Multidisciplinary Engineering Technology (MXET) prepares students for careers requiring an understanding of technical problems and systems that combine principles from two or more engineering technology disciplines. The degree is designed to be flexible, giving the student a strong background in electronic and mechanical systems, which is then augmented with a 29-hour focus area. Graduates of the program receive a rigorous technical education and typically take engineering and technology positions appropriate to their focus area of study. The MXET curriculum is based on a strong underpinning of engineering math and science courses followed by a core technical sequence. This core includes mechanical, electronic and embedded systems/software fundamentals, principles and design concepts. Throughout their curriculum, students work on multiple open-ended projects to design, implement, test, and evaluate mechanical and electronic hardware and software systems. One of the most unique aspects of the Multidisciplinary Engineering Technology program is that most technical courses provide a hands-on laboratory experience using state-of-the-art equipment and industry-standard design and analysis software. The technical curriculum is augmented with courses in written/oral communications and technical project management. A team-based industry-sponsored capstone design sequence provides a challenging opportunity to apply technical, managerial, and communications skills to solve a real-world problem.

MXET Program Mission
The Multidisciplinary Engineering Technology Program at Texas A&M University prepares graduates for immediate impact and long-term career success by providing a real-world experiential education coupled with personalized undergraduate experiences in mechanical, electronic, control, computer and communication systems, as well as engineering design and development.

MXET Program Educational Objectives
The program educational objectives of the BS MXET degree program are to produce graduates who, within two to five years after graduation, will:

- Possess and demonstrate technical knowledge of the design, manufacture, sales, and service of complex systems that span multiple engineering technology disciplines.
- Demonstrate an increasing level of leadership and responsibility.
- Exhibit productivity in a dynamic work environment through a commitment to lifelong learning.
- Exhibit a commitment to professional ethics in their professional careers.

A continuous cycle of assessment and program improvement is used to ensure that these objectives are being met. Through interactions with industry and academic partners, the Multidisciplinary Engineering Technology program offers a state-of-the-art curriculum that produces successful graduates.

MXET Tracks
The MXET program has a common core of courses and 29 additional credit hours that allow students to gain further experience with the focus area of choice. Currently, there are three focus areas, each representing a track of the MXET program. These tracks are mechatronics, STEM education, and electro-marine engineering technology. The MXET program is offered at three distinct locations: College Station, Galveston, and McAllen.

Electro Marine Engineering Technology Track
The Electro Marine Engineering Technology track has an emphasis in marine mechatronics, a multidisciplinary field that includes a combination of electrical, mechanical, communications, control, and marine engineering technology topics. Students interested in wireless communications, automation, instrumentation and/or robotics will gain hands-on experience with a focus on marine electronic systems. Additionally, students graduating with this degree and obtaining a license will be well prepared to become an electronic technology officer (ETO). In the near future, at least one ETO will be required on each sailing vessel. This program is approved to be offered at the Texas A&M University at Galveston campus.

Program Requirements
The freshman year is identical for degrees in aerospace engineering, architectural engineering, civil engineering, computer engineering, computer science, electrical engineering, electronic systems engineering technology, environmental engineering, industrial distribution, industrial engineering, interdisciplinary engineering, manufacturing and mechanical engineering technology, mechanical engineering, multidisciplinary engineering technology, nuclear engineering, ocean engineering, and petroleum engineering. Students pursuing degrees in biological and agricultural engineering should refer to the specific curriculum for this major. It is recognized that many students will change the sequence and number of courses taken in any semester. Deviations from the prescribed course sequence, however, should be made with care to ensure that prerequisites for all courses are met.

