PHYS - PHYSICS (PHYS)

PHYS 101 Freshman Physics Orientation
Credit 1. 1 Lecture Hour.
Critical thinking skills and problem solving in physics: time management and teaming skills.
Prerequisite: Physics majors; non-majors requires approval of instructor.

PHYS 102 Freshman Physics Orientation II
Credit 1. 1 Lecture Hour.
Critical thinking skills and problem solving in physics: time management and teaming skills. For physics majors. Registration by non-majors requires approval of instructor.

PHYS 109/ASTR 109 Big Bang and Black Holes
Credits 3. 3 Lecture Hours.
Designed to give an intuitive understanding of the Big Bang and Black Holes, without mathematics, and de-mystify them for the non-scientist.
Cross Listing: ASTR 109/PHYS 109.

PHYS 119/ASTR 119 Big Bang and Black Holes: Laboratory Methods
Credit 1. 2 Lab Hours.
Hands-on understanding of the concepts surrounding the Big Bang and Black Holes; emphasis on the evidence-based decision making process, methods and presentation; for non-scientists. Companion course for ASTR 109/PHYS 109/ASTR 109.
Prerequisite: ASTR/PHYS 109/ASTR 109 or registration therein.
Cross Listing: ASTR 119/PHYS 119.

PHYS 123 Physics for Future Presidents
Credits 3. 3 Lecture Hours.
Physics needed to be an effective policy maker or world leader but appropriate for any citizen, since all citizens need to understand the world in which they live and work; fundamental principles of physics made comprehensible and usable by those not in science- or math-related fields.
Prerequisite: Basic math skills; also taught at Galveston campus.

PHYS 125 Soft Matter Physics for Non-physicists
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Modern physics in action with hands-on physics experience in simple experiments for non-physicists majors; introduction to thermodynamics and soft matter physics; heat, temperature, thermodynamic efficiency, phase transitions, mechanical properties of soft matter; heat transfer mechanisms; physical measurements.

PHYS 201 College Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(PHYS 1301 and 1101, 1401) College Physics. Fundamentals of classical mechanics, heat, and sound. Primarily for architecture, education, premedical, predental, and preveterinary medical students; also taught at Galveston campus.

PHYS 202 College Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(PHYS 1302 and 1102, 1402) College Physics. Continuation of PHYS 201. Fundamentals of classical electricity and light; introduction to contemporary physics.
Prerequisite: PHYS 201; also taught at Galveston campus.

PHYS 205 Concepts of Physics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
General survey physics course for K-8 preservice teachers integrating physics content and laboratory activities relevant to physics-related subject matter included in the current Texas and national standards for elementary school science; includes aspects of mechanics, waves, electricity, magnetism and modern physics.
Prerequisite: Major in interdisciplinary studies or interdisciplinary technology or approval of instructor.

PHYS 206 Newtonian Mechanics for Engineering and Science
Credits 3. 3 Lecture Hours.
Prerequisites: Grade of C or better in MATH 151 or MATH 171, or equivalent; also taught at Galveston campus.

PHYS 207 Electricity and Magnetism for Engineering and Science
Credits 3. 3 Lecture Hours.
(PHYS 2326) Electricity and Magnetism for Engineering and Science. Calculus-based electricity and magnetism; electromagnetic phenomena; basic laws of electricity and magnetism; science and engineering problems involving charges, electromagnetic fields, and electrical circuits.
Prerequisites: Grade of C or better in PHYS 206; grade of C or better in MATH 152 or MATH 172 or equivalent; also taught at Galveston campus.

PHYS 208 Electricity and Optics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
(PHYS 2426) Electricity and Optics. Continuation of PHYS 218. Electricity, magnetism, and introduction to optics. Primarily for students in science and engineering.
Prerequisites: PHYS 218; MATH 152 or MATH 172; also taught at Galveston campus.

PHYS 216/ENGR 216 Experimental Physics and Engineering Lab II - Mechanics
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Description and application of laws of physical motion to the solution of science and engineering problems; using sensing, control and actuation for experimental verification of physics concepts while solving engineering problems.
Prerequisites: Grade of C or better in MATH 151 or MATH 171 or equivalent; grade of C or better in ENGR 102; grade of C or better and concurrent enrollment in PHYS 206; also taught at Galveston campus.
Cross Listing: ENGR 216/PHYS 216.

