introduction of thermodynamic theory and application; thermodynamic properties and conservation of mass and energy; first and second laws of thermodynamics; energy transfer by heat, work and mass; analysis of open and closed systems; key thermodynamic components in nuclear systems including BWR, PWR and other types of reactors; application of thermodynamic cycles to nuclear power systems; and heat and mass balances throughout nuclear systems.
Prerequisites: MEEN 221; MATH 251 or MATH 253.

NUEN 329 Analytical and Numerical Methods
Credits 3. 3 Lecture Hours.
Introduction to use of numerical analysis and advanced analytical techniques for obtaining nuclear reactor flux distributions, temperatures and transients; use of digital computer in obtaining nuclear reactor design information.
Prerequisites: MATH 309 and NUEN 301.

NUEN 330 Monte Carlo Radiation Transport and MCNP Code
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Principles of Monte Carlo method; statistical methods in Monte Carlo; random number generation; sampling methods for physical processes represented by Boltzmann transport equation; particle tracking in combinatorial geometry; ACE format cross-sections; introduction to MCNP code; MCNP applied to radiation shielding, criticality safety, reactor physics and detector modeling problems; MCNP output analysis; MCNP statistical tests; MCNP tallying procedures; Variance reduction techniques; introduction to develop Monte Carlo algorithms.
Prerequisite: Grade of C or better in NUEN 302; grade of C or better or concurrent enrollment in NUEN 301; MCNP code single user license from RSICC, ORNL, USA; junior or senior classification.

NUEN 405 Nuclear Engineering Experiments
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Experimental measurements of basic nuclear reactor parameters; reactor operation and reactor safety.
Prerequisites: NUEN 303; NUEN 304 or senior classification.

NUEN 406 Nuclear Engineering Systems and Design
Credits 3. 3 Lecture Hours.
Nuclear plant systems; conventional and advanced generation power reactors, nuclear simulators, transient analysis using available software for reactor simulators; nuclear engineering design methodology; problem formulation, criteria, trade-off decisions and design optimization; case studies.
Prerequisite: NUEN 304; MEEN 461 or approval of instructor.

NUEN 410 The Design of Nuclear Reactors
Credits 4. 4 Lecture Hours.
Application of reactor theory and other engineering disciplines in fundamental and practical design of nuclear reactor systems for power applications; use of computer in design operations.
Prerequisites: NUEN 304 and NUEN 406; MEEN 461.
NUEN 417/MEEN 417 Basics of Plasma Engineering and Applications
Credits 3. 3 Lecture Hours.
Basic plasma properties and confinement techniques; single particle
orbits in electric and magnetic fields, moments of Boltzmann equation
and introduction to fluid theory; wave phenomena in plasmas and
introduction to plasma kinetic theory; analysis of laboratory plasmas
and plasma applications including fusion, electric propulsion, materials
processing and plasmas enhanced chemistry.
Prerequisites: Grade of C or better in PHYS 208 or equivalent; senior
classification in nuclear, mechanical or aerospace engineering, or
physics.
Cross Listing: MEEN 417/NUEN 417.

NUEN 418 Fuel Assembly and 3-D Reactor Core Design and Modeling
Credits 3. 3 Lecture Hours.
Application of state-of-the-art engineering-grade codes in the neutronic
design, analysis and modeling of nuclear fuel assembly and core.
Prerequisites: NUEN 304 and junior or senior classification.

NUEN 428 Computational Fluid Dynamics in Nuclear Thermal Hydraulics
Credits 3. 3 Lecture Hours.
Computational fluid dynamics (CFD) as it relates to thermal hydraulics
in nuclear power generation; computational model of important flow
scenarios using appropriate mesh generation techniques; assessment of
result validity through standard verification and validation practices.
Prerequisite: Grade C or better in NUEN 329, MEEN 344, or equivalent.

NUEN 430 Computer Applications in Nuclear Engineering
Credits 3. 3 Lecture Hours.
Applications of digital computers to solve nuclear engineering problems;
nuclear data and cross-section libraries; deterministic methods for linear
and non-linear nuclear systems, and Monte Carlo methods for linear
nuclear systems.
Prerequisites: NUEN 304, NUEN 329.