<table>
<thead>
<tr>
<th>First Year</th>
<th>Semester Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>CHEM 107</td>
<td>General Chemistry for Engineering Students (^1,4) 3</td>
</tr>
<tr>
<td>CHEM 117</td>
<td>General Chemistry for Engineering Students Laboratory (^1,4) 1</td>
</tr>
<tr>
<td>ENGL 103</td>
<td>Introduction to Rhetoric and Composition (^1) or Composition and Rhetoric 3</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Lab I - Computation (^1) 2</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Mathematics (^1,2) 4</td>
</tr>
<tr>
<td>University Core Curriculum (http://catalog.tamu.edu/undergraduate/general-information/university-core-curriculum/) (^3) 3</td>
<td></td>
</tr>
</tbody>
</table>

Semester Credit Hours 16
Spring
ENGR 216/PHYS 216 Experimental Physics and Engineering Lab II - Mechanics 2
MATH 152 Engineering Mathematics II 1
PHYS 206 Newtonian Mechanics for Engineering and Science 1

University Core Curriculum (http://catalog.tamu.edu/undergraduate/general-information/university-core-curriculum/) 3

Select one of the following: 3-4
CHEM 120 Fundamentals of Chemistry II 1,4

University Core Curriculum (http://catalog.tamu.edu/undergraduate/general-information/university-core-curriculum/) 3,5

Semester Credit Hours 15-16
Total Semester Credit Hours 31-32

1 A grade of C or better is required.
2 Entering students will be given a math placement exam. Test results will be used in selecting the appropriate starting course which may be at a higher or lower level.
3 Of the 21 hours shown as University Core Curriculum electives, 3 must be from creative arts (see AREN curriculum for more information), 3 from social and behavioral sciences (see IDIS curriculum for more information), 3 from language, philosophy and culture (see EVEN, EVEN and PETE curriculum for more information), 6 from American history and 6 from government/political science. The required 3 hours of international and cultural diversity and 3 hours of cultural discourse may be met by courses satisfying the creative arts, social and behavioral sciences, language, philosophy and culture, and American history requirements if they are also on the approved list of international and cultural diversity (http://catalog.tamu.edu/undergraduate/general-information/degree-information/international-cultural-diversity-requirements/) courses and cultural discourse (http://catalog.tamu.edu/undergraduate/general-information/degree-information/creative-arts/cultural-discourse-requirements/) courses.
4 BMEN, CHEN and MSEN require 8 hours of fundamentals of chemistry which are satisfied with CHEM 119 or CHEM 107/CHEM 117 and CHEM 120; Students with an interest in BMEN, CHEN and MSEN can take CHEM 120 second semester freshman year. CHEM 120 will substitute for CHEM 107/CHEM 117.
5 For BS-PETE, allocate 3 hours to core communications course (ENGL 210, COMM 203, COMM 205, or COMM 243) and/or 3 hours to UCC elective. For BS-MEEN, allocate 3 hours to core communications course (ENGL 203, ENGL 210, or COMM 205) and/or 3 hours to UCC elective.

Fall
ENGR 217/PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism 1
ESET 210 or MARE 217 Circuit Analysis 1 or Circuit Analysis 4
ESET 211 Communication for Technical Professions
COMM 203 Public Speaking
COMM 205 Communication for Technical Professions
ENGL 210 Technical and Professional Writing

Spring
ESET 269 Embedded Systems Development in C 1
ESET 350 or MARE 317 Analog Electronics 1 or Marine Analog Electronics
MMET 207 or MARE 210 Metallic Materials 1 or Metallurgy for Marine Engineers
MMET 275 Mechanics for Technologists 1

Select one of the following: 3
COMM 203 Public Speaking
COMM 205 Communication for Technical Professions
ENGL 210 Technical and Professional Writing

Second Year
Fall
ENGR 217/PHYS 217 Experimental Physics and Engineering Lab III - Electricity and Magnetism 1
ESET 210 or MARE 217 Circuit Analysis 1 or Circuit Analysis 4
ESET 219 Digital Electronics 1 4
PHYS 207 Electricity and Magnetism for Engineering and Science 1 3

Math elective 1,6

Semester Credit Hours 16
Total Semester Credit Hours 96

6 See a departmental advisor for a list of approved electives.
Multidisciplinary Engineering Technology - BS, Electro Marine Engineering Technology Track

7 Meets the 29 hr Electro Marine Engineering Technology focus area requirements.
8 All students are required to complete a high-impact experience in order to graduate. The list of possible high-impact experiences is available from a departmental advisor.

This curriculum lists the minimum number of classes required for graduation. Additional courses may be taken.

Total Program Hours 127