PHYS 217/ENGR 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism
Credits 2. 1 Lecture Hour. 3 Lab Hours.
Electromagnetism and electromechanical systems; use of sensing, control and actuation to demonstrate key physical relationships through the transducer relationships linking pressure, temperature and other physical stimuli to changes in electric and magnetic fields.
Prerequisites: Grade of C or better in MATH 152 or MATH 172, or equivalent; grade of C or better in PHYS 206 or equivalent; grade of C or better in PHYS 216/ENGR 216 or ENGR 216/PHYS 216; grade of C or better and concurrent enrollment in PHYS 207; also taught at Galveston campus.
Cross Listing: ENGR 217/PHYS 217.
PHYS 218 Mechanics
Credits 4. 3 Lecture Hours. 3 Lab Hours.
Prerequisite: MATH 151 or MATH 171; also taught at Galveston campus.

PHYS 221 Optics and Thermal Physics
Credits 3. 3 Lecture Hours.
Wave motion and sound, geometrical and physical optics, kinetic theory of gases, laws of thermodynamics.
Prerequisites: PHYS 207 or PHYS 208, or concurrent enrollment; MATH 221, MATH 251, or MATH 253, or concurrent enrollment; MATH 308 or concurrent enrollment.

PHYS 222 Modern Physics for Engineers
Credits 3. 3 Lecture Hours.
Atomic, quantum, relativity and solid state physics.
Prerequisites: PHYS 207 or PHYS 208; MATH 308 or concurrent enrollment.

PHYS 225 Electronic Circuits and Applications
Credits 4. 1 Lecture Hour. 6 Lab Hours.
Linear circuit theory and applications of solidstate diodes, bipolar and field-effect transistors, operational amplifiers and digital systems.
Prerequisites: PHYS 207 or PHYS 208; MATH 308.

PHYS 226 Physics of Motion Laboratory for the Sciences
Credit 1. 2 Lab Hours.
(PHYS 2125) Physics of Motion Laboratory for the Sciences. The first semester laboratory to accompany a two-semester course sequence in introductory physics; topics include material covered in a typical calculus-based introductory physics course on the principles of mechanics and motion.
Prerequisites: MATH 151 or MATH 171; concurrent enrollment in PHYS 206; also taught at Galveston campus.

PHYS 227 Electricity and Magnetism Laboratory for the Sciences
Credit 1. 2 Lab Hours.
(PHYS 2126) Electricity and Magnetism Laboratory for the Sciences. The second semester laboratory to accompany a two-semester course sequence in introductory physics; topics include material covered in a typical calculus-based introductory physics course on the principles of electricity and magnetism.
Prerequisites: MATH 152 or MATH 172; PHYS 206 or PHYS 218; concurrent enrollment in PHYS 207; also taught at Galveston campus.

PHYS 285 Directed Studies
Credits 1 to 4. 1 to 4 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum; intended for use as lower-level credit.
Prerequisite: Approval of instructor.

PHYS 289 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 6 Lab Hours.
Selected topics in an identified area of physics. May be repeated for credit.
Prerequisite: Approval of instructor.

PHYS 291 Research
Credits 0 to 4. 0 to 4 Other Hours.
Research conducted under the direction of faculty member in physics. May be repeated 2 times for credit.
Prerequisites: Freshman or sophomore classification and approval of instructor.

PHYS 302 Advanced Mechanics I
Credits 3. 3 Lecture Hours.
Classical mechanics of particles and rigid bodies; review of Newtonian mechanics and foundations of Lagrangian and Hamiltonian formalism.
Prerequisite: PHYS 309 and PHYS 331; PHYS 332 or concurrent enrollment, or approval of instructor.

PHYS 303 Advanced Mechanics II
Credits 3. 3 Lecture Hours.
Applications of Lagrangian and Hamiltonian methods to selected problems of classical mechanics.
Prerequisite: PHYS 302.

PHYS 304 Advanced Electricity and Magnetism I
Credits 3. 3 Lecture Hours.
Electrostatics; dielectrics; electrical current and circuits; magnetic fields and materials; induction; Maxwell's equations.
Prerequisites: PHYS 331; PHYS 332 or concurrent enrollment, or approval of instructor.