NUEN 431 Technical Communications Issues in the Nuclear Industries
Credit 1. 1 Lecture Hour.
Introduction to a variety of topics that present communication
challenges; opportunities to learn from a variety of visiting experts
concerning the nuances and challenges of, as well as successful
methods for, communicating with concerned audiences about technically
challenging topics.
Prerequisite: Junior or senior classification or approval of instructor.

NUEN 432 Nuclear Power Plant Fundamentals
Credits 3. 3 Lecture Hours.
Understanding the operation of a nuclear electric general station;
includes reactor water chemistry, material science, electrical science;
mechanical science, civil engineering for nuclear power plant engineers,
and digital process control systems.
Prerequisite: Junior or senior classification in the college of engineering;
non-NUEN majors.

NUEN 436 Human Performance for Nuclear Power Plant Engineers
Credits 2. 2 Lecture Hours.
Six modules: human performance fundamentals, the organization and the
processes, the individual worker, the engineer, corrective action programs
and root cause analysis, and case studies including TMI-2, Chernobyl,
Davis-Besse, and Fukushima Daiichi.
Prerequisites: NUEN 432; junior or senior classification in the college of
engineering.

NUEN 451 Nuclear Security System Design
Credits 3. 3 Lecture Hours.
The science and engineering associated with the design, evaluation and
implementation of systems to secure nuclear and radiological materials;
adversary characterization, categorization of nuclear and radiological
targets, calculation of consequences associated with failure to protect
targets, detection and delay technologies, and mathematical methods for
evaluation and managing risk.
Prerequisites: NUEN 303 and NUEN 309/SENG 309 or equivalent, or
approval of instructor.

NUEN 460 Nuclear Plant Systems and Transients
Credits 3. 3 Lecture Hours.
Use of engineering principles to elucidate the nuclear, mechanical,
electrical and functional interactions among nuclear plant components
and systems; reactor protection systems, alarm and trip setpoints,
normal and accident transients; components studied in detail include
core, control rod drive mechanism, neutron source, neutron detectors,
primary coolant system, and emergency core cooling system.
Prerequisites: NUEN 301, NUEN 302, NUEN 304, NUEN 430 or
equivalents; MEEN 315, MEEN 344, MEEN 461 or equivalents; junior or
senior classification.

NUEN 465 Nuclear Materials Engineering
Credits 3. 3 Lecture Hours.
Explore applications of materials science principles in nuclear energy
systems; includes crystal structures and defects, metallurgy, and
materials thermochemistry; emphasis on nuclear fuel performance,
structural material changes, and waste materials; laboratory
demonstrations on materials behavior.
Prerequisites: NUEN 265, MEEN 222/MSEN 222 or equivalent and
NUEN 302.

NUEN 475 Environmental Nuclear Engineering
Credits 3. 3 Lecture Hours.
Environmental aspects of nuclear power; natural radiation environment
and the distribution of radioactivity added to the environment by human
activities; evaluation of effects of radiation and radioactivity on the
environment and on humans.
Prerequisite: Grade of C or better in NUEN 309/SENG 309.

NUEN 479 Radiation Protection Engineering
Credits 3. 2 Lecture Hours. 3 Lab Hours.
Analysis of radiation hazard situations and design of nuclear facilities
from a safety standpoint.
Prerequisite: NUEN 475.

NUEN 481 Seminar
Credit 1. 1 Lecture Hour.
Designed to broaden the student’s capability, performance and
perspective in nuclear engineering through faculty, student and guest
presentations.
Prerequisite: NUEN 410 or registration therein or NUEN 479 or
registration therein.

NUEN 485 Directed Studies
Credits 1 to 6. 1 to 6 Other Hours.
Problems of limited scope approved on an individual basis intended to
promote independent study; program enrichment for capable students;
results presented in writing to staff.
Prerequisites: Junior or senior classification and approval of department
head.
NUEN 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified area of nuclear engineering. May be repeated for credit.
Prerequisite: Approval of instructor.

NUEN 491 Research
Credits 1 to 4. 1 to 4 Other Hours.
Research conducted under the direction of a faculty member in Nuclear Engineering. May be repeated 2 times for credit. Registration in multiple sections of this course is possible within a given semester provided that the per semester credit hour limit is not exceeded.
Prerequisites: Junior or senior classification and approval of instructor.