PHYS 305 Advanced Electricity and Magnetism II
Credits 3. 3 Lecture Hours.
Radiation and optics. Electromagnetic waves; radiation; reflection and refraction; interference; diffraction; special relativity applied to electrodynamics.
Prerequisite: PHYS 304.

PHYS 309 Modern Physics
Credits 3. 3 Lecture Hours.
Special relativity; concepts of waves and particles; introductory quantum mechanics.
Prerequisite: PHYS 221.

PHYS 327 Experimental Physics I
Credits 2. 1 Lecture Hour. 2 Lab Hours.
Laboratory experiments in modern physics and physical optics with an introduction to current, state-of-the-art recording techniques.
Prerequisites: PHYS 225; PHYS 309.

PHYS 328 Experimental Physics II
Credit 1. 1 Lecture Hour. 1 Lab Hour.
Laboratory experiments in modern physics and physical optics with an introduction to current, state-of-the-art recording techniques.
Prerequisites: PHYS 327 or concurrent enrollment.

PHYS 331 Theoretical Methods for Physicists I
Credits 3. 3 Lecture Hours.
Applications involving vectors; vector and additional methods for advanced electricity and magnetism; relationship and solutions of classical wave equation, heat equation, and Schrodinger equation; harmonic motion on finite or periodic lattice and in continuum; tensor and matrix notation in classical mechanics and electricity and magnetism.
Prerequisite: PHYS 221 or approval of instructor.

PHYS 332 Theoretical Methods for Physicists II
Credits 3. 3 Lecture Hours.
Methods to solve the important equations of theoretical physics, emphasizing the effects of boundary conditions and quantization on their solutions and restricted to the essential physical symmetries associated with free space, spheres, cylinders, and rectangles; if time permits, introduction to symmetries in physics and to asymptotic methods.
Prerequisites: PHYS 331; restricted to physics majors.
PHYS 401 Computational Physics
Credits 3. 2 Lecture Hours. 2 Lab Hours.
Introduction to computational and simulational techniques widely used in physics applications and research, including trajectory integration, wave motion analysis, molecular dynamics, Monte Carlo methods, statistical mechanics of spin systems, phase transitions, quantum evolution, bound state problems, and variational methods.
Prerequisites: PHYS 332; knowledge of a high level language.

PHYS 408 Thermodynamics and Statistical Mechanics
Credits 4. 4 Lecture Hours.
Statistical method, macroscopic thermodynamics, kinetic theory, black body radiation, Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics.
Prerequisite: PHYS 412.

PHYS 412 Quantum Mechanics I
Credits 3. 3 Lecture Hours.
Postulates of wave mechanics; wave packets; harmonic oscillator; central field problem; hydrogen atom; approximation methods.
Prerequisites: PHYS 302; PHYS 309; PHYS 332; junior or senior classification.

PHYS 414 Quantum Mechanics II
Credits 3. 3 Lecture Hours.
Continuation of PHYS 412. Electron spin; addition of angular momenta; atomic structure; time dependent perturbations; collision theory; application of quantum mechanics to atomic, solid state, nuclear or high energy physics.
Prerequisite: PHYS 412.

PHYS 416 Physics of the Solid State
Credits 3. 3 Lecture Hours.
A survey of solid state physics; an introduction to crystal structures and the physics of electrons, lattice vibrations and photons; applications to semiconductors; magnetism; superconductivity; physics of nanostructures; brief introduction to selected current topics in condensed matter physics.
Prerequisites: PHYS 304 and PHYS 412.

PHYS 425 Physics Laboratory
Credits 2. 6 Lab Hours.
Experiments in nuclear, atomic, and molecular physics using modern instrumentation and equipment of current research.
Prerequisite: PHYS 327 or equivalent.

PHYS 426 Physics Laboratory
Credits 2. 6 Lab Hours.
Experiments in solid state and nuclear physics. Modern instrumentation and current research equipment are employed.
Prerequisite: PHYS 327 or equivalent.

PHYS 485 Directed Studies
Credits 1 to 12. 1 to 12 Other Hours.
Special work in laboratory or theory to meet individual requirements in cases not covered by regular curriculum.
Prerequisite: Approval of instructor; also taught at Galveston campus.

PHYS 489 Special Topics in...
Credits 1 to 4. 1 to 4 Lecture Hours. 0 to 4 Lab Hours.
Selected topics in an identified field of physics. May be repeated for credit.
Prerequisite: Approval of instructor.